
Stack operations folding in Java processors

La-C.Chang
L. - R . Ton
M.-F. Kao
C .- P. C h u n g

Indexing terms: Java processors, Stack machines

Abstract: Traditionally, the performance of a
stack machine has been limited by the true data
dependency. A performance enhancement
mechanism, stack operations folding, was used in
Sun Microelectronics’ picoJava-I design, and it
can fold up to 60% of all stack operations. The
authors use the Java bytecode language as the
target machine language, and study Java
instruction folding on a proposed folding model,
the POC model, which is used to illustrate the
theoretical folding operations. Various practical
folding strategies based on the POC model are
introduced and evaluated. Statistical data show
that the 4-foldable strategy eliminates 84% of all
stack operations, and the 2-, 3-, and 4-foldable
strategies result in overall program speedups of
1.22, 1.32 and 1.34, respectively, as compared to a
stack machine without folding. Furthermore, the
4-foldable strategy is the most practical and cost
effective of a Java stack machine design with a
decoder width of 8 bytes. Circuit simulation
results show that a 100MHz 4-foldable folding
mechanism can be realized with 0 . 6 ~ CMOS
standard cells, or 240MHz with 0.251” CMOS
technology.

1 Introduction

The Internet has been widely used and network com-
puters [l] are being promoted to be the key component
in this application paradigm due to their simplicity,
reduced management effort, and low cost.

A Java stack machine has the advantage of small
code size, 1.8 bytes per instruction on average [2] as
compared to other CISC or RISC machines. No source
or destination register identifiers need to be assigned
for the instructions, making the instruction size small
[3]. However, all of the succeeding ALU or other stack-
related operations must be dependent on the previous
load or written back data. This inherent true depend-
ence severely limits the instruction level parallelism.
Sun Microelectronics proposed the folding technique

0 IEE, 1998
IEE Proceedings online no. 19982200
Paper first received 17th November 1997 and in revised form 2nd April
1998
The authors are with the Department of Computer Science and Informa-
tion Engineering, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu, Taiwan 30050, Republic of China

[2, 4, 51 as a method to avoid the unnecessary loads or
writes back to the stack. Before that, studies into stack
machine [3] folding were lacking, and the design results
revealed by Sun Microelectronics were not clearly elab-
orated. Stack operations folding (particularly for Java
bytecode [6]) still requires extensive study and the pur-
pose of this paper is to present both a theoretical study
and practical implementation issues.

In this research, we use trace driven simulation in
our performance study. Although Java is a popular
language [7], it is still too immature to have typical
benchmarks like the SPEC benchmarks. So we
gathered many Java programs to use as our
benchmarks, and we hope that these benchmarks will
serve as a representative sampling of typical Java
programs.

Most of our Java benchmarks are applets obtained
from Sun Microelectronics’ JDK (Java Development
Kit) [7] samples. These Java benchmarks can be run in
browsers such as Netscape Navigator or JDK
appletviewer. Only one benchmark, the Java compiler
(javac), is an application which can be run in the com-
mand line. We categorise these benchmarks into three
types: the first is unimution, which makes web pages
look more attractive; the second is interaction, such as
web games; and the last is performance benchmark,
which tests the performance of a computer, such as
Caf f eineMark and Jstones. The summary of these
benchmarks is shown in Table 1.

To analyse the performance gain associated with the
eliminated stack operations or execution cycles, we
need to calculate the theoretical performance upper
bound that stack operations folding can achieve. Then,
a practical folding strategy is suggested, based on the
simulation results of how closely the performance of
each strategy can approximate the upper bound. The
theoretical performance upper bound is calculated by
first finding the theoretical foldable instruction groups,
then eliminating all foldable stack operations and
counting the resulting execution cycles. Finally, the
speedup upper bound is calculated accordingly. The
following equation calculates the speedup upper bound
for stack operations only:

speedup upper boundStackOpsOnly

- ExecutionTimeAllstackOps
-

EXecutionTimeAfterPerfectFoidzng
where ExecutionTime,,l,,,,,, is the execution cycle
counts of all stack operations, and ExecutionTimeAfter.
pefectF,,l&,g is the execution cycle counts after perfect
folding of all stack operations.

333 IEE Proc-Comput. Digit. Tech.. Vol. 145, No. 5, September 1998

Table 1: Java benchmarks summary

Types Benchmarks

Animator

Ba rCha rt

Blink

Clock

Fractal

Led

NervousText

R 0 C-F I a g

SimpleGraph

SortDemo

ArcTest

Ataxxlet

CardTest

DitherTest

D r a wTest

Dugout

GraphicsTest

Interaction Graph Layout

Lceblox

ImageMap

Jumping Box

MoleculeViewer

Spreadsheet

TicTacToe

WireFrame

Javac TicTacToe.java

Caffeinemark

Jstone

Li n packJava

Plasma

Animation

CPU performance
benchmark

Instruction counts
(millions)

4.5

0.5

3.0

4.2

2.5

0.5

1.7

4.9

0.4

7.1

1 .o
80.0

0.8
33.8

20.3

31.1

1.2

16.1

17.0

6.6

3.2
1.2

3.0

1.6

2.0

20.3

30.9

5.2

7.8

3.5

The following equation calculates the overall spee-
dup:
speedup upper boundoverall

- ExecutionTime Allo,,
-

E X e c U t ~ o n T ~ m e A 1 l A f t ~ ~ P ~ ~ f ~ ~ t F o l d z n g

where ExecutionTimeAllop, is the execution cycle counts
of all operations, and Execution T i i n e A l l ~ ~ e r P e r ~ e c t ~ ~ ~ ~ i ~ ~ is
the execution cycle counts of all operations after per-
fect stack operations folding.

2 Stack operations folding

In this Section, some terminology is defined, and the
basic folding operations are introduced.

2. I Definitions
Before we present the details of the POC model of
stack operations folding we will introduce some folding
related definitions:
Stack operations folding: The ability to detect some
instructions with true data dependency in the instruc-
tion flow of a stack machine and execute these instruc-
tions collectively in some way, like a single compound
instruction.
Stack Operations folding group: A collection of

334

contiguous stack instructions that can be folded
together.
Primary instruction: The instruction in a folding group
that consumes and produces data (i.e. ALU instruc-
tions), transfers control (i.e. branch instructions) or
invokes a microprogram. If none of the above exists in
a folding group, a null primary instruction (NOP) will
be assigned.
Auxiliary instruction: An instruction in a folding group
that is not a primary instruction (i.e. instruction that
provides the source address or destination address to
the primary instruction).

Considering the operations related to the operand
stack and their characteristics, the Java bytecode
instructions can be classified into three types: producer,
operator and consumer. Their property and percentage
of occurrences in the benchmarks are listed in Table 2,
and their definitions are as follows:

Table 2: Instruction types for Java stack operations
folding

Type Symbol Description Percentage (%)

Producer P push constant/load 47.14

OE execution unit 10.87

0, branch type instruc- 11.54

from LV

instructions

tions
Operator

0, complex type instruc- 22.19
tions

instructions
OT termination type 3.97

Consumer C store into LV 4.29

Producer (P) : An instruction that transfers data from
Constant Register or Local Variable (but not Array or
Constant Pool) to the operand stack.
Operator (0): An instruction that gets data from the
operand stack (may be dummy) and then performs the
different tasks based on the following three operator
subtypes:
OE - ALU type operator that writes the result back to
the operand stack.
OB - Branch type operator that may jump to the target
address based on the branch decision.
Oc - Complex type operator (including array access,
constant pool access, invokevirtual, ...) which is imple-
mented by micro-coded ROM. (It may or may not
write back the result to the operand stack.)
OT - Termination type operator which is unable or
finds it hard to join the folding operation (like iinc,
goto, athrow, ...), or it is a complex type operator but
with software emulation.
Consumer (C): An instruction that consumes data
from the operand stack, and stores data back into the
local variable (but not Array or Constant Pool).
Within a folding group, the operator 0 is treated as the
primary instruction. Both the producer P and con-
sumer C are treated as auxiliary instructions.

2.2 Stack operations folding procedure
Most operations of a stack machine must push or pop
data to or from the top of its stack (TOS). This will

IEE Proc -Comput Digit Tech, Vol 145, No 5, September I998

cause a serious data hazard due to true data depend-
ence. Typical stack operations before folding are listed
below:
Step 1: The Producer writes data accessed from the
constant register or local variable to the top of the
operand stack.
Step 2: The Operator gets data from the top of the
operand stack.
Step 3: The Operator (ALU type instructions, branch
type instructions or complex type instructions) operates
on the accessed stack data.
Step 4: The Operator writes the result back to the oper-
and stack as needed.
Step 5: The Consumer gets the data from the operand
stack and writes it back to the local variable.
This procedure is also shown on the left-hand side of
Fig. 1, with the numbers showing the execution flow.

If the stack instructions are of true data dependency
to form a folding group, then we can fold them
together by redirecting the data provided by the pro-
ducer to the corresponding primary instruction, as
depicted by step 1’ on the right hand side (after fold-
ing) in Fig. 1. The execution flow will be changed to
the following after folding:
Step 1’: The Operator gets data directly from the source
of producer.
Step 3: the Operator (ALU type instructions, branch
type instructions or complex type instructions) operates
on these data.
Step 5’: The Operator writes the execution result back
to the destination of the consumer directly as needed.
In this case, the number of execution steps is reduced
from five to three. Hence, the system performance can
be increased greatly by folding.

foldable, the folded result instruction will become the
new instruction N , and will be checked with the new
following instruction N + 1, repetitively, until the end
of folding.

The definitions of P, 0, and C have been presented
in Section 2.1. The other notations are as follows:
6: Folding operator of instruction N and N + 1.
Psn, wn/Tos, wnf: Producer with source Sn, data width Wn
and destination TOS, data width Wn’.
Osn, wn/D?, wn,; Operator with source Sn, data width Wn,
and destination Dn, data width Wn’.
C,,, wn/LK wnf: Consumer with source TOS, data width
Wn, and destination LV, data width Wn’.

One of two possible relations exists between two con-
secutive stack instructions. These two possible relations
are:
SI: Instructions N and N + 1 are general pipelined
serial instructions that are not foldable.
FL Instructions N and N + 1 are foldable stack instruc-
tions.
The possible next state after the folding operation may
be either of the following:
C: The result of folding instructions N and N + 1 may
be checked for further foldability with the next instruc-
tion.
E: The result of folding instructions N and N + 1 can-
not be folded any further, and the folding group check-
ing can be terminated.
An example of folding using these notations is given
below:
OE,,,, w2/02, w2dFIIC: The folding result of instructions N
and N + 1 is 0, type with source S1, data width W2
and destination 02 , data width W2’. These two instruc-
tions are foldable, and they can be checked for further
folding with the next instruction in the program. 3 POC model of stack operations folding

In this Section, the POC model of stack operations
folding, the state diagram of folding rules checking,
and the folding algorithm are presented.

3.7 POC model
To give a clear overview of stack operations folding, a
generic POC model is constructed. The basic concept
of the POC model is that it checks the instructions N
and N + 1 to see whether they can be folded together
(based on the instruction type, operand source,
operand destination, data type and width). If they are

Fig. 2 shows the foldability check for contiguous
instructions N and N + 1. The foldability check will
continue if the current checked result is in state ‘C7.
Otherwise, the process stops if the resulting state is ‘E .
For example, if the sequence of bytecode instructions is
11-14, then their type notations are as follows:

I1 : pt c o n s t -2,1 /TO SI 1

14:CTOS,1/LV(zndez2),1

Il:const_2

I 3 :iadd

14:istore index2

constant register

local variable

I
A execution unit 1 0

P
3
P
Q

?.

i 5
{FH*j local variable

U

before folding

Fig. 1 Stuck operations folding

IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 5, September 1998

constant register

local variable

0 U I’=l fold 2
execution unit

z P E)

g .---- (0) (OB)

5’=4 fold 5 (OC)

(C) (Lv)

2 operator branch unit ----,
X

complex instr.

consumer local variable

U
after folding

335

Instruction N+l 1

CTOS,WI / CTOS WI / c T O S , W l /
CTOS W I /

CTOS,WI /LV W I ’ Lv,wr~~SIIE Lv ,wi , /S I LV,WI’/SI LV w i . / S I

E /E /E

6

cT0S.Wl i
CTOS,WI ILV.

LV wiJ SIIE Wl’Isl/E

Fig.2
Note 1 Assume that the two contiguous instructions have the matched data type Otherwise they are in SUE state
Note 2 Assume that the contiguous instructions have the matched data width
Note 3 Assume that the machine is a stsack machine, and the true data dependency is required in stack operations folding as defined in Section 2 1 P-P type combi-
nation is treated as serial instructions because of the lack of true data dependency

Foldabihty check for contiguous instructions Nand N + 1

The folding process proceeds as follows:

TOS,1

I4 c T O S , l /

, E / con st-2

+ L V (z n d e z l)

,2 /TOS,1

F I / C

E / i con s t -2

+ L V (i n d e z l) ,

2 / L V (z n d e z 2) I , i / F I / E

In Step 1, the two providers Piconst ~ , I /TOS, I and PLvIin-
dexlj,l/ToS,I are combined to becomea single, larger pro-

general pipdined serial relation (SI) but with a continu-

folded with oE/Tos,2/Tos,! to form a new instruction O,,

continually foldable state C. In that step, the sources of
iadd have been changed to iconst-2 and LV (indexl).
In the final step, the folding operation combines OEllcon-

vider Piconst 2+LV(mdexlj,2 iTOS2. The new provider is a

ally state C. In Step 2, iconst-2+LV(zndexlj,2~TOS,2 is

iconst~2+LV(zndexl),2/TOS,J with relation (FI> and

J t 2+L V(mdexI) ,2iTOS, 1 OE/icon-
st 2+LVV(indexI),Z/LV(indexZj,I which is (Fr> but

and cTOS,IiL V(index2), I into

should not be further checked for foldability (as indi-
cated by state E>. As a result, the four instructions are
combined into a single instruction iadd with the two
source operands iconst-2 and LV (indexl), and the
destination LV (index2).

3.2 State diagram and algorithm
The state diagram of stack operations folding as pre-
sented with the POC model is shown in Fig. 3 . In this
state diagram, the new notations, State’, State-OB,
State-O,, StatePO,, State-C, are used for the different
intermediate states during folding. This model allows
as many contiguous providers (P) to provide sources to
the operator as possible, and then enter State-OE,
State-OB, State-Oc, or State-C upon encountering an
OE, OB, Oc or C, respectively. In the State-0, and
State-Oc states, if the upcoming input is a consumer
(C) , then the state will not change, but only the folded

336

instruction will have a different destination address.
That is because the real operation is performed by the
primary instruction (0), and all other auxiliary instruc-
tions (P or C) will redirect the data to this primary
instruction. All other inputs for StatePO,, State-OE,
State-Oc and StateC will stop the folding rule check,
because the stack operations folding group has already
ended, and cannot be folded with other instructions
anymore. The input OT will terminate the folding oper-
ation in any state of Fig. 3.

/ start foldina r u h

Fig. 3 N-folduble folding rule check

In Fig. 3, if the number of examined bytecode
instructions in State-O,, State-O,, State-O,, and
State-C is greater than or equal to two, then those
instructions are foldable and they form a folding
group. The primary instruction in a folding group must
be one of OB, O,, 0, or NULL. Its input is provided
by P(s), and its result is consumed by C(s).

The algorithm to determine how many bytecode
instructions can be folded together is listed below. The
complexity of this algorithm is O(N).
Algorithm Folding-Check (I, N>
Input: I (an instruction array in the range A4 >= N),

IEE Proc -Comput Digit Tech, Vol 145, No 5, September 1998

N (an integer representing N-foldable strategy).
Output: foldable# (foldable stack instructions number
under N-foldable strategy).
begin

foldable# := 1; {default iJ one instruction to be
issued}
lfirAt := all; {initialise the first instruction for fold-
ing check}
Isetond := 421; {initialise the second instruction for
jolding check}
k := 2;
while k <= N do

lreJu,Jxly := IfiuTt 6
i f x = ‘FT then foldable# := k;
i f y = ‘c‘ then

{folding operation)

Ifrr,, := L u l t ;

Iyecond := I[k + 11;
k : = k + l

else break
Issue 411, 1[2], ..., Woldable#] instructions as a
folding group

end

4 Folding strategies and performance

In this Section, folding strategies of different degrees of
folding are proposed and examined based on the
benchmark trace analysis. Performance in terms of
reduced stack operations and speedup of the folding
strategies are described. Finally, the cost and complex-
ity issues of the decoder are discussed.

4. I Proposed folding strategies
Based on the POC model of stack operations folding in
Section 3, the number of combined P, 0, and C opera-
tions in a single folding group can range up to thou-
sands. Considering the costiperformance ratio and the
limited time budget in folding, it may be necessary to
fold only up to a small number of instructions. Based
on the benchmark program traces, it is found that most
of the foldable patterns consist of only 2 to 4 bytecode
instructions (see data in Section 4.2). So we propose to
examine in particular three folding strategies in which
the foldable bytecode instructions are 2, 3, or 4, respec-
tively. These %-foldable, 3-foldable, and 4-foldable
strategies are described below:
2-foldable: Folds two bytecode instructions. The fold-
ing group can be any one of the proposed foldable pat-
terns as shown in Table 3.

Table 3: Proposed 2-foldable patterns

I1 12

P 0,
P OB
P OC
P C
OE C

Or C

3-joldable: Folds up to three bytecode instructions.
Besides the folding capability of the 2-foldable strategy.,

the folding group may be any of the
Me patterns as shown in Table 4.

Table 4: Proposed 3-foldable patterns

13 I1 12

P P OF
P
P

P

P

0,
OC

P

P

OE

0,
C
C

0,
OC
C
C
C
C

4-folduble: Folds up to four bytecode instructions.
Besides the folding capability of the 3-foldable strategy,
the folding group may be any of the proposed 4-folda-
ble patterns as shown in Table 5.

Table 5: Proposed 4-foldable patterns

I1 12 13 14

P P P 4
P P P 0 0

P P P OC

P P 0, c
P P OC C
P OE C C
P OC C C

0, C C C
OC C C C

In addition to the 2-, 3- and 4-foldable patterns, 5-,
6- , ..., n-foldable patterns (n may be any positive
number, but in our benchmark traces, the maximum n
found is 11) are also possible. We do not include those
foldable patterns in our study because of the need for a
very complex decoder. In Section 4.2, we present the
projected performance bounds of the different folding
strategies, including the theoretical n-foldable folding.

50 r

7 451
0 animation

I interaction

CPU

U average

_I

2-foldable 3-foldable 4-foldable n-foldable
Fig. 4 Percentage of elcmmated stack operations cn our benchmarks
n-foldable means theoretical perfect folding

4.2 Performance of folding strategies
Fig. 4 shows the percentage of eliminated (folded) stack
operations in our benchmark programs [SI. As shown
in Table 2, the percentage of all stack operations (P

337 IEE Pioc -Comput Digit Tech, Vol 145, No 5, September 1998

type and C type as indicated by Sun Microelectronics
141) is about 51% of the instruction count. The average
percentage of stack operations eliminated by the fold-
ing strategies are 31%, 41%, 43% and 44% for 2-, 3-, 4-
and n-foldable, respectively, of all the instructions. As a
result, if 4-foldable is adopted, the instruction mix per-
centage of stack operations will be reduced from the
original 51% to 14% ((51-43)/(100-43)) in our bench-
marks.

Fig. 5 shows the eliminated stack operation ratios
with respect to all stack operations only. In this Figure,
the folding ratio for the piCOJava-I architecture [2, 4, 9,
IO], as announced in October 1996, is also shown. Note
that the Sun Microelectronics benchmark suite is differ-
ent from ours.

lo0l RA% 85%

80 z
vi
o_

f 60
I

Q

1

m
4-

$ 40
a,

C
+-

- E
20

0

2-foldable 3-foldable 4-foldable n-foldable* sun's**
Fig. 5
stuck operations
*c-foldable means theoretical perfect folding

Percentage of eliminated stuck operations with respect to all

Sun's picoJava-I with benchmark suite which is different from ours

4.3 Speedup projection of folding
The Java bytecode instructions are typically executed
on a Java Virtual Machine [6]. To estimate the pro-
gram execution speedup due to folding, the instruction
execution cycles for the 17 instruction types [8] must be
assumed. The other necessary assumptions are that
there is no cache miss and the pipeline never stalls.
Figs. 6 and 7 show the speedup of executing stack
operations only and the overall speedup that each fold-
ing strategy can contribute, respectively.

6.95

.g 7'

E? 6 -

c? 5 -

% 3-

0

- +.

4 -
Y

LD
c
0 2-
Q < 1 -

p 0"
no-folding 3-foldable n-foldable* Sun's**

2-foldable 4-foldable
Fig.6
.p-foldable means theoretical perfect folding

Speedup of executing stuck operations only for each strategy

Sun's picoJava-I with benchmark suite which is different from ours

4.4 Design issues
The decoder width has a great impact on the efficiency
of the folding strategies. Fig. 8 shows the percentage of

338

eliminated instructions against the decoder width for
each folding strategy. It is obvious from this Figure
that a bytecode decoder width of up to eight bytes, a
moderate amount, is sufficient for any folding strategy.
As the number of foldable stack operations decreases,
the required decoder width may also be decreased with-
out hurting the performance too much.

1.4

1.3
Q

m
4 1.2

z: 1.1

&

- -
$ 1.0

0.9

n~
Y."

no folding 2-foldable 3-foldable 4-foldable n-foldable"
Overall speedup for each strategy fig.7

n-foldable means theoretical perfect folding

g 45
2 35

5 30
E 25 g 20

15 -
-g 10

E 5
E o
75 2-foldable 3-foldable 4-foldable n-foldable*

rig. 8 Percentage of eliminated instructions against decoder width
n-foldable means theoretical perfect folding

1 .oo 1 I I I I

2 3 4 5 6 7 8 > = 9
decoder width, bytes

Fig. 9
strategy
-0- 2-foldable

Overall program speedup against both decoder width and folding

-0- 3-foldable
-A- 4-foldable
-0- n-foldable (i.e. theoretical perfect folding)

We next focus on the achievable speedup of pro-
grams, the most persuasive performance index. Fig. 9
shows the overall program speedup against both the
decoder width and folding strategy. These curves show
that the 3-foldable strategy with a decoder width of 6
bytes is at the knee point, a performance/cost design
choice. This may not hold when designing a real Java
processor, however. Because an instruction fetch width
of 8 bytes is not too wide and most instruction caches
have a line size of a power of 2 bytes, a decoder width
of 8 bytes is the natural choice without much extra cost

IEE Proc -Comput Digit Tech, Vol 145, No 5, September 1998

for multiple instruction cache accesses, buffering, and
byte extraction. Furthermore, the incurred extra
decoder hardware cost in going from 6-byte decoding
to 8-byte is insignificant compared with the whole Java
processor design. Hence, the suggested decoder width is
8 bytes, and this width will be used in the subsequent
discussion. For an 8-byte decoder width, the perform-
ance gained from 3-foldable to 4-foldable is that addi-
tional (43.12% - 40.77%) = 2.35% instructions can be
eliminated. In our preliminary designs, the decoder cir-
cuit complexities for 3-foldable to 4-foldable strategies
are comparable to a fixed decoder width, since the Java
bytecode instruction length are variable in reality.
Hence, we suggest that the 4-foldable strategy with a
decoder width of 8 bytes may be the best choice for
practical designs. The richer-foldable strategies with
any decoder width are not recommended, because the
statistical data show that only 44.18% of instructions
can be eliminated.

5 Design of folding mechanism

In this Section, the POC model of stack operations
folding is implemented using the VLSI standard cell
library. This implementation is necessary in evaluating
the delay time of the actual folding circuit, which is a
part of the instruction decoder.

5.1 Logic design
According to the POC model, one can see that the
same folding procedure for two instructions can be
applied repeatedly to fold more than two instructions.
For the same reason, if we implement the folding func-
tion into a basic 2-fold folding unit, then the higher
degree of folding can be realised by simply cascading
such folding units. In this implementation, we use four
bits to represent the POC type of each instruction.
Table 6 lists the instruction types for Java stack opera-
tions folding and their bit representations.

Table 6: Bit representation of instruction types for POC
model

P 0 C

bit 3 bit 2 bit 1 bit 0
Type Symbol

Producer P 1 0 0 0
OE 0 1 0 0

OB 0 0 1 0

oc 0 1 1 0
Operator

OT 0 0 0 0

Consumer C 0 0 0 1

As shown in Fig. 10, an n-foldable folding logic can
be constructed using only basic folding units. An obvi-
ous advantage of this is its excellent scalability. Each
folding unit has three inputs and three outputs. They
are:
Inputs:
(1) 4-bit POC, bus from instruction decoder or previ-
ous folding unit for instructionN type bits.
(2) 4-bit POCN+, bus from instruction decoder for

(3) One continue line to indicate the current folding sta-
tus CIE as shown in Fig. 2.

type bits.

IEE Pvoc -Comput Digit Tech Vol 145, No 5, September 1998

Outputs:
(1) Foldable line to indicate whether the input instruc-
tions are foldable or not.
(2) 4-bit POCcombjned bus representing the type of the
instruction resulting from folding, which is to be
checked for further foldability.
(3) One continue line to indicate if the resulting instruc-
tion can be checked for further foldability with the fol-
lowing instruction.

...

*..
Fig. 10 Scalublejblding logic architecture

L

0 continuei,
I

Fig. 11 Schematic view of the folding unii

Fig. 11 shows the gate-level implementation of the
folding unit. As shown in Fig. 11, the POCcombined will
equal POCN+I if the first input instruction is of P type
and the second input instruction is not of 0, type.
Otherwise, the POC, will be selected. And the foldable
and continue signal can be generated using the follow-
ing formula:
foldable = (POCN [3] . (POCN+1 [l] + POCN+I [2]) +
P0CNtl [O] . (POC, [3] + POC, [2])) . continue,
continueout = (POC, [3] . (POCN+l [3] + POCN+l [2] +
POC,+I [l]) + POCN+l [O] . POC, [2]) . continue,
We use negative logic devices to implement the above
formula. This is necessary if a very high clock fre-
quency is required.

5.2 Delay calculation
To calculate the timing overhead of introducing the
folding circuit, we used the Cadence Verilog-XL v2.2.1

339

and the Verilog Delay Calcul v4.12 to calculate its
delay times. The sta ary used is the COM-
PASS 0 . 6 ~ cell library with a SPTM (single poly tri-

In this library, there are two
performance (HP) and high

density (HD). To p he delay more accurately, the
delay calculation uses the more accurate Verilog ISM
(input slope model) model with both types of cells
instead of the linear model. The delay calculation envi-
ronment is shown in Table 7. The results for both HP

s are shown in Fig. 12. If we are to
implement the 4-foldable strategy, the corresponding
delay is 3.62ns or 6.74ns for HP or HD core cells,
respectively. Assuming that the other delay time for
wiring, gates and latches is less than 6ns, then the 4-
foldable strategy can be implemented to run at a clock
speed of 100MHz.

Table 7: Environment for Verilog delay calculation

Options HP core cells HD core cells

Calculation mode

Library name

Placement sites

Process

voltage

Tempera t u re

Iteration slew precision

Rise slew time

Fall slew t ime

estimate

cb60hp231 d

1000

typical

5.000

25.000

0.010

0.500

0.500

estimate

cb60hd231d

1000

typical

5.000

25.000

0.u10

0.500

0.500

25 r 23.06

;fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold
m a . number of foldable instructions

Fig. 12
-0- HP core cells
-A- HD core cells

Deluy time for folding circuits with various degree offoldubrbty

6 Conclusion

In this paper, we have focused on solving an inherent
problem of the stack machine that handles instruction
level parallelism; the true data dependency. A method
to deal with this problem, stack operations folding, was
presented. A generalised stack operations folding
model, the POC model, was also introduced. Various

folding strategies based on this POC model were pro-
posed and evaluated. Simulation results show that 2-,
3-, 4-, and n-foldable strategies can eliminate 319’0,
41%, 43%, and 44% of stack operations in the entire
Java program trace files, respectively. Compared with
the theoretically perfect folding that can eliminate 44%
of such stack operations, the 2- to 4-foldable strategies
can achieve 70%, 94% and 98% efficiencies with much
less hardware cost. If we translate the instruction
counts into clock cycles, the corresponding speedups
are 1.22, 1.32 and 1.34, respectively, as compared to a
traditional Java stack machine without stack opera-
tions folding support.

The proper decoder width is also studied based on
the many folding strategies of various degrees. Simula-
tion data shows that the 4-foldable strategy is a good
choice if an 8-byte decoder width is used. A sample
folding unit design based on the POC model is then
presented, and delay calculation shows that this folding
mechanism can viably be run at l00MHz when
designed with 0 . 6 ~ CMOS standard cells.

In this study, we have presented the performance
analysis of stack operations folding, the POC model,
the POC based folding algorithm, and the folding cir-
cuit implementation. Simulation results show that the
POC based stack operations folding design is very cost
effective due to its simplicity.

7 Acknowledgments

This paper presents partial results of a research project
financed by the Computer and Communications Labo-
ratories of Industrial Technology Research Institute of
ROC under contract no. G3-86040.

8

1

2

3
4

5

6

7

8

9

10

References

LENTCZNER, M , and TECHNOLOGY, G ‘Java’s virtual
world ’ Microprocessor Report, March 1996
SUN MICROELECTRONICS ‘picoJava TM I microprocessor
core architecture’. http://www.sun com/sparc/whitepapers/wp-
001401
KOOPMAN, P ‘Stack computer’ http Ilwww cs.cmu edu/
O’CONNOR, J M., and TREMBLAY, M ‘PICOJAVA-1 the
Java virtual machine in hardware’, IEEE Micro, 1997, 17, (2), pp
45-53
SUN MICROELECTRONICS ‘Sun blazes anpther trail - intro-
ducing the microJava’” 701 microprocessor http //www sun -
com/sparc/hottopics/niicroJava html
LINDHOLM, T , and YELLIN, F ‘The Java’“ virtual machine
specification’ (Addison-Wesley, 1996)
GOSLING, J , JOY, G , and STEELE, G ‘The Java’” language
specification‘ (Addison-Wesley, 1996)
TSENG, H M , TON, L R , KAO, M F ,
SHANG, S S , and CHUNG, C P ‘Perfprmance enhancement
by folding strategies of a Java processor International confer-
ence on Computer systems technology for industrial applications -
Internet and multimedia, CSIA97, Hsinchu, Republic of China,
April 1997, pp 286-293
TURLEY, J ‘Sun reveals fiist Jala processor core ’ Microproc-
essor Report, Octobei 1996
CASE, B ‘Implementing t h ~ Java virtual machine ’ Microproces-
sor Report, March 1996

CHANG, L C ,

340 IEE Pvor -Comput Digit Tech, Vol 145, No 5 September 1998

http://www.sun

