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This paper proposes a flip visual cryptography (FVC) scheme with perfect security, conditionally optimal
contrast, and no expansion of size. The proposed FVC scheme encodes two secret images into two dual-
purpose transparencies. Stacking the two transparencies can reveal one secret image. Flipping one of the
two transparencies and then stacking with the other transparency can reveal the second secret image.
The proposed scheme is proved to have conditionally optimal contrast: its contrast is optimal if the dou-
ble-secrets non-expanded FVC scheme is required to have perfect security. The perfect security is also
proved.
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1. Introduction

To avoid sensitive digital contents from being peeped by unau-
thorized people is significant in the area of information security.
Visual cryptography (VC) introduced by Naor and Shamir [2] is
an approach to decrypt secret image using human visual system.
In VC, the secret image can be revealed by stacking the transparen-
cies generated in the encryption process. Since the decoding pro-
cess of VC depends on the inspection of stacked images using
naked eyes without any computation, it has the potential to be uti-
lized in the critical environment that has no computer resources.
We may use the simple example in Fig. 1 to describe VC. Fig. 1(a)
shows the binary secret image. After using the encoding process
proposed by Naor and Shamir [2], the two generated transparen-
cies are as in (b) and (c) which are extremely noisy. Fig. 1(d) shows
the result of stacking together the two transparencies (b) and (c).

Many studies related to VC were proposed. For example, [1,3–5]
introduced multi-secret VC; [6–11] proposed non-expanded VC so
that the created transparency could be compact; and some other
VC schemes [12–15] enabled VC to have more applications. In the
above, Wu and Chang [3] proposed a method to generate two circle
transparencies for sharing two secret images. When rotating one
transparency by a pre-specified angle and then stacking it with an-
other transparency, the second secret image could be revealed. In
ll rights reserved.

en).
their method, the size of each transparency was fourfold larger than
that of each secret image. Fang and Lin [4] used two rectangular
transparencies to share two secret images. In their method,
besides revealing one secret image by stacking the two transparen-
cies, shifting one of the transparencies and then stacking them again
could also reveal another secret image. The size of each transparency
was also fourfold that of each secret image. Shyu et al. [5] extended
the multi-secret VC scheme of Wu and Chang [3] from single rota-
tion to several rotations so that they could encode k (k P 2) images
in two transparencies. Nevertheless, the transparencies were still 2k
times the size of each input secret image.

To save the usage of the transparencies, reducing the size of the
transparencies is also an approach for study. There are several non-
expanded VC schemes. For example, Yang [6] introduced a proba-
bility-based method and Shyu [8] presented a random-grid-based
method. In both methods, the size of each transparency is the same
as that of secret image. Therefore, their methods are particularly
suitable for the situation with storage restriction. However, in their
methods, only one secret image is hidden when several transpar-
encies are created.

For cryptography, the most important issue is security. Most
single-secret VC schemes (for example, [2]) mentioned that no sin-
gle transparency would leak out the pixel value of the input secret
image. Restated, these schemes satisfied the security requirement.
However, for multiple secret images, it was rarely discussed in the
reported methods about the security issue on the relation of the
pixels between the multiple input secret images. In the proposed
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Fig. 2. (a): A transparency; (b): the transparency after flipping.

Fig. 1. An example of VC. (a): a secret image; (b and c): the two transparencies generated for (a) by using the VC scheme of Naor and Shamir [2]; (d) the result of stacking (b)
and (c).
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scheme, a multiple-secrets VC scheme with perfect security is de-
fined as when each single transparency leaks out (a) neither the
pixel value, (b) nor the relation of the pixel values between the
multiple secret images. There are two possible branches of the de-
sign: (1) the stacking result representing black pixel in the secret
image is restricted to be 100% opaque; (2) the stacking result rep-
resenting black pixel in the secret image is not restricted to be
100% opaque. The first branch is called opaque-oriented FVC, and
the second is called non-opaque-oriented FVC in the proposed
scheme. We will prove later that the contrast in our design here
is conditionally optimal, no matter (1) or (2) is used. Throughout
this paper, the word ‘‘conditionally optimal” means that the contrast
is optimal if the double-secrets non-expanded FVC scheme is re-
quired to have perfect security.

The remainder of this paper is organized as follows: the pro-
posed opaque-oriented FVC scheme is stated in Section 2. Also in
Section 2, we prove that the contrast 1/6 is conditionally optimal
among the opaque-oriented FVC schemes that use basis matrices
design with perfect security and no expansion. The proposed
non-opaque-oriented FVC scheme and its proof are stated in Sec-
tion 3. Experimental results are shown in Section 4. Finally, the
conclusions are in Section 5.

2. Opaque-oriented FVC

In this section, we design an opaque-oriented FVC method. This
section includes two subsections: (1) the encoding method; (2) the
proof of conditionally optimal contrast.

2.1. The encoding method

Two n �m binary secret images, denoted by S1 and S2, are en-
coded to get two n �m transparencies T1 and T2, respectively.
Without the loss of generality, the goal of the proposed FVC
scheme is that the secret image S1 can be decoded by stacking T1

and T2 together; whereas the secret image S2 can be decoded by
flipping T1 over and then stacking with T2. Fig. 2 illustrates the
operation to flip a transparency over. Notably, the transparency
in Fig. 2(a) is not a transparency created by our method, because
our transparency is completely noise-like. Fig. 2 is just to explain
the flip-over operation; and the explanation would have been
impossible to understand if Fig. 2(a), and hence Fig. 2(b), had been
completely noise-like.

Let S1 = {s1(i, j)j0 6 i 6 n � 1,0 6 j 6m � 1} and S2 = {s2(i, j)j0 6
i 6 n � 1,0 6 j 6m � 1} be the two given black-and-white secret
images. Each pixel s1(i, j) and each pixel s2(i, j) are binary in value
W (white) pixel or B (black) pixel). Let T1 = {t1(i, j)j0 6 i 6 n � 1,0
6 j 6m � 1} and T2 = {t2(i, j)j0 6 i 6 n � 1,0 6 j 6m � 1} be the
two transparencies to be generated. In the design of transparencies
T1 and T2, represent every ‘‘opaque” pixel of a transparency by 1,
and represent every ‘‘transparent” pixel of a transparency by 0. (To
distinguish between secret image and transparency image, the
words ‘‘opaque and transparent”, rather than ‘‘Black and White”,
are used when the image being talked about is a transparency, rather
than an input secret image.) In Definition 1, the stacking operation is
symbolized by the symbol ‘‘�” which is in fact the OR operator. This
coincides with the real world experience: in real world, if we stack
two transparencies, the places where we can see through are the
places where both transparencies are transparent (both are 0s).

Definition 1. Stacking operation �The stacking operation for
transparencies is symbolized by ‘‘�”, where 0 � 0 = 0, 0 � 1 = 1,
1 � 0 = 1, and 1 � 1 = 1.

Fig. 3 illustrates the effect of stacking two transparencies T1 and
T2 and describes what will happen when people flip T1 over and



Fig. 3. Stacking transparencies T1 and T2 to decode secrets S1 and S2 of size n �m each. (Stacking T1 and T2 to decode secret S1; flipping T1 over and then stacking with T2 to
decode secret S2.)
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then stack it with T2. The two pixel values [s1(i, j), s1(i,m � 1 � j)]
are called a symmetric pair, and so are [s2(i, j), s2(i,m � 1 � j)]. To
design a flip visual cryptography (FVC) scheme, possible values of
the quadruple [s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)] for
0 6 i 6 n � 1, and 0 6 j 6m/2 � 1 should be considered simulta-
neously. For each quadruple [s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m -
1 � j)] of secret pixels, the quadruple [t1(i, j), t1(i,m � 1 � j),
t2(i, j), t2(i,m � 1 � j)] of transparency pixels must meet the follow-
ing four requirements simultaneously:

(1) s1(i, j) is decoded by stacking t1(i, j) and t2(i, j);
(2) s1(i,m � 1 � j) is decoded by stacking t1(i,m � 1 � j) and
t2(i,m � 1 � j);
(3) s2(i, j) is decoded by stacking t1(i,m � 1 � j) and t2(i, j);
(4) s2(i,m � 1 � j) is decoded by stacking t1(i, j) and
t2(i,m � 1 � j);

With the use of the symbol �, the four requirements read:

s01ði; jÞ ¼ t1ði; jÞ � t2ði; jÞ;
s01ði;m� 1� jÞ ¼ t1ði;m� 1� jÞ � t2ði;m� 1� jÞ;
s02ði; jÞ ¼ t1ði;m� 1� jÞ � t2ði; jÞ;
s02ði;m� 1� jÞ ¼ t1ði; jÞ � t2ði;m� 1� jÞ: ð1Þ

Here, s01ði; jÞ; s01ði;m� 1� jÞ; s02ði; jÞ; s02ði;m� 1� jÞ
� �

are the stacking
results to show the quadruple [s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m -
1 � j)]. Since we are dealing with visual decoding, the stacking
results s01ði; jÞ; s01ði;m� 1� jÞ; s02ði; jÞ; s02ði;m� 1� jÞ

� �
do not need

to be completely identical to the original secret values [s1(i, j),
s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)]. Therefore, a prime symbol
has been added to s to denote the stacking result.

Definition 2. The 16 basis matrices of a Flip VC (FVC) system are
defined according to Fig. 3. In detail, each FVC system is defined
according to its 24 = 16 basis matrices {CWWWW,CWWWB,CWWBW, . . . ,
CBBBW,CBBBB} of 4-by-r each, and r is a constant. All 4-by-r elements of
each basis matrix C½s1ði;jÞ;s1ði;m�1�jÞ;s2ði;jÞ; s2ði;m� 1� jÞ� 2 fCWWWW ;

CWWWB;CWWBW ; . . . ;CBBBW ; CBBBBg are 1-bit in value. Notably,
s1(i, j) 2 {W,B}, and so are the values of s1(i,m � 1 � j), s2(i, j), and
s2(i,m � 1 � j). Hence, there are 24 = 16 basis matrices to cover the
16 possible readings {WWWW,WWWB, . . . ,BBBB} of the 4-dimen-
sional input vector [s1(i, j),s1(i,m � 1 � j),s2(i, j),s2(i,m � 1 � j)].

In the definition above, we stated that each FVC system is
defined according to its 24 = 16 basis matrices. This is because
people can use the 16 basis matrices to encode any two secret
images S1 and S2 to get two transparencies. In general, to encode
four secret pixels [s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)]
grabbed from secret images S1 and S2, just choose randomly a
column from the corresponding basis matrix C½s1ði;jÞ;s1ði;m�1�jÞ;s2ði;jÞ;
s2ði;m� 1� jÞ�, then copy the four elements of the chosen column
to the four transparency pixels t1(i, j), t1(i,m � 1 � it j), t2(i, j),
t2(i,m � 1 � j) of T1 and T2, respectively.

To make sure the generated transparencies are secure and use-
ful in unveiling the input secret images, the 16 basis matrices must
satisfy the following Security and Contrast constraints. If these two
constraints are satisfied, then the FVC defined by these 16 basis
matrices is called a valid FVC.

I. Security constraint: In each 4-by-r basis matrix, the first and
the second rows together consist of a0 � r columns of [0 0]T,
a1 � r columns of [0 1]T, a2 � r columns of [1 0]T, a3 � r col-
umns of [1 1]T, where
a0 þ a1 þ a2 þ a3 ¼ 1: ð2Þ

The value of a0 used by any two basis matrices must be iden-
tical. (This cross-matrices requirement also holds for a1, a2 and
a3, respectively.) Likewise, the 3rd and the 4th rows together
consist of b0 � r columns of [0 0]T, b1 � r columns of [0 1]T,
b2 � r columns of [1 0]T, and b3 � r columns of [1 1]T, where

b0 þ b1 þ b2 þ b3 ¼ 1: ð3Þ

The value of b0 used by any two basis matrices must be identical.
(This cross-matrices requirement also exists for b1, b2 and b3.)

II. Contrast constraint: Get the contrast according to the con-
trast evaluation process stated below. The Contrast con-
straint requires that the obtained value a must be positive.

Contrast evaluation: The contrast of a Flip VC is evaluated in the fol-
lowing manner. For each basis matrix, items 1–4 are evaluated
below:

1. the luminance transmission of s1(i, j), which is the percentage of
0s in the stacking result when the 1st and 3rd rows are stacked;

2. the luminance transmission of s1(i,m � 1 � j), which is the per-
centage of 0s in the stacking result when the 2nd and 4th rows
are stacked;

3. the luminance transmission of s2(i, j), which is the percentage of 0s
in the stacking result when the 2nd and 3rd rows are stacked;
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4. the luminance transmission of s2(i,m � 1 � j), which is the per-
centage of 0s in the stacking result when the 1st and 4th rows
are stacked.

Then, since each of the four pixels s1(i, j), s1(i,m � 1 � j), s2(i, j),
and s2(i,m � 1 � j) only have two possible values {W,B}, there are
24 = 16 basis matrices (see Table 1, for example). These 16 matrices
are distinguished from each other using a quadruple naming sys-
Table 1
The 16 basis matrices corresponding to the 24 = 16 combinations
Some basis matrices (CWWWB, CWWBW, CWBWW, and CBWWW) have two
freedom to choose the form he wants.

Reading of the input quadruple secret pixels
s1(i, j), s1(i,m � l � j), s2(i, j), s2(i,m � l � j)

T
i

W, W, W, W

C

W, W, W, B

C

W, W, B, W

C

W, W, B, B

C

W, B, W, W

C

W, B, W, B

C

W, B, B, W

C

W, B, B, B

C

B, W, W, W

C

B, W, W, B

C

B, W, B, W

C

B, W, B, B

C

B, B, W, W

C

B, B, W, B

C

B, B, B, W

C

B, B, B, B

C

tem. For example, if [s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)]
is [B,W,B,B], then the corresponding basis matrix is called CBWBB.
Now, for each of these 16 matrices, measure its luminance trans-
mission of s1(i, j). If the first subscript in the matrix name is B, i.e.
if s1(i, j) = B, then store its luminance transmission of s1(i, j) in a pool
called Black-pool. Otherwise, store it in a so-called White-pool.
(Therefore, 16/2 = 8 of the 16 luminance transmission of s1(i, j) will
be in Black-pool, and the remaining 16–8 = 8 will be in
of [s1(i, j), s1(i, m � 1 � j), s2(i, j), s2(i,m � l � j)], respectively.
forms, but only one form is needed in encoding. The user has

he basis matrix corresponding to the
nput quadruple secret pixels

WWWW ¼

0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 1 0 1
0 1 1 1 1 0

2
664

3
775

WWWB ¼

0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 1 1 0
1 1 0 1 1 0

2
664

3
775, or

0 0 1 1 1 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 0 1 1 0

2
664

3
775

WWBW ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 0 1 1 0 1
0 1 1 1 1 0

2
664

3
775, or

0 0 1 1 1 1
0 1 0 1 1 1
1 0 1 1 0 1
1 0 0 1 1 1

2
664

3
775

WWBB ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 0 1 1 0 1
1 1 0 1 1 0

2
664

3
775

WBWW ¼

0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 1 1 0
1 0 1 1 1 0

2
664

3
775, or

0 0 1 1 1 1
0 1 0 1 1 1
1 0 0 1 0 1
1 0 1 1 1 0

2
664

3
775

WBWB ¼

0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 1 0 1
1 1 1 1 0 0

2
664

3
775

WBBW ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 0 1 0 1 1
1 0 1 1 0 1

2
664

3
775

WBBB ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 0 1 1 0 1
1 1 1 0 1 0

2
664

3
775

BWWW ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 0 0 1 1
0 1 1 0 1 1

2
664

3
775, or

0 0 1 1 1 1
0 1 0 1 1 1
1 1 0 0 1 1
1 0 0 1 1 1

2
664

3
775

BWWB ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 0 1 0 1
1 1 0 1 1 0

2
664

3
775

BWBW ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 1 1 0 0
0 1 1 1 1 0

2
664

3
775

BWBB ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 1 1 0 0
1 1 0 1 1 0

2
664

3
775

BBWW ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 0 0 1 1
1 0 1 0 1 1

2
664

3
775

BBWB ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 0 0 1 1
1 1 1 0 1 0

2
664

3
775

BBBW ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 1 0 0 1
1 0 1 0 1 1

2
664

3
775

BBBB ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 0

2
664

3
775
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White-pool.) After that, for each of the 16 basis matrices, measure
its luminance transmission of s1(i,m � 1 � j). If the second sub-
script in the matrix name is B, then store its luminance transmis-
sion of s1(i,m � 1 � j) in a pool called Black-pool. Otherwise,
store it in a so-called White-pool. Repeat this process analogously
for the 16 luminance transmissions of s2(i, j) according to the 3rd
subscript of the matrices’ names. Also repeat this process analo-
gously for the 16 luminance transmissions of s2(i,m � 1 � j)
according to the 4th subscript of the matrices’ names. Together,
we have 8 + 8 + 8 + 8 = 32 numbers in the Black-pool, and
8 + 8 + 8 + 8 = 32 numbers in the White-pool. The minimum of
the 32 numbers in White-pool is called w (the minimal luminance
transmission to represent W), and the maximum of the 32 numbers
in Black-pool is called b (the maximal luminance transmission to
represent B).
Define contrast a as

a ¼ w� b > 0: ð4Þ
Remark. In all VC methods, the stacking result is always with a
contrast value smaller than 100–0% = 100% = 1, and this makes the
stacking result always looks less clear than the input secret image
(for example, compare Fig. 1(a) and (d)). In general, contrast is an
important measure specifying the visual quality of the stacking
result for a VC method. Roughly speaking, a decoded result with
higher contrast is usually clearer.
Theorem 1. When a FVC defined by 16 basis matrices satisfy the
Security and the Contrast constraint addressed in Definition 2 , then
the generated transparencies are secure and useful in unveiling the
input secret images.
Proof

(i) About the Security constraint, its purpose is that: no informa-
tion about the two secret images can be extracted if someone
only gets a transparency. Below we prove the security of the
two secret images when someone only obtains transparency
T1. (The proof is likewise if Ttextsubscript1 is replaced by trans-
parency Ttextsubscript2.)

The definition of Security constraint reads that ‘‘The value of a0

used by any two basis matrices must be identical. (This cross-
matrices requirement also holds for a1, a2, a3, b0, b1, b2, and b3,
respectively.)” Hence, if a set of basis matrices do not satisfy the
Security constraint, then the value of a0 (or a1, or a2, or a3, orb0, or
b1, or b2, or b3) used by some basis matrices may be different. For
example, if the matrix CBBBB in Table 1 is replaced by

C 0BBBB ¼

0 0 1 1 1 1
0 1 1 1 1 1
1 1 1 0 0 1
1 1 1 0 1 0

2
6664

3
7775;

then the first and the second rows in C0BBBB are with [0 0]T � 1,
[0 1]T � 1, [1 0]T � 0, and [1 1]T � 4, while the first and second rows
in remaining 16–1 = 15 matrices of Table 1 are with [0 0]T � 1,
[0 1]T � 1, [1 0]T � 1, and [1 1]T � 3. Since the first and second rows
are used to encode t1(i, j) and t1(i,m � 1 � j) in the same transpar-
ency T1, so if an intruder finds in T1 a pair of pixels [t1(i, j), t1(i,m -
1 � j)] = [1, 1], then his best guess of the four corresponding
secret pixels in secret images S1 and S2 should be [BBBB]. Likewise,
if he finds in T1 a pair of pixels [t1(i, j), t1(i,m � 1 � j)] = [1,0], then
he knows that the four corresponding secret pixels cannot be
[BBBB]. In summary, the transparency T1 is not a secure transpar-
ency, because it has secret-leaking problem.
The paragraph above shows the necessity of the Security
constraint (to ensure that no information about the secret images
can be extracted). Below we show the sufficiency of the Security
constraint. Assume a set of 16 basis matrices satisfies the Security
constraint. Therefore, in each 4-by-r basis matrix, the first and the
second rows together consist of a0 � r columns of [0 0]T, a1 � r
columns of [0 1]T, a2 � r columns of [1 0]T, a3 � r columns of [1 1]T,
where the value of a0 used by any two basis matrices must be
identical. (This cross-matrices requirement also holds for a1, a2 and
a3, respectively.)

Since the first and second rows are utilized to encode t1(i, j) and
t1(i,m � 1 � j) in the same transparency T1, so if an intruder gets a
single transparency T1 and he finds in T1 a pair of pixels [t1(i, j),
t1(i,m � 1 � j)] = [0,0], then he cannot know whether the four
corresponding secret pixels in secret images S1 and S2 should be
[WWWW] or [WWWB] or . . . or [BBBB]. This is because each of the
24 = 16 basis matrices has the same number of columns (a0 � r
columns) read as [0 0]T when the first two rows of the matrix is
grabbed. Therefore, there are 1/16 chance that [0 0]T was from
secret pixels [WWWW]. Similarly, there are 1/16 chance that [0 0]T

was from secret pixels [WWWB]. Similarly, there are 1/16 chance
that [0 0]T was from secret pixels [WWBW]. In fact, the same 1/16
chance holds for each of the 16 basis matrices.

Therefore, the intruder cannot know whether the four corre-
sponding secret pixels in secret images S1 and S2 should be
[WWWW] or [WWWB] or . . . or [BBBB]. The above analysis still
holds if [0 0]T is replaced by [0 1]T or [1 0]T or [1 1]T. Therefore, no
matter what the contents of two secret images S1 and S2 are, the
transparency T1 is always of perfect security: no secret-leaking will
occur. The perfect security of transparency T2 can be proved
likewise using the 3rd and 4th rows of the 16 basis matrices, as
defined in the second half of the Security constraint.

(ii) About the Contrast constraint, the definition is in Eq. (4)
which reads a = w � b > 0. If the value of a is not positive, then
there are two possible cases:
Case 1. (a = 0). In this case, we cannot see the information in
the stacking result, because the luminance transmission of
representing W and B are identical.
Case 2. (a < 0). In this case, the luminance transmission to
represent W is smaller than the luminance transmission to
represent B. Then we will see that W is darker than B, and
the stacking result will look like the negative film of a photo,
an inappropriate view. h
Property 1. The set of basis matrices shown in Table 1 is a valid FVC
and it satisfies the security and the contrast of stacking result is 1/6.
Proof. Table 1 shows a set of 16 basis matrices mentioned below
Definition 2. In the 1st and 2nd rows of each basis matrix shown
in Table 1, there are (1/6) � 6 = 1 column of [0 0]T, (1/6) � 6 = 1
column of [0 1]T, (1/6) � 6 = 1 column of [1 0]T, and (3/6) � 6 = 3
columns of [1 1]T. Hence, the cross-matrices constant-ratio (a0:
a1: a2: a3) requirement mentioned below Eq. (2) holds. In the 3rd
and 4th rows of each basis matrix, the cross-matrices constant-
ratio (b0: b1: b2: b3) requirement mentioned below Eq. (3) also
holds. The cross-matrices property required by the Security
constraint is thus satisfied. Moreover, after the computation stated
below, it can be shown that w = 1/6 and b = 0, so the contrast a is 1/
6–0 = 1/6 which is a positive number, and hence the Contrast
constraint is also satisfied by the Flip VC defined using Table 1.

The detail computation of w and b for Table 1 is as follows. First,
statements 1–4 below are true for each basis matrix in Table 1.
Therefore, every element of the Black-pool is 0, and each element
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of the White-pool is 1/6. Because the maximum element of the
Black-pool (i.e. b) is 0 and the minimum element of the White-pool
(i.e. w) is 1/6, contrast a is thus 1/6–0 = 1/6.

1. When the 1st and 3rd rows are stacked, if the first subscript in
the matrix name is B, then the ratio of 0s in the stacking result is
0%; otherwise, the ratio is 1/6 = 16.7%.

2. When the 2nd and 4th rows are stacked, if the second subscript
in the matrix name is B, then the ratio of 0s in the stacking
result is 0%; otherwise, the ratio is 1/6 = 16.7%.

3. When the 2nd and 3rd rows are stacked, if the 3rd subscript in
the matrix name is B, then the ratio of 0s in the stacking result is
0%; otherwise, the ratio is 1/6 = 16.7%.

4. When the 1st and 4th rows are stacked, if the forth subscript in
the matrix name is B, then the ratio of 0s in the stacking result is
0%; otherwise, the ratio is 1/6 = 16.7%. h

We explain below in more detail what the two ratios 0% and 16.7%
stand for. According to Fig. 3, each of the four secret pixels in [s1(i, j),
s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)] is recovered by tracing its two
arrows in Fig. 3 back to two of the four transparency pixels in [t1(i, j),
t1(i,m � 1 � j), t2(i, j), t2(i,m � 1 � j)]. For example, the recovered
version of secret pixel s1(i, j) is obtained by s01ði; jÞ ¼ t1ði; jÞ � t2ði; jÞ;
whereas the recovered version of secret pixel s2(i, j) is obtained by
s02ði; jÞ ¼ t1ði;m� 1� jÞ � t2ði; jÞ. As for the encoding to generate
the two transparencies t1 and t2, note that each 4-by-6 basis matrix
in Table 1 has 6 columns; so, in the encoding process, each time an
input quadruple [s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)] is gi-
ven, there are 6 possible ways to encode this quadruple. For example,
if the input secret quadruple [s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,
m � 1 � j)] is [W,W,B,B], then [t1(i, j), t1(i,m � 1 � j), t2(i, j), t2(i,
m � 1 � j)] is encoded as [1,0,1,0] if the 3rd column of the basis ma-
trix CWWWB in Table 1 is selected. Likewise, [t1(i, j), t1(i,m � 1 � j),
t2(i, j), t2(i,m � 1 � j)] is encoded as [1,1,0,0] if the 6th column of ma-
trix CWWWB is selected in the random-selection process. Notably, the
index WWBB means that the input quadruple secret pixels are
s1(i, j) = 0, s1(i,m � 1 � j) = 0, s2(i, j) = 1, s2(i,m � 1 � j) = 1. Now, no
matter which of the 6 columns of matrix CWWBB is selected, the value
s02ði;m� 1� jÞ ¼ t1ði; jÞ � t2ði;m� 1� jÞ obtained by stacking is al-
ways 1, because (1st row) � (4th row) = [1,1,1,1,1,1] for matrix
CWWWB of Table 1, and so is s02ði; jÞ. However, the value
s01ði; jÞ ¼ t1ði; jÞ � t2ði; jÞ obtained by stacking is not always 0, because
(1st row) � (3rd row) = [1,0,1,1,1,1] for that matrix CWWBB. In other
words, depending on which of the 6 columns is selected, the chance
that t1(i, j) � t2(i, j) = 0 is only 1/6 = 16.7%. Similar argument also
shows that the chance that t1(i,m � 1 � j) � t2(i,m � 1 � j) = 0 is
only 1/6 = 16.7%, too. Moreover, for each of the 16 basis matrices in
Table 1, the probability that the stacking result can recover a black
secret pixel (i.e. a secret pixel with value 1) is always 100%; but the
probability that the stacking result can recover a white secret pixel
(i.e. a secret pixel with value 0) is always 1/6 = 16.7%, rather than
100%. As a result, the black area of the input secret images is still
black after stacking the two transparencies; however, since the 6 col-
umns of each basis matrix in Table 1 is randomly selected, the white
area of the input secret images looks gray (rather than plain white).
This is because in each white area, the area is formed of many pixels,
and after stacking the two transparencies, 16.7% of these pixels are
white while 83.3% of these pixels are black. From the view of human
vision (recalling that the decoder is human eyes rather than comput-
ers), since 83.3% of the pixels in a white area is black (opaque) and
16.7% of the pixels in the same white area is white (transparent),
the whole white area looks like dark-gray in brightness, rather than
plain white. Therefore, the white area of the original input image
looks brighter than the corresponding area of the stacked output.
Notably, darker output in white area is a very common phenomenon
for any VC approach. For example, in Fig. 1, which shows the stacking
result of the VC method proposed by Naor and Shamir [2], the input
image’s white area also becomes darker after VC’s encoding-then-
stacking.
2.2. The proof of conditionally optimal contrast in opaque-oriented FVC

In this subsection, the contrast in opaque-oriented FVC, which is
no more than 1/6, is proven. To satisfy the Security constraint, the
constant-ratios (a0: a1: a2: a3) and (b0: b1: b2: b3) in basis matrices
C[s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)] must meet Eqs. (2)
and (3). Moreover, in the first and second rows of each basis
matrix, the occurrence of [0 0]T, [0 1]T, [1 0]T, [1 1]T must keep
the constant-ratio (a0: a1: a2: a3); and in the 3rd and the 4th rows
of each basis matrix, the occurrence of [0 0]T, [0 1]T, [1 0]T, [1 1]T

must keep the constant-ratio (b0: b1: b2: b3). For each basis matrix,
cu,v P 0, where u = 0,1,2,3 and v = 0,1,2,3, is defined as the per-
centage of column bu=2c umod2 bv=2c v mod2½ �T which ap-
pears in columns of the basis matrix.

By the Security constraint, we knows
au ¼ cu;0 þ cu;1 þ cu;2 þ cu;3 for u ¼ 0;1;2;3; ð5Þ
bv ¼ c0;v þ c1;v þ c2;v þ c3;v for v ¼ 0;1;2;3: ð6Þ
By the definition of luminance transmission, the four stacking results
s01ði; jÞ; s01ði;m� 1� jÞ; s02ði; jÞ; s02ði;m� 1� jÞ are represented by stack-
ing two specific rows in basis matrix, which consists of 16 possible
columns bu=2c umod2 bv=2c v mod2½ �T , where u, v 2 {0,1,
2,3}. Therefore, the luminance transmissionof each stacking result
s01ði; jÞ; s01ði;m� 1� jÞ; s02ði; jÞ; s02ði;m� 1� jÞ can be represented by
the sum of a subset {cu,v} which satisfies the result of stacking two
specific rows defined in Definition 2.

1. The luminance transmission of stacking result s1(i, j) is
X3

u¼0

X3

v¼0

cu;v � ðbu=2c � bv=2cÞ ¼ c0;0 þ c0;1 þ c1;0 þ c1;1; ð7Þ
2. The luminance transmission of stacking result s1(i,m � 1�j) is
X3

u¼0

X3

v¼0

cu;v � ðbumod2c � bv mod2cÞ

¼ c0;0 þ c0;2 þ c2;0 þ c2;2; ð8Þ
3. The luminance transmission of stacking result s2(i, j) is
X3

u¼0

X3

v¼0

cu;v � ðbumod2c � bv=2cÞ

¼ c0;0 þ c0;1 þ c2;0 þ c2;1; ð9Þ
4. The luminance transmission of stacking result s2(i,m � 1 � j) is
X3

u¼0

X3

v¼0

cu;v � ðbu=2c � bv mod2cÞ

¼ c0;0 þ c0;2 þ c1;0 þ c1;2; ð10Þ
where �� is the complement operator. The contrast a satisfies the Eq.
(4). Notably, the luminance transmission of representing B is 0 and
representing W is the contrast a by the definition of opaque-
oriented FVC. Therefore, the complement operator is used in Eqs.
(7)–(10) for opposite definition between B(1)/W(0) pixels and lumi-
nance transmission. Some basis matrices are considered below to
gain the upper bound of contrast a.
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I. Consider the basis matrix CBBBB. By Eqs. (7)–(10), the lumi-
nance transmission of the four secret pixels s1(i, j), s1(i,
m � 1 � j), s2(i, j), s2(i,m � 1 � j) are

c0;0 þ c0;1 þ c1;0 þ c1;1 ¼ 0;
c0;0 þ c0;2 þ c2;0 þ c2;2 ¼ 0;
c0;0 þ c0;1 þ c2;0 þ c2;1 ¼ 0; and
c0;0 þ c0;2 þ c1;0 þ c1;2 ¼ 0:
Due to cu,v P 0, for all u, v. Therefore, c0,0 = c0,1 = c0,2 = c1,0 = c1,1 =
c1,2 = c2,0 = c2,1 = c2,2 = 0. By Eq. (5),
0;0 þ c0;1 þ c0;2 þ c0;3 ¼ c0;3;

1;0 þ c1;1 þ c1;2 þ c1;3 ¼ c1;3; and

2;0 þ c2;1 þ c2;2 þ c2;3 ¼ c2;3:
By Eq. (6),
0;0 þ c1;0 þ c2;0 þ c3;0 ¼ c3;0;

0;1 þ c1;1 þ c2;1 þ c3;1 ¼ c3;1; and

0;2 þ c1;2 þ c2;2 þ c3;2 ¼ c3;2:
By Eq. (5), a3 = c3,0 + c3,1 + c3,2 + c3,3 P c3,0 + c3,1 + c3,2 = b0 + b1 + b2.
Therefore,
b0 þ b1 þ b2 ) 1� a0 � a1 � a2 P b0 þ b1 þ b2

ða0 þ a1 þ a2Þ þ ðb0 þ b1 þ b2Þ 6 1

ð1� a3Þ þ ð1� b3Þ 6 1) a3 þ b3 P 1 ð11Þ

II. Consider the basis matrix CBWBB. By Eqs. (7)–(10), the lumi-
nance transmission of the four secret pixels s1(i, j),
s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j) are

c0;0 þ c0;1 þ c1;0 þ c1;1 ¼ 0;
c0;0 þ c0;2 þ c2;0 þ c2;2 ¼ a;
c0;0 þ c0;1 þ c2;0 þ c2;1 ¼ 0; and
c0;0 þ c0;2 þ c1;0 þ c1;2 ¼ 0:
Therefore, c0,0 = c0,1 = c0,2 = c1,0 = c1,1 = c1,2 = c2,0 = c2,1 = 0, and
c2,2 = a. By Eqs. (5) and (6), a2 = c2,0 + c2,1 + c2,2 + c2,3 P c2,2, and
b2 = c0,2 + c1,2 + c2,2 + c3,2 P c2,2, so
a 6 a2 and a 6 b2: ð12Þ

III. Consider the basis matrix CWBBW and CWBWB. When the
basis matrices is CWBBW, by Eqs. (7)–(10), the luminance
transmission of the four secret pixels s1(i, j), s1(i,m � 1 � j),
s2(i, j), s2(i,m � 1 � j) are

c0;0 þ c0;1 þ c1;0 þ c1;1 ¼ a;
c0;0 þ c0;2 þ c2;0 þ c2;2 ¼ 0;
c0;0 þ c0;1 þ c2;0 þ c2;1 ¼ 0; and
c0;0 þ c0;2 þ c1;0 þ c1;2 ¼ a:

Therefore, c0,0 = c0,1 = c0,2 = c2,0 = c2,1 = c2,2 = 0, and

a ¼ c1;0 þ c1;1 ¼ c1;0 þ c1;2 ) a ¼ ðc1;0 þ c1;1 þ c1;0 þ c1;2Þ=2

¼ ½ðc1;0 þ c1;1 þ c1;2Þ þ c1;0�=2:

Because, by Eq. (5),

a1 ¼ c1;0 þ c1;1 þ c1;2 þ c1;3 P c1;0 þ c1;1 þ c1;2; and by Eq:ð6Þ;
b0 ¼ c0;0 þ c1;0 þ c2;0 þ c3;0 P c1;0; so the contrast
a ¼ ½ðc1;0 þ c1;1 þ c1;2Þ þ c1;0�=2 6 ða1 þ b0Þ=2: ð13Þ

When stacking result is CWBWB, by Eq. (6), the average luminance
transmission of the four secret pixels s1(i, j), s1(i,m � 1 � j), s2(i, j),
s2(i,m � 1 � j) are
c0;0 þ c0;1 þ c1;0 þ c1;1 ¼ a;
c0;0 þ c0;2 þ c2;0 þ c2;2 ¼ 0;
c0;0 þ c0;1 þ c2;0 þ c2;1 ¼ a;
c0;0 þ c0;2 þ c1;0 þ c1;2 ¼ 0:

Therefore, c0,0 = c0,2 = c1,0 = c1,2 = c2,0 = c2,2 = 0, and

a ¼ c0;1 þ c1;1 ¼ c0;1 þ c2;1 ) a ¼ ðc0;1 þ c1;1 þ c0;1 þ c2;1Þ=2

¼ ½ðc0;1 þ c1;1 þ c2;1Þ þ c0;1�=2:

Because, by Eq. (5),

a0 ¼ c0;0 þ c0;1 þ c0;2 þ c0;3 P c0;1 and by Eq:ð6Þ;

b1 ¼ c0;1 þ c1;1 þ c2;1 þ c3;1 P c0;1; so the contrast

a ¼ ½ðc0;1 þ c1;1 þ c2;1Þ þ c0;1�=2 6 ðb1 þ a0Þ=2: ð14Þ

By Eqs. (13) and (14), a 6 (a1 + b0)/2,and a 6 (b1 + a0)/2, we have
2a 6 (a1 + b0)/2 + (b1 + a0)/2, so

a 6 ðb1 þ a0 þ a1 þ b0Þ=4: ð15Þ
a 6 ðb1 þ a0 þ a1 þ b0Þ=4 ðBy Eq:ð15ÞÞ
¼ ½1� ða2 þ a3 þ b2 þ b3Þ�=4 ðBy Eq:ð2Þ and Eq:ð3ÞÞ
6 ½1� ða2 þ b2Þ�=4 ða3 P 0; b3 P 0Þ
6 ð1� 2aÞ=4 ðBy Eq:ð12ÞÞ
) a 6 1=6:

Therefore, the contrast of opaque-oriented FVC is no more than 1/6
if perfect security is required. The result also means that the encod-
ing matrices shown in Table 1 are the optimal solution.

3. Non-opaque-oriented FVC

In the description and proof above for opaque-oriented FVC in Sec-
tion 2, the conditionally optimal contrast is 1/6. In this section, we de-
sign a non-opaque-oriented FVC method; and the conditionally
optimal contrast is 1/4. This section includes two subsections: (1)
the encoding method; (2) the proof of conditionally optimal contrast.

3.1. The encoding method

In the encoding method of this section, we use 16 basis matrices
of 8 columns each (rather than 6 columns) to encode the quadruple
secret pixels [s1(i, j), s1(i, m � 1 � j), s2(i, j), s2(i,m � 1 � j)]. Each
generated transparency will be of perfect security by using the
16 basis matrices to encode. The security and contrast are ad-
dressed below.

Property 2. The set of basis matrices shown in Table 2 is a valid FVC
and it satisfies the security and the contrast of stacking result is 1/4.

Proof. Table 2 shows a set of 16 basis matrices mentioned in
Definition 2. In rows 1 and 2 of each basis matrix shown in Table
2, there are (2/8) � 8 = 2 column of [0 0]T, (2/8) � 8 = 2 column of
[0 1]T, (2/8) � 8 = 2 column of [1 0]T, and (2/8) � 8 = 2 columns of
[1 1]T. Hence, the cross-matrices constant-ratio (a0: a1: a2: a3)
requirement mentioned below Eq. (2) holds. In rows 3 and 4 of
each basis matrix, the cross-matrices constant-ratio (b0: b1: b2:
b3) requirement mentioned below Eq. (3) also holds. The cross-
matrices property required by the Security constraint is thus satis-
fied. Moreover, after the computation stated below, it can be
shown that w = 3/8 and b = 1/8, so the contrast a is 3/8–1/8 = 1/4
which is a positive number, and hence the Contrast constraint is
also satisfied by the FVC defined using Table 2.



Table 2
Encoding matrices of all combinations of [s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)].

Reading of the input quadruple secret
pixels[s1(i, j), s1(i,m � 1 � j), s2(i, j), s2(i,m � 1 � j)]

The basis matrix corresponding to
the input quadruple secret pixels

(W, W, W, W)

CWWWW

0 0 0 0 1 1 1 1
0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1

2
664

3
775

(W, W, W, B)

CWWWB ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 0 0 1 0 1 1 1
0 1 1 1 0 0 0 1

2
664

3
775

(W, W, B, W)

CWWBW ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1

2
664

3
775

(W, W, B, B)

CWWBW ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1

2
664

3
775

(W, B, W, W)

CWWBB ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 0 0 1 0 1 1 1
0 1 0 0 1 1 0 1

2
664

3
775

(W, B, W, B)

CWBWB ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 0 0 1 0 1 1 1
1 1 0 1 0 1 0 0

2
664

3
775

(W, B, B, W)

CWBBW ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 0

2
664

3
775

(W, B, B, B)

CWBBB ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 0 1 1 0 1
1 1 1 0 1 0 0 0

2
664

3
775

(B, W, W, W)

CBWWW ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 1 1 0 0 0 1
0 0 1 0 1 0 1 1

2
664

3
775

(B, W, W, B)

CBWWB ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 1 1 0 0 0 1
1 0 1 1 0 0 1 0

2
664

3
775

(B, W, B, W)

CBWBW ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 0
0 0 0 1 0 1 1 1

2
664

3
775

(B, W, B, B)

CBWBB ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 1 1 0 0 0 1
1 1 1 0 1 0 0 0

2
664

3
775

(B, B, W, W)

CBBWW ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1

2
664

3
775

(B, B, W, B)

CBBWB ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 0
0 1 0 0 1 1 0 1

2
664

3
775

(B, B, B, W)

CBBBW ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 0
0 1 1 1 0 0 0 1

2
664

3
775

(B, B, B, B)

CBBBB ¼

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 0

2
664

3
775
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The detail computation of w and b for Table 2 is as follows. First,
statements 1–4 below are true for each basis matrix in Table 2.
Therefore, every element of the Black-pool is 1/8, and each element
of the White-pool is 3/8. So the maximum element of the
Black-pool (i.e. b) is 1/8, and the minimum element of the
White-pool (i.e. w) is 3/8, and contrast a is thus 3/8–1/8 = 1/4.

1. When the 1st and 3rd rows are stacked, if the first subscript in
the matrix name is B, then the ratio of 0s in the stacking result is
1/8 = 12.5%; otherwise, the ratio is 3/8 = 37.5%.
2. When the 2nd and 4th rows are stacked, if the second subscript
in the matrix name is B, then the ratio of 0s in the stacking
result is 1/8 = 12.5%; otherwise, the ratio is 3/8 = 37.5%.

3. When the 2nd and 3rd rows are stacked, if the 3rd subscript in
the matrix name is B, then the ratio of 0s in the stacking result is
1/8 = 12.5%; otherwise, the ratio is 3/8 = 37.5%.

4. When the 1st and 4th rows are stacked, if the 4th subscript in
the matrix name is B, then the ratio of 0s in the stacking result
is 1/8 = 12.5%; otherwise, the ratio is 3/8 = 37.5%. h
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3.2. The proof of conditionally optimal contrast in non-opaque-
oriented FVC

Non-opaque-oriented FVC also satisfies Eqs. (2)–(10) of Section
2. In the following, w is the luminance transmission of stacking
result to represent white pixel W, b is the luminance transmission
of stacking result to represent black pixel B, and a = w� b is the
Fig. 5. The experimental result of the non-opaque-oriented FVC: (a and b): the secret ima
of stacking (c) and (d) together; (g): the result of stacking (d) and (e) together.

Fig. 4. The experimental result of the opaque-oriented FVC: (a and b): the secret images
stacking (c) and (d) together; (g): the result of stacking (d) and (e) together.
contrast. Some basis matrices are considered below to gain the
upper bound of contrast a.

I. Consider the basis matrix CWWBB. By Eqs. (7)–(10), the lumi-
nance transmission of the four secret pixels s1(i, j), s1(i,m � 1 �
j), s2(i, j), s2(i,m � 1 � j) are
ges; (c and d): the two generated transparencies; (e): flipping (c) over; (f): the result

; (c and d): the two generated transparencies; (e): flipping (c) over; (f): the result of



c0;0 þ
c0;0 þ
c0;0 þ
c0;0 þ

a ¼

Fig. 6. Security test of Scheme 1. (a and b): The two secret images; (c and d): the two generated transparencies; (e and f): the two stacking results; (g): statistical result of (c);
(h): statistical result of (d).
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c0;1 þ c1;0 þ c1;1 ¼ w;

c0;2 þ c2;0 þ c2;2 ¼ w;

c0;1 þ c2;0 þ c2;1 ¼ b; and
c0;2 þ c1;0 þ c1;2 ¼ b:
By Eqs. (5) and (6), b1 = c0,1 + c1,1 + c2,1 + c3,1 P c1,1, and
b2 = c0,2 + c1,2 + c2,2 + c3,2 P c2,2. Therefore,
w� b ¼ ½wþw� b� b�=2 ¼ ½ðc0;0 þ c0;1 þ c1;0 þ c1;1Þ
þ ðc0;0 þ c0;2 þ c2;0 þ c2;2Þ � ðc0;0 þ c0;1 þ c2;0 þ c2;1Þ
� ðc0;0 þ c0;2 þ c1;0 þ c1;2Þ�=2 ¼ ½ðc1;1 þ c2;2Þ
� ðc1;2 þ c2;1Þ�=2 6 ðc1;1 þ c2;2Þ=2 6 ðb1 þ b2Þ=2: ð16Þ

II. Consider the basis matrix CWWWW and CBBBB. For the basis
matrix C[W,W,W,W], by Eqs. (7)–(10),
c0;0 þ c0;1 þ c1;0 þ c1;1 ¼ w;

c0;0 þ c0;2 þ c2;0 þ c2;2 ¼ w;

c0;0 þ c0;1 þ c2;0 þ c2;1 ¼ w; and
c0;0 þ c0;2 þ c1;0 þ c1;2 ¼ w:

By Eq. (5), a0 = c0,0 + c0,1 + c0,2 + c0,3 P c0,0 + c0,1 + c0,2, and
a1 = c1,0 + c1,1 + c1,2 + c1,3 P c1,0 + c1,1 + c1,2.

By Eq. (6), b0 = c0,0 + c1,0 + c2,0 + c3,0 P c0,0 + c1,0. Therefore,

w ¼ ½ðc0;0 þ c0;1 þ c1;0 þ c1;1Þ þ ðc0;0 þ c0;2 þ c1;0 þ c1;2Þ�=2

¼ ½ðc0;0 þ c0;1 þ c0;2Þ þ ðc1;0 þ c1;1 þ c1;2Þ þ ðc0;0 þ c1;0Þ�=2

6 ða0 þ a1 þ b0Þ=2: ð17Þ

For the basis matrix CBBBB, by Eqs. (7)–(10),



Table 3
Characterization of VC methods.

Methods Pixel-expansion factor Number of hidden secrets

Naor and Shamir [2] 4 Single
Yang’s [6] 1
Shyu [8] 1

Wu and Chang [3] 4 Double
Shyu et al. [5] 4

The proposed method 1 Double
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c0;0 þ c0;1 þ c1;0 þ c1;1 ¼ b;

c0;0 þ c0;2 þ c2;0 þ c2;2 ¼ b;

c0;0 þ c0;1 þ c2;0 þ c2;1 ¼ b; and
c0;0 þ c0;2 þ c1;0 þ c1;2 ¼ b:
Fig. 7. Security test of Scheme 2. (a and b): the two generated transparencies; (c and d
By Eq. (12), b3 = c0,3 + c1,3 + c2,3 + c3,3 P c0,3 + c1,3. Therefore,

b ¼ ½ðc0;0 þ c0;1 þ c1;0 þ c1;1Þ þ ðc0;0 þ c0;2 þ c1;0 þ c1;2Þ�=2

P ½ðc0;0 þ c0;1 þ c0;2Þ þ ðc1;0 þ c1;1 þ c1;2Þ�=2

¼ ½ðc0;0 þ c0;1 þ c0;2 þ c0;3Þ þ ðc1;0 þ c1;1 þ c1;2 þ c1;3Þ � ðc0;3

þ c1;3Þ�=2

P ða0 þ a1 � b3Þ=2: ð18Þ
By Eqs. (4), (17) and (18),

a ¼ w� b 6 ða0 þ a1 þ b0Þ=2� ða0 þ a1 � b3Þ=2

¼ ðb0 þ b3Þ=2: ð19Þ

By Eqs. (16) and (19),

a 6 ½ðb1 þ b2Þ=2þ ðb0 þ b3Þ=2�=2 ¼ ðb0 þ b1 þ b2 þ b3Þ=4

¼ 1=4 ðBy Eq:ð6ÞÞ:
): the two stacking results; (e): statistical result of (a); (f): statistical result of (b).
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Therefore, if non-opaque-oriented FVC is used, then the condition-
ally-optimal contrast is 1/4. The result is better than the condition-
ally-optimal contrast value 1/6 of the opaque-oriented FVC in
Section 2. The encoding matrices shown in Table 2 are conditionally
optimal, because (a) Property 2 shows that, for these matrices, the
contrast of stacking result is 1/4; and (b) the proof given above indi-
cates that: under the perfect Security constraint, no basis matrices
can yield a contrast larger than 1/4.
4. Experimental results

Experiments and comparisons are presented in this section.
Section 4.1 presents the results of the proposed method. Section
4.2 gives the security testing of the transparencies. Section 4.3
shows the comparisons with other studies. Section 4.4 shows the
expanded version of our method.
4.1. Experiments of proposed method

This subsection presents experimental results for the proposed
scheme which can generate non-expanded transparencies with
perfect security and can decode one more secret image by flipping
one of the transparencies. The opaque-oriented FVC experiment is
shown in Fig. 4. The two secret images are displayed in Fig. 4(a)
and (b); and the two generated non-expanded transparencies are
shown in Fig. 4(c) and (d). Fig. 4(e) shows the result of flipping
Fig. 4(c) over. Fig. 4(f) shows the result of stacking 4(c) and 4(d) to-
gether; Fig. 4(g) shows the result of stacking 4(c) and (e) together.
The non-opaque-oriented FVC experiment is shown in Fig. 5. The
two secret images are displayed in Fig. 5(a) and (b); and the two
generated non-expanded transparencies are shown in Fig. 5(c)
and (d). Fig. 5(e) shows the result of flipping Fig. 5(c) over.
Fig. 8. Three ‘‘single-secret” (2,2) VC methods vs. our ‘‘double-secrets” FVC method. (a):
(a3) is the stacking result. (b): Yang’s method: (b1 and b2) are the two generated transp
generated transparencies, and (c3) is the stacking result. (d): Ours.
Fig. 5(f) shows the result of stacking 5(c) and (d) together;
Fig. 5(g) shows the result of stacking Fig. 5(c) and (e) together.

4.2. Security test of proposed method

In this subsection, we conduct two experiments for security
testing. The first one is for Scheme 1 and the second one is for
Scheme 2. Fig. 6 shows the first experiment. Fig. 6(a) and (b) illus-
trates two secret images S1 and S2, which consist of 16 sub-regions
from top to down, and in each sub-region, s1(i, j) and s1(i,m � 1 � j)
are at the left-hand and right-hand sides of S1, and s2(i, j) and
s2(i,m � 1 � j) are at the left-hand and right-hand sides of S2. Then
the four sections (the left-hand and right-hand sides of S1 and the
left-hand and right-hand sides of S2) in each sub-region are painted
using all possible colors {WWWW,WWWB, . . . ,BBBB}. In other
words, each sub-region is encoded with a basis matrix being re-
ferred to.

The generated transparencies T1 and T2 are shown in Fig. 6(c) and
(d). The result of stacking T1 and T2 together is shown in Fig. 6(e).
When T1 is flipped and then stacked with T2, the stacking result is
shown in Fig. 6(f). To test security of T1, in each sub-region of T1,
we count the probability distribution of symmetric pairs [t1(i, j),
t1(i,m � 1 � j)] 2 {[0,0], [0,1], [1,0], [1,1]}. Fig. 6(g) shows the statis-
tical result. The probability distributions are about [1/6,1/6,1/6,3/
6], no matter which basis matrix is used (the small variance is caused
by randomly choosing a column in the basis matrix; so it is unrelated
to the secret pixels, i.e. the intruder cannot judge the secret values by
the small variance). Therefore, if an intruder only has T1 (e.g.
Fig. 6(c)), then no information about the secret image is unveiled.
Fig. 6(h) shows statistical analysis of the second transparency. The
result is similar to Fig. 6(g), so it is also secure.

Fig. 7 shows the second experiment. The two secret images are
the images in Fig. 6(a) and (b). The generated transparencies T1 and
Naor and Shamir’s method: (a1 and a2) are the two generated transparencies, and
arencies, and (b3) is the stacking result. (c): Shyu’s method: (c1 and c2) are the two
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T2 are shown in Fig. 7(a) and (b). The result of stacking T1 and T2

together is shown in Fig. 7(c). When T1 is flipped and is stacked
with T2, we have the stacking result shown in Fig. 7(d). Fig. 7(e)
shows the statistical result of T1 where the probability distribution
of symmetric pair [t1(i, j), t1(i,m � 1 � j)] = {[0,0], [0,1], [1,0], [1,1]}
are about [1/4,1/4,1/4,1/4]. Fig. 7(f) shows the statistical result of
T2. Therefore, the two transparencies T1 and T2 are both secure.

4.3. Comparison with other studies

Table 3 lists the comparisons with previously reported VC
methods [2,3,5,6,8]. Many reported methods had pixel expansion
problem; and non-expanded methods often encoded only a single
secret image. The proposed method encodes double secret images,
and does not cause any pixel expansion.
Fig. 9. About the method of Wu and Chang [3]. The expansion rate is 4. (a and b): Two gen
result of stacking rotational T1 with T2. (e and f): Two new secret images S1 and S2. (g an
stacking T1 with T2. (j): The result of stacking rotational T1 with T2. (k): The probabilit
distribution of symmetric pairs for all 16 sub-regions in T2.
Previously reported VC methods [2,3,5,6,8] are implemented.
First, single-secret VCs [2,6,8] are demonstrated in Fig. 8, and let
the number of transparencies is two for each method. Fig. 8(a)–(c)
shows Naor and Shamir’s method [2]. The expansion rate is 4 (ours
is 1), and the contrast is 1/2 (ours is 1/6 or 1/4). Fig. 8(d)–(f) shows
Yang’s method [6]. The contrast is 1/2, and the stacking result (f) is
also tumultuous and hence not as good as Naor and Shamir’s; but this
is because there is no expansion (just like ours). Fig. 8(g)–(i) shows
Shyu’s method [8], and the result is similar to Yang’s. Notably, the
three methods [2,6,8] only encode a single secret image in two trans-
parencies, but the proposed method encode two secret images; so
[2,6,8] has better visual quality than ours.

Next, in Figs. 9 and 10, we demonstrate two circular VC meth-
ods [3,5]. Both methods encode multiple secret images in two cir-
cular transparencies, and each secret image is revealed by stacking
erated circular transparencies T1 and T2. (c): The result of stacking T1 and T2. (d): The
d h): Two new transparencies T1 and T2 generated from S1 and S2. (i): The result of
y distribution of symmetric pairs for all 16 sub-regions in T1. (l): The probability
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the two transparencies with a rotation of the first transparency
using a pre-defined degree. To facilitate the comparison, let the
number of secret images be two, and the rotational degrees be 0�
and 180�.

Fig. 9(a) and (b) is the two circular transparencies T1 and T2 gen-
erated by Wu and Chang [3] in which the expansion rate is 4 (each
secret pixel is represented as a 2 � 2 block in two transparencies),
and the contrast is 1/4. Fig. 9(c) is the results of stacking T1 and T2;
and Fig. 9(d) is the results in which T1 is rotated 180� and stacked
with T2. Let m denote the width of secret image, two pixels t1(i, j)
and t1(i, j + m/2) are at two opposite positions in T1, and so are
t2(i, j) and t2(i, j + m/2) in T2. In the stacking, the secret S1 is revealed
by stacking t1(i, j) with t2(i, j) to decode s1(i, j), and stacking t1(i, j +
m/2) with t2(i, j + m/2) to decode s1(i, j + m/2); the second secret is
Fig. 10. About the method of Shyu et al. [5]. The expansion rate is 4. (a and b): Two gene
result of stacking rotational T1 with T2. (e and f): Two new secret images S1 and S2. (g an
stacking T1 with T2. (j): The result of stacking rotational T1 with T2. (k): The probabilit
distribution of symmetric pairs for all 16 sub-regions in T2.
revealed by stacking t1(i, j + m/2) with t2(i, j) to decode s2(i, j), and
stacking t1(i, j) with t2(i, j + m/2) to decode s2(i, j + m/2). Therefore,
the two pixel values (t1(i, j), t1(i, j + m/2)) form a symmetric pair,
and so do (t2(i, j), t2(i, j + m/2)). Since the four secret pixels [s1(i, j),
s1(i, j + m/2), s2(i, j), s2(i, j + m/2)] have 24 = 16 possible colors
{WWWW,WWWB, . . . ,BBBB}, to test the security of 16 types of col-
ors, an experiment is shown in Fig. 9(e)–(l). Fig. 9(e) and (f) illus-
trates two secret images S1 and S2, which consist of 16 equal
sub-regions from top to bottom, and in each sub-region, s1(i, j)
and s1(i, j + m/2) are at the left and right sides of S1, and s2(i, j)
and s2(i, j + m/2) are at the left and right sides of S2. Then those four
sections (the left and right sides of S1 and the left and right sides of
S2) in each sub-region are painted using all possible colors
{WWWW,WWWB, . . . ,BBBB}, respectively. The generated transpar-
rated circular transparencies T1 and T2. (c): The result of stacking T1 and T2. (d): The
d h): Two new transparencies T1 and T2 generated from S1 and S2. (i): The result of
y distribution of symmetric pairs for all 16 sub-regions in T1. (l): The probability
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encies are shown in Fig. 9(g) and (h). Fig. 9(i) shows the result of
stacking T1 and T2, and Fig. 9(j) is the result of stacking the rotated
T1 with T2.

To inspect the security issue of transparency T1, Fig. 9(k) dis-
plays the probability distribution of symmetric pairs [t1(i, j),
t1(i, j + m/2)] 2 {[0,0], [0,1], [1,0], [1,1]} in each sub-region, where
the probabilities are [1/4, 1/4, 1/4, 1/4] for all types of colors.
Therefore, the first transparency is secure, because the intruder
cannot judge the values of secret pixels [s1(i, j), s1(i, j + m/2),s2(i, j),
s2(i, j + m/2)] by observing the probability distribution of symmet-
ric pairs. However, as shown in Fig. 9(l). The transparency T2 leaks
some information; because in S1 and S2, when the four secret pixels
[s1(i, j), s1(i, j + m/2), s2(i, j), s2(i, j + m/2)] 2 {WWWW, WBBW, BWWB,
BBBB}, then the probability distribution of symmetric pairs [t2(i, j),
t2(i, j + m/2)] 2 {[0,0], [0,1], [1,0], [1,1]} is [1/4,0,0,3/4]; when
[s1(i, j), s1(i, j + m/2), s2(i, j), s2(i, j + m/2)] R {WWWW,WBBW,BWWB,
BBBB}, then the probabilities are [0,1/4,1/4,2/4], respectively.
Hence, the intruder can judge whether the four secret pixels
[s1(i, j), s1(i, j + m/2),s2(i, j), s2(i, j + m/2)] are {WWWW,WBBW,
BWWB,BBBB} or not. In other words, if [0,0] pair or [1,1] pair ap-
pear in second transparency T2, then we can claim that the corre-
sponding position of secret images (S1 and S2) must be either
[WWWW] or [WBBW] or [BWWB] or [BBBB]. Likewise, if [0,1] pair
or [1,0] pair appear in second transparency T2, then we can claim
that the corresponding position of input images (S1 and S2) cannot
be [WWWW] or [WBBW] or [BWWB] or [BBBB]. In summary, secret-
leaking occurs in transparency 2.

Fig. 10 is a demonstration about the method of Shyu et al. [5].
Fig. 10(a) and (b) is the two generated circular transparencies in
which the expansion rate is 4, and the contrast is 1/4. Fig. 10(c) is
the results of stacking (a) with (b), and Fig. 10(d) is the results of
stacking rotated (a) with (b). The security test is shown in
Fig. 11. The expanded version (block-based rather than pixel-based) of our Scheme 1. (a
and (b). (c): The result of stacking (a) and (b). (d): The result of stacking (b) with the fli
Fig. 10(e) –(l). Fig. 10(e) and (f) is the two new secret images
which are the same as Fig. 9(e) and (f). Fig. 10(g) and (h) is the
two generated transparencies, and the stacking results are
Fig. 10(i) and (j). The security of T1 is shown in Fig. 10(k), where
the probability distribution of symmetric pairs [t1(i, j), t1(i, j + m/
2)] 2 {(0,0), (0,1), (1,0), (1,1)} is [0,1/4,1/4,2/4] in all types of col-
ors, so T1 is secure. On the other hand, T2 may leaks some infor-
mation. The security of T2 is shown in Fig. 10(l). When the four
secret pixels [s1(i, j), s1(i, j + m/2), s2(i, j), s2(i, j + m/2)] 2 {WWWW,
WBBW, BWWB, BBBB}, the probability distribution of symmetric
pairs is [1/2,0,0,1/2]; when the four secret pixels are {WWBB,
WBWB, BWBW, BBWW}, the probability distribution is [0,1/2,1/
2,0]. When the four secret pixels are in {BWWW, WBWW, WWBW,
WWWB, WBBB, BWBB, BBWB, BBBW}, the probability distribution
is [1/4,1/4,1/4,1/4]. Therefore, the intruder can judge and divide
the four secret pixels [s1(i, j), s1(i, j + m/2), s2(i, j), s2(i, j + m/2)] to
3 sets by observing the probability distribution of symmetric
pairs in transparency T2.

Figs. 9 and 10 show two well-known circular VCs [3,5]. Stacking
results of the two methods [3,5] are 100% opaque both, and their
contrast a = 1/4 is better than our 1/6. But, as shown in Figs. 9(l)
and 10(l), Methods [3,5] are not of perfect security: the second
transparency generated by [3,5] have secret-leaking problem. In
summary, under the constraint of avoiding secret-leaking (the fun-
damental requirement of VC), the best contrast value can be
achieved is 1/6 (or 1/4, if the block pixels in stacking results are
not restricted to 100% opaque), and ours already achieve this opti-
mal contrast value 1/6 for Scheme 1 (and 1/4 for Scheme 2). So we
may say that ours are with conditionally optimal contrast under
perfect-security requirement. As for others (for example [3,5]),
they might have contrast values better than ours, but it is because
their methods did not meet perfect-security requirement.
and b): The two generated transparencies where the two secret images are Fig. 4(a)
pped version of (a).



Fig. 12. The expanded version (block-based rather than pixel-based) of our Scheme 2. (a and b): The two generated transparencies where the two secret images are Fig. 4(a)
and (b). (c): The result of stacking (a) and (b). (d): The result of stacking (b) with the flipped version of (a).
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4.4. The expanded version of our method

In order to yield no expansion, we use probability model to en-
code the shares. The price is that it may cause non-harmonic disar-
ray of stacking result. If we are not constrained by the no-
expansion rule, then all columns of basis matrix are used to encode
the secret pixels [s1(i, j), s1(i, j + m/2),s2(i, j), s2(i, j + m/2)], therefore,
the expansion rate is the value of r. The results are as shown in Figs.
11 and 12. Fig. 11 shows the expanded version of flip. Scheme 1,
with the expansion rate being 6 = 3 � 2. (Notably, r = 6 is the min-
imal r we can have for Scheme 1. On the other hand, r will also be
the expansion rate for our expanded version. So, in the expanded
version, our minimal expansion rate will be 6 for Scheme 1 [8 for
Scheme 2 because minimal r is 8 for Scheme 2].) Fig. 11 (a) and
(b) shows the two generated transparencies, and (c and d) show
the stacking results. Fig. 12 shows the expanded version of flip
Scheme 2, with the expansion rate being 8 = 4 � 2. Fig. 12(a) and
(b) shows the two generated transparencies and (c and d) show
the stacking results. We can see that the visual quality is compet-
itive again. In summary, the disarray of stacking result is due to the
requirement of no-expansion, along with the perfect security for
double secret; but the major weakness of pixel-expansion VC is
that the size of transparencies will expand several times and waste
space for carrying or storage.
5. Discussion

In this section, some related topics are discussed in this section.
Section 5.1 addresses the method of finding the basis matrices of
FVC, and Section 5.2 shows the contrast values of the proposed
method by other definition of contrast.

5.1. How to find the basis matrices of FVC

Basically, we may say that people can create these basis matri-
ces by exhaustive search, as long as they meet the specified
requirements. However, in reality, to save searching time, some ba-
sis matrices can be generated from others by exchanging rows. For
instance, suppose the matrix CBWWW of Scheme 1 is set to
CBWWW ¼

0 0 1 1 1 1
0 1 0 1 1 1
1 1 0 0 1 1
0 1 1 0 1 1

2
6664

3
7775;

where the B is represented by stacking the 1st and 3rd rows to ob-
tain six 1s, and the three W are represented by stacking the 2nd and
4th rows, the 2nd and 3rd rows, and the 1st and 4th rows, respec-
tively, to obtain one 0 and five 1s. Then the 1st and 2nd rows can be
exchanged to get

CWWBW ¼

0 1 0 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
0 1 1 0 1 1

2
6664

3
7775;

where the B is by stacking the 2nd and 3rd rows, and the three W
are by stacking the 1st and 3rd rows, the 2nd and 4th rows, and
the 1st and 4th rows. Using this method, we can generate four basis
matrices CBWWW,CWBWW,CWWBW and CWWWB, as long as one of the
four matrices is found.

Actually, all the 16 basis matrices can be divided into 6 sets,
namely, {CWWWW}, {CBWWW, CWBWW, CWWBW, CWWWB}, {CWBBW, CBWWB,
CBWBW, CWBWB}, {CWWBB, CBBWW}, {CBBBW, CBBWB,CBWBB, CWBBB}, and
{CBBBB}. In each set, only one matrix needs to be found, and the
remaining is generated by exchanging the rows. Therefore, only 6
basis matrices are actually searched.

Next, to search the basis matrices, we need decide the value of r.
The factor to determine the value r is the contrast of the con-
structed basis matrices. For basis matrices whose width is r, the
possible contrast is 1/r,2/r,3/r, . . .,r/r. In Section 2.2, we have
proved that the upper bound of contrast of Scheme 1 is 1/6. In sym-
bols, the contrast is

fi=rjr; i 2 Z;0 < i=r 6 1=6g:

To reach 1/6 (the upper bound of contrast for Scheme 1), the value r
must be a multiple of 6. If r is not a multiple of 6, then the possible
contrast i/r cannot equal to 1/6, so the contrast will be less than 1/6.

Analogously, in Scheme 2, the width (i.e. value r) of basis matri-
ces must be a multiple of 4, because in Section 3.2 we already
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proved that 1/4 is the upper bound of the contrast for Scheme 2.
Unfortunately, when r = 4, we could not find the basis matrices
even after exhaustive search. So we tried r = 8 and obtained the ba-
sis matrices shown in Table 2 whose contrast reached the upper
bound 1/4.

5.2. Discussion about contrast values

In our method, the two definitions follow the basis matrices
definitions which are given by Naor and Shamir [2], but some de-
tails are modified to conform to the structure of FVC. The (t,n) vi-
sual cryptography, which is defined by Naor and Shamir [2], needs
two basis matrices to encode a secret pixel which has only two val-
ues {W,B} in a secret image; however, our method needs consider
four secret pixels simultaneously (two pixels in S1 and two pixels
in S2), so it needs 24 = 16 basis matrices to encode four pixels. How-
ever, the contrast evaluation in [2] did not consider the fact that, in
darker image, human eyes have higher sensitiveness about (real-
life-sense) contrast. (This fact was mentioned in Section 3 of Ref.
[1] by Liu et al.) To overcome the drawback, we bring up two
schemes in the proposed method, where Scheme 1 set the black
color of stacking result is 100% opaque, and Scheme 2 do not set
the constraint. We let the readers choose the one they like.

Liu et al. [16] give a new definition of contrast for expanded VC
(i.e. each secret pixel is encoded into many pixels in transparen-
cies), but our design is a non-expanded VC (i.e. each secret pixel
is encoded into a pixel in transparencies). For readers benefit, we
also give the contrast value defined by Liu et al. [16], when the ex-
panded VC version shown in Figs. 11 and 12 are used. The ex-
panded Scheme 1 has contrast

a Liu ¼ ðh� lÞm
hðm� hÞ þ lðm� lÞ þm2 h ¼ 6; l ¼ 5;m ¼ 6 ¼ 6

41
� 0:146;

and the expanded Scheme 2 has contrast

a Liu ¼ ðh� lÞm
hðm� hÞ þ lðm� lÞ þm2 h ¼ 7; l ¼ 5;m ¼ 8 ¼ 8

43
� 0:186:
6. Conclusions

Opaque-oriented and non-opaque-oriented FVC schemes are
both introduced in this paper. We have proved that both schemes
satisfy perfect security and they are conditionally optimal in
contrast. The generated transparencies do not lead to any expan-
sion of size. The experimental results show the revealing of dou-
ble-secrets via flipping and stacking the transparencies together.
Just like other VC methods, the whole decoding process uses no
computer or any computation; so the decoding is very fast, and can
be used in environment where computer is not stable or available.
Due to the double-secrets feature of the proposed method, one of
the applications is the double checking of ownership for personal-
ity identification. Since the size is non-expanded, the space needed
to carry a transparency to a meeting is economic (size is the same
as the space needed to carry an original image).
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