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Abstract 

A general framework of the theoretical analysis for the convergence and stability of 
the standard least squares finite element approximations to boundary value problems of 
first-order linear elliptic systems is established in a natural norm. With a suitable density 
assumption, the standard least squares method is proved to be convergent without re- 
quiring extra smoothness of the exact solutions. The method is also shown to be stable 
with respect to the natural norm. Some representative problems such as the grad-div 
type problems and the Stokes problem are demonstrated. © 1998 Published by Else- 
vier Science Inc. All rights reserved. 
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1. Introduction 

The pu rpose  o f  this p a p e r  is to es tabl ish a general  f r amework  o f  the analysis  
for  the convergence  and  s tabi l i ty  o f  the s t a n d a r d  least squares finite e lement  
m e t h o d  which is app l ied  to b o u n d a r y  value  p rob l ems  o f  f i rs t -order  l inear  ell ip- 
tic systems. Some examples  such as the g rad-d iv  type p rob lems  and  the Stokes  
p r o b l e m  are  o f  pa r t i cu la r  interest  in this f r amework .  
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In the last ten years, the applications of the use of  least squares principles in 
connection with finite element techniques have been extensively studied for the 
approximations in many different fields such as fluid dynamics, elasticity, elec- 
tromagnetism, and semiconductor device physics. The approach offers certain 
advantages, especially for large-scale computations. For  example, it leads to 
minimization problems rather than saddle point problems by the mixed finite 
element approach, thus it is not subject to the restriction of the Babu~ka-Brezzi 
condition; a single continuous piecewise polynomial space can be used for the 
approximation of all the unknowns; the resulting algebraic system is symmetric 
and positive definite; accurate approximations of all the unknowns can be ob- 
tained simultaneously. 

The least squares finite element approach represents a fairly general method- 
ology that can produce a variety of  algorithms. Roughly speaking, according 
to the boundary treatment, these methods can be classified into the following 
two categories (see Ref. [1] and references therein for more details): the stan- 
dard least squares finite element method [2-7] and the weighted least squares 
finite element method [8,9,1]. Here, standard means that the associated least 
squares functional is defined to be the sum of the squared L2-norms of the re- 
siduals of  the differential equations. 

In the error analysis of  the least squares methods mentioned above for first- 
order elliptic systems, there is a problem that the error estimates require rela- 
tively smooth exact solutions. The error estimates do not guarantee any con- 
vergence when the methods are applied to problems with low regularity 
solutions. Accordingly, in Ref. [10], a new least squares finite element method 
based on a discrete minus one inner product for first-order systems is proposed. 
The least squares method developed therein is shown to be convergent and sta- 
ble in some Sobolev's norm as long as the solution belongs to the space 
Hl+~(f2), for any e > 0. However, this method seems rather tricky to implement 
in practice. 

In the present paper, we shall establish a general framework of  the analysis 
for the convergence and stability of the standard least squares finite element 
approximations to first-order elliptic systems. By using the standard density ar- 
gument [11], we prove that, without requiring extra smoothness of  the exact so- 
lutions, the standard least squares method is convergent in a natural norm 
associated with the least squares bilinear form. We also show that the method 
is stable with respect to the natural norm. Furthermore, for many examples as 
we shall present, the natural norm is equivalent to some appropriate Sobolev's 
norm. Therefore, for these model problems at least, we have established the 
convergence and stability in some Sobolev's norm without any extra require- 
ment on the regularity of  the exact solutions. 

The remainder of the paper is organized as follows. In Section 2, we intro- 
duce the standard least squares finite element method for first-order elliptic sys- 
tems. In Section 3, we establish the main results for the convergence and 
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stability. In Section 4, some representative examples are given. Finally, in Sec- 
tion 5, some concluding remarks are drawn. 

2. The least squares finite element method 

Throughout this paper, the classical Sobolev space HS(f2),s >~ 0 integer, 
with its associated inner product (., ')s,a and norm [[. [Is,o, are employed [11- 
13]. As usual, L2(f2) = H°(g2). For the product space [H~(f2)] m, the correspond- 
ing inner product and norm are also denoted by (., "),,0 and [[ " [[s,a, respective- 
ly, when there is no chance for confusion. 

As usual, L~(~2) will denote the subspace of square integrable functions 
with zero mean, i.e., fov dx=O for all v E L02(f2). By L~(f2) and L~(Sf2) 
we denote the usual Banach spaces of measurable and essentially bounded 
real-valued functions defined on f2 and 5f2 with the norms [[. 1[~,o and 
[[ " [[~,ao, respectively. Let @(f2) denote the linear space of infinitely differen- 
tiable functions with compact support in f2, and let @(9) denote the restric- 
tions of the functions in ~(Nd) to 9.  It is well-known that ~ ( ~ )  is dense in 
Hi(Q). 

We shall consider the standard least squares finite element approximations 
to the boundary value problems of first-order linear elliptic systems in the gen- 
eral form: 

f~tA ~ U  ' ~ x i + A ° U = F  inf2, (2.1) 

BU = G on 5f2, (2.2) 

where f2 C Rd, d ~> 2, is an open bounded connected domain with a smooth 
boundary 5Q, and U = ( U l , . . . , U m ) T , F = ( J i , . . . , f m ) T , G = ( g l , . . . , g , )  a'. In 
this paper, we shall always assume that the entries of m × m matrices 
AiE[L~(f2)]m×m,o<<,i<<,d, and the entries of n x m  boundary matrix 
B E [L~(512)] "×m are regular enough on D and 5Q, respectively, such that prob- 
lem (2.1) and (2.2) has a unique strong solution U C [H 1 (f2)] m with the given 
functions F ~ [L2(Fa)]m,G C [LZ(~f2)] ". For simplicity, we also assume that 
G = 0 on the boundary 5f2. 

We now introduce the standard least squares finite element method for 
problem (2.1) and (2.2). Define a function space ~ for our problem by 

= {V  ~_ [Hl(~'~)]m;BV = 0 on ~f2}, (2.3) 

and then define a standard least squares energy functional J :  ~ ---+ ~ by 

d 5V - F  0 2,a" 
J ( V ) =  ~=lAi~ixi+AoV (2.4) 
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Obviously, the exact solution U E ~/r of problem (2.1) and (2.2) is the unique 
zero minimizer of the functional J on ~U, that is, 

J ( U )  = 0 = min{J(V);  V E ~ } .  (2.5) 

Applying the variational techniques, we can find that (2.5) is equivalent to 

~(U,  V) = ~ ( V )  VV E ~ ,  (2.6) 

where the bilinear form ~(. ,  .) and the linear form ~ ( . )  are defined, respective- 
ly, by 

:f(di~lAO Vi_~_AO V ~ x i  )(~__~Ai~..~.._~_AoW~dx,~=]d ~Woxi J (2.7) ~(V, W) 

~ ( V ) =  F I ~ ,  A i - - + A o V  dx (2.8) 

for all V, W E ~U. Therefore, the standard least squares finite element method 
for problem (2.1) and (2.2) is to determine Uh ~ ~h  such that 

~(Uh, Vh) = ~(Vh) VVh E Uh, (2.9) 

where the finite element space ~h  C ~ is assumed to satisfy the following ap- 
proximation property. For any V c V N [Hp+l(~)]m,p ~ 0 integer, there exists 
Vh ~ "Us such that 

[I v - Vhl[1,~ ~< ChPllvllp+l,~, (2.10) 

where the positive constant C is independent of V and the mesh parameter h. 
Approximation property (2.10) is satisfied for usual finite element spaces pro- 
vided the associated family of triangulations {Y'h} of S2 is regular [11]. 

Throughout this paper, in any estimate or inequality the quantity C will de- 
note a generic positive constant always independent of h and need not neces- 
sarily be the same constant in different places. 

3. Convergence and stability 

It is clear that ~(-, -) defines an inner product on ~ × ~ since the positive-def- 
initeness is ensured from the fact that problem (2. l) and (2.2) possesses the un- 
ique solution U = 0 for F = 0 and G -- 0. Denote the associated natural norm by 

IlVllb = {~(v ,  v)} 1/2 Vv ~ ~ .  (3.1) 

Although we do not know whether the I[. lib-norm is equivalent to the ][. Ill,a- 
norm or not, evidently there exists a positive constant C such that 

IIVllb~< CIIVlll, ~ VV ~ ~ (3.2) 
d since ~i=l  Ai(~/~xi) + Ao in (2.1) is a first-order differential operator. 
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We first state some fundamental properties of the standard least squares fi- 
nite element scheme (2.9). 

Theorem 3.1. Let U E [H 1 ((2)] m be the exact solution of(2.1)  and (2.2) with the 
given functions F C [/,2(0)] m and G = O. 

(i) Problem (2.9) has a unique solution Uh E ~Uh which satisfies the following 
stability estimate." 

IIU,,L <<. IIFII0,~. (3.3) 

(ii) The matrix of  the linear system associated with problem (2.9) is symmet- 
ric and positive definite. 
(iii) The following orthogonality relation holds: 

~ ( U  - Uh, Vh) = 0 VVh E ~t/~h. (3.4) 

(iv) The approximate solution Uh is a best approximation of U in the II • lib- 
norm, that is, 

IIU- u~llb -- inf I Ig -  ~11~. (3.5) 
Vh E'~h 

Proof. To prove the unique solvability, it suffices to prove the uniqueness of 
solution since "¢h is a finite-dimensional space. Let Uh be a solution of (2.9), 
then we have 

Iluhll2b = ~ ( u h ,  uh) = ~ ( u ~ )  

IIFll0,• ai~lAi~-Uh + AoUh 
~xi II0,~ 

~< IIFll0~llU~llb, 

which implies (3.3). Consequently, the solution Uh of (2.9) is unique. 
Assertion (ii) follows from the fact that the bilinear form ~(. ,-)  is symmetric 

and positive definite. (iii) is obtained by subtracting Eq. (2.9) from Eq. (2.6). 
Using (3.4) and the Cauchy-Schwarz inequality, 

IIU - U~[[2~ = ~ ( U  - U~, U - U~) 
= ~ ( u  - uh,  u - vh) vvh ~ ~ h  

<<. I I u -  uhl l~ l lu  - ~11~ v~  c ~ ,  
we prove (iv). [] 

Estimate (3.3) indicates that the standard least squares method is stable with 
respect to the ]]. [[b-norm, that is, when we change the given data function F 
slightly in the L2-norm, the least squares solution Uh changes only slightly in 
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the [I " lib -n°rm. Moreover, by using the standard density argument [11], we can 
obtain the following results for the convergence. 

Theorem 3.2. Assume that there exists a subspace 5 ¢ C ~ A [1t q+l (•)]m, for 
some integer q >1 1, which is dense in the space ~U with respect to the [[ " Ill,Q- 
norm. Then the standard least squares finite element method (2.9) is convergent 
with respeet to the [[ • lib-norm without requiring any extra regularity assumption 
on the exact solution U, i.e., 

d ~Uh 0,4 lim ~ - " A i - - + A o U h - F  = 0 .  (3.6) 

Moreover, i f  the exact solution U E ~/~ A [H p+l ([2)] m, then we have the following 
error estimate." 

IIg - ghtlb <- Ch~llgllp+l,~, (3.7) 

where C is a positive constant independent of  h. 

Proof .  Since the subspace ~ c ~ ~ Egq+l(~)] rn, is dense in ~ with respect to 
the II • lit,Q-norm, for any e > 0, there exists U E 5 ~ independent o f h  such that 

£ 
IIg - 0[II,~ < ~---~, 

where C is the same constant as in (3.2), which implies 

(3.8) I I g -  Oils < ~. 

For this fixed smooth function 0 E 5e C [gq+l(~)] m, q • 1, by the approxima- 
tion property (2.10), we can find Oh E Uh so that, 

II 8 - 0~ II ~,~ ~< ChUll Ollq+l,~ 

which implies, for sufficiently small h, 

118- Ohllb---< c t lg -  l[-~]h[[1, ~ < ~. (3.9) 

Combining inequalities (3.8) and (3.9) with (3.5), we immediately obtain 

0~< I I u -  u~ll~ ~ < I IU-  O~llb ~ I IU-  OIIb + I I 0 -  Ohllb < e 

which implies (3.6). We now assume that U E "f/- ~ [H p+I (f~)]m. By (3.5), (3.2) 
and the approximation property (2.10) of the finite element space ~/Fh, we ob- 
tain (3.7). This completes the proof. []  

4. Examples  

Unless otherwise specified, we assume in this section that the dimension d is 
two or three. We begin with two preliminary lemmas. 
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Lemma 4.1 (The Poincar6-Wirtinger inequality [13]). Let  f2 be an open bounded 
connected subset o f  ~d, d ~ 2, with a C 1 boundary ~f2. Then there exists a 
constant C = C(d, f2) > 0 such that fo r  every v E H 1 (f2), we have 

IIv - vollo,~ ~ c I I V v l l o ~  ( 4 . 1 )  

where 

1/  
va . -  meas((2) vdx 

a 

is the average o f  v over f2. 

Defining the function space 

-~(0) = .~(~)  n Lo2(~), 

we obtain, from Lemma 4.1, the following result. 

(4.2) 

(4.3) 

Lemma 4.2. The space ~(-~) is dense #t Ht (f2) ~ Lo2(f2). 

Proof. Since ~(O) is dense in H 1 (O), for every v E H 1 ((2) N Lg(f2), there exists a 
sequence {vn} in ~(f2) such that 

IlVn --  V 2 112 IIv.-vtl2o,~+llV(v.-v)tl~o,~o a s n - - + o e .  

Define the following sequence {c,} of real numbers, 

1 / 
c, . -  meas(f2) v, dx, 

f2 

then 

1/  
c. - meas(f2) (v. - v)dx 

Q 

since fov dx = 0. Applying the Poincar4-Wirtinger inequality to v. - v for all 
n, we have 

o 4  II(v. - c . )  - vll~,~ = II(v. - c . )  - vll20+~ + I lV(v .  - c . )  - Vvl{~,~ 

= II(v. - en) - vl120,~ + I IV(v .  - v)lP~,~ 

~< C l l V ( v ~  - v) l lo~ ~ 0 a s  n ~ o c .  

This completes the proof. [] 

Let Ho 1 (f2) be the closure of ~(f2) in H 1 (Q), then 

H I  (~"~) = {v  C Hl (~ '2 ) ;  v = 0 on 0f2}. (4.4) 
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We now introduce our  first example. 

Example 4.1 (The velocity-vorticity-pressure Stokes equations). Let 
f2 C ~a,d = 2, and let f = ( f l , f2)  T E [L2(f2)] 2 be a given function representing 
the body  force. The Stokes equat ions with homogeneous  velocity boundary  
condit ions can be posed as: 

- Au + grad(p) = f in f2, (4.5) 

div(u) = 0 in O, (4.6) 

u = 0 o n  ~f2, (4 .7 )  

(p, 1)o,n = O, (4.8) 

where u = (ul, u2) v is the velocity and p is the pressure, all o f  which are as- 
sumed to be nondimensionalized.  In t roducing the auxiliary variable 
09 = curl(u) := ~u2/~x - ~Uy/~y, which is known as the vorticity, we can trans- 
form (4.5)-(4.8) into a first-order system [14] as follows: 

curl(09) + grad(p) = f in f2, (4.9) 

curl(u) - 09 = 0 in [2, (4.10) 

div(u) = 0 in f2, (4.11) 

u = 0 o n  ~I2, (4 .12 )  

(p, 1)0,a = 0, (4.13) 

where curl(09) := (09y,-09x) T is another  curl operator .  
Applying the least squares finite element scheme (2.9) to the first-order sys- 

tem (4.9)-(4.13) with 

t / ' =  {(v,<p,q) T E [H~(Q)] 2 ×HI(Q) xHI(~-2);qEL~([2)} 
and taking 

_ _  ~ _ _  

= ~ ( ~ )  × 9 ( 0 )  × ~ ( ~ )  × ~ ( ~ ) ,  

which is contained in V fq [H2(g2)] 4, we have the following convergence results 
that  follow from (4.4), Lemma  4.2, and Theorem 3.2, 

[[curl(09 - 09h) + g r a d ( p  - Ph)II0,~ + Ilcurl(u - Uh) -- (09 -- 09h)110,~ 

+ I l d i v ( u -  Uh)ll0,o ~ 0 as h ~ 0, (4.14) 

provided the exact solution U = (u, 09,p)X E • ;  and 

I l cu r l (09-  09h) + g r a d ( p -  ph)ll0,o + I l c u r l ( u -  uh) - ( 0 9 -  09h)110,~ 

+ II d iv(u  - uh)[10,o ~< ChP II U[lp+l,o, (4.1 5) 
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if U = (u ,  o J , p )  T E "//" fq [Hp+I((2)] 4, where Uh = (Uh, Ogh,ph) T E 3V'h is the least 
squares finite element solution. 

For the case of  sufficiently smooth exact solutions, the error estimates can be 
found in, for example, Refs. [15-17]. More specifically, in Ref. [17], we have 
proved that there exists a positive constant C such that 

[Ivll,,~ + [[~°110,~ + [Iqll0,o <~ C(llcurl(q~) + grad(q)l]0,~ + ][curl(v) - q~]]0,~. 

+lldiv(v)ll0~) VV = (v, qLq) T E 3U. (4.16) 

Combining (4.16) with (4.14) and (4.15), we have, respectively, 

Ilu - uhll , ,~ + IIo~ - cohllo,~ + lip - -Phl l0 ,~  --'  0 as h ~ 0, (4.17) 

Ilu - uhlll,~ + IIco - ~ohlt0,~ + lip - phll0,~ ~< ChPllUIIp+l,~. (4.18) 

In this example, we focus our attention on the two-dimensional velocity- 
vorticity-pressure Stokes equations with velocity boundary conditions. All of  
the results developed here can be extended to the three-dimensional case direct- 
ly [15,17]. 

So far, we have been mainly interested in the case of ~ c [H' (I2)]m; but all 
of  the results developed in Section 3 can be easily applied to the function space 
V with less regularity. Bearing this in mind, we introduce the following func- 
tion spaces: 

H(div; f2) := {V E [L2(f2)]d;div V C L 2 ( ( 2 ) } ,  (4.19) 

H0(div; O) := the closure of  [~(f2)] a in H(div; O), (4.20) 

where the space H(div; f2) is equipped with the following inner product and 
n o r m ,  

(V, W)n(aiv;~ ) := (V, W)0,o + (div V, div W)0,a VV, W E H(div; (2), (4.21) 

11V[lH(div;f2) : =  (ll Vll~,,~ + Ildiv Vll20,,~)'/2 v v  ~ H(div; f2), (4.22) 

which make it a Hilbert space [12]. 
The following lemmas will be required later and their proofs can be found in 

[12]. 

Lemma 4.3. The space [~(~)]d is dense in H(div; f2). 

Lemma 4.4. Let n be the outward unit normal vector to ~£2, then we have 

Ho(div; f2) = {V E H(div; f2); V. n = 0 on Of 2}. (4.23) 

Example  4.2 (Grad-div type problems). Let the smooth boundary 80  of  domain 
f2 c ~d ,d  = 2 or 3, be partitioned into two disjoint open parts, FD and FN, 
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such that  ~f2 = FD U FN. We consider the following boundary  value problem 
with mixed type boundary  conditions: 

- div(A grad u) = f  in g2, (4.24) 

u = 0 on FD, (4.25) 

(Agradu)  • n = 0 on IN, (4.26) 

where A = (aij(x))a×a, aij C L~(-O), and we assume that  A is symmetric and uni- 
formly positive definite on f2. It is unders tood that  if Fu = ~(2, we further re- 
quire the compatibi l i ty condition,  f o f d x  = 0, and impose an addit ional  
constraint  on u such as fo u dx = 0, for  the well-posedness. 

In t roducing the auxiliary variables, p = - A  grad u on O, we can reformulate  
problem (4.24)-(4.26) to the following equivalent first-order form: 

p + A  gradu = 0 in f2, (4.27) 

div p = f in O, (4.28) 

u = 0 on FD, (4.29) 

p - n = 0  OnFN. (4.30) 

Following Section 3 with minor  modifications, we can apply the s tandard 
least squares method  (2.9) over the extended first-order system (4.27)-(4.30) 
with 

• : { ( v , q )  a 'EHl(~2)  x H ( d i v ; O ) ; v = 0 o n F D a n d q - n : 0 o n F N } ,  

provided the associated finite element space ~ h  c ~ also possesses the follow- 
ing approximat ion  proper ty  [2,7]. Fo r  any V = (v,q) a" E ~ N [HP+t(O)] a+l, 
p 7> 0 integer, there exists Vh = (vh,qh) a- E ~ h  such that  

2 , (4.31) IIv - vhll~,,~ + IIq - -  qhlln(~iv;~/~< Chp { llvll2+l,~ + llqllp+l,~} 1/2 

where the positive constant  C is independent  of  V and the mesh parameter  h. 
Similar to Theorem 3.2, we can prove that,  wi thout  any extra regularity as- 

sumption on the exact solution U = (u, p)X, 

II (p - ph) + A grad (u - uh)[[0,~ + [ I d i v ( p  - ph)II0,~ 

= IlPh +Agraduhll0,o + Ildivph - f t l 0 , o  --* 0 as h ~ 0, (4.32) 

w h e n  F D = SO o r  FN = ~ '2 ,  where Uh = (uh, ph)  T E 3~h is the least squares fi- 
nite element solution, and we choose 

5p = 9 ( 0 )  x [~(~)]d if_rz, = 0f2 
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and 

5 ~ = ~ ( ~ )  x [@(Q)]a i fFu = 012 

both  o f  which are contained in ~ fn [H2(O)] d and dense in U with respect to 
the H I (f2) x H(div;  f2) n o r m  (cf. (4.4), Lemma 4.3, and Lemma 4.2; (4.20), 
Lemma 4.4, respectively). 

For  sufficiently smooth  exact solutions, the error  estimates can be found in, 
for example Refs. [2,3,7]. 

5. Concluding remarks 

In this paper,  we establish a general f ramework  o f  the theoretical analysis 
for the convergence and stability o f  the s tandard  least squares finite element 
method  for first-order problems. With  a suitable density assumption,  the meth-  
od is proved to be convergent  in a natural  no rm without  requiring extra regu- 
larity o f  the exact solutions, and with respect to the same norm,  the method  is 
also stable. 

By the example shown in the previous section, we observe that  choosing a 
suitable dense subset 5e o f  ~U plays a crucial role in the analysis o f  the conver- 
gence. A useful tool  for choosing 5 e is based on the following proper ty  o f  Ban- 
ach spaces [12], p. 26: 

A subspace 5P o f  a Banach space ~ is dense in ~U i f  and only i f  

every element o f  U" that vanishes on 5 ~ also vanishes on ~ ,  

where V '  denotes the dual space o f  ~ .  Actually, Lemma 4.3 and Lemma 4.4 
are two applications o f  the property,  whose proofs  can be found in Ref. [12]. 
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