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Nonlinear dynamics of picosecond Kerr-lens mode-locked laser around the

degenerate configurations

Student : Chih-Chang Hsu Advisor : Prof. Wen-Feng Hsieh

Department of Photonics & Institute of Electro-Optical Engineering

National Chiao Tung University

ABSTRACT

We experimentally observed the transient:state from the laser starting to reaching a
stable mode-locking (ML) state” in a self-starting Kerr-lens mode-locked Ti:sapphire
laser without external modulation. and“feedback ‘control. By Grassberger-Procaccia
analysis for the transient state, the correlation dimension of the transient state is a
non-integer which implies it is a chaotic state. The chaotic characteristic can be
further confirmed by observing the revivals of the autocorrelation function for long
delay time.

Pulse-train modulation was observed in this laser with pump-power dependence
when it was operated around the degenerate cavity configuration. By increasing the
optical pumping power, the envelope of periodic amplitude modulation splits into two
or three clusters with enhanced modulation depth, and the amplitude modulation
eventually becomes disordered at higher pump power. The amplitude modulation may
be supported by exciting two sets of non-degenerate longitudinally mode-locked

supermodes due to spatially inhomogeneous gain modulation in the Ti:sapphire crystal.



We also numerically studied suppressing chaos to reaching completely
mode-locking in this self-starting Kerr-lens mode-locked (KLM) laser. By thin slab
approximation, we can describe transverse effect of a pulse propagates in a resonator.
Based on Fox-Li’s approach, we used the Collins integral and rate equations with and
without the self-focusing effect, we found without the self-focusing effect typical laser
output and the feature of a power dip agrees with the observation of experiment for all
calculated cavity configurations around the degeneracy at various pump powers.
However, by adding the self-focusing effect, the time evolution of the pulse-train
envelope presents various states including continuous wave or periodic state and
instability such as period, period-2, and irregular states. The simulated self-starting
KLM output, which possesses transient irregularity before reaching a constant
amplitude output, occurs between the instability-and continuous wave regions. The
different runs of the simulated self-starting from the-spontaneous emission reveal the
buildup time of mode-locking not only-is-sensitive-to the initial condition but also
presents the distribution with exponential decay.. " Its return map presents chaotic state
with a strange attractor in the initial stage. It transits to the quasi-periodic state and
finally converges to a fixed point with time evolution. The theoretical simulation

reveals that the self-focusing effect is responsible for the self-adaptation.
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Chapter 1 Introduction

Since the laser came on the scene, the rich nonlinear behaviors have been
investigated intensively in laser systems. The researchers proposed various models to
describe the laser instabilities [1, 2]. The problems such as spontaneous irregular
pulsing, modulation instabilities, and unstable mode patterns etc., coming from intrinsic
nonlinearities of the lasers are the topics of laser dynamics [3]. For applications, one
prefers to operate the laser with stable continuous-wave (CW) or periodic pulsing while
sometimes one may use a chaotic laser source, for example, in chaotic communications.
When Haken constructed the most famous paradigmatic model [4] in 1975 in which the
Maxwell-Bloch equations for a sthgle mode laser are equivalent to those of the Lorenz
model for fluids, regarding as the cornerstone in laser dynamics, this field becomes

popular until today.

1.1 Degenerate cavities and iterative map
1.1-1 Degenerate cavities

The resonance condition for a standing-wave is the phase shift for total round-trip
must be 2nm, where n is an integer. The total phase shift from one end of cavity to the
other end includes KL and Gouy phase shift terms, where k = 27t/A is the wave number,

A is wavelength of laser, and the Gouy phase is an additional phase introduced by a



paraxial wave function substitution for an (n,m)-th order Hermite-Gaussian mode in
mathematics. The total Gouy phase shift of a laser cavity with cavity length L is given
in terms of the g-parameters by the formula

(n+m+1)cos ™ (£0,9,), (1.1)
where n and m are the mode numbers in the x- and y-axes, respectively. Because the
Gouy phase shift depends on Hermite-Gaussian mode numbers, different transverse
modes of a stable Gaussian resonator have different resonance frequencies. Therefore

the resonance frequency of Hermite-Gaussian (n,m) mode is given by

c n+m+1 _
Vam,q zi(q"' jn cos 1\/ 9192 ) (1.2)

where q is the longitudinal niode mumber.*- From Eq. (1.2), we can define the
longitudinal mode spacing v| ="¢/2L;"and the transverse mode spacing vy = (vi/r)

21, Here we denote the terms as 1/2-, 1/3-, 1/4-degenerate configurations

cos”[(g12)
because the configurations with g;g, = 0, 1/4, and 1/2 correspond to vi/vi = 1/2, 1/3, and
1/4, respectively. In these configurations, the fundamental modes may be degenerate
with other high-order transverse modes which obey Eq. (1.2). The degenerate modes
may through the mode competition or the mode beating result in instability of laser
output [5, 6]. Therefore, the degenerate cavity is a good choice to investigate laser

dynamics.

1.1-2 Iterative map



The iterative map is a mathematical tool to study the nonlinear dynamics. The
study of a continuous system can be reduced to a discrete time system on a surface of
section transverse to the flow. We take the time period with the round-trip time of the
laser cavity, and then the iterative map can be constructed. Applying the ABCD law in
a two mirror cavity with the reference plane at one of the mirrors [7], the g-parameter
(1/q=1/R—iA/zw*) of the Gaussian beam of the (n+1)-th round trip to the n-th one

can be written as

= (W,,R,) = W,y (A+B /R + (47 aw,)) B2,

(A+BJR,) +((4/2w,?)] B2 (1.5)

= fz(WnJRn): ’
(A+BJR,)C + DR, )+((2/2w,*) ] BD

where W is the spot size and RZisithe radius‘of curvature. This map belongs to the
conservative one because the resonator is lossless.. . The stability condition ‘Tr(J p)‘ <2
depends only on the trace Tr(J,) with the Jacobian matrix J, evaluated at the studied
fixed point. The stability condition depends on the residue that defined as
Res=%(2—Tr(\]p))=sin2(€/2), where 0 is the phase shift per iteration of the map.
For 0 < Res < 1, the system is stable that corresponds to the conventional geometric
stable regime 0 < g;g, < 1, where gi» = (1-d/R;,) of the two-mirror cavity is the
so-called g-parameter of the optical cavity [8, 9]. For Res < 0 and Res >1, the system
is unstable. By applying the Greene’s residue theorem, Wei et al. [10, 11] indicated

that the special case of Res = 0, 1, 3/4, 1/2 correspond to the degenerate cavities or the



so-called low-order resonances that correspond to the cavity configuration with a
specific low fraction g;g, parameter. For a simple two-mirror cavity, these special
condition correspond to g;g,= 0 and 1 for Res = 0; g;g, = 1/2 for Res = 1; gjg, = 1/4
and 3/4 for Res = 3/4 and g,9, =(2++/2)/4 for Res = 1/2, respectively. It is worth
noting that these configurations are very sensitive to any perturbation in the laser cavity.
Therefore, the laser will present various dynamic behaviors when nonlinear effect exists
in a laser system [7, 10, 11].

The dynamics depending on the cavity configuration has been studied in a
Kerr-lens mode locked (KLM) Ti-sapphire lasetr[11]. When the optical Kerr effect
was considered as the nonlinear dynamical patameter, optical bistability and
multiple-period bifurcation were aumerically demonstrated. From the guidance, some
peculiar phenomena were found by using an end-pumped Nd-YVO, laser under
small-size pumping that pump size is smaller than the waist of the cold cavity [12-16].
A supermode or superposition of phase-locked degenerate transverse modes can be
formed with relatively low lasing threshold, shrunken beam waist [13] and operation of
a stable CW bottle beam [14, 15] were observed. However, only the temporal chaotic
state was observed for the cavity configurations that were slightly shorter than the
degenerates and the spatio-temporal chaotic state for those slightly longer than the

degenerates [16].



1.2 Self-starting of Kerr-lens mode-locked laser

In solid state mode-locked (ML) lasers, the chaotic behavior of the self-mode
locking or the Kerr-lens mode locking (KLM) Ti:sapphire lasers, due to the significant
optical Kerr effect (OKE), had also been investigated since the invention of KLM
Ti:sapphire laser in 1991 by Spence et al. that requires a mechanical perturbation to start
the mode locking [17]. Later, self-starting Kerr-lens mode locking (SSKLM) was
shown achievable in this laser, either with or without group velocity compensation [18,
19] in a narrower tuning region close to the boundary of spatio-temporal chaotic and
CW states [20]. The basic mechanis$m underlying pulse formation in these self-mode
locked lasers has been attributed; to self-focusing “caused by Kerr nonlinearity to
modulate the cavity gain or loss%in terms of soft-aperture or hard-aperture Kerr-lens
mode locking [21, 22], respectively. For the soft-aperture systems, however, because
the only mechanism to restrict higher-order transverse modes is the modal profile of the
gain and because Kerr-lens mode locking itself is intrinsically a nonlinear phenomenon,
it is not surprising that such systems may exhibit more complicated transverse dynamics.
Recently, period doubling [23, 24] and tripling [24, 25] of soft-aperture Kerr-lens mode
locked Ti:sapphire lasers were observed by operation of the resonators in specific cavity
configurations and were explained in terms of the total mode locking of TEM, and

higher-order modes [26, 27].



Although the dynamic processes of the self-starting KLM lasers have been

extensively investigated in early time in which starting from relaxation oscillation

through a short period intermediate free running to reach a final stable KLM were

generally reported [28], many efforts concerning about the routes to chaos after the

lasers being operated with the KLM state were reported, e.g., Bolton et al. [29], and our

previous report [20]. Phase plot of period, quasiperiodic, and chaotic regimes shows

as a function of pump power and insertion of prism [21]. However, to the best of our

knowledge, self-adaptation from transient spiking to complete mode-locking with

neither external modulation [30-32] nor feedback control [33-35] had not been

examined in laser systems.

Furthermore, a self-adapting or sclf-adjusting” system is an adjustable system

whose control parameters are adjusted by the forcing dependent only on the system

itself [36]. Such systems have been found to adapt to the edge of chaos, which is the

boundary of chaos and the order state [36, 37]. Using a logistic map as an example

[36], it had been found that the parameter leaves the chaotic regime and there is a high

probability of finding the parameter at the boundary between periodicity and chaos

when the control parameter of the system is not constant in time, but varies much more

slowly than the dynamical variables. These phenomena are ubiquitous in nature; for

example, long-range fitness correlations have been detected during the adaptive process



in RNA viruses [38]. In addition, models of coupled neurons with self-adjusting
coupling strengths had been found to exhibit robust synchronization [39] and
suppression of chaos [40]. The process of self-starting KLM 1is very much like

self-adapting phenomenon.

1.3 Pulse-train amplitude modulation in a picosecond KLM laser

Self-mode-locked lasers due to KLM have become the light sources of
high-bandwidth ultrashort pulses and been applied to various fields. Recently, the
supercontinuum (SC) or white light generation has been demonstrated by injecting the
high peak power laser pulses into & photonicerystal fiber (PCF) [41]. By operating the
mode-locked Ti:sapphire laser.in a| pulse-train amplitude modulation mode, the
so-called self-Q-switched mode [42]to enhance peak power, the fluctuating structure of
SC spectrum can be suppressed significantly [43]. This Q-switching mode-locking
pulse train with low repetition rate is very useful for preventing thermal heating in
Z-scan and nonlinear optical measurements [44-46].

The solid-state laser media that usually have sufficient long gain relaxation time as
compared with the cavity relaxation time are susceptible to intensity spiking and exhibit
self-Q-switching phenomena. Accordingly, introducing extra loss in the laser cavity
such as saturable absorbers or semiconductor saturable absorber mirrors (SESAM) can

generate self-Q-switching, Q-switched mode-locking (QML), and even CW



mode-locked laser pulses [47, 48]. Although the gain relaxation time of Ti:sapphire

laser (3.2 ps) is larger than the cavity relaxation time (~ 10 ns), the mode-locked pulse

train in a femtosecond (fs) Ti:sapphire laser can be amplitude modulated by high-order

spatial transverse modes [42, 49, 50] or high-order solitons [51] without saturable

absorbers. By controlling intracavity hard aperture [49] or operating parameter of the

cavity, such as moving spherical mirror or translating prism [42, 49, 50], the intensity

dependence of the transverse distribution of the laser beam caused by self-focusing

imposes a strong limit on the aperture diameter. When the size of an intracavity slit is

reduced below its optimal value for stable mode=locking, the output pulses of the KLM

Ti:sapphire laser transform intoa regime’ characterized by periodic pulse-train

amplitude modulations as a kind: of repetitive - self-Q-switching. The modulation

period increased and amplitude modulation could deepen to almost 100 percent as the

slit width was decreased further [49]. The period of self-Q-switching depends on

distance between the folding mirrors, which essentially determine the stability of

resonator, and increases with increasing the distance between one of folding mirrors and

the closer face of the Ti:sapphire crystal [50]. Among them, the high-order transverse

modes, strong Kerr effect due to the ultrashort pulse width, and the group velocity

dispersion (GVD) compensation should be responsible to the mode-locked pulse-train

modulation in the fs Ti:sapphire lasers.



In contrast, due to the relatively low peak intensity in picosecond (ps) KLM lasers,

the strength of Kerr effect is reduced and therefore the pulse-train modulation should

occur more difficult than that in fs-KLM lasers. However, because the mode locking

mechanism of the KLM laser is due to the self-amplitude or self-gain modulation

resulting from the self-focused light by hard or soft aperture effect, the smaller pumped

beam spot size than the cold cavity beam one in the gain medium leads to the KLM

mode resonating more easily than the CW mode. In an axially tightly-focused pumped

laser, it is easier to excite the higher-order transverse modes to extract more stored

energy from the gain medium when the laser'is operated in the degenerate cavity

configurations [24] that have the'so=called low=order résonance [8]. The beam patterns

observed for both the CW and picosecond KLM operations in the soft aperture KLM

regions are no longer pure fundamental Gaussian modes [24]. Due to the competition

of transverse modes, the nonlinear dynamics and irregular pulsing have been observed

in Nd:YVOq lasers [16] and Ti:sapphire lasers [20] operated around the degeneration

configurations. The slow amplitude modulation of mode-locked pulse train in the

ps-soft-aperture self-mode-locked Ti:sapphire laser around the 1/3-degenerate

configuration, which corresponds to the 1/4-fractional low-order resonance, may not

only result from the competition of longitudinal modes but also transverse modes.

1.4 Aim of this research



In this research, we will investigate experimentally the dynamic processes of
self-starting KLM which begin with the transient chaotic state and finally suppression
of chaos to become a stable CW-ML state and the periodic amplitude modulation of
ps-mode-locking pulses occurring around the 1/3-degenerate configuration.

We will also employ the numerical model which consider the transverse wave
front of a pulse propagating in the cavity to investigate numerically the dynamics
behaviors of a picosecond KLM Ti:sapphire laser around the degenerate-cavity
configurations. Based on the Fox-Li approach, using the Collin’s integral with rate
equation including the self-focusing effect, the. simulation results reveal that the
self-focusing effect is responsible for the dynamics of this laser system that evolves
from the chaotic state with a strange attractor to.a.metastable periodic state and then
converges to a fixed point, the CW-ML state. The slow amplitude modulation of
mode-locked pulse train in the ps-soft-aperture self-mode-locked Ti:sapphire laser
depends upon the optical pumping power. As the pump power increases, the envelope
of periodic modulation will split into two or three clusters, and the laser eventually turns

into disorder modulation as further increasing the pump power.

1.5 Organization of this dissertation

In this dissertation, it will introduce the experimental setup and the measurement of

the self-starting mode-locking, pulse train amplitude modulation and spatio-temporal

10



instability in Chapter 2. And then it will introduce the simulation model which used

the Huygens’s integral and rate equation with optical Kerr-effect in Chapter 3. We

will discuss our experimental and simulated results which are nonlinear dynamics

analysis of self-starting KLM laser, pulse train amplitude modulation and

spatial-temporal instability in Chapter 4. Finally, in Chapter 5 it will state the

conclusions and the give suggestions for future works.
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Chapter 2 Experimentals

In this chapter, we used the ABCD law discussed in our previous work [1] to
design and construct a ps-KLM Ti:sapphire laser operated at 1/3-degenerated cavity
configuration (GG, = 1/4). We further introduced the measurement system used to
observe the nonlinear behaviors including the self-starting mode-locking, pulse-train

amplitude modulation and spatio-temporal instability.

2.1 Experimental construction for a symmetric KLM laser

The schematic experimental setup of the ps-KLM Ti:sapphire laser is shown in Fig.
2-1, which is a z-folded four=mirror cavity contaitning a 9-mm-long Brewster-cut
Ti:sapphire rod (0.1% Ti*" doped, FOM. > 150) ‘without any hard-aperturing slit and
group-velocity compensation components. Without any GVD compensation, the
single pass GVD for the 9 mm Ti:sapphire crystal is 576 fs>. A CW frequency
doubled Nd:YVOy laser (Coherent, Verdi-V8) was used as the pumped source, and the
pumped beam is focused by a plano-convex lens with focal length of 12.7 cm at the
center of the laser rod. Two curved mirrors (M; and M;) of 10-cm radius of curvature
were tilted about 10.1° to compensate the astigmatism. The distance from M; to one
end face of the laser rod is denoted as r,, and from the other end face to M, as r;. In

order to operate the laser at 1/3-degenerated cavity configuration, we calculated the
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parameters of the laser cavity by using the ABCD law. The distance of r; is 52.85 mm
and r; is tunable from 52.80 mm to 52.89 mm, respectively. Two flat mirrors, a 98%
high reflector M3 and a 95% output coupler M4, were placed to form linear arms. The
distance between M; and M,, as well as the distance between M, and M3, are 75 cm to
form a near-symmetric cavity arrangement. The total length of the resonator is

approximately 160 cm corresponding to 93 MHz of repetition rate.

Pump Beam

M,

Fig. 2-1 The schematic experimental setup of the Kerr-lens mode-locking Ti:sapphire laser.

The lens, the laser rod, and the folding mirrors were mounted on precision

translation stages with precision of 10 um to allow for fine adjustment of the resonator

configuration and the overlap between pumped beam and cavity beam. The

cold-cavity beam diameter at the center of the laser rod corresponds to 50 um, which is

larger than the pump one of 30 um. By properly adjusting the cavity configuration we

obtained KLM lasing including self-starting KLM [2, 3] that can be operated for a long
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period of time. We measured the stable KLM pulse having the pulse width of about 3
ps. We observed the mode-locking regions occurred around the degenerated cavity
configurations and this result have been reported in our previous work [1]. The
mode-locking ranges are from 100 um to 300 um for the different degenerated cavity
configurations. The self-starting mode-locking region (~ 30 um) occurred at the edge

between the mode-locking region and CW region.

2.2 The measurement of self-starting Kerr-lens mode-locking

The self-starting was examined by blocking and unblocking the cavity beam to
observe whether the laser will self-develop into.the’ KLM state or not. We found the
self-starting will always occur after the cavity beam is unblocked. The laser beam
from M3 was detected by a high-speed photodetector (Electro-Physics Technology
ET-2000, with 300-ps rise time and noise equivalent power 10™"° W/Hz'"?) and then
connected to a 300-MHz digital oscilloscope (LeCroy 9450A) used to monitor and store

the dynamic of laser for further analysis.

2.3 The observation of pulse-train amplitude modulation
We can operate the laser in the picosecond mode locking with central wavelength
of 820 nm at pump power P, = 4 W at the cavity length slightly longer than the

1/3-degenerate cavity configuration by properly tuning the mirror M; (~ 100 um tuning
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range) after a mechanical perturbation [1, 2]. When the curved mirror M, was
translated slightly toward increasing the cavity length (~ 15 pm), the sinusoidal
amplitude modulation of the mode-locking pulse train was observed. We kept
increasing the distance of r;, the pulse-train modulation presented intermittent
modulation behaviors varying among period-2, period-3 and irregularity. By further
increasing the distance of r, self-starting mode-locking (within 30 um tuning range)
was observed, finally, the laser turned to CW output.

The laser beam from the high reflector M3 was detected by two high-speed
photodetectors with rise time < 0.3 ng-and noiselequivalent power 10" W/Hz"?. The
output signals of photodetectors were sent to a LeCroy-9450A digital oscilloscope
(300-MHz bandwidth) and a RF spectrum (HP 8560E) for monitoring the pulse

sequence and the dynamics of Ti:sapphire laser.

2.4 The measurement of spatio-temporal instability

A CCD camera was used for observing the transverse pattern of the laser beam.
The beam patterns observed for both the CW and picosecond KLM operations around
the degenerate configuration are no longer pure fundamental Gaussian modes, which
consist of several high-order Hermite—Gaussian modes with phase shifts relative to the

fundamental one [1]. Figure 2-2 shows the beam pattern around the 1/3-degenerate
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cavity configuration. We used two small-area detectors (0.006 mm?”) to measure

intensities at different transversal positions of the pattern labeled A and B in Fig. 2-2.

6.4 mm

4.8 mm

\ 4

Fig. 2-2 The beam pattern around the 1/3-degenerate cavity configuration.
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Chapter 3 Numerical model

Many equations described the propagation of light in nonlinear media, either with
or without a laser cavity, exhibit modulation instability. Examples are the nonlinear
Schrodinger equation [1], the mode-locking master equation [2], and the laser
Maxwell-Bloch equations [3]. Many of the above mentioned theories for the KLM
lasers only considered the longitudinal modes but ignored the transverse modes.
Experimentally, however, the nonlinear dynamics of a KLM laser depends on transverse
modes around the degenerate cavity eonfigurations.[4]. In this chapter, we use the thin
slab approximation [5] to simulateja pulse propagatiig in a laser cavity and present a
simulation model based on the Fox-Li’s approach including the optical Kerr effect in
the rate equations [6] to simulate the dynamics of the nonlinear Kerr effect on the KLM

laser operated around the 1/3-degenerate cavity configuration.

3.1 Thin slab approximation

Generally, we described how the optical radiation inside an optical cavity
circulates repeatedly around the cavity, bouncing back and forth between the end
mirrors, used only a plane-wave approximation but ignored the transverse spatial
variation of the waves. To bring transverse variation into the discussion, let us

consider only that portion of optical energy traveling in the +z direction containing
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within some short axial segment of length Az within the cavity. We can think of the

radiation in this segment as forming a short pulse or a thin “slab” of radiation as shown

in Fig. 3-1, whose axial thickness Az is small compared to the length of a typical cavity

but still very large compared to an optical wavelength A.
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Fig. 3-1 A traveling pulse or “slab” of optical radiation propagating in the z direction.

The time and space variation of the' optical fields within such a circulating pulse or

thin slab as it travels through the resonator can be written in the form

g(xa y, Z) =Re E(X’ y’ Z)ej(wt—kz)

=Re|E(x, y,2)[el* 00 G-
Here o is the optical frequency and k = w/c = 2n/A the associated plane-wave
propagation constant, and the complex phasor amplitude E(X,y,z) describes the
transverse amplitude and phase variation of the beam. By writing the fields in this
fashion, we separate out the plane-wave aspects of the wave propagation as given by the

@D factor from the complex phasor amplitude E(X,y,z). The transverse intensity

profile of the beam within this particular phase or slab is the given by
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’ , where the transverse phase profile, or the shape of the optical

1(x,y,2) =|[E(%.¥,2)
wavefront is given by the transverse phase variation ¢(X,y,z).

Although we write the phasor amplitude function E(X,y,z) as a function of X, y
and z, we will see later that the variation of this transverse beam profile with the axial or
z coordinate is generally very slow compared to the e variation that we separated out.

+j27

The latter function goes though a complete e variation in just one optical
wavelength. By contrast, the complex amplitude profile E(x,y,z) will not change
much if at all through the thickness of one “slab”; and it will also change only very
slowly with distance as particular slab propagates.down the resonator, or through free
space outside a resonator.

If we follow the transverse profile” E(X.Y, z) -of any one such slab as it travels
through one complete round trip around a laser cavity, we will definitely see the
transverse field pattern in the slab change with distance as the slab propagates, diffracts,
bounces off mirrors, and passes through laser rod, lenses and finite aperture. These
changes in the transverse pattern E(X,y,z) of the slab caused by propagation and
diffraction are the primary effects that determine the transverse mode properties of
optical beam and resonators. Further if we think a slab repeated round trips within a

resonator, it can be regard as the pulse propagates through repeated sections of an

iterated period optical system or lensguide as shown in Fig. 3-2. Hence we can find
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the transverse mode patterns that are self-reproducing after each such round trip or

periodic step by using a propagation integral

EO(X,y) =7 [ KOG Y. X0, Y )E (X, ¥y )iyl (32)

plane

where K is the propagation constant at optical frequency; p is the length of one round
trip; and the integral is over the transverse coordinates at the input plane. The function
K depends on the chosen reference plane is commonly called the propagation kernel or
“propagator”, since the field E(x,y) after one propagation step can be obtained from
the initial field E(o)(xo, y,) through the operation of the linear kernel K. If the
reference plane is chosen at an aperture and the only intervening element before the next
aperture is simply free space, the function K “will'be-simply Hygens’s integral for free
space, with the integral being evaluated overthe aperture at the input end of each round

trip.
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Fig. 3-2 The sketch of an iterated period optical (lensguide) system. Upper: Circulating pulses (“slab”)
in an optical resonator. Bottom: Propagation through repeated round trips in an optical resonator is

physically equivalent to propagation through repeated sections of an iterated period lensguide.
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3.2 Huygen’s integral and ABCD matrix

In the classical optics, we can use Huygens’s integral to describe an optical field
after a certain distance of diffraction. So we also can use Huygens’s integral to
describe laser beam in a real resonator. In Fig. 3-3, it is a sketch of one-dimension
Huygens’s integral, and it means that the optical field of plane Z, interferes with all of
the point sources of plane Z;. In one-dimension condition, the Huygens’s integral is

0,(x,) = \/g [ a0 e ey, (3.3)
where the U,(X,) and U,(X,) are respectively the wave functions on the Z; and Z,
planes, k is the wave number and.A is the wavelength of laser field, p(X;,X;) is the
distance of the arbitrary positiofi vectors on the Z; and Z, planes. Therefore we can
define p as

2%, X)) =L+ (X, —X,) X) (3.4)

We can use Egs. (3.3) and (3.4) to calculate the diffraction of optical field.

ul(Xl) l"]’2()(2)

-
-
-
——
-
-
-
-
-
-

Z, L zZ,

Fig. 3-3 The sketch of one-dimension Huygens’s integral. L is the separation distance between planes of

Zyand Z,, the U;(X;) and U,(X,) are the wave functions on these planes.
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We usually use the ABCD matrix to present a paraxial system, such as laser
resonator. If we substitute the elements of ABCD matrix to Huygens’s integral, it will
be very convenient to use.  Now, we will find the relationship between p(x;,x2) and
ABCD matrix, and substitute to Huygens’s integral. In Fig. 3-4, a paraxial optical

system between the planes of Z; and Z;, can be expressed as

X | [|A BJlX 3.5
x,| [c D||x]| (3-3)

where the x and x’ respectively represent the positions and slope of ray on the Z; and Z,

planes. From Eq. (3.5), we can get the slope of each point as

X = X, — AX
B (3.6)
, DX, =X
X, =—=—1
B

The input ray may be viewed as a ray‘coming from an object point P; located a distance

R, behind the input plane, as shown in Fig. 3-4. Hence R; and R; is given by

n X X —Ax 3.7)
R_x__ Bx '
n, x, Dx,—x

Fermat’s principle says that “all rays connecting two conjugate points must have the
same optical path length between two points.” Therefore the ray path from P; to P,
through x; and x, will equal to the ray path along the optical axis (PP, = Px,X,P, ).

Both ray paths can be written as
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@: anl + Lo _anz

F)leXZPZ = nl(Rl2 + Xlz)l/2 +p(xl’ XZ)_ n2(R22 + X;)l/z . (38)

~n (R? +X—12)”2 + p(%, %)~ N, (R? +X—22)”2
2R 2R,

From Eq. (3.8) we can get
p(xl,x2):LO+%(Axf—2xlx2+Dx22). (3.9)

By substituting Eq. (3.9) into Eq. (3.3), the Huygens’s integral becomes

ji}L(Axl2 —2x%+Dx})

- b i - -
0,0%), 5 78 K" a(xe e dx, . (3.10)
Therefore we have the relationship between element of ABCD matrix and the

Huygens’s integral.

, ,\’\: C D .
. N
& o
P, A P,
. - I I‘
R, = Ry

L,

Fig. 3-4 The sketch of the optical ray through an ABCD paraxial system. The x and x’ respectively

represent position and slope of ray. P is the conjugate point of P,.

3.3 Simulation model of the KLM laser

To simulate a KLM laser we constructed the equivalent four-mirror cavity system

shown in Fig. 3-5. The cavity consists of two flat mirrors M3 and M, a 98% high
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reflection end mirror M3 and a 95% output coupler My, and a pair of curved mirrors M;
and M, with the same radii of curvature R = 10 cm. The laser rod also acting as a Kerr
medium with the refractive index n = 1.76 and length | is placed between the curved
mirrors. M, and My form a linear arm with a distance of 75 cm and M; with M3 at the
same distance, respectively, in a near-symmetric arrangement. The distance r, from
the curved mirror M, to one end surface of the Kerr medium is 53.625 mm and r; from
the other end surface of Kerr medium to M, is tunable from 53.61 mm to 53.67 mm.
The total length of the resonator L is approximately 160 cm. The laser cavity is
operated at 1/3-degenerate cavity configuration. s Here we assume that no dispersion
exists in the system for our nunierical model since  there are no dispersion components

in Fig. 3-5.

L

) r
M4 em———) < — M3

— (Active medium) -
0 | T S|

o

\ 4
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U E_m+1 é E_m U

A, By Referenéeplane A By
Cy Dy C, Db

A

Fig. 3-5 Schematic of an equivalent four-mirror cavity configuration.
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In nearly all of the situations of practical interest in mode-locked lasers, the time

variation of mode-locked pulse is still slow compared with the dephasing time in the

saturable absorbing medium; and the saturation behavior of the absorption will be

essentially that of a simple homogeneous atomic transition. Moreover, most lasers

used for technological applications belong to the so-called Class B lasers [5], which

include all solid state, semiconductor, and CO, lasers. All these devices have in

common the long lifetime of the excited state (relative to both the medium polarization

lifetime and to the photon lifetime in the cavity). Basic rate equation model for a

single longitudinal and transverse-mode Class B laser involves two equations describing

rate of change of field and population inversion{7]: = For Kerr-lens mode-locked lasers,

however, the optical Kerr effect plays arole of fast saturable absorber. Hence, we can

describe the nonlinear transition of an optical pulse through Kerr medium with

sufficient accuracy using only a simple rate-equation approach, without going into more

complex resonant-dipole or Rabi-flopping analyses [5].

Let the reference plane be end face I of the crystal. In a thin-slab approximation

[5], which the axial thickness of a short pulse is small compared to the length of a

typical cavity but still very large compared to an optical wavelength, we therefore

numerically simulate this laser system by using Collin’s integral [8] with round-trip
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transmission matrix to calculate light field E(r) under cylindrical symmetry, where r is
the radial coordinate and the rate equations as described in our previous work [6],
E"(r) =% [} expl- Ik Qd)IET () expl( 7/ BAX(Ar +Dr ),z /B A (3.11)

A B

1 1

with transmission matrix { } Here E."(r) and E."(r) are the m-th propagating

optical field on the reference plane in Fig. 3-5 before and after Huygens diffraction, 1’
and r are the corresponding radial coordinates, A is the wavelength of laser, Jy is the
Bessel function of zero order, d,’ is distance from end face I through the M; and the Ms;
and a is the aperture radius on the reference plane and it must be chosen large enough
with many times of the fundamental mode radius to ensure that the diffraction loss can
be neglected. In order to include . the“self-focusing effect in active medium, we
modified the equation to describe the light field passing through the gain medium by
adding the nonlinear phase shift, #(r) :%nzll (r) , which is caused by optical Kerr
effect, in the equation of field evolution:
EM =E" exp(l Ol —10) + Egoy - (3.12)
2

Here E™ and E.™ are the optical fields of the mth round trip just reaching and leaving
the laser rod; | is the length of gain medium, g, is the gain coefficient, EmSpom is the field
of spontaneous emission whose amplitude and phase are given by the spontaneous

decay term in Eq. (3.12) and a random generator, respectively; and n;, is the nonlinear

refractive index. I(r) is the intensity distribution of laser pulse calculated from the
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optical field E"(r) using I(r) = (1/2n&y)|E.™(r)]>, where n is refractive index and & is
permittivity of free space. Similar treatment is for the opposite direction propagation.
Note that because the length of gain medium is far smaller than the cavity length the
gain distribution can be regarded as uniform distribution along the propagating direction.
If the thickness Az of the pulse is far smaller than the length of gain medium, the pulse
experienced the uniform gain.

The gain coefficient of the successive pass in the gain medium is related as

-2r?

PV S 7.At
O =(1_7aAt)gm+W( p2 € )(O-No_gm)_ E

2
Nl 7wy |s|

En| 90 (3.13)

|2
When we considered Eq. (3.12) without self-focusing effect (n, = 0), Egs. (3.12) and
(3.13) can use to model the laser dynamics with the beam-propagation dominant as
cavity is far from degeneration but with-interplay of beam propagation and gain
dynamics as cavity is tuned toward degeneration [5]. However, if we considered the
self-focusing effect, act as the so-called Kerr lens, it changes the electric field
distribution and shrinks the spot size of the electric field to modify the gain profile and
result in the KLM mode resonates more easily than the CW mode.

Here we used the spontaneous decay rate 7 = 3.125 x 10° s™ [9], the total density
No = 3.3 x 10% m™ [9], the length | = 9 mm, the stimulated-emission cross section o =

3.0 x 10% m’ [10] and the saturation parameter E; = 1.05 x 10° N/C of the active

medium [10]; and the round-trip time At = 10.67 ns that was determined by cavity
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length, the photon energy of the pumping laser hy, = 1.53 eV, and pumping beam radius
Wp, =15 pum. We have omitted the dispersion of the active medium so that the gain is
assumed to be real.

We calculated the laser output power by integrating the intensity distribution of
laser pulse I(r) with respect to the aperture radius a on the reference plane every
roundtrip. The processes repeat in each roundtrip until reach convergence to
continuous-wave steady state for CW laser output. In order to investigate the
cavity-dependent instability, we set the initial values of E(r) to zero, i.e., E.'(r) = 0, and
changed r; across the point of degenération to vaty the optical field distribution in the
gain medium corresponding to~influence opticalKérr effect on laser dynamics for
calculating the output power. All of parameters.and variables used in program have

been set double precision.
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Chapter 4 Results and Discussion

In this chapter we discussed our experimental and simulated results. We
observed the self-starting Kerr-lens mode-locked without external modulation and
feedback control [1]. In order to confirm the state of the transition from free-running
spiking to mode-locking, the correlation function and the correlation dimension based
on the Grassberger-Procaccia analysis (GPA) [2] were applied.  The non-integer
correlation dimension and autocorrelation show it is a chaotic state.

We also observed pulse-train:*modulationr.in a picosecond self-mode-locked
Ti:sapphire laser with pump-power dependence “when it was operated around the
degenerate cavity configuration [3]. “The envelope of periodic amplitude modulation
splits into two or three clusters with enhanced modulation depth as increasing the
optical pumping power and then the amplitude modulation eventually becomes
disordered at higher pump power. Owing to the optical Kerr effect in a picosecond
self-mode-locked Ti:sapphire laser is smaller than in a femtosecond self-mode-locked
Ti:sapphire laser the amplitude modulation may be supported by exciting two sets of
non-degenerate  longitudinally mode-locked supermodes due to spatially

inhomogeneous gain modulation in the Ti:sapphire crystal.
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We numerically studied suppressing chaos to reach completely mode-locking in a

self-starting Kerr-lens mode-locked (KLM) laser [4]. By using the Collins integral and

rate equations with and without the self-focusing effect, we found without the

self-focusing effect typical laser output and the feature of a power dip agrees with the

observation of experiment [5] for all calculated cavity configurations around the

degeneracy at various pump powers. However, by including the self-focusing effect,

the time evolution of the pulse-train envelope presents various states including

continuous wave or periodic state and instability such as period, period-2, and irregular

states. The simulated self-starting KIEM output,swhich possesses transient irregularity

before reaching a constant amplitude output, occurs between the instability and

continuous wave regions. The self-focusingacts as a slow-varying control parameter

that suppresses the transient chaos to reach a stable mode-locking state in a self-starting

Kerr-lens mode-locked Ti:sapphire laser without external modulation and feedback

control. The self-adaptation occurs at the boundary between the chaotic and

continuous output regions in which the laser system begins with a transient chaotic state,

and then evolves with reducing dimension into the stable ML state. Furthermore, the

different runs of the simulated self-starting from the spontaneous emission reveal the

buildup time of mode-locking not only is sensitive to the initial condition but also

presents the distribution with exponential decay. Its return map presents chaotic state
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with a strange attractor in the initial stage. It transits to the quasi-periodic state and

finally converges to a fixed point with time evolution.

4.1 Nonlinear dynamics analysis of Self-starting KLM laser

Figure 4-1 shows the typical evolving output of the self-starting KLM laser
developed from spontaneous noise under SW CW pumping. Apparently, the laser first
oscillated with free running spiking once the cavity path was unblocked. It then
evolved into stable KLM operation with a pulse width of 3 ps. To verify the
determinism of the data, the correlation function and the correlation dimension

proposed by the Grassberger-Procaccia analysis'(GPA) [2] were applied.

- KLM

free running spiking

Intensity (arb unit)

0o 100 200 300 400 500
Time (ms)
Fig. 4-1 The output clusters of the self-starting pulse train on the oscilloscope with 5 W pumped. The

CW laser oscillated with free running spiking when the cavity path was unblocked and then suddenly

broke into KLM operation.
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To do the GPA, the time embedding technique is required to construct the

trajectory in the D, embedding dimensions with a vector y;. The number of pairs of

points with a separation distance less than some value r is estimated by

) 2 (N—=Dg+1) (N-D,+1)
W= lim 5 yNp, > ,Z H(r = (i - ;). (4.1)

where y; and y; are the coordinates of the ith and jth vectors of total N data, and H is the
Heaviside function, which is defined as H(u) = 1 if u > 0, but zero otherwise. = The
distance r can be simply a Euclidean norm and represents the size of measurement
window. Because C(r) could vary as C(r) = Y, where d is the dimension of the
attractor, by the slope of the log[C(r)] versus log(r) plot it is possible to determine d if
we have the correct minimum ¢mbedding dimension-whose slope would convert to a
value despite choosing the greatervalues of D..

The measured data in the experiment represent a discrete time sequence of laser
outputs x(t), recorded by an oscilloscope with a sampling interval of 1, and represented
by x(tp + nt) or x,. For the nonlinear dynamic analysis, we have reported detailed
bifurcation diagrams and verified the determinism of the chaotic state in the
soft-aperture KLM [6]. Here we used 30,000 data points of transient irregularity with
0.01 ms sampling time before the complete KLM. Figure 4-2 shows the slope of
log[C(r)] versus log(r) for the embedding D, = 2 to 12. When the length scales are

smaller or equal to the noise strength, the noise will cause fuzziness so that we would
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recognize only C(r) = 4 for r > oise-  Lhis value d increases until it reaches a constant
value as the embedding dimension D, is large enough to accommodate the attractor. A
plateau can be seen within proper length scale in Fig. 4-2 with a finite and non-integer
value of d = 2.114+0.08, indicating the transient irregularity is chaotic. The chaotic
characteristic can be confirmed further by observing the revivals of the autocorrelation

function for a long delay time, as shown in the inset of Fig. 4-2.
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Fig. 4-2 The calculated log [C(r)])/log(r)] versus log(r) with embedding dimension D, from 2 to 12 by the

GPA. The inset is the damped autocorrelation that reveals a chaotic characteristic.

The laser instabilities, e.g., the instabilities of single mode [7] and multimode [8, 9]

lasers and transverse instabilities [10], are generally described by Maxwell-Bloch

equations. However, since the Ti:sapphire laser is a class B laser, the polarization

relaxation rate is faster than those of field and population, and the Maxwell-Bloch

equations are reduced to the rate equation. Furthermore, in the passive mode-locked
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laser, the OKE can be exploited to simulate the fast saturable absorber behavior and the
rate-equation approach can describe sufficiently the transmission of an optical pulse
through such a fast saturable absorber without using more complex resonant-dipole or
Rabi-flopping analyses [11]. For comparison with the experimental observation, and
to ascertain that the chaotic characteristic is a result of the self-focusing effect, we
numerically simulated this laser system by using Collin’s integral [12] with round-trip
transmission matrix to calculate the light field E(r) under cylindrical symmetry, where r
is for the corresponding radial coordinates and the rate equations are as described in our
previous work [13].

Without considering OKE {n; = 0), typical laset output begins with a relaxation
oscillation and then a stable output in allthe'stable cavity configurations [13]. Letn, =
3 x 10 m*W' and pulsewidth T, = 3 ps; the laser output states versus the tuning range
are shown in the inset of Fig. 4-3. The stable laser output after the relaxation
oscillation can be seen in the CW regions. However, instability output can be seen as
the cavity configuration tuned close to the degenerate cavity configurations, set here
around 1/3-transverse degeneracy, in which the transverse modes with mode numbers

m+n =3N have the same frequency as the fundamental mode, where N is an integer.
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Fig. 4-3 The laser output power around the degenerate cavity configuration. A large fluctuation is

Output Power (a.u.)

similar to the situation of the transient irregular spiking before the KLM as shown in Fig.1. The inset is
the lasing states versus cavity tuning, where 1, is the distance between the curved mirror M, and the end

face of the laser crystal.

The laser is situated either quasi-periodic‘or chadtic between r; = 53.63 and 53.65

mm (solid triangles), e.g., they aré completely chaotic at r; = 53.64 mm and operated at

CW state (solid squares) after transient oscillation for r; < 53.63 mm and r; > 53.655

mm. It is worth noting that the simulated SSKLM output as shown in Fig. 4-3, which

is operated at CW-ML state (open squares), is similar to the experimental one (see Fig.

4-1), which possesses transient irregularity before reaching a constant output at r; =

53.65 mm. However, we cannot determine directly whether the constant output is

completely KLM or CW output, due to lack of temporal information within a round trip

time. By analyzing the simulated data in this case, we also obtained a similar decaying

correlation function as the results of analyzing the experimental data in Fig. 4-3, with
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correlation dimension of 1.67+0.15. Furthermore, the simulated result shows that the

CW-ML occurred at the edge of a power dip around a degenerate cavity configuration,

and it also agrees with our experimental reports [5].

To investigate the evolution of the SSKLM laser from the transient chaos into

complete mode locking, we divided the 30,000 transient irregularities of the

experimental data points into five parts with 10,000 data points per section, but

overlapping 5,000 data points with the successive sections to calculate the evolving of

the correlation dimension. However, the pulse peak detection based on Bolton et al.

[14] must be used for the data of thé complete ' KLM pulses. We therefore recorded

separately the successive mode-locking pulses duiing the complete KLM. We

acquired each mode-locking pulse containing 5 to 6 points and a total of 3,500 pulses

for this calculation. Each data point represents an accumulation over approximately 2

ns. The maximum value of the voltage on the oscilloscope, with 8-bit flash, was read

as approximately 2 V for our measured pulse train [6]. Shown in Fig. 4-4(a), the

correlation dimension initially is a non-integer (d = 2.56 = 0.17), and then declines

gradually to an integer dimension (d = 1). Finally, it evolves to a periodic complete

KLM state corresponding d = 0. Correspondingly, for the simulation results, the

correlation dimension calculating from the data of Fig. 4-3 evolves similarly from 1.88

to 1, then to d = 0. Furthermore, the characteristics of the phase space can be derived
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by a plot, named “return map” obtained from the time series that is the observed output

of the dynamical system [15]. A return map of the simulated SSKLLM result is shown

in Fig. 4(b). It presents a strange attractor in the initial stage. With time evolution,

the chaotic state transits to the quasi-periodic (metastable) state corresponding to d = 1

and then converges to a fixed point (d = 0).
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Fig. 4-4 The time evolution of the correlation dimension of the observed (a) and the return map of

simulated output power (b). F: fixed point.

Lasers are typical systems in which the “slaving principle” applies, as Haken [16]
has elegantly explained. In general, any kind of laser can be described by means of a

set of coupled non-linear differential equations involving the first-order time derivatives

that can be represented as z—)t(z Fz(X,t). The time-dependence vector X=(X,...,X;)

represents the n dynamical variables describing the laser system, so that its evolution

defines a trajectory or orbit of the system in the phase space defined by these variables,
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and the vector field F, describes the nonlinear coupling between the dynamical
variables in a given kind of laser. Generally, F, depend on several control
parameters designated by a vector zi=(s,...,1,) that characterizes each specific set of
experimental conditions. If the control parameter p; is much lager than the remaining
ones, the influenced variable x; rapidly “loses” the memory of its history (i.e., of the
values reached at preceding times); in such a way, it adapts rapidly to the instantaneous
values reached by the remaining variables approximately proportional to ;. Therefore,
the slowly evolving variables completely determine the evolution of the physical system.
The self-focusing effect may play .a“role of slowly controlling the parameter to the
studied laser system, and the slaving principle can'be-applied to describe the observed
time evolving correlation dimension and the transient return map from the chaotic state
to ML state.

In our previous reports, the laser dynamics are dependent on laser cavity
configuration. The transverse-mode pattern is consisting of high-order transverse
modes in a degenerate cavity configuration [5, 17]. Owing to the superposition of
high-order modes, the transverse mode could be self-adjusted to match the pumping
profile for extracting maximal pumped gain in cavity. The laser dynamics shows
existence of temporal or spatial temporal instabilities when the nonlinear effects were in

existence around the degenerate cavity configurations [17]. The Kerr-lens
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mode-locking in a Ti:sapphire laser is dependent on the cavity configuration, no matter
whether it is operated in picosecond or femtosecond pulse [5]. The ML region,
varying the distance between the mirror and the crystal, is ~ 300 um including the
self-starting ML in smaller region ~ 30um. When the mirror was tuned within 30 um
range, the laser parameters, such as the beam waist of the cold cavity, cavity loss etc.,
would be unchanged but change in the relative Gouy phases of the transverse modes
[18]. The pulse energy is fixed but waist is not, in a stable mode-locked laser.

It is known that, far from the threshold of continuous (supercritical) instability,
only the phase of the complex field survives as.a slow degree of freedom, since it
describes the symmetry of the system [19]. Therefote, the nonlinear phase due to the
nonlinear Kerr coefficient

y =0 /ngAy) (4.2)
may act as the slowly varying control parameter [20]. Here ny is the linear refractive
index and At 1s the effective area in the Kerr medium [21]. Because the optical field
originates from the spontaneous emission whose spot size is approximately
corresponding to the spot size of the pumped beam, which is smaller than the spot size
of a cold cavity, the initial values of 1/A¢ are almost constant, which is equal to 1.4
x10"" m™? as shown by a dash line in Fig. 4-5. 1/Aes calculated at N = 10,000 round

trips is equal to 3 x 10'" m™ at CW-ML state, which is sandwiched between instability
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and CW regions in the inset of Fig. 4-3. By plotting the probability of finding 1/Aes

after 10,000 round trips as a function of yin a wide cavity tuning range of 70 um in Fig.

4-5, we found ydoes adapt to the edge of chaos that has the highest probability.
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Fig. 4-5 Distribution of finding 1/A., initiation andrafter:10,000 round trips, for a cavity tuning range of

70 pm.

4.2 Pulse train amplitude modulation

The pumping threshold of mode-locking is about 3 W. We can operate the laser
in the picosecond mode locking with central wavelength of 820 nm at pump power P, =
4 W at the cavity length slightly longer than the 1/3-degenerate cavity configuration by
properly tuning the mirror M, (~ 100 pum tuning range) after a mechanical perturbation
[5, 22]. When the curved mirror M, was translated slightly toward increasing the

cavity length (~ 15 pm), the sinusoidal amplitude modulation of the mode-locking pulse
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train was observed as shown in Fig. 4-6(a). We kept increasing the distance of rj, the
pulse-train modulation presented intermittent modulation behaviors varying among Fig.
4-6(b)-(d). By further increasing the distance of r;, self-starting mode-locking (within

30 m tuning range) was observed, finally, the laser turned to CW output.
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Fig. 4-6 Power-dependent mode-locked pulse-train modulations. (a) Periodic modulation pulse-train
with 4 W pump power; (b) The modulation envelope splits into two clusters with 4.2 W pump power; (c)
The modulation envelope splits into three clusters with 4.5 W pump power; and (d) irregular
modulation of pulse-train with 5 W pump power. Inset: mode-locked pulses inside the modulation

envelope of Fig. 4-6 (a).

Besides, by increasing the pump power from 4 W to 5 W, we observed the
pulse-train modulation progressively changed from the sinusoidal amplitude modulation

state of Fig. 4-6(a) to Fig. 4-6(b)-(d). The modulation rate was estimated
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approximately at 250 kHz and the modulation depth was about 50 percent in Fig. 4-6(a).

As the pump power is increased, the modulation rate increases and each of the self

Q-switch pulses progressively splits into period-two at P, = 4.2 W, period-three at P, =

4.5 W, and then becomes irregular at P, =5 W as shown in Fig. 4-6(b)—(d), respectively.

We also observed there is a period-doubling route to chaos with increasing pump power.

Notice that the mode-locked pulses within the modulation envelope as in the inset of

Fig. 4-6(a) show that each of the individual mode-locked pulses does not split due to the

high-order solitons [23, 24] in any cases of the above-mentioned pulse-train modulation,

because the optical Kerr effect in spicosecond Ti:sapphire laser may not be strong

enough to induce pulse-splitting“behavior [25].. Furthermore, the filtering mechanism

from the loss difference [24, 25] need not be considered because the gain band width of

the picosecond pulses is much smaller than the band width of mirror reflectance.

The extended power spectra of different modulation states of Fig. 4-6 look alike

shown as in the inset of Fig 4-7(a) with the repetition rate remaining ~ 93.3 MHz. We

then further expanded the power spectra of the pulse-train modulations at the central

frequency 93.3 MHz and shown in Fig. 4-7(a)—(d). The beat frequency located beside

the central frequency corresponds to the pulse-train modulation frequency. The

frequency of periodic modulation is 244 kHz, which agrees with the estimated 250 kHz

from oscilloscope trace in Fig. 4-6(a). As pumping increases, the modulation
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frequency increases first to become 366 kHz with subharmonic at 188 kHz (see Fig.
4-7(b)) in the period-two modulation as the time trace in Fig. 4-6(b); and then to
become 366 kHz with period-three beating of 122 kHz and 244 kHz as shown in Fig.

4-7(c). The modulation turns to irregular with no dominant peaks in Fig. 4-7(d) if

further increasing the pump power.
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Fig. 4-7 The expanded power spectra of different modulation state of Fig. 4-6 at the central frequency

93.3 MHz. Inset: the power spectrum in coarse scale to the repetition frequency of 93.3 MHz.

Because the upper-state lifetime of Ti:sapphire crystal is 3.2 ps and the laser
threshold is about 3 W, we estimated the relaxation oscillation frequency to be about
229 kHz [21]. A detailed theoretical study of self-Q switching was performed by Haus

[26]. The frequency that corresponds to the several-microsecond period of
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self-Q-switching is close to the relaxation oscillation frequency, which can be explained

by the nonlinear interaction between the population inversion in the gain medium and

the optical-field intensity in the cavity. However, since M is translated only by 15 um

and the parameters, such as the beam waist of the cold cavity, cavity loss etc., are

almost unchanged, the modulation behavior is not induced by cavity loss. Therefore,

the modulation mechanism should not be only Q-switching. In addition, in a

femtosecond Ti:sapphire laser, soliton-like pulse shaping is dominant by balancing the

self-phase modulation (SPM) in the Ti:sapphire rod and the net negative group velocity

dispersion (GVD) provided by prism pair or. chirped mirrors. Because GVD

compensation prisms are absentin;our picosecond mode-locked Ti:sapphire, the laser

pulses would not form solitons.;  Therefore, “the' modulation mechanism should be

different from that of Tsang’s paper [23]. Also, unlike Liu’s [27] or Xing’s [28]

resonator setups, our picosecond mode-locked laser is based on the soft-aperture effect

in the Ti:sapphire crystal instead of using a hard aperture.

However, in an axially pumped laser, especially for the soft-aperture KLM laser

with the pump size less than the cavity beam size, it is easy to excite the higher-order

transverse modes to extract more stored energy from the gain medium when the laser is

operated in the degenerate cavity [5]. The slow amplitude modulation of mode-locked

pulse train may be due to the transverse modes interaction. For verification, we have
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used two small-area detectors to measure intensities at different transversal positions of

the pattern labeled A and B of Fig. 2-2. Fig. 4-8 shows the intensities of the laser

simultaneously detected at two transversal positions. Not only both of the period-two

pulse trains but also inverse evolution was observed at positions A and B, revealing that

the transverse pattern is non-stationary and exhibits a spatial-temporal instability.

Therefore, the slow pulse-train amplitude modulation should be dominated by

transverse modes interaction rather than longitudinal modes interaction.
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Fig. 4-8 The simultaneous intensities of the laser at two transversal positions labeled A and B in the inset

of Fig. 2-2.
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Typically, if only one spatial mode of the electromagnetic field is excited in the

laser, the interesting instabilities are temporal [29, 30]. Nevertheless, under some

circumstances, parameters can be adjusted so that more spatial modes come into play

and spatio-temporal instabilities [31] also appear. Lugiato et al. expressed the

Maxwell-Bloch equations in terms of modal amplitudes by using a suitably

cylindrically symmetric empty-cavity-mode expansion [32, 33]. They presented a

variety of spatiotemporal instabilities, including chaos and cooperative frequency

locking, which occur under uniform and low-power pumped, by tuning the mode

spacing. They were able to do this-because the Laguerre—Gaussian modes are a set of

good bases only when the uniform-field limit is-applied for a so-called good cavity with

small gain. Thus, their results are valid only for-a laser in which the pump size is

larger than the minimum cavity beam waist [34]. However, in axial-continuously

pumped lasers, gain saturation provides an inherently nonlinear effect and when the

pump size is smaller than the waist of the cold cavity, peculiar lasing behaviors [18,

35-38] have been observed in an end-pumped solid-state laser near the degenerate

configurations that correspond to the low-order resonance. At these degenerate cavity

configurations, because of the superposition of high order degenerate modes, the

transverse mode pattern can be self-adjusted to match the pumping profile for extracting

maximal pumped gain in the cavity, a supermode or superposition of phase-locked
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degenerate transverse modes can be formed with relatively low lasing threshold.

Beam waist shrinkage [37] and operation of a stable CW bottle beam [18, 38] were

observed around the degenerate cavities. As in our previous report [13], under tightly

axially pumped, the laser would possess spatio-temporally instability if the cavity length

is detuned away longer than that of the degenerates. We believe that the detuning of

the cavity from the degenerates may result in excitation of another supermode due to

spatially inhomogeneous gain. This new supermode is no longer degenerate with the

fundamental mode but has a frequency shift corresponding to the Guoy phase. We

estimated the length detuning lengthuof the cavity.is ~ 15 um. Therefore, we believe

that the amplitude modulation“may result from competition of these two sets of

longitudinally mode-locked supermodes, which no longer can be phase locked by gain

saturation.

Because in the Kerr-lens mode-locked laser, the optical Kerr effect can be

exploited to simulate the fast saturable absorber behavior, and the rate-equation

approach can describe sufficiently the transmission of an optical pulse through such a

fast saturable absorber [11, 13]. Here, we simulated the slow amplitude modulation

behavior of this picosecond Kerr-lens Ti:sapphire laser based on the Fox-Li’s approach,

including the self-focusing effect and using the Collin’s integral with the rate equations

[13].
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Fig. 4-9 shows the simulated output power with changing the effective pump
power P, form 4 W to 5 W with and without nonlinear refractive index n,. By setting
the nonlinear index n; = 0, we found that evolution of laser output is always continuous
after relaxation oscillation, as shown in the Fig. 4-9(a), for the cavity was set for r; =
53.620 mm to 53.645 mm and P, from 4 W to 5 W. However, let n, = 3x10>° m*W,
pulsewidth t, = 3 ps and P, = 4W, the laser output power versus r; (Fig. 4-9(b)) shows
the region of various states such as CW output (solid squares), period modulation (open
circles) and irregular modulation (solid triangles), etc. When 1, is smaller than 53.629
mm the laser output presents CW output (solid squares). However, we cannot
determine directly whether the constant output’is completely KLM or CW output due to
lack of temporal information within a roundtrip time and mechanical perturbation term.
The simulated time sequence of output power in the unit of roundtrip time corresponds
to the envelope amplitude in Fig. 4-6. The period modulation state (open circles),
whose envelope is similar to Fig. 4-6(a), is located between r; = 53.630 mm and 53.631
mm; the period-2 modulation state (open triangles) is at 53.633 mm < r; < 53.637 mm;
and the irregular modulation state (solid triangles) is at r; = 53.632 mm and 53.638 mm
<1 < 53.641 mm; and the laser output may become CW or KLM (open squares) at r; >
53.642 mm. Although due to lack of temporal information within a roundtrip time, we

cannot determine directly whether the constant output is self-starting KLM or CW
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output, we would expect observing self-starting KLM then CW output as known from

the experimental observation. The simulated pulse-train modulation with varying 1,

was similar to our observation and the character of the output power dip was similar to

the Ref. 5.

At the position deviating from the degeneration, r; = 53.635 mm, the pulse-train

amplitude modulation changed form period-two to irregular for pump power being 4W

and 4.5W respectively, as shown in Figs. 4-9(c) and (d), which are similar to Figs. 4-6(b)

and (d). The amplitude modulation frequency is about 750 kHz in Fig. 4-9(c).

Owing to the fact that the pump poweér in the simulation may be higher than the actual

one, the amplitude modulation frequency of the simulation is larger than the measured

modulation frequency. Furthermore, in our previous reports [5, 17], the transverse

mode pattern consisted of high order transverse modes around the degenerate cavity

configuration. Because of the superposition of high order modes, the transverse mode

could be self-adjusted to match the pumping profile for extracting maximal pumped

gain in the cavity. The optical Kerr effect played a role that enhanced beam waist

shrinkage and supermodes generation as the small pump spot size. Therefore, the

subharmonic amplitude modulation may result from competition of these sets of

longitudinally mode-locked supermodes, which no longer can be phase locked by gain

saturation.
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Fig. 4-9. The simulated evolution of output power with changing pump power from 4 W to 5 W with and
without Kerr effect. (a) It always shows continuous output after relaxation oscillation over the
calculated cavity configurations without Kerr effect (n, = 0); with Kerr effect on n, =3x102" m*W™', (b)
the cavity tuning region of various dynamic behaviors (e.g., period, period-2, irregular, etc., labeled in the
inset) around the degenerated configuration at"Py=74W, (c) period-2 and (d) irregular pulse-train

modulation at r1 =53.635 mm with P, =4 "W, and 4.5W, respectively.

4.3 Spatial-temporal instability

In order to investigate the role of self-focusing effect in self-starting of the KLM
laser, we focused the simulations primarily on the configuration near 1/3-degeneracy
and simulated numerical evolution of laser with and without the self-focusing effect.
Let the optical Kerr coefficient n, = 0, namely without the self-focusing effect, shown in
Fig. 4-10(a) is a typical laser output, which always begins with a relaxation oscillation

then turns to a stable output for all calculated cavity configurations at various pump
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powers. The inset of Fig. 4-10(a) shows the output power versus cavity tuning region
around the degenerated configuration at pump power P, = 4W. It shows a power dip
occurring around r; = 53.625 mm as the observation of experiment [5]. In Fig. 4-10(b),
we show the numerical intensity distributions of the light fields at the beam waist inside
the active medium for various cavity tuning. The field profiles show the spot size at
degeneracy (labeled A) corresponding r; = 53.625 mm is smaller than that far from the
degeneracy for which a 1/¢* spot size is defined. The spot size shrinks to
approximately the pump size when the cavity is tuned toward degeneracy; it means that

the gain-guiding effect dominates thejtransverse modes near degeneracy [17].
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Fig. 4-10 The simulated numerical evolution of laser without self-focusing effect (n, = 0). (a) Typical
laser output and the average output power versus cavity tuning region around the degenerated
configuration as shown in the inset and (b) The numerical field profiles. A labeled where the degenerate

cavity is.

In order to investigate the influence of the self-focusing effect, we considered n; =

3x10?° m*W and a pulsewidth T,= 3 ps, and the average output power versus cavity
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tuning region [see the inset of Fig. 4-3] around the degenerated configuration at P, = 5
W also shows a power dip and the regions of various states for pulse-train amplitude
modulation including CW or periodic state and instability such as period, period-2,
irregularity, etc., which agree with the experimental observations [3]. Furthermore,
Fig. 4-11 shows the temporal evolution of the intensity profiles of the period-2
pulse-train amplitude modulation (see Fig. 4-9(c)). It shows the characteristic of the

spatio-temporal instability for the period-2 pulse-train amplitude modulation.
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Fig. 4-11 The temporal evolution of the intensity profiles of perio-2 pulse-train amplitude modulation.

The stable laser output after the relaxation oscillation can be seen in the CW
regions for the cavity tuned away from the degeneracy. However, instability output
can be seen as the cavity configuration tuned close to the degenerate cavity
configurations, we set here around the 1/3-transverse degeneracy, in which the

transverse modes with mode numbers m+n = 3N have the same frequency as the
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fundamental mode, where m and n are the mode numbers of the transverse modes, and

N is an integer. The laser is situated either quasi-periodic or chaotic between r; =

53.63 and 53.65 mm (solid triangles), e.g., completely chaotic at r; = 53.64 mm and at

CW state (solid squares) after transient oscillation for r; < 53.63 mm and r; > 53.655

mm. It is worth noting that the simulated self-starting KLM output, as shown in Fig.

4-11 occurring around r; = 53.65 mm (open squares in the inset of Fig. 4-3), is similar

to the experimental observation of continuous-wave mode-locking state, which

possesses transient irregularity before reaching a constant output [4]. However, we

cannot determine directly whether the'constant otitput is completely KLM or CW output,

due to lack of temporal informdtion within a‘roundtfip time. Figure 4-12 shows the

different runs of the simulated self-starting " KLM . output starting from spontaneous

emission. The results reveal the laser always self-starts from irregular spiking and the

irregular region changes from time to time. Because the initial field is from the

spontaneous emission, the different runs have the different initial fields. Therefore the

buildup time of mode-locking is sensitive to the initial condition. Other than sensitive

to the initial conditions, we further numerically calculated the buildup times of

self-starting mode-locking at r; = 53.65 mm with 2,000 times. Figure 4-13 shows a

histogram of the numerically measured self-start times (solid squares). The

distribution of buildup time of self-starting mode-locking shows a tendency with the
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exponential decay (dash line) similar to the self-starting behavior in an additive-pulse

mode locked fiber laser [39] and previous theoretical result [40].

r~ 53.65 mm

Output Power (a.u.)

0 2000 4000 6000
Number of round trips

8000 10000

Fig. 4-12 The evolution of laser from two differentiruns show both starting from the irregular spiking

before reaching a periodic (KLM) state around r1=53.625 mm:

500
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100 T~

Number of events
| ]
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Fig. 4-13 The histogram of the calculated buildup times of self-starting mode-locking (solid squares) with

an exponential fitting curve (dash line).
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Chapter 5 Conclusions and Prospective

5.1 Conclusions

In this dissertation, we have observed self-starting Kerr-lens mode-locking with
picosecond pulses in the Ti:sapphire laser without external modulation and feedback
control. To understand how the KLM laser self starts from spontaneous emission and
then transfers to mode-locking, we have analyzed the transient irregularity of the laser
output before the complete mode locking by using nonlinear analysis. Because the
correlation dimension is a finite .and non-integer value it indicates the transient
irregularity is chaotic. From thé decay autocorrelation function with long time revival,
we ascertained further that the SSKLM'is initially at the chaotic state. Based on the
Fox-Li approach, including the self-focusing effect, the simulation results reveal that the
self-focusing effect is responsible for the dynamics of this laser system that evolves
from the chaotic state with a strange attractor to a quasi-periodic state, and then
converges to a fixed point. After long time evolution, the nonlinear Kerr coefficient y
does adapt to the edge of chaos.

Furthermore, we have also observed slow pulse-train amplitude modulation
phenomena in a self-mode-locked picosecond Ti:sapphire laser. Periodic pulse-train

modulation appeared when pump power reached 4 W. As the pump power is
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increased further, each modulation envelope splits into two or three clusters with

increasing modulation depth; and the laser would eventually lead to irregular

modulation pulse train if the pump power is increased even further. The observed

irregular pulse envelope modulation is spatio-temporal with non-stationary transverse

pattern. The slow amplitude modulation should be supported by exciting two sets of

non-degenerate longitudinal mode-locked supermodes due to spatially inhomogeneous

gain modulation in the Ti:sapphire crystal.

Finally, we use numerical model to investigate the dynamics in a Kerr-lens

mode-locked laser with and withoutsthe self-focusing effect around the 1/3-degenerate

cavity configuration. Typical laser output always begins with a relaxation oscillation

then turns to a stable output for“all calculated cavity configurations at various pump

powers without self-focusing effect. The feature of a power dip, which is due to the

spot size shrinkage at the degeneracy, agrees with the observation of experiment.

However, with considering the self-focusing effect, the output power versus cavity

tuning region around the degenerated configuration shows not only a power dip but

various states including continuous-wave or periodic state and instability for pulse-train

amplitude modulation such as period, period-2, and irregular states, etc. The simulated

self-starting KLM, which possesses transient irregularity before reaching a constant

output, occurs between the instability and CW region. Furthermore, the different runs
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of the simulated self-starting KLM output starting from spontaneous emission reveal the
laser always self-starts from irregular spiking and the irregular region changes from
time to time. Therefore the buildup time of mode-locking is sensitive to the initial

condition and its distribution shows the exponential decay.

5.2 Prospective

In this dissertation we have experimentally and numerically studied the nonlinear
dynamics of the ps KLM laser around the 1/3-degenerate cavity configuration.
However, because the behaviors of laser dynamics depends on the nonlinearity around
the degenerated cavity configurations, ithe €xperimental observation of the other
degenerated cavity configurations such as'G;G; = 1/2; 3/4, etc. will be the next aim of
study. Besides, considering the dispersion compensation in KLM lasers, the pulse
width of mode-locked pulses can be reduced to several tens femtosecond, the
modulation depth of pulse-train amplitude modulation may be deeper than that in the ps
KLM laser and then it may form a Q-switched mode-locked laser.

In our simulated model we only considered the spatial effects, but neglected the
temporal effects such as the dispersion in the gain medium and assumed that the pulse
width does not change for propagating in the laser cavity. In fact, because the pulse
width would change with the formation of pulse, the dispersion should be considered in

our model. Hence, we can obtain the information of pulse width by using the temporal
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ABCD matrices when pulses propagate through gain medium. If we do so, the

computation will consume more time than our simulated model and a computer cluster

should be needed.
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