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Registration Area Planning for PCS
Networks Using Genetic Algorithms
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Abstract—In a personal communication services (PCS’s) net-
work, the signaling traffic required to support user mobility is
extremely high due to the huge numbers of users and the small
sizes of cells. The requirement to minimize this traffic increases
the importance of registration area (RA) planning in the PCS
network design. In the literature, several heuristic algorithms
have been proposed for RA planning, however, they may get
trapped into local minimums and may lack robustness. In this
paper, we reformulate the problem of RA planning as a cost-
optimization problem and propose genetic algorithms for RA
planning in PCS networks. Simulation results show that genetic
algorithms are robust for RA planning.

Index Terms—Personal communication services, registration
area planning.

I. INTRODUCTION

A PERSONAL communication services (PCS’s) network
[2], [3] is a digital communication system that enables

subscribers to initiate or receive calls at any time from any
location. To do this, the system must support the mobility
of users and be able to find users as they move from cell
to cell (roaming). Thus, a called portable must be located
before a connection can be established [4], [5]. There are
two alternatives to this task: paging and registration. Paging is
impractical since a PCS network may cover an extremely large
area. In the registration scheme [6], the system area is divided
into several RA’s (or location areas in cellular networks). In
general, an RA consists of an aggregation of cells forming a
contiguous geographical region.

When a portable enters a cell which belongs to a different
RA, a location update(LU) procedure that informs the network
about the portable’s new location is performed. When a
portable is called, first the RA being traversed by it is
determined and then a paging procedure is applied within
that RA to identify the specific base station servicing its
connection. During the paging process, every base station in
the RA broadcasts a specific message to inform the portable
this connection request. Both LU and paging generate network
traffic overhead in PCS networks and consume the scarce radio
resource. Moreover, LU also increases the load of distributed
location databases and thus increases the implementation com-
plexity of the databases [7], [8].
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Due to the huge numbers of users and the small sizes of
cells in PCS networks, the signaling required to support user
mobility, e.g., paging and location updating, is significant. RA
planning has therefore been playing an increasingly important
role in improving the PCS network performance. In general,
RA dimensioning [9], [10] is based on the tradeoff between the
amount of signaling caused by paging and location updating.
As the sizes of the RA’s increase (decrease), the paging cost
increases (decreases) and the LU cost decreases (increases). An
RA planning algorithm during the design of a PCS network
should be able to minimize the overall network location
updating and paging cost.

In the literature, there has been little research on RA
planning for PCS networks [9]–[12]. RA planning decomposes
a group of cells into RA’s in which LU traffic is mini-
mized without violating the paging bound. It can be mapped
into a graph-partition problem, which is a well-known NP-
complete problem [13]. Consequently, an exact search for
optimal solutions is impractical due to exponential growth in
execution time. Previous researchers have used graph models
to represent RA planning and utilized greedy approaches to
solutions. Gamst [9] proposed a graph theoretical model and
presented a greedy method for RA planning. Markoulidakis
et al. [10], [11] proposed two heuristic algorithms to obtain
better results by adjusting the border weights in future mobile
telecommunication networks. Plehn [12] proposed a weighted
greedy algorithm that consists of two phases—the merge and
exchange phases. According to their experience, the algorithm
performed superior to previously used methods. Although
heuristics has been proposed to obtain better results, RA
planning was generally based on the hill-climbing algorithm.

However, hill-climbing [14] approaches may get trapped
into local minimums and lack robustness. In addition, the
graph theoretical models have the following drawbacks.

1) A tradeoff between LU traffic and preset configurations
(soft preset) is impossible. A preset is a given in an
RA configuration that might have been planned in a
previous state of expansion of the network or might have
been fixed by the planning engineer. In practice, presets
are generally required in PCS network design due to
the existing network configuration. The advantage of
presets is that they provide a network designer a way
to state his/her preference during the planning stage to
reduce the cost of network installation. In this paper, we
consider two types of presets:soft and hard presets. A
soft preset is a preset configuration that can be violated.
For example, some neighboring cells may be preset to
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belong to a certain RA only when this preset does not
significantly increase network cost. Ahard preset, on
the other hand, is inviolable.

2) They cannot support soft constraints. A soft constraint
allows some violation, for example, the paging bound
can be broken if it greatly reduces LU traffic.

The graph theoretical approach aims only to minimize network
cost. It does not quite hit the actual problem. Moreover, some
paging bandwidth may be locally reserved for network growth,
e.g., cell splitting in heavy-load areas.

To overcome these drawbacks, formulating RA planning as
a cost-optimization problem is obviously superior to conven-
tional graph theoretical models. Genetic algorithms [15], [16]
have been considered as robust stochastic search algorithms
for various optimization problems. In this paper, we propose
genetic algorithms for RA planning in PCS networks.

The organization of this paper is shown as follows. In
Section II, we formally define the RA planning problem.
In Section III, we present a brief introduction to genetic
algorithms and propose a genetic approach for RA planning. In
Section IV, we provide details on customizing RA planning.
The simulation results are presented in Section V. Finally, a
conclusion is given in Section VI.

II. RA PLANNING

Proper design of RA’s is based on a tradeoff between paging
traffic and LU traffic. Generally, paging traffic is less critical
than LU traffic [9] since LU affects not only the radio resource,
but the load of distributed location databases as well, so the
optimization goal is to minimize LU cost without violating the
paging bound of each RA. In this paper, a general definition of
RA planning will be examined. Our RA planning objective is
to minimize LU traffic on the network subject to the constraints
such as the paging bound of each RA, preset configurations,
and other specific constraints.

In general, paging traffic is proportional to the number of
calls to all portables in the RA while LU traffic is proportional
to the number of portables crossing RA borders. Prior to
the RA planning procedure, PCS network designers must
collect these data as input parameters. Although obtaining
these data may present considerable difficulty in practice, it
can be accomplished in the following ways. Markoulidakis and
Sykas [17] proposed a model to estimate location update and
handover rate for mobile communication, and practical PCS
networks such as the global system for mobile communications
(GSM) may provide data that enable an approximation of this
information. Without loss of generality, we may assume then
that these data are already available. The basic assumptions
used in this paper are shown as follows.

1) Cell planning has been done. In each cell, LU and paging
traffic have been estimated.

2) Each RA contains a disjoint set of cells—RA overlap-
ping is not allowed in this paper.

3) The bandwidth available for paging in each RA, i.e., the
paging bound, is limited.

Based on these assumptions, we first describe the graph
models and relevant algorithms and then derive a general

Fig. 1. A hill-climbing algorithm for RA planning.

model for optimization. In graph models, a PCS network
configuration is defined by a weighted (undirected) graph

, where is the set of vertices, is the
set of edges, is a function whose domain is , and is a
function whose domain is Each vertex represents a cell,
and each edge denotes a border between cells. The function
assigns weights called paging cost to the vertices in, and the
function assigns weights called LU cost to the edges in

In this model, the hill-climbing algorithm shown in Fig. 1
is performed to explore the solution. Edges in graph
are removed only when the removal would not violate the
paging bound for any RA. Hill-climbing algorithms ensure
the correctness of solutions by preventing searches that lead
to illegal nodes, however, they do not ensure optimal or even
near-optimal solutions. Moreover, supporting soft presets and
constraints is nontrivial in this model.

In this paper, we formulate RA planning as a cost-
optimization problem in which solutions are described by a
cost function and techniques for minimizing (or maximizing)
the cost function. We also remove constraints by means of a
weighted penalty function that assigns weights according to
constraint importance. Thus, RA planning is reduced to the
cost-optimization problem.

Consequently, let denote the set of objectives and
represent the set of constraints, where the goal of RA planning
is to minimize a cost function , which is defined as
follows:

(1)

where and are weights for the objectiveand constraint
, respectively. The objective function is a function that

maps from objectives to costs and contributes to the RA
planning goal. The penalty functionis a function that maps
from constraints to costs and punishes violation of constraints
such as paging bounds, soft presets, and others. The objective
and penalty functions are calculated using the configuration
graph making this model a general form of RA planning.
For special cases, let X contain only the total LU cost and
Y contain only the paging bound constraint, where our goal is
to minimize the LU cost without violating the paging bound
constraint as previous work.
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Fig. 2. An example of the H-mesh configuration with dimension 2.

Fig. 3. An RA planning result for Fig. 2.

We use a simple example of the H-mesh configuration [18]
with dimension 2 to illustrate RA planning as shown in Fig. 2.
In this example, denotes the paging cost of theth cell and

denotes the LU cost of theth border. Assume that the
paging bound for each RA is 30 for alland and

and , otherwise, Fig. 3
shows the optimal result for this example: consists of
cells 1, 3, and 4, consists of cells 2 and 7, and
consists of cells 5 and 6.

III. GENETIC APPROACH TORA PLANNING

Genetic algorithms have been applied to various optimiza-
tion problems. In general, they use a penalty function to
encode constraints and allow a search for illegal nodes, e.g.,
a node may violate the paging bound. Allowing a search for
illegal nodes may prevent falling down into a local minimum
and generate a better solution. It is well suited to the cost-
optimization model we propose for RA planning. In this
section, we first review the fundamentals of genetic algorithms
and then describe the representation and fitness function for
RA planning.

A. Fundamentals of Genetic Algorithms

In principle, genetic algorithms [15], [16] are adaptive
procedures that find solutions to problems by an evolution-
ary process based on natural selection. In practice, genetic
algorithms are iterative search algorithms with various applica-

Fig. 4. A chromosome.

tions. They combine survival of the fittest, genetic operations,
random, but structured searches, and parallel evaluation of
nodes in the search space.

In general, genetic algorithms maintain a population of
individual candidate solutions to specific domain challenges.
An individual can be represented by a string (chromosome) as
shown in Fig. 4. During each iteration, or called generation,
the individuals in the current population are rated for their
fitness as domain solutions. The fitness function evaluates the
“goodness” of each individual. As a result of this evaluation,
a new population of candidate solutions is generated using
specific genetic operators. Generally, genetic algorithms make
use of three primary operators calledselection, crossover, and
mutation, which are described below.

1) Selection (or Reproduction): Individuals in the popula-
tion can be heuristically or randomly initialized. The
population of the next generation reproduces using a
probabilistic selection process. Practically, reproduction
allocates offspring strings using a roulette wheel [15]
with slots sized according to fitness as shown in Fig. 5.
In this example, the fitness of chromosomes 1, 2, and 3
are 20, 30, and 50, respectively, and the percentage of
chromosomes 1, 2, and 3 are 20% (20/2030 50),
30% (30/20 30 50), and 50% (50/20 30 50)
in the offsprings, respectively. Thus, individuals with
higher fitness have more chances to reproduce. In order
to guarantee the convergence [19] of genetic algorithms,
the best individuals from the previous population along
with a fixed percentage, called the clonation percentage,
is retained in the new one. This also assures a more
efficient search of the solution space.

2) Crossover: After reproduction, crossover proceeds with
a probability This operator takes two randomly
chosen parent individuals as input and combines them to
generate two children. This combination is performed by
choosing two crossing points in the strings of the parents
and then exchanging the allelic values between these
two points as shown in Fig. 6. The crossover operator
provides a powerful exploration capacity by exchanging
the information from two parents.

3) Mutation: The crossover operator may lead to falling
into a local minimum of the fitness function because gen-
erated children tend to be very similar to their parents.
In order to reduce this phenomenon, mutation operates
with a probability and creates new individuals by
modifying one or more of the gene values of an existing
individual, as shown in Fig. 7. It provides a random
search in the problem space and prevents complete loss
of genetic features through selection and elimination.
Thus, the mutation operator reduces the probability of
falling into a local minimum of the fitness function.
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(a) (b)

Fig. 5. Simple selection allocates offspring chromosomes using a roulette wheel with slots sized according to fitness.

Fig. 6. Two-point crossover (j denotes a crossing point).

Fig. 7. Mutation.

Following reproduction, crossover, and mutation, the new
population is ready for testing. Genetic algorithms decode new
strings, calculate fitness, and then generate a new population.
Fig. 8 depicts the outline of a genetic algorithm. The recom-
bination process invokes a set of genetic operators, such as
crossover and mutation.

The construction of a genetic algorithm for any problem can
be separated into the following tasks.

1) Choose the representation of the genetic chromosome.
2) Design a set of genetic operators.
3) Define the fitness function.
4) Determine the probabilities controlling the genetic op-

erators.

Each of the tasks above may greatly affect the quality of
obtained solutions as well as the performance of the genetic
algorithm. In the following sections, we examine how each of
them applies to the problem of RA planning.

B. Representation

In our study, two representation schemes were used to
encode the RA planning problem—cell- and border-oriented.

1) Cell-Oriented Representation: Cells are labeled from
one to the total number of the cells and RA’s are
labeled from one to the total number of RA’s. The
cell representation of chromosome structure is shown
in Fig. 9(a), where theth cell belongs to the th RA.
For example, the chromosome of the example shown in
Fig. 3 is shown in Fig. 9(b).

Fig. 8. A genetic algorithm.

2) Border-Oriented Representation: Borders are labeled
from one to the total number of borders. The border
representation of chromosome structure is shown in
Fig. 10(a), where , and is the border , which
exists in RA planning, otherwise, For example,
the chromosome of the example shown in Fig. 3 is
shown in Fig. 10(b).

Choosing cell- and border-oriented representation is a trade-
off. Cell-oriented representation is excellent for evaluating
paging cost, but poor at evaluating LU cost. On the other
hand, border-oriented representation is superior to cell-oriented
representation at evaluating LU cost, but inferior at evaluating
paging cost. Without loss of generality, we concentrate mainly
on border-oriented representation hereafter.

C. Genetic Operators

There is no special genetic operator designed for RA plan-
ning. Three general operators discussed in previous sections
are used to explore the state space.

1) The selection operator produces individuals with higher
potential to be optimal solutions.

2) The crossover operator explores the solution space by
exchanging the information from two parents.

3) The mutation operator provides opportunities for long
jumps from local minima.
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(a) (b)

Fig. 9. Cell chromosome structure of the RA planning.

(a) (b)

Fig. 10. Border chromosome structure of the RA planning.

D. Fitness Function

Generally, genetic algorithms use penalty functions to pun-
ish violations of constraints. The penalty function of paging
bound for RA planning is shown below

PAGE BOUND (2)

where denotes the total number of RA’s, PAGEdenotes
the paging traffic of theth RA, and BOUND represents the
paging bound. This penalty function punishes the violation of
the paging bound for each RA.

Thus, the cost function is equal to the total cost generated by
LU traffic plus the paging penalty as shown in the following:

Cost (3)

where denotes the total number of , denotes the
LU traffic of the th RA, and parameters and are used
to balance the relative importance of the penalty function and
the objective function.

In border-oriented representation, letbe the total number
of borders, represent the crossing intensity of theth border,
and be the value of theth chromosome (either zero or one).
For the sake of convenient computation, the cost function for
border-oriented representation could be rewritten as follows:

Cost (4)

Since the selection operator will try to maximize the fitness
function, we need to convert the cost function into maximiza-
tion form. This can be done by defining the fitness function
as follows:

Fitness Cost (5)

where denotes the maximum valueobserved so farof
the cost function in the population. Let cost be the value of the
cost function for the chromosome, and can be calculated
by the following iterative equation:

cost (6)

where is initialized to zero.

Fig. 11. Example of useless location updating.

E. Initial Population

Individuals in the population can be initialized randomly
or heuristically. We use the result of hill climbing as one
individual and randomly generate other individuals to con-
struct the initial population. Moreover, the preset of the cell
configuration (either soft or hard presets) also provides the
information of constructing the initial population.

IV. CUSTOMIZING RA PLANNING

In this section, we discuss some details of applying genetic
algorithms to RA planning.

A. Useless Location Updating

Useless location updating [10] refers to the case of subse-
quent LU’s without using the updated information as shown in
Fig. 11. In this example, the LU in RA2 is a useless location
updating since no calls arrive for portable A during the time
period that the portable A was in RA2. As we mentioned in
Section I, the reason for updating location information is to
make the network be able to locate a portable whenever this
portable is called. Thus, useless location updating indicates
the waste of signaling and database access. It is not necessary
for a portable to perform LU’s much more frequently than
the portable receives calls. To improve the network perfor-
mance, we should minimize the probability of useless location
updating.

The probability of useless location updating can be
defined as the probability of two subsequent LU’s caused by
the same portable traversing an RA without the arrival of any
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incoming calls as follows1:

(7)

where the notation used is listed as follows:

time interval between the previous phone call to a
portable and the time when the portable moves out
of the RA;
independent and identically distributed random
variable which represents the time interval between
two consecutive calls directed from an RA to a
portable;
density function for the random variable;
density function for the random variable .

The following equation is then added to the cost function and
affects the fitness function:

(8)

where is the parameter for adjusting the weight of the
useless location updating. The fitness function handles the
fitness of genetics such that reduces the impact of useless
location updating.

B. Presets and Constraints

A preset or constraint can be defined by a string
, where is the number of cells: if

the th border is necessary to exist, if the th border
is necessary to remove, otherwise, , which ignores the
th border. For example, we preset assignment of cells 1 and

2 to the same RA, i.e., border 1 is not necessary to exist in
the example shown in Fig. 2. The preset stringis equal to

The penalty function of the preset can be defined as
the following:

(9)

where

if or
otherwise.

In a similar manner, we can compute the penalty of con-
straint The following equations are added to the cost
function to deal with soft (hard) presets and constraints:

(10)

(11)

However, large parameters may outweigh the importance,
on the other hand, small parameters may lead to generation
of illegal solutions. Finding appropriate parameters is not a
trivial job. A postprocessing stage is necessary to filter out
illegal solutions in dealing withhard presets or constraints.

1Assumetm andtc arei.i.d. with exponential distributions, so this equation
can be greatly simplified [7].

C. Improving Algorithm Performance

Although genetic algorithms work well for RA planning, we
propose some techniques to improve algorithm performance
and run-time efficiency.

1) Probability of Mutation: In the beginning of the algo-
rithm, we may initialize a large mutation probability value to
search a larger state space. However, this might not obtain
better results as the algorithm near convergence. We resolve
this problem by decreasing the probability of mutation by half
after a predefined number of generations, for example, 100
generations.

2) Heuristics: It is easy to encode search heuristics in
genetic algorithms using the mutation operator. In this paper,
we propose two heuristics to improve the performance of
genetic algorithms.

1) Large-Weight Preference: We prefer to remove borders
with large weights, e.g., the probability of mutation from
one to zero of large weights is also large as shown in
the following:

(12)

On the other hand, we also prefer to add borders with
lower weights in a similar manner.

2) Relatively Large-Weight Preference: We prefer to re-
move borders with large weights relative to their neigh-
bors. The weights are adjusted relative to the minimum
weight in the same RA, calledrelative weights. These
relative weights are then used to calculate the
probability of mutation as follows:

(13)

(14)

where represents the minimum weight of borders
including the border , which constitutes a single RA.
Note that these heuristics implies extra processing2 that
is proportional to the number of borders and the number
of chromosomes in the generation because we need to
know the RA which each border belongs to. To avoid
this overhead, the authors suggest that these heuristics
should not be frequently applied.

V. SIMULATION RESULTS

We simulated a hexagonal system in which the cells are
configured as anH mesh[18]. The paging cost for each cell
and the crossing intensity for each border were generated
from a normal random number with mean 100 and variance
20. The paging bound per RA was 800 in our simulations.
The parameters used by the genetic algorithm throughout the
simulations are listed below.

1) Population size
2This overhead should not be the disadvantage of our approach since

heuristic approaches of graph theoretical models require the same processing.
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TABLE I
COMPARISON OF HILL CLIMBING AND GENETIC ALGORITHM IN TERMS OF THE LU COST

Fig. 12. A tradeoff between LU cost and execution time in a single run.

Fig. 13. H meshn = 3: Results of RA planning over 100 runs.

2) Clonation percentage
3) Crossover probability
4) Mutation probability
5) Maximum number of generations

The simulation was performed on a Sun Sparc10 worksta-
tion. After 100 simulation runs, the mean and variance of the
results in terms of the LU cost were collected. These results
were compared to those of hill climbing as shown in Table I
and found to be superior after 1000 generations.

Fig. 12 shows the behavior of the genetic algorithm and a
tradeoff between solution quality and run-time efficiency. In
the first 200 generations, the LU cost rapidly decreases. The
genetic algorithm may get trapped in a local minimum from
the 200th to 700th generation. After the 700th generation,
the algorithm jumps from the local minimum and the LU
cost continues decreasing. Generally, as the execution time
increases, the LU cost decreases. That is, the longer the time
of execution, the better the result we obtained.

Figs. 13–16 show the mean results of RA planning in 100
simulation runs. Genetic algorithms with a random initial

Fig. 14. H meshn = 4: Results of RA planning over 100 runs.

Fig. 15. H meshn = 5: Results of RA planning over 100 runs.

Fig. 16. H meshn = 6: Results of RA planning over 100 runs.

population prove to be superior to hill climbing in 100
generations (except in the case of Fig. 16). As the number
of cells increases, it takes a longer execution time to obtain
better results.
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VI. CONCLUSIONS

In this paper, we reformulated RA planning as a cost-
optimization problem and proposed a stochastic search method
based on a genetic approach. Simulation results showed that
genetic algorithms are robust for RA planning.

In our model, search nodes are represented as strings
determining which borders exist between cells. Three general
genetic operators—selection, crossover, and mutation—were
employed. Additionally, defining the fitness function required
neither a priori knowledge nor information on the possible
form of the solution. The only task was to penalize the
individual strings that might violate specific constraints.
Control parameters for genetic algorithms can be determined
either by a sophisticated technique [20] or by experience.
Experiential parameters may not be optimal, but at least
feasible for the RA planning.

In summary, the advantages and limitations of using genetic
algorithms for the problem of RA planning are listed as
follows.

1) Simplicity: Defining representation, operators, and fit-
ness function requires neithera priori knowledge nor
information on the possible form of the solution.

2) Flexibility: Genetic algorithms are flexible for support-
ing soft presets and soft constraints.

3) Convergence: Genetic algorithms are guaranteed to con-
verge [19]. Illegal solutions can be filtered out in the
postprocessing stage. By adjusting parameters of the
penalty function, we will always be able to obtain a legal
solution. Furthermore, the longer the time of execution,
the better the result obtained.

4) Robustness: As a reviewer pointed out, heuristic ap-
proaches will be much more efficient compared to the
traditional genetic algorithms in extreme cases where the
number of illegal solutions is a remarkable percentage
of the total possible solutions. This drawback can be
alleviated by using heuristics to avoid random search
in the space of illegal solutions. Our approach has
encoded some heuristics and by no means excludes
heuristics proposed in other papers: it is robust for a
diversity of cases. In general cases, it performs much
better than heuristic approaches. On the other hand,
our approach would be little less efficient compared to
heuristic approaches in some special cases, but it has
the potential to obtain better solutions. Unfortunately,
heuristics imply extra processing which will be applied
in the population of the generation. The limitation of
our approach is that network designers should be able
to estimate the cost of applying heuristics and decide the
frequency of applying these heuristics.

5) Parallelism: Parallelism is inherent in genetic algo-
rithms.

The time complexity of hill climbing, genetic algorithms,
and exhaustive searches is and ,
respectively, where denotes the total number of the borders,

is the maximum number of generations, andis the popula-
tion of the generation. Practically, the population of the genera-
tion is a small constant, e.g., in our simulations. Thus,

the time complexity of genetic algorithms is equal to
Considering the tradeoff between run-time efficiency and

solution quality, genetic algorithms appear to be a quite
valuable approach to RA planning in designing PCS networks.
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