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MODELLING THE STATIC AND DYNAMIC
BEHAVIOR OF A CONICAL SPRING BY
CONSIDERING THE COIL CLOSE AND

DAMPING EFFECTS
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A method to calculate the load–deflection relation of the conical spring is proposed and
verified by experimental data statically. The non-linearity of the spring rate and coil close
effect by influencing the end effect are considered in the formulation. It shows that the
maximum error between simulation and experimental results is 4·6%. The dynamic
equations for the conical spring are also derived by considering the non-linear spring rate
and damping effect due to coil clash. This is the first such modelling for a conical spring.
The dynamic equations are solved by perturbation and the numerical methods. It is found
that the natural frequency varies with the initial amplitude due to the coil clash in
compression. Also, the maximum amplitude in compression is found to be smaller than
the maximum amplitude in extension.
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1. INTRODUCTION

Conical springs have the advantages of varying natural frequencies and avoiding buckling
at large deflections. Also, conical springs can provide variable spring rates. In the early
years, most of the studies of conical springs focused on the stress and deflections.

Berry [1] proposed a method to predict the coil close position under a given load for
a constant-pitch conical spring. However, there was no experimental verification, and the
algorithm of determining the load to make all spring coils in contact was lacking. Lin and
Pisano [2] formulated the general dynamic equations of helical springs. Wu et al. [3]
proposed a method to predict the coil close length of compression helical springs with static
verification, but only the cylindrical springs were discussed. Hunt and Crossley [4] and
Lankarani and Nikravesh [5] proposed algorithms to determine the damping coefficients
of multibody systems in impact.

Very little literature on dynamic investigation of conical springs can be found. In this
study, the dynamic equations in P.D.E. form for a general conical spring is derived by
considering diameter variation. A method is also presented to predict the coil close length
of the conical spring in compression. The static load–deflection relation is also formulated
and compared with experimental data.

The dynamic equations in O.D.E. form for a conical spring are also derived here by
modelling the non-linear spring rate as a polynomial function in compression stroke, and
the damping effects due to the coil clash is also considered, which is the first such modelling
for conical springs.
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2. FORMULATING THE DYNAMIC EQUATION FOR THE CONICAL SPRING

In the formulation of the dynamic equation of the conical spring, two kinetic energy
terms and one potential energy term are considered. The dynamic equation can be deduced
from Hamilton’s principle:

g
t1

t2

d 0s Ti − s Vi1 dt=0. (1)

The first kinetic energy due to the rotation of the spring wire about its own geometric
axis is defined as

T1 =g
L

0

1
2 Is,m 01c(s, t)

1t 1
2

ds, (2)

where Is,m is the mass moment of inertia per unit length of spring wire, and the ‘‘angle of
twist’’, c(s, t), defines the absolute rotation of any cross-section with respect to an inertial
frame. Moreover, L is the total helix length.

The second kinetic energy term due to the vertical motion of the spring wire is given as

T2 =g
L

0

1
2 ms 01y(s, t)

1t 1
2

ds, (3)

where ms is the mass per unit length of the spring wire and y is the axial displacement.
The spring’s strain energy due to the torsional twist of the spring coil can be obtained as

V1 =g
L

0

1
2 Gs J01c(s, t)

1s 1
2

ds (4)

where Gs denotes the shear modulus of the spring material and J represents the polar
moment of inertial of spring wire cross-section.

Since all energy terms concerned are fully derived, the dynamic equation of a general
conical spring turns out to be

Gs J(r12y/1s2 + r'1y/1s)= (rIs,m + r3ms )12y/1t2, (5)

where r'= 1r/1s.
If the radius change r' is zero, i.e., the cylindrical spring, the differential equation can

be simplified into the well known undamped wave equation:

V2
w 12y/1t2 = 12y/1s2, (6)

where V2
w =Gs d2/r(8r2 + d2) and r represent the spring wire density.

3. SPRING RATE FOR A GENERAL HELICAL SPRING

In order to derive the spring constant of the general helical spring with variable helix
radius and variable pitch angle, a co-ordinate system, as shown in Figure 1, is defined.

A general helix parametrized by arc length can be expressed as

X	 (s)= r(s) cos u(s)i	 + r(s) sin u(s)j	 + h(s)k	 , (7)
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Figure 1. The intrinsic coordinate system.

where mean radius r, polar angle u, and local helix height h, are all functions of helical
length s.

Then the tangent of the parametric curve is expressed as the derivative with respect to
the helical length s:

T	 (s)=X	 '(s)= (r' cos u− u'r sin u)i	 +(r' sin u+ u'r cos u)j	 + h'k	 . (8)

The unit tangent is

t	 =T	 (s)/=T	 (s) ==(1/W) [(r' cos u− u'r sin u)i	 +(r' sin u+ u'r cos u)j	 + h'k	 ], (9)

where

W=zr'2 + r2u'2 + h'2.

The unit normal vector of the helical curve is perpendicular to its tangent and may be
represented by

ñ=(1/zr'2 + r2u'2) [−(r' sin u+ u'r cos u)i	 +(r' cos u− u'r sin u)j	 ]. (10)

The unit vector b	 is perpendicular to t̃ and ñ, so

b	 = t	 · ñ=
1

W×zr'2 + r2u'2

× [−h'(r' cos u− u'r sin u)i	 − h'(r' sin u+ u'r cos u)j	 +(r'2 + r2u'2)k	 ] (11)

The above three unit vectors t	 , ñ, and b	 form a right-handed orthonormal co-ordinate.
If a static load P	 is acting on the spring along the center line. i.e.,

P	 =Fk	 , (12)

then the moment at the spring wire becomes:

M	 =Fr sin ui	 −Fr cos uj	 . (13)

Three components of force P	 and moment M	 in t	 , ñ, and b	 directions can be expressed
as

P	 T =P	 · t	 =Fh'/W P	 B =P	 · b	 =Fzr'2 + r2u'2/W , P	 N =P	 · ñ=0. (14–16)

M	 T =M	 · t	 =−Fr2u'/W, M	 B =M	 · b	 =Fr2h'u'/Wzr'2 + r2u'2 (17–18)

M	 N =M	 · ñ=−2Frr' sin2 u/zr'2 + r2u'2. (19)
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The total strain energy Utotal is the sum of the strain energy terms from the above
components.

Utotal =U1 +U2 +U3 +U4 +U5 (20)

where

U1 =
1

2Gs A g
L

0

P2
B ds, U2 =

1
2Es A g

L

0

P2
T ds, U3 =

1
2Es IB g

L

0

M2
B ds,

U4 =
1

2Gs J g
L

0

M2
T ds, U5 =

1
2Es IN g

L

0

M2
N ds

Gs is the shear modulus of spring material, Es is the elastic modulus of spring material,
A is the area of spring wire cross-section, IB is moment of inertia of the wire cross-section
about b	 -axis, IN is moment of inertia of the wire cross-section about ñ-axis, J is the polar
moment of the inertia of the spring wire, and L is the coil length. From Castigliano’s
theorem, the axial deflection d is

d= 1Utotal /1F=F/k, (21)

where the spring rate k of a general helical spring is equivalent to

k=1/(Ca +Cb +Cc +Cd +Ce ), (22)

where

Ca =
1

Gs A g
L

0

(r'2 + r2u'2)
W2 ds, Cb =

1
Es A g

L

0

h'2

W2 ds,

Cc =
1

Es IB g
L

0

r4h2u'2

W2(r'2 + r2u'2)
ds,

Cd =
1

GS J g
L

0

r4u'2

W2 ds, Ce =
1

Es IN g
L

0

4r2r'2 sin2 u

W2(r'2 + r2u'2)
ds. (23)

For a conical spring with constant pitch, p(s, t), is a constant,

h'= sin p, r(s)= r1 + ([r2 − r1]/L)s, r'(s)= (r2 − r1)/L,

u(s)=g
s

0

cos p/r(z) dz, u'(s)= cos p/r(s), L= p(r1 + r2)n,

where n is the original number of active coils, r1 is the radius of the smallest coil on top,
and r2 is the radius of the largest coil at the bottom.
Then

Ca =
L(r'2 + cos2 p)
GSA(1+ r'2)

, Cb =
sin2 pL

ESA(1+ r'2)
, Cd =

L(r2
2 + r1 r2 + r2

1) cos2 p
3GSJ(1+ r'2)

,

Ce =
4r'2L(r2

2 + r1 r2 + r2
1 ) sin2 p

3ESIN (r'2 + cos2 p)
, Cc =

L(r2
2 + r1 r2 + r2

1 ) sin2 p cos2 p
ESIB (1+ r'2)(r'2 + cos2 p)

. (24)



D1

y

D2

x (s)s
Vary space
part

   21

4. STATIC EXPERIMENTAL VERIFICATION

Since the diameter of each active coil is different in a conical spring, a larger diameter
makes the coils more flexible. The phenomenon of coil close must be considered. The most
common type of end turns employed in helical compression springs are ends squared and
ground or forged, as shown in Figure 2. Since the pitch angles at two ends are smaller
in general, the effect of the end turns can be estimated to achieve accurate determination
of coil close in the conical springs.

By considering the end effect, where the spring coils are not uniformly spaced at the top
and bottom coils, let h(s) be the distance from the bottom edge of the first active coil to
the upper edge of the fixed coil. Then

h(s)=g
s

0

sin p(z) dz− x(s), 0E sELa , (25)

where La is the coil length of the first coil, and x(s) denotes the vertical thickness of the
fixed coil. Wu et al. [3] proposed the relationship to find the total compression deflection
y needed for the coil with distance h(s) starting to contact with the fixed coil as

y=Yclose +Yactive = h(s)+ (K1 /K2)h(s), (26)

where Yclose is the deflection necessary for the coil of distance h(s) to have the coil close,
Yactive is the deflection of the remaining coil length L− s under the same load, K1 is the
spring rate for the coil close length s and K2 is the spring rate for the remaining coil length
L− s.

Let Ys be the total deflection to compress the spring solid and n is the original number
of active coils. Then the uniform pitch hc to the next coil is

hc =(Ys −[h(La )+ x(La )])/(n−1)=constant, (27)

where

Ys =g
L

0

sin p(z) dz−(n−1)d. (28)

Figure 2. The conical spring.
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Once Dy is specified, the coil length Lclose and the coil number ny to have coil close can
be calculated as

Lclose =(D2 −Dy )/2r', ny =2Lclose /p(Dy +D2)−1 (29, 30)

The next coil’s diameter Dyn for the diameter Dy is estimated by

Dyn =(Dy1 +Dy2)/2, (31)

where

Dy1 =Dy +2drLc1, Dy2 =Dy +2drLc2, Lc1 = pDy , Lc2 = pDy1,

According to equations (22) and (24), the spring rate kc for a conical spring with one
coil can be calculated when the diameter changes from Dy to Dyn with length
Lc3 = p(Dy +Dyn )/2, then the relation to find the load Fy needed for the coil with diameter
Dy starting to contact with the neighboring coil for the uniform pitch hc can be calculated
as

Fy = hc × kc , (32)

Also, the spring rate K2 for the remaining coil length L−Lclose can be determined.
Therefore, the deflections under load Fy can be expressed as two parts:

Yclose =(ny /n)Ys + h(La ), Yactive =Fy/K2 (33, 34)

The spring load–deflection relationship then becomes

y=Yclose +Yactive =Fy /K2 + (ny /n)Ys + h(La ). (35)

Parameters of a conical spring are calibrated and listed in Table 1 to verify
load–deflection relation of equation (35).

The experimental data are taken on an universal testing machine which records the
compressive force under the given displacement. The results of equation (35) and
experimental data are shown in Figure 3. The maximum error between experiment and
simulation is about 0·6 kg.

T 1

Parameters for the conical spring

Symbol Description Value

D2 (mm) The largest diameter of the conical spring 56·2
D1(mm) The smallest diameter of the conical spring 27·3
d (mm) Wire diameter 3

n Original active coils 5·4
G (GPa) Shear modules of spring material 69·23

p (°) pitch angle 6
Es (GPa) Elastic modules of spring material 180

n Poisson ratio 0·3
r (kg/m3) The density of spring wire 7920
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Figure 3. The load–deflection diagram for a conical spring. Key: ––, experiment; –W–, simulation; –Q–,
F= ky+0·0004yg3.

5. DYNAMIC EQUATIONS IN O.D.E. FORM

5.1. -   

In order to investigate the dynamic behavior of the conical spring, the non-linear spring
rate is expressed as a third order polynomial, F=0·16y+0·00004yg3, as shown in
Figure 3. Because of the coils close, the spring rate of the conical spring is considered as
non-linear only in compression. From the above experimental data and curve fitting
results, the force–displacement relation is expressed as

F= ky+ ey3, for yy 0, (36)

In the case of the spring with the parameters set out in Table 1, k=0·16 kg/mm,
e=0·00004 kg/mm3. Then the dynamic equations of motion for the conical spring can be
written as

mÿ+ ky+ ey3 =0, for yy 0, (37)

mÿ+ ky=0, for yQ 0 (38)

for the initial condition y=Am =constant, ẏ=0 at time t=0 and m=1 kg.
The closed form solution of the differential equations governing the behavior of the

dynamic system is difficult to solve. It is possible to obtain approximate solutions of the
differential equations of the system in the form of a power series with a small parameter
e by perturbation techniques [6, 7], since e is far smaller than k.

If the solution y of equation (37) and the frequency are written in the form of the power
series e,

y= y0 + ey1 + e2y2 + · · · , v2 =v2
0 + ev2

1 + e2v2
2 + · · · (39, 40)

which leads to the system equations:

ÿ0 +v2y0 =0, ÿ1 +v2y1 =v2
1 y0 − y3

0 , ÿ2 +v2y2 =v2
2 y0 +v2

1 y1 −3y2
0 y1.

(41, 42, 43)
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Those equations can be solved in sequence. The solution of equation (42) is the same
as the linear equation

y0 =Am cos vt and v=v0 =zk/m , (44)

Introducing y0 into equation (42) one obtains the solution,

y1 =−(A3
m /32v2) (cos vt−cos 3vt)+ (v2

1 Am − 3
4 A3

m ) (t/2v) sin vt. (45)

It is not difficult to see that the second term on the right side of equation (46) is a secular
term, becoming infinitely large as t is infinite. So let the coefficient of the secular term be
zero. i.e.,

v2
1 = 3

4 A2
m (46)

Similarly, introducing y0 and y1 into equation (43) leads to

y2 =−(A5
m /1024v4) (cos vt−cos 5vt) and v2

2 =−
3

128
A4

m /v2. (47, 48)

Then the approximate solution of the differential equation with three terms can be
obtained in the form

y=Am cos vt−
eA3

m

32v2 (cos vt−cos 3vt)−
e2A5

m

1024v4 (cos vt−cos 5vt) (49)

and

v2 =v2
0 + e

3A2
m

4
− e2 3A4

m

128v2, (50)

then

v=[{(v2
0 + 3

4 eA2
m )+zv4

0 + 3
2 v2

0 eA2
m + 15

32 e2A4
m}/2]1/2. (51)

For yQ 0 and p/2vE tE p/2v+ p/v0,

y=AL cos v0 t. (52)

where

AL =(Am v− eA3
m /8v+ e2A5

m /256v3)/v0 sin v0 p/2v. (53)

Thus the effect of the spring non-linearity is reflected in both the amplitude and
frequency of the periodic motion. In the linear system, the frequency is independent of the
input amplitude Am (Figure 4).

Since the parameter e=0·00004 is very small and v is larger than v0, the maximum
amplitude of AL is larger than the input amplitude Am , as shown in Figure 5 and Figure 6.
Because of the coils close, the spring rate of the conical spring in the compression stroke
is larger than the spring rate in the extension stroke. Thus the maxmimum amplitude in
compression is smaller than the input amplitude. According to equation (51), the frequency
increases while the input amplitude Am increases, as shown in Figure 5. The differential
equation is also solved numerically by a computer software, Matlab. The approximate
frequency from equation (51) is larger than the numerical solution shown in Figure 7, and
the maximum error is about 0·055 rad/s.

5.2.        

Because the coil impact happens at fairly low velocities, and the time is very short during
impact, some additional assumptions are included.
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Figure 4. Vibration of the linear spring rate. Key: ––, A=50 mm; –r–, A=40 mm; ——————, A=20 mm.

(1) The effect of reflected elastic shock waves on the forces in the zone of contact is not
considered.

(2) The indentation velocity is equal to the impact velocity, and the impact velocity Vi

is equal to the average velocity of the coils clash length Lclose , i.e.,

Vi = 1
2 (ny /n)ẏ. (54)

(3) The damping force is proportional to the impact velocity and the damping coefficient.
i.e.,

fdamping = cVi . (55)

The damping coefficient c during impact derived by Hunt and Crossley [4] is

c= 3
2 akc y3/2

m . (56)

for steel, a is about 0·08 s/m and

kc =[2Es /3(1− n2) (4/d)−2, (57)

Figure 5. Vibration of the conical spring without damping. Key as for Figure 4.
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Figure 6. The input amplitude versus maximum amplitude. Key: –r–, Amax for yq0; –Q–, numerical Amax

for yQ 0; –W–, analytical Amax for yQ0.

where Es is the elastic modules of the spring material, n is the Poisson ratio, d is the wire
diameter, and the maximum approaching distance ym is written as

ym =[mclose V2
i (g+1)/2kc ]1/(g+1) (58)

where g=3/2 and mclose is the mass of the coils clash length,

mclose =Lclose × pd2/4× r, (59)

where r is the spring wire’s density.
From equation (54) to equation (59), one obtains

fdamping = 3
2 akc [(Lclose × pd2/4× r× 1

4 (n2
y /n2)ẏ2 × 5

2 /2kc )2/5]3/2 × [ny /2n(ẏ)] (60)

= 3
4 (n11/5

y /n)akc (5pLclose × d2 × r× ẏ2/64kc n2)3/5ẏ. (60)

Figure 7. The input amplitude versus frequency. Key: –E–, linear; –Q–, analytical; –W–, numerical.
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Figure 8. Vibration of the conical spring with impact damping. Key: ––, with damping effect; - - - - , without
damping effect.

Since Lclose and ny are a function of compression y, the damping force is a function of
y and ẏ. By considering the damping force, the dynamic equations of the conical spring
become

mÿ+ ky+ ey3 + 3
4 (n11/5

y /n)akc (5pLclose d2rẏ2/64kc n2)3/5ẏ=0; for yy 0 (61)

mÿ+ ky=0, for yQ 0 (62)

The frequency of the vibration differs from the frequency of the undamped system by
about 1·5% for input amplitude A=40 mm. The damping effect due to the coils clash
cannot be ignored when the amplitude is large. When the Lclose becomes shorter with the
decreasing amplitude, the damping effect due to coil clash is not as evident then, as shown
in Figure 8.

6. CONCLUSIONS

To consider the diameter change, three energy terms are considered in deriving the
dynamic equation of the conical spring. An algorithm to find the static load–deflection
relation for conical springs is proposed here with static verification, and the method to
predict the coil close length is more general than Berry’s method which only caters for
uniform spacing of the conical springs. The dynamic equations in O.D.E. form for a
conical spring are also derived by considering the nonlinearity of the spring rate in
compression stroke and the damping effects due to the coil clash which is the first of such
modeling in this area. Because of the coil clash in the compression stroke, the frequency
varies with the input amplitude, and maximum amplitude in the compression stroke is
smaller than the maximum amplitude in the extension stroke.
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