
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 28(7), 773–798 (JUNE 1998)

Constructing an Integrated Visual
Programming Environment

chung-hua hu and feng-jian wang
National Chiao-Tung University, Department of Computer Science and Information

Engineering, Taiwan, 30050, R.O.C.
(email: {chhu,fjwang}Kcsie.nctu.edu.tw)

SUMMARY

This paper presents an object-oriented architecture, called the Model-View-Shape (MVS) architec-
ture, for constructing an Integrated Visual Programming Environment (IVPE), whose constituent
tools deal with (fine-grained) language semantics, as well as a mass of graphics-drawing activities.
This architecture enforces a layered and loosely-coupled structure, so that the user-interface part
of components may be more independent, maintainable, and reusable than those proposed in the
original model-view-controller architecture. An MVS class hierarchy, systematically constructed
using C++, can be reused and extended with new semantics to rapidly develop new tools for an
existing IVPE, or even an IVPE supporting more than one language. The present editors developed
can be used to construct programs by specifying the associated flow information in explicit (visual)
or implicit (textual) ways, while the (incremental) flow analysers can help analyse incomplete
program fragments to locate and inform the user of possible errors or anomalies during program-
ming.  1998 John Wiley & Sons, Ltd.

key words: visual programming; integrated programming environment; object-oriented technique; reusability; C++

INTRODUCTION

Visual programming, referring to any system that allows the user to specify programs
in a multi-dimensional style,1 is intended to ease the programming process through
simplicity, concreteness, explicitness, and responsivenes.2 Many studies concerning
visual programming can be found in the literature.3–5 On the one hand,visual
programming languages6,7 are designed to help construct programs using visual
language constructs. On the other hand,Visual Programming Environments(VPE)8,9

which consist of a wide variety of program-development tools, have been constructed.
These tools usually employ graphical techniques, such asdirect manipulation,10 to
manipulate pictorial elements and to display the structure of programs. In addition,
a programming environment is calledintegrated11–13 when the constituent tools in
the environment share consistent programming information, and interact with the
user through a uniform user interface.

Most studies of VPEs have focused on the functional descriptions of these
environments. A few studied how to construct or generate VPEs in a systematic
manner.14,15 In this paper, aModel-View-Shape(MVS) architecture, adapted from

CCC 0038–0644/98/070773–26$17.50 Received 2 July 1997
 1998 John Wiley & Sons, Ltd. Revised and accepted 19 February 1998

774 c.-h. hu and f.-j. wang

the Model-View-Controller(MVC) architecture,16 is used to construct an Integrated
VPE (IVPE) that, in particular, needs to deal with program semantics as well as a
mass of graphics-drawing activities. In our approach, the grammar of a target
language is modeled as a suite of software components embodying fine-grained
language semantics and presentation information. AsFigure 1 shows, an IVPE can
be divided into three main modules:application, user-interface, and graphics-hand-
ling. The application module, a set of model objects, is responsible for handling
program semantics as well as language-dependent analysis. The user-interface module,
a set of view objects, is responsible for managing (high-level) program presentation
in visual or textual ways. The graphics-handling module, a set of shape objects, is
responsible for drawing (low-level) graphical primitives and handling/interpreting
user-input events. These objects are cooperative; they communicate with each other
via message-passing to complete program analysis and graphics display for each
editing action. The MVS architecture enforces a layered and loosely-coupled structure,
so that components in the user-interface part may be more independent, maintainable,
and reusable than that proposed in the original MVC architecture.

During the construction of our IVPE, a C++ class hierarchy based on the MVS
architecture was first systematically constructed. The MVS class hierarchy was then
reused and extended to construct new tools for the IVPE. For those front-end tools
which need to provide a variety of graphics-drawing facilities, shape classes are
reusable because they are application-independent; while model and view classes
may be augmented with new functionalities. Construction of back-end tools, such as
semantic and data-flow analysers, is limited to the refinement and addition of
semantic attributesand evaluation methodsto the model classes in the MVS class
hierarchy. Moreover, the MVS class hierarchy constructed may be considered generic
for different programming languages. To support more than one language in an
IVPE, designers can create model (and view) classes for new language constructs,
and add them to the MVS hierarchy by locating appropriate base classes. In this
way, generic attributes and methods are reused, while language-specific features are
implemented in the corresponding new classes.

Our current IVPE provides well-designed editing, display, and analysis facilities

Figure 1. The model-view-shape architecture

775an integrated visual programming environment

that ease program development. For example, a flow-based and syntax-directed17,18

editing model associated withzoomingand folding facilities help construct programs
by depicting control-flow graphs. The (incremental) flow analysers can work on
incomplete program fragments to locate and inform the user of possible errors or
anomalies during programming.

REQUIREMENTS

As software and visual technology evolves, dozens of requirements related to
programming environments have been successively presented in the literature. Here
we summarize six features that seem essential to practical IVPEs. The first four
features refer to methodologies that enable users to construct and display programs
in an IVPE, while the rest are concerned with extension and evolution aspects of
the IVPE itself.

(a) Support for visual and textual program construction.19 Visual programming
is certainly one of the core functionalities for all IVPEs. However, a number
of studies20,21 show that pure visual representations may be less understandable
than textual representations in some cases. To compensate for a potential
shortage of visual programming, an IVPE should support both visual and
textual tools that can be invoked on demand to display whatever represen-
tations the user wants to work on.

(b) Support for incremental program development.18 Incremental program develop-
ment, in general, has two advantages: (1) the analysis and execution of
incomplete programs are possible; and (2) programming errors can be detected
earlier than by employing compilation technology alone in conventional pro-
gram development.

(c) Support for multiple and consistent views of programs.19,22,23 The ability to
see multiple views helps the user understand various parts of a program
concurrently. To maintain consistency among multiple views when one view
is modified, all other views that share the modified program text are informed
of changes so they can update the outputs correspondingly.

(d) Effective management of large-program displays.3 The graphical layout of a
program displayed in an IVPE usually consumes more screen space. This
problem, called thescalability problem,24 apparently impedes users’ under-
standing processes when handling large programs. An IVPE may provide
more than one simple way for the user to specify and control the graphical
layout. When the user works on some part(s) of a program, the IVPE allows
one to retrieve the part with the desired graphical layout, while unneeded
parts are hidden from view automatically.

(e) Support for tool integration and communication.11,25 Within an IVPE, the
constituent tools cooperate and communicate with each other through a
common interface and internal program representations.26 In addition, there
should be no need for the IVPE to be reconstructed or perform a large-scale
modification when integrating a new tool.

(f) Support for extension and customization of an IVPE.11,12 An IVPE is more
usable if it provides methods or guidance for extending and customizing itself
in order to meet different users’ demands. For example, the IVPE should be
easily extensible to support a multilingual programming environment.

776 c.-h. hu and f.-j. wang

SYSTEM ARCHITECTURE

Our IVPE, whose system architecture is shown inFigure 2, is proposed to meet the
above design requirements. Tools in an IVPE can be categorized into three toolsets
based on the functions they perform:programming, maintenance,and analysis
toolsets. The first two toolsets, which interact with users during various phases of
software development, are equipped with graphical user interfaces that display various
kinds of program information. For example, they are capable of receiving user-input
events, interpreting and handling these events, and responding to users with some
feedback, such as reporting error messages. The analysis toolset, which consists of
tools for handling and analysing program text during programming, can be viewed
as back-end tools. These tools do not interact with users directly, but can be activated
automatically once changes occur in internal program representations, such as program
trees and symbol tables. These tools can be further classified into two categories:
incrementalandnon-incrementaltools. Sample incremental tools include the semantic
analyser, the data-flow analyser, and even the code generator.

To ensure concurrency control of internal program representations in a consistent
manner, all tools in the IVPE are prevented from operating on the shared represen-

Figure 2. The system architecture

777an integrated visual programming environment

tations directly. The only way they can access the shared representations is through
the program-database manager, which is responsible for coordinating tool communi-
cation, and maintaining data consistency by interacting with the underlying file
system. So far we have constructed a number of tools, whose names are in boldface
in Figure 2, in our IVPE.

DESIGN AND IMPLEMENTATION ASPECTS

The model-view-shape class hierarchy

A class hierarchy based on the MVS architecture was designed for constructing
the kernel of our IVPE. AsFigure 3 shows, theModel, View , and Shape class
hierarchies correspond to model, view, and shape classes, respectively. The func-
tionality and design issues of the MVS architecture are discussed below.

The shape classes

The IVPE allows the user to depict program flow information pictorially, thus it
requires a collection of graphical components, such as nodes and links, to manipulate

Figure 3. An MVS class hierarchy

778 c.-h. hu and f.-j. wang

visual presentation. A node denotes the notion of an entity, whereas a link, associating
one node with another, describes the relationship between these two nodes. From
the object-oriented viewpoint, all nodes and links can be treated as shape objects,
so that each kind of graphical component can be defined as belonging to a shape
class. Attributes defined in shape classes are used to store graphical layouts and
related information, such as the dimensions and coordinates of graphical components.
Methods defined in shape classes can be categorized into the following two sets:

(a) Graphics-handling methods. Examples include drawing graphical layouts at
specific locations.

(b) Event-handling methods. Examples include detecting and interpreting user-
input events.

The main design issues concerning shape classes involve: (1) How many kinds
of graphical components need be constructed as shape classes? (2) How can new
graphical components be added easily to the existing component library, i.e. the
Shape class hierarchy? (3) How can graphical components be made general enough
so they can be reused in constructing other flow-based applications?

In our construction approach, theShape class hierarchy consists of two subclass
hierarchies; one for node classes and the other for link classes. Common attributes
and generic graphics-handling methods for these nodes and links are defined in
classesNode and Link , respectively. On the basis of theShape class hierarchy, new
graphical components can be constructed as customized subclasses that inherit
attributes and methods defined in the base class(es). The graphical components
specified in theShape class hierarchy are also application-independent, i.e. they are
thought to be reusable elements.

The model and view classes

Model and view objects are responsible for managing the application’s data
structures and presentation, thus they may be viewed asapplication-dependentobjects.
For different flow-based applications, such as control-flow or state-transition diagram
editors, different model and view classes may be identified and constructed. Appli-
cation semantics, usually specified via attributes associated with handling methods,
are then stored in the model and view classes. The main design issues concerning
model and view classes involve: (1) How many kinds of model and view classes
need be identified and constructed? (2) What methodology (or guidance) should be
employed to classify these model and view classes into class hierarchies in a
systematic and effective manner?

Our construction methodology for model classes is described below:

1. A model class is constructed for each kind of language construct defined in a
target language. This procedure is referred to asclass assignment.27 For example,
our IVPE enables users to construct and maintain programs in a C language
subset, the associated context-free grammar (CFG) of which is listed inTable I.
Each non-terminal symbol appearing in the CFG is represented as a specific
class. Attributes defined in model classes are generally classified into two sets:
one for the maintenance of internal program representations, such as program
trees, and the other for storage of language-dependent information, such as
source code, comments, and static semantics. Methods defined in model classes

779an integrated visual programming environment

are generally used to perform syntactic and semantic analyses, as well as
language-dependent functions, such as setting the source code and comments.

2. The model classes constructed are then classified into a hierarchy according to
two criteria: OR operators (‘u’) 11,27 in the grammar rules, and the language-
construct functionality. The OR-operator criterion specifies that if a grammar
rule looks likeX0 :: = X1 u % u Xk (X 0, X 1, andXk denotes non-terminal symbols),
then X0 can be constructed as a base class ofX1, %, and Xk. For example, it
is appropriate to classify theSelectionStmnt class as a base class of
IfThenStmnt and IfThenElseStmnt classes. On the basis of this criterion,
the model class hierarchy can beautomatically generated from the grammar
rules of a target language. This scheme, however, has the following deficiencies.
First, the class hierarchy constructed may be unnatural. For example, according
to the CFG inTable I, the AssignmentStmnt class is a kind of theStmnt class,
which is a kind of theStmntList class. This may makeAssignmentStmnt to
be a kind of StmntList also. Second, some language constructs cannot be
classified because they lack suitable base classes; theExpression class shows
such an example. Third, this classification scheme may result in model classes
of lower reusability because different languages may be defined via different
grammar rules. Each time the IVPE is constructed to support a new language,
a new model class hierarchy may need to be constructed.

To overcome the above deficiencies, an additional criterion, the functionality
criterion, is introduced to perform a more complete and reasonable classification of
language constructs manually. During the classification process, language constructs
with common functions usually have common or very ‘similar’ attributes and methods
defined in the corresponding model classes. For example,AssignmentStmnt and
Expression classes both consist of identifiers and operators, so that they may be
classified as being derived from theSimpleStmnt class, used for abstracting their
common attributes and methods. In summary, the above two criteria provide guide-
lines for constructing a potentially reusable and extensible model class hierarchy in
a semi-automaticmanner.

The following describes our construction methodology for view classes.

1. A view class is constructed for each model class, and usually hasaggregation
relationshipswith one or more than one shape class. That is, a view object
consists of a single or a set of shape objects for graphical presentation.
Attributes defined in view classes are used to store high-level presentation

Table I. The CFG of a C language subset

kfunction l :: = kfunc-header l kdecl-list l kcompound-stmnt l
kdecl-list l :: = kdecl l u kdecl l kdecl-list l
kcompound-stmnt l :: = { kstmnt-list l }
kstmnt-list l :: = kstmnt l u kstmnt l kstmnt-list l
kstmnt l :: = kassignment-stmnt l u kselection-stmnt l u kiteration-stmnt l u kcompound-stmnt l
kselection-stmnt l :: = kif-then-stmnt l u kif-then-else-stmnt l u kswitch-stmnt l
kiteration-stmnt l :: = kwhile-stmnt l u kdo-stmnt l u kfor-stmnt l
kif-then-else-stmnt l :: = If (kexpression l) kstmnt l else kstmnt l

780 c.-h. hu and f.-j. wang

information, such as view dimensions, and methods (defined in a view class)
can be classified into the following two sets:

(a) View-management methods. Examples include calculating and retrieving
view dimensions.

(b) View-presentation methods. Examples include presenting view layouts.
2. The view classes constructed are then classified into a hierarchy based on the

structure of theModel class hierarchy.
By following the construction methodologies mentioned above, model and view

classes representing different kinds of language constructs can be systematically
classified into the corresponding hierarchies, as shown inFigure 3. Moreover, the
MVS class hierarchy constructed may be considered generic for different program-
ming languages. Designers can create model (and view) classes for new target
language constructs, and add them to the existing hierarchy by locating appropriate
base classes. In this way, new model (and view) classes automatically inherit all the
properties, including those generic attributes and methods, from their base classes.

Graphical representations of language constructs

A set of graphical templates, as shown inFigure 4, have been designed to
represent well-known language constructs using the syntax employed in the C
language subset. These graphical templates are composed of existing graphical
components (i.e. shape objects). For example, an if-then-else statement template
consists of four nodes and four links. These graphical templates, which are the
building blocks for program construction, can be treated as graphical extensions of
conventional text-based programming language constructs. The whole programming

Figure 4. Sample graphical templates for language constructs

781an integrated visual programming environment

activities, similar toalgorithmic programming,3 can be divided into three phases: (1)
selecting a graphical template, (2) placing it in the proper position on the screen,
and (3) connecting the template to other templates via links that depict the desired
control-flow information. Our editors handle tasks of phases 2 and 3 automatically
in order to maintain readability.

Construction and manipulation of internal program representations

As users construct programs, our IVPE employs two data structures,symbol tables
and program trees, to store these programs internally. To enable different tools to
have consistent views of shared data structures, the program-database manager in
our IVPE performs three functions. First, it manages internal program representations,
that is, it is responsible for constructing and maintaining symbol tables and program
trees. Second, it can be viewed as amessage serverfor tool communication and
coordination. Through theservice routinesprovided by the program-database manager,
tools in the IVPE are able to communicate with each other and access internal
program representations concurrently and consistently. Third, it serves as an agent
for storing and retrieving programs by interacting with the underlying file system.
The following briefly describes the first two functions, while the associated implemen-
tation details can be found in Hu and Wang.28

The structure of a program tree is similar to that of anabstract syntax tree,29

that is, each node in the program tree represents a specific kind of language construct,
such as a statement or an expression. As the user constructs a program by inserting
language constructs, appropriate new nodes are created and added to the program
tree. In our construction approach, each tree node is represented by acomposite
object, called the template-based model-view (TMV for short) object. The term
‘composite’ means that a TMV object, which is just a conceptual notion, encapsulates
one model object and one (or more than one) view object as its components.

Interactions among multiple TMV objects

Figure 5 shows a sample program tree representing an if-then-else statement, and
illustrates the association relationships among model, view, and shape objects. The
related attributes and the associated model and view classes for constructing such a
program tree are listed inTable II. Each model object maintains two attributes called
ParentModel and ChildModelList to reference the parent and child model objects,
respectively. Each view object also contains similar attributes to maintain parent–
child relationships with other view objects. Moreover, a model object usually has a
default view object associated with it. When a model object is created, the default
view object is created next. The creation sequence of the model, view, and shape
objects for an if-then-else statement is shown inFigure 6.

As mentioned above, each program-tree node is represented by a TMV object, so
that a program under construction is modeled by multiple TMV objects in hierarchical
tree structures. These TMV objects are cooperative; they communicate with each
other via message-passing between parent and child TMV objects to complete display
tasks and incremental analysis for all editing actions. For example, when an if-then-
else statement is about to be displayed, theIfThenElseStmntView object sends a
message calledOnDraw() to inform all its child view objects to display ‘themselves’.

782 c.-h. hu and f.-j. wang

Figure 5. Relationships among model, view, and shape objects

After all its child view objects have completed their display tasks, the
IfThenElseStmntView object then displays four links and one circle node, as shown
in Figure 5, to indicate the control-flow information visually.

Maintaining internal program representations consistently

The program-database manager, which serves as the integration mechanism, pro-
vides infrastructure support fordata, presentation, and control integration30 among
all tools in the IVPE. Data integration can be achieved easily because all tools
access the internal program representations through the program-database manager.
Presentation integration means that all front-end tools, which need to interact with
the user, have common and uniform user interfaces. This kind of integration can be
achieved easily in our IVPE, because these front-end tools constructed using the
MVS class hierarchy use the same set of view and shape objects for dealing with
editing and display tasks. Control integration concerns the mechanisms by which
one tool activates other tools. The communication channels among tools and the
program-database manager in our IVPE aremessage-driven, like that proposed in
Reiss.31 Therefore, a tool may be activated by receiving a message from another
tool through the program-database manager.

Table III lists a number of sample methods (or service routines) defined in the
ProgramDatabaseManager class for tool communication. These methods enable
various tools to coordinate their actions and maintain the consistency of internal
program representations. MethodRegister() is used to add tool-registration records
to theRegisteredToolList attribute, whileDeregister() is used to remove them.
When a tool finishes modifying the internal program representations, it sends a
message calledChangeFrom() , which may contain the modified data as parameters,
to the program-database manager. Upon receiving theChangeFrom() message, the

783an integrated visual programming environment

Table II. Class interfaces for supporting construction of program trees (partial)

class Model : public TMVObject { class View : public TMVObject {
public: public:

% %

Model *pParentModel; Model *pModel;
CObList ChildModelList; View *pParentView;
// contains a list of Model objects };
View *pCurrentView; class IfThenElseStmntView : public
CObList DependentViewList; SelectionStmntView {
//contains a list of View objects public

}; %

class IfThenElseStmnt : public StatementView *pExprView,
SelectionStmnt { *pThenStmntView, *pElseStmntView;
public: Circle *pFanInNode;

% SideToTopLink *pToThenStmntLink,
StatementModel *pExpr, *pThenStmnt, *pToElseStmntLink;
*pElseStmnt; BottomToSideLink *pFromThenStmntLink,

}; *pFromElseStmntLink;
class SimpleStmnt : public StatementModel };
{ class SimpleStmntView : public
public: StatementView {

% public:
CString SourceCode, Comment; %

}; Node *pNode;
class Stmnt : public StatementModel { };
% // pCurrentView = new StmntView(%); class StmntView : public StatementView {

}; public:
class Expression : public SimpleStmnt { %

% // pCurrentView = new ExpressionView Node *pNode;
(%); // pNode = new Rectangle(%);

}; };
class ExpressionView : public

SimpleStmntView {
% // pNode = new Diamond(%);

};
// other model and view classes %

Figure 6. Object creation sequence when inserting an if-then-else statement

784 c.-h. hu and f.-j. wang

Table III. Class interfaces for supporting tool communication and coordination (partial)

class ProgramDatabaseManager : public class FlowBasedEditor : public CScrollView
CObject { {

public: Public =
% %

CObList RegisteredToolList; int UpdateFrom(CObject *pFromTool, %);
// contains a list of CObject objects };
% class LanguageBasedTextEditor : public
int Register(CObject *pTool); CScrollView {
int Deregister(CObject *pTool); public:
int ChangeFrom(CObject *pFromTool, %); %

}: int UpdateFrom(CObject *pFromTool, %);
};

program-database manager broadcasts a message calledUpdateFrom() to the tools
registered in attributeRegisteredToolList to retrieve the modified data for
further processing.

EDITING AND DISPLAY ACTIVITIES

A language-based editing process

The editing process supported by our editors, the flow-based editor and the
language-based text editor, is basicallysyntax-directed. For a placeholder of structured
statements, the editors guide the user to replace it with an instance of some structured
statement. The above insertion operation is performed when the user selects a valid,
i.e. syntactically-correct, template from a template-transformation menu. The locations
of graphical templates, including coordinates and dimensions, are calculated automati-
cally by the editors. For example,Figure 7 shows the control-flow graph for the
ComputerMax function before and after the user inserts an if-then statement template
into a statement placeholder. For a placeholder of simple statements such as
expressions or assignment statements, the editors provide thein-place editing (i.e.
visual editing) facility, as shown inFigure 8, that helps the user input program text

Figure 7. Menu-driven template selection

785an integrated visual programming environment

into the placeholder directly. A parser built into the editors parses and ensures the
syntactic correctness of user-input program text.

Figure 8. In-place editing

Multi-layered editing facilities

Our IVPE employs two software abstraction techniques called zooming13,32 and
folding33 to effectively manage software structure and content. Here we only briefly
describe related functions, while the implementation details can be found in Hu
and Wang.34

Module-based layering and the zooming facility

Stepwise refinement, a top-down design methodology for software construction,
enables the user to design software by successively refining various levels (e.g.
modules or procedures) of implementation details. This kind of software abstraction
is called module-based layering; that is, the software element to be abstracted
corresponds to a module level. Zooming is a well-known graphical interaction facility
for handling module-based layering. For example, theQuickSort function in Figure 9
contains three function-call statements (i.e. one Swap(%) and two
QuickSort(%) statements) which are depicted as rounded rectangles. When the
user issues a zoom-in command on theSwap(%) statement, the content of theSwap
function is loaded and displayed on a new window.

Block-based layering and the folding facility

Although existing window-based tools provide the scrolling facility for the user
to examine a program page by page, it’s sometimes still deficient for the tool to
present the whole program structure at one time. A practical IVPE may need to
provide an additional abstraction model, calledblock-based layering, that can work
on program-statement levels. That is, the user can select and fold (or unfold) blocks
of visual or textual program statements on demand.Figure 10shows such an editing
example via the folding facility when the user selects a while statement and issues
a reduction command on it. As shown on the right side ofFigure 10, the while
statement and its constituents are collapsed into an icon, and the associated implemen-

786 c.-h. hu and f.-j. wang

Figure 9. Editing using the zooming facility

tation details are abbreviated. An expansion command, which acts as an inverse
operation of reduction, is used to expand the collapsed layout.Figure 11shows how
the folding facility works by enabling a model object to have multiple views dynami-
cally.

TOOL CONSTRUCTION AND INTEGRATION

The MVS class hierarchy presented in this paper is an application framework for
facilitating tool construction, including the construction of graphical user interfaces,
through compositional reuse of software components. Our construction approach,
based on the compositional reuse technique, is to incorporate the tool’s functionality
into the programming environment by extending the MVS class hierarchy. When a
tool is to be introduced, the designer needs to study what functions the new tool
will perform, and then examines the MVS class hierarchy to locate attributes and
methods in the respective classes that can be reused, as well as new class(es) and
associated attributes/methods that need be added. Reusing existing functions, such
as those for traversal of program trees, is helpful for reducing the work to construct
new tools.

The preceding sections have discussed the kernel of our IVPE, including the
program-database manager and the internal program representations that it manages.
The following subsections discuss how to construct and integrate a number of
programming and analysis tools, including the language-based text editor, the message
handler, and the data-flow analyser. The implementation details of the incremental
semantic analyser and the program slicer can be found in earlier works.35,36

The language-based text editor

Consider the display capacity of a screen; pure text layouts of programs usually
take less screen space than graphical layouts. That is, text layouts usually convey

787an integrated visual programming environment

Figure 10. Editing using the folding facility

788 c.-h. hu and f.-j. wang

Figure 11. An if-then-else statement model and its two views

more program information than graphical layouts in the same limited display area. To
enhance the practicability of the IVPE, a language-based text editor was constructed as
an alternate tool for programming. The right side ofFigure 12shows the text layout
of the ComputeMax function as displayed by the language-based text editor. Within
the editor, control-flow information about a structured programs is represented
implicitly via a sequence of control statements, such as selection and iteration

Figure 12. Selecting an error message

789an integrated visual programming environment

statements. By holding language-dependent information, the editor is able to display
programs, including source code and comments, in pretty-printed text layouts.

To customize the language-based text editor, the MVS class hierarchy was reexam-
ined and extended as follows:

(a) The Model class hierarchy. Since the model classes are responsible for
managing language-dependent information, all attributes and methods contained
in these classes are reused.

(b) The View class hierarchy. Although the user interfaces of the above two
editors look different (i.e. one is graphics-based and the other is text-based),
the view-management methods can be reused. The view-presentation methods
need be refined for text-only displays.

(c) The Shape class hierarchy. TheLink class hierarchy is of no use to the
language-based text editor. For theNode class hierarchy, the event-handling
methods can be reused, but the graphics-handling methods need be refined.

The message handler

An error or anomaly may be detected during different phases of program analysis
(e.g. syntactic, semantic, or data-flow analysis). Here we use afault-tolerant way12,37

of dealing with these errors and anomalies. That is, an error or anomaly can be
tolerated for a certain period of time before it is corrected. In our IVPE, the message
handler was constructed to handle error messages. Within the program tree, each
model object maintains an attribute calledMessage to reference a message object,
which also maintains an attribute calledModel to reference the model object.
Moreover, each message object maintains an attribute calledMessageStringList
to store a list of error messages annotated with error types, such as syntactic or
semantic errors. When the program text in a model object includes an error or
anomaly detected by the analysis tool, a message object (indicating the occurrence
of the error) is created dynamically (by the analysis tool) and attached to the model
object. After the analysis tool completes its work, the message handler is invoked
(by the program-database manager) to collect message objects by traversing the
program tree, and to display these error messages in themessage window. When
the user corrects an error, the analysis tool destroys the corresponding message
object(s), so that the error message would disappear from the message window auto-
matically.

For example, asFigure 12 shows, three semantic errors were detected during
semantic analysis, and three message objects containing the error messages,“Seman-
tic error: ‘max’ is an undeclared identifier!” , were created and attached to
the associated model objects. These error messages were then displayed in the
message window by the message handler. When an error message is selected in the
message window, the message handler sends a message calledMessageSelected()
to the program-database manager, which then broadcasts a message called
HighlightSelectedView() to inform the editors to highlight the corresponding
program text. When the above semantic error is corrected due to the addition of a
variable declaration, the incremental semantic analyser would remove all three
message objects.

790 c.-h. hu and f.-j. wang

The data-flow analyser

In the past decade, a number of flow-analysis techniques based on tree manipulation
have been explored.Attribute grammars38,39 and action routines11,18,22 are two well-
known examples. The common features of these two techniques are that the language
semantics is represented as semantic attributes attached to the tree nodes, and flow
analysis is performed by traversing the program tree and evaluating the associated
attributes’ values. Constructing such a flow-analysis technique based on the MVS
class hierarchy is straightforward; the functions that a flow analyser performs are
implemented by augmenting a number of semantic attributes and evaluation methods
to the model class hierarchy.

Our flow-analysis model, like action routines, acts as thenode-markingprocess40

operating on the program tree. The whole analysis is performed via message-passing
between model objects in the program tree. When a model object receives a message
or gets a return value of the message it sends, it has the best local information to
do whatever next action it deems appropriate. That is, the model object may evaluate
the attributes’ values, send another message to the parent or child model object(s),
or just return a specific value. During the flow analysis, those language constructs
evaluated as the outcomes are indicated by marking the corresponding model objects.
Moreover, the user interface of a new flow analyser does not need to be constructed
from scratch because existing view and shape objects, supported in the MVS class
hierarchy, can be reused to display the analysis results. This ensures that our IVPE,
incorporating a wide range of flow-analysis tasks, provides a uniform and consistent
user interface to interact with the user.

The detailed data-flow analysis algorithms, including intraprocedural and interpro-
cedural analyses, based on the message-passing model have been discussed thoroughly
elsewhere.36 Here an example of intraprocedural data-flow analysis is given in this
paper. Table IV lists a number of semantic attributes and evaluation methods for
computing intraproceduraldefinition-use(DU) and use-definition(UD) chains. The
semantic attributes which are held by a model class come from two sources: the
attributes originally defined in the class; and the attributes inherited from base
class(es) of the class. AttributesUsedVariables and DefinedVariables are used
to store the names of variables that are ‘used’ and ‘defined’, respectively. For
example, if an assignment statement contains the program text,‘a =b+c’, ‘b’ and
‘c’ will be stored in UsedVariables and ‘a’ in DefinedVariables . Attribute
Marked , a boolean-valued attribute, will be set to‘TRUE’ when the model object is
included in the analysis results.

In our approach, the functionality of the data-flow analyzer is systematically
handled by the following evaluation methods:GetUsedVariablesForwardUp(),
GetUsedVariablesForwardDown(), GetDefinedVariablesBackwardUp() , and
GetDefinedVariablesBackwardDown() . The first two methods are responsible for
computing DU chains with respect to a variable defined, and the rest for computing
UD chains with respect to a variable used. The term ‘forward’ (or ‘backward’)
shown in the methods’ names denotes that the computation sequence would basically
follow (or reverse) the control flow of a program. In addition to the above methods,
two activation methods, ComputeDUChain() and ComputeUDChain() , serve as the
‘triggers’ initiating the DU and UD analyses, respectively.

Figures 13and 14 show two examples of computing DU chains with respect to

791an integrated visual programming environment

Table IV. Model class interfaces for computing intraprocedural DU and UD chains (partial)

class SimpleStmnt : public StatementModel
class Expression : public SimpleStmnt {

{
public;

public:
StringList UsedVariables; // reused

BOOL Marked;
attribute

%
%

};
void ComputedUDChain(String

class StmntList, IfThenElseStmnt,
variableName, StatementModel *pFrom,

WhileStmnt % {
ModelList

public:
*pMarkedModels);

%
int GetUsedVariablesForwardDown(%);

void GetUsedVariablesForwardUp(%);
/* “ %” means that arguments are the same

int GetUsedVariablesForwardDown(%);
as ComputeUDChain() */

void GetDefinedVariablesBackwardUp(%);
};

int GetDefinedVariablesBackwardDown(%);
class AssignmentStmnt : public SimpleStmnt

};
{
public;

/* All internal nodes in the program tree
StringList DefinedVariables,

need to define their respective evaluation
UsedVariables;

methods for computing DU and UD chains. */
// reused attributes
%

void ComputeUDChain(%);
void ComputeDUChain(%);
int GetUsedVariablesForwardDown(%);
int GetDefinedVariablesBackwardDown(%);

};

variable a after the user issued a ‘show DU chain’ command on the assignment
statements ‘a =c’ and ‘a =b’ , respectively. This command invokes method
ComputeDUChain() (defined in classAssignmentStmnt) to start the DU analysis.
The message-passing flow for GetUsedVariablesForwardUp() and
GetUsedVariablesForwardDown() between model objects in the program tree is
shown in Figure 15.

Figure 13. A DU chain w.r.t. variablea in ‘a =c’ (case 1)

792 c.-h. hu and f.-j. wang

Figure 14. A DU chain w.r.t. variablea in ‘a =b’ (case 2)

Figure 15. Computing DU chains for Figures 13 and 14

793an integrated visual programming environment

Figure 16. A class template

ENVIRONMENT SUPPORT FOR VISUAL OBJECT-ORIENTED
PROGRAMMING

This section briefly discusses how the IVPE can perhaps be used to support more
than one language; for example, a C++ language subset. To support visual object-
oriented programming in the IVPE, graphical templates for object-oriented language
constructs need be designed in advance.Figure 16shows an example class template,
representing the static object-oriented language features such as the class construct
and inheritance. After the class template was designed, the next step is to construct
the associated model and view classes and add them to the MVS class hierarchy,
as shown inFigure 17.

By doing minor modifications of the extended MVS hierarchy, the editors cus-
tomized are able to support object-oriented program construction and, at the same
time, preserve all editing and display facilities mentioned above. The related construc-
tion details and descriptions of an IVPE for an object-oriented language can be
found elsewhere.28 Figure 18shows such a construction example by interacting with
the editors. The message handler, a language-independent tool, can be reused without
any modification. For those language-dependent analysis tools such as the incremental
semantic analyser, their functionalities need be extended (by refining/adding semantic
attributes and evaluation methods to the model classes), so that they can work on
object-oriented programs.

Figure 17. An extended MVS class hierarchy

794 c.-h. hu and f.-j. wang

Figure 18. Visual object-oriented programming

RELATED WORK

Prior architectures for interactive applications tend to keep the user-interface part
independent from the core application, so that the user-interface part can be reused
in constructing different applications. In addition, these architectures realize multiple
views by allowing the core application to be attached to several user interfaces.
MVC,16 presentation-abstraction-control (PAC),41 MVC++,42 and document-view43 are
such architecture examples. These architectures, which can be viewed as generic
design guidelines, may not be useful and intuitive enough to specify the architectural
details of some specific applications that handle fine-grained application semantics
and a variety of graphical objects. The following gives some comparisons between
MVS and MVC architectures.

In the original MVC architecture, an interactive application is divided into three
components: model, view, and controller objects. One object-oriented approach35 to
constructing the kernel of an IVPE with the MVC architecture is to design a suite
of model, view, and controller classes for each kind of language construct. In this
way each node in the program tree corresponds to an MVC triad. For example,
Figure 19 shows such a partial program tree representing an if-then-else statement.

Figure 19. Relationships among model, view, and controller objects

795an integrated visual programming environment

It can be seen from this figure that each object in an MVC triad has an (explicit
or implicit) reference to each of the other two objects. View and controller objects
are usually tightly coupled and come in pairs, i.e. VC pairs. However, this approach
may increase the modification cost of the user-interface part because the implemen-
tation details of a view (or controller) class may not be modified alone without
considering the partner together. In contrast to the MVC architecture, the MVS
architecture enforces a layered and loosely-coupled structure. That is, objects only
in ‘adjacent layers’ are allowed to communicate with each other by invoking
predefined protocols. As long as these protocols remain intact, for example, shape
objects can be augmented with new functionalities directly without affecting (or
being affected by) view objects.

Because an IVPE needs to employ a mass of graphical objects to present the
graphical layouts of programs, the functionality of the user-interface part is better
classified systematically into two levels: low-level drawing/event-handling facilities
and high-level program presentation management, which correspond to shape and
view objects in the MVS architecture. This kind of classification may result in more
independent and reusable shape classes, and more maintainable and extensible view
classes. On the other hand, if the MVC architecture is used, the functions of these
two levels would be mixed up in view objects. This may mean that most of the
original user-interface code will need to be modified when the IVPE is about to
support a new language.

Our previous work35 was devoted to the construction of a language-based text
editor based on the Smalltalk-80 environment. The editor prototype, embedded with
a parser and an incremental semantic analyser, provides only primitive functions for
handling textual layouts of programs. Visual program construction, however, was
not supported in that editor. Moreover, in that work we didn’t consider how
different interactive tools cooperate together to make up an integrated programming
environment. In this paper, design and implementation aspects concerning visual and
integration issues are discussed in more detail. This paper also shows how to reduce
the effort of constructing such an editor by refining and extending the MVS
class hierarchy.

CONCLUSION AND FUTURE WORK

This paper presents an adapted object-oriented architecture, called the model-view-
shape architecture, for constructing an IVPE. Application designers who want to
construct such programming environments will find that the associated design issues
discussed in the paper provide useful design guidance. Although the MVS architecture
is a modification of the MVC architecture, it seems more practical to specify the
architectural details of an IVPE (or other applications) that needs to interact with
users to handle a variety of graphical objects. On the other hand, object-oriented
techniques are getting more popular and significant. In this paper, object-oriented
techniques are applied to construct the MVS class hierarchy for the IVPE in a
systematic manner. To show that the MVS class hierarchy has good extensibility
and reusability, the ‘tool construction and integration’ section gives a number of
examples to illustrate how new tools were created and integrated with our IVPE by
adding new attributes and/or methods to existing classes.

Flow analysis can be used to facilitate program understanding during the mainte-

796 c.-h. hu and f.-j. wang

nance phase. In some researchers’ approaches, well-structured (i.e. syntactically and
semantically correct) programs are parsed and translated into the corresponding flow
graphs, and flow analysers then traverse these flow graphs to report analysis results
to the user. Compared with their approaches, flow analysis presented in this paper
is based on the underlying program tree. Our tree-based flow analysis techniques
have the following advantages. First, a complex flow-analysis task can be decomposed
into manageable subtasks that are handled by passing messages between associated
tree nodes. These subtasks may be reused to construct new flow analysers.36 Second,
the flow analyser can directly work on the program tree, without the need to create
and maintain redundant data structures, such asprogram dependence graphs.44 Third,
the user can request flow analysis during programming, and the flow analyser can deal
with incomplete program fragments incrementally as well as executable programs. It
is very helpful for program understanding during the programming as well as the
maintenance phase.

In our IVPE, a number of useful editing and display facilities, such as zooming
and folding, were designed to enable users to efficiently visualize and construct
programs. Although these facilities are customized for our IVPE, the theoretical
editing models can actually be applied to the construction of other applications with
similar editing requirements. Our current programming methodology with respect to
tool construction and integration is stillimperative, i.e. it needs to specify source
code to the MVS class hierarchy manually. Moreover, the reuse technique employed
is based on compositional reuse. To gain the benefits of both compositional reuse
and generative reuse, we are now applying attribute grammars to specify the functions
that new tools perform, and then constructing a code generator to automatically
generate source code, based on the MVS class hierarchy, for the tools.

Performance and usability analysis45 is one important research topic that makes
the IVPE more usable and robust. We plan to perform usability analysis on the
current IVPE, including the analysis of friendliness and user acceptance, for testers
of various programming experience levels. Their comments will be the basis for
revising the next version. Moreover, the performance impact of flow analysis for
large-sized programs needs further study. So far we have extended the MVS class
hierarchy, so that the IVPE is able to support visual programming for object-oriented
languages,28 such as a C++ subset. One of our future projects is to enhance the
analysis and maintenance tools in our IVPE in order to work on object-oriented
programs. On the other hand, object-oriented language features such as encapsulation,
inheritance, and polymorphism make object-oriented programs somewhat uneasy to
understand and debug.46 Thus, we are about to construct a dynamic visualization
tool for examining dynamic (i.e. runtime) structures of object-oriented programs.

acknowledgements

This research was supported in part by the National Science Council, under contract
number NSC 87-2213-E009-002.

REFERENCES

1. B. A. Myers, ‘Taxonomies of visual programming and program visualization’,Journal of Visual
Languages and Computing,1(1), 97–123 (January 1990).

2. T. R. G. Green, ‘Noddy’s guide to visual programming’, British Computer Society, Human Computer
Interaction Group, Autumn 1995.

797an integrated visual programming environment

3. N. C. Shu (ed.),Visual Programming, Van Nostrand Reinhold, 1988.
4. A. Ambler and M. M. Burnett, ‘Influence of visual technology on the evolution of language environ-

ments’, IEEE Computer,22(10), 9–22 (October 1989).
5. M. M. Burnett, A. Goldberg and T. Lewis (eds.),Visual Object-Oriented Programming: Concepts and

Environments, Prentice-Hall, 1994.
6. S. K. Chang (ed.),Principles of Visual Programming Language Systems, Prentice-Hall, 1990.
7. M. M. Burnett and M. J. Baker, ‘A classification system for visual programming languages’,Journal

of Visual Languages and Computing,5(3), 287–300 (September 1994).
8. E. Glinert (ed.),Visual Programming Environments: Applications and Issues, IEEE CS Press, 1990.
9. E. Glinert (ed.),Visual Programming Environments: Paradigms and Systems, IEEE CS Press, 1990.

10. B. Shneiderman, ‘Direct manipulation: a step beyond programming languages’,IEEE Computer,16(8),
57–68 (August 1983).

11. T. Tenmaet al., ‘A system for generating language-oriented editors’,IEEE Transactions on Software
Engineering,SE-14(8), 1098–1109 (August 1988).

12. R. A. Ballance, S. L. Graham and M. L. Van De Vanter, ‘The pan language-based editing system’,
ACM Transactions on Software Engineering and Methodology,1(1), 95–127 (January 1992).

13. K. Halewood and M. R. Woodward, ‘A uniform graphical view of the program construction process:
GRIPSE’, International Journal of Man-Machine Studies,38(5), 805–837 (May 1993).

14. B. Backlund, O. Hagsand and B. Pehrson, ‘Generation of visual language-oriented design environments’,
Journal of Visual Languages and Computing,1(4), 333–354 (January 1990).

15. G. Costagliolaet al., ‘Automatic generation of visual programming environments’,IEEE Computer,
28(3), 56–66 (March 1995).

16. G. E. Krasner and S. T. Rope, ‘A cookbook for using the model-view-controller user interface paradigm
in Smalltalk-80’, Journal of Object-Oriented Programming,1(3), 26–49 (August/September 1988).

17. T. Teitelbaum and T. Reps, ‘The Cornell program synthesizer: a syntax-directed programming environ-
ment’, Communications of the ACM,24(9), 563–573 (September 1981).

18. R. Medina-Mora and P. H. Feiler, ‘An incremental programming environment’,IEEE Transactions on
Software Engineering,SE-7(5), 472–481 (September 1981).

19. J. C. Grundyet al., ‘Connecting the pieces’, in M. M. Burnett, A. Goldberg and T. Lewis (eds.),
Visual Object-Oriented Programming: Concepts and Environments, Prentice-Hall, 1994, pp. 229–252.

20. T. R. G. Green and M. Petre, ‘When visual programs are harder to read than textual programs’, in G.
C. van der Veer et al. (eds.),Human-Computer Interaction: Tasks and Organisation, Proceedings of
ECCE-6 (6th European Conference on Cognitive Engineering), 1992.

21. M. Petre, ‘Why looking isn’t always seeing: readership skills and graphical programming’,Communi-
cations of the ACM,38(6), 33–44 (June 1995).

22. S. P. Reiss, ‘PECAN: program development systems that support multiple views’,IEEE Transactions
on Software Engineering,SE-11(3), 276–285 (March 1985).

23. S. Meyers, ‘Representing software systems in multiple-view development environments’,PhD Disser-
tation, Department of Computer Science, Brown University, May 1993.

24. W. Citrin, R. Hall and B. Zorn, ‘Addressing the scalability problem in visual programming’,Technical
report CU-CS-768-95, Department of Computer Science, University of Colorado, Boulder, 1995.

25. S. Meyers, ‘Difficulties in integrating multiview development systems’,IEEE Software,8(1), 49–57
(January 1991).

26. P. C. Wu and F. J. Wang, ‘Framework of a multitasking C++ based programming environment MCPE’,
Journal of Systems Integration, 181–203 (February 1992).

27. P. C. Wu and F. J. Wang, ‘The evolution of an object-oriented specification for compilers’,Journal of
Information Science and Engineering,11(4), 433–452 (November 1995).

28. C. H. Hu and F. J. Wang, ‘Towards a practical visual object-oriented programming environment:
desirable functionalities and their implementation’, revised and submitted toJournal of Information
Science and Engineering, 1997.

29. A. V. Aho, R. Sethi and J. D. Ullman,Compilers: Principles, Techniques, and Tools, Addison-
Wesley, 1986.

30. I. Sommerville,Software Engineering, 5th ed, Addison-Wesley, 1996.
31. S. P. Reiss, ‘Connecting tools using message passing in the Field program development environment’,

IEEE Software,7(4), 57–66 (July 1990).
32. J. Welsh, B. Broom and D. Kiong, ‘A design rationale for a language-based editor’,Software—Practice

and Experience,21(9), 923–947 (September 1991).

798 c.-h. hu and f.-j. wang

33. H. Mössenbo¨ck and K. Koskimies, ‘Active text for structuring and understanding source code’,Software—
Practice and Experience,26(7), 833–850 (July 1996).

34. C. H. Hu and F. J. Wang, ‘Implementing multi-layered editing facilities in a flow-based editor’,
Proceedings of the 7th Workshop on Object-Oriented Techniques and Applications, 1996, pp. 388–396.

35. C. H. Hu, F. J. Wang and J. C. Wang, ‘Constructing a language-based editor with object-oriented
techniques’,Journal of Information Science and Engineering,11(4), 1–25 (November 1995).

36. C. H. Hu and F. J. Wang, ‘Incorporating flow analysis into a flow-based editor’,Proceedings of
National Computer Symposium, Taiwan, 1997, pp. D53–D60.

37. R. Bahlke and G. Snelting, ‘The PSG system: from formal language definitions to interactive program-
ming environments’,ACM Transactions on Programming Languages and Systems,8(1), 547–576
(October 1986).

38. T. Reps, T. Teitelbaum and A. Demers, ‘Incremental context dependent analysis for language based
editors’, ACM Transactions on Programming Languages and Systems,5(3), 449–477 (July 1983).

39. T. Reps,Generating Language-Based Environments, MIT Press, 1984.
40. A. M. Sloane and J. Holdsworth, ‘Beyond traditional program slicing’,Proceedings of the 1996

International Symposium on Software Testing and Analysis, 1996, pp. 180–186.
41. J. Coutaz, ‘Architecture models for interactive software’,Proceedings of the European Conference on

Object Oriented Programming, 1989, pp. 383–399.
42. A. Jaaksi, ‘Implementing interactive applications in C++’, Software—Practice and Experience,25(3),

271–289 (March 1995).
43. Microsoft Foundation Class Library Reference, Microsoft Press, 1997.
44. J. Ferrante, K. Ottenstein and J. Warren, ‘The program dependence graph and its use in optimization’,

ACM Transactions on Programming Languages and Systems,9(5), 319–349 (July 1987).
45. T. R. G. Green and M. Petre, ‘Usability analysis of visual programming environments: a ‘cognitive

dimensions’ framework’,Journal of Visual Languages and Computing,7(2), 131–174 (June 1996).
46. W. Citrin, M. Doherty and B. Zorn, ‘The design of a completely visual object-oriented programming

language’, in M. M. Burnett, A. Goldberg and T. Lewis (eds.),Visual Object-Oriented Programming:
Concepts and Environments, Prentice-Hall, 1994, pp. 67–93.

	INTRODUCTION
	REQUIREMENTS
	SYSTEM ARCHITECTURE
	DESIGN AND IMPLEMENTATION ASPECTS
	The model-view-shape class hierarchy
	The shape classes
	The model and view classes

	Graphical representations of language constructs
	Construction and manipulation of internal program representations
	Interactions among multiple TMV objects
	Maintaining internal program representations consistently

	EDITING AND DISPLAY ACTIVITIES
	A language-based editing process
	Multi-layered editing facilities
	Module-based layering and the zooming facility
	Block-based layering and the folding facility

	TOOL CONSTRUCTION AND INTEGRATION
	The language-based text editor
	The message handler
	The data-flow analyser

	ENVIRONMENT SUPPORT FOR VISUAL OBJECT-ORIENTED PROGRAMMING
	RELATED WORK
	CONCLUSION AND FUTURE WORK

