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近簡併共振腔皮秒克爾鎖模雷射之非線性動力學 

 

學生：許智章                       指導教授：謝文峰 教授 

 

國立交通大學光電工程學系暨研究所 

摘 要       

我們研究皮秒克爾鎖模雷射在簡併共振腔架構附近之非線性動態

行為。由實驗中我們觀察到無外部調變與回饋控制情況下自啟動克爾

鎖模雷射其自啟動行為。從產生雷射後至穩定鎖模期間，雷射輸出功

率呈現一短暫且連續不規則輸出（free-running spiking），並且每次持

續的時間皆不相同。利用 Grassberger-Procaccia分析法對其暫態部分做

相關維度（correlation dimension）分析，我們得到一非整數值亦即表示

此一暫態行為呈現渾沌特性。利用自相關函數對其做進一步分析亦顯

示其具有渾沌特徵。我們將此暫態行為等分成數段並計算各段之相關

維度，我們發現相關維度由較高的非整數值逐漸減少直到於穩定鎖模

區域時相關維度為零。 

在皮秒自克爾鎖模鈦藍寶石雷射中我們在簡併共振腔附近觀察到

脈衝串列振幅調變。隨泵浦功率的增加脈衝串振幅調變的包絡逐漸由

單群分裂成兩群或三群且調變深度亦隨之加深，最後當泵浦功率增加

至更高功率，脈衝串振幅調變變成雜亂無序。由於皮秒雷射之脈衝強

度遠小於飛秒雷射，故此調變應該不是由高階光固子或色散所造成

的。再者脈衝串調變可操作範圍僅 15微米，雷射共振腔的損耗應該沒
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有太大變化，因此調變行為亦非遲緩震盪（relaxation oscillation）所造

成。由於產生調變行為的操作區域略為偏離簡併共振腔架構，故可能

因雷射晶體中空間不均勻增益所產生的兩組未與縱模相互簡併之高階

橫模相互競爭所造成調變行為。 

藉由薄片近似（thin slab approximation）我們可以描述一脈衝於共

振腔傳播時，共振腔架構對其橫模模態分佈影響。我們使用柯林繞射

積分（Collin integral）和考慮自聚焦效應之速率方程式，以數值模擬研

究皮秒鎖模雷射於簡併共振腔附近的動態行為。在不考慮自聚焦效應

於速率方程式時，我們發現雷射輸出功率隨腔長的變化呈現一功率凹

陷的分佈。然而於速率方程式中加入自聚焦效應時，脈衝串的包絡呈

現各種狀態，其中包括連續輸出或週期、週期-2 以及不規則狀態。值

得注意的是數值模擬結果類似於自啟動克爾鎖模雷射，於自啟動時雷

射輸出行為發生於不穩定與連續波輸出操作區域之間。這些現象均與

我們在實驗中所觀察所得是一致的。此外，由於起始電場之振幅與相

位初始值來自於自發輻射，於不同次模擬結果，此短暫且連續不規則

輸出持續時間不完全相同且呈現一指數函數遞減分布趨勢。其回歸映

像（return map）呈現出在起始時具有奇異吸子的渾沌態，隨時間演化

轉變成準週期態最後收斂於穩定態。理論模擬結果顯示自啟動鎖模從

雷射於渾沌態轉為穩定鎖模態之自適行為應由自聚焦效應所造成。 
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Nonlinear dynamics of picosecond Kerr-lens mode-locked laser around the 
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Student：Chih-Chang Hsu             Advisor：Prof. Wen-Feng Hsieh 

Department of Photonics & Institute of Electro-Optical Engineering 

National Chiao Tung University 

ABSTRACT 

We experimentally observed the transient state from the laser starting to reaching a 

stable mode-locking (ML) state in a self-starting Kerr-lens mode-locked Ti:sapphire 

laser without external modulation and feedback control. By Grassberger-Procaccia 

analysis for the transient state, the correlation dimension of the transient state is a 

non-integer which implies it is a chaotic state.  The chaotic characteristic can be 

further confirmed by observing the revivals of the autocorrelation function for long 

delay time.     

Pulse-train modulation was observed in this laser with pump-power dependence 

when it was operated around the degenerate cavity configuration.  By increasing the 

optical pumping power, the envelope of periodic amplitude modulation splits into two 

or three clusters with enhanced modulation depth, and the amplitude modulation 

eventually becomes disordered at higher pump power.  The amplitude modulation may 

be supported by exciting two sets of non-degenerate longitudinally mode-locked 

supermodes due to spatially inhomogeneous gain modulation in the Ti:sapphire crystal.   
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We also numerically studied suppressing chaos to reaching completely 

mode-locking in this self-starting Kerr-lens mode-locked (KLM) laser.  By thin slab 

approximation, we can describe transverse effect of a pulse propagates in a resonator.  

Based on Fox-Li’s approach, we used the Collins integral and rate equations with and 

without the self-focusing effect, we found without the self-focusing effect typical laser 

output and the feature of a power dip agrees with the observation of experiment for all 

calculated cavity configurations around the degeneracy at various pump powers.  

However, by adding the self-focusing effect, the time evolution of the pulse-train 

envelope presents various states including continuous wave or periodic state and 

instability such as period, period-2, and irregular states.  The simulated self-starting 

KLM output, which possesses transient irregularity before reaching a constant 

amplitude output, occurs between the instability and continuous wave regions.  The 

different runs of the simulated self-starting from the spontaneous emission reveal the 

buildup time of mode-locking not only is sensitive to the initial condition but also 

presents the distribution with exponential decay.  Its return map presents chaotic state 

with a strange attractor in the initial stage.  It transits to the quasi-periodic state and 

finally converges to a fixed point with time evolution.  The theoretical simulation 

reveals that the self-focusing effect is responsible for the self-adaptation.   
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Chapter 1 Introduction 

Since the laser came on the scene, the rich nonlinear behaviors have been 

investigated intensively in laser systems.  The researchers proposed various models to 

describe the laser instabilities [1, 2].  The problems such as spontaneous irregular 

pulsing, modulation instabilities, and unstable mode patterns etc., coming from intrinsic 

nonlinearities of the lasers are the topics of laser dynamics [3].  For applications, one 

prefers to operate the laser with stable continuous-wave (CW) or periodic pulsing while 

sometimes one may use a chaotic laser source, for example, in chaotic communications.  

When Haken constructed the most famous paradigmatic model [4] in 1975 in which the 

Maxwell-Bloch equations for a single mode laser are equivalent to those of the Lorenz 

model for fluids, regarding as the cornerstone in laser dynamics, this field becomes 

popular until today.    

1.1 Degenerate cavities and iterative map 

1.1-1 Degenerate cavities 

The resonance condition for a standing-wave is the phase shift for total round-trip 

must be 2nπ, where n is an integer.  The total phase shift from one end of cavity to the 

other end includes kL and Gouy phase shift terms, where k = 2π/λ is the wave number, 

λ is wavelength of laser, and the Gouy phase is an additional phase introduced by a 
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paraxial wave function substitution for an (n,m)-th order Hermite-Gaussian mode in 

mathematics.  The total Gouy phase shift of a laser cavity with cavity length L is given 

in terms of the g-parameters by the formula 

1
1 2( 1)cos ( )n m g g−+ + ± ,                                          (1.1) 

where n and m are the mode numbers in the x- and y-axes, respectively.  Because the 

Gouy phase shift depends on Hermite-Gaussian mode numbers, different transverse 

modes of a stable Gaussian resonator have different resonance frequencies.  Therefore 

the resonance frequency of Hermite-Gaussian (n,m) mode is given by  

1
, , 1 2

1( cos )
2n m q
c n mq g g
L

ν
π

−+ +
= + ,                                 (1.2) 

where q is the longitudinal mode number.  From Eq. (1.2), we can define the 

longitudinal mode spacing νl = c/2L, and the transverse mode spacing νt = (νl/π) 

cos-1[(g1g2)1/2].  Here we denote the terms as 1/2-, 1/3-, 1/4-degenerate configurations 

because the configurations with g1g2 = 0, 1/4, and 1/2 correspond to νl/νt = 1/2, 1/3, and 

1/4, respectively.  In these configurations, the fundamental modes may be degenerate 

with other high-order transverse modes which obey Eq. (1.2).  The degenerate modes 

may through the mode competition or the mode beating result in instability of laser 

output [5, 6].  Therefore, the degenerate cavity is a good choice to investigate laser 

dynamics.   

1.1-2 Iterative map 
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The iterative map is a mathematical tool to study the nonlinear dynamics.  The 

study of a continuous system can be reduced to a discrete time system on a surface of 

section transverse to the flow.  We take the time period with the round-trip time of the 

laser cavity, and then the iterative map can be constructed.  Applying the ABCD law in 

a two mirror cavity with the reference plane at one of the mirrors [7], the q-parameter 

( 2//1/1 wiRq πλ−= ) of the Gaussian beam of the (n+1)-th round trip to the n-th one 

can be written as 

( )
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

+++

++
==

++==

+

+

,
)/()/)(/(

)/()/(),(

,)/()/(),(

22

2222

21

2222
11

BDwRDCRBA

BwRBARwfR

BwRBAwRwfw

nnn

nn
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nnnnnn

πλ

πλ

πλ
     (1.5) 

where w is the spot size and R is the radius of curvature.  This map belongs to the 

conservative one because the resonator is lossless.  The stability condition )( pJTr < 2 

depends only on the trace Tr(Jp) with the Jacobian matrix Jp evaluated at the studied 

fixed point.  The stability condition depends on the residue that defined as 

( ) 21Res 2 ( ) sin ( / 2)
4 pTr J θ= − = , where θ is the phase shift per iteration of the map.  

For 0 < Res < 1, the system is stable that corresponds to the conventional geometric 

stable regime 0 < g1g2 < 1, where g1,2 = (1-d/R1,2) of the two-mirror cavity is the 

so-called g-parameter of the optical cavity [8, 9].  For Res < 0 and Res >1, the system 

is unstable.  By applying the Greene’s residue theorem, Wei et al. [10, 11] indicated 

that the special case of Res = 0, 1, 3/4, 1/2 correspond to the degenerate cavities or the 
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so-called low-order resonances that correspond to the cavity configuration with a 

specific low fraction g1g2 parameter.  For a simple two-mirror cavity, these special 

condition correspond to g1g2 = 0 and 1 for Res = 0; g1g2 = 1/2 for Res = 1; g1g2 = 1/4 

and 3/4 for Res = 3/4 and 1 2 (2 2) / 4g g = ±  for Res = 1/2, respectively.  It is worth 

noting that these configurations are very sensitive to any perturbation in the laser cavity.  

Therefore, the laser will present various dynamic behaviors when nonlinear effect exists 

in a laser system [7, 10, 11].   

The dynamics depending on the cavity configuration has been studied in a 

Kerr-lens mode locked (KLM) Ti-sapphire laser [11].  When the optical Kerr effect 

was considered as the nonlinear dynamical parameter, optical bistability and 

multiple-period bifurcation were numerically demonstrated.  From the guidance, some 

peculiar phenomena were found by using an end-pumped Nd-YVO4 laser under 

small-size pumping that pump size is smaller than the waist of the cold cavity [12-16].  

A supermode or superposition of phase-locked degenerate transverse modes can be 

formed with relatively low lasing threshold, shrunken beam waist [13] and operation of 

a stable CW bottle beam [14, 15] were observed.  However, only the temporal chaotic 

state was observed for the cavity configurations that were slightly shorter than the 

degenerates and the spatio-temporal chaotic state for those slightly longer than the 

degenerates [16].   
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1.2 Self-starting of Kerr-lens mode-locked laser 

In solid state mode-locked (ML) lasers, the chaotic behavior of the self-mode 

locking or the Kerr-lens mode locking (KLM) Ti:sapphire lasers, due to the significant 

optical Kerr effect (OKE), had also been investigated since the invention of KLM 

Ti:sapphire laser in 1991 by Spence et al. that requires a mechanical perturbation to start 

the mode locking [17].  Later, self-starting Kerr-lens mode locking (SSKLM) was 

shown achievable in this laser, either with or without group velocity compensation [18, 

19] in a narrower tuning region close to the boundary of spatio-temporal chaotic and 

CW states [20].  The basic mechanism underlying pulse formation in these self-mode 

locked lasers has been attributed to self-focusing caused by Kerr nonlinearity to 

modulate the cavity gain or loss in terms of soft-aperture or hard-aperture Kerr-lens 

mode locking [21, 22], respectively.  For the soft-aperture systems, however, because 

the only mechanism to restrict higher-order transverse modes is the modal profile of the 

gain and because Kerr-lens mode locking itself is intrinsically a nonlinear phenomenon, 

it is not surprising that such systems may exhibit more complicated transverse dynamics.  

Recently, period doubling [23, 24] and tripling [24, 25] of soft-aperture Kerr-lens mode 

locked Ti:sapphire lasers were observed by operation of the resonators in specific cavity 

configurations and were explained in terms of the total mode locking of TEM00 and 

higher-order modes [26, 27].   
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  Although the dynamic processes of the self-starting KLM lasers have been 

extensively investigated in early time in which starting from relaxation oscillation 

through a short period intermediate free running to reach a final stable KLM were 

generally reported [28], many efforts concerning about the routes to chaos after the 

lasers being operated with the KLM state were reported, e.g., Bolton et al. [29], and our 

previous report [20].  Phase plot of period, quasiperiodic, and chaotic regimes shows 

as a function of pump power and insertion of prism [21].  However, to the best of our 

knowledge, self-adaptation from transient spiking to complete mode-locking with 

neither external modulation [30-32] nor feedback control [33-35] had not been 

examined in laser systems.   

Furthermore, a self-adapting or self-adjusting system is an adjustable system 

whose control parameters are adjusted by the forcing dependent only on the system 

itself [36].  Such systems have been found to adapt to the edge of chaos, which is the 

boundary of chaos and the order state [36, 37].  Using a logistic map as an example 

[36], it had been found that the parameter leaves the chaotic regime and there is a high 

probability of finding the parameter at the boundary between periodicity and chaos 

when the control parameter of the system is not constant in time, but varies much more 

slowly than the dynamical variables.  These phenomena are ubiquitous in nature; for 

example, long-range fitness correlations have been detected during the adaptive process 
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in RNA viruses [38].  In addition, models of coupled neurons with self-adjusting 

coupling strengths had been found to exhibit robust synchronization [39] and 

suppression of chaos [40].  The process of self-starting KLM is very much like 

self-adapting phenomenon.   

1.3 Pulse-train amplitude modulation in a picosecond KLM laser 

Self-mode-locked lasers due to KLM have become the light sources of 

high-bandwidth ultrashort pulses and been applied to various fields.  Recently, the 

supercontinuum (SC) or white light generation has been demonstrated by injecting the 

high peak power laser pulses into a photonic crystal fiber (PCF) [41].  By operating the 

mode-locked Ti:sapphire laser in a pulse-train amplitude modulation mode, the 

so-called self-Q-switched mode [42] to enhance peak power, the fluctuating structure of 

SC spectrum can be suppressed significantly [43].  This Q-switching mode-locking 

pulse train with low repetition rate is very useful for preventing thermal heating in 

Z-scan and nonlinear optical measurements [44-46].   

The solid-state laser media that usually have sufficient long gain relaxation time as 

compared with the cavity relaxation time are susceptible to intensity spiking and exhibit 

self-Q-switching phenomena.  Accordingly, introducing extra loss in the laser cavity 

such as saturable absorbers or semiconductor saturable absorber mirrors (SESAM) can 

generate self-Q-switching, Q-switched mode-locking (QML), and even CW 
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mode-locked laser pulses [47, 48].  Although the gain relaxation time of Ti:sapphire 

laser (3.2 µs) is larger than the cavity relaxation time (~ 10 ns), the mode-locked pulse 

train in a femtosecond (fs) Ti:sapphire laser can be amplitude modulated by high-order 

spatial transverse modes [42, 49, 50] or high-order solitons [51] without saturable 

absorbers.  By controlling intracavity hard aperture [49] or operating parameter of the 

cavity, such as moving spherical mirror or translating prism [42, 49, 50], the intensity 

dependence of the transverse distribution of the laser beam caused by self-focusing 

imposes a strong limit on the aperture diameter.  When the size of an intracavity slit is 

reduced below its optimal value for stable mode-locking, the output pulses of the KLM 

Ti:sapphire laser transform into a regime characterized by periodic pulse-train 

amplitude modulations as a kind of repetitive self-Q-switching.  The modulation 

period increased and amplitude modulation could deepen to almost 100 percent as the 

slit width was decreased further [49].  The period of self-Q-switching depends on 

distance between the folding mirrors, which essentially determine the stability of 

resonator, and increases with increasing the distance between one of folding mirrors and 

the closer face of the Ti:sapphire crystal [50].  Among them, the high-order transverse 

modes, strong Kerr effect due to the ultrashort pulse width, and the group velocity 

dispersion (GVD) compensation should be responsible to the mode-locked pulse-train 

modulation in the fs Ti:sapphire lasers.   
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In contrast, due to the relatively low peak intensity in picosecond (ps) KLM lasers, 

the strength of Kerr effect is reduced and therefore the pulse-train modulation should 

occur more difficult than that in fs-KLM lasers.  However, because the mode locking 

mechanism of the KLM laser is due to the self-amplitude or self-gain modulation 

resulting from the self-focused light by hard or soft aperture effect, the smaller pumped 

beam spot size than the cold cavity beam one in the gain medium leads to the KLM 

mode resonating more easily than the CW mode.  In an axially tightly-focused pumped 

laser, it is easier to excite the higher-order transverse modes to extract more stored 

energy from the gain medium when the laser is operated in the degenerate cavity 

configurations [24] that have the so-called low-order resonance [8].  The beam patterns 

observed for both the CW and picosecond KLM operations in the soft aperture KLM 

regions are no longer pure fundamental Gaussian modes [24].  Due to the competition 

of transverse modes, the nonlinear dynamics and irregular pulsing have been observed 

in Nd:YVO4 lasers [16] and Ti:sapphire lasers [20] operated around the degeneration 

configurations.  The slow amplitude modulation of mode-locked pulse train in the 

ps-soft-aperture self-mode-locked Ti:sapphire laser around the 1/3-degenerate 

configuration, which corresponds to the 1/4-fractional low-order resonance, may not 

only result from the competition of longitudinal modes but also transverse modes. 

1.4 Aim of this research 
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In this research, we will investigate experimentally the dynamic processes of 

self-starting KLM which begin with the transient chaotic state and finally suppression 

of chaos to become a stable CW-ML state and the periodic amplitude modulation of 

ps-mode-locking pulses occurring around the 1/3-degenerate configuration.   

We will also employ the numerical model which consider the transverse wave 

front of a pulse propagating in the cavity to investigate numerically the dynamics 

behaviors of a picosecond KLM Ti:sapphire laser around the degenerate-cavity 

configurations.  Based on the Fox-Li approach, using the Collin’s integral with rate 

equation including the self-focusing effect, the simulation results reveal that the 

self-focusing effect is responsible for the dynamics of this laser system that evolves 

from the chaotic state with a strange attractor to a metastable periodic state and then 

converges to a fixed point, the CW-ML state.  The slow amplitude modulation of 

mode-locked pulse train in the ps-soft-aperture self-mode-locked Ti:sapphire laser 

depends upon the optical pumping power.  As the pump power increases, the envelope 

of periodic modulation will split into two or three clusters, and the laser eventually turns 

into disorder modulation as further increasing the pump power.   

1.5 Organization of this dissertation 

In this dissertation, it will introduce the experimental setup and the measurement of 

the self-starting mode-locking, pulse train amplitude modulation and spatio-temporal 
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instability in Chapter 2.  And then it will introduce the simulation model which used 

the Huygens’s integral and rate equation with optical Kerr-effect in Chapter 3.  We 

will discuss our experimental and simulated results which are nonlinear dynamics 

analysis of self-starting KLM laser, pulse train amplitude modulation and 

spatial-temporal instability in Chapter 4.  Finally, in Chapter 5 it will state the 

conclusions and the give suggestions for future works.   
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Chapter 2 Experimentals 

In this chapter, we used the ABCD law discussed in our previous work [1] to 

design and construct a ps-KLM Ti:sapphire laser operated at 1/3-degenerated cavity 

configuration (G1G2 = 1/4).  We further introduced the measurement system used to 

observe the nonlinear behaviors including the self-starting mode-locking, pulse-train 

amplitude modulation and spatio-temporal instability.   

2.1 Experimental construction for a symmetric KLM laser 

The schematic experimental setup of the ps-KLM Ti:sapphire laser is shown in Fig. 

2-1, which is a z-folded four-mirror cavity containing a 9-mm-long Brewster-cut 

Ti:sapphire rod (0.1% Ti3+ doped, FOM > 150) without any hard-aperturing slit and 

group-velocity compensation components.  Without any GVD compensation, the 

single pass GVD for the 9 mm Ti:sapphire crystal is 576 fs2.  A CW frequency 

doubled Nd:YVO4 laser (Coherent, Verdi-V8) was used as the pumped source, and the 

pumped beam is focused by a plano-convex lens with focal length of 12.7 cm at the 

center of the laser rod.  Two curved mirrors (M1 and M2) of 10-cm radius of curvature 

were tilted about 10.1° to compensate the astigmatism.  The distance from M1 to one 

end face of the laser rod is denoted as r2, and from the other end face to M2 as r1.  In 

order to operate the laser at 1/3-degenerated cavity configuration, we calculated the 
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parameters of the laser cavity by using the ABCD law.  The distance of r1 is 52.85 mm 

and r2 is tunable from 52.80 mm to 52.89 mm, respectively.  Two flat mirrors, a 98% 

high reflector M3 and a 95% output coupler M4, were placed to form linear arms.  The 

distance between M1 and M4, as well as the distance between M2 and M3, are 75 cm to 

form a near-symmetric cavity arrangement.  The total length of the resonator is 

approximately 160 cm corresponding to 93 MHz of repetition rate.   

 

M2

M3

M1

Pump Beam

M4

r1

r2

Ti:sapphire crystal
M2

M3

M1

Pump Beam

M4

r1

r2

Ti:sapphire crystal

 

Fig. 2-1 The schematic experimental setup of the Kerr-lens mode-locking Ti:sapphire laser.   

 

The lens, the laser rod, and the folding mirrors were mounted on precision 

translation stages with precision of 10 µm to allow for fine adjustment of the resonator 

configuration and the overlap between pumped beam and cavity beam.  The 

cold-cavity beam diameter at the center of the laser rod corresponds to 50 µm, which is 

larger than the pump one of 30 µm.  By properly adjusting the cavity configuration we 

obtained KLM lasing including self-starting KLM [2, 3] that can be operated for a long 
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period of time.  We measured the stable KLM pulse having the pulse width of about 3 

ps.  We observed the mode-locking regions occurred around the degenerated cavity 

configurations and this result have been reported in our previous work [1].  The 

mode-locking ranges are from 100 µm to 300 µm for the different degenerated cavity 

configurations.  The self-starting mode-locking region (~ 30 µm) occurred at the edge 

between the mode-locking region and CW region.   

2.2 The measurement of self-starting Kerr-lens mode-locking 

The self-starting was examined by blocking and unblocking the cavity beam to 

observe whether the laser will self-develop into the KLM state or not.  We found the 

self-starting will always occur after the cavity beam is unblocked.  The laser beam 

from M3 was detected by a high-speed photodetector (Electro-Physics Technology 

ET-2000, with 300-ps rise time and noise equivalent power 10-13 W/Hz1/2) and then 

connected to a 300-MHz digital oscilloscope (LeCroy 9450A) used to monitor and store 

the dynamic of laser for further analysis.   

2.3 The observation of pulse-train amplitude modulation 

We can operate the laser in the picosecond mode locking with central wavelength 

of 820 nm at pump power Pp = 4 W at the cavity length slightly longer than the 

1/3-degenerate cavity configuration by properly tuning the mirror M2 (~ 100 µm tuning 
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range) after a mechanical perturbation [1, 2].  When the curved mirror M2 was 

translated slightly toward increasing the cavity length (~ 15 µm), the sinusoidal 

amplitude modulation of the mode-locking pulse train was observed.  We kept 

increasing the distance of r1, the pulse-train modulation presented intermittent 

modulation behaviors varying among period-2, period-3 and irregularity.  By further 

increasing the distance of r1, self-starting mode-locking (within 30 µm tuning range) 

was observed, finally, the laser turned to CW output.   

The laser beam from the high reflector M3 was detected by two high-speed 

photodetectors with rise time < 0.3 ns and noise equivalent power 10-13 W/Hz1/2.  The 

output signals of photodetectors were sent to a LeCroy-9450A digital oscilloscope 

(300-MHz bandwidth) and a RF spectrum (HP 8560E) for monitoring the pulse 

sequence and the dynamics of Ti:sapphire laser.   

2.4 The measurement of spatio-temporal instability  

A CCD camera was used for observing the transverse pattern of the laser beam.  

The beam patterns observed for both the CW and picosecond KLM operations around 

the degenerate configuration are no longer pure fundamental Gaussian modes, which 

consist of several high-order Hermite–Gaussian modes with phase shifts relative to the 

fundamental one [1].  Figure 2-2 shows the beam pattern around the 1/3-degenerate 
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cavity configuration.  We used two small-area detectors (0.006 mm2) to measure 

intensities at different transversal positions of the pattern labeled A and B in Fig. 2-2.   

A BA B

6.4 mm

4.8 mmA BA BA BA B

6.4 mm

4.8 mm

 
Fig. 2-2 The beam pattern around the 1/3-degenerate cavity configuration.   
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Chapter 3 Numerical model 

Many equations described the propagation of light in nonlinear media, either with 

or without a laser cavity, exhibit modulation instability.  Examples are the nonlinear 

Schrödinger equation [1], the mode-locking master equation [2], and the laser 

Maxwell-Bloch equations [3].  Many of the above mentioned theories for the KLM 

lasers only considered the longitudinal modes but ignored the transverse modes.  

Experimentally, however, the nonlinear dynamics of a KLM laser depends on transverse 

modes around the degenerate cavity configurations [4].  In this chapter, we use the thin 

slab approximation [5] to simulate a pulse propagating in a laser cavity and present a 

simulation model based on the Fox-Li’s approach including the optical Kerr effect in 

the rate equations [6] to simulate the dynamics of the nonlinear Kerr effect on the KLM 

laser operated around the 1/3-degenerate cavity configuration.   

3.1 Thin slab approximation 

Generally, we described how the optical radiation inside an optical cavity 

circulates repeatedly around the cavity, bouncing back and forth between the end 

mirrors, used only a plane-wave approximation but ignored the transverse spatial 

variation of the waves.  To bring transverse variation into the discussion, let us 

consider only that portion of optical energy traveling in the +z direction containing 
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within some short axial segment of length ∆z within the cavity.  We can think of the 

radiation in this segment as forming a short pulse or a thin “slab” of radiation as shown 

in Fig. 3-1, whose axial thickness ∆z is small compared to the length of a typical cavity 

but still very large compared to an optical wavelength λ.   

 

 
Fig. 3-1 A traveling pulse or “slab” of optical radiation propagating in the z direction.   

 

The time and space variation of the optical fields within such a circulating pulse or 

thin slab as it travels through the resonator can be written in the form 

( )

( ) ( , , )

( , , ) Re ( , , )

Re ( , , )

j t kz

j t kz j x y z

x y z E x y z e

E x y z e

ω

ω φ

ε −

− +

=

=
.                               (3.1) 

Here ω is the optical frequency and k = ω/c = 2π/λ the associated plane-wave 

propagation constant, and the complex phasor amplitude ( , , )E x y z  describes the 

transverse amplitude and phase variation of the beam.  By writing the fields in this 

fashion, we separate out the plane-wave aspects of the wave propagation as given by the 

ej(ωt-kz) factor from the complex phasor amplitude ( , , )E x y z .  The transverse intensity 

profile of the beam within this particular phase or slab is the given by 
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2
( , , ) ( , , )I x y z E x y z= , where the transverse phase profile, or the shape of the optical 

wavefront is given by the transverse phase variation φ(x,y,z).   

Although we write the phasor amplitude function ( , , )E x y z  as a function of x, y 

and z, we will see later that the variation of this transverse beam profile with the axial or 

z coordinate is generally very slow compared to the e-jkz variation that we separated out.  

The latter function goes though a complete 2je π±  variation in just one optical 

wavelength.  By contrast, the complex amplitude profile ( , , )E x y z  will not change 

much if at all through the thickness of one “slab”; and it will also change only very 

slowly with distance as particular slab propagates down the resonator, or through free 

space outside a resonator.   

If we follow the transverse profile ( , , )E x y z  of any one such slab as it travels 

through one complete round trip around a laser cavity, we will definitely see the 

transverse field pattern in the slab change with distance as the slab propagates, diffracts, 

bounces off mirrors, and passes through laser rod, lenses and finite aperture.  These 

changes in the transverse pattern ( , , )E x y z  of the slab caused by propagation and 

diffraction are the primary effects that determine the transverse mode properties of 

optical beam and resonators.  Further if we think a slab repeated round trips within a 

resonator, it can be regard as the pulse propagates through repeated sections of an 

iterated period optical system or lensguide as shown in Fig. 3-2.    Hence we can find 



 25

the transverse mode patterns that are self-reproducing after each such round trip or 

periodic step by using a propagation integral  

(1) (0)
0 0 0 0 0 0( , ) ( , , , ) ( , )jkp

input
plane

E x y e K x y x y E x y dx dy−= ∫∫ ,                   (3.2) 

where k is the propagation constant at optical frequency; p is the length of one round 

trip; and the integral is over the transverse coordinates at the input plane.  The function 

K  depends on the chosen reference plane is commonly called the propagation kernel or 

“propagator”, since the field (1) ( , )E x y  after one propagation step can be obtained from 

the initial field (0)
0 0( , )E x y  through the operation of the linear kernel K .  If the 

reference plane is chosen at an aperture and the only intervening element before the next 

aperture is simply free space, the function K  will be simply Hygens’s integral for free 

space, with the integral being evaluated over the aperture at the input end of each round 

trip.   

 

 
Fig. 3-2 The sketch of an iterated period optical (lensguide) system.  Upper: Circulating pulses (“slab”) 

in an optical resonator.  Bottom: Propagation through repeated round trips in an optical resonator is 

physically equivalent to propagation through repeated sections of an iterated period lensguide.   
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3.2 Huygen’s integral and ABCD matrix 

In the classical optics, we can use Huygens’s integral to describe an optical field 

after a certain distance of diffraction.  So we also can use Huygens’s integral to 

describe laser beam in a real resonator.  In Fig. 3-3, it is a sketch of one-dimension 

Huygens’s integral, and it means that the optical field of plane Z2 interferes with all of 

the point sources of plane Z1.  In one-dimension condition, the Huygens’s integral is  

1 2( , )
2 2 1 1 1( ) ( ) jk x xju x u x e dx

L
ρ

λ
∞ −

−∞
= ∫ ,                                  (3.3) 

where the 1 1( )u x  and 2 2( )u x  are respectively the wave functions on the Z1 and Z2 

planes, k is the wave number and λ is the wavelength of laser field, ρ(x1,x2) is the 

distance of the arbitrary position vectors on the Z1 and Z2 planes.  Therefore we can 

define ρ as  

2
2 2 2 1

1 2 2 1
( )( , ) ( )

2
x xx x L x x L

L
ρ −

= + − ≈ + ,                            (3.4) 

We can use Eqs. (3.3) and (3.4) to calculate the diffraction of optical field.   

 

LZ1 Z2

X1

X2

1 1( )u x 2 2( )u x

Z

LZ1 Z2

X1

X2

1 1( )u x 2 2( )u x

Z

 

Fig. 3-3 The sketch of one-dimension Huygens’s integral.  L is the separation distance between planes of 

Z1 and Z2, the 1 1( )u x  and 2 2( )u x  are the wave functions on these planes. 



 27

We usually use the ABCD matrix to present a paraxial system, such as laser 

resonator.  If we substitute the elements of ABCD matrix to Huygens’s integral, it will 

be very convenient to use.   Now, we will find the relationship between ρ(x1,x2) and 

ABCD matrix, and substitute to Huygens’s integral.  In Fig. 3-4, a paraxial optical 

system between the planes of Z1 and Z2 can be expressed as  

1 1

2 1

x xA B
x xC D
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥′ ′⎣ ⎦⎣ ⎦ ⎣ ⎦
,                                              (3.5) 

where the x and x’ respectively represent the positions and slope of ray on the Z1 and Z2 

planes.  From Eq. (3.5), we can get the slope of each point as  

2 1
1

2 1
2

x Axx
B

Dx xx
B

−′ =

−′ =
.                                                   (3.6) 

The input ray may be viewed as a ray coming from an object point P1 located a distance 

R1 behind the input plane, as shown in Fig. 3-4.  Hence R1 and R2 is given by  

1 1 1

1 1 2 1

2 2 2

2 2 2 1

R x Bx
n x x Ax
R x Bx
n x Dx x

′
≡ =

′ −
′

≡ =
′ −

.                                              (3.7) 

Fermat’s principle says that “all rays connecting two conjugate points must have the 

same optical path length between two points.”  Therefore the ray path from P1 to P2 

through x1 and x2 will equal to the ray path along the optical axis ( 1 2 1 1 2 2PP Px x P= ).  

Both ray paths can be written as 
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1 2 1 1 0 2 2

2 2 1/ 2 2 2 1/ 2
1 1 2 2 1 1 1 1 2 2 2 2

2 2
2 1/ 2 2 1/ 21 2

1 1 1 2 2 2
1 2

( ) ( , ) ( )

( ) ( , ) ( )
2 2

PP n R L n R

Px x P n R x x x n R x

x xn R x x n R
R R

ρ

ρ

= + −

= + + − +

≈ + + − +

.                     (3.8) 

From Eq. (3.8) we can get  

2 2
1 2 0 1 1 2 2

1( , ) ( 2 )
2

x x L Ax x x Dx
B

ρ = + − + .                              (3.9) 

By substituting Eq. (3.9) into Eq. (3.3), the Huygens’s integral becomes 

2 2
1 1 2 2

0
( 2 )

2 2 1 1 1( ) ( )
j Ax x x DxjkL Bju x e u x e dx

B

π
λ

λ
− − +∞−

−∞∫ .                         (3.10) 

Therefore we have the relationship between element of ABCD matrix and the 

Huygens’s integral.   
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Fig. 3-4 The sketch of the optical ray through an ABCD paraxial system.  The x and x’ respectively 

represent position and slope of ray.  P1 is the conjugate point of P2. 

 

3.3 Simulation model of the KLM laser 

To simulate a KLM laser we constructed the equivalent four-mirror cavity system 

shown in Fig. 3-5.  The cavity consists of two flat mirrors M3 and M4, a 98% high 
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reflection end mirror M3 and a 95% output coupler M4, and a pair of curved mirrors M1 

and M2 with the same radii of curvature R = 10 cm.  The laser rod also acting as a Kerr 

medium with the refractive index n = 1.76 and length l is placed between the curved 

mirrors.  M2 and M4 form a linear arm with a distance of 75 cm and M1 with M3 at the 

same distance, respectively, in a near-symmetric arrangement.  The distance r2 from 

the curved mirror M1 to one end surface of the Kerr medium is 53.625 mm and r1 from 

the other end surface of Kerr medium to M2 is tunable from 53.61 mm to 53.67 mm.  

The total length of the resonator L is approximately 160 cm.  The laser cavity is 

operated at 1/3-degenerate cavity configuration.  Here we assume that no dispersion 

exists in the system for our numerical model since there are no dispersion components 

in Fig. 3-5.   
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Fig. 3-5 Schematic of an equivalent four-mirror cavity configuration. 
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In nearly all of the situations of practical interest in mode-locked lasers, the time 

variation of mode-locked pulse is still slow compared with the dephasing time in the 

saturable absorbing medium; and the saturation behavior of the absorption will be 

essentially that of a simple homogeneous atomic transition.  Moreover, most lasers 

used for technological applications belong to the so-called Class B lasers [5], which 

include all solid state, semiconductor, and CO2 lasers.  All these devices have in 

common the long lifetime of the excited state (relative to both the medium polarization 

lifetime and to the photon lifetime in the cavity).  Basic rate equation model for a 

single longitudinal and transverse-mode Class B laser involves two equations describing 

rate of change of field and population inversion [7].  For Kerr-lens mode-locked lasers, 

however, the optical Kerr effect plays a role of fast saturable absorber.  Hence, we can 

describe the nonlinear transition of an optical pulse through Kerr medium with 

sufficient accuracy using only a simple rate-equation approach, without going into more 

complex resonant-dipole or Rabi-flopping analyses [5].  

Let the reference plane be end face I of the crystal.  In a thin-slab approximation 

[5], which the axial thickness of a short pulse is small compared to the length of a 

typical cavity but still very large compared to an optical wavelength, we therefore 

numerically simulate this laser system by using Collin’s integral [8] with round-trip 
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transmission matrix to calculate light field E(r) under cylindrical symmetry, where r is 

the radial coordinate and the rate equations as described in our previous work [6],  

2 2
1 1 1 1 0 10

1

2( ) exp[ (2 )] ( )exp[ ( / ) ( )] (2 / )
am mjE r jk d E r j B Ar Dr J rr B r dr

B
π π λ π λ
λ− +′ ′ ′ ′ ′ ′= − − × +∫  (3.11) 

with transmission matrix 1 1

1 1

A B
C D
⎡ ⎤
⎢ ⎥
⎣ ⎦

.  Here E+
m(r) and E-

m(r) are the m-th propagating 

optical field on the reference plane in Fig. 3-5 before and after Huygens diffraction, r′ 

and r are the corresponding radial coordinates, λ is the wavelength of laser, J0 is the 

Bessel function of zero order, d1′ is distance from end face I through the M2 and the M3; 

and a is the aperture radius on the reference plane and it must be chosen large enough 

with many times of the fundamental mode radius to ensure that the diffraction loss can 

be neglected.  In order to include the self-focusing effect in active medium, we 

modified the equation to describe the light field passing through the gain medium by 

adding the nonlinear phase shift, 2
2( ) ( )r n lI rπφ
λ

=  , which is caused by optical Kerr 

effect, in the equation of field evolution: 

1 1exp( )
2

m m m
m spontE E g l i Eφ+

+ −= − + .                                  (3.12) 

Here E-
m and E+

m are the optical fields of the mth round trip just reaching and leaving 

the laser rod; l is the length of gain medium, gm is the gain coefficient, Em
spont is the field 

of spontaneous emission whose amplitude and phase are given by the spontaneous 

decay term in Eq. (3.12) and a random generator, respectively; and n2 is the nonlinear 

refractive index.  I(r) is the intensity distribution of laser pulse calculated from the 
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optical field E-
m(r) using I(r) = (1/2nε0)|E-

m(r)|2, where n is refractive index and ε0 is 

permittivity of free space.  Similar treatment is for the opposite direction propagation. 

Note that because the length of gain medium is far smaller than the cavity length the 

gain distribution can be regarded as uniform distribution along the propagating direction.  

If the thickness ∆z of the pulse is far smaller than the length of gain medium, the pulse 

experienced the uniform gain.   

The gain coefficient of the successive pass in the gain medium is related as  

2

2
2

2
1 0 22

0

2(1 ) ( )( )p

r
wp a

m a m m m m
p p s

P ttg t g e N g E g
h N l w E

γγ σ
ν π

−

+

∆∆
= − ∆ + − − .       (3.13) 

When we considered Eq. (3.12) without self-focusing effect (n2 = 0), Eqs. (3.12) and 

(3.13) can use to model the laser dynamics with the beam-propagation dominant as 

cavity is far from degeneration but with interplay of beam propagation and gain 

dynamics as cavity is tuned toward degeneration [5].  However, if we considered the 

self-focusing effect, act as the so-called Kerr lens, it changes the electric field 

distribution and shrinks the spot size of the electric field to modify the gain profile and 

result in the KLM mode resonates more easily than the CW mode. 

Here we used the spontaneous decay rate γa = 3.125 x 105 s-1 [9], the total density 

N0 = 3.3 x 1025 m-3 [9], the length l = 9 mm, the stimulated-emission cross section σ = 

3.0 x 10-23 m2 [10] and the saturation parameter Es = 1.05 x 106 N/C of the active 

medium [10]; and the round-trip time ∆t = 10.67 ns that was determined by cavity 
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length, the photon energy of the pumping laser hνp = 1.53 eV, and pumping beam radius 

wp = 15 µm.  We have omitted the dispersion of the active medium so that the gain is 

assumed to be real.   

We calculated the laser output power by integrating the intensity distribution of 

laser pulse I(r) with respect to the aperture radius a on the reference plane every 

roundtrip.  The processes repeat in each roundtrip until reach convergence to 

continuous-wave steady state for CW laser output.  In order to investigate the 

cavity-dependent instability, we set the initial values of E(r) to zero, i.e., E-
1(r) = 0, and 

changed r1 across the point of degeneration to vary the optical field distribution in the 

gain medium corresponding to influence optical Kerr effect on laser dynamics for 

calculating the output power.  All of parameters and variables used in program have 

been set double precision.   
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Chapter 4 Results and Discussion 

In this chapter we discussed our experimental and simulated results.   We 

observed the self-starting Kerr-lens mode-locked without external modulation and 

feedback control [1].  In order to confirm the state of the transition from free-running 

spiking to mode-locking, the correlation function and the correlation dimension based 

on the Grassberger-Procaccia analysis (GPA) [2] were applied.   The non-integer 

correlation dimension and autocorrelation show it is a chaotic state.   

We also observed pulse-train modulation in a picosecond self-mode-locked 

Ti:sapphire laser with pump-power dependence when it was operated around the 

degenerate cavity configuration [3].  The envelope of periodic amplitude modulation 

splits into two or three clusters with enhanced modulation depth as increasing the 

optical pumping power and then the amplitude modulation eventually becomes 

disordered at higher pump power.  Owing to the optical Kerr effect in a picosecond 

self-mode-locked Ti:sapphire laser is smaller than in a femtosecond self-mode-locked 

Ti:sapphire laser the amplitude modulation may be supported by exciting two sets of 

non-degenerate longitudinally mode-locked supermodes due to spatially 

inhomogeneous gain modulation in the Ti:sapphire crystal.   
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We numerically studied suppressing chaos to reach completely mode-locking in a 

self-starting Kerr-lens mode-locked (KLM) laser [4].  By using the Collins integral and 

rate equations with and without the self-focusing effect, we found without the 

self-focusing effect typical laser output and the feature of a power dip agrees with the 

observation of experiment [5] for all calculated cavity configurations around the 

degeneracy at various pump powers.  However, by including the self-focusing effect, 

the time evolution of the pulse-train envelope presents various states including 

continuous wave or periodic state and instability such as period, period-2, and irregular 

states.  The simulated self-starting KLM output, which possesses transient irregularity 

before reaching a constant amplitude output, occurs between the instability and 

continuous wave regions.  The self-focusing acts as a slow-varying control parameter 

that suppresses the transient chaos to reach a stable mode-locking state in a self-starting 

Kerr-lens mode-locked Ti:sapphire laser without external modulation and feedback 

control.  The self-adaptation occurs at the boundary between the chaotic and 

continuous output regions in which the laser system begins with a transient chaotic state, 

and then evolves with reducing dimension into the stable ML state.  Furthermore, the 

different runs of the simulated self-starting from the spontaneous emission reveal the 

buildup time of mode-locking not only is sensitive to the initial condition but also 

presents the distribution with exponential decay.  Its return map presents chaotic state 
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with a strange attractor in the initial stage.  It transits to the quasi-periodic state and 

finally converges to a fixed point with time evolution.   

4.1 Nonlinear dynamics analysis of Self-starting KLM laser 

Figure 4-1 shows the typical evolving output of the self-starting KLM laser 

developed from spontaneous noise under 5W CW pumping.  Apparently, the laser first 

oscillated with free running spiking once the cavity path was unblocked.  It then 

evolved into stable KLM operation with a pulse width of 3 ps.  To verify the 

determinism of the data, the correlation function and the correlation dimension 

proposed by the Grassberger-Procaccia analysis (GPA) [2] were applied.   

 

 

Fig. 4-1 The output clusters of the self-starting pulse train on the oscilloscope with 5 W pumped.  The 

CW laser oscillated with free running spiking when the cavity path was unblocked and then suddenly 

broke into KLM operation.   
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To do the GPA, the time embedding technique is required to construct the 

trajectory in the De embedding dimensions with a vector yi.  The number of pairs of 

points with a separation distance less than some value r is estimated by  

( 1) ( 1)2C(r) ( ( ))
( 1)( )lim

e eN D N D

i j
N i j ie e

H r y y
N D N D

− + − +

−>∞ >
= − −

− + − ∑ ∑ ,             (4.1) 

where yi and yj are the coordinates of the ith and jth vectors of total N data, and H is the 

Heaviside function, which is defined as H(u) = 1 if u > 0, but zero otherwise.   The 

distance r can be simply a Euclidean norm and represents the size of measurement 

window.  Because C(r) could vary as C(r) ≈ rd, where d is the dimension of the 

attractor, by the slope of the log[C(r)] versus log(r) plot it is possible to determine d if 

we have the correct minimum embedding dimension whose slope would convert to a 

value despite choosing the greater values of De.   

The measured data in the experiment represent a discrete time sequence of laser 

outputs x(t), recorded by an oscilloscope with a sampling interval of τ, and represented 

by x(τ0 + nτ) or xn.  For the nonlinear dynamic analysis, we have reported detailed 

bifurcation diagrams and verified the determinism of the chaotic state in the 

soft-aperture KLM [6].  Here we used 30,000 data points of transient irregularity with 

0.01 ms sampling time before the complete KLM.  Figure 4-2 shows the slope of 

log[C(r)] versus log(r) for the embedding De = 2 to 12.  When the length scales are 

smaller or equal to the noise strength, the noise will cause fuzziness so that we would 
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recognize only C(r) ≈ rd for r > rnoise.  This value d increases until it reaches a constant 

value as the embedding dimension De is large enough to accommodate the attractor.  A 

plateau can be seen within proper length scale in Fig. 4-2 with a finite and non-integer 

value of d = 2.11±0.08, indicating the transient irregularity is chaotic.  The chaotic 

characteristic can be confirmed further by observing the revivals of the autocorrelation 

function for a long delay time, as shown in the inset of Fig. 4-2.   
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Fig. 4-2 The calculated log [C(r)]/log(r)] versus log(r) with embedding dimension De from 2 to 12 by the 

GPA.  The inset is the damped autocorrelation that reveals a chaotic characteristic. 

 

The laser instabilities, e.g., the instabilities of single mode [7] and multimode [8, 9] 

lasers and transverse instabilities [10], are generally described by Maxwell-Bloch 

equations.  However, since the Ti:sapphire laser is a class B laser, the polarization 

relaxation rate is faster than those of field and population, and the Maxwell-Bloch 

equations are reduced to the rate equation.  Furthermore, in the passive mode-locked 
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laser, the OKE can be exploited to simulate the fast saturable absorber behavior and the 

rate-equation approach can describe sufficiently the transmission of an optical pulse 

through such a fast saturable absorber without using more complex resonant-dipole or 

Rabi-flopping analyses [11].  For comparison with the experimental observation, and 

to ascertain that the chaotic characteristic is a result of the self-focusing effect, we 

numerically simulated this laser system by using Collin’s integral [12] with round-trip 

transmission matrix to calculate the light field E(r) under cylindrical symmetry, where r 

is for the corresponding radial coordinates and the rate equations are as described in our 

previous work [13].   

Without considering OKE (n2 = 0), typical laser output begins with a relaxation 

oscillation and then a stable output in all the stable cavity configurations [13].  Let n2 = 

3 x 10-20 m2W-1 and pulsewidth τp = 3 ps; the laser output states versus the tuning range 

are shown in the inset of Fig. 4-3.  The stable laser output after the relaxation 

oscillation can be seen in the CW regions.  However, instability output can be seen as 

the cavity configuration tuned close to the degenerate cavity configurations, set here 

around 1/3-transverse degeneracy, in which the transverse modes with mode numbers 

m+n =3N have the same frequency as the fundamental mode, where N is an integer.   
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Fig. 4-3 The laser output power around the degenerate cavity configuration.  A large fluctuation is 

similar to the situation of the transient irregular spiking before the KLM as shown in Fig.1.  The inset is 

the lasing states versus cavity tuning, where r1 is the distance between the curved mirror M2 and the end 

face of the laser crystal. 

 

The laser is situated either quasi-periodic or chaotic between r1 = 53.63 and 53.65 

mm (solid triangles), e.g., they are completely chaotic at r1 = 53.64 mm and operated at 

CW state (solid squares) after transient oscillation for r1 < 53.63 mm and r1 > 53.655 

mm.  It is worth noting that the simulated SSKLM output as shown in Fig. 4-3, which 

is operated at CW-ML state (open squares), is similar to the experimental one (see Fig. 

4-1), which possesses transient irregularity before reaching a constant output at r1 = 

53.65 mm.  However, we cannot determine directly whether the constant output is 

completely KLM or CW output, due to lack of temporal information within a round trip 

time.  By analyzing the simulated data in this case, we also obtained a similar decaying 

correlation function as the results of analyzing the experimental data in Fig. 4-3, with 
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correlation dimension of 1.67±0.15.  Furthermore, the simulated result shows that the 

CW-ML occurred at the edge of a power dip around a degenerate cavity configuration, 

and it also agrees with our experimental reports [5]. 

To investigate the evolution of the SSKLM laser from the transient chaos into 

complete mode locking, we divided the 30,000 transient irregularities of the 

experimental data points into five parts with 10,000 data points per section, but 

overlapping 5,000 data points with the successive sections to calculate the evolving of 

the correlation dimension.  However, the pulse peak detection based on Bolton et al. 

[14] must be used for the data of the complete KLM pulses.  We therefore recorded 

separately the successive mode-locking pulses during the complete KLM.  We 

acquired each mode-locking pulse containing 5 to 6 points and a total of 3,500 pulses 

for this calculation.  Each data point represents an accumulation over approximately 2 

ns.  The maximum value of the voltage on the oscilloscope, with 8-bit flash, was read 

as approximately 2 V for our measured pulse train [6].  Shown in Fig. 4-4(a), the 

correlation dimension initially is a non-integer (d = 2.56 ± 0.17), and then declines 

gradually to an integer dimension (d = 1).  Finally, it evolves to a periodic complete 

KLM state corresponding d = 0.  Correspondingly, for the simulation results, the 

correlation dimension calculating from the data of Fig. 4-3 evolves similarly from 1.88 

to 1, then to d = 0.  Furthermore, the characteristics of the phase space can be derived 
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by a plot, named “return map” obtained from the time series that is the observed output 

of the dynamical system [15].  A return map of the simulated SSKLM result is shown 

in Fig. 4(b).  It presents a strange attractor in the initial stage.  With time evolution, 

the chaotic state transits to the quasi-periodic (metastable) state corresponding to d = 1 

and then converges to a fixed point (d = 0). 
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Fig. 4-4 The time evolution of the correlation dimension of the observed (a) and the return map of 

simulated output power (b).  F: fixed point. 

 

Lasers are typical systems in which the “slaving principle” applies, as Haken [16] 

has elegantly explained.  In general, any kind of laser can be described by means of a 

set of coupled non-linear differential equations involving the first-order time derivatives 

that can be represented as ( , )dx F x t
dt µ= .  The time-dependence vector 1( ,..., )nx x x=  

represents the n dynamical variables describing the laser system, so that its evolution 

defines a trajectory or orbit of the system in the phase space defined by these variables, 
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and the vector field uF  describes the nonlinear coupling between the dynamical 

variables in a given kind of laser.  Generally, uF  depend on several control 

parameters designated by a vector 1( ,..., )pµ µ µ=  that characterizes each specific set of 

experimental conditions.  If the control parameter µj is much lager than the remaining 

ones, the influenced variable xj rapidly “loses” the memory of its history (i.e., of the 

values reached at preceding times); in such a way, it adapts rapidly to the instantaneous 

values reached by the remaining variables approximately proportional to µj.  Therefore, 

the slowly evolving variables completely determine the evolution of the physical system.  

The self-focusing effect may play a role of slowly controlling the parameter to the 

studied laser system, and the slaving principle can be applied to describe the observed 

time evolving correlation dimension and the transient return map from the chaotic state 

to ML state.   

In our previous reports, the laser dynamics are dependent on laser cavity 

configuration.  The transverse-mode pattern is consisting of high-order transverse 

modes in a degenerate cavity configuration [5, 17].  Owing to the superposition of 

high-order modes, the transverse mode could be self-adjusted to match the pumping 

profile for extracting maximal pumped gain in cavity.  The laser dynamics shows 

existence of temporal or spatial temporal instabilities when the nonlinear effects were in 

existence around the degenerate cavity configurations [17].  The Kerr-lens 
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mode-locking in a Ti:sapphire laser is dependent on the cavity configuration, no matter 

whether it is operated in picosecond or femtosecond pulse [5].  The ML region, 

varying the distance between the mirror and the crystal, is ~ 300 µm including the 

self-starting ML in smaller region ~ 30µm.  When the mirror was tuned within 30 µm 

range, the laser parameters, such as the beam waist of the cold cavity, cavity loss etc., 

would be unchanged but change in the relative Gouy phases of the transverse modes 

[18].  The pulse energy is fixed but waist is not, in a stable mode-locked laser.   

It is known that, far from the threshold of continuous (supercritical) instability, 

only the phase of the complex field survives as a slow degree of freedom, since it 

describes the symmetry of the system [19].  Therefore, the nonlinear phase due to the 

nonlinear Kerr coefficient 

3
2 0/( )effn n Aγ =                                                   (4.2) 

may act as the slowly varying control parameter [20].  Here n0 is the linear refractive 

index and Aeff is the effective area in the Kerr medium [21].  Because the optical field 

originates from the spontaneous emission whose spot size is approximately 

corresponding to the spot size of the pumped beam, which is smaller than the spot size 

of a cold cavity, the initial values of 1/Aeff are almost constant, which is equal to 1.4 

x1011 m-2 as shown by a dash line in Fig. 4-5.  1/Aeff calculated at N = 10,000 round 

trips is equal to 3 x 1011 m-2 at CW-ML state, which is sandwiched between instability 
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and CW regions in the inset of Fig. 4-3.  By plotting the probability of finding 1/Aeff 

after 10,000 round trips as a function of γ in a wide cavity tuning range of 70 µm in Fig. 

4-5, we found γ does adapt to the edge of chaos that has the highest probability. 
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Fig. 4-5 Distribution of finding 1/Aeff, initiation and after 10,000 round trips, for a cavity tuning range of 

70 µm. 

 

4.2 Pulse train amplitude modulation  

The pumping threshold of mode-locking is about 3 W.  We can operate the laser 

in the picosecond mode locking with central wavelength of 820 nm at pump power Pp = 

4 W at the cavity length slightly longer than the 1/3-degenerate cavity configuration by 

properly tuning the mirror M2 (~ 100 µm tuning range) after a mechanical perturbation 

[5, 22].  When the curved mirror M2 was translated slightly toward increasing the 

cavity length (~ 15 µm), the sinusoidal amplitude modulation of the mode-locking pulse 
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train was observed as shown in Fig. 4-6(a).  We kept increasing the distance of r1, the 

pulse-train modulation presented intermittent modulation behaviors varying among Fig. 

4-6(b)-(d).  By further increasing the distance of r1, self-starting mode-locking (within 

30 m tuning range) was observed, finally, the laser 　 turned to CW output.   
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Fig. 4-6 Power-dependent mode-locked pulse-train modulations.  (a) Periodic modulation pulse-train 

with 4 W pump power;  (b) The modulation envelope splits into two clusters with 4.2 W pump power; (c) 

The modulation envelope splits into three clusters with 4.5 W pump power; and  (d) irregular 

modulation of pulse-train with 5 W pump power.  Inset: mode-locked pulses inside the modulation 

envelope of Fig. 4-6 (a). 

 

Besides, by increasing the pump power from 4 W to 5 W, we observed the 

pulse-train modulation progressively changed from the sinusoidal amplitude modulation 

state of Fig. 4-6(a) to Fig. 4-6(b)-(d).  The modulation rate was estimated 
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approximately at 250 kHz and the modulation depth was about 50 percent in Fig. 4-6(a).  

As the pump power is increased, the modulation rate increases and each of the self 

Q-switch pulses progressively splits into period-two at Pp = 4.2 W, period-three at Pp = 

4.5 W, and then becomes irregular at Pp = 5 W as shown in Fig. 4-6(b)–(d), respectively.  

We also observed there is a period-doubling route to chaos with increasing pump power.  

Notice that the mode-locked pulses within the modulation envelope as in the inset of 

Fig. 4-6(a) show that each of the individual mode-locked pulses does not split due to the 

high-order solitons [23, 24] in any cases of the above-mentioned pulse-train modulation, 

because the optical Kerr effect in picosecond Ti:sapphire laser may not be strong 

enough to induce pulse-splitting behavior [25].  Furthermore, the filtering mechanism 

from the loss difference [24, 25] need not be considered because the gain band width of 

the picosecond pulses is much smaller than the band width of mirror reflectance.   

The extended power spectra of different modulation states of Fig. 4-6 look alike 

shown as in the inset of Fig 4-7(a) with the repetition rate remaining ~ 93.3 MHz.  We 

then further expanded the power spectra of the pulse-train modulations at the central 

frequency 93.3 MHz and shown in Fig. 4-7(a)–(d).  The beat frequency located beside 

the central frequency corresponds to the pulse-train modulation frequency.  The 

frequency of periodic modulation is 244 kHz, which agrees with the estimated 250 kHz 

from oscilloscope trace in Fig. 4-6(a).  As pumping increases, the modulation 
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frequency increases first to become 366 kHz with subharmonic at 188 kHz (see Fig. 

4-7(b)) in the period-two modulation as the time trace in Fig. 4-6(b); and then to 

become 366 kHz with period-three beating of 122 kHz and 244 kHz as shown in Fig. 

4-7(c).  The modulation turns to irregular with no dominant peaks in Fig. 4-7(d) if 

further increasing the pump power.   
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Fig. 4-7 The expanded power spectra of different modulation state of Fig. 4-6 at the central frequency 

93.3 MHz.  Inset: the power spectrum in coarse scale to the repetition frequency of 93.3 MHz. 

 

Because the upper-state lifetime of Ti:sapphire crystal is 3.2 µs and the laser 

threshold is about 3 W, we estimated the relaxation oscillation frequency to be about 

229 kHz [21].  A detailed theoretical study of self-Q switching was performed by Haus 

[26].  The frequency that corresponds to the several-microsecond period of 
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self-Q-switching is close to the relaxation oscillation frequency, which can be explained 

by the nonlinear interaction between the population inversion in the gain medium and 

the optical-field intensity in the cavity.  However, since M2 is translated only by 15 µm 

and the parameters, such as the beam waist of the cold cavity, cavity loss etc., are 

almost unchanged, the modulation behavior is not induced by cavity loss.  Therefore, 

the modulation mechanism should not be only Q-switching.  In addition, in a 

femtosecond Ti:sapphire laser, soliton-like pulse shaping is dominant by balancing the 

self-phase modulation (SPM) in the Ti:sapphire rod and the net negative group velocity 

dispersion (GVD) provided by prism pair or chirped mirrors.  Because GVD 

compensation prisms are absent in our picosecond mode-locked Ti:sapphire, the laser 

pulses would not form solitons.  Therefore, the modulation mechanism should be 

different from that of Tsang’s paper [23].  Also, unlike Liu’s [27] or Xing’s [28] 

resonator setups, our picosecond mode-locked laser is based on the soft-aperture effect 

in the Ti:sapphire crystal instead of using a hard aperture.   

However, in an axially pumped laser, especially for the soft-aperture KLM laser 

with the pump size less than the cavity beam size, it is easy to excite the higher-order 

transverse modes to extract more stored energy from the gain medium when the laser is 

operated in the degenerate cavity [5].  The slow amplitude modulation of mode-locked 

pulse train may be due to the transverse modes interaction.  For verification, we have 
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used two small-area detectors to measure intensities at different transversal positions of 

the pattern labeled A and B of Fig. 2-2.  Fig. 4-8 shows the intensities of the laser 

simultaneously detected at two transversal positions.  Not only both of the period-two 

pulse trains but also inverse evolution was observed at positions A and B, revealing that 

the transverse pattern is non-stationary and exhibits a spatial–temporal instability.  

Therefore, the slow pulse-train amplitude modulation should be dominated by 

transverse modes interaction rather than longitudinal modes interaction.   
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Fig. 4-8 The simultaneous intensities of the laser at two transversal positions labeled A and B in the inset 

of Fig. 2-2.   
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Typically, if only one spatial mode of the electromagnetic field is excited in the 

laser, the interesting instabilities are temporal [29, 30].  Nevertheless, under some 

circumstances, parameters can be adjusted so that more spatial modes come into play 

and spatio-temporal instabilities [31] also appear.  Lugiato et al. expressed the 

Maxwell–Bloch equations in terms of modal amplitudes by using a suitably 

cylindrically symmetric empty-cavity-mode expansion [32, 33].  They presented a 

variety of spatiotemporal instabilities, including chaos and cooperative frequency 

locking, which occur under uniform and low-power pumped, by tuning the mode 

spacing.  They were able to do this because the Laguerre–Gaussian modes are a set of 

good bases only when the uniform-field limit is applied for a so-called good cavity with 

small gain.  Thus, their results are valid only for a laser in which the pump size is 

larger than the minimum cavity beam waist [34].  However, in axial-continuously 

pumped lasers, gain saturation provides an inherently nonlinear effect and when the 

pump size is smaller than the waist of the cold cavity, peculiar lasing behaviors [18, 

35-38] have been observed in an end-pumped solid-state laser near the degenerate 

configurations that correspond to the low-order resonance.  At these degenerate cavity 

configurations, because of the superposition of high order degenerate modes, the 

transverse mode pattern can be self-adjusted to match the pumping profile for extracting 

maximal pumped gain in the cavity, a supermode or superposition of phase-locked 
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degenerate transverse modes can be formed with relatively low lasing threshold.  

Beam waist shrinkage [37] and operation of a stable CW bottle beam [18, 38] were 

observed around the degenerate cavities.  As in our previous report [13], under tightly 

axially pumped, the laser would possess spatio-temporally instability if the cavity length 

is detuned away longer than that of the degenerates.  We believe that the detuning of 

the cavity from the degenerates may result in excitation of another supermode due to 

spatially inhomogeneous gain.  This new supermode is no longer degenerate with the 

fundamental mode but has a frequency shift corresponding to the Guoy phase.  We 

estimated the length detuning length of the cavity is ~ 15 µm.  Therefore, we believe 

that the amplitude modulation may result from competition of these two sets of 

longitudinally mode-locked supermodes, which no longer can be phase locked by gain 

saturation.   

Because in the Kerr-lens mode-locked laser, the optical Kerr effect can be 

exploited to simulate the fast saturable absorber behavior, and the rate-equation 

approach can describe sufficiently the transmission of an optical pulse through such a 

fast saturable absorber [11, 13].  Here, we simulated the slow amplitude modulation 

behavior of this picosecond Kerr-lens Ti:sapphire laser based on the Fox-Li’s approach, 

including the self-focusing effect and using the Collin’s integral with the rate equations 

[13].   
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Fig. 4-9 shows the simulated output power with changing the effective pump 

power Pp form 4 W to 5 W with and without nonlinear refractive index n2.  By setting 

the nonlinear index n2 = 0, we found that evolution of laser output is always continuous 

after relaxation oscillation, as shown in the Fig. 4-9(a), for the cavity was set for r1 = 

53.620 mm to 53.645 mm and Pp from 4 W to 5 W.  However, let n2 = 3×10-20 m2W-1, 

pulsewidth τp = 3 ps and Pp = 4W, the laser output power versus r1 (Fig. 4-9(b)) shows 

the region of various states such as CW output (solid squares), period modulation (open 

circles) and irregular modulation (solid triangles), etc.  When r1 is smaller than 53.629 

mm the laser output presents CW output (solid squares).  However, we cannot 

determine directly whether the constant output is completely KLM or CW output due to 

lack of temporal information within a roundtrip time and mechanical perturbation term.  

The simulated time sequence of output power in the unit of roundtrip time corresponds 

to the envelope amplitude in Fig. 4-6.  The period modulation state (open circles), 

whose envelope is similar to Fig. 4-6(a), is located between r1 = 53.630 mm and 53.631 

mm; the period-2 modulation state (open triangles) is at 53.633 mm < r1 < 53.637 mm; 

and the irregular modulation state (solid triangles) is at r1 = 53.632 mm and 53.638 mm 

< r1 < 53.641 mm; and the laser output may become CW or KLM (open squares) at r1 > 

53.642 mm.  Although due to lack of temporal information within a roundtrip time, we 

cannot determine directly whether the constant output is self-starting KLM or CW 
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output, we would expect observing self-starting KLM then CW output as known from 

the experimental observation.  The simulated pulse-train modulation with varying r1 

was similar to our observation and the character of the output power dip was similar to 

the Ref. 5.   

At the position deviating from the degeneration, r1 = 53.635 mm, the pulse-train 

amplitude modulation changed form period-two to irregular for pump power being 4W 

and 4.5W respectively, as shown in Figs. 4-9(c) and (d), which are similar to Figs. 4-6(b) 

and (d).  The amplitude modulation frequency is about 750 kHz in Fig. 4-9(c).  

Owing to the fact that the pump power in the simulation may be higher than the actual 

one, the amplitude modulation frequency of the simulation is larger than the measured 

modulation frequency.  Furthermore, in our previous reports [5, 17], the transverse 

mode pattern consisted of high order transverse modes around the degenerate cavity 

configuration.  Because of the superposition of high order modes, the transverse mode 

could be self-adjusted to match the pumping profile for extracting maximal pumped 

gain in the cavity.  The optical Kerr effect played a role that enhanced beam waist 

shrinkage and supermodes generation as the small pump spot size.  Therefore, the 

subharmonic amplitude modulation may result from competition of these sets of 

longitudinally mode-locked supermodes, which no longer can be phase locked by gain 

saturation.   
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Fig. 4-9. The simulated evolution of output power with changing pump power from 4 W to 5 W with and 

without Kerr effect.  (a) It always shows continuous output after relaxation oscillation over the 

calculated cavity configurations without Kerr effect (n2 = 0); with Kerr effect on n2 =3×10-20 m2W-1, (b) 

the cavity tuning region of various dynamic behaviors (e.g., period, period-2, irregular, etc., labeled in the 

inset) around the degenerated configuration at Pp = 4W, (c) period-2 and (d) irregular pulse-train 

modulation at r1 =53.635 mm with Pp = 4 W, and 4.5W, respectively. 

 

4.3 Spatial-temporal instability 

In order to investigate the role of self-focusing effect in self-starting of the KLM 

laser, we focused the simulations primarily on the configuration near 1/3-degeneracy 

and simulated numerical evolution of laser with and without the self-focusing effect.  

Let the optical Kerr coefficient n2 = 0, namely without the self-focusing effect, shown in 

Fig. 4-10(a) is a typical laser output, which always begins with a relaxation oscillation 

then turns to a stable output for all calculated cavity configurations at various pump 
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powers.  The inset of Fig. 4-10(a) shows the output power versus cavity tuning region 

around the degenerated configuration at pump power Pp = 4W.  It shows a power dip 

occurring around r1 = 53.625 mm as the observation of experiment [5].  In Fig. 4-10(b), 

we show the numerical intensity distributions of the light fields at the beam waist inside 

the active medium for various cavity tuning.  The field profiles show the spot size at 

degeneracy (labeled A) corresponding r1 = 53.625 mm is smaller than that far from the 

degeneracy for which a 1/e2 spot size is defined.  The spot size shrinks to 

approximately the pump size when the cavity is tuned toward degeneracy; it means that 

the gain-guiding effect dominates the transverse modes near degeneracy [17].   
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Fig. 4-10 The simulated numerical evolution of laser without self-focusing effect (n2 = 0).  (a) Typical 

laser output and the average output power versus cavity tuning region around the degenerated 

configuration as shown in the inset and (b) The numerical field profiles.  A labeled where the degenerate 

cavity is.   

 

In order to investigate the influence of the self-focusing effect, we considered n2 = 

3x10-20 m2/W and a pulsewidth τp = 3 ps, and the average output power versus cavity 
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tuning region [see the inset of Fig. 4-3] around the degenerated configuration at Pp = 5 

W also shows a power dip and the regions of various states for pulse-train amplitude 

modulation including CW or periodic state and instability such as period, period-2, 

irregularity, etc., which agree with the experimental observations [3].  Furthermore, 

Fig. 4-11 shows the temporal evolution of the intensity profiles of the period-2 

pulse-train amplitude modulation (see Fig. 4-9(c)).  It shows the characteristic of the 

spatio-temporal instability for the period-2 pulse-train amplitude modulation.   
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Fig. 4-11 The temporal evolution of the intensity profiles of perio-2 pulse-train amplitude modulation. 

 

The stable laser output after the relaxation oscillation can be seen in the CW 

regions for the cavity tuned away from the degeneracy.  However, instability output 

can be seen as the cavity configuration tuned close to the degenerate cavity 

configurations, we set here around the 1/3-transverse degeneracy, in which the 

transverse modes with mode numbers m+n = 3N have the same frequency as the 
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fundamental mode, where m and n are the mode numbers of the transverse modes, and 

N is an integer.  The laser is situated either quasi-periodic or chaotic between r1 = 

53.63 and 53.65 mm (solid triangles), e.g., completely chaotic at r1 = 53.64 mm and at 

CW state (solid squares) after transient oscillation for r1 < 53.63 mm and r1 > 53.655 

mm.  It is worth noting that the simulated self-starting KLM output, as shown in Fig. 

4-11 occurring around r1 = 53.65 mm (open squares in the inset of Fig. 4-3), is similar 

to the experimental observation of continuous-wave mode-locking state, which 

possesses transient irregularity before reaching a constant output [4].  However, we 

cannot determine directly whether the constant output is completely KLM or CW output, 

due to lack of temporal information within a roundtrip time.  Figure 4-12 shows the 

different runs of the simulated self-starting KLM output starting from spontaneous 

emission.  The results reveal the laser always self-starts from irregular spiking and the 

irregular region changes from time to time.  Because the initial field is from the 

spontaneous emission, the different runs have the different initial fields.  Therefore the 

buildup time of mode-locking is sensitive to the initial condition.  Other than sensitive 

to the initial conditions, we further numerically calculated the buildup times of 

self-starting mode-locking at r1 = 53.65 mm with 2,000 times.  Figure 4-13 shows a 

histogram of the numerically measured self-start times (solid squares).  The 

distribution of buildup time of self-starting mode-locking shows a tendency with the 
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exponential decay (dash line) similar to the self-starting behavior in an additive-pulse 

mode locked fiber laser [39] and previous theoretical result [40]. 

r1~ 53.65 mm
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Fig. 4-12 The evolution of laser from two different runs show both starting from the irregular spiking 

before reaching a periodic (KLM) state around r1=53.625 mm. 
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Fig. 4-13 The histogram of the calculated buildup times of self-starting mode-locking (solid squares) with 

an exponential fitting curve (dash line). 
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Chapter 5 Conclusions and Prospective 

5.1 Conclusions 

In this dissertation, we have observed self-starting Kerr-lens mode-locking with 

picosecond pulses in the Ti:sapphire laser without external modulation and feedback 

control.  To understand how the KLM laser self starts from spontaneous emission and 

then transfers to mode-locking, we have analyzed the transient irregularity of the laser 

output before the complete mode locking by using nonlinear analysis.  Because the 

correlation dimension is a finite and non-integer value it indicates the transient 

irregularity is chaotic.  From the decay autocorrelation function with long time revival, 

we ascertained further that the SSKLM is initially at the chaotic state.  Based on the 

Fox-Li approach, including the self-focusing effect, the simulation results reveal that the 

self-focusing effect is responsible for the dynamics of this laser system that evolves 

from the chaotic state with a strange attractor to a quasi-periodic state, and then 

converges to a fixed point.  After long time evolution, the nonlinear Kerr coefficient γ 

does adapt to the edge of chaos. 

Furthermore, we have also observed slow pulse-train amplitude modulation 

phenomena in a self-mode-locked picosecond Ti:sapphire laser.  Periodic pulse-train 

modulation appeared when pump power reached 4 W.  As the pump power is 
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increased further, each modulation envelope splits into two or three clusters with 

increasing modulation depth; and the laser would eventually lead to irregular 

modulation pulse train if the pump power is increased even further.  The observed 

irregular pulse envelope modulation is spatio-temporal with non-stationary transverse 

pattern.  The slow amplitude modulation should be supported by exciting two sets of 

non-degenerate longitudinal mode-locked supermodes due to spatially inhomogeneous 

gain modulation in the Ti:sapphire crystal.  

Finally, we use numerical model to investigate the dynamics in a Kerr-lens 

mode-locked laser with and without the self-focusing effect around the 1/3-degenerate 

cavity configuration.  Typical laser output always begins with a relaxation oscillation 

then turns to a stable output for all calculated cavity configurations at various pump 

powers without self-focusing effect.  The feature of a power dip, which is due to the 

spot size shrinkage at the degeneracy, agrees with the observation of experiment.  

However, with considering the self-focusing effect, the output power versus cavity 

tuning region around the degenerated configuration shows not only a power dip but 

various states including continuous-wave or periodic state and instability for pulse-train 

amplitude modulation such as period, period-2, and irregular states, etc.  The simulated 

self-starting KLM, which possesses transient irregularity before reaching a constant 

output, occurs between the instability and CW region.  Furthermore, the different runs 
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of the simulated self-starting KLM output starting from spontaneous emission reveal the 

laser always self-starts from irregular spiking and the irregular region changes from 

time to time.  Therefore the buildup time of mode-locking is sensitive to the initial 

condition and its distribution shows the exponential decay.   

5.2 Prospective  

In this dissertation we have experimentally and numerically studied the nonlinear 

dynamics of the ps KLM laser around the 1/3-degenerate cavity configuration.  

However, because the behaviors of laser dynamics depends on the nonlinearity around 

the degenerated cavity configurations, the experimental observation of the other 

degenerated cavity configurations such as G1G2 = 1/2, 3/4, etc. will be the next aim of 

study.  Besides, considering the dispersion compensation in KLM lasers, the pulse 

width of mode-locked pulses can be reduced to several tens femtosecond, the 

modulation depth of pulse-train amplitude modulation may be deeper than that in the ps 

KLM laser and then it may form a Q-switched mode-locked laser.   

In our simulated model we only considered the spatial effects, but neglected the 

temporal effects such as the dispersion in the gain medium and assumed that the pulse 

width does not change for propagating in the laser cavity.  In fact, because the pulse 

width would change with the formation of pulse, the dispersion should be considered in 

our model.  Hence, we can obtain the information of pulse width by using the temporal 
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ABCD matrices when pulses propagate through gain medium.  If we do so, the 

computation will consume more time than our simulated model and a computer cluster 

should be needed.   
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