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A Parallel Algorithm for
Detecting Convex Hulls on Image Boards

Ja-Chen Lin and Jenn-Yih Lin

Abstract—By finding the maximum and minimum of fyi � mxi j
1 � i � Ng for certain slopesm, we propose here a simple and fast
parallel algorithm to obtain the convex hull of N arbitrarily given points
on an image board. The mathematical theory needed is included, and
computation time is 1 logN .

Index Terms—Bottom path, convex hull, parallel, slopes, top path.

I. INTRODUCTION

Finding the convex hull (CH) given planer points is an interesting
combinatorial problem, the result of which can be applied to pattern
recognition [1], computer graphics and image processing [2], statistics
[3], etc. When a sequential computer is used to find the CH ofN

given points, the time used is
(N logN). (SeveralO(N logN)

time algorithms have been developed [3].) When a parallel com-
puting machine is used, more specifically, when a concurrent-read
exclusive-write (CREW) parallel random access machine (PRAM)
is used, the fastest existing algorithms useO(logN) computation
time [4]–[5]. However, none of theseO(logN) algorithms can have
the computation time as low as1 logN (if each arithmetic or logic
operation takes one unit time).

When the CH problem is encountered in image processing, the
problem is somewhat different. Because the resolution of the image
board is known in advance, say 512� 512, the points in the image
board will have integer coordinates that belong to a known finite set
(e.g.,f(x; y) j x = 1; 2; � � � ; 512; y = 1; 2; � � � ; 512g). Finding the
CH is therefore easier. At least two parallel algorithms [6], [7] have
been proposed to solve the CH problem in image boards, and their
computation time is, if the image board is a 512� 512 board, at least
log(512 � 512). In this correspondence, we propose a fast parallel
algorithm whose computation time for finding the CH of anN -point
set is 1 logN (assuming theseN points areN pixels taken from
an image board). SinceN � 512 � 512, the computation time is
shorter than that of [6] and [7].

The proposed method is described in Section II below. The cor-
responding parallel CREW algorithm is included in Section III.
Section IV is the conclusion.

II. THE PROPOSAL METHOD

LetE = f(xn; yn)g
N

n=1 be an input point set of which the CH is to
be found. It is well known that every vertex of CH boundary belongs
to the input point set [8]. We therefore try to identify those input
points that should be vertices and arrange these points in a suitable
order to form the boundary of the CH. In general, the CH boundary
encloses a closed region called the CH region. The boundary can
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Fig. 1. Four possible cases of decomposition of the boundary of a convex
hull. There areJ and L line segments in the top path and bottom path,
respectively. In this example,J = 4 andL = 3.

be decomposed into (at most) four parts, called the top path, the
bottom path, the left edge, and the right edge [see Fig. 1, top left].
The left edge is the shortest vertical line segment containing input
points f(xn; yn)g of which thex coordinates are all equivalent to
xmin = Minfxn j 1 � n � Ng. The right edge can be defined
likewise, with xmin replaced byxmax = Maxfxn j 1 � n � Ng.
When there is only one input point of which thex coordinate isxmin
(xmax), then the left (right) edge degenerates into a single point
called the left (right) vertex [see Fig. 1, top right and bottom left
and right]. The top path and bottom path are defined by the two-
dimensional (2-D) point setsf(x; f(x)) j xmin � x � xmaxg and
f(x; g(x)) j xmin � x � xmaxg, respectively, if the CH region is
defined byf(x; y) j g(x) � y � f(x); xmin � x � xmaxg for some
piecewise linear functionsf(x) and g(x) defined on the interval
xmin � x � xmax. In other words,f(x) = Maxfy j (x; y) 2

CH Regiong andg(x) = Minfy j (x; y) 2 CH Regiong.
Obviously, the CH is completely determined if we can obtain the

top pathy = f(x) and the bottom pathy = g(x), because the left
and right edges can be generated by connecting the left and right
ends of the top and bottom paths. Without loss of generality, we
show how to obtain the top path. Note that both the top and bottom
paths are piecewise linear (i.e., formed of several line segments)
because the CH region is a convex polygon. To obtain the top path
A0A1 [A1A2 [ � � � [AJ�1AJ (reading from the leftmost vertexA0

through the rightmost vertexAJ along the top path), we assume that
each two line segmentsAi�1Ai andAiAi+1 can never have the same
slope (otherwise, these two line segments could have been combined
to reduce the value ofJ by 1). Also note that the top path can be com-
pletely determined if we can find theJ+1 verticesA0; A1; � � � ; AJ .
Before introducing how to find these vertices, we need the following

notations. Let�1 = Angle(
���!

A0A1) = tan�1(Slope
���!

A0A1); �2 =

Angle(
���!

A1A2) = tan�1(Slope
���!

A1A2); � � � ; �J = Angle(
�����!

AJ�1AJ )

= tan�1(Slope
�����!

AJ�1AJ ) be the directional angles of each (directed)
line segments of the top path. The range of the angle function is the
range of the arc-tangent function, namely,�90� < � < 90�. Also,
define�0 = 90� and�J+1 = �90� for convenience. We can use the
convex property of the CH region, and the fact that the top path is
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Fig. 2. For the top path,�k < �k+1 is impossible. Because if�k < �k+1,
then the line segmentAk�1Ak+1 is “above” the top path (the bald line
segments), and hence, not contained in the convex hull, althoughAk�1 and
Ak+1 are two points of the convex hull.

Fig. 3. Illustration describing Lemma 1.

the top boundary of the CH region to prove (see Fig. 2) that

�0 > �1 > �2 > � � � > �J > �J+1: (1)

Theorem 1 below is fundamental to the theory of the proposed
method. The proof of Theorem 1 uses Lemma 1. To save space, both
proofs are omitted.

Lemma 1: Let Ak = (uk; vk) be an arbitrary vertex of the
top path, and� an arbitrary angle satisfying�k > � > �k+1. Let
m = tan �, then(y �mx)jA = vk �muk > (y �mx)jT for any
other pointT = (xt; yt) that is on the top path (see Fig. 3).

Theorem 1: DefineAk; �, andm as in Lemma 1. If(xi; yi) 2
f(xn; yn)g

N
n=1 is an arbitrary point in the input set, and(xi; yi) 6=

Ak, then (y � mx)jA > yi � mxi.
Because the set of all vertices of the CH is a subset of the input

set (this well-known fact was used by many existing algorithms [8]
to find the CH vertices); we may say that theAk in Theorem 1 is
one of the input points, and(y � mx)jA is the unique maximum
among theN valuesfyn � mxng

N
n=1. Also note that in Lemma

1 and Theorem 1,� is not allowed to be identical to�k or �k+1
for reasons explained below. If� happens to coincide with one of
the directional angles of the line segments that form the CH, say,
� = �k, then(y �mx)jA = (y �mx)jA becauseAk�1Ak is
a line segment with slopetan �k = tan � = m. In fact, we can also
prove that if� = �k, then all the input points inAk�1Ak, including
Ak�1 andAk, will maximize fyn � mxng

N
n=1, i.e., the point that

maximizesfyn � mxng
N
n=1 is no longer unique if� = �k. The

nonuniqueness is an undesired property for the following reason.
Since any pointz 2 Ak�1Ak (z needs not beAk�1 or Ak)
will maximize fyn � mxng

N
n=1 when m = tan � = tan �k =

Slope(Ak�1Ak), we cannot use this kind of� to find the CH vertex if
we plan to identify those input points that maximizefyn�mxngNn=1
as the CH vertices in the top path. Otherwise, the middle pointz of
the line segmentAk�1Ak might be mistreated as a vertex, although
z is not a vertex.

All the discussions made in the previous paragraph suggest that
each “vertex”Ak of the top path can be found by identifying it as

Fig. 4. Example that illustrates the application of Theorem 1. See the text
above (2).

the “unique” input point that maximizesfyn �mxng
N
n=1 for some

m = tan � that is carefully chosen to meet the�k > � > �k+1
requirement stated in Lemma 1. Of course, finding this� is not easy
because�k and�k+1 are not known in advance. Let us first inspect the
example given below before we discuss how to find the suitable value
of �. Assume that the top path isA0A1 [ A1A2 [ A2A3 [ A3A4

(see Fig. 4, top left) with�1 = 41�; �2 = 23�; �3 = �30�, and
�4 = �69�, respectively (see Fig. 4, top right). Therefore,J = 4. If
we uniformly partition the angular intervalf� j �90� � � � 90�g

into many subintervals so that the width�� of each subinterval
is, say, �� = 15�, then we will have a setW = f�1 =

75�; �2 = 60�; �3 = 45�; � � � ; �10 = �60�; �11 = �75�g which
is a collection ofI = ( 180

��
)� 1 = 11 angles (see Fig. 4, bottom).

Note thatW has the following property:

(�j+1; �j) \W = f� j �j+1 < � < �jg \W 6= �

for all j = 0; 1; � � � ; J: (2)

In other words, for each open interval(�j+1; �j), where j 2

f0; 1; 2; � � � ; Jg, there exists at least one�i 2 W that satisfies
�j > �i > �j+1.

If we compare theN valuesfyn�xn tan�g
N
n=1, where� = �1,

we find that a unique maximum value can be obtained atA0 using
Theorem 1. If� is set to�2 or �3, we can still obtainA0. If � is
set to�4, however, we obtainA1. If � is set to�5; �6 or �7, we
obtainA2. If � is set to�8 = �30� = �3, a unique maximum is
not obtained (any input point in the line segmentA2A3, including
A2 andA3, will give maximum). We therefore bypass�8 to avoid
any of the ambiguity that leads to the problems discussed earlier. If
� is set to�9 or �10, we obtainA3. If � is set to�11, we obtain
A4. Note thatA0A1A2A3A4 appear in the exact sequence needed
to create the top path.

The remaining question is how to decide the value of�� so that
property (2) holds. Obviously, if�1 = 41� and�2 = 40:9�, as in the
previous example, then�� = 15� is not small enough to validate
property (2). In order to find a universal�� suitable for all given
input data set when the resolution of the image board is fixed at, say,
512� 512, we letA = (ua; va); B = (ub; vb), andC = (uc; vc)

be any three points that are not on the same line, and try to find the
smallest positive directional angle change

(��)min = Minfjtan
�1

(Slope(
�!
AB))� tan

�1

(Slope(
�!
BC))jg

(3)

where ua; va; ub; vb; uc, and vc range throughf1; 2; 3; � � � ; 511;
512g. We use a computer to evaluate this(��)min and list in Table I
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TABLE I
(��)min FOR SEVERAL COMMON IMAGE BOARDS

TABLE II
�� AND I FOR SEVERAL COMMON IMAGE BOARDS

the (��)min for several common resolutions. For example, when the
resolution is 512� 512, thenA = (1; 1); B = (255; 256); C =

(510; 512) gives
�!
AB = h254; 255i and

�!
BC = h255; 256i, which

yields the smallest positive directional-angle-change(��)min =

tan�1 255

254
� tan�1 256

255
= 0:000489519�. Note that the two vectors

�!
AB and

�!
BC are almost staying on the same line. If we let�� be

a little smaller than(��)min, for example, let

�� =
180�

b180�=(��)minc+ 1
< (��)min (4)

and let

I =
180�

��
� 1 = b180

�

=(��)minc (5)

then theW defined byW = f�i = 90� � i(��)gIi=1 will satisfy
property (2), because

�j � �j+1 = Angle(
�����!
Aj�1Aj)� Angle(

�����!
AjAj+1)

� (��)min > ��

by the definitions of(��)min and��. (The logic here is simple: if
there is no�i 2 W that satisfies�j > �i > �j+1, then there must
be two adjacent�, say,�5 and�6, such that�5 � �j > �j+1 � �6.
It follows that�� = �5 � �6 � �j � �j+1 � (��)min, which is a
contradiction to the fact that(��)min > ��.) Note that setting��
a little smaller than(��)min will guarantee property (2), whereas
setting �� to be identical with(��)min would render Theorem
1 inapplicable. We therefore use the�� defined in (4) hereafter.
The corresponding�� and I are listed in Table II. Note that if the
image board is rectangular instead of square, say, 512� 480 instead
of 512 � 512, then we can either derive(��)min, and hence��,
by a computer and the definitions (3) and (4), or, we may just use
the �� of the 512� 512 resolution provided in Table II, because
f(x; y) j x = 1; 2; � � � ; 512 and y = 1; 2; � � � ; 480g is a subset of
f(x; y) j x = 1; 2; � � � ; 512 andy = 1; 2; � � � ; 512g.

III. U SING THE PARALLEL CREW ALGORITHM TO FIND THE TOP PATH

The parallel CREW–PRAM algorithm to obtain the top path is
as follows (assume that each bank has a copy of the input data set
f(xn; yn)g

N
n=1).

Step 1: Read the image board resolution and use Table II to
determine the corresponding�� and I.

Step 2: For each banki = 1; 2; � � � ; I, do:

• Setm = tan(90� � i(��)).
• Set (ai; bi) to the unique(xn; yn) that maximizes
fyn � mxng

N
n=1.

(a) (b) (c)

(d) (e)

(f)

Fig. 5. Experimental results. (a) Leaf shape. (b) Detected vertices (marked
by X). (c) Detected convex hull. (d) Scissors shape. (e) Detected vertices
(marked byX). (f) Detected convex hull.

• If more than one(xn; yn) has this maximal property,
then set(ai; bi) to (1;1) to mean “bypass this bank
because of nonuniqueness.”

Step 3: For each banki = 2; 3; � � � ; I that generates an(ai; bi)
6= (1;1), we output the(ai; bi) only if (ai; bi) 6=

(ai�1; bi�1). (Remark: Bank 1 always output(a1; b1) if
(a1; b1) 6= (1;1):)

Note that most of the banks will not make any report because Step
3 is used to cancel out the redundancy when adjacent banks find
the same vertex on the top path. Also note that the communication
requirements between the adjacent banks are very simple (see Step 3).
As for the computation time, we assume that each bank is equipped
with N=2 processors, then the comparisons made in Step 2 need
1 logN time-units. The time used in Steps 1 and 3 are constants.
We therefore consider our algorithm a fast parallel algorithm which
uses1 logN processing time andI �N=2 processors. Here,I is the
number of banks, and is proportional to the resolutions of the image
board used, whereasN is the number of input points.

Although we have only shown how to find the top path, the bottom
path can be found (simultaneously) in an identical way using the
same�� and I. The only difference is that minimization instead
of the maximization is used in the algorithm. Indeed, the top and
bottom paths give the expected convex hull. To convince the reader,
the authors have simulated the proposed method using a personal
computer. Many experiments were done, two of which are shown in
Fig. 5. (Fig. 5(a) and (d) are the two input point sets.) Note that the
scissors in Fig. 5(d) is a real photo image.
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IV. CONCLUSION

A fast parallel algorithm that used simple operations was proposed
to detect the CH of theN given points of the image plane. Several
mathematical properties were provided to support the proposed idea.
An illustrative example describing the idea and two experimental
examples showing the simulation results were included in Sections II
and III, respectively. The processing time is1 logN , instead of
O(logN), which is usuallyC � logN with C > 1 described in
many papers. Increased speed is achieved at the expense of using
many processors. Note that the number of processors can be reduced
further, because in most real-world applications, we seldom need a
CH whose two consecutive edges differ in their directional angles
by less than, say, 0.5�. Therefore, instead of using the small values
listed in Table II for��, we can just use�� =0.5�, and, hence,
I = (180=0:5)� 1 = 359 banks of processors are enough.

Also note that we did not use either the divide-and-conquer or
data-sorting technique, although these two techniques are commonly
employed in most of the existing algorithms that are used to find
CH. Moreover, each processor only did very simple operations, and
the flow of the data was also quite simple and obvious. Therefore,
the VLSI design for implementing this special-purpose algorithm is
quite easy.
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Texture Synthesis via a Noncausal
Nonparametric Multiscale Markov Random Field

Rupert Paget and I. Dennis Longstaff

Abstract—Our noncausal, nonparametric, multiscale, Markov random
field (MRF) model is capable of synthesizing and capturing the charac-
teristics of a wide variety of textures, from the highly structured to the
stochastic. We use a multiscale synthesis algorithm incorporatinglocal
annealingto obtain larger realizations of texture visually indistinguishable
from the training texture.

Index Terms—Local annealing, Markov random fields, multiresolution,
nonparametric estimation, texture synthesis.

I. INTRODUCTION

We present here a method of modeling texture that enables synthe-
sis of texture visually indistinguishable from training textures. Our
noncausal, nonparametric multiscale Markov random field (MRF)
model captures the high-order statistical characteristics of textures.
We propose that if a model is capable of synthesizing texture visually
indistinguishable from its training texture, then it has capturedall the
visual characteristics of that texture and must therefore be unique to
that particular texture. Given a set of unique statistical models for a
set of training textures, it may then be possible to use these models to
segment and classify textures in images that contain many textures,
including unmodeled textures. Classification could be achieved by
using these unique statistical models to determine the statistical
similarity of a region in the image to a training texture. Any region
where there was no statistical similarity could then be labeled as an
unknown texture.

The conventional approach to classifying texture is to choose
the most discriminatory features from the training textures via a
feature selection process such as linear discriminatory analysis [17].
However, when a new texture is added to the training set, the features
selected maynot be those appropriate for distinguishing the new
texture from the previously modeled textures. Therefore, for each new
texture, the selection process has to be repeated to obtain a new set
of discriminatory features. Another limitation of conventional models
is they cannot be applied to images containing textures other than
those in the training sets. Therefore, they cannot be used to classify
complex images such as synthetic aperture radar (SAR) images of
Earth’s terrain, which contain a myriad of textures.

Current texture models such as fractal models, auto-models, autore-
gressive models, moving average models, and autoregressive moving
average models, do not realistically reproduce natural textures [9],
such as those in the Brodatz album [4]. This implies the models do
not captureall the visual characteristics. Julesz [11] hypothesized
that third- or higher-order models were required to model natural
textures. The MRF model has the required statistical order [1], but the
parametric versions are inherently inaccurate for modeling high-order
statistical characteristics over a data-sparse multidimensional feature
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