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SUMMARY

A systematic method is developed for the dynamic analysis of the structures with sliding isolation which is a highly
non-linear dynamic problem. According to the proposed method, a unified motion equation can be adapted for both
stick and slip modes of the system. Unlike the traditional methods by which the integration interval has to be chopped
into infinitesimal pieces during the transition of sliding and non-sliding modes, the integration interval remains constant
throughout the whole process of the dynamic analysis by the proposed method so that accuracy and efficiency in the
analysis of the non-linear system can be enhanced to a large extent. Moreover, the proposed method is general enough to
be adapted for the analysis of the structures with multiple sliding isolators undergoing independent motion conditions
simultaneously. The superiority of the proposed method for the analysis of sliding supported structures is verified by
a three-span continuous bridge subjected to harmonic motions and real earthquakes. In addition, the side effect of
excessive displacement of the superstructure induced by the sliding isolation is eliminated by replacing one of the roller
supports on the abutments with hinge support. Therefore, both reductions in the forces of the substructure and the
displacements of the superstructure can be achieved simultaneously. © 1998 John Wiley & Sons, Ltd.
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INTRODUCTION

Bridges are vulnerable when subjected to severe earthquakes. Although considerable progress has been made
in earthquake engineering towards the end of the century, catastrophic bridge failure examples are found
wherever large-scale earthquakes attack. Damage of the bridge structures occur primarily in the piers, which
may in turn result in collapse of the bridge spans. Although the ductility design concept has been widely
accepted for seismic design of structures in engineering practice, this may not be appropriate for bridges since
they are short of structural redundancy in nature. Besides, ultimate strength design does not seem to work for
bridge structures as often the piers are found to fail in shear rather than flexure. The effort on protection of
bridges against earthquakes should therefore be focused on minimizing the forces to be carried by the piers,
in particular the shears. Seismic isolation is conceivably one of the most promising alternatives in this
regards. Isolation systems are basically typified into rubber bearings and sliding bearings. Rubber bearings
with high lateral flexibility are meant to shift the vibrational periods of the structures so as to avoid
resonance with the excitations; they are usually combined with high damping material to prevent the isolated
structures from over-displacing. Sliding bearings are introduced to filter out the imparting earthquake forces
through the frictional interfaces. This type of systems rarely possess re-centering capability, except the
Friction Pendulum Bearings (FPB) which, with curved sliding surfaces, can provide the isolated structures
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with restoring forces by gravity. Although rubber bearings have been extensively used in base isolation
systems, sliding bearings have found more and more applications in recent years for economic reasons.! ~*

Dynamics of sliding structures is a highly non-linear problem due to friction mechanism. Analytical
solutions are complicated and restricted to harmonic motions for systems with no more than two degrees of
freedom, under idealized conditions.>-® More realistic transient responses to MDOPF sliding systems can only
be obtained numerically. Mostaghel et al.” propose a semi-analytical procedure by interchangingly using two
sets of governing equations corresponding to sliding and non-sliding motion conditions. Yang et al.® propose
a numerical solution by adding to the foundation floor a fictitious spring to represent the frictional effect of
the sliding bearings. In order to retain the non-linear characteristic of the friction mechanism with
appreciable accuracy, both the methods require to chop the integration interval into infinitesimal pieces
during the transitions between sliding and non-sliding modes. Moreover, these methods are not sufficient in
dealing with multiply-supported structures where the isolation bearings are undergoing different motion
conditions simultaneously, as for generic isolated bridges.

The objective of this paper is to investigate the feasibility of using the FPB for seismic isolation of bridges.
The problem of dynamic analysis for the highly non-linear system is tackled by introducing a logically simple
and computationally efficient procedure. The motion equations for the stick and slip modes of the sliding
isolated structure are unified into a single equation in state-space form such that the integration interval
remains constant throughout the whole process of analysis. Moreover, the proposed method is so general
that it can be adapted for the analysis of the structures with multiple sliding isolators undergoing indepen-
dent motion conditions simultaneously. Rigorous assessment of bridges with seismic isolation is carried out
by a three-span continuous bridge subjected to harmonic motions and real earthquakes.

MODELLING OF FRICTION PENDULUM BEARINGS

A seismically isolated bridge consists primarily of the superstructure, the isolators, and the substructure (or
piers), three basic components. In this study, the seismic isolators considered are the Friction Pendulum
Bearings (FPBs). The upper plate of the FPB is attached under the bridge superstructure, whereas its lower
plate is mounted on top of the pier. The bridge superstructure isolated by FPBs may slide under earthquake
excitations. Once the sliding commences, it is simultaneously raised up along the curved surface of the FPB.
As shown in Figure 1(a), the relative displacement between the sliding interfaces is (4; — u,) and the potential
energy V, due to gravity accumulated during the lift-up is

V, = WR(1 — cos 0) = WR[l - <“1 ;“2>2] (1)

where W is the weight supported by the bearing, R is the radius of curvature of the sliding surface and 6 is the
sliding angle, as depicted in Figure 1(b). No strain energy is accumulated during this rigid-body sliding
motion.

Since the amount of sliding displacement of the bearing is practically far less than the radius of curvature
R, the potential energy can be reasonably approximated as

WR (u; — u,\?
Vg“2<1R ) @

The stiffness matrix Kgpg of the pendulum in the form of a finite element is then obtained by taking
a variation of the potential energy (2) based on virtual work principles as

w w
R R
KFPB - w %% (3)
R R
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Figure 1. Illustrative diagram of friction pendulum bearing

Note from equation (3) that the larger the radius of curvature the smaller the lateral stiffness is provided by
the bearing. As the radius of curvature approaches infinity, Kgpg becomes a null matrix indicating a complete
loss of its restoring capability, as in the case of a flat-type sliding bearing.

The friction force between the sliding interfaces, on the other hand, plays the role of energy dissipating
during the sliding motion. The motion of the friction bearings can be resolved into the following modes:

(a) Stick mode. This occurs when the ground-motion-induced shear forces between the sliding interfaces of
the bearing fail to overcome the maximum friction force. In such occasions, the relative velocity
between the interfaces is zero.

(b) Slip mode. When the ground-motion-induced shear force reaches the maximum friction force of the
sliding interfaces, the bearing takes no more shear and is then forced to slide.

Under the assumption of small sliding displacement (6 « 1), the friction force acting along the sliding surfaces
is governed by

lfI<uW )

where u is the coefficient of friction. This coefficient can be either a constant as considered in Coulomb’s
model, or dependent on the sliding velocity and the bearing pressure as proposed by Mokha and Constan-
tinou®-1? for Teflon-steel interfaces as

U= Wmax — (,umax - :umin) exp( - a|u1 - u2|) (5)

where fima, and pq, are, respectively, the maximum and the minimum values of the coefficient of friction, and
the coefficient a is to be determined from the bearing pressure. The non-sliding conditions for the bearing are

|f| < ,uW and Lil — uz =0 (6)
and sliding occurs only if
f=uW sgn(iy — us) (7

where sgn denotes the signum function.
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SOLUTION ALGORITHM FOR NONLINEAR DYNAMIC ANALYSIS

The equation of motion of a seismic-isolated bridge structure under earthquake loads w(t) can be represented
as
Mii(t) + Ca(t) + Ku(t) = BF(¢) + Ew(¢) (8)

where u(t) is the n x 1 displacement vector, M, C, K are, respectively, the n x n mass, damping and stiffness
matrices, E is the n x 1 location matrix of the excitation loads, B is the n x g location matrix of the friction
forces and F(t) is the g x 1 friction vector with its entries satisfying the conditions described in equations (6)
or (7).

State-space procedure

Equation (8) can be represented in a state-space form, leading to a first-order differential equation as
z(t) = A*z(t) + B¥F(¢) + E*w(r) )

where

t
z(t) = l.l( ) is the n x 1 state vector,
u(t)

A* = _ Mo‘lK _ NII_lC} is the 2n x 2n system matrix,
B* = ?1 } is the 2n x ¢ friction load matrix, and
| M™'B
E* = ? | } is the 2n x 1 earthquake load matrix.
| M'E
Taking a Laplace transformation of equation (9), it gives
z(s) = H(s)z(to) + H(s)G(s) (10)
where z(t,) denotes the initial conditions of the state at t = ¢y, and
H(s) = (s — A%~ ! (11)
G(s) = B*F(s) + E*w(s) (12)

The solution of the time-invariant dynamic system is then obtained by transforming equation (10) back to the
time domain, giving

t
z(t) = e (L) + j

eA" =0 [B*F(t) + E*w(r)] dr (13)
0

In order to carry out the integration involved in equation (13), the continuous-time evolutions of w(r) and
F(7) between the sampling interval are required. Since the recorded earthquake load functions are commonly
discrete and the friction forces are piecewise linear in nature, it is reasonable to assume linear variations of
these loading functions between two consecutive sampling instants. That is

F(7) = kAtAt_ "Rk — 1) A + # FlkAf], (k— 1At <t<kAt (14a)
w(t) = kAtAt_ CWlk — 1) Ar] + # wlkAr], (k—DAr<t<kAt (14b)
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When ty = (k — 1) At, t = k At, and z[k] = z(k At), F[k] = F(k At), ..., etc. are assigned, from equation (13),
the analytical solution to the state equation (9) is a difference equation as
z[k] = Az[k — 1] + BoF [k — 1] + B,F[k] + Eqw[k — 1] + E;w[k] (15)
where
A = ¢ is the 2n x 2n discrete-time system matrix,
1
B, = [(A®) 1A + A (A*)"2(I — A)]B* is the 2n x ¢ discrete-time friction loading matrix of the previous

time step,

1
B, =[—(A%" ! + . (A*)"2(A — I)]B* is the 2n x ¢ discrete-time friction loading matrix of the current

time step,

1
E, = [(A*) 1A + A (A*)72(I — A)]E* is the 2n x 1 discrete-time earthquake loading matrix of the pre-

vious time step, and

1
E,=[—-A%"'+ A—t(A*)*Z(A —IJE* is the 2nx 1 discrete-time earthquake loading matrix of the

current time step.
Shear balance method

Note that in equation (15) the friction vector F[k] is dependent on the motion conditions which, however,
is not known as a priori. Therefore, the solution cannot be obtained directly through simple recursive
calculations. Instead, an iterative procedure based on the concept of corrective pseudo-force is required.

The friction mechanism stated earlier reveals that the shear force and the relative velocity between the
bearing’s sliding interfaces are indicators of the motion conditions. For bearings that are in the sliding phase,
their friction forces are defined as in equation (7) by

F, = p; W;sgn (ui) (16)

where y; is the friction coefficient of the ith bearing, W; is the weight supported by the ith bearing, and u; is the
relative velocity of the ith bearing. Yet for those in the stick phase, the shear forces are less than the
corresponding maximum friction forces of the bearings. It is seen from equation (15) that for a given friction
vector F[k] we obtain a state vector z[k], from which the relative velocities between the bearing are
calculated. Therefore these velocity quantities may be viewed as functions of the shear forces, that is

The key step of the proposed numerical scheme is that, at every time-step, the iterative procedure always
starts by assuming all the bearings are in stick mode. This implies the conditions

should be satisfied. In other words, the task is first to find a set of shear forces F(k) that would block all the
bearings from sliding. If conditions (18) are not met for any i€(l,...,q), then the anticipated non-sliding
conditions have not achieved for all bearings. Then the components F;’s of F[k] are revised according to

FI —Fp7!
Gi(F") — G,(F" ™)

Fitl— o G(F", i=1,...,q; n=1273,... (19)

© 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 1069-1093 (1998)



1074 Y.-P. WANG, L.-L. CHUNG AND W.-H. LIAO

substituted for response calculation iteratively until all G;(F)’s converge. The resulted shear forces in the stick
phases, according to the friction law however, are below the corresponding maximum friction forces f.,
defined for each bearing by

fnimleul'Wi: l = 1a~~~=q (20)
If this is the case, that is
|Fl| < ,LliWi, for all i (21)

then all the bearings are in stick mode as expected. However, if any of the F;’s are exceeding their
corresponding maximum friction forces, these over-sheared bearings are actually in sliding phase with their
shears defined by equation (16) to comply with the friction law. Then, the next step is to reset the shears for
those bearings in sliding accordingly, and modify the shears by equation (19) for the rest bearings in stick
mode, if any. This iterative solution algorithm is summarized below:

Step 1: Initialize F[k].

Step 2: Substitute F[k] into equation (15), get the state vector z[k].

Step 3: Calculate iil, i = 1,...,q from z[k].

Step 4: If uii] < ¢ (tolerance of error) for all i, go to step 6;
otherwise, modify F;’s by equation (19).

Step 5: Repeat Steps 2—4.

Step 6: If |F;| > u;W; for any ie(1, ..., q), replace these shear forces by F; = u;W; sgn (iil) into equation (15)
and modify F; for Je(l,...,q), j # i by equation (19) iteratively until all 4/’s converge to 0.
otherwise, terminate the iteration.

Step 7: Proceed to Step 1 for next time step.

The advantages of this proposed algorithm over the existing methods’-® are:

(a) It allows for a more systematic analysis and less computational efforts with a unified governing
equation considered for both stick and slip modes as well as a constant integration interval.

(b) It is adaptive in dealing with systems with multiple bearings undergoing independent motion condi-
tions simultaneously.

NUMERICAL VERIFICATIONS

Response to harmonic excitation

As an effort to verify the adequacy of the proposed numerical procedure, the harmonic response of a three-
span continuous bridge [Figure 2(a)] is first investigated. Member properties of the model bridge are
summarized in Table I. The harmonic excitation is expressed as P(t) = U sin Qt with U being the amplitude
of ground acceleration and Q the excitation frequency. Having been isolated with FPB, the whole bridge
span is completely separated from the sub-structures as shown in Figure 2(b).

Assuming the friction mechanism is of Coulomb’s type with friction coefficient 4 = 10 per cent, the sliding
displacement (u) of the friction bearing normalized with respective to the peak ground displacement (Q2U)
under non-resonant condition (Q/w; = 0-6) is presented in Figure 3(a) and the corresponding friction
hysteresis is shown in Figure 3(b). The friction hysteresis exhibits the exact non-linear pattern as assumed by
Coulomb,! with a constant time mesh of At = 0-01 sec used throughout the analysis. When the friction
mechanism is assumed to be of Mokha’s type with p,,, = 10 per cent and p,;, = 7-2 per cent, the normalized
bearing displacement and the corresponding friction hysteresis are presented in Figure 4(a) and 4(b),
respectively. Although the bearing displacement does not show remarkable difference from the previous case,
the friction hysteresis again exhibits the desired non-linear pattern as described by Mokha.”-!°

© 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 1069-1093 (1998)
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Figure 2. Analytical model for a three-span continuous bridge
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Table 1. Bridge member properties

Superstructure Piers
Area (m?) 357 4-09
Moment of Inertia (m*) 2:08 0-64
Young’s modulus (N/m?) 20-67E9 20-67E9
Density (T/m?) 2-4 2:4
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Figure 3. (a) Bearing displacement (Q/w; =0-6; U/ug = 1; Coulomb’s model); (b) Hysteresis of friction (Q/w; =06; U/ug = 1;

© 1998 John Wiley & Sons, Ltd.
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Figure 4. (a) Bearing displacement (Q/w; =0-6; U/ug = 1; Mokha’s model); (b) Hysteresis of friction (Q/w; =06; U/ug = 1;

Mokha’s model)

When the bridge is excited under resonant condition (Q/w; = 1) with U/ug = 1-5, for example, it is evident
that the response tends to diverge with time. This result agrees with what has been indicated by Chopra!?
and Makris and Constantinou!? that, the dynamic response for a Coulomb-friction-damped system
diverges under resonant excitation if U/ug > 4/n. Moreover, sub-harmonic responses are observed from the
normalized acceleration Fourier spectrum (ii/U) of the bridge superstructure (Figure 5(b)). Interestingly, the
peaks occur regularly at odd frequency ratios (w/Q = 1,3,5,7, ...) as can be noticed. This familiar regularity

© 1998 John Wiley & Sons, Ltd.
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Figure 5. (a) Bearing displacement (Q/w; = 1-0; U/ug = 1-5); (b) Fourier spectrum of bridge acceleration (Q/w; = 1-0; U/ug = 1-5); (c)

History of friction force (Q/w, = 1.0; U/ug = 1-5)

is in fact consistent with the Fourier spectrum of a system subjected to periodic square waves. It is realized as
soon as one investigates the time history of the normalized friction force (F/uW) in Figure 5(c) that, the
forcing function appears to be nothing but a periodic square wave, except the transient portion before
slippage initiates. This explains the sub-harmonic responses observed in sliding structures with Coulomb

friction.
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The integration time step At is crucial, in particular for non-linear dynamic analysis, to the convergence of
numerical results. As a further step to investigate the effect of At value on the accuracy of the results,

harmonic response analyses are carried out for various frequency ratios (Q/w; = 1, 3, 5) at different scale of
time steps (At = 0-02, 0-01, 0-005, 0-002 sec). As the accuracy of the simulation results of sliding structures are
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Figure 6. (a) Bearing displacement (Q/w; =1; U/ug = 1; Coulomb’s model); (b) Hysteresis of friction (Q/w, =1; U/ug = 1;
Coulomb’s model)
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most stringently revealed from the hysteresis of the friction force of a prescribed friction mechanism (e.g.
Coulomb’s model), these results are presented along with the sliding displacements of the isolation bearings.
Figure 6(a) shows the bearing displacement under a resonant condition (Q/w; = 1) and Figure 6(b) shows the
hysteresis of friction with respect to various At. The hysteresis shows the exact pattern of the Coulomb’s
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Figure 7. (a) Bearing displacement (Q/w; =3; U/ug = 1; Coulomb’s model); (b) Hysteresis of friction (Q/w, =3; U/ug = 1;
Coulomb’s model)
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Figure 8. (a) Bearing displacement (Q/w; = 5; U/ug = 1; Coulomb’s model); (b) Hysteresis of friction (/w, = 5; U/ug = 1; Coulomb’s model)

friction at all the cases. When the exciting frequency is increased to Q/w; = 3, bending of the vertical lines of
the hysteresis is visible in the case of At = 0-02 sec as shown in Figure 7(b) which violates the prescribed
friction model of Coulomb’s, strictly speaking. This leads to the overshooting of the sliding displacement as
indicated in Figure 7(a). However, the result converges at At = 0-01 sec. When the exciting frequency
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Table 1I. Effectiveness Assessment of Seismic Isolation

Bridge Type

Max. Response Isolated w/o Isolated
Quantity* Conventional constraint w/ constraint

(a) El Centro

VP1(kN) 3461 274 176
VP2(kN) 3461 274 303
MP1(kN-m) 27486 2124 1270
MP2(kN-m) 27486 2124 2192
DPI(cm) 4-42 0-34 0-19
DP2(cm) 4-42 0-34 0-34
DB1(cm) 442 2-45 0-19
DB2(cm) 442 2-45 0-34
AR(kN) 0 0 4769
(b) Kobe
VP1(kN) 17428 1933 211
VP2(kN) 17428 1933 318
MP1(kN-m) 138387 15573 1426
MP2(kN-m) 138387 15573 2268
DPI1(cm) 22-24 2:52 021
DP2(cm) 22:24 2-52 0-34
DBI(cm) 22-24 40-70 0-21
DB2(cm) 22:24 40-70 0-34
AR(KN) 0 0 5131
(c) Mexico
VP1(kN) 1321 2687 42
VP2(kN) 1321 2687 63
MP1(kN-m) 10480 21409 284
MP2(kN-m) 10480 21409 449
DP1(cm) 1-68 345 0-04
DP2(cm) 1-68 345 0-07
DBI1(cm) 1-68 53-30 0-04
DB2(cm) 1-68 53-30 0-07
AR(KN) 0 0 1019

*VP1 = Shear of Pier 1, VP2 = Shear of Pier 2, MP1 = Moment of Pierl,
MP2 = Moment of Pier 2, DP1 = Disp. of Pier 1, DP2 = Disp. of Pier 2, DB1 = Disp. of
Bearing 1, DB2 = Disp. of Bearing 2, AR = Abutment Reaction

increased further to Q/w, = 5, the errors become more serious and the result converges when the integration
time step is as small as At = 0-002 sec, as observed from Figure 8(b). Distortion of the hysteresis is mainly due
to the numerical errors introduced by the high-frequency modes of the structure of which the ratio
At/T; > 0-5 for some i where T; is the natural period of the ith mode.'?® Nevertheless, the value required for
acceptable accuracy using the proposed algorithm is reasonable.

Response to earthquake excitations
The performances of FPB-isolated bridges under seismic loadings in the longitudinal direction are

investigated. The objective of isolation of bridge structures is primarily to reduce the shear forces resisted by
the piers that are most vulnerable during earthquakes. With the piers isolated from the bridge superstructure
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Figure 9. Shear force of the piers (El Centro)

using friction bearings, the bridge and the piers vibrate independently during the earthquake and thus
interactions between them are minimized. However, due to a substantial discount of lateral stiffness after
isolation, the superstructure is likely subjected to excessive slippage during the earthquake, as it is often
encountered for building structures. This deficit is commonly improved by introducing additional damping
or energy dissipation devices. Since bridges are structurally different from building systems, more alternatives
are available other than appealing to energy dissipation. Actually, displacement constraint of the bridge
superstructure can be provided by simply replacing one of the roller supports on the abutments with a hinge,
as shown in Figure 2(c). With such a rearrangement on support conditions, however, the bridge is no longer
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Figure 10. Effects of constraint on shear force of the piers (El Centro)

symmetric and the friction bearings behave independently along with the piers, as a consequence. This
modification drastically changes the dynamic characteristic of the bridge system while increasing the complex-
ity of the analysis task as a result. The proposed numerical scheme is adopted to deal with this situation.

Effectiveness assessment
To show the effectiveness of seismic isolation, structural responses of the isolated bridge to earth-
quakes, in particular, shear and moment at the pier foot along with bridge displacement at the bearing

locations, are examined. In addition, reaction force at the abutment for the bridge in the revised configura-
tion is also investigated. Simulations using the recorded earthquake ground motions of El Centro
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Figure 11. Shear force of the piers (Kobe)

(1940), Kobe (1995) and Mexico (1985) as inputs are presented in order to verify the adaptiveness of the
isolated bridges under different geological conditions.

(a) El Centro (PGA = 0-34g): The 1940 El Centro earthquake is typical for hard sites. Simulation results
are summarized in Table II(a). Significant reductions for the piers’ base shears of the isolated bridge without
constraint are observed from the response time histories demonstrated in Figure 9, where the base shears are
normalized with respect to the weight (W) of the bridge superstructure (W = 7700 kN). The maximum
bearing displacement is 2-45 cm. When the bridge superstructure is constrained with a hinge support, the
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Figure 12. Effects of constraint on shear force of the piers (Kobe)

maximum bearing displacements are reduced, respectively, to 0-19 and 0-34 cm, and the pier’s base shears are
further reduced, as shown in Figure 10. Note that Pierl takes notably less force than pier2 since its
neighbouring abutment shares some loads. Peak reduction of shear force of 95 per cent is achieved for pierl
and 91 per cent for pier2. The piers’ base moments are also significantly suppressed; their peaks are shown to
be reduced by 94 per cent in average. These improvements in performance are, as a trade-off, associated with
considerable reaction forces to the abutment on which the horizontal displacement constraint is provided.
Normally, squat in shape and backed-up with land, the abutments are intrinsically much stiffer than piers;
they can therefore accommodate comparatively more loads than piers. Special attention would then be paid
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Figure 13. Shear force of the piers (Mexico)

to the lateral loading capacity of the hinge support as it would become critical in seismic isolation design.

(b) Kobe earthquake (PGA = 0-83g): The 1995 Kobe earthquake is among the most destructive seismic
events ever occurred worldwide. The scale of this earthquake is approximately five times of the 1940 El
Centro earthquake in terms of the resulted peak structural responses of the conventional bridge, as revealed
from Tables II(a) and II(b), assuming no damage in the structures. The isolated bridge without constraint
again shows great performance in earthquake protection, as illustrated in Figure 11 for the piers’ base shear.
However, the maximum bearing displacement is over 40 cm in this case. When displacement constraint is
considered, significant reduction of the normalized pier shears can be achieved, as illustrated in Figure 12. In
fact, the peak reductions of all the structural responses indicated in Table 11(b) are found to be approaching
99 per cent. Furthermore, the maximum bearing displacements are reduced from 40 to 0-21 and 0-34 cm,
respectively for the two bearing at the expense of getting a maximum abutment reaction of 5131 kN. The
advantage of applying displacement constraints for seismically isolated bridges is evident.
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Figure 14. Effects of constraint on shear force of the piers (Mexico)

(c) Mexico (PGA = 0-17g): The 1985 Mexico earthquake is a representative for soft sites. The frequency
content of this earthquake is composed predominantly of a long vibrational period at 2 sec. Simulation
results are summarized in Table I1(c). When the bridge is isolated without constraint, the responses are twice
as much amplified, as shown in the piers’ base shear (Figure 13) due to resonance. Besides, the maximum
bearing displacement is 53 cm which is practically unacceptable. However, if the displacement constraint is
provided, performance of the isolated bridge is completely different. As demonstrated in Figure 14, the
normalized pier shears of the isolated bridge with constraint are significantly reduced. The peaks of the pier
shears and the pier base moments are drastically reduced by 96 per cent, as indicated in Table II(c).
Furthermore, the bearing displacements are reduced from 53 cm to almost nothing. Normally, isolating
structures in such areas would not be recommended since it could endanger the structures the other way
around. This inference, however, does not apply to the isolated bridges with constraint as proposed.
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Figure 15. Effects of abutment flexibility (El Centro)

Emphasis should be placed on the substantial reduction in bearing’s displacement, which can rarely be
expected for an isolated structure. The hinge support contributes significantly in displacement control. The
performance of such isolated bridges have been shown to be satisfactory.

Effects of Abutment’s flexibility

In the previous analysis, the abutments are modelled to be infinitely stiff that no flexure is allowed to occur.
The effect of abutment flexibility on the overall performance of the isolated bridge requires further
investigation, even though the abutments are much more rigid than the piers in general. For elevated
highway bridges, moreover, the hinge supports that provide displacement constraints of the isolated
superstructure have to be implemented on the piers, inevitably.

Analyses are carried out for various abutment-to-pier stiffness ratios y = 1,2,5,10, co. The response
quantities normalized with respect to those of the idealized case (y = o0) are presented, respectively, in
Figures 15-17 for El Centro, Mexico and Kobe earthquakes. The maximum bridge displacements at the
bearing locations (DB1,DB2) are increased almost monotonously as the abutment’s stiffness decreased.
Amplification of bridge displacement are evident for low stiffness ratios. However, the actual maximum
displacement in the extreme case (y = 1, Kobe earthquake) is below 12 cm, which practically can be
accommodated by the expansion joint. Variation of the pier’s shear forces (VP1, VP2) follows a similar
pattern, except in El Centro earthquake where no specific trend is observed. Deviations of the shear forces
from the idealized one in all three cases are considerably less though, compared with the bridge displace-
ments. The abutment reaction (AR), in general, tends to be decreased as the stiffness decreased while the
structure undergoing larger deformation as a trade-off, except in Kobe earthquake. Nevertheless, deviations of
the abutment reaction from the idealized one are the least in comparison with the other response quantities.
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Figure 17. Effects of abutment flexibility (Mexico)
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Effect of bridge’s weight

The unit weight of the bridge superstructure considered in the analytical model is originally 8:6 t/m, which
corresponds to light-weight bridges practically. The effect of bridge’s weight on the overall performance of
the isolated bridges therefore requires further investigations.

Simulations are carried out for bridges from light-weight to heavy-weight with weight ratios () from 1 to 3.
The response quantities normalized with respect to those of the light-weight case (f = 1) are presented,
respectively, in Figures 18-20 for El Centro, Mexico and Kobe earthquakes. The maximum bridge displace-
ments at the bearing locations (DB1,DB2) and the abutment reaction forces (AR) increase with the bridge’s
weight, while the pier’s shears (VP1, VP2) remain nearly unity with only slight variations in all the cases
consistently. The inertia forces of the bridge superstructure induced during the earthquakes are almost fully
transferred to the abutment regardless of bridge’s weight. The insensitivity of the pier’s responses to bridge’s
weight is due to the load-filtering capability of the non-linear friction mechanism provided by the isolation
bearings through the threshold of the maximum friction force.

CONCLUSIONS

A simple as yet efficient solution algorithm for non-linear dynamic analysis of sliding structures has been
proposed, based on the concept of shear balance at the sliding interfaces following a prescribed friction
mechanism. The integration time step keeps constant without being chopped into infinitesimal pieces even
during the transitions between sliding and non-sliding modes of the system. Adequacy of the proposed
numerical procedure has been verified through harmonic responses of an isolated bridge under Coulomb’s
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friction model as well as Mokha’s. Feasibility of using friction pendulum bearings for seismic isolation of
bridges has been investigated under real earthquakes. Simulation results indicate that, at hard-soil sites,
responses of the isolated bridges without constraint can be drastically reduced with acceptable bearing
displacements. While at soft-soil sites, responses of the isolated bridge can be amplified and the bearings
displace excessively, if the bridge superstructure stays entirely unconstrained. It is suggested in this study to
resolve the dilemma by replacing one of the roller supports on the abutments with a hinge to provide
displacement constraints, at the expense of increasing abutment’s loading as a trade-off. Under the revised
configuration, the isolated bridge performs consistently well during various earthquakes, regardless of the
site conditions. The usefulness of seismic isolation of bridges is confirmed.
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