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ABSTRACT

In pursuit of high integration ‘density, high speed and low power consumption,
complementary metal-oxide-semiconductor (CMOS) devices have been undergoing a
progressive down-scaling strategy over the past few decades. The purpose of our
study is to build a simple hole mobility model in the inversion layer of a p-type
metal-oxide-semiconductor field effect transistor (PMOSFET) based on quantum
device physics and compare the results with the experimental data on the so called
universal curves.

A detailed subband structure calculation is obtained by solving the
one-dimensional Schrodinger and Poisson equations with a six-band k - p procedure.
In our model, however, we have used a modified subband structure which is actually
the solution of the eigenvalue problem in a 4x4 Luttinger-Kohn matrix. Besides, we

have also used an equivalent effective mass model to derive the quantization-direction



effective mass, the density-of-states effective mass, and the conductivity effective
mass.

Three scattering mechanisms are included in our model: acoustic phonon
scattering, optical phonon scattering, and surface roughness scattering. Finally, we
build a modified hole mobility model and compare the calculation results with

Takagi’s data for various temperatures.
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Chapter 1

Introduction

The MOSFETs (metal-oxide-semiconductor field effect transistors) technology
has undergone a scaling-down strategy in recent years. As the device channel length
shrinks towards nanometer level and below, the underlying assumptions of the
conventional MOSFET scaling rule are rapidly losing validity. However, the
incorporation of strain engineering and the use of alternative materials are being
regarded as a potential way to maintain or even improve the device performance.

Despite the great quantities of recent researches devoted to the experimental
investigation of pMOS transistors [3];,[4], the development of the numerical
simulators for pMOSFETs which’have theiability to.explore the physical properties of
the two-dimensional hole gas in the inversion layer suffers a lag with respect to the
nMOSFETs counterpart. In this"study, we'place an-emphasis on building a thorough
effective hole mobility model of pMOSFETs; and compare the simulation results with
experimental data. It is noticeable that we have made some simplified assumptions so
that the overall computational complexity of our model can be dramatically lowered
compared to a fully numerical treatment. Our approximation seems to be reasonable
because of the fairly good agreements with the experimental data for three distinct

temperatures.



Chapter 2

Hole Mobility Model and Theory

2.1 Numerical Solutions of Schrodinger Equation

For an arbitrary potential profile in which a wavefunction is confined as shown in
Fig. 1, the general Schrodinger equation Eq. (1) can be expressed in terms of a matrix
equation. This approach is very useful if we are looking for bound or quasi-bound
states in a spatially varying potential V. Let us assume that the eigenfunction we are
looking for is confined in a region L as shown in Fig. 1. We divide this region into
equidistant / mesh points x;, each,separated in real space by a distance Ax. The

wavefunction ¥ we are looking for is now: of the:form

2

——V#Y = EY (1)
2m

Y=>ay, 2)

where I/, is simply the function at the mesh point, normalized within the interval

centered at X, and being zero outside that interval. We can also write the differential

equation as a general difference equation

o Y (z,-1)+¥(z,+1)-2¥(z)
2m AZ?

+ V‘P} =EY¥Y (3)



Once again, substituting for the general wavefunction Eq. (2) and taking an outer

product with Y/, Y, - - -, Y, we get a set of / equations (assume do = dx1 = 0, 1.,

the wavefunction is localized in the space L), which can be written in the matrix form

as
A(z) B0 - TMaw ]
A(z) B 0 0 |aw
0 B Az) av, |_,
: 4)
0 0 o0 B A(z) || aw, |
with
h2
A(z)= T ALE +V(z)-E (5)
hZ

This [ x [ set of equations can again be solved by calling an appropriate subroutine

from a computer library to obtain the eigenvalue E, and wavefunction {/,,. In general

we will get [ eigenvalues and eigenfunctions. The lowest lying state is the ground

state, while the others are excited states.



2.2 Luttinger-Kohn Hamiltonian and Subband Structure

In the calculation of the hole mobility in the inversion layer, Schrodinger equation
and Poisson equation are solved self-consistently to simulate the potential energy in
the channel. The subband structure and the two-dimensional density-of-states (2D
DOS) function of each subband are calculated with which the scattering relaxation
time can be evaluated. Finally, 2D hole mobility is obtained from a linearization of
the Boltzmann equation.

Fig. 2 sketches the energy band diagram of a pMOSFET operating in inversion

mode. We can write the 1D Schrodinger and Poisson equations as follows [5]:

| Hy (K )+ 1V (2) [y (2) = E, (K (2) (7)
dV(z) _

For Si pMOSFETs, holes are confined in the z-direction quantum well formed by

the Si/SiO, interface and the valence band edge. Since the hole energy is not

continuous along z-direction, k. should be replaced by 162 . Besides, we can express
i 0z

the potential V(z) as —E.Z because of the triangular potential approximation. After
undergoing a transformation of the basis, the Hamiltonian in the Schrodinger equation

would be transformed to the Luttinger-Kohn Hamiltonian.

The Luttinger-Kohn Hamiltonian matrix can be written as



—(P+0) R J2R* 0 ST =ST/N2]
R —(P-0) V200 s 0 - %S
V2R 20 -P-A -5'/\2 \ES 0
HLK —
0 S -S/N2 -(P+Q)  -R —2R 9)
S %S -R*  —(P-0) —20'
-S/\2 \E + 0 —2r* V20 -P-A

Finite element method is utilized to compute Schrodinger and Poisson equation
numerically. We divide the analysis area into a z mesh of N, points in the interval
(0,Zmax), where Zmax is the sum:of the thickness of silicon layer and oxide layer.

This would yield a 6N, x 6N ~eigenvalue problem;: which can be expressed as the

tridiagonal block form

D D), D" 0 0 |y, Wi
0 D D' D' 0 .||y |=E(k)| v, (10)
0 0 D D), D |y, Wi

where each l//(z) is a six-component column vector. D*, D°, and D™ are 6x6

block-diagonal difference operators expressed as below

H, =H,+Hk +Hk’ (11)



. H H,

T2iAz (Az) (12)
o =g, + 2L (13)
(Az)
. H _H,
Az (Az) (14)

After calculating the eigenvalue problem in Eq. (10) with the aid of MATLAB,

the desired hole subband E-k relation is obtained [5].

2.3 Newton-Raphson Method

The Newton—Raphson method (or Newton—Fourier method) is a well-known
method for finding successively better approximations to the zeros (or roots) of a
real-value function. Newton's method can often converge remarkably quickly,
especially if the iteration begins “sufficiently near” the desired root. First of all, in Fig.
3, we start with an initial guess, for example, V, and find the corresponing function
value R. Secondly, the function is approximated by its tangent line, and one computes
the V-intercept of this tangent line (which is easily done with elementary algebra).

This V-intercept will typically be a better approximation to the function's root than the



original guess, and the method can be iterated. This iteration process could be

expressed as a mathematical formula:

n

If we write the 1D Poisson equation in Eq. (8) as an operator form

2 1
AN
1 2
A A
1
Y
Let AV=p, where
2
A
1
A: E
0
o
V=V2
ol
p=|p2
L P3

V.=V +R/R

V1

V2|=

V3

pl
02
3

(15)

(16)

(17)

(18)

(19)



In order to accelerate the calculation speed of self-consistent procedure, we apply
Newton-Raphson method when solving Poisson and Schrodinger equations

self-consistently. We can hence express the Poisson equation as follows:

R=—AV + Rho o0
V.o =V +RIR =R =K __ . dRkho on
dv dv

Fig. 4 is the flow-chart illustrating the self-consistent procedure. First, we start
with the 1D Schrodinger equation, as revealed in Eq. (7), along with an initial guess

surface potential Vs and with the depletion.tegion width d = 50 nm, or expressed as

V(Z):—EﬁZZ——SZ (22)

As mentioned in Section 2.2; ‘we. would “obtain the hole E-k relation and
corresponding wavefunction if the potential profile is given in the 1D Schrodinger
equation. Using the calculated E-k relation, we could derive the effective
two-dimensional density-of-states (2D DOS) (see Section 2.4) and two-dimensional
carrier density. Substituting the two-dimensional hole density in the 1D Poisson

equation, we have

P (23)

where p,, (z) is the two-dimensional hole density and N, is the depletion charge.

Finally, we obtain a new potential V(z) to satisfy Equation (23) and continuously

iterate the procedure.



2.4 Equivalent Effective Masses

The quantization-direction effective mass m, in the direction orthogonal to the
Si/Si0O; interface has been extracted by comparing the lowest energy level Ej of each
subband (as obtained in Section 2.2) with the corresponding value given by the Airy

formula [6], that is

5 \I/3 2/3 ) 2
Eo:[ 7] J ‘:972'6F:| —m, = 7] 3(97[6Fj (24)
2m, 8 2E, 8

where F is the transverse electric field. Despite the fact that the band structure is
field-dependent since the external field would lift the degeneracy of the valence band
at the I' point, field dependence of the heavy-hole band is weak. We could choose a
constant value of the quantization.effective mass,of-heavy-hole equal to 0.29m, for
fields up to 1 MV/cm. On the contrary, the-field dependence of the light-hole band is
more sensitive. For most of our purpeses, a.eonstant m, of 0.23my has proven to be
accurate enough to describe the light-hole while both the field and doping
dependences have been neglected [7], [14].

Empirical description of the warping close to the I' point can be expressed as

follows

hz 2 2714 2 2 2 27 2 272
EHH:—zm0 [Ak —\/B K+ C (k k) kR +kCk, )} (25)
hz 2 214 2 27 2 27 2 272
ELH:—ZMO[Ak +\/B K+ C (k2 k2+k 2k + )} (26)



Where A, B, and C are constants. In order to derive the two-dimensional

density-of-states (2D DOS), we have made an intuitive assumption, i.e., let

k,=kcos®, k,=ksin® and k, =0.

hZ
E :——[Akz— B’k* +C*(k* cos® Osin® 6 }:g o)k’
oo =5 A ( )|=2(0) @)
hz
g(0)=- > [A JB? +C? cos® Osin’ 6’} (28)
ny,

where g(é’) is a function independent of wavevector k. The number of states per

kZ
unit area of k-space can be written as N,, = (—2 [8]. In polar coordinate system,
27
we obtain
v ek
2D (272_)2 dE
dk
1 T g j do
472' k 477.' E=0 6=0 2g(9) (29)

As a consequence, the two-dimensional density-of-states (2D DOS) can be

expressed as the following form

dE  4r* 2, 2g(9) AR (A_\/B2 +C? cos® @sin’ 9) (39)

_dN,, 1 Zf de m, ZI de

The effective mass for the density of states, mpos, has been derived from

10



.[D(E)fp (E)dE _ &Mpos
pr(E)dE i (31)

where the left hand side is the density of states occupied by holes. The function D(E)
is the density of states and f,(E) is the hole occupation probability function. The right
hand side is instead the density of states for a parabolic band with an equivalent
effective mass mpps and g, being the band degeneracy [7]. The density of states
derived in effective mass approximation is shown in Fig. 5.

Note that we have neglected the electric field and doping dependences on the

effective masses and regarded them as constant values, as summarized in Table 1.

2.5 Phonon Scattering Mechanisms

Carriers migrate through the crystal with properties determined by the periodic
potential associated with the array of ions at the lattice points. Vibration of the ions
about their equilibrium positions introduces interaction between electrons and the ions.
This interaction induces transitions between different states. And this process is called
phonon scattering. Phonon scattering can be categorized to acoustic phonon scattering
and optical phonon scattering based on the phase of the vibration of the two different
atoms in one primitive cell. Both contribute to the momentum relaxation time.
Acoustic phonon energy is negligible compared with carrier energy, while optical
phonon energy is about 61.3meV for silicon and 37meV for germanium at long

wavelength limit.

11



Using the subband energy and the wavefunction provided by the self-consistent
calculation, phonon-limited mobility, which consists of acoustic phonon mobility and
optical phonon mobility, can be calculated under the momentum relaxation time
(MRT) approximation. More precisely, for the acoustic phonons, the relaxation time

in the band (i,j) is given by [9], [10] :

: 1 _ n\l/l/:mdeacszT 1 (32)
7 (E) Pps’ W

i,j

v, =€ ()8 () -
I U(E_Ej)
T(B) 2 (k) (34)

where D,  denotes the deformation: potential due-to acoustic phonon, nj is the
valley degeneracy, p is the mass density of the crystal, s, is the longitudinal sound

velocity, W, is the form factor determined by the wavefunctions of the ith and the

L,

jth subbands and U(x) is the step function. Whereas for optical phonons, we have

1 nvkk' ’/ndkl)m2 ( 1 1 j —
— = N +—+— | xU(EFE
7 (E) 2 () (E%E,

int er

v, =(]&* ()¢ (2)dz)

1-f(EFE,)
1-f(E)

~E,)x (35)

(36)

where “+” means phonon emission and “-*“ means phonon absorption. k and k’=1, 2,

and 3, meaning HH, LH, and SO, respectively. D, and E,  are the deformation

potential and the energy of the mth intervalley phonon, respectively. N, is the

12



occupation number of the mth intervalley phonon.

2.6 Surface Roughness Scattering Mechanisms

The physical meaning of the surface roughness may be briefly shown in the
simple schematic illustration in Fig. 6 [11]. Let us assume that the interface is shifted
by a quantity A with respect to its average position. In the same region, the
wavefunction will also be shifted by A (dashed line). Therefore, the average potential
at the centroid of the carriers is approximately raised by EcirA . It is well known that a
potential change would result in scattering and consequently act as a perturbation of
carrier transport [11], [12].

Before entering a more detailed. analysis, we have to make an important
assumption that the single subband approximation is quite accurate. Since most of the
holes are in the first subband, we have restricted our calculation to intrasubband
transitions. The resulting formulation for the surface roughness relaxation time 7,

A T Rl 00

where ‘VSR (q)‘ is the scattering matrix element. € is the angle between the initial
wavevector K; = ( Ki ,0) and the final wavevector K; = ( Kj, 8+ /). q is the

magnitude of the wavevector change ¢’ =k +k; —2kk; cos 0. The scattering matrix

13



element ‘VSR (q)‘ has been implemented according to Ando’s model [13]. Ando

constructed a more accurate model by taking the following two effects: the dipole
correction to scattering potential, due to the oxide deviations from perfect planarity,
and the effects of the image charges, due to the dielectric constant discontinuity at the

Si0,/Si interface. Hence, the scattering matrix element is written as

Ve (q)f =22
‘ SR (q)‘ 82 (q) (38)

where &, (¢)is the wavevector-dependent dielectric constant accounting for the

screening capability of the hole gassi.e., we have modified the perturbing potential

‘VSR (q)‘ by multiplying a correction factor 1/ gr(q). S (q) is a Gaussian power

spectrum of the surface roughness

S(q)=r(an)y e (39)

where A and A are the root-mean-square value of the asperities and the correlation
length, respectively. The A and A values used in this work and their comparisons

recently reported in other literatures are listed in Table 2.

r’ (q) contains all the remaining electrostatics (basically depending on E;, ).

By definition, I'* (q) can be expressed in terms of the wavefunction derivative at the

Si0,/ Si interface located at z=0:

14



_ &, (z)
=gz

FZ(Q){ e (dif)

2m_

oj:l (40)

It is noteworthy that the temperature has a strong dependence on the

wavefunction. As a matter of fact, F(q) can be separated into two individual parts

and summed up as follows:

C(q)=7(q)+Vim(q) 41)

The first term 7/( q) accounts for the potential perturbation due to real charges,
while 7,,,(¢) is the correction due'to their imiages. The term y(g) can be written
as eEeﬁCD(q) , Where <D(q) is aislowly varying function of q that decreases from

one to &, /&; when g—oo. As shewn i Fig..7, y(gq) changes less than 25%

1

when q spans from zero to 10" cm™". We can therefore claim that y(q) shows a

linear dependence on FE,, approximately. According to Fig. 7, Since the ratio
F(q) / y(q) is nearly a constant over the q range of interest in the scattering problem,

hence F(q) can also be considered linearly dependenton £, .

According to Fig. 8, the average spatial extent of the inversion layer carriers from

the surface z,, would decrease when the temperature drops [6]. Hence the surface

roughness scattering would become more noticeable at lower temperatures. In our

surface roughness scattering model, we have introduced a temperature-dependent

factor nfac, together with the linear dependence on E,, . As a consequence, we can

15



obtain

do

1 _ qzmgj)AzAzEz T L0 4{ e (EE,-)AZ} (1-cos6)’

effect0
3 sSin —e
o (E) h .

where

Eeﬁ’ect 0

e(Ndep +;Nin\/j
E —

eff
€18y

=nfacx E

(42)

(43)

(44)

Based on detailed calculations of the surface scattering matrix element ‘VSR (q)‘

[13], we have inferred a simple analytical formula accounting for the main functional

dependencies of 7y, on E,_ - and temperature for holes. The two-dimensional

mobility is derived in the following section.

2.7 Derivation of Two-Dimensional Mobility

Since the inversion layer carrier in the MOS system is quantized along the

out-of-plane direction, we must consider the quasi-2D case when calculating the

mobility of the MOS system. Starting with the current density per unit length J

(J=I/W) and n the carrier concentration per unit area, we can write

16



fdk

J=nqv=|"—</(LL, )qv= ’k
ngv=| 2ear (£.L,)av (45)
L L
f=f+ fO( “vege) (46)
fo= lE—EF (47)
l+e KT

where fy is the Fermi-Dirac distribution function under equilibrium and f is the
first-order Taylor series expansion with respect to energy E, i.e., f is the Fermi-Dirac

distribution function under applied-electric field" &.:

J, =qnv,
_qud k

—quo Vig s qf( 0

—a—f_;j)de]si )

d’k . . e .
where qJ‘ fovi4—2 is zero since no current flows under equilibrium. Using the
T

concept of conductivity o, the current can be expressed as follows:

J. =0.¢.

2
_ 9 2 _% 2
Gii—4ﬂ2'|.(vl.)r( DAk

(49)

17



According to the relation between the conductivity and mobility, we obtain:

q[ v’ (E )afo kdkd©
My =—=
ng 4r7’n

o, 1 f*(0)k*dEdO
7 (E) g o 2(6)
4r’n

o 12(6
afr(E Vor 2P g’

)
e)de(E—E,.)dE

(
w2 Tt (50)

The details of the expression above are derived in the polar coordinate, and we

have used the following definition:

nzD:J‘DzD(E)f(E)dE=%J‘f(E)dE (51)

E-E, :hzg(ﬁ)kz

= [ kdkdo = kde KO (52)
.[ .[ .[ g(@)k
dk
1 OE
———=nf(0)k
v=o—-=0f(0) (53)

If we separate the @-dependent terms and &-independent terms from Equation

(50), we could write the 2D mobility as follows:

18



— q i f2 (9) de E=E; aE
'lex 4 2h2 2 2 9 ©
Th 28 ( ) J' f Mpos dE
ik 27k’

qu 2fg22((6;))d6? ETE Z;),T(E)(E —-E, <z->

2 (54)
DOS J. f(‘)dE mc
E=E;

2xm

Finally, we could define the conductivity mass and the mean scattering time:

27wm g

m =
c Zf' f2 (9)
2¢°(0) (55)

6=0

j fo (E ) dE (56)
Note that both f ((9) and g(@) have the units of the 1/mass, so Mp,g and

m_ has the same units of mass.

19



Chapter 3

Simulation Results and Comparison

Based on simulated subband structure in Fig. 9, as mentioned in section 2.2, the
equivalent effective masses i.e., quantization-direction effective mass (m,),
density-of-states effective mass (mpps) and conductivity effective mass (m.) for
heavy-hole (HH), light-hole (LH) and split-off hole (SO) can all be extracted as
shown in the following Fig. 10 and Table 1.

In accordance with the assumptions we have made when calculating the hole
subband energy dispersion relation in the inversion layer of pMOS transistors, we

further present a simplified physics;based model. to describe the hole mobility, which
mainly consists of the phonon-limited mobility 4, ‘and the surface-roughness-limited
mobility g, . We have simulated many different cases with different substrate doping
concentration and within a temperature range from 50K to 300K. The model
parameters are: oxide thickness = 2.5nm, and poly doping concentration =
2.2x10*°cm™. Fig. 11 shows the mobility components for the substrate donor doping

concentration Np = 1.6x10°cm™ and temperature T=300K. According to

Matthiessen's rule, the total mobility, £, ,,, is described by

-1 -1 -1
lutotal = luph + lusr . (57)

Fig. 12 shows the simulation results of two-dimensional hole mobility. We
compare the simulation results with the experimental data of Takagi [2] in three

different temperatures of 77K, 153K, and 300K. We adjust the model parameter by
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fitting these data [2]: When T=77K and Np=2.7x10"cm”, nfac=9; when T=153K and
Np=5.2x lolscm'3, nfac=5.4; and when T=300K and Np=1.6x IOIGCm'3, nfac=1.6. The
surface roughness parameters are A=2.7 Aand A=10.3 A.

It is noticeable that there is a considerable deviation between simulation results
and experimental data in low effective electric field region and at extremely low
temperature. A reasonable physical explanation of this discrepancy is that we have
eliminated Coulomb scattering mechanisms in our model. As mentioned in Section
2.6, surface roughness scattering would dominate the scattering mechanisms at low
temperature, so the maximum nfac value occurs at the lowest temperature. If we plot
nfac as a function of temperature, it could be shown that nfac drops quickly as the
temperature increases from 50K to 300K. The minimum value of nfac is 1, which
occurs at room temperature, as shown in Fig. 13% In our simplified model, we have
replaced the calculation of the wavefunction derivative at the SiO,/Si interface located
at z=0 in Eq. (40) with a parameter nfac,-which is @ function of temperature. Hence,
the computational complexity of ‘out-model-is ‘much smaller compared to a fully

numerical treatment [10].

21



Chapter 4

Conclusion

In summary, we have presented a simplified model for the hole mobility in the
inversion layer of pMOSFETs. The equations in the model and the physical meanings
of its parameters are apparent. In fact, the parameters are extracted by best
curve-fitting to the experimental data as cited in Takagi’s paper [2]. It is noticeable
that at room temperature, our simulation results fit the experimental data well in the
entire effective electric field range. However, at extremely low temperature, for
example, 77K, there is a discrepancy in low effective electric field region. A possible

explanation for this error is, according, to.the universal curves in [2], that phonon
scattering becomes negligible .and| surface-roughnhess-limited mobility 4, would

dominate the scattering mechanism in.-high effective electric field region at low
temperature, but the importance of Coulomb< scattering would increase in low
effective electric field region. However, Coulomb scattering was not included in our
model.

Among the many topics in the future research, some important ones could be
listed as follows: mobility enhancement in strained-silicon pMOSFETs, and mobility
enhancement in one-dimensional silicon nanowires since physical fluctuations (like

surface roughness) has a strong impact on the transport of silicon nanowires.
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Reference Surface roughness A (A) = Surface roughness A (A)

This Work 2.7 10.3
Michielis et al. [10] 5.5 26
Wang et al. [15] 7.58 20
Fischetti et al. [5] 4.0 26
Oberhuber et al. [16] 5.0 20

Table 2
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