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A hybrid strategy for Gilbert's channel characterization using
gradient and annealing techniques

TAN-Hsu TANt and WEN-WHEI CHANGtt

This paper presents a hybrid algorithm for estimating Gilbert's channel model par­
ameters from an experimental error-gap distribution. A stochastic simulated annealing
algorithm is applied to determine automatically a set ofgood starting points, which are
then used by the deterministic gradient algorithm for faster convergence to the global
optimum. Simulation results indicate that, for channel characterization. this hybrid
strategy provides an ideal compromise between modelling accuracy and convergence
time.

I. Introduction

For many years there has been considerable interest in
reliable transmission of bit-rate reduced signals over
noisy channels. One general solution is to select a fixed
coder configuration that meets the error-tolerance capa­
city of the worst channel to be expected. The main draw­
back to this approach is that the coders cannot adapt to
channel variations. To complicate matters further, the
proposed coder candidates were usually ranked
according to their average bit-error-rate (BER) perform­
ances. The basic problem with this ranking method is
that the BER has difficulty distinguishing between
random and burst characteristics of sample error
sequences, perhaps the most efficient coding system
should take the intrinsic natures of typical error occur­
rences into consideration. Therein lies the motivation
for channel modelling, which lends itself easily to para­
metrization from experimental error sequences, and to
further utilization in adaptive error-control design.

Transmission errors encountered in digital communi­
cation channels tend to exhibit various degrees of statis­
tical dependences between successive samples. Attempts
to characterize such compound channels have included
numerous parametrized probabilistic models proposed
to assess some of the most relevant aspects of error
statistics (KanaI and Sastry 1978). Most studies have
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emphasized finite-state Markov chain models (Sato et
al. 1991, Fritchman 1967). The principal difficulty
encountered in channel characterization is that model
parameters are not directly observable; so methods of
deducing them from easily measured error statistics
must be considered. The use of exponential curve fitting
allows channel modelling to be formulated as a combi­
natorial optimization problem in which the squared
error distortion between the measured error-gap distri­
bution and its modelled fit is a cost function to be mini­
mized. This task can be done by using an estimation
method based on the gradient-descent algorithm
(Chouinard et al. 1988). Although the gradient-descent
method has a fast convergence rate, its simple downhill
search transitions can easily become trapped in local
minima and thus miss finding the globally optimal sol­
ution. Thus, it is common to run gradient searches from
a large number of starting points, and the best solution
is chosen from among those obtained. In addition,
quasi-Newton methods (Powell 1984) have also been
successfully applied in solving the multidimensional
optimization problems. Although the quasi-Newton
approach is conceptually satisfying in its ability to con­
verge rapidly, it is based on the assumption that the cost
function can be locally approximated by the quadratic
form with a convex condition. However, for channel
modelling problems, the cost function tends to exhibit
many different convex regions and has been found diffi­
cult to optimize by means of the quasi-Newton method.
An alternative approach to function optimization is
based on the stochastic simulated annealing algorithm
(Kirkpatrick et al. 1983). It aims to benefit through
acceptance of permutations that move uphill in a con-
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580 T-H. Tan and W- W Chang

subject to the following constraints:

(I) 001 +002 = I and

(2) 0 :;;;; o, :;;;; I, 0 :;;;; ~i :;;;; I, for i = 1,2,

min E = min{t~ [y(m) - loglo(t alfi ') ] 2}
o.{3 a,p 111=1"1 i=1

(2)

This is because the number of exponentials correspond
to the number of distinct line segments embedded in the
measured value, expressed logarithmically, of the error­
gap distribution. In the case of curve fitting, {a2' ~2} are
chosen to match the correct behaviour of P(O'" II) for
large m, and {ai, ~I} are chosen to improve the fit for
small m. Proceeding in this way, the original descriptive
modelling issue can be formulated as a combinatorial
optimization problem in which the parameters {o., ~i}
are the optimization variables to be identified. For this
investigation, a suitable cost function is the sum of the
squared errors between the measured error-gap distribu­
tion values and the modelled fits. This minimization
leads to a constrained nonlinear optimization problem
that can be stated as follows:

this, consider the example of burst ehannels. The state
transition probabilities P and p are so small that the
probabilities Q and q of remaining in G and B states
will be high.

The principal difficulty encountered in parameter esti­
mation is that Gilbert's model parameters {P, h,p} are
not directly observable; so methods of deducing them
from more easily measured error statistics must be
derived. The measurement data considered here are
the error-gap distributions, denoted by P(O'"II), that
give the probability that at least m successive error­
free bits will be encountered next on the condition
that an error bit has just occurred. In many
applications (Chouinard et al. 1988), it suffices to pos­
tulate that the experimental error-gap distribution can
be well approximated by the sum of two exponential
functions:

(I)P(O'" II ) = aJJ{' + a2tJ2'·

2. Error oecurrence model

Error control code design and performance analysis
require that probabilistic models be used to describe
the statistical distribution of errors due to channel
impairments. While the binary symmetric channel
model is simple, it has some limitations in simulating
the behaviour of error bursts over channels with
memory. To match error sources more closely, Gilbert
(1960) introduced the application of finite-state Markov
chain models to the representation of digital channels
with memory. Gilbert's channel model consists of a
Markov chain having a good state G, whieh is error
free, and a bad state B, in which the channel has an
error probability of I-h. The model state transition
diagram is shown in figure I. A wide range of channels
ean be represented by appropriate definitions of the
transition probabilities among all states. To illustrate

trolled fashion. The main drawback to simulated
annealing is that convergence can be very slow for com­
plicated optimization problems. This suggests a hybrid
strategy involving merging the most appealing features
of these two methods, the first component of which
helps to identify the smallest number of starting points
through simulated annealing. The second component,
the gradient-descent method, then uses these starting
points to ensure that the actual optimum is found
efficiently.

This paper is organized as follows. An overall view of
the investigation has been presented in this section. In
section 2, we present the basic aspects of channel mod­
elling and algorithms for statistical error characteriza­
tion. Section 3 presents an estimation algorithm based
on simulated annealing for optimal identification of
Gilbert's channel model parameters. In section 4, we
explore the benefits of using a hybrid estimation
approach that combines the stochastic annealing
algorithm with the deterministic gradient-descent algo­
rithm. Comparative performance results for estimating
Gilbert's model parameters in conjunction with various
optimization algorithms are also included. Section 5
presents a short summary and a list of conclusions.

p

q

p

Figure I. Gilbert's model.

where M is the longest interval between two consecutive
errors and y(m) is the measured value, expressed loga­
rithmically, of the error-gap distribution.

Traditional methods of model parameter estimation
consist of exponential curve fitting (Gilbert 1960) and
the iterative gradient-descent techniques (Chouinard et
al. 1988). In the case of curve fitting, the parameters are
estimated by determining the number of straight-line
segments required to approximate the measured error­
gap distribution, and then determining approximate
values for the slopes of these segments. The main draw-
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Hybrid strategy for Gilbert's channel characterization 581

Although the gradient-descent method converges
rapidly, its simple downhill transitions can easily trap
its final solution into a local optimum when multiple
optima are present. To highlight the problems encoun­
tered by the gradient-descent method, we show in figure
2 the error-performance surface that results from using a
typical error burst for a range of values of ,81 and ,82.

This surface has been found difficult to optimize be­
cause the global minimum is in close proximity to a
number of local minima, ridges and saddles. One
possible solution is to perform iterative improvement
starting from a number of initial configurations and to
choose the best outcome from all those obtained.
However, the computational burden could be intoler­
able and we would still have no guarantee of finding
an optimal solution.

3. Simulated annealing for estimation

This section discusses the basic formulations of the sto­
chastic simulated annealing algorithm for solving com­
binatorial optimization problems (Kirkpatrick et al.
1983). It has been shown that, from almost any starting
point, successive iterations of the annealing algorithm
would converge asymptotically to the global optimum
with probability one sense (Aats and Korst 1989). The
study of simulated annealing coincides with the assump­
tion that the equilibrium condition leads to a Boltzmann
state transition rule for state updates. This suggests that
the relative probabilities of the two global states is deter­
mined solely by their cost difference and temperatures,
and the probability of being in a given state follows a
Boltzmann distribution. Viewed in this respect. tempera­
ture provides a new free parameter to help to steer the
search direction and step size towards the global
optimum solution. In the initial phase, a higher tempera­
ture should be used to allow random searches so that it
is easier for the states to escape from local optima. The
search will move towards some feasibility regions likely
to contain the global optimum as the temperature gra­
dually decreases, but escape from local optima is still
possible since uphill state transitions are allowed.
When the tempera ture is too low to move uphill, the
annealing algorithm becomes a simple downhill-search
algorithm and the average state should be very close to
the globally optimal solution.

The proposed estimation method based on simulated
annealing consists of two nested loops; the inner loop
proceeds until the equilibrium condition at each tem­
perature is satisfied. while the outer loop is terminated
at a very low temperature. We summarize the relevant
aspects of the standard simulated annealing algorithm
here; more comprehensive accounts can be found in the
paper by Tan and Chang (1996).

(i) Start with a high temperature To = 10aoo' where
a oo is the standard deviation of the costs. Also.
choose an initial state 110 = (cy?,cy~,rJI,{fl) with
the associated cost function £(110).

(ii) Generate a new state following a random perturba­
tion mechanism. Let t:>£ denote the cost difference
between the new and old states, and r a random

(6)

(5)

P.

Cost function of burst error for a BER of 1.3% witb
"I = 0.78 and "2 = 0.22.

_ (,8 -,8 ) + (I - ,8,)(,82 - h)
p - CY, I 2 I _ h .

Coa
0.8

0.7

0.6

0.5

0.'

0.3

0.2

0.1

0,

Figure 2.

back to curve fitting is that it must be augmented by
human judgments and so may become subjective and
unreliable. Alternatively, the iterative gradient-descent
method tries to find optimum solutions by perfor­
ming successive corrections on parameter estimates in
the direction opposite to the gradient of the cost
function. According to the steepest-descent method,
the updated values of the model parameters at time
n + I are computed using the simple recursive relation­
ship

(CYI(n + 1),CY2(n + 1),,8I(n + 1),,82(n + I))

= (cy,(n)'CY2(n),,8I(n),,82(n)) - 'x(n) \1£(n), (3)

where 'x(n) indicates the step size and \1£(n) the gra­
dient of the cost function. The detailed expressions for
the step size and cost-function gradient are presented in
the Appendix.

Given that the values of {CYI,CY2,,8I,,82} have been
determined, Gilbert's model parameters {P,h,p} can
be calculated as follows (Gilbert 1960):

h= ,81~, (4)
,81 - CYI (,81 - ,82)

(1-,8il(l-,82)
P= I-h '
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582 T.-H. Tan and w.- W. Chang

10000100 1000
8rror~p length (m)

10

'..... ................. .

.....

1.ee·'

1.0E-3

1.0E·2

Table I. Estimated descriptive statistics for different error
sources using the simulated annealing method

BER
Source type (%) 0'1 0'2 (31 (32

Random error 0.5 0.8010 0.1990 0.9942 0.9945
1.0 0.7998 0.2002 0.9905 0.9877
1.5 0.7991 0.2009 0.9879 0.9783
2.0 0.8000 0.2000 0.9793 0.9806

Burst error 0.5 0.8294 0.1706 0.8566 0.9990
1.0 0.7989 0.2011 0.7948 0.9992
1.5 0.7883 0.2117 0.7683 0.9994
2.0 0.7858 0.2142 0.7330 0.9986

1.0E+O E-'-"""""FA""f=r::::r::rrTTT",-"-"""""'mr-,-rrrrn'!j

Figure 3. Experimental error-gap distributions of random
error (--) and burst error ( ) sources with a BER of 1%.

bursts. Table I presents the results of descriptive statis­
tics from different error sources using the simulated
annealing method. For our study, the annealing par­
ameters To and ( were empirically determined to be 5
and I respectively. In addition, the annealing algorithm
was terminated when the temperature dropped below
0.05. Figure 3 illustrates the basic difference in the
error-gap distributions between random and burst
error sources, even with the same BER of 1.0%.
Compared with the burst errors, the error-gap distribu­
tion of random errors tended to decay more slowly. This
translates directly into smaller values of f31 when the
error process exhibits predominantly clustered trends.
Viewed in this context, the value of f31 provides an
ideal framework for choosing between the random­
error-correcting and burst-error-correcting codes. For
purposes of comparison, we also show in figure 4 the
learning curves of Gilbert's model parameter estimation
using the gradient-descent method and the annealing
method. Our general conclusion is that the annealing
method is preferable to the gradient-descent method,
but only at the expense of extra convergence time.

t exp {[1/a - E(Ui)J1T} < (,
;=1 11

number uniformly distributed between 0 and I. The
new state is accepted if either !::l.E < 0 or the
Boltzmann state transition rule e-t>E/T > r is satis­
fied; otherwise, the new state is rejected.

(iii) In the inner loop, for each temperature T, if the
equilibrium condition has been reached at the nth
iteration,

then the inner loop stops and goes to step (iv); other­
wise, steps (ii)-(iii) are repeated. The threshold ( is
empirically determined and 17a is the average cost of
the accepted states.

(iv) Decrease the temperature according to a cooling
schedule and return to step (ii) until a desired low
temperature is reached.

Having a proper cooling schedule is critical for both
the convergence rate and the final performance of the
annealing techniques. For this reason, three different
temperature schedules were considered here. In standard
annealing, the control temperature is decreased
according to T(k) = "(T(k - I), where k is the index
of the outer loop and the values 01'''( lie between 0.9
and 0.95. However, it has been proven (Aats and
Korst 1989) that the necessary and sufficient condition
for converging to a global optimum requires the cooling
schedule to be inversely proportional to the logarithmic
function of time: T(k) = To/ In (k + 1). Unfortunately,
this approach results in slow convergence because of
constraints caused by the bounded variance of the
Boltzmann process. To compensate for this short­
coming, Szu and Hartley (1987) proposed a fast simu­
lated annealing using a generation mechanism based on
the Cauchy distribution. The Boltzmann distribution
has the same general shape as the Cauchy distribution
but the latter has a fatter tail at high energies.
Proceeding in this way, the cooling schedule will
follow the relationship T(k) = To/(k + I). In our earlier
work (Tan and Chang 1996), we presented preliminary
experimental results that substantiate the superiority of
fast simulated annealing used for Gilbert's parameter
estimation.

To test the validity of the proposed estimation
scheme, extensive computer simulations were conducted
on a Pentium-133 PC using sample error sequences with
different characteristics. Two basic types of error-source
model were considered: uniformly distributed random
errors and error bursts. Each sample error sequence
was 100000 bits long. For all test samples, we first eval­
uated the measured values of P(O'" I I) by computing the
ratio of consecutive series of error-free bits with lengths
equal to or greater than 111 to the total number of error
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Hybrid strategy for Gilbert's channel characterization 583

Figure 4. Learning curve for the iterative gradient-descent
method (--) and the simulated annealing method ( ..... ).

Table 2. Results of good points and costs obtained by the pro­
posed hybrid algorithm using a burst error source of HER 0.5%

Good points found by
first component

Egradient

0.5006
0.5407
0.1940
0.2452
0.0334
0.0533
0.2439
0.1607

Final gradient
cost

0.5330
0.5252
0.2887
0.2431
0.0570
0.0675
0.2484
0.1616

Corresponding
cost

ESA

0.6555, 0.9987
0.8350, 0.9986
0.6560, 0.9988
0.8460, 0.9988
0.8025, 0.9989
0.9050, 0.9989
0.8240, 0.9992
0.9190, 0.9992

0.6, 0.4
0.6, 0.4
0.7,0.3
0.7,0.3
0.8,0.2
0.8,0.2
0.9,0.1
0.9,0.1

16000120008000

Iterative Number

4000

2.00

c
0
'll 1.50c

"u.... 1.000
0

0.50

0.00

0

4. Hybrid estimation algorithm

While stochastic simulated annealing is conceptually
useful in converging to a global optimum, it has some
limitations as far as its time-consuming optimization
process is concerned. On the other hand, the selection
of good starting points (Brooks and Morgan 1994) for
the efficient gradient-descent algorithm can be difficult.
To overcome these problems, we propose using a hybrid
optimization algorithm that merges the most appealing
features of these two algorithms. The first component,
based on simulated annealing, automatically determines
the smallest number of starting points, which are then
used by the second component, a gradient-descent
method, for rapid convergence to the global optimum.

The tuning of a hybrid algorithm demands both suit­
able use of all the knowledge available on the actual
problem and a suitably designed set of experiments to
find an appropriate set of parameters. In our hybrid
algorithm, the first component consists of an annealing
algorithm that is stopped prematurely after Noul tem­
perature reductions. At each temperature, the annealing
algorithm searches for an equilibrium point until the
maximum number of iterations exceeds Nin . At each
new temperature, the iteration always starts with the
final equilibrium state reached at the previous tempera-

ture. On the one hand, the values of Ni« and Noul should
be large enough to ensure the equilibrium condition is
reached and convergence occurs. On the other hand,
overly large values may lead to excessive exploration
of the parameter space. In our study, we found suitable
values for Nin and Noul empirically and determined that
1000 and 6 respectively worked best.

The next step of the present investigation concerns
selecting good starting points for use by the gradient­
descent algorithm. Thus, over a grid of al values con­
taining (0.6,0.7,0.8,0.9), 20 different starting points for
{fil' fiz} were examined using simulated annealing to
find the two best solutions for each value of al' As an
illustrative example, the resultant good points and their
corresponding costs using burst errors of BER 0.5% are
shown in table 2. With each of these starts, iterative
gradient-descent routines were executed in order to
choose the best solution from those obtained. The
costs incurred using those starts are also given in table
2, where the best solution is shown to be 0.0334, a value
near the global optimum. As presented in the discussion
above, the test example has demonstrated the ability of
the proposed algorithm to find global or near-global
optimum solutions. Table 3 presents a comparison of

Table 3. Comparison of results from various estimation algorithms

BER Final Central processing
(%) Method 0', Q2 (3, (32 cost unit time (s)

0.5 Gradient 0.8001 0.1999 0.8006 0.9990 0.0680 457
0.5 Annealing 0.8294 0.1706 0.8566 0.9990 0.0277 9537
0.5 Hybrid 0.8127 0.1873 0.8643 0.9990 0.0334 7710
1.3 Gradient 0.7012 0.2988 0.6030 0.9965 0.1095 165
1.3 Annealing 0.7843 0.2157 0.7983 0.9969 0.0295 5136
1.3 Hybrid 0.7833 0.2167 0.7946 0.9969 0.0284 2880
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584 T.-H. Tan and W- W Chang

(A I)(
8E 8E 8E 8E)

V'E = 8al' 8a2 ' 8(31 ' 8(32 '

Appendix

In the iterative gradient-descent method the cost-func­
tion gradient and the step size respectively are given as
follows:

10000100 1000
error-gap length(m)

10

Experimental error-gap distribution ( ) and
resulting Gilbert's model lit (--).

1.0E·2

1.0E-l

1.0E" L-...l-LLLlil.lL----L-Ll-Ll.J.llL----'---'-.L.UW1J_.!-w..Jw..wJ
1

1.0E-3

Figure 5.

where

(A4)

(A 5)

scores associated with various estimation algorithms.
The first result shows that the gradient-descent method
leads to an unsatisfactory local minimum. By contrast,
the next set of results demonstrates how the annealing
component of the hybrid algorithm can help to identify
a far better starting point for use with the gradient-des­
cent search. Using the parameter estimates, the resulting
modelled fit for error-gap distribution is plotted in figure
5. Also shown in the figure is the experimentally mea­
sured error-gap distribution. The good agreement
between them provides justification for asserting the
proposed hybrid algorithm's ability to estimate
Gilbert's model parameters and demonstrates its useful­
ness in channel characterization.

8E M I
-8 = -2(log lO e) L -

0':1 m=1 m

x [y(m) - 10gIO (al(3J' + a2(32)](f3i - (32) (A 3)
a, (3;" + a2(3'2' '

8E 8E
8a2 8al'

8E M I
8(3i = - 2a i(lOg lOe)~ m

[y(m) - 10gIO (al(3J' + a2(32)]m(37'-1
x ""-"-'---"'-'-''-::::c::--'----;:::::--'-'----'--

al(3j + a2(3'2 '

5. Conclusions

This paper has explored the benefits of a hybrid strategy
combining stochastic simulated annealing and determi­
nistic gradient-descent algorithms for use in modelling
Gilbert's channels. Our method coincides with the opti­
mization process of fitting mixtures of exponential dis­
tributions to experimental error-gap distribution. We
first emphasized the importance of selecting good
starting points that allow the iterative gradient-descent
method to converge towards the global optimum. This
task was accomplished by using simulated annealing to
minimize the quadratic error betwen the measured
error-gap distribution and its modelled fit. As shown,
this nonlinear optimization method helps to identify
the feasibility region which is thought to contain the
global optimum.
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(A 6)

&E 82E

(A 7)
8a, 8a2 8al8al

,

&E 82E

(A 8)
8a28a2 8a18a,

,

&E M I
8a 8(3 = -2(log lO e)L;

1 I m=1

[y(m) - 10gIO (a,(3J' + a2(32)](m(3J,-1 (32)
x-"---'----=.O--'--'-"---'-=-,;-''---'-'----''-'-

(al(3j+a2(32)2

+ 2(log
lO

e)t ..!.. (Iog lo e)(malf3i-I)(~ - (32) , (A 9)
m=l m (al(3j + a2(32)
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fiE M I
{) {)f3 = -2(logtOe)L -

0:2 2 m=l f rl
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