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Abstract—A real-time wireless electroencephalogram (EEG)-
based brain—computer interface (BCI) system for drowsiness de-
tection has been proposed. Drowsy driving has been implicated as
a causal factor in many accidents. Therefore, real-time drowsiness
monitoring can prevent traffic accidents effectively. However,
current BCI systems are usually large and have to transmit an
EEG signal to a back-end personal computer to process the EEG
signal. In this study, a novel BCI system was developed to monitor
the human cognitive state and provide biofeedback to the driver
when drowsy state occurs. The proposed system consists of a
wireless physiological signal-acquisition module and an embedded
signal-processing module. Here, the physiological signal-acqui-
sition module and embedded signal-processing module were
designed for long-term EEG monitoring and real-time drowsiness
detection, respectively. The advantages of low ower consumption
and small volume of the proposed system are suitable for car appli-
cations. Moreover, a real-time drowsiness detection algorithm was
also developed and implemented in this system. The experiment
results demonstrated the feasibility of our proposed BCI system
in a practical driving application.

Index Terms—Drowsiness detection,
(EEG), brain—computer interface (BCI).

electroencephalogram

1. INTRODUCTION

RIVERS’ drowsiness has been implicated as a causal

factor in many accidents because of the marked decline
in drivers’ perception of risk and recognition of danger, and
diminished vehicle-handling abilities [1]-[5]. In 2002, the
National Highway Traffic Safety Administration (NHTSA)
reported that about 0.7% of drivers had been involved in a
crash that they attribute to drowsy driving, amounting to an
estimated 800 000 to 1.88 million drivers in the past five years
[6]. The National Sleep Foundation (NSF) also reported that
51% of adult drivers had driven a vehicle while feeling drowsy
and 17% had actually fallen asleep [7]. Therefore, real-time
drowsiness monitoring is important to avoid traffic accidents.
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Previous studies have proposed a number of methods to detect
drowsiness. They can be categorized into two main approaches.
The first approach focuses on physical changes during fatigue,
such as the inclination of the driver’s head, sagging posture,
and decline in gripping force on the steering wheel [8]-[12].
The movement of the driver’s body is detected by direct sensor
contacts or video cameras. Since these techniques allow non-
contact detection of drowsiness, they do not give the driver any
discomfort. This will increase the driver’s acceptance of using
these techniques to monitor drowsiness. However, these param-
eters easily vary in different vehicle types and driving condi-
tions. The second approach focuses on measuring physiolog-
ical changes of drivers, such as eye activity measures, heart
beat rate, skin electric potential, and electroencephalographic
(EEG) activities [13]-[28]. Stern et al. [13] reported that the
eye blink duration and blink rate typically are sensitive to fa-
tigue effects. Van Orden et al. [14] further compared the eye-ac-
tivity-based methods to EEG-based methods for alertness esti-
mates in a compensatory visual tracking task. It also indicated
that the EEG-based method can use a shorter moving-averaged
window to track second-to-second fluctuations in the subject
performance in a visual compensatory task.

In this study, we proposed a real-time wireless EEG-based
brain—computer interface (BCI) system for drowsiness detec-
tion. There are some studies regarding the portable BCI devices
[29]-[32]. However, these systems are usually large and have
to transmit an EEG signal to a back-end personal computer to
process the EEG signal. Therefore, we developed a novel BCI
system which contains the advantages of small volume and low-
power consumption, and is suitable for practical driving appli-
cations. The proposed BCI system consists of a wireless physio-
logical signal-acquisition module and an embedded signal-pro-
cessing module. Here, the wireless physiological signal-acqui-
sition module is used to collect EEG signals and transmit them
to the embedded signal-processing module wirelessly. It can
be embedded into a headband as a wearable EEG device for
long-term EEG monitoring in daily life. The embedded signal-
processing module, which provides powerful computations and
supports various peripheral interfaces, is used to real-time de-
tect drowsiness and trigger a warning tone to prevent traffic ac-
cidents when drowsy state occurs.

In this study, a real-time drowsiness detection algorithm was
also developed. Most of the previous studies for EEG-based
drowsiness detection are supervised in nature and build up the
same detection model for all subjects [15]-[17]. However, it is
well known that the individual variability in EEG dynamics re-
lating to drowsiness from alertness is large. The same detec-
tion model may not be effective to accurately predict subjec-
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Fig. 1. Basic scheme of our proposed EEG-based BCI system.

tive changes in the cognitive state. Therefore, subject-dependent
models have also been developed to account for individual vari-
ability [18]-[21]. Although subject-dependent models can alle-
viate the influence of individual variability in EEG spectra, they
still cannot account for the cross-session variability in EEG dy-
namics due to various factors, such as electrode displacements,
environmental noises, skin-electrode impedance, and baseline
EEG differences. In our previous study [23], we proposed an un-
supervised subject- and session- independent approach for de-
tection departure from alertness. Under the assumption that the
EEG power spectrum in an alert state can be reasonably mod-
eled using a multivariate normal distribution, a statistical model
of subject’s alert state would be generated in every session by
using very limited data obtained at the beginning of the session.
The model was validated statistically and then used to assess
the cognitive state for different subjects effectively. Based on
this unsupervised approach, the real-time drowsiness detection
algorithm was developed and implemented in our BCI system.

This paper was organized as follows. The system architec-
ture of our proposed BCI system was illustrated in Section II.
The real-time drowsiness detection algorithm was introduced in
Section III. The comparison between our BCI system and other
BCI system, and the reliability of our system for drowsiness de-
tection were investigated in Section IV. In Section V, the con-
clusion was drawn.

II. SYSTEM ARCHITECTURE

The basic scheme of our proposed EEG-based BCI system
was shown in Fig. 1. The system hardware consists of a wire-
less physiological signal-acquisition module and an embedded
signal-processing module. First, the EEG signal will be obtained
by the EEG electrode, and then amplified and filtered by the
EEG amplifier and acquisition unit in the physiological acquisi-
tion module. Next, the EEG signal will be preprocessed by the
microprocessor unit and transmitted to the embedded signal-
processing module via a wireless transmission unit. After re-
ceiving the EEG signal, it will be monitored and analyzed by our
drowsiness detection algorithm implemented in an embedded
signal-processing unit. If the drowsy state of the driver is de-
tected, a warning tone device unit will be triggered to alarm the
driver.
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Fig.2. Photographs of (a) our wireless physiological signal-acquisition module
and (b) EEG headband embedded with this module.

A. Wireless Physiological Signal-Acquisition Module

The wireless physiological signal-acquisition module mainly
consists of the EEG amplifier and acquisition unit, micropro-
cessor unit, and wireless transmission unit. Here, the EEG am-
plifier and acquisition unit, which includes a preamplifier, a
band-pass filter, and an analog-to-digital converter (ADC), was
designed to amplify and filter the EEG signal. The gain of the
EEG amplifier and acquisition unit was set to about 5040 times
with the frequency band of 0.1-100 Hz. Next, the amplified and
filtered EEG signal will be digitized by a 12-b analog-to-dig-
ital converter (ADC) with a sampling rate of 512 Hz. The mi-
croprocessor unit (TI MSP430), which contains the advantages
of ultra-low power consumption, 16-b reduced instruction set
computing (RISC) architecture, 125-ns instruction cycle time,
five power-saving modes, and the diversification of a periph-
eral communication interface, is used to control the ADC to ob-
tain, preprocess, and send EEG data to the wireless transmis-
sion unit. In the microprocessor unit, EEG data caught from
the ADC via a serial peripheral interface will be stored into the
memory of the microprocessor unit, and then will pass through
a moving average filter to remove power-line interference be-
fore wireless transmission. Here, the Bluetooth module is used
as the wireless transmission unit. The firmware of the Bluetooth
module is fully compliant with the Bluetooth v2.0+ EDR speci-
fication. Since the Bluetooth module operates at high-frequency
band to transmit data wirelessly, it can work perfectly by using
a printed-circuit board (PCB) antenna. The size of the wire-
less physiological signal-acquisition module is about4 cm X 2.5
cm X 0.6 cm, and can be embedded into a headband as a wear-
able device, as shown in Fig. 2. This module operates at 31 mA
with 3.7-V DC power supply, and can continuously operate over
33 h with a commercial 1100-mAh Li-Ion battery.
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Fig. 3. Block diagram of the embedded signal-processing unit.

B. Embedded Signal-Processing Module

The embedded signal-processing module was designed as
a platform which performs a real-time EEG-based drowsiness
detection algorithm. It contains powerful computations and can
support various peripheral interfaces. The embedded module
mainly consists of an embedded signal-processing unit, a
wireless transmission unit, and a warning tone device unit.
The received EEG data will be real time processed, analyzed,
and displayed by the embedded signal-processing unit. When
the drowsy state is detected, the warning tone device unit will
be triggered to alarm the driver. The block diagram of the
embedded signal-processing unit was shown in Fig. 3. The
Blackfin embedded processor (ADSP-BF533) is used in the
embedded signal processing unit. The central-processing-unit
(CPU) speed of the embedded processor can be up to 600 MHz.
The embedded processor contains two 16-b multiply and accu-
mulates (MACs) to execute 1200 lines of addition and multipli-
cation functions, and contains four independent direct memory
accesses (DMAGs) to effectively reduce the processing time of
the core. A memory-mapped thin-film transistor liquid-crystal
display (TFT-LCD) is used in this module, and shared the
same memory bus with synchronous dynamic random-access
memory (SDRAM). In order to reduce the module size, the
parallel NOR flash is replaced by the serial peripheral interface
(SPD) flash. Furthermore, this module also contains power
management and charging circuits. The embedded processor
uses a universal asynchronous receiver/transmitter (UART)
interface to communicate with the wireless transmission unit.
The warning tone device unit was designed in an expanded
secure digital (SD) memory card, and can be combined with the
embedded signal-processing unit via secure digital/multimedia
card (SD/MMC) socket. Therefore, the SD/MMC socket in this
module also provides good interface scalability. The size of
the embedded signal-processing module is about 6.4 cm X 4.4
cm X 1 cm, as shown in Fig. 4. This module also operates with
a 3.7-V DC power supply. In this embedded signal-processing
module, the modified Universal Boot Loader (U-Boot) is used
to perform the initial system configuration and boot the Micro
Control Linux (uClinux) kernel. And the drowsiness detection
algorithm was implemented as a multithreaded application on
uClinux.

III. REAL-TIME DROWSINESS DETECTION ALGORITHM

Previous studies mentioned that the EEG spectra in theta
rhythm (4-7 Hz) and alpha rhythm (8-11 Hz) usually reflects
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Fig. 4. Photographs of (a) our embedded signal-processing module and (b)
warning tone device.

Build alert model
]’ of Alpha rhythm

Calculate

MDA
Calculate
MDC
Calculate
MDT

Extract EEG spectra
in Alpha rhythm

Raw EEG
Preprocessing

Threshold for | QutPut
drowsiness

Extract EEG spectra
in Theta rhythm

L Build alert model
of Theta rhythm

Build alert model

Calculate deviation
from alert model

Fig. 5. Flowchart of our real-time drowsiness detection algorithm.

the changes the cognitive state and memory performance
[26]-[28]. These findings motivated us to derive the drivers’
alert models and detect their cognitive state from EEG spectra
in theta and alpha rhythms. In our previous study [24], we
proposed an EEG-based unsupervised approach to detect
drowsiness. This approach does not need a labeled training
dataset with information on whether the driver is in an alert
state or drowsy state at every time instant, and can account for
baseline shifts and the variations in EEG spectra due to changes
in recording conditions in different driving sessions.

Under the assumption that the driver should be in an alert
state during the first few minutes of driving, the mode of the
driver’s alert state can be derived by the first few minutes of EEG
recording. In order to build the alert mode, the specific window
was selected by the Mardia test [33]. If the driver is under an
alert state, his or her EEG spectra in theta and alpha rhythm will
follow a multivariate normal distribution, which can be charac-
terized the alert models. Next, the deviation of the driver’s cur-
rent state will be assessed continuously from the alert model by
using Mahalanobis distance (MD). If the driver remains alert,
his or her EEG spectra in theta and alpha rhythm should match
the alert model. Otherwise, if the driver becomes drowsy, then
his or her EEG spectra will deviate from the respective model,
and hence, MD will increase. The flowchart of the real-time
drowsiness detection algorithm is shown in Fig. 5.
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A. Preprocessing of the EEG Signal

In our previous study [23], we found that EEG spectra in
the alpha and theta rhythm, obtained from the occipital mid-
line (the location of Oz in the international 10-20 EEG system),
can provide discriminating power and have high correlation with
the drowsiness state. Therefore, three EEG electrodes are used
to monitor the EEG signal in the occipital midline. The input
and reference electrodes are placed in the occipital midline and
behind the right ear, respectively, and the ground electrode is
placed in the center of the forehead. The procedure of EEG pre-
processing was shown in Fig. 6. First, a low-pass filter (moving
average filter) with a cutoff frequency of 32 Hz is used to remove
60-Hz power-line noise and other high-frequency noise. Next,
EEG data will be downsampled to a sampling rate of 64 Hz to re-
duce the computation load. Next, a 512-point fast Fourier trans-
form (FFT) with a 448-point overlap will be used to obtain the
EEG spectra. Finally, EEG spectra in alpha rhythm and theta
rhythm are extracted.

B. Construction of the Alertness Model

In our proposed unsupervised approach, a new alert model
for every subject in every driving session will be constructed. A
multivariate distribution is used to model the distribution of the
power spectrum in the alert state. Here, 3-min EEG spectral data
are used to derive the alert model. The alert model can be rep-
resented and characterized by a multivariate normal distribution
N(p, ¥?), where y is the mean vector and ¥ is the variance-co-
variance matrix. The maximum-likelihood estimate is used to
obtain  and X2 in this study. After finding the alert model, we
check whether the EEG spectra in alpha and theta rhythm, re-
spectively, indeed follow a multivariate normal using Mardia’s
test. If the alert model passes Mardia’s test, the alert model will
be accepted; otherwise, the next 3 min of EEG data will be used
to derive and validate the alert model using Mardia’s test again.

C. Computation of Deviation of EEG Spectra From the Alert
Model

After the alert model is built, the preprocessed EEG spectra
in alpha and theta rhythms will be directly calculated to ob-
tain the Mahalanobis distance for alpha rhythm (MDA) and for
theta rhythm (MDT), respectively. The alert models of alpha
and theta rhythms are represented by (u, ¥?) 4 and (u, %),
respectively. Let x4 and xp be EEG spectra in alpha and theta
rhythms, respectively, at some time instant, then the deviation
from the alert model can be calculated by

MDA (x4) = 1/ (x4 — )7 (52)~L(x4 — 1)
MDT(xr) = 1/ (xr — )7 (52) r —pr). ()

Next, a linear combination MDC of MDT and MDA is used to
compute a combined measure of deviation as

MDC =a x MDA+ (1—a)x MDT,0< o<1 (2)

where « is a constant. MDA, MDT, and MDC can be taken as an
indicator of drowsiness. Finally, the threshold of Mahalanobis
distance for drowsiness can be defined. If the value of MDC is
larger than the threshold, the cognitive state of the driver can be
viewed as drowsy state.

D. Implementation of the Real-Time Drowsiness Detection
Algorithm

The flowchart of the real-time drowsiness detection algo-
rithm implemented in the embedded signal-processing module
was shown in Fig. 7. Threadl is designed to receive EEG data
from Bluetooth. Thread2 and thread3 are used to preprocess
512-point raw EEG data, and calculate EEG spectra, respec-
tively. The mean vector and covariance matrix of EEG spectra
in alpha and theta rhythms during the first three minutes are
obtained to build the alert mode in thread4. Thread5 calcu-
lates MDA, MDT, and MDC from EEG spectra obtained in
thread 3 continuously. If MDC is higher than the threshold of
drowsiness, Thread6 will be executed to trigger a warning tone.
Here, the multithread is used in this program to provide better
flexibility and performance, and each thread is independent. In
the main loop of the real-time drowsiness detection algorithm
program, we just create the threads that we want and join
them. The uClinux system kernel will automatically schedule
those threads to reduce the system waiting cost. When the boot
loader is setup, the real-time drowsiness detection algorithm
program will be automatically started. Since the multiple
threads share program resources, such as global variables and
address spaces within one process, when we use more than
one thread changing the common resources, it is essential to
ensure the data integrity of the shared resources among threads.
Therefore, the share memory is allocated to store the data of
raw EEG data, FFT, mean vectors, and covariance matrices of
theta and alpha rhythms. First, raw EEG data received from
Bluetooth will be stored, and Thread2 and Thread3 will access
the share memory to check enough EEG data and then obtain
the FFT of raw EEG data. Thread5 will continuously access the
FFT data in the shared memory to calculate the mean vectors
and covariance matrices of theta and alpha rhythms. Finally,
Thread6 will access the mean vectors and covariance matrices
to determine the cognitive state instantaneously. Fig. 8 is the
time series diagram of the multithreaded program on uClinux.

IV. RESULTS AND DISCUSSIONS

A. Experiment Design

In order to verify the feasibility of our proposed EEG-based
BCI system, a lane-keeping driving experiment was designed
for online testing [21], [23]. Here, a virtual reality (VR)-based
cruising environment was developed to simulate a car driving at
100 km/hr on a straight four-lane highway at night, as shown in
Fig. 9(a). The VR-based cruising environment also contains a
six degree-of-freedom (DOF) motion platform which can pro-
vide dynamic stimuli and allows drivers to interact directly with
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a virtual environment rather than passively responding to mono-
tonic auditory and visual stimuli, as shown in Fig. 9(b). But
some differences still exist between our VR-based cruising en-
vironment and real driving environment, such as rapidly varying
illumination. The car randomly and automatically deviated from
the center of the cruising lane to mimic a car drifting on an im-
perfect road surface. The subjects were instructed to compen-
sate for this deviation by steering the car to keep it in the center
of the third cruising lane. In this experiment, the time points of
three important events, as shown in Fig. 9(c), were recorded to
obtain the driving trajectory: deviation onset (the car starts to
drift away from the cruising lane), response onset (participants
respond to the car-drifting event), and response offset (the car
returns to the center of the third lane). The response time of sub-
jects was defined as the time duration from “deviation onset” to
“response onset.” If the subject is alert, the response time of the
subject to the random drift will be short; otherwise, the response
time will be large when the subject is drowsy. The car deviation
from the central line is in direct proportion to response time.
Therefore, in this study, the car deviation was defined as driving
performance which can reflect the driver’s cognitive state di-
rectly. In our VR-based four-lane scene, the whole road width
contains 256 points and the car will drift 1/4 of the road width
per second after the occurrence of car drift events. This means

e Trajectory
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cruising

Deviation (D)

Deviation Svaton (b}

(C) Onset l
3 lane

cruising R Time (T)
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Fig. 9. (a) Snapshot of the virtual reality-based driving scene. (b) Six de-
gree-of-freedom (DOF) motion platform. (c) Illustration of the driving task.

that the car will enter the second lane or fourth lane after 1 s. If
the driver’s cognitive state is alert, he/she should correct the de-
viation within 0.2—1 s (12—64 points of the deviation) to prevent
the car from drifting into other lanes.

In our previous study [23], we found that the highest corre-
lation occurs at the location of the occipital midline with MDT
and MDA. The relationship between the driving performance
and the concurrent changes in the EEG spectra has also been
investigated. It showed that when the driving performance in-
creases from 0 to 20, the mean of alpha power rises sharply and
monotonically, and after that, it slowly goes down a little bit. For
the theta power, the mean power of theta power increases mono-
tonically and steadily when the driving performance increases
(alertness to deep drowsiness). Moreover, we also found that
Mahalanobis distances of EEG spectra provide better correla-
tion with driving performance than the use of EEG spectra in
alpha and theta rhythms. Fig. 10 showed an example for the re-
lationship between EEG spectra, MD of EEG spectra from the
alert model, and actual driving performance. Obviously, EEG
spectra in alpha rhythm increases when the driving performance
increases. Moreover, the MDA and MDT of the subject signifi-
cantly correlate with his driving performance.

B. Drowsiness Detection

In order to classify alert and drowsy states effectively, F-mea-
sure was used to find out the threshold of MD for drowsiness.
The F-measure is the harmonic mean of precision and recall,
and its value F' can be calculated as follows:

precision X recall

F=2x 3)

precision + recall
In information retrieval, precision and recall mean positive pre-
dictive value (PPV) and sensitivity, respectively. In order to cal-
culate PPV and sensitivity, we first defined some parameters of
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the binary classification test for drowsiness detection: True Pos-
itive (drowsy people correctly diagnosed as drowsy), False Pos-
itive (alert people incorrectly identified as drowsy), True Neg-
ative (alert people correctly identified as alert), and False Neg-
ative (drowsy people incorrectly identified as alert). The PPV
and sensitivity can be calculated as follows:

PPV = TfuePositive _ “
TruePositive + FalsePositive
T P .t.
Sensitivity = ruePositive )

TurePositive + FalseNegative

Therefore, PPV denotes the precision of drowsiness prediction,
and sensitivity means the percentage of drowsy people who are
identified as having the drowsy condition.

Here, a total of 15 subjects’ driving performance and MD
were analyzed to find the maximum F-measure value under
different conditions. The parameter « in (2) was set from 0.1
to 0.9, and the threshold of drowsiness was set from 1 to 15
in this test. Fig. 11 showed the result of average F-measure,
PPV, and sensitivity of 15 subjects corresponding to different
thresholds at o = 0.7. It showed that if the threshold is less than
10, the PPV increases when the threshold increases. However,
if the threshold is larger than 7, the sensitivity decreases rapidly
when the threshold increases. This indicated that the smaller
threshold can detect most of drowsiness events effectively,
but also increases the recognition error rate of drowsiness
events. The optimal threshold, which can provide better PPV
and sensitivity, obviously is between 6 and 8. In this case, the
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Fig. 11. Result of (a) PPV, (b) sensitivity, and (c) F-measure of 15 subjects
corresponding to different thresholds at v = 0.7.

TABLE I
RESULTS OF THE OPTIMAL F-MEASURE UNDER DIFFERENT CONDITIONS

Optimal

Types Threshold PPV (%) Sensitivity (%)
F-measure (%)

MDT 73.9 6.5 60.2 95.9
MDA 773 7.5 69.7 86.9
MDC (a=0.1) 73.5 6.5 59.3 96.6
MDC (a=0.2) 73.8 6.5 58.9 98.6
MDC (a=0.3) 74 7 63.7 88.3
MDC (a = 0.4) 75.1 7 63.9 91

MDC (a=0.5) 76.0 7 63.9 93.8
MDC (o = 0.6) 76.3 7 64.3 93.8
MDC (a=0.7) 76.7 7.5 70.9 83.5
MDC (a = 0.8) 77.4 7.5 70.7 85.5
MDC (0= 0.9) 71.6 7.5 69.2 88.3

optimal value of the F-measure is 76.7% (PPV = 70.9% and
sensitivity = 83.5%) when the threshold is equal to 7.5. The
result of the optimal F-measure under different conditions was
listed in Table I. The maximum F-measure 77.6%, (PPV =
69.2% and sensitivity = 88.3%) is under the condition of o =
0.9 and the threshold = 7.5.

Next, ten subjects’ driving performance and MD for testing
sessions were used to test the reliability of this system (o = 0.9
and the threshold = 7.5). The result of the testing session for
drowsiness detection was listed in Table II. It showed that most
of the precision of drowsiness prediction (PPV) is between 75%
and 80%. Except for subjects 2 and 9, the sensitivities of other
subjects are more than 80%. The average of F-measure of ten
subjects is 82% (PPV = 76.9% and sensitivity = 88.7%).
Here, higher sensitivity of our system can help drivers avoid
traffic accidents more effectively, although 76.9% of PPV may
confuse drivers sometime. The precision of drowsiness predic-
tion can still be improved by combining with other physiological
signals in the future.

C. Comparison With Other BCI Systems

The specifications of the proposed BCI system and the other
existing systems are summarized in Table III. Farshchi et al. [29]
developed a low-power, six-channel wireless neural recording
system by creating custom integrated circuits (IC) to assemble
commercial-off-the-shelf (COTS) PC-based components. This
system transmits neural signals to a client personal computer
(PC) by Zigbee wireless communication. Yan et al. [30] imple-
mented a BClI-neurofeedback system to overcome the limita-
tion of monotonous feedback methods. The system consists of
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TABLE II
RESULTS OF THE TESTING SESSION FOR DROWSINESS DETECTION

TABLE III
COMPARISON BETWEEN OUR SYSTEM AND OTHER BCI SYSTEMS

Subject F-measure (%) PPV (%) Sensitivity (%)
1 77.7 75.5 80
2 72.2 78.8 66.7
3 89.1 80.4 100
4 87.5 77.8 100
5 87.4 77.6 100
6 88.9 80 100
7 83.5 78.7 88.9
8 81.1 77.9 84.6
9 66.1 65.5 66.7
10 86.8 76.6 100

Average 82 76.9 88.7

three-channel EEG acquisitions within a 12-b, 1000-Hz sam-
pling rate. Here, the universal serial bus (USB) is used to com-
municate with back-end PC to create appropriate feedback in-
formation in certain scenarios. Fei et al. [31] designed a system
which integrates ECG, EEG, and other sensors with radio-fre-
quency identification (RFID) into a radio-frequency (RF) board
through a programmable interface chip (PSoc). However, this
system does not provide any biofeedback device. Kim et al.
[32] built up a helmet-based system that could monitor ECG,
EOG, and EEG. The fetched signals are transmitted to a laptop
computer via Bluetooth. Regarding our proposed system, it pro-
vides a wireless physiological signal-acquisition module and
an embedded signal-processing module. The size of the wire-
less physiological signal-acquisition module is small, and can
be embedded into a headband as a wearable device. Moreover,
it can continuously operate for more than 33 h with a com-
mercial 1100-mA Li-Ion battery. Therefore, it can be used for
long-term EEG monitoring. Different from other BCI systems,
we designed a portable wireless embedded signal-processing
module as the back—end signal-processing unit. The advantages
of low power consumption and small volume of the embedded
signal-processing module are suitable for car applications. The
SD/MMC socket in this module also provides good interface
scalability for other applications. The warning tone device unit
in this module can also provide a biofeedback mechanism.

For the performance of drowsiness detection, Kim et al.
used a helmet-based system to detect drowsiness by detecting
blinking and heart-rate variability [32]. The sensitivity and
specificity of drowsiness detection are 79.3 and 76.4%, respec-
tively. For our real-time wireless EEG-based BCI system, the
PPV and sensitivity are 76.9% and 88.7%, respectively. The
performance of our system is similar to that of the helmet-based
system, but our system was set to provide better sensitivity.

V. CONCLUSION

In this study, a real-time wireless EEG-based BCI system
was proposed for drowsiness detection in car applications. It
consists of a wireless physiological signal-acquisition module
and an embedded signal-processing module. EEG signals can
be measured by the wireless physiological signal-acquisition
module and transmitted wirelessly to the embedded signal-pro-
cessing module via Bluetooth. This module is small enough to

The proposed
BCI System Farshichi [30] Yan [31] Fei [32] Kim [33]
system
EEG, ECG EEG, EOG,
Fetched Signal EEG EEG EEG
EMG, SPO2 ECG
Channels 6 2 2 2 1
EEG cap model N/A Standard 10-20 N/A Helmet Headband
Transimission ZigBee USB Zigbee Bluetooth Bluetooth
Operation Voltage 3V USB Power 2 AA Battery 6AA Battery 3.7V Li Battery
ADC Resolution
8 12 12 8 12
(Bits)
Samplling Rate
1~100 1000 1024 200 512
(Hz)
Gain 200 N/A N/A 30 5040
1Hz high-p 0.1Hz high-p: high-p: 0.5Hz high-p 0.1Hz high-p
Analgo Filter
256Hz low-pass  70Hz low-pass low-pass 35Hz low-pass 100Hz low-pass
Atmal MSP430,
Frontend Signal Embedded
Atmegal28 Cypress MCU MSP430
Processing Unit System
MCU Micro-PSoC
Backend Signal Personal Pentium IV Personal
. . i Laptop ADSP-BF533
Processing Unit computer 1.7G, 1G-RAM computer

be embedded into a headband as a wearable EEG device. It
provides the advantages of mobility and long-term EEG moni-
toring (more than 33 h by using a 1100-mA Li-Ion battery). The
embedded signal-processing module provides powerful com-
putations, and provides good interface scalability by using the
SD/MMC socket. The advantages of low power consumption
and small volume of the proposed system are suitable for car ap-
plications. Moreover, the modular approach applied in hardware
and software design enables this system to be configurable for
different application scenarios in the future. This system is fea-
sible for further extension. Based on the unsupervised approach
proposed in our previous study, a real-time drowsiness detection
algorithm was also developed and implemented in this module
to detect drowsiness continuously and trigger a warning tone
when the drowsy state occurs. In our previous study, we have
found that the occipital midline is an effective channel to dis-
criminate the power of drowsiness from that of alertness. Based
on this property, our BCI system only uses three EEG electrodes
to detect drowsiness. Therefore, compared to other BCI tech-
niques, the setup of our BCI system is relatively easier. More-
over, in order to verify the reliability of our proposed EEG-based
BCI system, a lane-keeping driving experiment was designed
for online testing. For ten subjects, the average of PPV and
sensitivity are 76.9% and 88.7%, respectively. Therefore, our
real-time wireless embedded EEG-based BCI system is feasible
for drowsiness detection. It can be considered as an alterna-
tive to the drowsiness monitoring system in practical driving
applications.
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