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Abstract

The zero-temperature current—phase (I—/) relation (CPR) of a mesoscopic, ballistic, and asymmetrically stacked,
double superconductor—normal-metal—superconductor (SNS) junction is studied. Here / is the phase difference between
the two superconducting end-electrodes. The lack of configuration symmetry in such asymmetric SNSNS junctions
forbids a simple choice of values for the phase /

2
of the middle superconductor. We propose to determine the values of

/
2

by equating the currents in the two normal regions. Two features in the CPR are found. First, the CPR of the
asymmetric junction has a cutoff feature, whose origin is best demonstrated in the long middle superconductor (large ¸

2
)

cases, when the critical current of the double SNS junction is bounded by the SNS junction that has the longer normal
region. This cutoff feature is more pronounced for longer ¸

2
and for higher degree of junction asymmetry. Second, in

regions other than the cutoff region, the CPR of the asymmetric junction deviates only within a few percent from the CPR
of the symmetric junction which has the same total length ¸

T05!-
in the normal regions and the same ¸

2
. This is in contrast

with the greater sensitivity the CPR has to the changes in ¸
T05!-

or ¸
2
. ( 1998 Elsevier Science B.V. All rights reserved.

PACS: 73.23.-b; 73.23.Ad; 74.50#r; 73.20.Dx
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1. Introduction

The possible manifestations of mesoscopic phe-
nomena in transport properties of systems that
have both normal and superconducting constitu-
ents have attracted much attention lately [1]. In
these systems, the quasiparticles maintain their
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coherence in the normal regions while the Cooper
pairs are, by nature, coherent in the superconduct-
ing regions [2]. The issue at hand is to look for the
analogous manifestation in the physical character-
istics of the superconducting systems for all me-
soscopic phenomena found in normal systems.

This issue of analogy has prompted recent stud-
ies in double SNS (SNSNS) junctions, in which the
effects of the resonant transmission of Cooper pairs
[3], and the Andreev level tunneling [4] on the
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transport characteristics are considered. It was
found that the dependence of the critical current on
the distance between the two SNS junctions bears
only a marginal resemblance to that of the resonant
transmission [3]. On the other hand, we have
shown recently that the current—phase relation
(CPR) of a symmetric SNSNS junction, in the low
temperature regime, bears unequivocal signatures
of the Andreev level tunneling [4]. This result sug-
gests that the CPR, rather than the critical current,
is the more informative transport characteristics
which we should turn to in looking for other
analogous mesoscopic signatures. The CPR of a
superconducting point contact has recently been
observed by Koops et al. [5], and this has unveiled
a very promising prospect for a direct probing of
analogous mesoscopic signatures in the CPR, and
in the near future.

In a mesoscopic superconducting junction, the
pair-potential, together with its spatial profile,
plays a more subtle role than the potential profile
in normal systems. Besides that it gives rise to
Andreev reflection at a SN interface, and that the
reflection corresponds to the transmission of
a Cooper pair, the pair-potential is, in general,
complex and carries a phase /. The role of this
/ becomes even more interesting in structures that
consist of other superconducting regions in be-
tween two superconducting end-electrodes. Exam-
ples of these structures, including SNSNS junctions
[6,4] and superconducting superlattices [7], have
recently been considered microscopically [8]. In
these studies, / is assumed constant within a super-
conducting region, and the structures are taken to
have such symmetry that an intuitive choice for the
phase difference */ between consecutive supercon-
ducting regions is possible. For a better under-
standing of the role of /, we opt, in this paper, to
remove the configuration symmetry, and consider
an asymmetric SNSNS junction. The more com-
plicated superconducting superlattice structures
are left to further study.

As it turns out, the asymmetric SNSNS junction is
more complicated than the symmetric junction.
This is because the lack of symmetry in the junction
forbids any simple choice of values for the phase
/
2

of the middle superconductor. To determine /
2
,

we propose, in this paper, to adjust its value until

the supercurrent in the two normal regions are
equal. The current expression is microscopically
derived [9,4]. As we will show in this work, this
method of determining /

2
is consistent, in the large

¸
2

regime, with an intuitive approach which treats
the double SNS junction as two independent but
serially connected SNS junctions.

The paper is organized as follows. In Section 2,
we briefly outline our approach for the calculation
of the supercurrent in an asymmetric SNSNS junc-
tion. In Section 3, the analytic expressions for the
quantization condition of the Andreev levels are
derived. Numerical examples for the dependencies
of /

2
, and the current on /, in both the symmetric

and the asymmetric junctions, are presented. Fi-
nally, we present a conclusion in Section 4.

2. Method

In this section, our method of calculation for the
asymmetric SNSNS junctions is outlined, a detail
account of the method can be found in our earlier
paper [4].

The pair potential for an S
1
N

1
S
2
N

2
S
3

junction,
as shown in Fig. 1, is given by

*(x)"G
*
1
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(1)

The energy gap magnitude *
1

of the two supercon-
ducting end-electrodes are taken to be the same.
The energy gap of the middle superconductor can
be different, and its phase /

2
is determined by

equating the supercurrents in the two normal re-
gions. In this work, for simplicity, we have taken
*
2
)*

1
. The quasiparticles of the system are de-

scribed by the Bogoliubov—de Gennes (BdG) equa-
tion

H(x)u(x)#*(x) v(x)"Eu(x),

** (x) u(x)!H*(x) v(x)"Ev(x). (2)

For quasiparticles with energies E'*
1
, they are

scattering states resulting from either electron like
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Fig. 1. Schematic representation of an S
1
N

1
S
2
N

2
S
3

junction
with stepwise pair potentials.

or hole like quasiparticles incident from one of the
superconducting end-electrodes. By invoking the
Andreev approximation when matching the wave
functions at the SN interfaces, we obtain the ana-
lytic expressions for the scattering states as well as
their contribution to the supercurrent. The scatter-
ing coefficients are given in Appendix A.

For E)*
1
, the quasiparticles are confined in

between the two end-electrodes and their energies
are quantized. Furthermore, when E(*

2
, the

quasiparticles are confined within, but can tunnel
between, the two normal regions. We obtain the
analytical expression for the quantization condi-
tions for these bound states. There are two kinds of
such bound states, according to the processes in-
volved. The p process is set up by right-going elec-
tron like quasiparticles and the n process is set up
by right-going hole like quasiparticles in the nor-
mal regions [10].

The supercurrent can be obtained using the cur-
rent density expression

j(x)"
e

m
+
l

M f (E
l
)u*

l
(x)pL

x
u
l
(x)

#[1!f (E
l
)]v

l
(x)pL

x
v*
l
(x)N#c.c., (3)

where l refers to the quasiparticle states, continuous
or discrete in the energy spectrum, with E

l
'0, and

with the wave functions given by [u
l
(x), v

l
(x)]T.

Here e"!DeD, and pL
x
"!i+d/dx!(e/c)A

x
(x).

The vector potential A
x
(x)"0 in our case. The

function f (e)"[1#exp(e/k
B
¹)]~1 is the Fermi

function. In one dimension, the current density
becomes the current.

The contribution of the discrete levels to the
supercurrent is given by the sum over discrete levels
in Eq. (3). There is, however, an alternate current

expression for the discrete levels, given by [9,6,8,11]

I
1
"!

2e

+
+
l

tanh(E
l
/2k

B
¹)

dE
l

d/
. (4)

Here / is the phase difference between the pair
potentials of the two end-electrodes. For the contri-
butions from the discrete levels, these two expres-
sions are shown to be the same in SNS junctions
and in symmetric SNSNS junctions [4].

Since Eq. (3) is local, containing the location at
which the current is to be evaluated, we can calcu-
late the currents in the two normal regions of the
SNSNS junction. However, for a given phase differ-
ence / across the entire junction, the currents de-
pend also on the /

2
of the middle superconductor.

Hence /
2

cannot be arbitrary. Rather, its values
can be determined by equating the supercurrents in
the two normal regions. In other words, /

2
be-

comes a function of /.

3. Results

In this section, we present the analytical expres-
sions for the quantization conditions of the An-
dreev levels. We also present and interpret the
numerical results for the CPR of SNSNS junctions,
including both the long ¸

2
case, when the two SNS

junctions can be considered as independent, and
the short ¸

2
case, when Andreev tunneling effects

are important.

3.1. Andreev levels

The quantization conditions for the Andreev
levels can be simplified into a more compact form

if the wave vectors kI
%
"k

F
J1#E/k , and

kI
)
"k

F
J1!E/k, both in the normal regions, are

kept up to the first order in E/k , and the wave
vectors in the superconducting region S

j
,

k
%,j
"k

FS1#
JE2!*2

j
k

,

and

k
),j
"k

FS1!
JE2!*2

j
k

, (5)
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are kept up to the first order in JE2!*2
j
/k. Here

the subscripts e(h) refers to electronlike (holelike)

quasiparticles, and k
F
"J2mk/+.

For the case E)*
2
, the quantization condition

is
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2k BcosC
Ek

F
2k

(¸
1
#¸

3
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/
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2

!

/
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2 BD"0, (6)

where the upper (lower) sign denotes the p process
(n process), and /

ij
"/

i
!/

j
. For convenience, we

choose, in the following, that /
1
"!//2, and

/
3
"//2. Hence the factor (/

21
!/

32
)/2"/

2
in-

side the cosine function in the last term of Eq. (6).
In the case of a symmetric junction, when ¸

1
"¸

3
,

/
2
"0 is a reasonable choice so that / appears

as //2 in the cosine functions of Eq. (6), and the
Andreev levels E(/) have a /-period equal to 4p.
But in an asymmetric junction, when /

2
"/

2
(/)

through equating the supercurrents in the two nor-
mal regions, the dependence of Eq. (6) on / be-
comes not at all obvious. It turns out, from our
numerical results, and at ¹"0, that the /-period
remains equal to 4p.

The exponential factors in Eq. (6) involve ¸
2
,

which represent the effects of the Andreev level
tunneling. In the limit of infinite ¸

2
, Eq. (6) be-

comes Ek
F
¸
1
/k!arccos(E/*

1
)!arccos(E/*

2
)G

/
21
"2pn, or Ek

F
¸

3
/k!arccos(E/*

1
)!

arccos(E/*
2
)G/

32
"2pn, which are the quantiz-

ation conditions for an asymmetric SNS junction
with length ¸

1
or ¸

3
, and with phase differences

/
21

or /
32

, respectively [12]. In addition, at E"0,
the quantization condition becomes

cosA
/
2B#cos(/

2
)tanhA

*
2
k
F
¸
2

2k B"0, (7)

from which the values of / that satisfy E(/)"0 are
determined. The separation between these / values
changes with ¸

2
, and is therefore a consequence of

the Andreev level tunneling. In the vicinity of
E+0, an Andreev level changes from an n-process
to a p-process, or vise versa, and the contribution of
this level to the current is changed abruptly. It is
also interesting to note that Eq. (7) does not depend
explicitly on *

1
, ¸

1
, and ¸

3
, but could depend on

these junction parameters implicitly through /
2
.

Our numerical results show that these /
2
values are

quite insensitive to ¸
1

or ¸
3

when their sum
¸
T05!-

"¸
1
#¸

3
is fixed.

For the case when *
2
(E(*

1
, the quantiz-

ation condition becomes
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2

E
cosA

J E2!*2
2
k
F
¸

2
2k B

]sinC
Ek

F
2k

(¸
1
#¸

3
)!cos~1A

E

*
1
BG

/
31
2 D

#sinA
JE2!*2

2
k
F
¸
2

2k BcosC
Ek

F
2k

(¸
1
#¸

3
)

!cos~1A
E

*
1
BG

/
31
2 D

!

*
2

E
sinA

JE2!*2
2
k
F
¸

2
2k B

]cosC
Ek

F
2k

(¸
1
!¸

3
)GA

/
21
2

!

/
32
2 BD"0, (8)

where, again, the upper (lower) sign refers to the
p process (n process). Taking ¸

2
"0, the condition

becomes that of a symmetric SNS junction with
a normal region of length ¸

T05!-
[13,14]. Taking

another limit, *
2
"0, the condition becomes that

of a symmetric SNS junction with a normal region
of length ¸

1
#¸

2
#¸

3
. There is no tunneling
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Fig. 2. Supercurrent versus / for SNSNS junctions in which the length ¸
2

of the middle superconductor is long. For the purpose of
comparison, we have plotted the CPR of four structures. The physical parameters that are the same among these structures are
*
1
"*

2
"0.2 meV, k"10meV, and ¹"0. These structures differ by the lengths of the normal regions and the middle superconductor:

(¸
1
,¸

2
,¸

3
), which are measured in units of m. The CPR for the structure (¸

1
,¸

2
,¸

3
)"(0.5, 10, 0.5) is represented by the bold lines. The

CPR for (0, 10, 1), which has a cutoff feature, is represented by the solid circles. The other two structures (0, 10, 0) and (1, 10, 1) are
represented by the dashed and the thin solid lines, respectively.

feature in this case due to the obvious reason that
E'*

2
. The quantization condition in the E"*

1
limit is given in Appendix B. The expression for the
supercurrent due to the scattering states is given in
Appendix C.

3.2. Current-phase relations for SNSNS junctions
with ¸

2
Am

We present, in this subsection, the results for
SNSNS junctions that have a long middle su-
perconductor. In this ¸

2
Am regime, an intuitive

picture arises. The coupling between the two
SNS junctions via Andreev level tunneling becomes
unimportant, and the SNSNS junctions can be
regarded as two independent SNS junctions con-
nected serially. Our numerical results conform with
this intuitive picture.

In the following numerical examples, all the
SNSNS junctions considered have the same *

1
"

*
2
"0.2meV, k"10meV, and ¹"0. The ratio

*
1
/k"0.02 is small enough such that the Andreev

approximation is valid. These junctions are differ-
ent, however, in ¸

1
,¸

3
, the lengths of the two nor-

mal regions, and also in ¸
2
. These lengths are

expressed in units of m"k/k
F
*
1
.

In Fig. 2, the CPRs of four SNSNS junctions
are presented. For the symmetric junction where
(¸

1
,¸

2
,¸

3
)"(0.5, 10, 0.5), the CPR branch is repre-

sented by the bold curve. For the asymmetric junc-
tion (0, 10, 1), the CPR is represented by the solid
circles. The total length of the normal region
¸
T05!-

"1 is the same in both of the above junc-
tions. The CPRs of the other two symmetric junc-
tions, (0, 10, 0) and (1,10, 1), are represented by the
dashed and the thin solid curves. These CPRs all
have a /-period of 4p.
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To present the physical meaning of the results in
Fig. 2, we first focus on the symmetric SNSNS
junctions, with ¸

1
"0, 0.5, and 1, of which the

CPRs are represented by the dashed, bold, and thin
solid curves, respectively. Each of these CPRs has
an abrupt current-change feature at /"2p, and
the critical current decreases as ¸

1
is increasing.

Except for the /-period, which is 4p, these CPRs
resemble the CPRs of SNS junctions, whose /-
period is 2p. In fact, these I(/) curves are found to
be identical to I

SNS
(¸

1
,//2), where I

SNS
(¸

N
,/) rep-

resents the supercurrent in an SNS junction that
has a normal region of length ¸

N
and a phase

/ across the junction. This finding is consistent
with the intuitive expectation that, for large ¸

2
, the

symmetric SNSNS junction becomes two identical
SNS junctions connected in series.

The CPR of an SNS junction has been thorough-
ly studied theoretically in the recent past [9,13,14].
In the temperature regime ¹[¹

#
, the CPR is

sinusoidal, as given by the Ginzburg—Landau re-
sults [15]. However in the temperature regime
¹@¹

#
, the CPR is nonsinusoidal and, at ¹"0,

has an abrupt current-change feature at /"p
[9,13,14]. The nonsinusoidal CPR feature has been
confirmed by a recent experiment [5].

The ¹"0 abrupt current change in the CPR is
associated with a change in the process type of an
Andreev level which has E+0. According to
Eq. (7), we see that there can be more than one
abrupt current-change feature in the CPRs of
SNSNS junctions, and the /-separation between
these features reflects directly the Andreev-level
tunneling.

For the asymmetric SNSNS junction in Fig. 2,
with (¸

1
,¸

2
,¸

3
)"(0, 10, 1), it is found that the

CPR deviates appreciably from that of the symmet-
ric SNSNS junctions with ¸

1
"0, 1, but deviates

only within a few percent, whenever it has values,
from that of the symmetric junction which has the
same ¸

T05!-
"1. Besides, the CPR for the asymmet-

ric junction has a cutoff feature in which the super-
current is limited by that of the symmetric junction
with ¸

1
"1. This cutoff feature is consistent with

the intuitive picture that, when ¸
2

is long enough,
the SNSNS junction would behave like two inde-
pendent SNS junctions connected in series. For an
asymmetric SNSNS junction, the two SNS junc-

tions have different ¸
N

and the critical current of
the entire junction is determined by the SNS junc-
tion that has the longer ¸

N
.

To show explicitly how this cutoff feature comes
about in our calculation, we plot in Fig. 3 the

Fig. 3. Supercurrent in the two normal regions versus /
2
. The

SNSNS junction is the asymmetric junction in Fig. 2, in which
¸
2

is long and, in units of m, (¸
1
,¸

2
,¸

3
)"(0, 10, 1). The phase

difference across the entire junction is fixed at (a) //2p"0.49,
and (b) //2p"0.925. The cutoff feature occurs in (b). The
supercurrent evaluated in the normal region N

1
(N

2
) is repre-

sented by the dashed (solid) curve, and is shown to resemble the
CPR of a single SNS junction with the length ¸

N
of the normal

region equals 0 (1). The intersections between the two curves are
indicated by arrows.
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Fig. 4. Constructing the CPR of an asymmetric and large ¸
2

SNSNS junction from the CPRs of the individual SNS junctions. The
structure is the same as the asymmetric structure in Fig. 2. The CPR of the structure is represented by the solid circles. The CPRs of the
single SNS junctions with ¸

N
"0, and 1 are represented by the dashed, and the solid curves, respectively. The two horizontal thin lines,

which indicate the smallest critical current of the two SNS junctions, coincide with the cutoff feature in the CPR of the asymmetric
junction. For a given supercurrent between the two horizontal thin lines, the corresponding phase / for the CPR of the asymmetric
junction can be obtained by adding the phases of the two individual SNS junctions. For example, /

c
"/

a
#/

b
, and /

c{
"/

a{
#/

b{
.

supercurrent versus /
2

in the two normal regions,
when / is fixed. The asymmetric junction is the
same as in Fig. 2. The //2p is 0.49 in Fig. 3a, and
0.925 in Fig. 3b. The supercurrent evaluated in the
normal regions N

1
, N

2
are represented by the

dashed, and the solid curves, respectively, which are
found to resemble the CPR of a single SNS junc-
tion. In fact, the current in the left SNS junction
I
L

equals I
SNS

(¸
N
"0, //2#/

2
), while the current

in the right SNS junction I
R

equals I
SNS

(¸
N
"1,

//2!/
2
). Here I

SNS
(¸

N
, /) represents the super-

current in an SNS junction that has a normal
region of length ¸

N
and a phase / across the junc-

tion. This simply shows that the coupling between
the two SNS junctions via Andreev level tunneling
is unimportant for ¸

2
"10 . The intersections be-

tween these two curves, as indicated by arrows in
Fig. 3, gives the possible values of I through the

asymmetric junction. The changes in the number of
possible values for I, from two in Fig. 3a to one in
Fig. 3b, indicate the occurrence of the cutoff fea-
ture. It is also clear that the critical current for the
asymmetric junction should be limited by the criti-
cal current of I

R
, the smaller critical current of the

two SNS junctions. We note in passing that there is
only one CPR branch, which has a /-period of 4p,
even though the two possible values of I in Fig. 3
seem to suggest a second CPR branch. The two
CPR values, which are found to constitute the same
CPR branch except for a relative shift */ of 2p,
cannot be counted as two independent CPR
branches, because the physical configuration of the
junction is not changed by the transformation
/
i
P/

i
#2pn

i
for integers n

i
.

In Fig. 4, we show that the CPR of the asymmet-
ric junction can be constructed graphically from
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Fig. 5. Supercurrent versus / for an asymmetric SNSNS junction with an intermediate ¸
2
. The structure has (¸

1
,¸

2
,¸

3
)"

(0.02, 1, 0.18) and the CPR is represented by the solid circles. For comparison, we also present the CPR for the symmetric structure
(0.1, 1, 0.1) where the ¸

T05!-
"0.2 is the same in both structures. Other physical parameters are the same as in Fig. 2. Note that the CPRs

for the two structures are essentially the same, and the cutoff feature in the CPR of the asymmetric junction is marginally shown by
a missing solid circle each time when the CPR reaches the critical current value of the symmetric junction.

the CPRs of the two individual SNS junctions. The
CPRs of the single SNS junctions, with ¸

N
"0, and

1, are, respectively, represented by the dashed and
the solid curves. The CPR for the asymmetric junc-
tion is denoted by the solid circles. If the same
current I is to flow through both of these SNS
junctions, the total phase / across the entire junc-
tion must be equal to the sum of the phases across
the individual SNS junctions. As an example, in
Fig. 4, we have /

c
"/

a
#/

b
, and /

c{
"/

a{
#/

b{
.

The construction of the entire CPR branch for the
asymmetric junction from the CPRs of the indi-
vidual SNS follows quite straightforwardly. With
this, we demonstrate that the large ¸

2
asymmetric

junction is equivalent to two independent SNS
junctions connected in series.

Our other results show that the deviation of the
CPRs between an asymmetric and a symmetric
junction, both having the same ¸

T05!-
, increases

slowly with ¸
T05!-

. In addition, the cutoff feature is
more evident for larger ¸

T05!-
. These can be under-

stood according to the above construction scheme.

3.3. Current—phase relations for SNSNS junctions
with intermediate ¸

2
values

In this subsection, the CPR for the asymmetric
SNSNS junctions with shorter values of ¸

2
, where

the Andreev-level tunneling feature manifests, is
presented. The numerical examples include junc-
tions with short and intermediate ¸

T05!-
.

The CPR for a junction with a short ¸
T05!-

is
presented in Fig. 5. The asymmetric junction has
(¸

1
,¸

2
,¸

3
)"(0.02, 1, 0.18), where ¸

T05!-
"0.2, and

the CPR is denoted by the solid circles. For com-
parison, the CPR for a symmetric junction
(0.1, 1, 0.1), with the same ¸

T05!-
, is presented. The
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Fig. 6. /
2

versus / for an asymmetric SNSNS junction. The asymmetric structure is the same as in Fig. 5, and /
2
(/) is represented by

the solid curves. There are abrupt changes in /
2
at //2p"0.35, 0.65, 1.35, and 1.65. For comparison, the /

2
(/) for a symmetric structure

is represented by the solid circles. Note that /
2
"np for the symmetric structure.

first feature to notice is that the CPRs for the two
SNSNS junctions are essentially the same. Second,
the cutoff feature is evident only under a scrutiny.
The feature is marginally exhibited by a missing
solid circle at each of the tips of the CPR near its
critical current value. Third, there are two abrupt
current-change features in a 4p /-period, which are
the manifestation of the coherent coupling between
the two SNS junctions. In other words, the two
SNS junctions are no longer independent.

The Andreev-level tunneling is the dominant
factor governing the coherent coupling between
the two SNS junctions. The connection between the
Andreev-level tunneling and the occurrence of the
two abrupt current-change features is understood
for symmetric SNSNS junctions, which has been
studied recently [4]. According to the discussions
in the last subsection, the occurrence of the abrupt
current-change feature simply reflects that an An-
dreev level switches from one process type to an-
other, and the Andreev level must have energy very

close to zero. If the two SNS junctions of a symmet-
ric SNSNS junction were independent, the Andreev
levels in each SNS junction, including the E+0
levels, would be degenerate for all / values. But in
the presence of the Andreev-level tunneling, the
degeneracy in the Andreev levels is removed. Con-
sequently there are two E+0 Andreev levels, each
occurring at a different /, and each giving rise to an
abrupt current-change feature in the CPR. Thus the
CPR has two abrupt current-change features. This
understanding holds essentially for the E+0 An-
dreev levels in the asymmetric junctions.

In Fig. 6, the dependence of /
2

on / for the CPR
of the asymmetric junction in Fig. 5 is plotted, and
is denoted by the solid curves. The curves are piece-
wise linear and have values in the vicinity of
/
2
"np, which are the values of /

2
for a symmetric

junction. There are abrupt changes in /
2
, for the

asymmetric junction, at //2p"0.35, 0.65, 1.35, and
1.65. These / values are the same as where the
abrupt current-change features occur in Fig. 5.
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Fig. 7. Supercurrent versus / for an asymmetric SNSNS junction with an intermediate ¸
T05!-

. The structure has (¸
1
,¸

2
,¸

3
)"(0, 2, 1),

and the other physical parameters are the same as in Fig. 2. The CPR is represented by the solid circles. For comparison, the CPR for the
symmetric junction with structure (0.5, 2, 0.5) is represented by the solid curves. The two horizontal thin lines indicate the cutoff feature
of the CPR in the asymmetric junction.

Finally, the CPR for a junction with intermediate
¸
T05!-

and ¸
2

is presented in Fig. 7. The asymmetric
junction has (¸

1
,¸

2
,¸

3
)"(0, 2, 1), where ¸

T05!-
"1,

and the CPR is denoted by the solid circles. For
comparison, the CPR for a symmetric junction
(0.5, 2, 0.5), with the same ¸

T05!-
, is presented. The

cutoff feature is more evident than the junctions with
smaller ¸

T05!-
. There are two abrupt-current-change

features, showing the effect of the Andreev level
tunneling. The deviation between the CPR for the
asymmetric and the symmetric junctions is larger
than the corresponding deviation in Fig. 5. These
results indicate that the deviation and the cutoff
features are more pronounced for longer ¸

2
and for

configurations with higher degree of asymmetry.

4. Conclusion

In conclusion, we have studied the supercurrent
characteristics in an asymmetric SNSNS junction.

Our result shows that the current—phase relation
has a cutoff feature, and that in regions other than
the cutoff region, the CPR becomes insensitive to
the position of the middle superconductor if the
total length of the normal regions remains a con-
stant.
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Appendix A. Transmission coefficients

For an electron like quasiparticle incident from
the left-hand side of the junction, the t

%())
, and the

r
%())

coefficients of the wave function are obtained,
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given by
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The transmission and the reflection coefficients are
defined in terms of the t

%())
and the r

%())
coefficients,

given by
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We have checked that ¹%
L?R

#R)
L?R

"1, which is
expected because the BdG equation is Hermitian.

For a holelike quasiparticle incident from the left
hand side of the junction, the t
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Again, the transmission and the reflection coeffi-
cients are defined as
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where we have checked that ¹)
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"1.
For an electron like quasiparticle incident from

the right-hand side of the junction, the t
%())

and the
r
%())

coefficients are
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whereGA is the same as G except that ¸
1
and ¸

3
are

interchanged.
For a hole like quasiparticle incident from the

right hand side of the junction, the t
%())

and the
r
%())

coefficients are
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where GA@ is the same as G@ except that ¸
1

and
¸
3

are interchanged.
We note that our results are for general normal-

region lengths ¸
1

and ¸
3
. And our transmission

coefficients reduce to that obtained by Hurd and
Wendin [6] when taking the ¸

1
"¸

3
"0 limit.

Appendix B. Quantization condition (E"*
1
)

Both the bound state supercurrent I
$

and the
scattering state supercurrent I

4
have kink features

which occur at the /’s when new Andreev levels
appear at E"*

1
. The conditions for finding these

/’s are given by
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where n in an arbitrary integer, and the upper
(lower) signs represent the conditions for the p pro-
cess (n process). Here,
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Appendix C. Supercurrent

The supercurrent given by Eq. (3) includes con-
tribution from both the Andreev levels and the
scattering states. Our results show that the total
supercurrent in the two normal regions are not the
same for arbitrary values of /

2
. And when /

2
is

chosen such that the total supercurrent becomes
the same in the two normal regions, it is found that
the contribution from the Andreev levels, or, separ-
ately, that from the scattering states, do not neces-
sarily equal in the two normal regions.

The supercurrent I
41

due to the scattering states,
and evaluated in the normal region N

1
, is given by
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Here
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The supercurrent I
42

due to the scattering states,
and evaluated in the N

2
region, is the same as

I
41

except that the arguments $/
32

of F
1

in
Eq. (C1) is substitued by $/

21
, and ¸

3
in Eq. (C4)

is replaced by ¸
1
.

We also have obtained the expressions for the
supercurrent due to the bound states in the two
normal regions. But we choose to present their
numerical results in this paper instead of their ex-
pressions, because of the length of these expres-
sions.
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