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A CVD Epitaxial Deposition in a Vertical
Barrel Reactor: Process Modeling Using

Cluster-Based Fuzzy Logic Models
J. C. Chiou and J. Y. Yang

Abstract—A chemical vapor deposition (CVD) epitaxial deposi-
tion process modeling using fuzzy logic models (FLM’s) has been
proposed. The process modeling algorithm consists of a cluster
estimation method and backpropagation algorithm to construct a
number of modeling structures from the training data. A decision
rule based on the multiple correlation factor is used to obtain the
optimum structure of fuzzy model using the testing data. Upon
the optimum structure has been reached, the gradient-descent
method is used to refer the parameters of the final fuzzy model
using both training and testing data. The algorithm has been
applied to a nonlinear function and a vertical chemical vapor
deposition process. The results demonstrate the efficiency and
effectiveness of the proposed fuzzy logic model in comparison
with existing fuzzy logic models and artificial neural network
models.

Index Terms—Chemical vapor deposition (CVD) modeling,
clustering estimation method, fuzzy logic.

I. INTRODUCTION

PROCESS modeling and control are essential to high
yield, high quality, and low cost manufacturing in today’s

competitive semiconductor market. With the device designs
shrinking to a minimum feature size of 0.15m by the
year 2001, the process-control requirements will be more
stringent and the attainment of higher yield will require
the process engineer to control variability at each of the
many processing steps in the microelectronics manufacturing
processes. To achieve this, all the input variables controlling
the desired output in a given process need to be understood
and optimized for tighter control. In addition, the process
controller must be quick and responsive to the variations of the
input parameters. Thus, designing an effective process control
technique satisfying these requirements is a very challenging
job.

The first step in meeting these challenges is the development
of an accurate model to describe the process. For some
processes, it is possible to determine the input(s)–output(s)
relationship through physical or analytical models. However,
for many semiconductor manufacturing processes, physical
models usually use many simplifications and assumptions
which limit the model’s accuracy and effectiveness. An at-
tractive alternative is to use neural network or fuzzy logic
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techniques to build empirical models. These models then form
the basis for process optimization and control.

Since Sugeno first introduced the FLM concept in 1985,
which is known as the Sugeno-type FLM, a number of
researchers have successfully applied his concept in modeling
and control [1]–[3]. Various approaches have been developed
to identify a FLM for a given process. However, because of the
complexity of obtaining the structure of membership functions
and its corresponding parameters in FLM. These approaches
encountered drawbacks such as lack of efficiency during the
modeling process, and fail to accurately predict their behaviors
after the process has been identified. Thus, a more efficient and
effective algorithm is needed in modeling the semiconductor
manufacturing process.

To identify an FLM for a process, there are two major
tasks: structure and parameter identifications, where each of
these consists of premise and consequence parts. In principle,
we cannot separate the structure identification from the pa-
rameter identification since they have a mutual relationship.
For the identification of Sugeno-type FLM’s, Yager and Filev
[4] developed an alternative approach by transforming the
problem of structure identification to estimation of distribution
of input space in which the concept of sample probability
distributions was introduced. This approach allows us to
simplify the problem of structure identification by replacing
identification of membership function of input variables with
identification of the centers of cluster-like regions. However,
the resulting identification algorithm still depends heavily on
a nonlinear optimization procedure. Wang and Langari [5],
[6] suggested a different approach in building Sugeno-type
FLM’s. Their approach used both the fuzzy discretization
technique to determine the premise of the model and an
orthogonal estimator to identify the consequence of the model.
Hwang and Woo [7] utilized a fuzzy c-means clustering and
GA hybrid scheme to identify the structure and the parameters
of an FLM.

Most of the algorithms mentioned above have been de-
veloped for systems that can generate significant amounts
of training data. An FLM trained by a large number of
randomly generated data can usually model the system’s
behavior accurately. For the process modeling and control,
however, the data generation takes time and money, thus
engineers can only run designed experiments for only a few
representative data. With a limited number of data points, the
accuracy of an FLM is strongly dependent on its structure. As
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a result, the structure identification scheme is a critical concern
that demands a detailed study.

There are two important factors in developing an efficient
structure identification scheme. One is the computation time,
and the other is the criterion to choose an optimum structure.
For a good-structure-criterion, most of the studies used the
multiple correlation coefficient, , to establish the correlation
between the training data, the sample mean data and the output
of the employed identification scheme. For a given structure,
the parameter identification process will determine the right
coefficients to model the given process. If , it represents
that the model fits every data point perfectly. Thus, for a case
where a lot of data is available for training, a good model that
fits the data well is reasonably expected. By using this model,
we can predict the system behavior at nontraining parameter
settings. However, for the case with a limited number of
data, this expectation is questionable. Thus, a more rigorous
criterion should be defined in order to obtain a good model.

In order to obtain a sufficient model from a limited number
of data, an FLM for the process modeling and control is pro-
posed in this paper, the process modeling consists of a cluster
estimation method and gradient-decent method to construct
a number of modeling structures from the training data. A
decision rule based on the multiple correlation coefficient is
used to obtain the optimum structure of the fuzzy model. Upon
the optimum structure has been reached, the backpropagation
algorithm is used to refine parameters of the final fuzzy model
using both training and testing data. This algorithm has been
applied to a nonlinear function and to a vertical chemical vapor
deposition process. By comparing with other process modeling
methods (both ANN and fuzzy), the proposed FLM has the
advantages of simplicity, effectiveness and high predictive
accuracy.

II. FUZZY LOGIC MODEL

In generally, there are two methods in developing an FLM.
One is the relational matrix methodology used by Pedrycz [9],
[10]. The other is in the form of fuzzy relations suggested by
Takagi and Sugeno [1], which uses internal functions instead
of fuzzy sets to generate the output of the model. The second
approach results in higher accuracy in modeling and requires
less calculation during computation [11]. An FLM consists of
four major elements: membership functions, internal functions,
rules and outputs. A brief description of these four elements
if given as follows.

A. Membership Functions

The membership function calculates the membership grad-
ing for any given value of the input variable. The ranges of
all the input variables are transformed into [1, 1] domain
in order to ease the proceeding development of the proposed
algorithm. Note that the membership grading are ranged from
0 to 1; where “0” means no contribution of that variable and
“1” means a full contribution of that variable. For theth rule,
the membership function, , calculates the membership
grading for input variables, , where is the
number of the input variables. Generally, we choose

Fig. 1. Gaussian type membership function.

to be bell-shaped or triangle-shaped with a maximum value
equal to 1 and minimum value equal to 0. In the present
development, the Gaussian-type membership function is used
and given by

(1)

where and are called location and shape parameters
which need to be determined. As shown in Fig. 1, each of
there parameters has its physical meaning, i.e., the location
parameter determines the center of the corresponding mem-
bership function and the shape parameter is the width of that
membership function.

B. Rules and Internal Functions

In Sugeno type’s FLM, theth rule is defined as follows:

if is and is and and

is then the rule output is

where is fuzzy set. The output
of the th rule is the internal function with parameters

needed to be determined. With respect to
each rule, the membership function and the internal function
are used to determine the rule’s output. The use of several
internal functions accounts for the “fuzziness” of the FLM.
For a crisp logic analysis, like a regression model, a single
function such as th order polynomial is used to represent
the system’s behavior. Instead of using a single function,
the FLM uses several functions to cover the input range. As
a result, the representation of the system is the integration
of those functions rather than a single crisp correlation. Such
integration is truly fuzzy, and the fuzzy integration can actually
correlate nonlinear behaviors accurately [11].
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C. Output

The output of the FLM is the weighted average of the
rule outputs. In the present development, theand operator is
replaced by the product operator. The weight of each rule’s
output is assumed to be the product of the grading, ,

, , which can be substituted by using a
Gaussian type membership function:

(2)

where is the index of fuzzy rules, and
is the total number of rules. Thus, the weight average of

the rules output yields (3), shown at the bottom of the page,
which represents the model output corresponding to theth
input pair . Note that is the index of data
set. The model output given in (3) can be used to calculate the
membership and internal function’s parameters by comparing
with the given data. When the model is established, i.e., the
parameters are obtained, it can be used to predict new results
by giving new inputs. The total number of parameters of the
membership functions and internal functions to be solved is

. These, in turn, are determined by minimizing
the square of instantaneous errors between the data and the
calculated outputs of the FLM.

III. M ODEL IDENTIFICATION

A. Model Identification for Training Data

For a given collection of crisp training data
, the unknown structures and parameters of the mem-

bership and internal functions are determined by both the
cluster estimation method and gradient-descent method. The
accuracy of the FLM is given by the multiple correlation
coefficient, [3], which is defined as follows:

(4)

where is the output of the FLM, is the data point used
for the model training, is the sample mean of the data, and

is the total number of data sets. The cluster estimation
method developed by Chiu [12] is used here as the coarse
tuning process of a fuzzy model identification algorithm. Now

we consider each data point as a potential cluster center and
define a measure of the potential of data pointas

(5)

where denotes the Euclidean distance andis a positive
constant. The measure of the potential for a data point is related
to the distances to all other data points. Note that the more
distances between two neighboring data points that exceed the
constant , the less effect in measuring the potential. On the
other hand, the larger of the constant, the less effect on the
neighboring points which yield more cluster centers. Initially,
the constant is used to define the radius of a neighborhood
that consists of a set of training data points. Applying the
cluster estimation method which consists of a set of potentials,

, to the training data, the number and the location of cluster
centers are found. Note that, after the potential of every data
point has been calculated, the data point with the highest
potential is chosen to be the first cluster center. As concluded
by Chiu [12]: “When we apply the cluster estimation method
to a collection of input/output data, each cluster center is in
essence a prototypical data point that exemplifies a character-
istic behavior of the system. Hence, each cluster center can be
used as the basis of a rule that describes the system behavior.”
Thus, the fuzzy rules are chosen to be equal to the number
of cluster centers. As indicated from our examples, the result
of the present coarse tuning process matches the training data
well. When the coarse tuning process is completed, the fine
tuning process of a fuzzy model identification algorithm that
is based on the gradient-descent method is used. Here, we can
then reformulate this problem by using a minimization of the
square of instantaneous error between the output of the fuzzy
logic model and the current output reading with respect
to the unknown parameters and of the internal
functions and membership functions, i.e.,

(6)

Applying the chain rule to (6), we obtain consequently the
equations for updating the estimates of the unknown param-
eters and :

(7)

(8)

(3)
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(9)

(10)

and

(11)

where are the normalized weights of the individual cells.
In the present development, the gradient-descent method is
used to minimize the instantaneous error. Since this method is
basically a hill-climbing technique, it runs the risk of being
trapped in a local minimize, where every small change in
synaptic parameters and increases the square error
function . The issue of estimating the initial parameter is
crucial in this method. Another important issue is the number
of fuzzy rules. In order to resolve these issues, the cluster
estimation method is used to obtain an initial estimation of the
membership functions and internal functions of the fuzzy rules
from the training data. Note that, the initial estimations of the
parameters are the coordinates of theth cluster center

and, the parameter is defined as the
width from the constant of the cluster estimation method,
i.e., . By using the results obtained from Chiu and
Yager [12], [13], the parameter is set to be equal to ,
and the parameter is set to zero. As mentioned previously,
in the present process modeling, the number of fuzzy rules is
set to equal to be the number of cluster centers. The method is
used extensively to update the parameters of the model until

. Note that the criterion is to assure
that the FLM fits the training data accurately.

Given the initial and training data, the present identifi-
cation procedure consists of a coarse and fine tuning process
that can be applied to establish a fuzzy rule. Note that, the
structure obtained from this procedure is by no means an
optimum structure with correct membership functions. We will
deal with this issue in the next section.

B. Final Model Identification

To establish an FLM with a limited number of data, first, we
need to identify an optimum structure from many intermediate
FLM’s that are obtained from the previous given procedure.
Then, the final FLM can be established with optimum structure

and all available data. The most challenging issue for the
final model establishment is the quick identification of an
optimum structure with proper assigned membership functions.
A search algorithm similar to Tan, Xie and Lee’s [14] has
been proposed for the identification of the optimum structure.
This algorithm partitions the available data into training and
testing groups. During the search, the training data are used to
the cluster estimation method and gradient-descent method for
structure and the parameter identification to set up intermediate
FLM’s, and the testing data are used to evaluate these models’
prediction accuracy. The accuracy of the model that fits the
training data is represented by , and the one that fits
the testing data is represented by . These ’s can be
calculated using (4). The proposed search algorithm provides
the proper constant instead of the number of membership
functions for each input variable [14]. We start the algorithm
with the smallest constant , where it usually takes the largest
number of cluster centers, fuzzy rules, and with the most
complex FLM. The model’s complexity is in general decreased
by incrementing the value of constant for the cluster
estimation method. The incremental procedure is stopped when
the total number of tuned parameters is smaller
than the number of available data. The search algorithms can
be summarized as follows.

1) Specify the input variables , and the
output variables .

2) Given and .
3) Provide the training and testing data.
4) Begin the search algorithm and set up the constant

.
5) Use the cluster estimation method and gradient-descent

method to identify the FLM from training data until
is satisfied. Test the corresponding FLM

structure by using the testing data and record the
as .

6) Increase the constant with and execute step e).
7) Repeat step f) until the total number of

parameters less than the number ofavailable data.
8) Select the constant that is corresponding to the

maximum as the optimum , i.e., .
9) Set up the constant and repeat

step e), f), g), and h), but in step f) the increment
is changed to 0.2 .

10) Upon the has been reached, the cluster estima-
tion method is used from training data and the gradient-
descent method is used to refine the parameters of the
final fuzzy logic model using both training and testing
data.

To obtain the optimum structure, instead of identifying the
number of fuzzy rules, we accomplished the task by changing
the constant of the cluster estimation method that is used
to automatically identify the proper number of fuzzy rules
that equal to the number of cluster centers. The advantage of
this method is that we can establish the FLM efficiently and
accurately. During the search, is a necessary condition
used to assure the trained model fits the training data well,
and is used to identify the structure with the best testing
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results. The incremental constant is an important factor
during computations, it determines the number of different
FLM’s that must be identified. From the observation of our
numerical experiments, the parameter and

are used by considering both the computer run
time and the accuracy, the value of may be changed for
different modeling process.

For the process modeling, as mentioned earlier, the number
of data could be limited. Therefore, we have to follow the
design of experiment (DOE) concept to identify critical input
variables and to generate critical data. Different DOE ap-
proaches can be found in many text books. However, it is still
a relatively new concept of partitioning the data into training
and testing groups. For an efficient model establishment, the
data should meet the following two requirements.

1) The test result of the model should reflect the model’s
overall accuracy in representing the process.

2) The testing data should be used for the final model
training after the optimum structure is identified.

As a result, the testing data should be distanced from the
training data during the group partition. An example for the
partition is to generate the data using a central composite
design and to generate the testing data using the Box-Behnkan
design. This approach will be later illustrated in our case
studies.

IV. CASE STUDIES

To demonstrate the capabilities of the proposed FLM, a
two-variable nonlinear function is demonstrated first. Then,
a vertical barrel chemical vapor deposition (CVD) process
is studied for the purpose of comparing existing process
modeling algorithms.

A. Modeling of a Two-Variable Nonlinear Function

The nonlinear equation studied by Tan, Xie, and Lee [14]
is given by

(12)

The domains of the function were ranged between
For the given function, the training data consists

of 25 evenly distributed points on 5 5 grid, and the testing
data consists of 16 evenly distributed points on a 44
grid which lied between the 5 5 grid. Fig. 2 shows the
arrangement of these points.

In order to model the test function, the final model was
identified using the procedure described in Section III. The
predictive capability of the final FLM is obtained by com-
puting over a large number of data. These data were
obtained from the test function consisting of 441 points evenly
distributed on a 21 21 grid within the domain of interest.
Figs. 3 and 4 plot the curves of the test function and the
corresponding curves from FLM. As shown in the figures, the
FLM matched closely to the nonlinear function. If the
is equal to 1.0, the established FLM predicts the values of
the function at these given 441 points perfectly. The
can be treated as the model’s accuracy in predicting functional

Fig. 2. Training and testing data.

Fig. 3. Mesh from the test function.

Fig. 4. Mesh of FLM from the test function.

behaviors. There are three different FLM’s and an ANN model
were obtained from Schaible [15]. The optimum structure
from each FLM was obtained using the method proposed
by Tan, Xie, and Lee [14], and the optimum structure for
the ANN model was obtained using the method presented by
Wang and Mahajan [16]. The first type of trained FLM was
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Fig. 5. Barrel CVD reactor schematic.

TABLE I
TRAINING RESULTS FOR THETWO-VARIABLE FUNCTION y = sin(2x1 + 4x2)

the most traditional one in which the triangular membership
function along with the minimum operator was employed.
These models will be hereon referred to as “Type I.” The
second type, hereon referred to as “Type II,” also made use
of triangular membership functions but employed the product
operator. The third type, hereon referred to as “Type III,”
incorporated the quadratic membership function along with the
product operator. For the purpose of comparison, the result of
four different FLM’s and an ANN model were listed in Table I.
As a result, the cluster estimation based FLM is more accurate
and simple than existing FLM’s and the ANN model.

Note that, for Types I, II, and III FLM’s, the number of
rules is equal to the product of the two numbers denoting
the structure. This is due to the fact that we cannot separate
the structure identification from the parameter identification
since they have a mutual relationship. Also, the structure of
the three-layer ANN is based on Wang’s [16] result that is
constructed by giving the number of neurons at each layer.
For cluster based FLM, instead of identifying the number of
fuzzy rules, we try to obtain the optimum structure by varying
the radius, . Once optimum is obtained, the optimum

Fig. 6. Deposition thickness obtained points on the wafers.

TABLE II
SETTING OF THE CVD MODEL INPUTS

structure is decided by letting the final number of cluster
centers equal to the number of rules. Clearly, as shown in
Table I, the number of rules needed for cluster based FLM is
less than Types I, II, and III FLM’s. This reason is that during
the process of clustering, the relationships between the data
point groups and its corresponding cluster centers have been
established.

B. Modeling a Simulated CVD Process

Our second test case, the CVD epitaxial growth of silicon,
is a widely used process for the fabrication of thin solid
films with applications in the production of microelectronics
devices. This study is similar in scope to the artificial neural
network modeling process proposed by Mahajanet al. [16].
In a reactor, as illustrated in Fig. 6 [17], silicon wafers are
positioned in shallow pockets in a “susceptor,” which is a
multisided, slightly tapered, silicon carbide coated graphite
assembly that is slowly rotated inside a cooled quartz bell
jar. An array of infrared lamps backed by reflectors surrounds
the bell jar. A carrier gas, typically silicon tetrachloride,
dichlorosilane, or trichlorosilane, hydrogen, and a dopant such
as diborotrichlorosilane, enters through two nozzles at the
top of the reactor, and is exhausted through a central hole
at the bottom of the reactor. Each nozzle has two degrees
of freedom, one along the vertical axis and the other along
the horizontal axis. Usually the two nozzles are identically
oriented. The temperature is typically (1050–1200C) and
the ambient working pressure may be either at atmospheric
pressure (about 1 bar) or about one-tenth of a bar (reduced
pressure mode).
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TABLE III
THE OPTIMIZATION PROCESS: DATA SET 1

An important consideration in epitaxial growth is that the
deposited layer on the wafers be uniform in thickness. The
available data was generated using a model for the process [17]
developed by Dr. Herb Lord. The model simulates deposition
of silicon on silicon wafers, and the model output represents
silicon deposit thickness. This model is a fourth order poly-
nomial of two variables, and , which represent
coordinates of a point on a silicon wafer. The coefficients
of the polynomial equation are functions of the six process
inputs. The six input variables are given as follows: is
the left gas valve reading; the right gas valve reading;

the angular deviations of the gas jets from the horizontal
plane; the angular deviations of the gas jets from the
vertical plane; the main hydrogen gas flow rate reading;

the rotational hydrogen gas flow rate reading. For a
given recipe, or combination of the six input variables, silicon
thickness is obtained at 15 different points, at five points
for each of top, middle, and bottom wafers, as shown in Fig. 5.
The output of the process was the thickness variance of
these 15 points is calculated as

(13)

where represents each of the 15 individual thickness, and
represents the average value of 15 individual thickness.
Table II gives the operating range levels for the six input

variables along with input levels used to generate testing points
and central composite “star” points which are schematically
shown in Fig. 7.

The case studied here is the simulated CVD process using
all six input variables with as the output variable. Three
training/testing data sets were generated for the six input cases.
These data sets are described as follows.

• Data set 1 (Table III) contained 45 training points and
16 testing points. The training set include 12 central

Fig. 7. Training and testing data settings.

composite start points, one center point, and 32 points
from a one-half fractional factorial two level experimental
design. The 16 test points from a full factorial two
level design conducted at the test levels of the four
variables that have the most effect on the CVD process:

, and . The levels of the two
remaining variables, and , were held constant
at their value for these 16 test points.

• Data set 2 contained 77 training points and 64 testing
points in the six dimensional input space. The training
set included 12 central composite star points, one center
point, and 64 points from a one-half fractional factorial
two levels of experimental design. The testing set con-
sisted of 64 points from a full factorial two level design
at the upper and lower test levels.

• Data set 3 table also contained 141 points and was
identical to data set 2 except for the fact that 12 star points
in the training set were replaced by analogous points that
lie at the center of a cube face.

A single prediction data set that included 200 random
points uniformly distributed throughout the six dimensional
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TABLE IV
TRAINING RESULTS FORCVD MODEL USING DATA SET 1

TABLE V
TRAINING RESULTS FORCVD MODEL USING DATA SET 2

TABLE VI
TRAINING RESULTS FORCVD MODEL USING DATA SET 3

input space was also generated for the purpose of comparing
predictive capabilities of which were also obtained.

The following tables show the training results for the
existing and proposed model types by using three different
data sets. The data sets, FLM Types I, II, III, and ANN models
are provided by Schaible [15].

Based on the data given in Tables IV–VI, Type I FLM’s
show poor results in predicting the CVD process. In addition,
there are many derivative discontinuities in the model. As
shown from the tables, Type II FLM’s with the product
operator improved the predictive capabilities, but the triangular
function still has a derivative discontinuity at the median value
of the variable. This may make the Type II FLM’s undesirable
in certain applications. The Type III FLM’s use the quadratic
membership function along with the product operator, they
have the advantage of being continuously differentiable. From
Tables IV, V, and VI, the Type III FLM’s show more predic-
tive capability than Type I FLM’s and Type II FLM’s. Note
that, during the process of the present study, ANN model did
not yield good results as shown from the tables.

From Tables IV–VI, the cluster based FLM has shown its
superior predictive capability for all three of the six dimen-
sional data sets that are studied here. Moreover, the present
FLM has the advantage of being continuously differentiable.
This makes the cluster based FLM more desirable to the
applications that require computation of derivatives from the
process model.

V. CONCLUSION

A new algorithm has been proposed for the efficient es-
tablishment of a cluster based fuzzy logic model process
modeling. With a limited number of data available, the ac-
curacy of the FLM is strongly depended on its structure. A
decision rule based on the cluster estimation method and the
multiple correlation coefficient is used to obtain the structure
of FLM. Upon the optimum structure has been reached, the
back-propagation algorithm is used to refine parameters of the
FLM using both training and testing data. This algorithm has
applied to a vertical CVD process. By comparing with other
fuzzy and ANN modeling methods, the proposed FLM has the
advantages of effectiveness and high accuracy.
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