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Relevance-Zone-Oriented Proof Search for Connect6
I-Chen Wu, Member, IEEE, and Ping-Hung Lin

Abstract—Wu and Huang (Advances in Computer Games, pp.
180–194, 2006) presented a new family of -in-a-row games,
among which Connect6 (a kind of six-in-a-row) attracted much
attention. For Connect6 as well as the family of -in-a-row games,
this paper proposes a new threat-based proof search method,
named relevance-zone-oriented proof (RZOP) search, developed
from the lambda search proposed by Thomsen (Int. Comput.
Games Assoc. J., vol. 23, no. 4, pp. 203–217, 2000). The pro-
posed RZOP search is a novel, general, and elegant method of
constructing and promoting relevance zones. Using this method
together with a proof number search, this paper solved effectively
and successfully many new Connect6 game positions, including
several Connect6 openings, especially the Mickey Mouse opening,
which used to be one of the popular openings before we solved it.

Index Terms—Board games, Connect6, -in-a-row games,
lambda search, threat-based proof search, threat-space search.

I. INTRODUCTION

A generalized family of -in-a-row games, named Con-
nect [30], [31], was introduced and

presented by Wu et al. Two players, named Black and White,
alternately place stones on empty squares1 of an board
in each turn. Black plays first and places stones initially. The
player who first gets consecutive stones of his own horizon-
tally, vertically, and diagonally wins. Both players tie the game
when the board is filled up with neither player winning. Games
in this family are also called Connect games2 in this paper. For
example, Tic-tac-toe is Connect(3,3,3,1,1), Go-Moku in the free
style (a traditional five-in-a-row game) is Connect(15,15,5,1,1),
and Connect6 played on the traditional Go board is Con-
nect(19,19,6,2,1). For simplicity, let Connect denote
the game Connect , played on infinite boards. For
example, when played on infinite boards, Go-Moku becomes
Connect(5,1,1) and Connect6 becomes Connect(6,2,1).

Among these Connect games, Connect6 attracted much atten-
tion due to three merits: fairness, simplicity of rules, and high
game complexity as described in [30] and [31]. Since Connect6
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1Practically, stones are placed on empty intersections of Renju or Go boards.
In this paper, by squares, we mean intersections.

2The term of connect games defined in [10] covers the games such as Hex,
Connect Four, etc. In this paper, Connect are capitalized to indicate all the games
in the family of Connect����� �� �� ��.

was introduced, hundreds of thousands of Connect6 games have
been played on web sites, such as littlegolem.net [14] and cy-
cgame.com [21]. Since 2006, several Connect6 open tourna-
ments [20] for human players have been held, such as NCTU
Open, ThinkNewIdea Open, Russian Open, and World Open.
Connect6 has also been included as one of the computer game
tournaments at the Computer Olympiad [24] and Chinese Com-
puter Games Contest [9], since 2006 and 2007, respectively.

For Connect6, researchers in [30] and [31] mentioned a
simple threat-based proof search method for solving Con-
nect(6,2,3). Section II shows that many more winning positions
cannot be solved by such a method. This paper proposes a new
threat-based proof search method, named relevance-zone-ori-
ented proof (RZOP) search, developed from the lambda search
proposed by Thomsen [22]. Section IV presents this novel,
general, and elegant method of constructing and promoting
relevance zones for Connect6. The proposed method is also
generalized to all Connect games in the Appendix. Together
with a proof number search [3], [28], it solved effectively and
successfully many new Connect6 game positions, including
several Connect6 openings, especially the Mickey Mouse
opening, as described in Section V. This opening used to be one
of the popular openings before we solved it. All definitions and
notations used in this paper are given in Section III. Concluding
remarks are made in Section VI.

II. MOTIVATION

When Connect6 was first introduced by Wu et al. [30], [31],
they mentioned that threats are the key to winning Connect6
as well as other Connect games, like Renju. According to the
definitions by [30] and [31], one player has and only threats,
if and only if is the smallest number of stones that the opponent
needs to place to prevent from losing the game in the next move.
A move is called a single-threat move if the player who makes
the move has one and only one threat after the move, a double-
threat move if two, a triple-threat move if three, and a nonthreat
move if none. In Connect6, one player clearly wins by a triple-
threat-or-more move (a move with at least three threats).

In [30] and [31], Wu et al. showed a type of winning strategy,
called victory by continuous double-threat-or-more moves
(VCDT) in this paper. It is similar to victory by continuous
four (VCF), a common term for winning strategies in the Renju
community [15]. More specifically, the type of VCDT strategy
is to win by making continuously double-threat moves and
ending with a triple-or-more-threat move or connecting up to
six in all variations, for example, in Fig. 1, White’s VCDT
12–18 (18 is a triple-threat move) moves.

Soon after the introduction of Connect6, many experts found
another type of winning strategy in which additional single-
threat moves are involved, i.e., single-threat and double-threat

1943-068X/$26.00 © 2010 IEEE



192 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 1. Sequence of winning moves by White.

Fig. 2. (a) Black’s winning move in Connect(6,2,3). (b) VCDT for a null move
in (a). (c) VCDT for a seminull move 2.

moves are mixed (before ending with a triple-or-more-threat
move). This type of winning strategy is herein called victory by
continuous single-threat-or-more moves (VCST). For example,
Lee [13], a Renju 3-dan player, found and claimed in late
2005 that White won starting from move 8 (both 8 and 10 are
single-threat moves) in the game as shown in Fig. 1. Similarly,
the type of winning strategy with additional non-threat moves
involved is called victory by continuous nonthreat-or-more
moves (VCNT).

Although VCST was unknown then, Wu et al. [30], [31] were
already able to solve a simple VCNT case, when Black wins
Connect(6,2,3). This clearly is a case of VCNT, since Black’s
first winning move, as shown in Fig. 2(a), must be a nonthreat
move. To solve it, they used a simple threat proof search method
involving null or seminull moves and relevance zones, as briefly
described in the following. Let White place no stones, called a
null move in [30] and [31]. Obviously, Black wins by VCDT 3–9
as shown in Fig. 2(b). Then, a relevance zone , the area of gray
squares in Fig. 2(b), can be derived to indicate that White must
place at least one of the two stones inside this zone, or Black

Fig. 3. (a) Position with Black winning. (b) VCDT for the null move in (a). (c)
Winning single-threat move 9 for the seminull move 8.

wins by simply replaying the same VCDT. Next, all squares
in are verified as follows. Let White place one stone on only,
called a seminull move in [30] and [31]; for example, move 2 in
Fig. 2(c). Again, Black is able to win by another VCDT 3–11.
Thus, another relevance zone , the gray area in Fig. 2(c), can
be derived again to indicate that White must place another stone
inside , or Black wins by replaying the same VCDT. Finally,
all are verified such that Black wins over all moves placed at
and , where is in the corresponding to the seminull move
at . Hence, Black was proved to win.

In the above search method for solving the case Con-
nect(6,2,3) with VCNT, both winning strategies for the null
move [3–9 in Fig. 2(b)] and the seminull move [3–11 in
Fig. 2(c)] must be VCDT. However, with more and more win-
ning Connect6 positions investigated, we found that winning
strategies for null and seminull moves may be VCSTs or even
VCNTs, thus making these positions much more difficult to
solve.

For example, consider the two winning nonthreat moves
(proved in this paper): moves 7 in Fig. 3(a) and 6 in Fig. 4(a),
respectively. The former, found in 2006 [20], was the key used
to help prove that Black wins at move 3 in Fig. 3 [see also the
opening in Fig. 22(a)]; that is, the opening move 2 is solved. In
this case, for the null move in Fig. 3(a), Black wins by a VCDT
as shown in Fig. 3(b). However, for the seminull move 8 in
Fig. 3(c), Black has no double-threat moves to win by a VCDT,
though Black wins by a VCST starting at 9 in Fig. 3(c).

The latter, the position in Fig. 4(a) found by Huang [11],
was investigated to see whether the seminull move 5 was safe
enough, since the position at 5 was popular in the following
sense. Among all the first-five-move positions of Connect6
games played by the players ranked above 1800 in [14], about
2% covered (or superset) the position according to the statistics
discussed in [20]. The proof for this position is extremely
complicated. Even for a null move by Black, White has no
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Fig. 4. (a) Position with White winning. (b) Winning single-threat move 8 for
a null move in (a). (c) Winning nonthreat move 8 for a seminull move 7.

double-threat moves to win by a VCDT, but can actually win
by a VCST starting at 8 as shown in Fig. 4(b). In addition, if a
seminull move is made at 7 in Fig. 4(c), White cannot win by
a VCDT or even a VCST, thus making the position in Fig. 4(a)
much more complicated to solve.

In order to solve these as well as other positions shown in
Section V, this paper proposes a new threat-based proof search
method, named relevance-zone-oriented proof (RZOP) search,
developed from the lambda search proposed by Thomsen [22].
In the past, many researchers [1]–[3], [6], [7], [22] have pro-
posed threat-based search methods. Lambda search is to for-
malize the search trees with null moves and to solve positions of
games such as Go and Chess. In lambda search, null moves are
involved with different orders of threat sequences, also called
lambda trees.

From the viewpoint of lambda search, a VCDT is a typical
-tree with value 1 (cf., [22]). However, the definition of

lambda search cannot be directly applied to Connect6 or Con-
nect games with . For Connect games, this paper modifies
the definition of lambda search in Section III-D, and replaces
the notation by . Under the new definition, a VCST is a

-tree with value 1, the winning strategy for the position in
Fig. 3(a) is a -tree with value 1, while that in Fig. 4(a) is a

-tree with value 1. The search formalized in this paper is
able to solve -trees to -trees with value 1 for Connect6.

III. DEFINITIONS AND NOTATION

This section gives definitions and notation related to Connect
game positions, search trees, threats, lambda search, and rele-
vance zones in Sections III-A–III-E, respectively.

A. Game Positions

In Connect games, a game position includes the informa-
tion of all the stones and their occupied squares on the board and
the turn of whom to play. The player to be proved to win, either
Black or White, is called the attacker and the other defender
in this paper. Let denote the information of an attacker
stone placed on the unoccupied square , and denote
the position after placing an attacker stone on in position
without changing the turn. and are similarly
defined for the defender. From the strategy stealing argument by
Nash (cf., [4] and [30]), we obtain the following. If the attacker
wins in , he wins in as well; and if the attacker
wins in , he wins in as well.

In this paper, denotes the position after one player
makes move and before the other makes the next move. In
Connect6, let denote an attacker move where two
attacker stones are placed on both unoccupied squares and

. and are similarly defined for
the defender. Note that in contrast to , the
position indicates changing the turn from the
attacker to the defender.

In Connect6, one player, say an attacker, is allowed to make
a null move, , that is, to place no stones; and a seminull
move, , that is, to place one stone only on square
in . Thus, the position is equivalent to

and . From
another viewpoint, null or seminull moves are to place some null
stones while placing normal stones. In Connect ,
we place null stones for a null move, while placing one to

null stones for seminull moves.
In Connect6, a segment is defined to be a set of six consecu-

tive squares horizontally, vertically, or diagonally on the board,
while in Connect , a segment is a set of consec-
utive squares. A segment is called an empty segment if all the
squares on it are unoccupied yet. A segment is called an active
segment of one player, if none of the squares are occupied by the
opponent’s stones. An active segment of one player is called a
win segment of the player, if all the squares on it are occupied
by the player. Obviously, one player wins if the player makes
a win segment. From the definition of Connect games, a game
ends when one makes some win segment or all the squares of
the board are already occupied. According to this definition, it
is impossible for both players to have win segments simultane-
ously.

B. Search Trees

This paper basically follows the definitions of search trees in
[5] and [17]. A search tree is shown in Fig. 5(a), where rec-
tangle and circle nodes indicate the positions in the attacker’s
and defender’s turns,3 respectively. The value of a leaf is 1, if
the attacker makes a win segment, and 0, otherwise. The value
of a search tree is the minimax value of the tree. The attacker
wins in the root position if the search tree has value 1 and all the
internal circles expand all defender’s legal moves.

3When we say that a position� is in the attacker’s (defender’s) turn, we mean
that the attacker (defender) is to move next in � .
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Fig. 5. (a) Search tree. (b) Solution tree.

Fig. 6. (a) Marking squares of moves by inserting small boxes. (b) Combining the same edges from (a).

A strategy of the attacker is viewed as a move-generating
function of positions that are in the attacker’s turn. Namely,

indicates the move that the attacker chooses to make ac-
cording to the strategy . In a search tree following , each
position expands at most one move . A strategy of an
attacker is called a winning strategy for position , if and only
if the value of the search tree rooted at is 1 following and
all defender’s legal moves are generated in the tree. Thus, we
obtain Corollary 1. A tree as shown in Fig. 5(b) is called a solu-
tion tree in [5] and [17].

Corollary 1: The attacker wins in a position if and only if
there exists at least one winning strategy of the attacker in .

In order to investigate more closely squares of defensive
moves, insert small rectangles onto the corresponding edges
that are broken into two, marked and , respectively, as

shown in Fig. 6(a). Furthermore, the edges are combined with
the same , as shown in Fig. 6(b). Note that null stones are
marked as and the corresponding edges are indicated by
dashes.

A verifier (for the attacker) is to verify whether the at-
tacker wins in a position by following a strategy . Specifi-
cally, if returns the value 1, then the attacker wins in

and is a winning strategy for . A straightforward verifier
is to verify it by traversing exhaustively the whole solution tree.
Clearly, it is infeasible in most cases, especially in case of very
large boards or even infinite boards. Fortunately, in Connect
games, the traversal of the search tree for proof can be greatly
reduced according to threats, as described in Section III-C. The
traversed search tree for proof by a verifier is called a proof
search tree.
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Fig. 7. (a) Normal critical defense. (b) Relaxed critical defense.

Fig. 8. Proof search tree for solving Connect(6,2,3).

C. Threats

In Connect6 (other Connect games are similar), threats are
the key to great reduction of the proof search tree. An active
segment in which the attacker occupied four or five squares is
called a threat segment of the attacker. The segment poses a
threat and the defender has to block it, or the attacker wins by
making a win segment in the next move.

Section I has already presented the definition of threat num-
bers. Examples of the line patterns with one, two, and three
threats can be found in [30] and [31]. The defensive moves that
block all the threats are called critical defenses, while removing
any stones in the moves unblocks some threats. For example,
White’s seminull moves and moves in
Fig. 7(a) and (b) are critical defenses, while moves
are not, because the threats are still blocked without . (Note
that null moves are also critical defenses in positions without
any threats according to the above definition.) Critical defenses
are said to be normal if the numbers of stones in the defenses
are the same as the numbers of threats; and relaxed, otherwise.
For example, in Fig. 7, seminull moves are normal,
while moves are relaxed. In Connect6, relaxed crit-
ical defenses are not played frequently due to their inefficiency
(using two stones to block only one threat).

As described above, threats are the key to great reduction of
the proof search tree without going through the entire defensive
search tree. For example, for double-threat moves, there are at
most four defensive moves. In addition, even for a nonthreat
move such as the game Connect(6,2,3) described in Section I,
Wu et al. [30], [31] were able to solve it by using a much
smaller proof search tree through considering those defenses in
the gray areas shown in Fig. 2. Fig. 8 shows the proof search
tree [for solving Connect(6,2,3)] that expands first, then

for all , and for all , where
is the zone derived from .

Fig. 9. A � -tree.

D. Lambda Search

In [22], Thomsen proposed using the lambda search to
express how a direct attacker can achieve a goal. In Connect
games, the goal is normally to make a win segment. The for-
malization of lambda search is modified for Connect games as
follows.

Definition 1: In Connect games, a -tree is a search tree
which comprises all legal -moves. If a -move is an attacker
move, the following condition holds. For all subsequent null
moves or seminull moves made by the defender, if
have exactly null stones, where , there exists
at least one subsequent -tree with value 1, where

or if . If a -move is a defender move, the
following condition holds. There exist no subsequent -trees
with value 1, where . In a -tree, a node is a
leaf (without any children) if there are no -moves following
it. The value of a leaf is 1 if the defender is to move, and 0
if the attacker is to move. The value of a -tree is either 1
(indicating that the attacker wins) or 0 (otherwise), derived using
minimax calculation. The value of a -tree (where the attacker
is to move) is simply 1 if the attacker makes a win segment in
the next move.

In case of , the definition of is the same as that of
(the goal is to win) in [22]; that is, a -tree is a -tree

and a -move is a -move, and vice versa. In case of ,
such as Connect6, a -tree is illustrated in Fig. 9 and move

in the tree is a -move, since the values of -tree and all
-trees in the left box are all 1. In addition, moves , ,
, and are -moves, if the attacker has no subsequent

-moves, -moves, or -moves. By following the proof of
Theorem 1 in [22], we derive the following theorem (whose
proof is omitted).

Theorem 1: For a -tree rooted in a position , if a minimax
search on it returns value 1, the attacker wins in .

Definition 2: A winning strategy is called a -strategy for
a position , if the subsequent nonnull moves following the
strategy are all -moves, where .

From the above definition, a VCDT is a -strategy, while a
VCST is a -strategy. For example, there exists a -strategy
for winning position 7 in Fig. 1 (the attacker is White), where
moves 8–10 are all -moves. VCNTs are -strategies or
strategies of higher orders, as illustrated in the following. In
Fig. 2(a), move is a -move, and the rest of the attacker
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Fig. 10. A � -strategy.

moves are -moves, so it is a -strategy for Connect6(6,2,3).
In Fig. 3(a), move 7 is a -move, and the rest of the attacker
moves are -moves or -moves, so it is a -strategy. Fig. 10
shows a general -strategy. However, it is more complicated
in Fig. 4(a), where move 6 is a -move. Section V shows that
it is a -strategy.

From Definition 2, a -strategy, , also implies that
for a move with null stones the attacker has a -strategy.
For example, in the -strategy in Fig. 10, the attacker has
a -strategy for the null move and -strategies for all the
seminull moves.

E. Relevance Zones

As seen in Section III-E, the lambda search is a powerful
method for proving the winning positions with different orders
of threat sequences. The next important issue for lambda search
is to construct relevance zones to reduce greatly the search
space. In general, different applications construct relevance
zones in different ways. In Connect games, it is critical to
construct relevance zones in order to propagate relevance zones
across different orders of threat sequences. For example, in
Fig. 10, the relevance zones derived in the VCDT ( -strategy)
or VCSTs ( -strategies) can be used in the whole search tree
( -strategy).

This section defines such relevance zones, which are ele-
gantly employed to solve Connect games. A set of squares
on the board is called a zone. A sequence of zones with size
, , is incremental, if the condition

holds. In the rest of this paper, sequences
of zones with different sizes are all incremental and are thus not
explicitly specified. In addition, these zones usually indicate
the squares to be chosen for stones to be placed on, so only
unoccupied (or empty) squares are of interest.

In a position , its unoccupied zone, denoted by ,
is the zone that comprises all the unoccupied squares. That
is, , where is the zone for
the whole board and is the set of all occupied squares
in . Let denote and indicate the set of
unoccupied squares outside . Consider a sequence of zones

in . A sequence of unoccupied squares
, where , is said to be outside

or irrelevant to , if all or . Let
denote the relation that is irrelevant to in .

Fig. 11. Sequence of zones �� �� � � �.

Fig. 12. Sequence of relevance zones � � �� �� � for the winning position
in Fig. 2(a).

Implicitly, denotes .
For example, in Fig. 11, , , , ,

, and even the empty sequence are all irrelevant to
, while , , , ,

, and are not. For simplicity, let denote
. Similarly,

.
Definition 3: A sequence of zones is called a sequence

of relevance zones for the attacker in a position , if and only
if the attacker wins in for all irrelevant ; that is,

. Let denote the set of all the sequences of
relevance zones for the attacker in . (Use the notation
instead of , since only relevance zones for the attacker
are discussed in this paper).

From Definition 3, if is not empty, there must exist
some in . This implies that the attacker wins in by
choosing the empty sequence of squares for , since is ir-
relevant to as described above. Thus, Corollary 2 is obtained.

Corollary 2: If there exists at least one sequence of zones
in , then the attacker wins in .

For the winning sequence in Fig. 2(b), Fig. 12 illustrates rele-
vance zones , where is the set of empty squares
marked with a small “1,” and marked “1” and “2.” Note that
in the rest of this paper, a sequence of zones is shown in this
manner. Interestingly, is the same as in Fig. 2(b). From
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observation, Black still wins over all irrelevant .
That is, if White places one in and the other in ,
Black still wins by replaying the winning sequence in Fig. 2(b).
The result is slightly stronger than that in [30] and [31].

Lemma 1 shows an important property that appending extra
to a sequence of relevance zones is still in . Note

that we use , instead of , in order to be indepen-
dent of the position , for simplicity. For example, in Fig. 12,

is also in .
Lemma 1: Assume that is in .

Then, is also in .
Proof: Consider all irrelevant . For this

lemma, it suffices to prove that the attacker wins in .
Since is empty, must not have the th item.
From the definition, we also obtain . Since is
assumed to be in , the attacker wins in due
to .

From Lemma 1, two sequences of relevance zones with dif-
ferent sizes can be adjusted to those with the same size by ap-
pending extra or removing at the end. For sim-
plicity of the discussion, this paper uses some more notations
for operations on sequences of zones with the same size in ,
say and , as fol-
lows.

• Let indicate that is contained in pairwise;
that is, over all .

• Let .
• Let and

, where is a zone.
• Let denote and indicate

promotion of the zones in (that is, shifting zones to the
left by 1) with extra . Similarly, let denote

, and denote ,
where .

From the above notation and definitions, more properties are
shown in Lemmas 2 and 3 as follows.

Lemma 2: Assume that is in and . Then,
is also in .

Proof: Let and
. Consider all irrelevant .

It suffices to prove that the attacker wins in . Since
, the condition also implies .

Since is in , the attacker wins in due to
.

Lemma 3 shows important properties that are employed to
improve the verifiers in Section IV.

Lemma 3: Assume that is in .
The following two properties are satisfied.

1) Assume that is not empty. Let the unoccupied
square be . Then, is in .

2) Let be a sequence of unoccupied squares
in , where . Then,

is in .
Proof: It suffices to prove the first property, since the first

implies the second by induction.
Let and consider all irrelevant

, where . For the first property, it
suffices to prove that the attacker wins in .

Fig. 13. Relevance zones (a) in a line and (b) in a board, upon winning with a
win segment.

Let . Then, the condition holds
due to . Since is in , the attacker wins
in due to ; that is, the attacker wins in

.

IV. RZOP SEARCH FOR CONNECT6

For solving positions in Connect6, this section investigates a
verifier that also constructs recursively a sequence of
zones with the following
property.

Property RZV: In the case that returns value 1, the
sequence of zones constructed by is in .

This section presents such a verifier, named , with
a new proof search method for Connect6. This method will be
generalized to all Connect games in the Appendix. The verifier

is described in Sections IV-B–IV-D respectively for
three distinct kinds of , namely, endgame positions, positions
in the attacker’s turn, and positions in defender’s turn. Finally,
Section IV-E concludes with Theorem 2, showing that the veri-
fier satisfies Property RZV in all cases.

A. Endgame Positions

If the attacker does not win in the endgame position , the
verifier simply returns the value 0. If the attacker wins in (i.e.,
the attacker has a win segment in ), the verifier returns 1 and
constructs in the following operation.
EP-1) For each active segment of the defender containing

exactly unoccupied squares, these squares in are all
added into or higher order zones; that is,
for all . In other words, for each active segment
of the defender containing at most unoccupied squares,
add all of these squares in into .

Let us illustrate the above operation by the line shown in
Fig. 13(a), where the defender is White. Following the opera-
tion, the square marked with “1” is in , those marked with
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“1” or “2” are in , and so on. For example, segment has
only one unoccupied square that is in or higher order zones,
while segment has two unoccupied squares that are in or
higher order zones. It is observed that placing one white stone
on the square in forms a counter win segment (e.g., ) or
an inversion that may prevent the attacker from winning. Note
that if the defender has an inversion, this position is unreach-
able since neither can have win segments simultaneously (as de-
scribed in the previous section); who wins first is thus unknown.
On the other hand, the attacker still wins if one white stone is
placed in square , where . Similarly, the attacker still
wins if one white stone is placed on , where , and the
other on , where . The above can be generalized to
higher orders, and to all lines (or segments) on a board. An ex-
ample of constructing zones on a board is illustrated in
Fig. 13(b). Note that move 10 in the figure is simply one of all
the defenses and is chosen for an illustration. In addition, since
move 9 clearly wins already, Section IV-D will describe how to
speed up the establishment of relevance zones.

From the above observation, it can be derived that the con-
structed in operation EP-1 is in . This implies that

satisfies Property RZV in the case of endgame , as
shown in Lemma 4.

Lemma 4: Assume to be an endgame position. Property
RZV is satisfied for .

Proof: Omitted.
In Connect6, all with , are nearly the same as

, except for those unoccupied squares covered by none
of the active segments of the defender. For example, if an unoc-
cupied square is surrounded by the attacker’s squares, it is clearly
covered by none of the active segments of the defender and is not
included in these . However, there are normally not many
such squares, especially when board sizes are large and only a
small number of stones are in positions. Practically, we simply
ignore all with or use whenever needed.

B. Positions in the Attacker’s Turn

In such positions, the attacker simply follows strategy to
make the move in . Let denote . This ver-
ifier first performs recursively. If re-
turns the value 0, this verifier also returns 0. On the
other hand, if returns 1, this verifier re-
turns 1 as well, and constructs in the following operation.
AT-1) Let , where .

Intuitively, placing any stones on the squares in by the de-
fender in advance may block the attacks and prevent the attacker
from winning. In this sense, the squares in are relevant and
are therefore contained in all (or ).

In fact, the above operation AT-1 also implies the property
for the following reason. From the op-

eration, the condition holds for all . In
addition, since , it is clear that

or . Thus, for all , we
derive

From this property, Lemma 5 shows that this verifier
satisfies Property RZV if satisfies Property RZV.

Lemma 5: Assume a position in the attacker’s turn. From
the above, assume that satisfies Property RZV,
where . This verifier satisfies
Property RZV.

Proof: Assume that this verifier returns the
value 1. For this lemma (this verifier satisfies Property RZV), it
suffices to prove that the constructed is in . From
the above operation, must also return 1. Since

satisfies Property RZV from the lemma, is
in .

Consider all irrelevant , where . It suffices
to prove that the attacker wins in . Since the prop-
erty is satisfied as described above, the
condition holds as well. Since is in

from the above, the attacker wins in due
to . Since the attacker wins in

, the attacker wins in by
choosing the move .

C. Positions in the Defender’s Turn

For positions in the defender’s turn, Lemma 6 shows a
very important property used in this section as well as in the
Appendix.

Lemma 6: Assume a position in the defender’s turn. For a
given sequence of zones , assume that for all defender moves

there exists some such that and is in
. Then, is in .

Proof: Consider all irrelevant . For this lemma,
it suffices to prove that the attacker wins in .

Now, consider all defender moves in . From
this lemma, there exists some such that and
is in . Since , the condition
implies . Since squares in and are mu-
tually exclusive, also implies .
Since is in from the above, the attacker
wins in due to . Since

, the attacker also
wins in . From the above, since the attacker
wins in over all defender moves , the
attacker wins in .

A straightforward verifier is to verify whether the attacker
wins for all defender moves, as follows. The verifier
returns value 1, if the recursive returns 1 for all
defender moves ; otherwise, it returns 0. In the case that this
verifier returns 1, the zones are constructed in
the following operation.
DT-1) Initialize all zones in to be empty. Then, for all

defender moves , let .
From the above operation, the condition

clearly holds for all . Assume that all the recursive
satisfy Property RZV. Then, all

are in for all defender moves . From Lemma
6, we obtain that is in ; and therefore, the verifier
satisfies Property RZV. By induction, the above straightforward
verifier satisfies Property RZV in all cases.
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Fig. 14. Relevance zones (a) in a line and (b) in a board, upon winning with
three or more threats.

However, the above straightforward verifier is apparently in-
efficient, since it searches exhaustively all defender moves, even
when the attacker moves have some threats. The situation is even
worse in the case that the board size is very large or infinite. In
this section, an efficient and elegant verifier is devised to reduce
the search space by making use of both threats and relevance
zones. In Connect6, the position (in the defender’s turn) can
be classified into the following four cases. The number of the
attacker threats in is 1) three or more, 2) two, 3) one, and 4)
zero. The four cases are discussed, respectively, in the following.

1) Three Threats or More: In this case, the attacker is sure to
win by simply following the strategy as follows. For each
defender move, since the move must leave some threat segments
unblocked, the attacker wins simply by making a win segment
from the unblocked one. Since the strategy is a sure win, the
verifier returns value 1 and constructs the zones (initialized to
be empty) in the following operations.
T3-1) Add all unoccupied squares on threat segments into all

.
T3-2) For each active segment of the defender containing

exactly unoccupied squares, all these squares in
are added into all or higher order zones. In

other words, for each active segment of the defender
containing at most unoccupied squares, add all
these squares in into .

Let us illustrate the above operations by the line shown in
Fig. 14(a), where the defender is White. Zones in the line are
marked in a way similar to that in Fig. 13(a). It is observed that
placing one white stone in or results in a counter threat
segment or an inversion that may threaten the attacker to de-
fend in some of his earlier moves and prevent the attacker from

winning. On the other hand, the attacker still wins if one white
stone is placed on other squares , where . Similarly,
the attacker still wins if one white stone is placed on , where

, and the other on , where . The above can
be generalized to higher orders, and to all lines (or segments)
on the board. An example of constructing two zones
on a board is illustrated in Fig. 14(b). Lemma 7 shows that in
this case the verifier satisfies Property RZV; that is, is in

.
Lemma 7: Assume that the defender is to move and the at-

tacker has three or more threats in . The verifier described
above satisfies Property RZV.

Proof: For this lemma, it suffices to prove that the con-
structed is in . Consider all defender moves .
The attacker simply follows a strategy to connect six from
an unblocked threat segment. Let and

. From Lemmas 4 and 5, and are
in and , respectively.

To prove that is in , it suffices to prove from
Lemma 6 that , since is already in

. From Section IV-C, , where
. From operation T3-1, all squares in

are added into . Thus, it suffices to prove that
.

Since the attacker connects six in , operation EP-1 (in
Section IV-B) is employed to construct zones . The
operation is restated as follows. For each active segment of
the defender containing at most unoccupied squares in , all
the squares in are added into . Since one move has
at most two squares, at most two occupied squares in were
occupied by move . Therefore, contains at most
unoccupied squares back in (before making move ).
From operation T3-2, all these unoccupied squares are also
added into . For example, let both lines in Figs. 13(a) and
14(a) be, respectively, in positions and , where move
is placed on the two leftmost squares marked “1” in segment
in Fig. 14(a). Thus, the two squares marked “2” in segment
in Fig. 13(a) are also added into in Fig. 14(a). From the
above observation, we can derive .

Since all active segments of the defender contain at most
unoccupied squares in Connect6, all these squares

in are added into all from operation T3-2, where
. Thus, these are nearly the same as , except

for the unoccupied squares not covered by any active segments
of the defender, e.g., the unoccupied squares surrounded by all
the attacker squares. Similar to the argument in Section IV-C,
we construct zones with size three, and simply use for
those higher order zones, whenever needed.

2) Two Threats: When the attacker has two threats in , the
defender must defend by blocking the two threats. In this case,
the verifier performs the following operations.
T2-1) For each defender move that blocks the two threats,

perform the following.
a) Return value 0 if the recursive returns

value 0, where .
b) Let .
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Fig. 15. Winning position with two threats for Black (the attacker) and the
constructed ��� �.

T2-2) Continue to construct zones by both operations T3-1 and
T3-2, and return 1.

For example, for position in Fig. 15 [the grandparent of the
position in Fig. 14(b)] where Black has two threats, White has
three defensive moves at (B,C), (A,C), and (B,D). Obviously,
since Black still wins for each of the three moves, Black wins
in . From the above operations, this verifier returns value 1
and constructs as shown in Fig. 15. Lemma 8 shows that
this verifier satisfies Property RZV if the verifier satisfies Prop-
erty RZV for all the defensive moves as well. From this lemma,

in Fig. 15 is in .
Lemma 8: From the above, assume that the defender is to

move and the attacker has two threats in . Assume that all
the recursive in operation T2-1 satisfy Property
RZV. Then, the verifier satisfies Property RZV as
well.

Proof: Assume that this verifier returns 1. For
this lemma (this verifier satisfies Property RZV), it suffices to
prove that the constructed is in . Since
returns 1, all the recursive in operation T2-1 must
return 1. Since these satisfy Property RZV from
this lemma, all constructed are in .

To prove , it suffices to prove from Lemma
6 the following. For all defender moves , there exists some

such that is in and . All
defender moves are classified into the following cases.

1) All defender moves that block both threats. From the
above, are in . In addition, since these

are merged into in operation T2-1b, we ob-
tain . Thus, is the .

2) All defender moves that leave some threat segment
unblocked. The attacker wins by connecting six on the

Fig. 16. Combining three defensive moves into one with four stones.

segment, like strategy . Since operation T2-2 follows
those steps in T3-1 and T3-2, we simply follow the proof
of Lemma 7 to prove that there exists some such that

and is in .
Assume that the subsequent winning moves of the attacker

are the same for all the defensive moves. Then, we can optimize
the construction of zones by combining these defensive moves
together. For example, in Fig. 15, the three defensive moves,
(B,C), (A,C), and (B,D), can be combined into a macromove
(A, B, C, D) as shown in Fig. 16. Since the subsequent winning
sequences of the attacker are the same, the sizes of relevance
zones are relatively smaller and the threat-based search is also
greatly reduced. However, note that the segment containing
both A and B (the same for C and D) in Fig. 15 should be
considered to have one white stone only for zone construction.
Since the winning sequences in Fig. 2(b) are the same for all
defensive moves, the relevance zones are constructed as shown
in Fig. 12.

3) One Threat: When the attacker has one threat, the de-
fender must defend by blocking the threat. In this case, the ver-
ifier performs the following operations.
T1-1) For each normal critical defense (defined in

Section III-C), , where square blocks the
threat, perform the operation of seminull-move proof
search as follows.

a) Return value 0, if the recursive returns
0 where .

b) Let .
c) For each defensive move , where

, perform both operations T2-1a and T2-1b.
T1-2) For all relaxed critical defenses , perform both

operations T2-1a and T2-1b.
T1-3) Perform both operations T3-1 and T3-2, and return 1.
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Fig. 17. (a) VCDT for the seminull move 9. (b) Relaxed critical defense at 9.
(c) Constructed zones for the seminull move 9 in (a).

Consider a position , 8 in Fig. 17(a) (the same as 8 in
Fig. 1), and another , with a seminull move added at 9.
White (the attacker) wins in by the winning sequence
in Fig. 17(a). The above operations construct the zones

, with the first two zones
shown in Fig. 17(c). According to operation T1-1b, both zones

and are shifted and merged into and
, respectively. For all defensive moves , where

, operation T1-1c follows both T2-1a and T2-1b
to construct zones and verify whether
return 1. In addition, operation T1-2 also performs the same for
all relaxed critical defenses, such as the one in Fig. 17(b). From
Fig. 17(c), since the number of squares in is only 15,
the number of recursive is relatively small, even in very
large or infinite boards.

Lemma 9 shows that the verifier satisfies Property RZV if all
the recursive satisfy Property RZV.

Lemma 9: Fromtheabove,assumethat thedefender is tomove
and the attacker has one threat in . Assume that all the recur-
sive in both operations T1-1 and T1-2 satisfy Property RZV.
Then, the verifier satisfies Property RZV as well.

Proof: Assume that this verifier returns 1. For
this lemma, it suffices to prove that the constructed is in

. Since returns 1, all the recursive in both
operations T1-1 and T1-2 must also return 1. Since all the recur-
sive satisfy Property RZV from this lemma, all con-
structed from T1-1a are in and all from T1-1c
and T1-2 are in .

To prove , it suffices to prove from Lemma
6 the following. For all defender moves , there exists some

such that is in and . All
defender moves are classified into the following cases.

1) All defender moves where blocks the threat as
described in T1-1. Let . Furthermore,
this case is separated into the following two subcases.

a) . Let denote . The
zone is constructed in operation T1-1c, and
is in according to the first paragraph of this
proof. Since is merged into in T1-1c,
we obtain . Thus, is the .

b) . From the above, is
in . Since , Lemma 3
shows that is in ,
meaning . From operation
T1-1b, . Thus, is

.
2) All defender moves in operation T1-2 are re-

laxed critical defenses. The proof is similar to that in case
1a and therefore omitted.

3) All defender moves that do not block the threat.
The attacker wins by connecting six on some unblocked
threat segments, like strategy . Find by following
the proof of Lemma 7.

4) No Threats: When the attacker has no threats, it becomes
more complicated since the defender has much more freedom
to move. In this case, the verifier makes use of the constructed
relevance zones to minimize the search space in the following
operations.
T0-1) Return value 0 if returns 0, where

.
T0-2) Let .
T0-3) For each square in , perform the seminull move

proof search, as in operations T1-1a to T1-1c.
T0-4) Return 1.

Let us illustrate the above operations by the ex-
ample in Fig. 2. From the winning moves in Fig. 2(b),
operation T0-1 constructs relevance zones

, with only the first two zones
shown in Fig. 12. Similarly, zone is the same as
in Fig. 2(b). According to operation T0-2, zone is
shifted and merged into . Then, in operation T0-3,
one square in is chosen to perform the seminull
move proof search. In the case that 2 in Fig. 2(c) is chosen,
the seminull move proof search in T0-3 constructs the rel-
evance zones , where

. Zone is actually the same as in
Fig. 2(c). After verifying that White wins for all
and all , the verifier confirms that White wins
in , as shown in Lemma 10. For the position in Fig. 2, the
number of the recursive in T0-1–T0-3 is 2656, relatively
small when compared with the number of legal moves.



202 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Lemma 10: Assume that the defender is to move and the at-
tacker has no threats in . From the above, assume that all re-
cursive in both operations T0-1 and T0-3 satisfy Property
RZV. Then, the verifier also satisfies Property RZV.

Proof: Assume that this verifier returns 1. For
this lemma, it suffices to prove that the constructed is
in . Since returns 1, all the recursive in
both operations T0-1 and T0-3 must also return 1. Since these
recursive , say for position , satisfy Property RZV from
this lemma, the constructed zones are in .

To prove , it suffices to prove from Lemma
6 the following: for all defender moves , there exists some

such that is in and . All
defender moves are classified into the following cases.

1) All defender moves where
and . From the first paragraph in this
proof, is in . Since and

, is in
from Lemma 3. Since

, is also in .
In addition, from operation T0-2.
Thus, is .

2) All defender moves where . By
following the proof for case 1 (including subcases 1a and
1b) in Lemma 9, we obtain that there exists some in

for all such that . The details
are omitted.

D. Conclusion

Theorem 2 concludes that the verifier in all cases
satisfies Property RZV. Therefore, if returns value 1,
the constructed is in , and the attacker wins in
from Corollary 2.

Theorem 2: The verifier satisfies Property RZV in
all cases.

Proof: By induction, the verifier satisfies Prop-
erty RZV in all cases from Lemma 4 to Lemma 10.

V. SOLVING CONNECT6 POSITIONS

In Section IV, we present a verifier to verify
whether the attacker wins in a Connect6 position by fol-
lowing strategy . However, in order to solve positions, we still
need to provide the verifier with winning strategies . Winning
strategies can be provided in the following three ways.

1) Let human experts offer the winning strategies manually.
2) Let programs find the winning strategies automatically.
3) Find the winning strategies by mixing the above two.
Traditionally, experts used the first way to claim that some po-

sitions are winning, e.g., Go-Moku and Renju [18]. However, it
becomes complicated and tedious for human players to traverse
all positions to prove it thoroughly. Hence, it is more feasible to
solve these positions by programs using the second way. How-
ever, programs may not be smart enough sometimes to find the
correct winning moves. Therefore, some researchers chose the
third way by following experts’ suggestions for some opening
moves and then letting programs solve the subsequent moves.
For example, Allis [1], [2] solved Go-Moku in the free style, and

Wágner and Virág [23] solved Renju. In Section V-A, we devel-
oped some assistant programs to help find the winning strategies
for Connect6. In Section V-B, we illustrate our new proof search
method in Section IV by solving the positions in Figs. 3(a) and
4(a). Finally, we give more results in Section V-C.

A. Assistant Programs

This section describes some assistant programs developed for
solvers and verifiers. Given a position in the attacker’s turn,
a solver is to return a winning move as well as the relevance
zones, if found; and, otherwise, a null move is returned to in-
dicate failure of finding a winning move. A solver of finding a
VCDT strategy, denoted by , is described as follows.

1) If there exist connect-six moves or triple-threat-or-higher
moves, simply choose one of them to win.

2) Evaluate all the double-threat moves and choose some
good ones for further expansion (according to the evalu-
ations).

3) For each chosen move , return if
returns 1.

4) Return the null move to indicate failure of finding a win-
ning move.

A solver of finding a VCST (VCNT) is similar to the above,
except that single-threat (nonthreat) moves are also evaluated
and chosen at step 2. Actual solvers are implemented in a more
complicated way to reduce the size of a search tree and control
the timing. For example, the techniques of iterative deepening
and transposition table are normally incorporated.

In this paper, we implemented a solver with VCDT,
named VCDT-Solver, and another solver with VCST, named
VCST-Solver. More accurately, the VCDT-Solver is to find a

-strategy, while the VCST-Solver is to find a -strategy.
Our VCST-Solver also tends to find VCDTs, if any, unless
some single-threat moves are evaluated to be much better.
Currently, this solver is able to find a -strategy up to depth
25 where the size of the longest path with -moves is 13.
This solver was also incorporated into our Connect6 program
NCTU6, which won the gold at the 11th and 13th Computer
Olympiads [26], [33] in 2006 and 2008, respectively; and also
won eight games and lost none against top Connect6 players
in Taiwan in 2009 [12]. From our experience, VCST-Solver is
able to find -strategies, if any, in most cases accurately.

Regarding solvers for -strategies or strategies of higher or-
ders, the time complexities become much higher, since the num-
bers of defensive moves to be verified grow much higher. There-
fore, we did not implement it directly.

First, we implemented a verifier, named NCTU6-Verifier, to
verify whether the attacker wins for all defender moves. In other
words, given a position in the defender’s turn as shown in
Fig. 18(a), the verifier uses VCDT-Solver for null moves and
VCST-Solver for all seminull moves and nonnull moves. If null
and seminull moves are all solved, then move (from the
parent of to ) in Fig. 18(a) is an attacker -move. If some
nonnull moves are not solved by VCST-Solver, these moves are
reported or generated. Note that the defender -moves must
be reported. Since our VCST-Solver can find -strategies ac-
curately in most cases, most reported moves are the defender

-moves in our experiments.
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Fig. 18. Proof search tree of (a) NCTU6-Verifier and (b) the verifier of one higher order.

When our Connect6 program NCTU6 mentioned above
cannot find -strategies (VCSTs), NCTU6 then chooses some
promising moves including nonthreat moves using heuristic
evaluations. The details of heuristic evaluations are beyond the
scope of this paper and therefore omitted.

Since NCTU6 may not be able to find winning moves all
the time, experts are allowed to help find winning moves. (As
[1], [2], and [23], expert knowledge was utilized to help solve
Go-Moku and Renju.) Hence, the above programs, such as
NCTU6 and NCTU6-Verifier, were integrated into a Connect6
editor named Connect6Lib [8], modified from Renlib [16],
in order to accommodate hints from human experts. In the
integrated system [25], [32], the users (human experts) are
allowed to suggest some attacker moves directly or let NCTU6
suggest possibly good moves in a designated position. Then,
for suggested moves, users invoke NCTU6-Verifier to verify
and report all the defensive moves (most are -moves).
Then, users repeat the above for the subsequent moves, until a

-strategy is found.
Second, for -strategies, the integrated system (on top of

the editor Connect6Lib) needs to maintain a global verifier and
modify the search by incrementing the order by one as shown
in Fig. 18(b).

B. Illustration of Solving Positions

In this section, we illustrate the proof search method in
Section IV by solving the two positions in Figs. 3(a) and 4(a).
First, consider the one in Fig. 3(a). The position is solved by
simply running NCTU6-Verifier. In the proof search tree shown
in Fig. 19, indicates the position at 7 in Fig. 3(a); , the
position at 6; , the position after a null move; , the position
after the seminull move 8 in Fig. 3(c); and , the position
after another seminull move at 10 in Fig. 3(c). As can be seen,
the attacker wins in a -strategy.

Second, consider the position in Fig. 4(a), which is much
more complicated than the previous one. This position is solved
via the integrated system supporting -trees, as described in
Section V-A. In the proof search tree shown in Fig. 20, indi-
cates this position, does the position after a null move, and

Fig. 19. Proof search tree for the position in Fig. 3(a).

does the position after a seminull move at 7 in Fig. 4(c). Ini-
tially, let NCTU6-Verifier of one higher order run in . Since
VCST-Solver is able to find the winning move for , the de-
fender (Black) should place at least one stone in zone .
Consider one square in , say square 7 in Fig. 4(c). For
the seminull move at 7, choose move 8 and then use NCTU6-
Verifier (without raising one order) to derive that the attacker
wins at 8. Thus, move 8 is a -move. By verifying all null and
seminull moves in , we show that move 6 in Fig. 4(a) is a

-move (from Definition 1).
Furthermore, the attacker is shown to win at 6 in a -strategy

as follows. In our experiment, the attacker wins for all defensive
(nonnull) moves by finding -strategies. For example, for
move 7 in Fig. 21, NCTU6-Verifier is recursively employed
to find a -strategy, where moves 8–12 are shown to be

-moves.
In the proof search tree shown in Fig. 20, we found three

seminull moves that are -moves with value 1 [like which
is also 7 in Fig. 4(c)], and 569 defender -moves in total. Move
12 in Fig. 21 is the deepest -move. In this experiment, experts
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Fig. 20. Proof search tree for the position in Fig. 4(a).

TABLE I
STATISTICS OF SOLVING POSITIONS

Fig. 21. Sequence of � -moves starting from 7.

helped find 26 winning nonthreat moves, including move 6 dis-
covered by Huang [11].

Table I shows the number of nodes as well as the computa-
tion times used by our system to solve the positions in Figs. 2(a),
3(a), and 4(a) on an Intel Pentium Dual 2.00-GHz machine. The

positions in Figs. 2(a) and 3(a) are solved without experts’ as-
sistance, while the position in Fig. 4(a) is solved with the help
of experts, as above. All the above experiments were performed
on 19 19 boards that most current Connect6 tournaments use.
We also used a simple tool to verify that the above example is
still winning even in an infinite board. The details are omitted.

C. More Results

In addition to the two positions illustrated in Section V-B,
we investigated more positions. Initially, we had experts use the
integrated system to help us solve about ten more positions. Wu
et al. [28] had recently automated with success the proof process
by developing a new search algorithm, called job-level proof-
number (JL-PN) search. Using the JL-PN search together with
our RZOP search, we solved many more positions, up to 65
positions in total, with -strategy, within a couple of months.
The details of the 65 positions were listed in [27].

Among the 65 positions, 34 were not solved by the scheme,
called the VCDT-for-null scheme. The scheme uses VCDTs
(not VCSTs) after seminull moves in proof search trees such as
the one in Fig. 2(c). If no VCDTs were found for the seminull
moves as the one in Fig. 3(c), then the scheme failed to solve
positions. In brief, the proof search trees in our RZOP search
are as in Fig. 18(a), while those in the scheme are as in Fig. 8.

Many positions were not solved by the VCDT-for-null
scheme illustrated below. For the three openings in
Fig. 22(c), (d), and (f), the winning moves are live threes
at 3. For the seminull moves that use the only stones to block
Black’s live threes, Black has no more double-threat moves to
make. That is, Black cannot win by VCDTs. However, Black
actually wins by VCSTs for these seminull moves. Hence, it is
important that the proposed RZOP can solve them correctly.
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Fig. 22. Six three-move openings in which Black wins at 3.

The 65 positions include 12 three-move openings, among
which ten cannot be solved by the VCDT-for-null scheme. Six
of the ten openings are shown in Fig. 22. In particular, the fifth
one, Mickey Mouse opening, used to be one of the popular open-
ings before we solved it. Mickey Mouse opening was so named
in [20], since White 2 and Black 1 together look like the face of
Mickey Mouse. The sixth one, also called straight opening, is
another difficult one.

Now, the question is whether there exist more cases requiring
-strategies like the one in Fig. 4. Since the one in Fig. 4 is the

only one that we found so far, it is still an open problem to find
some more.

VI. CONCLUSION

This paper investigates a new threat-based proof search for
Connect games. The contribution of this paper is mainly the new
search method, named RZOP search that uses relevance zones
to help solve many positions in Connect6 as well as Connect
games. In theory, this method can be applied to Connect games
with infinite boards. Practically, this paper demonstrates the
method by solving two typical winning positions in Figs. 3(a)
and 4(a) on 19 19 boards, as well as many Connect6 positions
and openings in Section V. In addition, the method can also be
easily incorporated into Connect6 program, such as NCTU6.

This paper also leaves some open problems.
1) Investigate more winning positions in Connect6 that re-

quire -strategies, such as the one in Fig. 4(a).
2) Investigate whether there exists a -strategy in Connect6.
3) Optimize the proof search tree by pruning more branches

efficiently [29].
4) Apply the new method (in the Appendix) to solving some

real positions in general Connect games.
5) Investigate whether dual lambda search [19] is useful for

Connect6 or Connect games.

Using the JL-PN search together with our RZOP search, we
successfully solved up to 65 positions with -strategy. The 65
positions include 12 three-move openings; in particular, Mickey
Mouse opening, which used to be one of the popular openings
before we solved it. One might ask whether or when Connect6
on 19 19 boards will be solved. So far, we still could not solve
tens of the common openings, many of which experts believed
to be well balanced for both players. Hence, the answer to this
question is still unknown.

APPENDIX

PROOF SEARCH FOR CONNECT GAMES

In this Appendix, the verifier is generalized to
general Connect games, Connect , while main-
taining Property RZV. The generalized verifier is denoted by

. In the case that is an endgame position or is
in the attacker’s turn (described in Sections IV-B and IV-C,
respectively), the verifier is the same as .
So, the rest of this Appendix describes the verifier only in the
case that is in the defender’s turn. Furthermore, the position

(in the defender’s turn) can be classified into the following
two: 1) the number of attacker threats in is at least ;
and 2) the number is at most . In the first case, the attacker
wins already. Therefore, the verifier returns 1 and constructs
relevance zones in the following operation.
Tp1-1) Construct relevance zones by following both operations

T3-1 and T3-2, except that the terms “ ” are replaced
by “ .”

Similar to Lemma 7, Lemma 11 shows that the verifier also
satisfies Property RZV in this case.

Lemma 11: Assume that the defender is to move and the
number of the attacker threats is at least in . The verifier
described above satisfies Property RZV.
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Proof: The proof is similar to that of Lemma 7 and there-
fore omitted.

In the second case that the number of attacker threats is at
most , the verifier performs the following operations.
Tp-1) For each of critical defenses (both normal and re-

laxed), perform the following.
a) Return 0 if the subverifier returns

0. Note that the subverifier is described below.
b) Let .

Tp-2) Continue to construct relevance zones in operation
Tp1-1, and return 1.

In operation Tp-1a, a subverifier is used to
verify whether the attacker wins for all defender moves
dominated by in , where has squares (but
may have less than squares). By dominate, we mean that all
squares in must also be in , but not vice versa. For the
subverifier , the constructed zone is denoted by

, where
. In addition, the subverifier satisfies the following property

(proved in Lemma 12).
Property RZS: If returns 1, the following

condition holds. For all defender moves dominated by ,
there exists some such that and is in

.
The subverifier performs the following op-

erations.
Par-1) Assume that has exactly defender stones,

where is the number of null stones in and
. In the case that , move is a null or a

seminull move.
Par-2) Return 0 if returns 0, where

.
Par-3) Let .
Par-4) Return 1 if , i.e., the move is not a null or a

seminull move.
Par-5) For each of unoccupied square , per-

form the following.
a) Let the defender move be .
b) Return 0 if returns 0.
c) Let , where

.
Par-6) Return 1.

Lemma 12 shows that the subverifier satisfies Property RZS,
if all the recursive in Par-5b satisfy Property RZS and the
verifier in Par-2 satisfies Property RZV.

Lemma 12: For a subverifier as described
above, it satisfies Property RZS by assuming that all the recur-
sive in Par-5b satisfy Property RZS and that the verifier

in Par-2 satisfies Property RZV.
Proof: Assume that returns 1. Consider

all defender moves (including stones) that are dominated
by . Namely, let , where has addi-
tional unoccupied squares. For this lemma, it suffices to prove
that there exists some such that and is
in . All of these defender moves are classi-
fied into the following cases.

1) All defender moves in which all additional squares
in are in . The proof for this case is

similar to that for case 1 in Lemma 10 as follows. Since
this subverifier returns 1, the verifier in Par-2
returns 1. Since the verifier returns 1 and also satisfies
Property RZV (from this lemma), is in .
Since all additional , we obtain from
Lemma 3 that is in . Since

is also in . In addition, since
from Par-3 in , is the .

2) All defender moves where some additional square
in is in . Since this subverifier returns 1, the
recursive at Par-5b returns 1 as well,
and therefore, satisfies Property RZS. From Property RZS,
there exists some such that and is in

. Since from operation
Par-5c, we obtain . Thus, is the .

From Lemma 12, we derive Lemma 13 as follows.
Lemma 13: Assume that the defender is to move and the

number of attacker threats is at most in . The verifier de-
scribed above satisfies Property RZV by assuming that all the
recursive subverifiers in operation Tp-1a satisfy Property RZS.

Proof: Assume that this verifier returns 1. For this lemma,
it suffices to prove that the constructed is in . Since
the verifier returns 1, all the recursive subverifiers in operation
Tp-1a returns 1 as well. Assume that these subverifiers satisfy
Property RZS. For proving , it suffices to prove
from Lemma 6 the following: for all defender moves , there
exists some such that is in and

. All defender moves are classified into the following
two cases.

1) All defender moves that block all the threats. There
must exist some critical defense (either normal or re-
laxed) dominating . Since returns 1
and satisfies Property RZS from the above, there exists
some from the property such that
and is in .

2) All defender moves that leave some threat unblocked.
The attacker wins by connecting up to on some un-
blocked threat segment, like . From the proof in
Lemma 11, we obtain that there exists some such that

and is in .
Theorem 3 concludes that the verifier in all cases

satisfies Property RZV. Therefore, if returns 1, the
constructed is in , and the attacker wins in
from Corollary 2. It can also be observed that the operations
in Section IV-D are special cases of the operations described in
this Appendix.

Theorem 3: The verifier satisfies Property
RZV in all cases.

Proof: By induction, the verifier satisfies Prop-
erty RZV in all cases from the above lemmas.
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