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Abstract 

Deriving the minimum and maximum global snapshots is very useful for some error detection problems in distributed 
programs. Several researchers, e.g., Groselj, Chen and Wu, have shown that the minimum and maximum global snapshot 
problems are linear-time reducible to the maximum constant-ratio network flow (MCNF) problem, here defined as the well- 
known maximum network flow problem with m = O(n), where m is the number of edges and n is the number of vertices in the 
given flow network. In this paper we show in a reverse way that the MCNF problem is also linear-time reducible to these global 
snapshot problems. Thus, we can conclude that the global snapshot problems are “as difficult as” the MCNF problem in terms 
of time complexity. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Error detection and debugging are critical tasks in 
developing distributed programs. Many research re- 
sults [3,4,8] suggest that a distributed program usu- 
ally adheres to certain invariant conditions to func- 
tion properly. For example, in a distributed program, 
several tokens may be distributed over the processors 
(e.g., the token may represent the number of resources 
and critical sections), and the number of these tokens 
is bounded in a range at any snapshot, regardless of 
how tokens are moved over different processors. The 
conventional means of detecting whether or not the 
above condition holds are to derive the minimum or 
maximum number of tokens for all possible snapshots. 
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This problem is referred to as the minimum or maxi- 
mum global snapshot problem [6]. 

Groselj [6] recently proposed an interesting method 
to derive the minimum global snapshot. In this method, 
he reduced this snapshot problem to a maximum 
constant-ratio network flow (MCNF) problem. The 
MCNF problem is defined herein as the well-known 
maximum network flow problem with m = o(n), 
where rn is the number of edges and n is the num- 
ber of vertices in the given flow network. Chase and 
Garg [l] independently obtained similar results. Later, 
Chen and Wu [2] proposed a general technique, called 
normalization, for deriving both minimum and max- 
imum global snapshots. According to their results, 
these snapshot problems are linear-time reducible to 
the MCNF problem. 

Above investigations only point out that the time 
complexities of the minimum and maximum global 
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snapshot problems will not be higher than those of 
the MCNF problem. However, whether or not the 
time complexities for the above snapshot problems 
can be lower than those of the MCNF problem 
remains unknown. To resolve this question, this paper 
shows in a reverse manner that the MCNF problem 
is also linear-time reducible to these global snapshot 
problems. Thus, we can conclude that the above global 
snapshot problems are “as difficult as” the MCNF 
problem in terms of time complexity. 

The rest of this paper is organized as follows. 
Section 2 describes our model and the notations used 
in this paper. Sections 3 and 4 discuss the time 
complexities of the minimum and maximum global 
snapshot problems, respectively. Concluding remarks 
are finally made in Section 5. 

2. Model and notations 

A distributed program consists of processes com- 
municating via a network. These processes share no 
memory and no global clock. Pairs of processes must 
communicate via network channe2s. In addition, the 
state of such a program is distributed over these 
processes and channels in each snapshot. 

Events 
The states of processes change only when events [7] 

(atomic actions) are executed. Three kinds of events on 
each process are of relevant concerned: 
(1) internal event: performs a local computation; 
(2) send event: sends a message to another process via 

the channel; and 
(3) receive event: receives a message from another 

process via the channel. 
Note that each process should start with an initial 
internal event and end with a$nal internal event. 

Next, the chronological order of events is defined 
by assuming that the event ei happens before event ej , 

denoted by ei + ej , if and only if one of the following 
conditions holds [7]: 

(1) 

(2) 

(3) 

events ei and ej occur in the same process and ei 
occurs before ej ; 
event ei is the sent event of a message and event 
ej is the receive event of the same message; and 
another event f?k exists such that ei + ek and 
ek --f ej. 

Internal event 

Send event 

Receive event 

Initial internal event 

Final internal event 

Internal arc of 
message arc 

sink part 

Fig. 1. Event graph of a run for a distributed program 

Global snapshot 
Consider a possible run for a distributed program. 

The system can proceed from one state to another by 
executing events. A set EC of events are said to be 
consistent if event e E EC and event e’ -+ e imply that 
e’ E EC. A global snapshot is a collection of states, 
one from each process and channel, immediately after 
executing a consistent set of events. Herein, of relevant 
concern is the total number of tokens. Therefore, a 
state value can actually be represented by its token 
number. In addition, the minimum (maximum) global 
snapshot is the global snapshot with the minimum 
(maximum) number of tokens among all possible 
snapshots. 

Event graph 
An event graph is used to represent a run for a 

distributed program under the following conditions: 
(1) a vertex denotes an event, and (2) if event ei + ej 
and no event ek exists such that ei + f?k and ek + e 
there is a corresponding arc, denoted by (ei , ej ), ‘2 

from ei ‘s vertex to ej ‘s. For example, Fig. 1 illustrates 
an event graph. An arc (ei, ej) is referred to as a 
message arc if it corresponds to an in-transit message 
from event ei to ej. Otherwise, the arc is referred to as 
an internal arc because it corresponds to an internal 
state transition inside a process. For each message 
arc a, S, denotes the number of message tokens; for 
each internal arc a = (ei, ej), S, denotes the token 
number of the corresponding process after execution 
of the event ei and before the event ej. In addition, 

* In this paper, we use (u, v) to represent ordered pairs and use 

(u, V) to represent unordered pairs. 
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source part 

PU P(u,v) Pv P(v.w) Pw 

(4 @) 

cut corresponding 
t0 CN 

Fig. 2. (a) A common graph. (b) The event graph translated from the graph in (a). 
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the vertex corresponding to an initial (final) internal 
event is called an i-vertex (f-vertex). Moreover, the 
arc incident to i-vertex (f-vertex) is called an i-arc 
(f-arc). Clearly, each process has an internalpath from 
its i-vertex to its f-vertex without going through any 
message arcs. 

cuts 
A cut in an event graph H partitions the vertex set U 

into two disjoint sets such that one, called the source 
part and denoted by US, contains all the i-vertices. 
Meanwhile, the other, called the sink part and denoted 
by U,, contains all the f-vertices. The cost of a cut C 
is 

cost(C) = c s a. 
VQJa: a=(u,u), 
UEU.7. VEU, 

For example, in Fig. 1, the costs of cuts Ct , C2 and C3 
are 14, 12 and 16, respectively. 

A cut of the event graph is consistent if and only if 
the set of all events in the source part are consistent. 
From this definition, we can infer that each consistent 
cut corresponds to a global snapshot and the cut cost is 
actually the number of tokens of the global snapshot. 
Obviously, for each consistent cut C, each arc in C 
must be from the source part to the sink part. 

The minimum (maximum) consistent cut is the con- 
sistent cut with the least (largest) cost among all con- 
sistent cuts. Also, the minimum (maximum) consis- 
tent cut cost is the cost of the minimum (maximum) 

consistent cut. Clearly, the minimum (maximum) con- 
sistent cut corresponds to the minimum (maximum) 
global snapshot. 

Global snapshot model 

In the proposed model, the event graph with arc 
costs is assumed to be given in advance. Garg and 
Waldecker 141 suggested that in practice, for each 
event in each process Pi, Pi sends its token number 
to a process, called the checker process. This process 
runs an algorithm for deriving the minimum or maxi- 
mum global snapshot. 

3. Minimum global snapshot 

This section shows that the MCNF problem is 
linear-time reducible to the minimum global snapshot 
problem. Given a flow network N (see Definition 1 be- 
low), the linear-time reduction algorithm given below 
constructs an event graph H such that the mm-cut ca- 
pacity of N equals the minimum consistent cut cost of 
H. Fig. 2 presents an example of the reduction. 

Definition 1. A flow network N = (V, E) is a di- 
rected graph in which each edge (u, v) E E has a non- 
negative capacity c(u, u) > 0. One node s is desig- 
nated as the source and another node t is designated 
as the sink. A cut is a set of arcs all incident to two 
disjoint vertex sets partitioned from V, where one set 
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with node s is referred to as the source set, and the 
other with node t is referred to as the sink set. The ca- 
pacity of a cut C, denoted by capacity(C), is the total 
capacity of all arcs (on C) from the source set to the 
sink set. A minimum cut of the flow network is the cut 
with the least capacity. The least capacity is also called 
the mm-cut capacity. 

Reduction Algorithm. 
1. 

2. 

3. 

4. 

5. 

6. 

For each vertex u in N, create the corresponding 
internal path Pu. This operation takes 0 (n) time. 
For each pair of vertices (u, u), if (u, V) or (v, U) 
is in N, create the corresponding internal path 
P(u,u) (or, equivalently, P(,,,)). This operation 
takes O(m) time. 
For each internal path, add two internal events such 
that the path is divided into three parts: the i-arc, 
the middle part, and the f-arc. All message arcs 
added below must have their vertices incident to the 
middle parts. This operation takes 0 (m + n) time. 
For each internal path P(u,v), create a message 
arc a(,,,) from Pc~,~) to Pu and a message arc 
a(,,,) from Pc~,~) to Pu. This operation takes O(m) 
time. 
Set the cost of f-arc of Ps and i-arc of Pt to oo, 
where s is the source and t is the sink of N. Set the 
costs of other i-arcs and f-arcs to 0. Set the costs 
of all other internal arcs (in the middle parts) to oo. 
This operation takes O(m + n) time. 
For each message arc a(,,,), if (u, V) is in N, set 
s aW) = c(u, v); otherwise, set &(,,,) = 0. This 
operation takes 0 (m) time. 

[n the above reduction algorithm, each consistent 
cut CH in H is said to correspond to a cut CN in N, 
denoted by CH I+ CN, if and only if the following 
property holds: 

Al. For each vertex u in N, 2) is in the source (sink) 
part of cut CN if and only if CH cuts across the i-arc 
(f-arc) of the internal path P,, . 

For example, in Fig. 2, CH I+ CN. Note that since 
the source s (the sink t) is always in the source (sink) 
part, CH ImiSt dWayS CUtS aCrOSS the i-aIT Of P, (the 
f-arc of Pt). Theorem 2 proves that the minimum 
consistent cut cost of H equals the mm-cut capacity 
in N. 

Theorem 2. For a given jlow network, its min-cut 

capacity equals the minimum consistent cut cost in 

the event graph constructed from the above reduction 

algorithm. 

Proof. Let N be the given flow network and H be 
the reduced event graph. In addition, let KH be the 
set of all the consistent cuts in H, K,++N be the 
set of all cu_ts in KH, that correspond to some cut 
in N, and KH-N be KH - KH++N. In this proof, 
it obviously suffices to prove that the following two 
properties hold: 

Bl. For each consistent cut CH in KUH++N. 

COSt(c’l-r) = 00. 

B2. Among all consistent cuts CH in KH-N, 

vcHF&iTIN (COSt(CH)) = E (c~pucity(CN))* 

This holds if the following two properties hold. 

B21. For each cut CN, there exists at least one CH in 
KHAN such that CH t+ CN. 

B22. For each cut CN , 

Properties B21 and B22 imply Property B2 owing 
to the following reason: 

$n (CUpUCig(CN)) 

N 

= min 
VCN 

Inin (COSt(CH))) 

VCH,CH+'cN 

= vcH$HnN (c&CH)). 

Initially, Property Bl must be proven. From Property 
Al, for each consistent cut in KH++N, the cut must cut 
across i-arcs or f-arcs except for the f-arc of PS and 
the i-arc of Pt (s and t are the source and sink vertices 
of N). On the other hand, for each consistent cut CH 
in gH+,N, the Cut CH must Cut across Some internal 
arc in the middle parts or the f-arc of P, or the i-arc of 
Pr. Since these arcs have costs oo (see the Reduction 
Algorithm), we obtain COSt(CH) = 00. 

Second, both Properties B21 and B22 must be 
proven. Given a cut CN that partitions the vertices 
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Fig. 3. Four cases of a consistent cut cuts across internal paths Pu , Pv, and P(,.,). 

of N into V, and V,, a consistent cut CH (in H) 

can be constructed, having the minimum cost among 
all consistent cuts in KH,.+N, as follows. First, to 

let CH I-+ CN, CH must cut across each Pu as in 

property Al. Then, we need to verify the consistency 

and examine the minimum cost among each set of 

P(U.v), PU and Pv: 

(1) 

(2) 

(3) 

(4) 

If CH cuts across i-arc of both P,, and Pv (u E V, 

and u E V,), as shown in Fig. 3(a), a consistent 

Cut in KHHN Can Cut aCrOSS either i-aK Or f-~C 

of P(u,u). we let CH cut across the i-arc because 

the arc will have a smaller cost. In this case, no 

edge contributes cost to CN and no message arc 
contributes cost to CH . 

If CH cuts across i-arc of Pu and f-arc of Pv (u E 

V, and u E V,), as shown in Fig. 3(b), CH must cut 

across f-arc of P(,,,). Otherwise, the cut will be 

inconsistent. In this case, edge (u, v) contributes 

c(u, u) to CN. Corresponding message arc a(,,,) 
contributes Sac,, “) to CH. 

If C,y cuts across f-arc of Pu and i-arc of Pv 

(u E Vt and u E V,), CH must cut across f-arc of 

P(u.v). This case is similar to case (2). 

If CH cuts across f-arc of both Pu and Pu 

(u E Vr and u E V,), as shown in Fig. 3(d), CH 
must cut across f-arc of P(u,u)_ In this case, no 
edge contributes cost to CN and, no message arc 

contributes COSt t0 CH. 

From above discussion, cut CH is consistent for the 

following reason. For each pair of Pu and Pu , there are 
no message arcs between them. For each PC,,,>, all the 

message arcs incident to P(,,,) are from P(,,,) to the 

corresponding Pu and Pu . From the above discussion, 
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CH is consistent due to the consistency among each 

set of P(,,,), Pu, and Pv. In addition, it is obvious from 
above that 

capacity(C’lv) = cosf( CH ) = min (cost( CL)). 
VC;I,C;lt+CN 

Thus, both Properties B21 and B22 hold. 0 

4. Maximum global snapshot 

Herein, both minimum and maximum global snap- 
shot problems can be reduced to each other in the 
following manner: (1) based on the normulization 

technique 121, reset the cost of each message arc to 
zero, while not changing any consistent cut cost; and 
(2) change the cost S of each internal arc to M - S, 

where M is the maximum cost among all arcs. Thus, 
we can conclude that the maximum global snapshot 
problem is also “as difficult as” the maximum network 
flow problem in terms of time complexity. 

5. Conclusion 

From the investigations of Chase and Garg [l], 
Chen and Wu [2], and Groselj [6], the minimum and 
maximum global snapshot problems are linear-time 
reducible to the MCNF problem. In this paper, we 
show in a reverse manner that the MCNF problem 
is also linear-time reducible to these global snapshot 

problems. Thus, we can conclude that the global 
snapshot problems are “as difficult as” the MCNF 
problem in terms of time complexity. The fact that 
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0(n2 logn) has been the optimal time complexity for 
the MCNF problem for many years [5] implies the 
difficulty in improving the 0(n2 logn) global snapshot 
algorithms (as well as that for the MCNF problem). 
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