
An Analytic Model for Performance
Analysis of Concurrency Control

Strategies in Mobile Environments
GUAN-CHI CHEN AND SUH-YIN LEE

Department of Computer Science and Information Engineering, National Chiao Tung University,
1001 Ta-Hsueh Road, Hsinchu, Taiwan 300, ROC

Email: gcchen@csie.nctu.edu.tw

Many performance studies have shown that locking based protocols outperform other concurrency
control protocols in most database configurations and workloads. However, in mobile environments
there are many special characteristics, such as long network delay and the expensive wireless
communication. Besides, transactions may be aborted due to forced termination when handoff
occurs for the consideration of concurrency control. The performances of concurrency control
strategies should be re-evaluated in such environments. In this paper, we develop an analytic
model to evaluate the performances of concurrency control strategies. The accuracy of this model
is verified by simulation. According to the experimental results we show that the behavior of mobile
users and the degree of data contention have a significant impact on the relative performances of the
concurrency control strategies. In particular, we point out that the optimistic concurrency control
strategy outperforms other strategies over a wide range of system configurations. We also explain

why the optimistic algorithm is well suited in mobile environments.

Received August 1, 1998; revised April 21, 1999

1. INTRODUCTION

Recent technological advances in portable computers
(notebooks) and wireless communication have made the
mobile computing environment a reality. An example of
the future mobile environment is the so-called personal
communication service (PCS) network. The PCS network
is based on current cellular network architecture. In
cellular network architecture, a mobile unit, which is a
notebook or laptop computer with a wireless network card,
communicates with servers on the wire network through a
base station. The communication area covered by a base
station is called a cell. When a mobile unit is within
the cell of a base station, the base station will provide
a communication channel to the mobile unit if there are
some idle channels available in the cell. A general mobile
information system model, as shown in Figure 1, has been
proposed [1, 2, 3].

This model consists of stationary and mobile units.
Stationary units are classified as either fixed hosts or base
stations. Fixed hosts are information servers with associated
databases connected to the existing wire network, and are
not capable of connecting to a mobile unit. A base station
is equipped with a wireless interface and is capable of
connecting to a mobile unit. In other words, the base station
plays the role of coordinator and communication interface
between the mobile units and the stationary units.

The mobile user accesses the database by submitting
transactions, called mobile transactions. A transaction

FIGURE 1. Mobile information system model.

submitted from a mobile unit is sent to a base station through
a wireless link and then sent to the information server via the
existing fixed network.

During the executing time, a transaction may need the
user’s participation to input data. Many studies have pointed
out that the cost of a call set-up is very expensive [4]. In
order to avoid re-establishing the communication each time
the transaction needs the user’s interaction, we assume that
the communication link must be kept while the transaction
is executing.

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

512 G.-C. CHEN AND S.-Y. LEE

When a mobile unit is within the cell of a base station,
the base station will provide a communication channel to
the mobile unit if there are some idle channels available in
this cell. Due to the movement of a mobile user, when a
mobile user enters a new cell, the new base station should
provide an idle channel to the mobile unit to continue its
communication. This process is called handoff. If there is no
idle channel in the new cell to provide for the user, then the
connection will be forced to drop or terminate. The forced
termination of an active transaction not only interferes with
the users, but also wastes the system resources, since the
database should be rolled back and the transaction should
be restarted later. As we know, handoff will occur when
a mobile unit enters a new cell. Due to the long network
delay of the wireless link, the transaction will become a
long-lived transaction in mobile environments. In addition,
with the growth of the number of mobile users and the aim
to provide a good quality service, it is a trend to set up more
base stations. As a consequence, the handoff frequency will
increase in the future. Therefore, the probability of forced
termination of transactions will also increase.

Several problems, such as lost update, temporary
update and incorrect summary, can occur when concurrent
transactions execute in an uncontrolled manner. In
database management systems (DBMSs), many concurrency
control algorithms have been proposed to ensure the
correct execution of concurrent transactions in controlled
manner [5]. Earlier studies about concurrency control
algorithms for conventional DBMSs have concluded that
locking based protocols outperform others under most
operating circumstances [6]. In light of the significant
difference between the mobile database systems and the
conventional database systems outlined above, it is possible
that the previous result may not hold true in mobile
environments. This possibility motivated our investigation
of the performances of concurrency control algorithms in
mobile environments.

The rest of this paper is organized as follows. We
introduce the concurrency control algorithms in the next
section. The analytic and simulation models are proposed
in Section 3 and Section 4, respectively. In Section 5,
we present and analyze the experimental results. Finally,
we make a conclusion and point out our future work in
Section 6.

2. CONCURRENCY CONTROL ALGORITHMS

The concurrency control software is included in a DBMS
to ensure the correct execution of concurrent transactions.
Concurrency control algorithms proposed can be roughly
classified into locking based protocols, time-stamp ordering
protocols and optimistic concurrency control protocols [5].
In our study, we will compare the performance for a specific
protocol in each class. These particular instances were
chosen because they are of comparable complexity and are
general in their applicability. We briefly introduce these
algorithms in this section.

2.1. Two-phase locking protocol

The two-phase locking (2PL) protocol is the most popular
concurrency control protocol and is widely used in most
of today’s database systems. In the 2PL protocol, two
types of lock are offered—share lock (Slock) and exclusive
lock (Xlock). A transaction is required to set anSlockon
a data item before reading it and to set anXlock before
writing on it. Multiple transactions can setSlockson the
same data item simultaneously and, therefore, can read
the data item concurrently. On the other hand, once an
Xlock on a data item is set by a transaction, no other
transactions are allowed to set any types of lock on the data
item. If a lock cannot be acquired, a transaction has to
wait until the lock-holding transaction releases the related
lock. For correctness, once a transaction releases a lock,
it cannot acquire any other lock. Furthermore, almost all
of the implementations choose to release locks held by a
transaction only after the corresponding transaction aborts
or commits. In addition to the lock request and release rules,
the 2PL protocol needs a deadlock detection and resolution
algorithm to solve the deadlock caused by the circular wait
of locks among transactions. The most commonly used
deadlock detection algorithms are periodical checking and
intermediate checking.

2.2. Time-stamp ordering protocol

A time-stamp is a unique identifier created by the DBMS to
identify a transaction [5]. Typically, time-stamp values are
assigned in the order in which the transactions are submitted
to the system, and a time-stamp can be thought of as the
transaction start time. Time-stamp ordering (TO) protocol
uses time-stamps to order the transactions. A schedule
in which the transactions participate is then serializable,
and the equivalent serial schedule has the transactions in
the order of their time-stamp values. To guarantee that a
schedule does not violate serializability, we associate with
each data itemX two time-stamp values:

read TS(X) The read time-stamp of itemX is
the largest time-stamp among all the
time-stamp of transactions that have
successfully read itemX.

write TS(X) The write time-stamp of itemX is
the largest time-stamp of all the trans-
actions that have successfully written
itemX.

Whenever a transactionT tries to issue a read or write
operation on itemX, the following rules are checked:

(1) Transaction T issues a read operation on item X:
if time-stamp of T< write TS(X)
then reject this read operation
else accept this read operation

(2) Transaction T issues a write operation on item X:
if time-stamp of T< read TS(X) or writeTS(X)
then reject this write operation
else accept this write operation

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

CONCURRENCYCONTROL IN MOBILE ENVIRONMENTS 513

Like the 2PL protocol, the TO protocol guarantees
serializability of schedules. Since the TO protocol does not
use locks, deadlock cannot occur in this protocol. However,
when a transactionT aborts, any effect it has incurred must
be undone and the transactions that have used the results
written byT must be also rolled back. This effect is known
as cascading rollback or cascading abort, and is one of the
problems associated with the TO protocol.

2.3. Optimistic concurrency control protocol

The optimistic concurrency control (OCC) protocol is based
on the premise that the conflict is rare and just lets
transactions execute first [5]. When a transaction reaches the
commit point, the system will check for conflicts. If there is
a conflict, the transaction will be terminated and restarted
again. So no checking is done during the transaction
executing time. A transaction executes in three phases.

• Read Phase: this phase represents the body of the
transaction up to commit. A transaction can read values
of data items from the database. However, updates are
applied only to local copies of the data items in the
transaction working place.

• Validation Phase: the system will examine if any
conflict occurs to ensure that serializability will not be
violated.

• Write Phase: if the transaction is validated, then the
transaction updates are applied to the database. If
conflicts which would result in a loss of integrity
are detected during the validation phase, then the
transaction is rolled back and restarted.

The set of data items read by a transaction is called the
transactionreadset, while the set of data items written by
a transaction is called the transactionwriteset. During the
validation phase, the system will check if any data item of
thereadsetof the transaction could be found in thewritesets
of other transactions. If found, the transaction will be rolled
back and restarted.

2.4. Comparisons of concurrency control methods

All of these concurrency control methods carry some
overheads in time and space. The TO protocol is similar
to 2PL in the sense that both use pessimistic approaches in
which the system checks the conflicts between transactions
as each data item is accessed. The TO protocol decides
the serialization order statically—depending on the time-
stamp of the transaction, which is the submit time of the
transaction. On the other hand, the 2PL protocol decides the
serialization dynamically—according to the order in which
the data items are accessed. When a conflict occurs, the TO
protocol aborts the transaction immediately. However, the
2PL protocol makes the transaction wait, but with a large
possibility of aborting later to avoid deadlock.

When the OCC protocol is used, all transactions are
allowed to process, but some may be aborted when they
attempt to commit. Because there is no need to wait for other

transactions, the transaction execution time when the OCC
protocol is used is shorter than when the 2PL protocol is
used. We will see the performances of these three methods
in our analytic model.

3. ANALYTIC MODELS

This section proposes analytic models for the 2PL, TO and
OCC protocols in mobile environments. We first describe
the traffic model in a PCS system, and then describe
the performance models for 2PL, TO and OCC protocols
respectively.

3.1. The traffic model for PCS

There are two types of calls—voice call (VC) for voice
service and transaction call (TC) for data transaction. We
assume that VC and TC arrivals in a cell form Poisson
processes with meanλv andλt respectively. Letλhv andλht
be the arrival rate of handoff VC and TC, respectively. At
this moment, we assumeλhv andλht are known (both arrival
rates will be derived in later discussion). The residence time
of a mobile unit in a cell is assumed to be an independent,
identical, random variable with an exponential distribution,
and the mean value equals 1/η. Let tc be the call holding
time of a voice call, which is assumed to be exponentially
distributed with the density functionfc(tc) = µ e−µtc, where
the mean call holding time isE[tc] = 1/µ. We first assume
that the mean call holding time of a transaction call isS
(S will be derived in later discussion). Thus, the mean call
holding time of all calls would be

1

µ′
= 1

µ

λv

λv + λt
+ S λt

λv + λt
.

Sinceλt is comparatively smaller thanλv, we assume that
the call holding times of all calls remain exponentially
distributed.

In Figure 2, we show the state-transition-rate diagram of
the system. Assume that there areC channels in a cell. Let
P(i) be the steady-state probability of totali calls in the
system. Using the state-transition-rate diagram, we easily
obtain the probabilityP(i) as

P(i) =
(

λT

η + µ′
)i
P (0)

i! , 0< i ≤ C (1)

and

P(0) =
(C∑
i=0

[λT/(η + µ′)]i
i!

)−1

(2)

whereλT = λv + λt + λhv+ λht.
Since no special handoff scheme is used, the handoff

calls and the new calls are not distinguishable. A call is
blocked when there are no idle channels. Thus the blocking
probabilityPb is given by

Pb = P(C). (3)

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

514 G.-C. CHEN AND S.-Y. LEE

FIGURE 2. The state-transition-rate diagram.

Since the residence time of a mobile unit in a cell is
exponentially distributed, according to [7], the arrival rates
of handoff VC and TC will be

λhv = η(1− pb)λv

µ+ ηpb
and λht = η(1− pb)λt

(1/S)+ ηpb
. (4)

By the equations derived in the above description, now we
can use an iterative algorithm to computepb as follows:

Algorithm Computeblockingprobability
Input : λv, λt, µ, η, C, S
Output :pb
Step 1: Select initial values forλhv andλht.
Step 2: Computepb by using (3)

pb = P(C).
Step 3:λhv,old← λhv andλht,old← λht.
Step 4: Computeλhv andλht by using (4)

λhv = η(1− pb)λv

µ+ ηpb
and λht = η(1− pb)λt

(1/S)+ ηpb
.

Step 5: If(|λhv− λhv,old| > δλhv) and
(|λht− λht,old| > δλht)

then go to Step 2. Otherwise go to Step 6.
Hereδ is a pre-defined value.

Step 6: Outputpb.

By the above algorithm, we can compute the value ofpb
under the initial value ofS. Whether the above iterative
approach will eventually converge is an open issue, and will
be our future research direction.

Now the mean residence time of a transaction in the
database system can be derived as follows. Leth denote the
number of handoffs occurring for a TC before it terminates.
Since we assume the mean call holding time of a transaction
call equalsS, h will be Sη. The mean residence time of a
transaction in the system,S′, will be

S′ =
(h−1∑
i=1

(1− pb)
i−1

η

)
+
(
S − (h− 1)

η

)
(1− pb)

h−1.

(5)

The second term of Equation (5) is the dwelling duration
of the transaction call in the last cell. The value computed
by Equation (5) is also the mean service time of a transaction
in the database system. It will be compared with the values
computed from the analytic models of concurrency control
protocols, which we will discuss in the following sections.

In the following description, we make the following
assumptions. (1) There areN data items in the database.
(2) The update transactions are aboutPu percentage of
total transactions. Write operations in update transactions
are aboutPw percentage of the total operations performed
by update transactions. In other words, the probability
that an operation is a write operation isPuPw. (3) Each
transaction will accessK data items before it commits. (4)
The execution time for each operation of a transaction equals
t (including CPU time, disk I/O delay and network delay).

3.2. Transaction residence time in two-phase locking
protocol

In this section, we will analyze the mean residence time of a
transaction when the 2PL protocol is employed in mobile
environments. It has been shown that the performance
of locking protocols for transactions that read and write
a database of sizeN is the same as that for transactions
that write a database of sizeN/[1 − (1− PuPw)

2] [8].
To simplify the analysis of 2PL, we can assume the
K operations of a transaction are all write operations
by changing the size of database fromN to N/[1 −
(1− PuPw)

2], denoted asN ′ [8, 9]. However, it is easy
to extend the model to the case of shared as well as
exclusive mode accesses to the database [8]. Since the
arrival rate of TC isλt and the mean residence time of a
transaction in the database system equalsS′, the average
number of transactions in the database system would be
M = Bλt(1 − pb)S

′, whereB is the number of cells in
the system. In order to compute the probability of lock
conflict, we have to know how many locks a transaction
will request before it terminates. In many previous analytic
studies of the performance of 2PL, the effect of deadlock
is ignored. However, in mobile environments, the network
delay is longer so that the residence time of a transaction
will be longer. Thus the average number of transactions in
the database system will be more and, as a consequence,
the deadlock probability will be higher than that in the
conventional database systems. Therefore, here we cannot
ignore the effect of deadlock. We first assume the probability
of deadlock occurring when a transaction requests a lock,
pd, is known (pd will be derived in later discussion). Then
the mean number of locks a transaction will request before
it commits or aborts without the consideration of forced
termination will be

Kexp=
K∑
i=1

(1− pd)
i−1. (6)

When we combine the effect of forced termination to
Equation (6), we can get the mean number of locks a
transaction will request before it terminates (commit, abort

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

CONCURRENCYCONTROL IN MOBILE ENVIRONMENTS 515

or been forced to terminate) as follows:

K ′ =
(h−1∑
i=1

Kexp

Sη
(1− pb)

i−1
)

+ Kexp

S

(
S − (h− 1)

η

)
(1− pb)

h−1. (7)

In Equation (7), Kexp/S is the number of locks a
transaction will request in a time unit. As in Equation (5),
the second term in Equation (7) is the mean number of locks
a transaction may request in the last cell andS−(1/η)(h−1)
is the mean residence time of a transaction in the last cell.

In the analysis of lock conflict probability, it is assumed
that each transaction, on average, has acquired half of its
locks at steady state [8, 9]. When a transaction requests
the ith lock, the probability of lock conflict,Pc(i), can be
expressed as a function ofM,K ′ andN ′ as follows:

Pc(i) = (M − 1)(K ′/2)
N ′ − i + 1

, i = 1, . . . ,K ′. (8)

In the following we use the approximationPc(i) ' pc =
(M − 1)K ′/(2N ′), 1 ≤ i ≤ K ′, sinceK ′ � N ′. In other
words, the probability that a transaction encounters a lock
conflict remains the same regardless of the number of locks
that it holds [8, 9].

Now the deadlock probability can be derived as follows.
Let Pd(m) be the probability of deadlock with cycle length
m (involving m transactions). For a deadlock with cycle
length 2,T 1 → T 2 → T 1 (→ represents that the former
transaction requests a lock held by the latter transaction),
Pd(2) is computed by the product ofProb(T 1 → T 2)
and the number of ways to chooseT 2 among blocked
transactions. The number of blocked transactions,Mb,
equalsMβ, whereβ is the probability that a transaction is
in blocked state. The value ofβ is not knowna priori,
but can be approximated in the case of low lock contention
levels. Assume that most of the lock conflicts are with
active transactions, such thatβ = K ′pcW1/S

′. W1 denotes
the delay encountered by a transaction blocked by an active
transaction andS′ is the mean transaction residence time in
the database system. The above equation implies thatβ is
expressed as the ratio of the mean transaction delay in the
blocked state and the mean transaction residence time. From
[9], W1 = ((k′ − 1)t/3)+(t/2), wheret is the mean process
time of a transaction operation. WhenK is sufficiently large
we haveW1/S

′ ' 1
3. Substitutingpc by Equation (8), we

have

β = K ′pcW1

S′
= (M − 1)K ′2

6N
. (9)

NowPd(2) can be expressed as follows:

Pd(2) = Prob(lock conflict occurs)

∗ Prob(T 1→ T 2 | lock conflict occurred)

∗ Prob(T 2→ T 1 | T 2 is currently blocked)

∗ Prob(T 2 is currently blocked)

∗ (number of candidates forT 2)

= pc
1

M − 1

1

M − 1
βM–1

= pcβ

M − 1
. (10)

The probability of deadlock with cycle-lengthm is
generalized as

Pd(m) = pc

M − 1

1∏m−1
i=1 M − i

βm−1
m−1∏
i=1

(M − i)

= pcβ
m−1

M − 1
. (11)

Therefore, the probability that a transaction will encounter
a deadlock of any cycle-length is

pd =
M−1∑
m=1

pcβ
m−1

M − 1
. (12)

To compute the mean residence time of a transaction in
the database system, we should know the mean waiting time
of a transaction when a lock conflict occurs. Assume that
T 2 is blocked byT 1. T 1 may be active or blocked. In the
former case, transactionT 2 waits untilT 1 completes. In
the latter case, we have a chain of transactions as inT 2→
T 1 → T 0. The mean waiting time ofT 1 from the time
it had a lock conflict withT 0 wasW1, but sinceT 2 had a
lock conflict withT 1 at a random time after the first conflict,
the additional delay isW ′1 ' W1/2. Since the probability
of a transaction in blocked state isβ, the probability that a
transaction is blocked by an active transaction is(1 − β).
It follows that the overall mean waiting time ofT 2 equals
(1− β)W1+ β(W1+W ′1) = W1 + 0.5βW1.

The probability that a transaction encountering a lock
conflict blocked at leveli is approximated byPi = βi−1, i ≥
1 (active transactions at the top of the chain correspond to
level zero). Also, the delay incurred by transactions blocked
at leveli, i > 1, is approximated byWi = (i − 0.5)W1. The
mean waiting time,W , of a transaction when a lock conflict
occurs will be

W =
(

1−
M−1∑
i=1

βi
)
W1+

M−1∑
i=2

(i − 0.5)βi−1W1

'
[
1+

M−1∑
i=1

(i − 0.5)βi
]
W1. (13)

Finally, we can compute the mean residence time of a
transaction in the database system as follows:

S′ = K ′t + pcK
′W. (14)

Now we have the iterative algorithm to computepb, pd
andS as follows:

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

516 G.-C. CHEN AND S.-Y. LEE

Algorithm performance2PL
Input: λv, λt, µ, η, C, S, N,Pu, Pw.
Output:pb, pd andS′.
Step 1: select initial values forλhv, λht andS.
Step 2: computeN ′ byN ′ = N/[1− (1− PuPw)

2].
Step 3: computepb by Algorithm computeblocking

probability.
Step 4: computeS′ by

S′ =
(h−1∑
i=1

(1− pb)
i−1

η

)
+
(
S − (h− 1)

η

)
(1− pb)

h−1.

Step 5:S′old← S′.
Step 6: computeM byM = λt(1− pb)S

′.
Step 7: select an initial value forpd.
Step 8:pd,old← pd.
Step 9: computeKexp by using Equation (6)

Kexp=
K∑
i=1

(1− pd)
i−1.

Step 10: computeK ′ by using Equation (7)

K ′ =
[h−1∑
i=1

Kexp

Sη
(1− pb)

i−1
]

+ Kexp

S

(
S − (h− 1)

η

)
(1− pb)

h−1

Step 11: computepc bypc = (M − 1)K ′/(2N ′).
Step 12: computepd by using Equation (12)

pd =
M−1∑
m=1

pc

M − 1
βm−1.

Step 13: If(|pd− pd,old| > δpd) then go to Step 8.
Otherwise go to Step 14.
Hereδ is a pre-defined value.

Step 14: computeW andS′ using

W =
[
1+

M−1∑
i=1

(i − 0.5)βi
]
W1

andS′ = K ′t + pcK
′W .

Step 15: if(|S′ − S′old| > δS′) then go to Step 3.
Otherwise go to Step 16.

Step 16: outputpb, pd andS′.
In addition to the probability of forced termination of

transactions, the system throughput is also an important
metric of performance evaluation. A transaction can commit
only if no deadlock or forced termination occurs before it
completes. Assume there areB cells in the system, then the
system throughput (transactions) will be

T = λt(1− pb)B(1− pd)
K−1

h∑
i=1

(1− pb)
i−1 h = Sη.

(15)

3.3. Analytic model for time-stamp ordering protocol

In order to compute the probability that a conflict occurs
when a transactionT 1 accesses a data item, we have to
know how many data items a transaction will access before
it terminates. Letpi,r and pi,w denote the probability
that a conflict occurs whenT 1 attempts to access itsith
data item and the operation is read and write, respectively.
Assume there areNi data items which have been accessed
by transactions whose time-stamp is larger thanT 1 when
T 1 makes itsith data request. Out ofNi data items, on
the averageNiPuPw will have their last access as write.
Since a write operation will conflict with the read and write
operations on the same data item while a read operation
only conflicts with write operations,pi,r andpi,w can be
computed as follows:

pi,r = NiPuPw

N − i (16)

pi,w = Ni

N − i . (17)

Computation ofNi is difficult because the model does
not keep track of other transactions.Ni has been computed
for the TO protocol in [10] and is given by the following
expression:

Ni = i

2

(
i

t
λtxn− 1

)
. (18)

In Equation (18), λtxn denotes the arrival rate of
transactions to the database and equalsλtB(1− pb).
Therefore, when a transaction makes itsith access, the
probability that it conflicts is

pi = (1− PuPw)
NiPuPw

N − i +
PuPwNi

N − i
= (2PuPw − P 2

uP
2
w)i

2(N − i)
(
i

t
µtxn− 1

)
. (19)

An important observation is thatpi ∝ i2. That is, the
abort probability of a transaction increases quadratically
with its age. Next, we compute the performance measures
of interests.

The mean number of data items a transaction will access
before it terminates without the consideration of forced
termination will be

Kexp=
K∑
i=1

(1− pi)i . (20)

Similar to 2PL, when combined with the effect of forced
termination, the mean number of data items a transaction
will access before it terminates will be

K ′ =
h−1∑
i=1

Kexp

Sη
(1− pb)

i−1

+ Kexp

S

(
S − (h− 1)

η

)
(1− pb)

h−1, h = Sη.
(21)

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

CONCURRENCYCONTROL IN MOBILE ENVIRONMENTS 517

Thus, the expected execution time of a transaction will be
the product of the value ofK ′ and the execution time of each
operation and is given by

S′ = tK ′. (22)

The iterative algorithm to computepb andS is similar
to that of the 2PL protocol. For the sake of brevity, we
do not present it here. Similar to the 2PL protocol, by the
expressions ofS, Kexp and pi , 1 ≤ i ≤ Kexp, we can
compute the system throughput as follows:

T = λtxn

[kexp∏
i=1

(1− pi)
] h∑
i=1

(1− pb)
i−1, h = Sη. (23)

3.4. Analytic model for optimistic concurrency control
protocol

Since there is no blocking effect in the OCC protocol,
it is very simple to estimate the execution time needed
for a transaction. As in the description in Section 2.3,
there are three phases of transaction execution—read phase,
validation phaseand write phase. In the read phase, the
transaction reads the values of data items from database and
computes the results. The execution time needed in this
phase equals the product of the number of operations and the
execution time of each step. After the transaction completes
all operations, it enters thevalidation phase. We assume
the times to validate a transaction and the disk I/O delay are
constants and equal totv andtio respectively. The execution
time in the last phase (write phase) equals to the product of
the mean number of write operations and the disk I/O delay.
Let pv be the probability of validation conflict occurring.
Therefore, the execution time needed for a transaction when
the OCC protocol is employed is:

S = tK + tv + (1− pv)KPuPwtio. (24)

We are left with the task of obtaining an expression for
pv. Consider the validation of a transactionT 1. For the
OCC protocol,T 1 has to be validated against two sets of
transactions during itsvalidation phase[11]:

(1) transactions that completed writing afterT 1 has entered
the system but beforeT 1 has started its validation, since
they may have modified the data item read byT 1, and

(2) transactions that were validated beforeT 1 but have
not yet completed writing by the timeT 1 started its
validation, i.e., the transactions that are in thewrite
phasewhenT 1 is in thevalidation phase.

To derive an expression forpv, we first have to determine
the number of data items updated or to be updated by
the first and second sets of transactions. A transaction
can enter thewrite phaseif there is no validation conflict
or forced termination occurs. As in the description in
Section 3.2, leth be the average number of handoffs before
a transaction terminates(h = Sη). Since the execution time
of the validationandwrite phasesis comparatively shorter

than that of theread phase, we assume that no handoff
occurs in thevalidationandwrite phases. By inputting the
initial value of S, we can compute the value ofpb using
the algorithmcomputeblockingprobability. Therefore, the
throughput will be

T = λtxn(1− pv)

h∑
i=1

(1− pb
i−1), h = Sη. (25)

The rate at which data items are updated is given by
TKPuPw. Therefore the number of data items updated by
the first set of transactions is equal to the rate at which
data items are updated multiplied by the execution time
of T 1, i.e. T (KPuPw)(KS). Similarly, the number of
data items to be updated by the transactions of the second
set isT (KPuPw)tv. Hence, the total number of updated
or to be updated data items that have to be checked is
T (KPuPw)(KS + tv). We call this set of data items the
validation set. We ignore the effect that thevalidation set
includes the data items updated byT 1. This is reasonable
when the number of transactions is sufficiently large [11].
The probability that a single data item accessed byT 1 does
not lie in thevalidation setis 1−[T (KPuPw)(KS+ tv)/N],
and the probability that none ofK data items lies in the
validation setis 1−[T (KPuPw)(KS+tv)/N]K . Therefore,

pv = 1−
(

1− T (KPuPw)(KS + tv)
N

)K
. (26)

By the substitution ofT , we have

pv = 1−
{

1− λtxn(1− pv)

[h∑
i=1

(1− pb)
i−1
]

× (KPuPw)(KS + tv)/N
}K
, h = Sη. (27)

The expected execution time of transactions and the
system throughput can be determined after obtaining the
value ofpv by Equations (24) and (25) respectively. The
iterative algorithm for the OCC protocol is similar to that of
the 2PL protocol. For the sake of brevity, we do not present
it here.

4. SIMULATION MODEL

In order to analyze the performances of concurrency control
strategies, we developed a discrete event simulation model
using SIMSCRIPT II.5 [12]. To simulate a very large PCS
network, we use the (8× 8) mesh topology with 64 BSs as
shown in Figure 3. The mobile unit may move to one of the
four neighboring cells depending on the routing function of
the mesh network, with the same probability of 0.25. There
are three types of events in the PCS part for the simulation,
which are arrival, handoff and complete. For the arrival
event, the calls are divided into two types—VC and TC.
When a TC arrives, a transaction is submitted to the database
transaction simulator and then the TC will behave like a VC
in the PCS network simulation part.

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

518 G.-C. CHEN AND S.-Y. LEE

FIGURE 3. (8×8) mesh network as PCS network topology in this
model.

Transaction arrival

Ready
Queue Request

Queue

Lock
Release the resources

and go back to
PCS part

Waiting Access

Object Queue

ObjectMore

No

Commit

Yes

Abort

Waiting
Queue

FIGURE 4. The simulator of the 2PL.

In the transaction simulator, we have constructed a
database simulation model for the 2PL protocol as in
Figure 4 [6]. A concurrency control agent will handle the
lock requests from the transactions according to the rules
of the 2PL protocol. If the lock is granted, the transaction
will access the data item. If more than one data item is
to be accessed by the transaction, the transaction will cycle
through these queues several times. If the transaction cannot
get the lock of the data item, it will enter the waiting queue
of the object until the object is released by other transactions.
As in the discussion in Section 2.4, the TO protocol is similar
to the 2PL protocol and will not be described here. As to the
simulator of the OCC protocol, the transaction reads all the
data items it needs and writes them to a temporary space.
After all the accesses of data are performed, a validation
procedure is executed to guarantee the serializability. If a
transaction is permitted to commit, it will write all its results
to the database. The logical model of transaction execution
when the OCC is used is shown in Figure 5.

There are two physical resources in this simulator, CPUs
and disks. A certain amount of resource overhead is

Ready
Queue

Object Queue

Object More

Yes

No

Go back to
the PCS
simulator

Transaction arrival

Validation

FIGURE 5. The simulator of the OCC.

associated with each concurrency control operation and
database access. Concurrency control operations require
only CPU service, and database accesses require both CPU
and disk services. The CPU servers are modeled as a pool
of servers serving a common CPU queue in first-come-first-
served (FCFS) discipline. Unlike the CPU servers, there is
an associated queue with a queue policy of FCFS for each
disk. Data objects are randomly distributed among these
disks. The size of the database,N, is set to 8000 objects,
a relatively small size in order to attain a reasonable degree
of data contention. The transaction size, which represents
the number of operations performed by a transaction, is
set to a value of uniform distribution between 15 and 25.
The update transactions are about 60% of total transactions.
Write operations in update transactions are about 50% of
the total operations performed by update transactions. To
simulate a distributed environment, there are four CPUs and
eight disks in our simulator. The CPU access delay is set to
12 ms, and the I/O access delay is set to 35 ms. The CPU
time for handling a lock request is set to 3 ms. These settings
are similar to those in other papers on performance study and
represent rough estimates of what realistic values might be
[6, 13].

5. EXPERIMENTAL RESULTS

In this section, we present and analyze the results of the
experiments. In order to achieve a 90% confidence level,
we run each simulation for three batches with 800,000 calls
and discard the first 80,000 calls of each batch to account
for initial transient conditions. For the first 10% of calls
the degree of channel contention and data contention is
relatively low compared with the rest of calls [7]. First,
we study the system performances of different protocols
in different mobilities of mobile users. The metrics of
performance considered here are the probabilities of forced

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

CONCURRENCYCONTROL IN MOBILE ENVIRONMENTS 519

0
2

4
6

8
10

12
14

16

0.33 0.5 1 2
Mobility

F
or

ce
d

T
er

m
in

at
io

n
of

 tx
n(

%
)

2PL.SIM

TS.SIM

OCC.SIM

2PL.EST

TS.EST

OCC.EST

FIGURE 6. The probabilities of forced termination of transactions
in different mobilities.

termination of transactions, transaction throughput and
transaction complete time. Then we discuss the system
performances in different degrees of data contention. In
each experiment, we assume that there are 10 channels in
each base station. The average call holding time of a voice
call is set to 3 minutes and the network delay (including the
wireless link) is set to 3 seconds.

5.1. Mobility-related experiments

Figure 6 shows the probability of a transaction being
forced to terminate before it completes for these protocols
in different mobilities of mobile users. Similar to the
derivation in [7], the probability of a transaction being
forced to terminate before it completes equals(λht/λt)pf .
In Figure 6, for each protocol, SIM and EST represent the
values obtained from the simulation and analytic model,
respectively. The mobility of a user,η, is the expected
number of cells that the user may cross per minute. In order
to evaluate the effect of mobile behavior of a user, we vary
the value of mobility (η) from 0.33 to 2. The reciprocal
of the mobility is the excepted residence time which a user
stays in a cell. In other words, the excepted residence time
is varied from 0.5 to 3 minutes in the experiments. We can
see that the probability of forced termination of transactions
grows when a high value of mobility is set. Because in a fast
mobility environment, a transaction is less likely to complete
in one cell, so the frequency of handoffs may increase.
This situation increases the probability of forced termination
of transactions. In addition to the probabilities of forced
termination of transactions, the transaction throughput is
also an important metric when we evaluate the system
performance. The transaction throughputs of mobility-
related experiments are shown in Figure 7.

From Figures 6 and 7, we can find that these three
protocols present almost the same behavior curve in the
probabilities of forced termination of transactions, and the
2PL protocol has better transaction throughput. In Figure 6,
the results obtained from the simulation and the analytic
model are very close. However, the difference between the
simulation and predicted results in the 2PL protocol is larger
than those in TO and OCC. The reason is that we make
some simplifications in the analytic models, especially in

10

11

12

13

14

15

0.33 0.5 1 2
Mobility

2PL

TS

OCC

T
h

ro
u

g
h

p
u

t(
tx

n
/m

in
)

FIGURE 7. The transaction throughputs in different mobilities.

the estimation of deadlock probability in the 2PL protocol.
Some studies ignore the effect of deadlock. However,
since the execution time of a transaction in a mobile
environment is longer compared with that in a conventional
environment, the deadlock probability is also higher in a
mobile environment. So the effect of deadlock cannot be
ignored. Since the results obtained from the simulation and
the analytic model are quite close, for clarity of illustration,
the lines standing for the theoretical results are not drawn in
the figures in the following context.

In Figure 7, there is no significant degradation in
throughput. The reason for this is that when the mobility
of users increases, the probability of forced termination
of transactions will increase, so that the degree of data
contention will decrease. As a consequence, the degradation
of transaction throughput is not significant. In these
experiments, the transaction complete time is relatively
much smaller than the phone call holding time (about 1:3).
In addition, the arrival rate of TC is relatively much smaller
than that of VC (about 1:10). The performance of 2PL is
slightly better than those of TS and OCC in this situation.
However, when the arrival rate of TC increases, the blocking
effect of 2PL will become severe. We will analyze the
performances of these protocols in different arrival rates of
TC in next section.

5.2. Data-contention-related experiments

Different degrees of data contention may affect the system
performance when these protocols are applied. In these
experiments, we simulate the transaction execution at
different arrival rates of TCs. When the arrival rate of
TC increases, the number of transactions submitted to the
database will also increase. As a consequence, the degree of
data contention will become higher. Figures 8 and 9 show
the probabilities of forced termination of transactions and
transaction throughputs in different arrival rates of TCs. The
mobility of users is set to 0.5 in these experiments.

From Figure 8, we can find that the probabilities of
forced termination of transactions of TO and OCC almost
do not increase when arrival rate increases. However, the
probability of forced termination of transactions of 2PL
dramatically increases when the arrival rate increases. From
Figure 9, we observe that the transaction throughputs of 2PL
start degrading when the arrival rate of TCs is more than

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

520 G.-C. CHEN AND S.-Y. LEE

0
5

10
15
20
25
30
35
40
45

0.1 0.2 0.3 0.4 0.5
Arrival Rate (TC/min)

F
or

ce
d

T
er

m
in

at
io

n
of

 T
xn

 (
%

)

2PL

TS

OCC

FIGURE 8. The probabilities of forced termination of transactions
in different arrival rates.

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5
Arrival Rate (TC/min)

T
hr

ou
gh

pu
t (

tx
n/

m
in

)

2PL

TS

OCC

FIGURE 9. The transaction throughputs in different arrival rates.

0.4. The cause of this phenomenon is that 2PL performs
poorly when the degree of data contention is high. When the
arrival rate of TC increases, the transaction complete time of
2PL rapidly increases. However, the transaction complete
times of TO and OCC do not increase when the arrival
rate increases. This is because transactions in these two
protocols do not hold the data items and need not wait for
other transactions. Since the complete time of a transaction
using 2PL is longer than those using the other two protocols,
so the time duration of channels being held by transactions
is also longer. As a consequence, the probability of forced
termination of VC when handoff occurs is also higher in
2PL. Figures 10 and 11 show the average complete time of
transactions and the probabilities of forced termination of
VC of mobility-related experiments, respectively.

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5

Arrival Rate (TC/min)

C
om

pl
et

e
T

im
e(

m
in

)

2PL

TS

OCC

FIGURE 10. The average turnaround time of transactions in
different arrival rates.

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

Arrival Rate (TC/min)

P
b
 (

%
) 2PL

TS

OCC

FIGURE 11. The probability of forced termination of VC in
different arrival rates.

6. CONCLUSION AND FUTURE WORK

In this paper, we have presented a quantitative study and
comparison of the performances of different concurrency
control protocols in mobile environments. The performance
metrics used here are the probability of forced termination
of transactions, transaction throughput and transaction
completion time. The effects of concurrency control
protocols on the probability of forced termination of phone
calls are also evaluated. In a conventional DBMS, locking-
based algorithms generally outperform others. However,
in mobile environments, optimistic algorithms show an
improved performance because there are no blocking effects.
Also, the policy of delayed resolution of data conflict results
in achieving a greater chance of completing transactions in
OCC when compared with the TO protocol. To evaluate
the performance of concurrency control strategies in mobile
environments, some detailed experiments were carried out.
From the experimental results, we can conclude that OCC
is of comparable performance with 2PL and TO when the
degree of data contention is low. However, when the
degree of data contention increases, the performance of 2PL
starts degrading, and OCC outperforms the others in such
a situation. In addition, the time to complete a transaction
using 2PL is longer than that of OCC, implying that the
expensive wireless channel is held longer by a transaction
in 2PL. A quantitative guideline is very helpful for choosing
a particular protocol. In the future, we will try to develop
a quantitative guideline on the operating conditions of a
mobile environment which favors a particular protocol.

No matter which concurrency control protocol is
employed, some transactions may still be forced to terminate
when handoff occurs. We are currently working on
developing an algorithm which can reduce the probability
of forced termination of transactions or prevent transactions
from being terminated if there is no idle channel when
handoff occurs.

REFERENCES

[1] Imerielinski, T. and Badrinath, B. R. (1994) Wireless mobile
computing: challenges in data management.Commun. ACM,
37, 19–28.

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

CONCURRENCYCONTROL IN MOBILE ENVIRONMENTS 521

[2] Evaggelia, P. and Bharat, B. (1995) Maintaining consistency
of data in mobile distributed environments. InProc. 15th Int.
Conf. Distributed Computing Systems, pp. 404–413.

[3] Walborn, G. D. and Chrysanthis, P. K. (1995) Supporting
semantics-based transaction processing in mobile database
applications. In Proc. 14th IEEE Symp. on Reliable
Distributed Systems, pp. 215–224.

[4] Dunhan, M. H. and Helal, A. S. (1995) Mobile computing and
databases: anything new?ACM SIGMOD Record, 24, 5–9.

[5] Elmasri, R. and Navathe, S. B. (1994)Fundamentals of
Database Systems, 2nd Edn, Addison-Wesley.

[6] Agrawal, R., Carey, M. J. and Livny, M. (1987) Concurrency
control performance modeling: alternatives and implications.
ACM Trans. Database Syst., 12, 609–654.

[7] Lin, Y.-B. (1997) Performance modeling for mobile telephone
networks.IEEE Networks, 11, 63–68.

[8] Tay, Y. C. (1985) Locking performance in centralized
databases.ACM Trans. on Database Syst., 10, 415–462.

[9] Thomasian, A. and Ryu, I. K. (1991) Performance analysis
of two-phase locking.IEEE Trans. Software Engng, 17, 386–
402.

[10] Singhal, M. (1991) Analysis of the probability of transaction
abort and throughput of two time-stamp ordering algorithm
for database systems.IEEE Trans. Knowledge Data Engng,
3, 261–266.

[11] Dan, A., Towsley, D. F. and Kohler, W. H. (1988) Modeling
the effects of data and resource contention on the performance
of optimistic concurrency control protocols. InProc. 4th Int.
Conf. on Data Engineering, pp. 418–425.

[12] SIMSCRIPT II.5 Programming Language(1987) Los Ange-
les, CA: CACI.

[13] Agrawal, D., El Abbadi, E. and Lang, A. E. (1994)
The performance of protocols based on locks with ordered
sharing.IEEE Trans. Knowledge Data Engng, 6, 805–818.

APPENDIX A. NOTATION

This appendix lists the notation used in the equations.

λv The voice call arrival rate to a cell.

λhv The arrival rate of handoff VCs to a cell.

λt The transaction call arrival rate to a cell.

λht The arrival rate of handoff TCs to a cell.

λtxn The transaction arrival rate to the database.

1/η The mean mobile unit residence time in a cell.

1/µ The mean call holding time of a voice call.

1/µ′ The mean call holding time of a call (VC or TC).

S The mean call holding time of a transaction call.

S′ The mean residence time in the database system for a
transaction.

pb The blocking probability of a call.

pc The probability of conflict occurs when a transaction
accesses a data item.

pd The deadlock probability.

β Fraction of transaction which is in blocked state.

Pu Fraction of update transactions among all transactions.

Pw Fraction of write operations in an update transaction.

N Number of data items in the database.

K Number of data items requested by a transaction.

K ′ The mean number of data items accessed by a
transaction before it terminates.

tc The mean call holding time of a voice call.

t The execution time of a transaction operation.

tv The validation time in OCC protocol.

tw The I/O delay in the database system.

W1 The mean waiting time for a transaction blocked by a
active transaction.

W The mean waiting time for a transaction when a lock
conflict occurs.

THE COMPUTER JOURNAL, Vol. 42, No. 6, 1999

