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A Rate-Distortion Theorem for Arbitrary Discrete Sources Definition 2.2 ([2], [3]): Thesup-information ratd (X:Y’) of the
joint processXY is defined as thdimsup in probability of the
Po-Ning Chen and Fady Alajaji sequence of normalized information densitjes x»y» (X" Y™).
Analogously, thenf-information rate(X;Y) betweenX andY
is defined as th&iminf in probability of the sequence of normalized

Abstract—A rate-distortion theorem for arbitrary (not necessarily information densitiest ixnyn (X" V™)

stationary or ergodic) discrete-time finite-alphabet sources is given. This

result, which provides the expression of the minimume-achievable fixed- ~ When X is equal toY, I(_X§X_) (respectively, I(X: X)) i_s
length coding rate subject to a fidelity criterion, extends a recent data referred to as thesup (respectively,inf) entropy rateof X and is
compression theorem by Steinberg and Verd. denoted byH (X)) (respectively,H (X)).

Index Terms—Arbitrary discrete sources, data compression, rate-dis- Definition 2.3 ([2], [3]): Given a joint distribution Px»yn =
tortion theory, Shannon theory. Wy x= Px=, the conditional entropy densitis defined by

|. INTRODUCTION iynxn (b | @) = —log Wy xn (D" | a™).

We consider the problem of source coding with a fidelity criterion The conditional sup-entropy ratéf (Y | X) of Y given X is
for arbitrary (not necessarily stationary or ergodic) discrete-tindefined as the limsup in probability of the sequence of normalized
finite-alphabet sources. We prove a general rate-distortion theoreamditional entropy densitie% iynxn (Y™ | X7).
by establishing the expression of the minimurachievable block  Analogously, theconditional inf-entropy rateH(Y | X) of ¥
coding rate subject to a fidelity criterion. given X is defined as the liminf in probability of; iy xn (Y™ |

In [3, Theorem 10, part a)], Steinberg and Merdémonstrate a X").
data compression theorem for arbitrary sources under the restriction
that the probability of excessive distortion due to the achievable data n
compression codes is asymptotically equal to zero (cf. [3, Definitions .. o -
30 and 31]). In this work, we provide a variant of their result b)f Definition 3.1 (e.g., [1]): Given a finite source alphabét and a

relaxing the restriction on the probability of excessive distortion (c i_nite reproduction alp_habel’_, a block POde for data conjpression
(3.1) of blocklengthn and sizeM is a mappingf.(-) : X" — Y" that

results in|| f-|| = M codewords of lengtt, where each codeword
is a sequence af reproducing letters.

. GENERAL DATA COMPRESSIONTHEOREM

Il. PRELIMINARIES

Consider a random proces¥ defined by a sequence of finite- Definition 3.2: A distortion measurgn(-,-) is a mapping

dimensional distributions [2] Pt XX YT = RTA2]0,00).
'y n o__ ~(n) -(n)\q oo . ) ) )
X ={X" =" X s We can view the distortion measure as the cost of representing a

Let sourcen-tuple X" by a reproductiom.-tuple f,,(X™).

Definition 3.3: Let X and{p,(:,+)}n>1 be given. Let
FX) &2 (X5

denote a sequence of data compression codeX foFhe distortion
spectrum x ¢ x,(#) for f(-) is defined by

Y& = Y

n=1
be the corresponding output process inducedXbyia the channel
W 2 (Wynxn = Pynjxn: X" — V' 102,

which is an arbitrary sequence efdimensional conditional distri- 1
butions fromX™ to Y, where X’ and) are the input and output Axsox () 2 lim inf Pr {5/)71 (X", fu(X™) < 9}-
alphabets, respectively. We assume thato ) are finite.

Definition 3.4: Fix D > 0 and1 > = > 0. R is ane-achievable
data compression rate at distortiob for a sourceX if there exists
a sequence of data compression coglgs) with

Definition 2.1 ([2]): Given a joint distribution Pxny»
WynxaPxn on X" x Y" with marginals Px» and Py~, the
information densityis defined by

o . 1
iy (@7 8") = log Wynxn(b" | a") limsup —log lfnll = R
txnynld j = log Pyn(l)“) n—oo
and
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AXf(X)(f)

AXf(X)(D +)

sup[B:AXf(X)(G)Se] D+~

Fig. 1. Axpx)y(D+7) > e = supld : Axpx)(6) <e] < D+ .

Note that (3.1) is equivalent to stating that the limsup of the Step 5: Define a sequence of codég. } by
probability of excessive distortion (i.e., distortion larger th@ah is

smaller thanl — <. fula™) = {arg mingnecy pn (", y"), if 2 € A(C)
The infimums-achievable data compression rate at distortiéh 0, otherwise
for X is denoted byl (D, X). where0 is a fixed defauli»-tuple in y™.

Theorem 3.1 (General Data Compression Theorefix D > 0 Then

andl > ¢ > 0. Let X and{p.(-,-)}.>1 be given. Then ]
{p ( )} >1 g {l’n c X" %pn(va7f”(wrz)) S D+'}} 3 44(CZ)

T.(D.X) = R.(D)
since (Vz" € A(C,)) there existsy™ € C; such that
where (1/n)pn(z™,y") < D +~, which by definition off,
R.(D) % inf I(X;Y) implies that(1/n)pn (2™, fo(2™)) < D + ¥.
(Wesupl0:d ey (0)S=]<D) Step 6: Consequently,
where the infimum is taken over all conditional distributions

W = {Pynx»}32, for which the joint distributionPxy = PxW Axpx)(D+7)
satisfies the distortion constraint. . o oom 1 N n
Proof: = lim inf Pxn{w SR ﬁp"(w ST s D 7}
1) Forward part (achievability):Choosey > 0. We will prove the > liminf Py (A(C))
existence of a sequence of data compression codes with T n—oo o
1 =1 —limsup Px=(A°(Cy))
« ., - 9’\/ n—000
lim sup —f| foll < Fe(D) + 29 > -
and Hence

sup[f : Axpx)(0) <&l < D47, splf : Ay () < 1 < D+ 4

Step 1: Let W be the channel distribution achievidgy (D), and ) where the last step is clearly depicted in Fig. 1.
let Py be theY-marginal of Px W. This proves the forward part.

Step 2: Let R = R.(D) + 2v. ChooseM = ¢" n-blocks .2) Conver_se part:We show that for any sequence of encoders
independently according t8, and denote the resulting /= (") }n=1, if
random set byC,.

Step 3: For a givenC,,, we denote byd(C, ) the set of sequences
x™ € X™ such that there existg® € C,, with

sup[f : Axypx)(f) <] <D

then
1
n n -~ 1
gﬂn(-r y") <D+ lim_sqp ;10g||fn|| > R.(D).
Step 4: Claim:
Let
limst}p Ey[Pxn»(A(C.))] < 1—=. s (L iy = fa(a)
, L , . , U ):{0, otherwise
The proof of this claim is provided in the Appendix.
Therefore, there exists (a sequencef)such that Let V" denote the output corresponding to inp” and

lim sup Px» (A°(C1)) < 1—¢ channel W™. Then to evaluate the statistical properties of the
oo R - random sequence (1/n)p. (X", f.(X")}s2, under distribution
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Px» is equivqlent to evaluating those of the random sequence . o M
{(1/n)pn (X", Y™)}22, under distributionPy » W™ . Therefore, = > Po(@)|1- > Pra(y"HE@E"y")
_ zneEX™ yneEYn
R.(D) 2 inf I(X:Y) i
{W:sup[G:AXY(Q)SE}SD} < Z PXW(T”) 1— ()—77,(7(X;Y)+'y)

<I(X:Y) T

<H(Y)- H(Y | X) |

< H(Y) X,;y Poopyn(y™ [ 2") K (2", y ))

o1
< hrlzibip ZIOg 1 fnlls <1-— Z Z Pxn (J7n)P§'n\Xn (2", y")K (2", y")
Zne/\’n yneyn
where the second inequality follows from [4, Theorem 8, property (d)] ,I(R,RE(D),W,,)}

A _
and the third inequality follows from the fact th&k(Y | X) > 0. Texpi—e

O Therefore,
APPENDIX lim sup By, [Py (A"(C1))] < 1= lim inf Pr (A]7),)
Claim (cf. Proof of Theorem 3.1): <1—e. O
lim sup By [Px» (A°(Ch))] < 1 —=.
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