
Information
Pry;t4zeing

Information Processing Letters 67 (1998) 151-156

On the time complexity of minimum and maximum
global snapshot problems

Loon-Been Chen I, I-Chen Wu *
Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan

Received 1 June 1997; received in revised form 28 April 1998

Communicated by T. Asano

Abstract

Deriving the minimum and maximum global snapshots is very useful for some error detection problems in distributed
programs. Several researchers, e.g., Groselj, Chen and Wu, have shown that the minimum and maximum global snapshot
problems are linear-time reducible to the maximum constant-ratio network flow (MCNF) problem, here defined as the well-
known maximum network flow problem with m = O(n), where m is the number of edges and n is the number of vertices in the
given flow network. In this paper we show in a reverse way that the MCNF problem is also linear-time reducible to these global
snapshot problems. Thus, we can conclude that the global snapshot problems are “as difficult as” the MCNF problem in terms
of time complexity. 0 1998 Elsevier Science B.V. All rights reserved.

Keywords: Distributed systems; Computational complexity; Error detection; Global snapshot

1. Introduction

Error detection and debugging are critical tasks in
developing distributed programs. Many research re-
sults [3,4,8] suggest that a distributed program usu-
ally adheres to certain invariant conditions to func-
tion properly. For example, in a distributed program,
several tokens may be distributed over the processors
(e.g., the token may represent the number of resources
and critical sections), and the number of these tokens
is bounded in a range at any snapshot, regardless of
how tokens are moved over different processors. The
conventional means of detecting whether or not the
above condition holds are to derive the minimum or
maximum number of tokens for all possible snapshots.

* Corresponding author. Email: icwu@csie.nctu.edu.tw.

’ Email: lbchen@csie.nctu.edu.tw.

0020-0190/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.
PII: SOO20-0190(98)00100-8

This problem is referred to as the minimum or maxi-
mum global snapshot problem [6].

Groselj [6] recently proposed an interesting method
to derive the minimum global snapshot. In this method,
he reduced this snapshot problem to a maximum
constant-ratio network flow (MCNF) problem. The
MCNF problem is defined herein as the well-known
maximum network flow problem with m = o(n),
where rn is the number of edges and n is the num-
ber of vertices in the given flow network. Chase and
Garg [l] independently obtained similar results. Later,
Chen and Wu [2] proposed a general technique, called
normalization, for deriving both minimum and max-
imum global snapshots. According to their results,
these snapshot problems are linear-time reducible to
the MCNF problem.

Above investigations only point out that the time
complexities of the minimum and maximum global

1.52 L.-B. Chen, I-C. Wu/Infornmtion Processing Leners 67 (1998) 151-156

snapshot problems will not be higher than those of
the MCNF problem. However, whether or not the
time complexities for the above snapshot problems
can be lower than those of the MCNF problem
remains unknown. To resolve this question, this paper
shows in a reverse manner that the MCNF problem
is also linear-time reducible to these global snapshot
problems. Thus, we can conclude that the above global
snapshot problems are “as difficult as” the MCNF
problem in terms of time complexity.

The rest of this paper is organized as follows.
Section 2 describes our model and the notations used
in this paper. Sections 3 and 4 discuss the time
complexities of the minimum and maximum global
snapshot problems, respectively. Concluding remarks
are finally made in Section 5.

2. Model and notations

A distributed program consists of processes com-
municating via a network. These processes share no
memory and no global clock. Pairs of processes must
communicate via network channe2s. In addition, the
state of such a program is distributed over these
processes and channels in each snapshot.

Events
The states of processes change only when events [7]

(atomic actions) are executed. Three kinds of events on
each process are of relevant concerned:
(1) internal event: performs a local computation;
(2) send event: sends a message to another process via

the channel; and
(3) receive event: receives a message from another

process via the channel.
Note that each process should start with an initial
internal event and end with a$nal internal event.

Next, the chronological order of events is defined
by assuming that the event ei happens before event ej ,

denoted by ei + ej , if and only if one of the following
conditions holds [7]:

(1)

(2)

(3)

events ei and ej occur in the same process and ei
occurs before ej ;
event ei is the sent event of a message and event
ej is the receive event of the same message; and
another event f?k exists such that ei + ek and
ek --f ej.

Internal event

Send event

Receive event

Initial internal event

Final internal event

Internal arc of
message arc

sink part

Fig. 1. Event graph of a run for a distributed program

Global snapshot
Consider a possible run for a distributed program.

The system can proceed from one state to another by
executing events. A set EC of events are said to be
consistent if event e E EC and event e’ -+ e imply that
e’ E EC. A global snapshot is a collection of states,
one from each process and channel, immediately after
executing a consistent set of events. Herein, of relevant
concern is the total number of tokens. Therefore, a
state value can actually be represented by its token
number. In addition, the minimum (maximum) global
snapshot is the global snapshot with the minimum
(maximum) number of tokens among all possible
snapshots.

Event graph
An event graph is used to represent a run for a

distributed program under the following conditions:
(1) a vertex denotes an event, and (2) if event ei + ej
and no event ek exists such that ei + f?k and ek + e
there is a corresponding arc, denoted by (ei , ej), ‘2

from ei ‘s vertex to ej ‘s. For example, Fig. 1 illustrates
an event graph. An arc (ei, ej) is referred to as a
message arc if it corresponds to an in-transit message
from event ei to ej. Otherwise, the arc is referred to as
an internal arc because it corresponds to an internal
state transition inside a process. For each message
arc a, S, denotes the number of message tokens; for
each internal arc a = (ei, ej), S, denotes the token
number of the corresponding process after execution
of the event ei and before the event ej. In addition,

* In this paper, we use (u, v) to represent ordered pairs and use

(u, V) to represent unordered pairs.

u = source

CN

w = sink

L.-B. Chen, I-C. Wu /Information Processing Lxtters 67 (1998) 151-156

source part

PU P(u,v) Pv P(v.w) Pw

(4 @)

cut corresponding
t0 CN

Fig. 2. (a) A common graph. (b) The event graph translated from the graph in (a).

153

the vertex corresponding to an initial (final) internal
event is called an i-vertex (f-vertex). Moreover, the
arc incident to i-vertex (f-vertex) is called an i-arc
(f-arc). Clearly, each process has an internalpath from
its i-vertex to its f-vertex without going through any
message arcs.

cuts
A cut in an event graph H partitions the vertex set U

into two disjoint sets such that one, called the source
part and denoted by US, contains all the i-vertices.
Meanwhile, the other, called the sink part and denoted
by U,, contains all the f-vertices. The cost of a cut C
is

cost(C) = c s a.
VQJa: a=(u,u),
UEU.7. VEU,

For example, in Fig. 1, the costs of cuts Ct , C2 and C3
are 14, 12 and 16, respectively.

A cut of the event graph is consistent if and only if
the set of all events in the source part are consistent.
From this definition, we can infer that each consistent
cut corresponds to a global snapshot and the cut cost is
actually the number of tokens of the global snapshot.
Obviously, for each consistent cut C, each arc in C
must be from the source part to the sink part.

The minimum (maximum) consistent cut is the con-
sistent cut with the least (largest) cost among all con-
sistent cuts. Also, the minimum (maximum) consis-
tent cut cost is the cost of the minimum (maximum)

consistent cut. Clearly, the minimum (maximum) con-
sistent cut corresponds to the minimum (maximum)
global snapshot.

Global snapshot model

In the proposed model, the event graph with arc
costs is assumed to be given in advance. Garg and
Waldecker 141 suggested that in practice, for each
event in each process Pi, Pi sends its token number
to a process, called the checker process. This process
runs an algorithm for deriving the minimum or maxi-
mum global snapshot.

3. Minimum global snapshot

This section shows that the MCNF problem is
linear-time reducible to the minimum global snapshot
problem. Given a flow network N (see Definition 1 be-
low), the linear-time reduction algorithm given below
constructs an event graph H such that the mm-cut ca-
pacity of N equals the minimum consistent cut cost of
H. Fig. 2 presents an example of the reduction.

Definition 1. A flow network N = (V, E) is a di-
rected graph in which each edge (u, v) E E has a non-
negative capacity c(u, u) > 0. One node s is desig-
nated as the source and another node t is designated
as the sink. A cut is a set of arcs all incident to two
disjoint vertex sets partitioned from V, where one set

154 L.-B. Ghen. I-C. Wu/Infomation Processing Letters 67 (1998) 151-156

with node s is referred to as the source set, and the
other with node t is referred to as the sink set. The ca-
pacity of a cut C, denoted by capacity(C), is the total
capacity of all arcs (on C) from the source set to the
sink set. A minimum cut of the flow network is the cut
with the least capacity. The least capacity is also called
the mm-cut capacity.

Reduction Algorithm.
1.

2.

3.

4.

5.

6.

For each vertex u in N, create the corresponding
internal path Pu. This operation takes 0 (n) time.
For each pair of vertices (u, u), if (u, V) or (v, U)
is in N, create the corresponding internal path
P(u,u) (or, equivalently, P(,,,)). This operation
takes O(m) time.
For each internal path, add two internal events such
that the path is divided into three parts: the i-arc,
the middle part, and the f-arc. All message arcs
added below must have their vertices incident to the
middle parts. This operation takes 0 (m + n) time.
For each internal path P(u,v), create a message
arc a(,,,) from Pc~,~) to Pu and a message arc
a(,,,) from Pc~,~) to Pu. This operation takes O(m)
time.
Set the cost of f-arc of Ps and i-arc of Pt to oo,
where s is the source and t is the sink of N. Set the
costs of other i-arcs and f-arcs to 0. Set the costs
of all other internal arcs (in the middle parts) to oo.
This operation takes O(m + n) time.
For each message arc a(,,,), if (u, V) is in N, set
s aW) = c(u, v); otherwise, set &(,,,) = 0. This
operation takes 0 (m) time.

[n the above reduction algorithm, each consistent
cut CH in H is said to correspond to a cut CN in N,
denoted by CH I+ CN, if and only if the following
property holds:

Al. For each vertex u in N, 2) is in the source (sink)
part of cut CN if and only if CH cuts across the i-arc
(f-arc) of the internal path P,, .

For example, in Fig. 2, CH I+ CN. Note that since
the source s (the sink t) is always in the source (sink)
part, CH ImiSt dWayS CUtS aCrOSS the i-aIT Of P, (the
f-arc of Pt). Theorem 2 proves that the minimum
consistent cut cost of H equals the mm-cut capacity
in N.

Theorem 2. For a given jlow network, its min-cut

capacity equals the minimum consistent cut cost in

the event graph constructed from the above reduction

algorithm.

Proof. Let N be the given flow network and H be
the reduced event graph. In addition, let KH be the
set of all the consistent cuts in H, K,++N be the
set of all cu_ts in KH, that correspond to some cut
in N, and KH-N be KH - KH++N. In this proof,
it obviously suffices to prove that the following two
properties hold:

Bl. For each consistent cut CH in KUH++N.

COSt(c’l-r) = 00.

B2. Among all consistent cuts CH in KH-N,

vcHF&iTIN (COSt(CH)) = E (c~pucity(CN))*

This holds if the following two properties hold.

B21. For each cut CN, there exists at least one CH in
KHAN such that CH t+ CN.

B22. For each cut CN ,

Properties B21 and B22 imply Property B2 owing
to the following reason:

$n (CUpUCig(CN))

N

= min
VCN

Inin (COSt(CH)))

VCH,CH+'cN

= vcH$HnN (c&CH)).

Initially, Property Bl must be proven. From Property
Al, for each consistent cut in KH++N, the cut must cut
across i-arcs or f-arcs except for the f-arc of PS and
the i-arc of Pt (s and t are the source and sink vertices
of N). On the other hand, for each consistent cut CH
in gH+,N, the Cut CH must Cut across Some internal
arc in the middle parts or the f-arc of P, or the i-arc of
Pr. Since these arcs have costs oo (see the Reduction
Algorithm), we obtain COSt(CH) = 00.

Second, both Properties B21 and B22 must be
proven. Given a cut CN that partitions the vertices

L.-B. Cht ?n, I-C. Wu /Information Processing Letters 67 (1998) 151-l 56

PU P(u,v) Pv PU P(u,v) Pv
-9, 0 0 \

I

WI w w

aa,
I ::--’ I a.zv,u 03

I
\

‘-__ _-
0 0 0

PU P(u,v) Pv PU P(u,v) Pv

0 0 0

0) W co

a%v

-i;

a+ co

--S
-0 0‘ _ - o’

W (a> @I (4

Fig. 3. Four cases of a consistent cut cuts across internal paths Pu , Pv, and P(,.,).

of N into V, and V,, a consistent cut CH (in H)

can be constructed, having the minimum cost among
all consistent cuts in KH,.+N, as follows. First, to

let CH I-+ CN, CH must cut across each Pu as in

property Al. Then, we need to verify the consistency

and examine the minimum cost among each set of

P(U.v), PU and Pv:

(1)

(2)

(3)

(4)

If CH cuts across i-arc of both P,, and Pv (u E V,

and u E V,), as shown in Fig. 3(a), a consistent

Cut in KHHN Can Cut aCrOSS either i-aK Or f-~C

of P(u,u). we let CH cut across the i-arc because

the arc will have a smaller cost. In this case, no

edge contributes cost to CN and no message arc
contributes cost to CH .

If CH cuts across i-arc of Pu and f-arc of Pv (u E

V, and u E V,), as shown in Fig. 3(b), CH must cut

across f-arc of P(,,,). Otherwise, the cut will be

inconsistent. In this case, edge (u, v) contributes

c(u, u) to CN. Corresponding message arc a(,,,)
contributes Sac,, “) to CH.

If C,y cuts across f-arc of Pu and i-arc of Pv

(u E Vt and u E V,), CH must cut across f-arc of

P(u.v). This case is similar to case (2).

If CH cuts across f-arc of both Pu and Pu

(u E Vr and u E V,), as shown in Fig. 3(d), CH
must cut across f-arc of P(u,u)_ In this case, no
edge contributes cost to CN and, no message arc

contributes COSt t0 CH.

From above discussion, cut CH is consistent for the

following reason. For each pair of Pu and Pu , there are
no message arcs between them. For each PC,,,>, all the

message arcs incident to P(,,,) are from P(,,,) to the

corresponding Pu and Pu . From the above discussion,

1.55

CH is consistent due to the consistency among each

set of P(,,,), Pu, and Pv. In addition, it is obvious from
above that

capacity(C’lv) = cosf(CH) = min (cost(CL)).
VC;I,C;lt+CN

Thus, both Properties B21 and B22 hold. 0

4. Maximum global snapshot

Herein, both minimum and maximum global snap-
shot problems can be reduced to each other in the
following manner: (1) based on the normulization

technique 121, reset the cost of each message arc to
zero, while not changing any consistent cut cost; and
(2) change the cost S of each internal arc to M - S,

where M is the maximum cost among all arcs. Thus,
we can conclude that the maximum global snapshot
problem is also “as difficult as” the maximum network
flow problem in terms of time complexity.

5. Conclusion

From the investigations of Chase and Garg [l],
Chen and Wu [2], and Groselj [6], the minimum and
maximum global snapshot problems are linear-time
reducible to the MCNF problem. In this paper, we
show in a reverse manner that the MCNF problem
is also linear-time reducible to these global snapshot

problems. Thus, we can conclude that the global
snapshot problems are “as difficult as” the MCNF
problem in terms of time complexity. The fact that

156 L.-B. Chen, I-C. Wu /Information Processing Letters 67 (1998) 151-156

0(n2 logn) has been the optimal time complexity for
the MCNF problem for many years [5] implies the
difficulty in improving the 0(n2 logn) global snapshot
algorithms (as well as that for the MCNF problem).

Acknowledgments

The authors would like to thank the National Sci-
ence Council of the Republic of China for financially
supporting this research under Contract No. NSC-86-
2213-E-009-32.

References

[l] CM. Chase, V.K. Garg, Efficient detection of restricted classes

of global predicates, in: 9th Intemat. Workshop on Distributed

Algorithms, 1995.

[2] L.B. Chen, LC. Wu, On detection of bounded global predicates,

in: Proc. Intemat. Conference on Distributed Systems, Software

Engineering, and Database Systems, Taipei, 1996.

[3] R. Cooper, K. Marzullo, Consistent detection of global predi-

cates, in: Proc. ACM/ONR Workshop on Parallel and Distrib-

uted Debugging, 199 1, pp. 167-I 74.

[4] V.K. Garg, B. Waldecker, Detection of weak unstable predicates

in distributed programs, IEEE Trans. Parallel Distrib. Systems 5

(3) (1994) 299-307.

[5] A.V. Goldberg, R.E. Tarjan, A new approach to the maximum-

flow problem, I. ACM 35 (4) (1988) 921-940.

[6] B. Groselj, Bounded and minimum global snapshots, IJZEE

Parallel Distrib. Technol. (1993) 72-83.

[7] L. Lamport, Time, clocks and the ordering of events in a

distributed system, Comm. ACM 21 (7) (1979) 558-565.

[8] LC. Wu, Multilist scheduling: a new parallel programming

model, Ph.D. Thesis, School of Computer Science, Carnegie

Mellon University, 1993.

