R R

P 3 R4 L - B L- 3

PALf E o e B Ry REEHE A2 R eI
Design and Implementation of an SPA-Resistant Dual-Field Elliptic Curve
Arithmetic Unit

Foyo4 iy ¥ Student : Chih-Yeh Tseng
R RS L Advisor : Hsie-Chia Chang

CIERREE R

Gt BRI JENCSSN- S g O
L,
A Fhesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiac Tung University.
in Partial Fulfillment of the Requirements
for the Degree of Master
In

Electronics Engineering
November 2008

Hsinchu, Taiwan, Republic of China

"5‘?\@«1{,—]‘;3—]‘—- n

SRR I S Bl SERC L L R e
L
RN R Ry g

Pl A B3 18 s §3FF SHLIL

ThmT AR - BREAEREY & GF()fr GEQT) i H i £ 2
2 o 38 H ~(ECAU) e * A\ AR sE 4 » & B 2 frac L 5 § 512
AT ERPG IV AigBELE P - BEE IR KPP,
S B o ARt ISAR Y H R B R R] O SE B2 b 0 SRR
g0 TR BETFRSFPFRFEZ o 5 TR AR PR
7 IUFE R H A (GFAU)R ED e Ao 2~ FaE e R B 8 I S pi o

i@ % ASIC 33infed MipB s GFAU #1F & < B4EM BB
A AR AUt 2500 0 ftrdk A el B oo 32 # 2 HECAU P o AP R
Er - 2 GFAU > FIP &2 %% 8 7 277.K BBIER o & 133MHz chpFrg ™
703 E - £ 512 Ay S E ki THF & 1376ms At E -

¥ 8 i R ik S kPrrkoP, 8 B R f % 27.53ms -

Design and Implementation of an SPA-Resistant Dual-Field Elliptic
Curve Arithmetic Unit

student : Chih-Yeh Tseng Advisors : Hsie-Chia Chang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

A universal*hardware architecture.of SPA-resistant elliptic curve arithmetic
unit (ECAU) suitable for both GFE(p) and GE(2") is intfaduced to work in
arbitrary field lengths within-a maximum :512-bit length.. The proposed algorithm
used in ECAU can randomly interleave k;P;+k,P, operations to cope with SPA.
The elliptic curve operations-are calculated over affine coordinate using high
speed Montgomery division“algorithm. | To reduce hardware complexity, the
sharing architecture called Galois field arithmetic unit (GFAU) is proposed to
perform modular addition, modular subtraction, Montgomery multiplication and

Montgomery division.

After implemented by ASIC design flow, the GFAU occupies 25% less
synthesized gatecount than previous work. With only one set of GFAU, the
proposed SPA-resistant ECAU occupies 277.5K gatecount. It averagely takes
13.76ms to perform one 512-bit scalar multiplication and 27.53ms to perform a
SPA-resistant 512-bit k,P,+k,P, operation both at 133MHz clock rate.

WEFLDREY FE AGA EL DT ETRERL o RBAK > T R
ARG PR ke gL ARPEBHpE T R LR L A L AT AR

iy s é’ﬁ;fﬁ'?zlf“ i %i/ﬁ’f\‘ PERITOL A LS EL Py AT FFI e 4 S
AHAP A oA RF %R R oA RBBOf 4 o0 2 F B LA
STAR MIffwpibrentii » p 3 F B P3F 5 RAL > MEALF LR g1 BT R 25
220 R o g SECURITY Bffz wenBE L7 > A HFZ \REL HHET T 2 RN
»EFIY P/ R o LS AEY S B2 O RTERAEL TR FE AR Y jci-"“
—A2% 4 e STAR Bfen= B i (i8R B EF gt d oht | 0 BE Fp AR
A1 EfRani®4E 0 B oanjkF s 0 % g {7 1 ECCemprojective coordinate &7 2 %
SRR G hF R R T A hpbdy el Fo RS - Ay 4 QL o R
imehword-base kAR 13 HE A X F B A0k 2 v TR IR A2 3 R 0 B A DS
AR RAR A S L U - A G b BRI E 0 A AR IET B R A R G BEIOE
B hg 5y 2R e i f 0 (AR ST o gt the B OASIS F B E chery =
SRR S I ‘“‘"‘56?'3,{ GBI S Bk 2 RY g 2 iR (R hR
i F 5 AL FT AP reviewsmdrdiRiitnd R0 FIAVHHE SR NS
RE - Acd HERDPEL A R=AZBHm T 0 - A2 T B aY &
R EF RF IR A A F L IeRIE A G T
R FE e o R R R MR R e d A H AP - T A
B S A s A TFfeRliRE- AR BRIIFR o

g

17

\!

RS

g JJR) ﬁxq’_ﬁ&‘zﬂ.m \.m'?\/(o f‘ ’5-1‘\‘5‘ ,,lf/\"x At J}f‘{\."%ﬁ& ':_] S i IFB
Bk A BB BAR G SAEL B S AGPE L AR 4 R g e E A
€ > # MSN ¢ t/‘.u\.mgj;/?—:,;, 'gi\. |% %,\, ,;Hg]] e VY é_; @Ilulg«fljéﬁ;“—b
SEE RSB REFURHT I T & A E T &Te’ﬁrgfi' CEARET AT A

2

4 aTE S AT L i,’r\frai&;;? BEHmY o Wt A A R o

o

Design and Implementation of an SPA-Resistant

Dual-Field Elliptic Curve Arithmetic Unit

{a JionjChiao Tung Univetsity

Abstract

A universal hardware architecture of SPA-resistant elliptic curve arithmetic unit (ECAU)

suitable for both GF(p) and GF(2™) is introduced to work in arbitrary field lengths within

a maximum 512-bit length. The proposed algorithm used in ECAU can randomly inter-

Contents

1 Introduction

1.1 Background
1.2 Motivationo
1.3 Thesis Organization ; B - e e e e e e e

2 Elliptic Curves .
2.1 Basic Facts ¢ S

2.2.3
2.3 Elliptic C i CsOver o S e
23.1 Hofig jeous Proj Sookditabds L L A 0E
2.3.2 iy Coordintes P+
2.3.3 obi i

2.3.4 | Coordinates . ok
2.4 Elliptic Curves Scalar Multilication E
2.4.1 Double-and-Add Algorithm
2.4.2 Addition-Subtraction Method
2.4.3 Binary NAF Method
3 Galois Field Arithmetics
3.1 Modular Multiplication
3.1.1 Traditional Modular Multiplication Algorithm
3.1.2 Montgomery Multiplication Algorithm

3.1.3 Modified Montgomery Multiplication Algorithm
3.1.4 Integer Domain and Montgomery Domain
3.2 Modular Inversion Lo
3.2.1 Fermat’s Little Theory
3.2.2 Extended Euclidean Algorithm
3.2.3 Montgomery Modular Inversion Algorithm
3.3 Modular Division
3.3.1 Multiplication after Inversion
3.3.2 Modular Division Algorithm
3.3.3 Montgomery Modular Division Algorithm

3.4 Domain Transformation

3.5 Summary " b

Power Analysis

4.1 SimplePow .' . . F . . L

6.2.1 ASIC Implementation
6.2.2 FPGA Implementation

Conclusion and Disscusion

i

45
45
47
49

52
52
58
61

66
66
67
67
69

71

List of Figures

1.1 Symmetric-key cryptography block diagram 1
1.2 Asymmetric-key cryptography block diagram 2
2.1 Hierarchal organization of elliptic curve cryptography. 6
2.2 Elliptic curves over the rea = : 10
2.3) 11
24 12
4.1 o1
5.1 53
5.2 55
5.3 56
5.4 o7
5.5 59
5.6 60
5.7 62
5.8 63
5.9 64

il

List of Tables

1.1

2.1
2.2
2.3

3.1
3.2

3.3
3.4
3.5
3.6

5.1

5.2
5.3

6.1
6.2
6.3
6.4

ASIC synthesis results comparison 67
Elliptic Curve Scalar Multiplication ASIC Performance Comparison 68
512-bit FPGA synthesis results. L. 69
Elliptic Curve Scalar Multiplication FPGA Performance Comparison . . . 70

v

Chapter 1

Introduction

1.1 Background

The modern cryptog kind: symmetric-key cryp-
tography (secret-key é s0graphy (public-key cryp-
tography).

Symmetric-ke § : eceiver share the same
key or the decrypt on key. It can be
illustrated in Figu . v k (i y known until June
1976. Now the mos i v cryptog ithm is the Advanced

Figure 1.1: Symmetric-key cryptography block diagram

A significant disadvantage of symmetric cryptography is the key management. The
sender and the receiver should exchange the same key through a trusted channel. Besides,
each distinct pair of communication parties must, ideally, share a different key. The
number of keys required increases as the square of the number network members, therefore,

complex key management schemes are demanded to keep them all straight and secret.

In 1976, Whitfield Diffe and Martin Hellman [2] proposed a novel cryptography called
public-key cryptography (also called as asymmetric-key cryptography), which used dis-
crete logarithm problem to prevent the secret-key from being acquired with known public-
key. It can be illustrated in Figure 1.2. This method of exponential key exchange came
to be known as Diffie-Hellman key exchange. RSA and El-Gamal are two of the popu-
lar public-key cyrptosystems widely used nowadays. The RSA algorithm based on the
difficult of factoring large numbers was published by Rivest, Shamir and Adleman [3] at
MIT! in 1978. Further, the El-Gamal algorithm based on Diffie-Hellman key agreement
describes the public-key system and digital signature schemes, and it was proposed by

Taher ElGamal [4] in 1985.

plaintext
—>

plaintext
—>

lectronic commerce
RSA and modular
[5] attacks for RSA

ethods decrease the

the algebraic structure of elliptic curves over finite fields. It was independently proposed
by Victor S. Miller of IBM? in 1986 [6] and Neal Koblitz of the University of Washington
in 1987 [7]. There are no subexponential algorithms known for the elliptic curve discrete
logarithm problem (ECDLP) and denotes that there are no efficient mathematical attacks
known on it. Consequently, the parameters for ECC can be chosen to be much smaller

than the parameters for RSA with the same level of resistance against the best known

Massachusetts Institute of Technology, located in Cambridge, MA, USA. http://web.mit.edu/
International Business Machines Corporation. http://www.ibm.com/

attacks. Table 1.1 shows each different parameter size with the same level of security

strengths compared with given cryptography [8].

Table 1.1: Comparable security strength for given cryptography

ECC (e.g., ECDSA) IFC (e.g.,, RSA) Symmetric key algorithms

f =160 — 223 k= 1024]
f =224 255 k = 2048 :
f =256 — 383 k = 3072 AES-128
f=384—511 k = 7680 AES-192
f=5121 k = 15360 AES-256
I ECDSA [9].

2 TFC denotes i
3 f is the si
4 k is the

Note that in

enormous as the

can extract cryptographic keys and other secret information from the device without
invasion. It works over all kinds of public-key and secret-key cyrptosystems. Most of all,
it’s the only efficient attack on elliptic curve cryptosystem. Lots of countermeasures were
proposed to resist power analysis. To learn more information about the countermeasures,
[11] can be referred. A detailed introduction of power analysis attack will be given in
chapter 4.

Furthermore, the performance of ECC mainly depends on the efficiency of its modular

arithmetics, namely, scalar multiplication. Given a positive integer, and a point P on an

elliptic curve. The scalar multiplication kP can easily be computed by iterative additions
and doublings. There are some algorithms to compute the multiple of points on elliptic

curves. More details will be discussed in chapter 2.4 later.

1.2 Motivation

The scalar multiplication is the most important operation in an elliptic curve cryp-
tosystem due to the ECDLP. In the traditional affine coordinate elliptic curve point
representation, the result of addition and doubling can be derived through several mod-
ular multiplication and one modular division. Modular multiplication has been improved

by the Montgomery’s technique [12] which will be discussed in chapter 3.1.2. Tradition-

modular multiplication after modular inversion.

ally, modular division can be achieved
Then modular inversion canibe one by 1terative ultiplication introduced in the
Fermat’s little theorem raction and shifting intro-
duced by extended Eue extremely time-consuming
and the second on

Elliptic curve ot AlE : : { has some different
projective coordiL At alar multiplication

only consists of med gh more multiplica-

tions are utilized, t..] 11t . lerefore, most research in

recent years focus on'the o tlh;*J : nultiplication algorithm.

The modular divisior o ified vith the Montgomery tech-

nique by Yao-Jen Liu in 2007 o inversion after multiplication

algorithm is replaced by just one Montgemery o vision. Hence the area and the compu-
tational time is reduced, which will be discussed in chapter 3.3.

Therefore, in this thesis, an approach is provided to compute the scalar multiplication
on elliptic curves in both GF(p) and GF(2™), and a unified Montgomery multiplication
and division design is proposed to deal with various finite field degrees and different
primitive polynomials in GF(2™). In this way, performance in terms of the area by

computational time is near to that of projective coordinates algorithms. Therefore affine

coordinates algorithms can be bring back to compete with projective coordinates ones.

1.3 Thesis Organization

In this thesis, a universal dual-field elliptic curve arithmetic unit is proposed. In
Chapter 2, the preliminary mathematical background of elliptic curves is introduced. In
Chapter 3, the Galois field arithmetics is introduced. The Montgomery technique is also
involved to improve the multiplication and the division. In Chapter 4, the power analysis
attack and its countermeasures are introduced. In Chapter 5, all the proposed universal
dual-field architectures are described. In Chapter 6, it shows the hardware implementation

results and test consideration. The conclusion is given in Chapter 7.

Chapter 2

Elliptic Curves

ECDH, ECDSA, ECIES Cryptographic protocols

Elliptic Curve Doubling, Addition,
Scalar Multiplication, Hash Functions

Galois Field Arithmetics)

Figure 2.1: Hierarchal organizations0f elliptic curve cryptography.

Coniplex operations

Fundamental arithmetics

The hierarchal .organization of -elliptic curve=cryptography isiin Figure 2.1. Galois
field arithmetics constauctithe elliptic curve arithmetics andsthelelliptic curve arithmetics
construct complicated protocols.

Elliptic curves [14] [15] aremot ellipses asshown in literal. In mathematics, an elliptic
curve is an algebraic curve defined by a cubic equation such as y? = 3 + ax + b, which
is non-singular, i.e. its graph has no cusps or self-intersections. Elliptic curves received
their name from their relation to elliptic integrals such as

2 T dz

/Z2 dx
o VIrd3+ar+b o Vrd3+ar+b

that arose in connection with the computation of the circumference of ellipses.

and (2.1)

2.1 Basic Facts

Let F be an algebraically closed field and F? denote the affine plane A2, the usual plane,
A%(F) = {(x,y)|z,y € F}. Let C(z,y) be an irreducible polynomial over F, and the curve
C means the set of zeros of C in the affine plane F? ie. {(z,y) € F*C(z,y) = 0}.

Assume that P is a point (x,,y,) on the curve C. If both of the partial derivatives vanish

at P, that is ac(gg’y”) = ac(gg’;’y”) = 0, then the point P is called a singular point on the
curve C. A curve is called a singular curve if and only if it has at least one singular
point on it, otherwise it is called a non-singular curve. An elliptic curve commonly used
in cryptography is a non-singular curve because of its better security level relative to a

singular curve. A singular elliptic curve is thought of insecure in general. Definition 2.1

shows the algebraic equation of the ellipti

in a more general form.

(2.2)

impien
M
=

y) € F? that satisfy

Definition 2.2. T ' i f > ' ' _ of the y-azis and the
line at infinity. Theg infinity f poi rogective plane for which
Z = 0. Therefore, thespoin w' theprojective plane, i.e. the

equivalence class with X =

No further details about projective plane are shown in this thesis since only affine
coordinates are discussed in the remaining chapters.
In order to describe a singular or non-singular curve clearly, an important quantity A

related to the elliptic curve called the discriminant of E is defined.

Definition 2.3. A is the discriminant of E and is given by

(b, = a2+ day
bs = 2a4+ ajas
A = —bbs — 8b] — 27b§ + bsbabs, whereS by = a2 + 4ag (2.3)
bs = alag+ dasag — ajazay
\ +agai — a3

and the symbols above correspond to (2.2).

Theorem 2.1. A cubic curve defined by a Weierstrass equation (2.2) is singular if and

only if its discriminant A is zero.

The Definition 2.1 is feasible for any field F. However, the elliptic curves commonly

Since the char(F) # 2, su }) - S as) 1'the left hand side in (2.2).
CLlX + a3)

= (Y _ a1X2+a3)2 + alx(y _ a1X2+a3) + a3(Y _ a1X2+a3) (2.4)

2 2
_ 2 _ 9 v2 _ aias _ 9
= Y 4X 2X 4

Y24+ a XY +a ; Y)— (XY —

Notice that both XY and Y term are eliminated so the coefficients a; and as should be
zero. Thus the equation (2.4) results in Y2 by substitution for a; = ag = 0. Further, the
char(F) # 3 so substitute (X,Y) by (X —%,Y’) on the right hand side in equation (2.2).

X3 £ auX? + auX +ag substitute (X,Y) — (X — % Y)
= (X — 2P 4 ay(X — L) 4 ay(X — 2) +ag (2.5)

= X*+(Fd}+a)X + (£a3 — 3a0a4 + ag)

8

Then again, the X? term is eliminated so that the coefficient ay should be zero and the
equation (2.5) results in X* + ay; X + ag by setting az = 0. According to (2.4) and (2.5),

let a; = as = az = 0,a4 = a,ag = b and the equation (2.2) is modified as follows
Y2=X*+aX+b, abcF (2.6)

where char(F) # 2,3. Note that the elliptic curve is a smooth curve, i.e. the curve
is non-singular. Review in Theorem (2.1), an elliptic curve should have its discriminant
nonzero. Therefore, the discriminant of the cubic curve (2.6) can be derived through (2.3)
by substitution for a; = ay = a3 = 0,a4 = a,a6 = b. Thus A = —16(4a® + 27b) # 0.

For a field of characteristic 2, only the non-supersingular case is considered. In brief,
non-supersingular has the result of the coefficient a; # 0. Since a; # 0, substitute (X,Y)

by (aiX + 2, afY + %) in (2.2) likewises A.simplified form is obtained as follows
1

(2.7)
where char(F) = 2. There | C - he'cubic polynomial on the
right hand side in :

2.2 Elliptic ne Coordi-
nates

Elliptic curve cr the variables and co-

efficients are belong t6 ryes are commonly used in

cryptographic applications. G'F(p) and binary curves over

GF(2™) respectively. Before discussic ove curves, the elliptic curves over the

reals are first introduced because some of the basic concepts are easier to visualize.

2.2.1 Elliptic Curves over the Reals
According to equation (2.6), a definition for elliptic curves over the reals is given below.
Definition 2.4. A non-singular elliptic curve E over the reals is an equation of the form
v =2 +ar+b (2.8)
where a,b € R are constants such that 4a® + 27b* # 0.

9

It can be shown that the condition 4a®+ 27b% # 0 is necessary and sufficient to ensure
that the equation (2.8) has three distinct roots which may be real or complex numbers.
Figure 2.2 shows two non-singular elliptic curves and one singular elliptic curve whose

equation are y? = 2° — 4z, y? = 23 + 73, and y? = 2® — 3z — 2 respectively.

vZ =x3 - ax vZ=x3+73 yvZ=x2—-3x+2
10 . 30 . 10 .
sl . sl
20 -
6 . 6
4+ . 4t
10
Db o 2t
> o} O 4 = o} > of
_2- . . . ‘, . . . _2-
‘ —10}
-4+ - —4
_6- - _6_
20
_8- - _8_
-10 -30 —-10
-5 [6) 5 10 10 -5
X X

additive identity which i f%he group of points.

2. If P is not the point at \ the symmetry point of P on the
curve F; that is, —P is the point wi e same z-coordinate and negative the y-
coordinate of P, i.e. —(z,y) = (2, —y). According to equation (2.8), if (z,y) is a

point on the curve F, then the point (z, —y) is consequently on the curve E.

3. If P and @ are different points on E with different z-coordinates, then let [be the
line through P and @), and the line [intersects the curve E in exactly one more

point R. Then the sum P +) = —R is defined and is illustrated in Figure 2.3.

4. If P and (@) are different points on E with the same z-coordinates, that is, @) is a

symmetry point of P equal to —P, then the sum P+ Q = P+ (—P) = O is defined.

10

curve F. Thus th - : g is finéd and is illustrated in

Figure 2.4. Fu as ole ta cy at P, that is, P

In figure 2.3, i, > i) and (x e coordinates of P,
@, R and P+ (@) respec y. Betls -! Eﬂﬁ' f the line through P and
Q@ then \ = % is 1 g Yo — Az is the consequence
of the point P lying on the le and (¢, A\t 4+ () denotes the

elliptic curve E if and only if (¢, \t+ 3) satisfies equation (2.8) so that (At+3)* = t*+at+b

and rearrange it below by order of ¢.
B4 (=24 (a—208)t+ (b— %) =0 (2.9)

Note that the equation has exactly three distinct roots and two of them are known as
and z3. Remember the relation between roots and coefficient mentioned in Viéte formula

first proposed by Frangois Viéte (1540-1603), a French mathematician.
Theorem 2.2. (Viéte’s Formula) Assume P(x) is a polynomial of degree n with roots

11

T1,To,...,Ty. Forl

roots x;j of the polyn®

(2.10)
where the roots ar) A e symmetric polynomial
Hi(xlv s 7xn) fO 2

(2.11)
For example, the first e

Sl = Hl(xl, e
Sg = HQ(xl,...,:cn) = T1To + T1T3 + 14 + ToT3 + - - -
1<i<j<n
Sg = Hg(.rl, c . ,l‘n) = Z Liljx = T1T2T3 + T1ToX4 + ToX3T4 + - - -
1<i<j<k<n
and so on. Then Viéte’s formula states that
S, = (—1)idn=t (2.12)
Qn,
Proof. The polynomial P(x) can also be written as
P(z) = ay(x — 1) (x — x9) -+ - (x —)
! ! (2.13)

= ap(z" — S12" S — o (—=1)"S,,)

12

According to equation (2.10), setting the coefficients equal yields
an(—l)iSi = Up—;
which is what the Viéte’s formula states for. Q.E.D.

The Viéte formula was proved by Viéte (1579) for positive roots only, and the general
theorem was proved by Gérard Desargues (1591-1661). Therefore the sum of the roots s;
of a monic polynomial shown in (2.9) is equal to minus the coefficient of the second-to-
highest order. A monic polynomial or normed polynomial is a polynomial whose leading
coefficient is equal to 1. It concludes that the third root x5 in (2.9) is equal to A2 — 2y — 2
since the sum of the three distinct roots s; is A%2. Then the y-coordinate of R is A\z3 + 3

and y3 is minus the y-coordinate of Therefore the coordinate of P + () in terms of

X1, T2, Y1, Y2 is shown below.
(2.14)

In figure 2.4, let e coordinates of P,
Q, Rand P+ (@

Let [:y =X x+ [3.b ihe equation @ : : 1 at P. The slope of

= w1 and yp = y1.

fion (2.8) as follows.

(2.15)

S0 According to (2.14), substitute (224 for

So the slope of the tangent line A =

2y1 To—T1
(3?‘5“) and x9 = 21, y2 = y1. A formula for doubling a point is obtained.
323+ a.,
T3 = (2y) — 2£L’1
1
e (2.16)
ys = (21y1 Jz1 —23) — Y1

Table 2.1 shows the addition formula mentioned above.

13

Point Addition (P # @) Point Doubling (P = Q)

1'3:)\2—1'1—$2 3?3:)\2—21’1
P+Q ys = My —a3) — 1 ys = M1 — x3) — 1
— 3z24a
N = L=u N\ o= 24
Tro—I1 2?]1

Table 2.1: Point addition formula over reals.
2.2.2 Elliptic Curves over Prime Fields

Let p > 3 be a prime. Elliptic curves over GF(p) are defined almost the same as they

are over the reals and the operations over the reals are replaced by modulus operations.

Definition 2.5. Let p > 3 be a prime. A non-singular elliptic curve E over the finite
field GF(p) is an equation of the form

(2.17)

where a,b € GF(p) a istants such

,-"(562, 5) and

Assume that (
The

: the ¢ nates of P, Q and P+ Q)
. h .I

respectively.
According to equa
over GF(p) is show

Table 2.2: Point addition formula over GF(p)

2.2.3 Elliptic Curves over Extension of Binary Fields

Definition 2.6. Let p(x) be a primitive polynomial of degree m. A non-supersingular

elliptic curve E over the extension of binary field GF(2™) is an equation of the form
Vray=2>+ax’+b (2.18)
where a,b € GF(2™) are constants.

14

Note that in this subsection, all of the arithmetic operations are defined over GF'(2™)
and all of the parameters are belong to GF(2™), too. Assume that (x1,y1), (22,v2) and
(x3,y3) denote the coordinates of P, @) and P + @ respectively. Then the coordinate of
—P is defined as (z1,21 +y1) and P+ (—P) = O.

If P#Q,letl:y = Ax+ [be the equation of the line through P and @) then \ = %

is the slope of the line [and § = y; + Ax; = y2 + Axy is the consequence. The following

equation shows all of the points (¢, Az +) on [simultaneously lies on the curve E.
BN+ A+a)t+(B2+b) =0 (2.19)

Thus the third root z3 = A2 + X\ + 21 + 23 + a and the corresponding y-coordinate is
Az3 + (3. So the negative of the y-coordinate y3 = (Az3 + 3) + x5 = AM(z1 + x3) + 23 + y1.

angent line to the curve E at P. The
be derived by differ dation of the equation (2.18).

(2.20)

= XM+ X+ a and
ys = Mx1 + 13) only used for y3 by

changing varibale. G B T 22. Thus rearrange

23 =N+ \N+x1+224+0a

ys = Mz +23) + 23+ 1

P+Q y3:>\(1’1+$3)+1’3+y1 9
N\ = etm = A+ Dzs+ 2

x24T
A= T+ z—i

Table 2.3: Point addition formula over GF'(2™)

15

2.3 Elliptic Curve Arithmetics over Projective Coor-
dinates

Traditionally, the Galois field inversion is accomplished using the Fermat’s little the-
orem described in chapter 3.2.1 which is estimated to take 9 to 30 Galois field multipli-
cation’s computational time in case of GF(p) with p larger than 100 bits [16]. Therefore,
transferring the point coordinates into another coordinates that can eliminate the inver-
sion operation can greatly improve the performance.

Except Affine coordinate, there are four different coordinate systems mentioned in
this section: Homogeneous Projective, Jacobian, Chudnouvsky-Jacobian and Modified Ja-

cobian. The computational time is represented in terms of number of multiplications (M)

following sections are a ne : eld operation is the main

concern in this the

projected coordinates:

(2.21)
The elliptic curve equation becomes:
Y27 = X +aXZ? 4+ b27° (2.22)

In this coordinate system, the points P, Q and R are represented as follows:

P = (X17Y17Z1)7 Q - (X27Yv27Z2) and R - P+Q - (X37}/;37Z3)'

e The addition formulas are given by:

X3 = ’UA, Y?, = ’II,(UQXlZQ — A) — U3}/122, Z3 = U?’ZlZQ

16

where:

u = YéZl - YiZQ, v = X2Z1 - X1Z2 and A = U2Z122 - U3 - 2’!}2X122

e The doubling formulas are given by (R = 2P):
X3 = 2hs, Y3 = w(4B — h) — 8Y?s?, Z3 = 8s®
where:

w=aZ}+3X?, s=Y,Z;, B=X Y s and h = w? — 8B

The computational time for addition and doubling operations using homogeneous coor-

dinates is (12M+2S) and (7M+5S) respectively.

In the Jacobian coerdins ving tra : mctions are used:

(2.23)

(2.24)

In this coordinate s ' ! point) and R=are . 5 follows:

where:

Ul :X1Z22, U2:X2Z12, Sl :}/1Z23, 52:}/22%, H:Uz—Ul andr:SQ—Sl

e The doubling formulas are given by (R = 2P):
X3:T, YE;: —8}/14+M(S—T), 23:2Y1Z1
where:

S =4X,Y2 M =3X?+aZ! and T = —25 + M?

17

The computational time for addition and doubling operations using Jacobian coordinates

is (12M+4S) and (4M+6S) respectively.

2.3.3 Chudnovsky-Jacobian Coordinates

D. V. Chudnovsky [17] concluded that Jacobian coordinate system provide faster dou-
bling and slower addition compared to projective coordinates. In order to speedup ad-
dition, he proposed the Chudnovsky-Jacobian coordinate system.In this coordinates a
Jacobian coordinates point is represented internally as 5-tupel point (X,Y, Z, Z% Z3).
The transformation and elliptic curve equations are the same as in Jacobian coordinates,
while the points P, QQ, and R represented as follows: In this coordinate system, the points

P, Q and R are represented as follows:

I during the previous

iteration and fed int ent 1 G 3 g 72 72 need to be calculated.

X, = _HP - — L7l 72 = 22,
73 = 78 ’

where

Ui = X122, Uy — Byt N andr=5,- 5

e The doubling formulas are given by (R = 2P):
Xy =T, Ys=—=8Y'+ M(S = T), Zy = 21 %, Z3 = 73, Z3 = 7}
where:

S =4X,Y2 M =3X?+aZ! and T = —25 + M?

The computational time for addition and doubling operations using Chudnovsky-Jaconian

coordinates is (11M+3S) and (5M~+6S) respectively.

18

2.3.4 Modified Jacobian Coordinates

Henri Cohen et.al. modified the Jacobian coordinates [16] and claimed that they got
the fastest possible point doubling. The term (aZ?) is needed in doubling rather than in
addition. Taking this into consideration, they employed the idea of internally representing
this term and provide it as input to the doubling formula. The point is represented in
4-tuple representation (X,Y, 7, aZ%). It uses the same transformation equations used in
Jacobian coordinates.

In this coordinate system, the points P, Q and R are represented as follows:

P = (XlaYi7Z17aZf)7 Q = (X27}/2a22aaZ§) and R =P + Q = (X37Y:"’>7Z37aZ‘§)-

e The addition formulas are given by:

s using Modified Jacobian
coordinates is (13M+6S) and (4

19

2.4 Elliptic Curves Scalar Multiplication

Scalar multiplication is used to compute a multiple of an Elliptic curve point kP,
where P is an elliptic curve point and k is a positive integer except the condition that k
equals to the order of P, then kP is the point obtained by adding together k copies of P

and this operation dominates the execution time of elliptic curve cryptographic schemes.

2.4.1 Double-and-Add Algorithm

Algorithm 2.1. (Left-Right Double-and-Add Algorithm)
Input: A positive integer k<mn, where n is the order of P; and an elliptic curve point P.

Output: The elliptic curve point kP.

2.2 If by =

3. For i from O down ton —
3.1 If k; =1, then set R= R+ (.
3.2 Set QQ = 2Q).

4. Output R.

The double-and-add algorithm is a basic method for calculating scalar multiplication.
It achieves by repeated point double and add operations. The expected number of ones

in the binary representation of k is %, where m is the length of the integer k. The

number of ones in k indicates the number of times that point addition performs and the

number of times that point doubling operation performs is approximately equal to m.

20

Thus Algorithm 2.1 averagely takes % times point addition and m times point doubling
to perform m-bit elliptic curve scalar multiplication once.

Algorithm 2.2 calculates the scalar multiplication in an opposite way. It also achieves
by repeated point double and add operations. But if there exist one doubling hardware
and one addition hardware, it can achieve the double and add operations simultaneously.

It is useful in DPA resistant mentioned later in chapter 4.

2.4.2 Addition-Subtraction Method

If P(z,y) € E(F,) then —P = (z, —y); else if P(x,y) € E(Fom) then —P = (z,2 +y).
Thus the point subtraction is as efficient as point addition. Then Algorithm 2.1 is replaced

by using addition-subtraction method and shown in Algorithm 2.3.

Algorithm 2.3. (Additio

Input: A positive intege . 1 d an elliptic curve point P.

1. Let eye,_1.. "€ epre] ' ' ve leftmost bit e, is 1.

3. Set R=P.
4. For i from n

4.3 If e; =0 and
5. Output R.

2.4.3 Binary NAF Method

Owing to point subtraction is as efficient as point addition, the signed digit representa-
tion k = > k;2" is used, where k; € {0, 4+1}. A non-adjacent form (NAF) is a useful signed
representation which has the property that no two consecutive bits in k are nonzero and
has the fewest nonzero bits of any signed digit representation of k. Each positive integer
k has its unique NAF, denoted by NAF(k). The NAF of an integer k£ can be computed
efficiently by using Algorithm 2.4 [18].

21

Algorithm 2.4. (NAF of a Positive Integer)
Input: A positive integer k.
Output: NAF(k).

1. Set1=0.
2. While k> 1 do
2.1 If k is odd, then set k; = 2 — (k mod 4) and then set k = k — k;; else set k; = 0.

2.2 Setkzgandi:i+1.

3. Output k, whose binary representation is (ki_1ki—o ... kiko).

Note that the length of NAF (k) is at most one bit longer than the binary representation
of k and the average density of nonzero bits in NAF (k) is approximately % [19], where m
is the length of the integer k.

1. Let kykn_y .ok
2. Set R=P.
3. For i froma

A leftmost bit k,, is 1.

Then the Algorithm 2.5 modif oOr 1 by using NAF (k) instead of the binary
representation of k& and averagely takes approximately % times point addition and m times
point doubling to perform m-bit elliptic curve scalar multiplication once. Furthermore, it

follows that the expected running time of Algorithm 2.3 and Algorithm 2.5 are the same.

22

Chapter 3

Galois Field Arithmetics

In abstract algebra, Galois field, named in honor of Evariste Galois(1811-1832), which

tography, Chapter rritten Nea D referred. In this chapter,

algorithms for modula

in section 3.1, 3.2, and 1ain_transformation il ed in section 3.4, and perfor-

mance comparison is shown it

3.1 Modular Multiplication

3.1.1 Traditional Modular Multiplication Algorithm

In human basic cognition, A x B (mod p) = C' (mod p), means to multiply A by B,
then to find the product modulo p. But this computation flow does not work with com-
puters, because trial division is involved. A traditional modular multiplication algorithm

for computers is described below.

23

Algorithm 3.1. (Traditional Modular Multiplication over GF(p))
Input: A, B and p, where A, B € GF(p) and p is the modulus p.
Output: C, where C = A x B (mod P).

1. Let Gy 1Qm—2 . . . arag be the binary representation of A.
2. Set C =0.
3. Fori fromm —1 to 0 do

3.1. Set C =C x 2.
3.2. Set C = (C'+a,;B).
3.3. While C > p, set C = C — p.

4. Output C'.

The suffix 7 of the variable indicates the

;th bit in the binary representation of the
variable A. i

In Algorithm 3.1, the v 0op bound €' smaller tlran p. But more than one iteration
an be bounded, then
the while loop ca iminated. Fr [i i he' radix-2 Montgomery

multiplication algesi i) 3 can be vely rehended.

integer with 271 < p < 2™, let A, ' ositive integers smaller than p, and let r be
an integer where p and r are relatively prime, i.e. ged(p, r) = 1. There exists an integer

r~! that indicates the multiplicative inverse of r (mod p), i.e. 7 x r™* =1 (mod p). An-

1 1

other integer p’ is involved, which satisfies » x r—' — p x p’ = 1. Here, both r— and p/
can be derived by the extended Euclidean algorithm described later in sub-section 3.2.2.

The Montgomery multiplication algorithm is described below.

24

Algorithm 3.2. (Montgomery Multiplication Algorithm)
Input: A, B and p, where A, B € GF(p) and p is the modulus p.
Output: C, where C = A x B x r~! (mod p).

1. SetU=AxB

2. SetV=Uxyp' (modr)

3. Set C =(U+V xp)/r

4. If C'>p, then set C =C —p

L —pxp =1, sothat

Proof. Given r x r~
pxp =rxrt-1 (3.1)

and in step 2,

(3.2)

Substitute U in equation

(3.3)

(3.4)

In step 3, C' is the sum of g and @. Both of them are smaller then p, since r is
always set to be an integer larger than p. As a result, C' will not be larger than 2 x p.
Just one subtraction in step 4 can bound C' in GF(p).

In this way, Algorithm 3.2 is proven. Q.E.D.

In Montgomery multiplication algorithm, the operations of modulo r and divide by r
are both trivial operations since r is always given as 2™. Thus Montgomery multiplication
has the advantage of hardware implementation, and it’s simpler and faster than traditional

modular multiplication.

25

3.1.3 Modified Montgomery Multiplication Algorithm

Various methods are proposed to realize the Montgomery multiplication algorithm [20].
The radix-2 Montgomery multiplication algorithm [21] over GF'(p) is shown in Algorithm
3.3 and it can be easily adapted to do multiplication GF'(2"). Algorithm 3.4 shows the
binary version of the radix-2 Montgomery multiplication algorithm and it has been proven

by [22].

Algorithm 3.3. (Montgomery Multiplication over GF(p))
Input: A, B and p, where A, B € GF(p) and p is the modulus p.
Output: C, where C = A x B x 27™ (mod p).

1. Let @yy_1Qp—s . .. araqg be the binary representation of A.

2. Set C'=0.

3. For i from 0 to m —

3.1. Set T = (C
3.2. Set C = ("

Output: C(z),

1. Let A(z) = Y. ai?, Va, e th ynomial representation of A(x).
2. Set C'(z) = 0.
3. For i from 0 to m —1 do
3.1. Set T'(z) = (C(z) + a; B(x)).
3.2. Set C(x) = (T'(x) +toP(x))/x.
4. Output C(x).

The suffix ¢ of the variable indicates the ¢-th bit in the binary or polynomial repre-
sentation of the variable, i.e. ty denotes the least significant bit of 7. Note that the

coefficients of the polynomial representation of A(x), i.e. @y _1am_2...a1aq, are also the

26

binary representation of the integer A(2) since A(2) = S7.'@;2". The addition and
subtraction are the same as those in GF(p) and GF(2™). Furthermore, division by 2 in
GF(p) and division by x in GF(2™) are both shift operations.

Here a more intuitively illustration is given. Algorithm 3.3 can be easily adapted from
Algorithm 3.1. To bound the variable C' in Algorithm 3.1, C' is set to be (T' + typ)/2 in
Algorithm 3.3. Adding top makes (T'+ top) even, thus the right shift operation won’t lose
the least significant bit. In this way, C' is always smaller than 2 x p. After the for loop,
only one subtraction is involved to bound C' in GF(p). To sum up, C suffers m times

right shift operation, so C'is equal to A x B x 27™ (mod p) at last.

3.1.4 Integer Domain and Montgomery Domain

In above section, Montgome i tien is introduced to speed up the

(3.7)

Hence the Montgon d Ot defined as A = a -
ordinary modular

operation which is Y] modular multiplier

(3.8)

(3.9)

= a-b-r (modp) (3.10)
= ¢-r (mod p) (3.11)

the output will also be in the Montgomery domain. Which implies that if inputs are
in the Montgomery domain, no matter how many Montgomery modular multiplications
are utilized, the final output is still in the Montgomery domain, and only one domain

transform is required to transform the result back to integer domain representation.

27

In elliptic curve cryptosystems, for speed and implementation consideration, the Mont-
gomery modular multiplication is chosen. Thus modular addition, subtraction, and divi-
sion algorithms must also keep the output results in the Montgomery domain representa-
tion. Modular addition and subtraction in Montgomery domain are the same as addition
and subtraction in integer domain. And the modular inversion and division are illus-
trated in later sections.Detailed transformations from and to both domains are described

in section 3.4.

3.2 Modular Inversion

Modular inversion is used in cryptographic applications such as the Diffie-Hellman key

field element a € GF (p)"The Altiplicative i ais'dendted as a=! (mod p), where

a exists if and only if

a and p are relati i i) ions about abstract
algebra
3.2.1 Fermz:

s firs ol amﬁ. ierre, ermat(1601-1665). It

states that if p is a priine ber#hen for any integer a; « r will be evenly divisible

(3.12)

A variant of this theorem is stated in the following form: if p is a prime and «a is an integer

co-prime to p, then a?~! — 1 will be evenly divisible by p. Expressed as follows:
a’ ' =1 (mod p) (3.13)
The proof of Fermat’s little theorem is given as follows.
Proof. GF(p), can be recognized as:
GF(p)=1,2,...,p—1 (3.14)

28

Given 1 < a < p, that is a is an element of GF(p). Let k be the order of a, so that
a* =1 (mod p) (3.15)
By Lagrange’s theorem, k divides the order of GF(p), whichis p—1,s0p—1=Fk x m:
a ' =d""m = (") =1 (mod p) (3.16)
Q.E.D.
Divide both sides of equation 3.13 by a,
a’?=a"" (mod p) (3.17)

the multiplication inverse of a over GF'(p) is derived. The multiplicative inverse of a over

GF(2™) can also be derived from Ferma e theorem.

(3.18)

15 and squares. But when

the modulus p or nitis ex 4 _T 0C ‘consumed. This method is

3.2.2 Exte
The Euclidean (GCD) of two inte-
gers. The GCD of aa jive integer that evenly
divides both a and b. Ty y if their GCD equals 1.
The extended Euclidear an. extension of the Euclidean al-
gorithm and it can be used to Bézout’s identity which is a linear

diophantine equation. Bézout’s identity, named after Etienne Bézout (1730-1783), states
that if a and b are non-negative integers, there exist integers x and y (typically either x
or y is negative) such that

a-z+0b-y=ged(a,b) (3.19)

where x and y can be obtained by the EEA, but they are not uniquely determined.
Set 2/ = x —k-band ¢y = y+ k- a, then (2/,y') is another solution to (3.19) since
a-r'4+b-y =alrt—k-0)+bly+k-a)=a-x+b-y = ged(a,b). Bézout’s identity is

proved as follows.

29

Proof. Let GG be the set of all positive integers of a-x+b-y, where x and y are integers. Since
(G is not empty, it has a smallest element by the well-ordering principle. Let s = a-x;+b-y,
be the smallest element of the set S. According to the division algorithm, there are unique

integers ¢ and r that satisfy a = s- ¢+ r with 0 <r < s. Then
r=a—s-q=a—(a-xz,+b-y)g=a(l—q-z)+bl—q-y) (3.20)

Note that (1 —¢-z¢) and (—¢-y;) are both integers so that r should be in the set S. But
the condition 0 < r < s contradicts the premise that s is the smallest element of S. Thus
r must be equal to 0, that is, a = s - ¢, which indicates that a is divisible by s. Similarly,
b is also divisible by s. Therefore s is one of the common divisor of @ and b. Assume that

¢ is another common divisor of @ and b. Let a = ¢- ¢ and b = ¢ - ¢, then

(3.21)
which implies ¢ can eve ot : is] CD of a and b, ie. s =
ged(a,b). Q.E.D.

The extended

2. While A" # 0 do
2.1. Set g = _%J. f
2.2. Set A =B —q-A.
2.3. If A" =0, then set C = A.
2.4. Set B=A, A=A

3. Output C.

When a and b are relatively prime, i.e. a-x+b-y =1, x is the multiplicative inverse
of a (mod b). To find the multiplicative inverse of A, following simultaneous equations

are introduced.

R-A+ ep=10
{ op (3.22)

S-A + dp =V

30

P is set as modulus p, U, V, R,and S are variables, d and e are two variant integer,
but they are not substantially calculated or presented. Initially, U, V, R and S are
respectively set as p, A, 0 and 1:

{O-A + ep = p (3.23)

1-A + dp = A

Here, d and e are 0 and 1 respectively. With EEA, which means elimination method in

simultaneous equations, introduced, finally equation 3.23 turns into equation 3.24:

R-A+ ep =1
{ o (3.24)

0-A + 0-p =0

The algorithm terminates when V' = 0, i ich case U = 1 and then R-A+e-P =1
| ‘ -

quotient ¢ in EEA, o i N sia result, the EEA should be
modified to suit bid

31

A binary GCD algorithm was first devised by Josef Stein in 1961 and published in
1967 [25]. Before describing this algorithm, three simple facts are introduced as follows:

1. If a and b are both even, then ged(a,b) = 2 x ged(a/2,b/2);
2. If a is even and b are odd, then ged(a,b) = ged(a/2,b);
3. If a and b are both odd, then ged(a,b) = ged(a — b, b);

The modular multiplicative inverse algorithm adapted from the binary GCD algorithm

is described below:

Algorithm 3.6. (Modular Inverse Algorithm over GF(p))
Input: A and P, where A € GF(p) and P is the modulus p.

1. SetU =P,V =
2. While V #0 do.

2.1.1. Se

2.3. IfU>V thensetU— P = .
2.4. Else if V> U, then setV =V —-U, S=S5—R.

3. Output R (mod P).

Only by iterative subtractions, parity testings, and right shifts, the multiplicative
inverse can be found. In each iteration, the least significant bit of either a or b is reduced,

thus the entire routine takes no more than 2(m — 1) iterations.

32

3.2.3 Montgomery Modular Inversion Algorithm

The Montgomery modular inverse [26], based on the EEA, was proposed by Kaliski to
match the Montgomery domain operations. Given an m-bit modulus p, the Montgomery

modular inverse of a non-zero integer a € GF(p) is defined as the integer x,
r=a"'-2" (mod p) (3.25)

The Kaliski’s Montgomery inverse algorithm was re-written as follows with combina-
tion of the two phases in one algorithm. It provides two alternative outputs which is in

Montgomery domain’s result and in the integer domain respectively.

Algorithm 3.7. (Montgomery Modular Inverse Algorithm over GF(p))

3.1. If R is even, then s 2
3.2. Else set R = (R+ P)
3.3. Setk=Fk—1.

4. If R> P, then set R =2P — R, else set R=P — R.
5. Output R.

Note that the upper in the braces derives Montgomery modular inverse result and the
lower derives modular inverse result, that is to say, output U is equivalent to A~! - 2™

(mod P) or A~' (mod P) depends on the termination condition in Step 3.

33

The Montgomery modular inverse algorithm can also be represented as solving the

simultaneous equation 3.26.

(3.26)

R-A 4+ ep =1U
S-A + dp =V

The difference between modular inverse and Montgomery inverse is described now. In
step 2.1, S is multiplied by 2 while U is even. Which implies that A in the simultaneous
equation is divided by 2. Simultaneously, A in lower equation is also divided by 2. To
ensure the equivalence between the left-side and the right-side of the lower equation, S is

multiplied by 2. Illustrated in equation 3.27:

R-A/2 + e/2-p = UJ/2

{ / /27 / (3.27)

Step 2.2 is similar to stepi2. as 0. In fact, this R is —R.

Therefore, in step 3.3 45 =S5—(—R)=S+R.

With the two identi _Hence R and S are set

as 0 and 1, no ove ons, the simultaneous

equation is showe

(3.28)

As aresult, R = A til' R = A1 - 2™, Step 4
negates R and bound it

The Step 2 is iterative and 1 one bit in each iteration at least.

Step 3 iteratively right shift the result of step 2. ‘ en k is subtracted to the field m or
0, variable R equals to —A~!-2™ or —A~!. In step 4, R is negated back to A~! - 2™ or
A~ Obviously, U and V initially have at most 2m bits in total since 2™~ < U < 2™
and 0 < V < U. But U equals 1 and V equals 0 in the last iteration, therefore, the
iteration count in Step 2 takes no more than (2m — 1) iterations. Similarly, U and V
initially have at least m + 1 bits in total while V' is equal to 1, thus, the iteration count
in Step 2 takes no less than m iterations. So the boundary of k is m < k < 2m and the
total iteration count ¢ of this algorithm is m < i < 3m. The average iteration count of ¢

is 2m by simulation of about two millions of different input V.

34

If the input is originally in the Montgomery domain, i.e. A = a-2™ (mod P), then

the output of the Montgomery inverse is given below.

X =(A)"1.2" (mod P)
(a-2™)71-2™ (mod P)

a”' (mod P)

(3.29)

In order to convert the output to the Montgomery domain, an additional Montgomery

multiplication operation is added afterward. If the input is originally in the integer do-

main, i.e. A = a (mod P), then the output in the integer domain needs m iterations

more than output in the Montgomery domain. The latencies of the Montgomery modular

inverse from and to both domains are listed in the Table3.1:

4 m is the bit length of the modulus p.

3.3 Modular Division

3.3.1 Multiplication after Inversion

The modular division operation is traditionally accomplished by modular inversion

followed by modular multiplication since the modular division is believed to be slow. It

35

can be applied to the computation of the parameter A in ECC. Given two integers a and

b in integer domain, divide a by b is done as follows:

c = % (mod p)

a-b~' (mod p)

(3.30)
(3.31)

which can be performed by modular inverse followed by modular multiplication. But in

ECC, operands are represented in the Montgomery domain. Given two integers A and B

in the Montgomery domain, the Montgomery modular division is defined as follows:

C MontMul(A, MontMul(MontInv(B), %))

a-b~'-r (mod p)

3gn+1 m—+1

Mont — Int 3m + m+1 - dm + 2
Mont — Mont 3m+1 m+1 m+1 5m + 3

3.3.2 Modular Division Algorithm

3.32

w
w

3

w
w

(3.32)
(3.33)
(3.34)
(3.35)

Given an m-bit modulus p, the modular division of two integers a,b € GF(p), where

b # 0, is defined as the integer z,
r=a-b"' (mod p)

36

(3.36)

The following algorithm shows a binary add-and-shift algorithm proposed by Sheueling

Chang Shantz [27] for modular divison in a residue class.

Algorithm 3.8. (Modular Division Algorithm over GF(p))
Input: A, B and P, where A, B € GF(p) and P is the modulus p.
Output: R, where R=A-B~! (mod P).

1. Set U=P,V=B,R=0and S = A.
2. While U #V do
2.1. If U is even, then set U = U/2.

2.1.1. If R is even, then set R = R/2.
2.1.1. Else set R = (R+ P)/2.
2.2. Else if V' is even, then set V =V /2.

one bit. But it is different that im
the entire division routine takes no more than 2(m — 1) iterations.

Like the modular inversion algorithm, the modular division algorithm also works by
using the elimination method for solving the simultaneous equations below, where d and

e are not really computed, too.

{R-(A—lB) + e P = U (337

S (A'B) + d-P =V

Note that this algorithm terminates when U = V = 1, in which case R- (A™'B)+eP =1
and S+ (A7'B) +dP = 1. Since P is a prime, i.e. gcd(A™' B, P) = 1, the equation above

37

definitely exists integer solutions that satisfy R-(A™'B)+e-P = 1, where R-(A7'B) =1
(mod P), that is, R = AB™' (mod P). Similarly, S = AB~! (mod P), too. And it
can also be easily obtained that an identical equation that fits equation (3.37) is written

below,

{0-(A—1B) + 1.P = P (3.38)

A-(A7'B) + d-P = B
Thus the two algorithms of modular inverse and division only differ from the initial value

of the variable S with S = A instead. Although d is not really computed, in this case,
d = (—kB), where k is an integer that AA™" =1+ kP since AA™' =1 (mod P).

A-(A'B)+d-P=(14+kP)B+(—kB)-P=B (3.39)

Given an m-bitlmodul “the Mont g ar division of the two integers
a,be GF(p),
(3.40)
And given a pri '. 5 1] i ates the GF(2™), the
Montgomery modula ; L det L2 &G 2™, where b(x) # 0,
is defined as the polynon .
(3.41)

An alternative algorithm for calculating the Montgomery modular division or real
modular division suitable for both GF(p) and GF(2™) is proposed by Yao-Jen Liu [13].

The Montgomery modular division algorithm over GF(p) is re-written below:

38

Algorithm 3.9. (Montgomery Modular Division Algorithm over GF(p))
Input: A, B and P, where A, B € GF(p) and P is the modulus p.
R=A-B'-2™ (mod P).

R=A-B™! (mod P).

1. SetU=P, V=B, R=0,S=A and k=0.

2. While V>0 do

2.1. If U is even, then set U =U/2, S = 285.

2.2. Else if V is even, then set V =V/2, R =2R.

2.8. Else if U =V >0, then set U =(U—-V)/2, R=R+ S and S = 28S.
2.4. Else if V.—U >0, then set V. =(V -U)/2, S= S5+ R and R = 2R.
2.5. If R> P, then set R= R — P.

2.6. If S> P, then set S =5 — P.

2.7 Setk=Fk+1.
k#m o
k#1
3.1. If R is evén
3.2. Else se
3.8. Set k

Output: R, where {

3. While {

The algorithm bove 'is bas 3 and t D algerithm [28]. It mainly
modifies the Montgomer; " tting the dividend to the initial

GF(2™) can be simply derived by changing the addition and subtraction to exclusive-
or and changing the overflow condition to degree comparison between R, S,and p. The

Montgomery modular division algorithm over GF'(2™) is re-written as follows:

39

Algorithm 3.10. (Montgomery Modular Division Algorithm over GF(2™))

Input: A(z), B(x) and P(z), where A(x), B(z) and P(x) € GF(2™) and GF(2™) is
generated by P(x).

z)-B7' (z)z™ (mod P(z)).
z)- B7'(z) (mod P(x)).
1. Set U(z) = P(z), V(x) = B(z), R(z) =0, S(x) = A(x) and k = 0.
2. While V(z) # 0 do
2.1. If U(2) is even, then set U(z) = U(x)/z, S(x) = xS(x).
2.2. Else if V(2) is even, then set V(z) = V(z)/z, R(z) = xR(x).
2.3. Else if U(2) =V (2) >0,
then set U(x) = (U(z) + V(x))/z, R(x) = R(z) + S(z) and S(z) = xS(z).
2.4. Else if V(2) —U(2
then set V() =
2.5. If deg(R) = deg)
2.6. If deg(S) =
2.7. Set k =

R = A(
Output: R(x), where {
R = A(

+ R(x) and R(x) = zR(x).

k
3. While {
k

3.1. If R(2

The total latency of the i 08 worse in Montgomery domain,
so the Montgomery modular ¢ gorith he inversion with multiplica-
tion to improve this shortcoming. number of iterations in Montgomery
modular division algorithm is 3m or 4m depends on the output is in Montgomery or
integer domain. The average number of iterations consumed in the Montgomery modular
division algorithm is 2m or 3m depends on the output is in Montgomery or integer do-
main. This average number is obtained by over millions of simulation. Table 3.3 shows
each latency in the worst case and the average case of the Montgomery division from and
to both domain. No additional Montgomery multiplication operations is required.

The following table shows the performance comparison between the Montgomery divi-

sion and previous works. B. S. Kaliski Jr. employed two Montgomery multiplication after

40

Table 3.3: Latency of Montgomery modular division from and to both

domain
Domain Worst Latency (cycles) Avg. Latency (cycles)
From — To GF(p) GF(2™) GF(p) GF(2™)
Int — Int 4m 4m —1 3m 3m —1
Int — Mont 3m 3m—1 2m 2m —1
Mont — Int 4m dm —1 3m 3m —1
Mont — Mont 3m 3m —1 2m 2m —1

one Montgomery inversion [26] and A. Daly et al. used one Montgomery multiplication

after one modular division [29].

Table 3.4 shows that the M ‘ ift [13] has better performance

than other works.

3.4 Domain Transformation

From above sections, Montgomery domain operations are used in ECC. That is to
say, the integer domain inputs should be transformed into Montgomery domain inputs.
And the Montgomery domain output of the ECC should also be transformed back to
integer domain representation. To do integer domain to Montgomery domain transfor-

mation traditionally, let the integer a multiplied by r? (mod p), i.e. 2™ (mod p), with

41

the Montgomery multiplication operation.

A = MontMul(a,r?)

a-r*-r~' (mod p)

a-r (mod p)

Note that the constant 7? (mod p) needs to be precomputed externally. But in a universal
design, the modulus p and r are not fixed. Thus additional input port or additional
computational time is demanded. In this thesis, the transformation from integer domain

to Montgomery domain is done by Montgomery dividing a by a constant 1:

A = MontDiv(a,1)

In this way, m more od. But this m itera-
tions are trivial in
Similarly, in ore er domain, it can be

achieved by Mon

3.5 Summary

In section 2.3, the elliptic curve operations on projective coordinates are introduced.
Obviously, the advantage of projective coordinates representations is that no modular
division exists. Hence the hardware cost is lower then the design with a modular division.
However, with the Montgomery division algorithm, one division only costs 2 times of
computational time of one multiplication which is significantly faster than traditional

methods. A comparison table is given below.

42

Table 3.5: Scalar multiplication comparison between different coordi-

nates.
Coordinate Affine Projective Jacobian C.J. M.J.
Latency 5+4/2 12+14/2 10+16/2 11+ 14/2 8+19/2
(m xn) =7 =19 =18 =18 =175

1 m denotes the degree of the Galois field.
2 n denotes the length of the scalar.
3 C.J. denotes the Chudnovsky Jacobian coordinate.

4 M.J. denotes the modified Jacobian coordinate.

Table 3.5 shows the comparison between affine coordinate representation and projec-

tive coordinates representatio ble-and-add scalar multiplication

in [13]. The laten : - ston ‘algorithm is'taken as the average one

which is 2m. Andgh : y la altiplication excludes the

because the computati i DE ivi g to the whole sys-

43

Table 3.6: Comparison between different coordinates.

Author Proposed S. B. Ors [30]

Modified Jacobian

Add(2m + 1) Sub. (2 + 1
¥ l.((3m + 4)) Inv.(g%m + 672

Coordinate

GF operations
(avg. cycles)

)

> MAS denotes Modular Adder/Subtracter.

44

Chapter 4

Power Analysis

Power analysis is a kind of side-channel attack in which the adversary collects the power

consumption of a cryptographic are device such as a smart card or an integrated

erations. Both St proposed h her, Joshua Jaffe and

duced. In the chapter 4. f ble-and-add algorithm s resistant to SPA and DPA

is proposed.

4.1 Simple Power Analysis

Simple power analysis observes the measurement of the power consumption of a cryp-
tographic device. A trace refers to a set of power consumption measurements taken across
a cryptographic operation. To measure a circuit’s power consumption, a small (e.g., 50
ohm) resistor is inserted in series with the power or ground input. Then, dividing the

voltage difference across the resistor by the resistance yields the current. Equipped with

45

extraordinary high sample rate (1GHz) instruments, it’s able to extract the information
at 99% accuracy. Measuring instruments determine the precision of the power analysis.
Obviously, to perform such an attack the side-channel information needs to be strong
enough to be directly visible in the trace. Further, the secret information needs to have
some simple relationship with the operations that the difference in the power trace is
visible.

To exercise a SPA on a specific cryptographic device, the adversary is supposed to
have a detailed comprehension about the implementation. Besides, the parts of the trace
corresponding to the operations under attack needs to be clearly distinguishable from the
whole trace.Using SPA in an unprotected elliptic curve cryptographic device, the power

trace of the doubling operations can be easily distinguished from the addition operations

in algorithm 4.1.

Algorithm 4.1.

Input: A positiv
P.
Output: The ellip

1. Let knkn—l B
2. Set R[0] =

3. Fori fromn—1 a

3.1 Set R[0] =
3.2 Set R[1] = R[O] + P
3.3 Set R[0] = R[k;].

4. Output R[0].

This algorithm can be called as double-and-add always algorithm. Unlike traditional
double-and-add algorithm, both double and add are executed regardless of the scanned
bit. Therefore, no conditional branch can be found and one cannot distinguish the scanned
bit is 0 or 1 from SPA.

Another method is to change the double-and-add chain. With an additional basis, the

scalar k can be represented as a series of 0,1, —1 and the binary NAF method introduced

46

in chapter 2.4.3 can be used to resist the SPA. Since the point addition and the point
subtraction contain almost the same operations, one cannot identify them simply from
the observing the power trace. The NAF accelerates the whole scalar multiplication
due to lower Hamming weight, but it requires additional hardware resource. For more
randomness, the width-w NAF method was proposed by K. Okeya and T. Takagi in
2003 [31]. Of course, the more the width w is, the more additional memory space is

required. It requires a table of 2*~2 pre-computed points.

4.2 Differential Power Analysis

Differential power analysis involves statistically analyzing power consumption mea-

surements from a cryptographic device ksexploits biases in power consumption

of hardware devices while perforn ttacks have signal processing and

error correction prope n I ea urements which contain

too much noise to be‘an 3'DPA, an adversary can
obtain secret keys by multiple cryptographic

operations performe

Assume that th weainst SPA by using

double-and-add al gan get the interme-

diate results in the. pary representation as
s“‘the total length of the

kn—bkn—Z,"' ,k‘o where k. 1 :
st (n —i)bits {kn_1, -, ki}

scalar. At step i, the proce
of the secret scalar. When a point is'precess yowe ce is correlated to the bits of
it. No correlation will be observed 1f the pa , ot computed. For example, the second
most significant bit k,,_s can be learned by calculating the correlation between the power
trace and any specific bit of the binary representation of 4P. If k,, 5 = 0, 4P is computed
during the binary algorithm. Otherwise, 4P is never computed and no correlation will be
observed. This correlation method is used to classify power traces of several input points
chosen by the attacker.

The following introduces the general form of differential power analysis on ECC. It

is a variant form of the zero-exponent, multiple-data (ZEMD) attack algorithm proposed

47

by T.S. Messerges, E. A. Dabbish and R. H. Sloan in 1999 [32]. Assume that the highest
bits,k,—1, kn—2, -+, kj41 are known by the attacker (j denotes the current position). A

scenario of DPA which finds k; is given below:
1. The bad boy makes a guess: k; = 1.
2. He chooses several input points P, - -+ , P, and computes @Q; = 2(le;; kq2%79) P,

3. Select a certain bit in the binary representation of Q,--- , @, (fixed for all points)

as a selection function g to construct the following two sets:
Sy ={i:9(Q;) =true} and Sy = {i: g(Q;) = false}.

4. Let C; = C;(7) = power trace obtained from the computation of a full scalar mul-

5. Let (C;) he 1 € S, S =S, US;. If
(Ci)ics, — (Ci) elated, it indicates that
the guess of £ spikes in the difference
<Ci>ieSt - <

To sum up, differe akes one guess on one
specified bit of the i lassifies these power
trace by any fixed S 5 »-{ EQE e groups respectively,
gets the difference of these two a*age races and ess is right, there exist

Since DPA can extract the scalar thro statistical analysis, some system parameters
or computation procedures must be randomized. J. Coron proposed three countermea-

sures:

1. Randomization of the private scalar:

#¢ denotes the order of the elliptic curve E. The scalar multiplication @) = kP can
be computed as Q) = (k+n#¢e)P where n is a random number. This countermeasure
makes the DPA infeasible since the scalar changes at each new execution of the

algorithm. But more computational time is its disadvantage.

48

2. Blinding the point P:

Scalar multiplication) = kP is randomized by adding a secret random point R for
which known as S = kR. The computation is accomplished by @ = k(R + P) — S.
In a reconfigurable design, different elliptic curve require different S. It means

additional

3. Randomized projective coordinates:

Randomized projective coordinates can use the Homogeneous or Jacobian coordi-
nate to randomize a point P = (x,y). For homogeneous projective coordinate, P
can be randomized to (rz,ry,r) for a random number r € GF(p). Similarly, P can
be randomized to (rz,r®y,r) in case of using Jacobian coordinates where r is a

random number in GF(p).

Countermeasures abo¥v
adversary to exploit t
randomized expone i
posed in [32] can be modified s DPA in e @ eryptosystems. It is randomly
chose one bit in the D oy e s T tiplication from the
chosen bit to the fiie ;
the remaining scalar
claim that all power ! D' ‘ : significantly diminished

by this kind of rando

4.3 Proposed Cout against SPA

In this section, a countermeasure against SPA is proposed. The main idea of it is to in-
terleave two scalar multiplication’s double-and-add chain. Since ky Py + ko P is widely used
in elliptic curve cryptographic protocols, for example ECDSA, using a random number
to determine which point should be taken into computation. In this way, if an adversary
tries to extract the key using SPA, he will get a rearranged key composed by interleaved
k1 and ky. The proposed randomized interleaving double-and-add algorithm 4.2 is intro-

duced below:

49

Algorithm 4.2. (SPA Resistant Double-and-Add Algorithm)
Input: Two positive integer ky and ko; and two elliptic curve point Py and Ps.

Output: The elliptic curve point QQ = k1P, + koPs.

1. Let kymykin—1) - - - k11)k1(0) be the binary representation of ki; kagm)kaim—1) - - - k2cyk2(0)
be the binary representation of ky, where the leftmost bits ki) and kyy,y are 1; and
a random number r.
2. Set Q1 =P, Qs =P, i =mn, j=m.
3. While 1 # 0 and 7 # 0 do
3.1 If r =0, then do
1. Set (1 = 20Q);.
ii. If ki =1, then set Q1 = Q1 + P,
1i. Set1=1—1.

3.2 FElse, do

to save k1P, and ko P,, it means that source of hardware and computational

time is employed. The interleaved scalar multiplication can be illustrated as Figure 4.1.

20

<-I:k—

shift register

o1

Chapter 5

Proposed Architectures

In this chapter, a bottom-up illustration of the proposed architectures is presented.

The architecture of universal d : etic unit is illustrated in section
5.1. The architecture of alar multiplier is illustrated
in section 5.2. And t ‘ c curve arithmetic unit
is illustrated in sec field length which is

are mentioned in.es

Xilinx?® Virtex-4 XC4VLX160:

5.1 Galois Field Arithmetic Unit

In an elliptic curve cryptosystem, four operations : modular addition, modular sub-
traction, Montgomery multiplication, and Montgomery division, are used. Therefore an

area-efficient universal Galois field arithmetic unit (GFAU) is proposed to meet this re-

1United Microelectronics Corporation. The SoC solution foundry. http://www.umc.com
2Synopsys, Inc. The developer of EDA tools. http://www.synopsys.com
3Xilinx, Inc. The developer and fabless manufacturer of FPGAs. http://www.xilinx.com

52

quirement. The "universal” used here indicates that the field length is designed as an
input, length smaller than 512 is permitted. Among these operations, the Montgomery
division is the most complicated, and consumes most iterations. Thus, how to integrate
the other operations into the hardware of Montgomery division algorithm is the most
important topic in this section. Back to the Algorithm 3.9, the Montgomery division flow

is showed below:

INITIAL
U=p,V=B,R=0,S=A, k=0

I g
= [€
S

»m < S
o
= <

I
N

I @

—_—,— e ———

Figure 5.1: Flow chart of the Montgomery division algorithm.

23

The Montgomery division algorithm can be separated into three parts:
1. EFA: Bit-wise reduce U and V until V' = 0.

2. RECOVER: Divide R by 2 until k = m.

3. NEGATE: Negate R to get the final result.

These three main parts are main states in the finite state machine of the the Montgomery
divider. In part EEA, one subtracter is used to handle (U — V)/2 and (V — U)/2. The
most significant bit (MSB) of U — V' determines if the result of U — V should be negated.
R+ S, 2R, and 2S can be combined with the conditional subtraction of R and S in
step 2.5 and step 2.6 by one carry-save adder (CSA), three adder, and two multiplexer.
Which is controlled by the MSB of

> — p and R+ S — p respectively. With

(5.1)

Since p is odd, p MSB of p from 0 to 1.

Therefore negating . An incrementer is

spared here. From a otally takes one 514-bit

CSA, four 514-bit CPA 4-bit negater, one 10-bit
incrementer, and one 10-bit

In Montgomery multiplicatio algorithm 3.3, involves two main parts:

1. MM: Adding partial products and modular right shift.
2. RECOVER: Bound C in GF(p).

Part MM executes step 3 in algorithm 3.3 and algorithm 3.4. Step 3 in algorithm 3.3 is
implemented by a CSA and a carry propagation adder (CPA). But step 3 in algorithm
3.4 only requires the CSA. Part RECOVER take charge of step 4 in algorithm 3.3 with
only changing the input of the CSA after part MM. Thus for the dual-field design, the

hardware implementation of the Montgomery multiplication only contains one 514-bit

o4

CSA and one 514-bit CPA. Besides, modular addition and modular subtraction simply
utilize the existing elements of the Montgomery divider. The graphical illustration of the

flow of the Montgomery multiplication is showed below: Merge the flow of the Montgomery

INITIAL
U=p,V=B,R=0,S=A,k=0

algorithm.

1. EEA_MM: : Operation of EEA for the Montgomery division, MM for the Montgomery

multiplication, modular addition, and modular subtraction.

2. RECOVER: Divide R by 2 until £ = m in the Montgomery division and bound C'
in GF(p) in the Montgomery multiplication.

3. NEGATE: Negate R to get the final result in the Montgomery division and bound
C' in GF(p) in the Montgomery multiplication.

25

INITIAL

IDLE

Q>

1
: IN_A=0 || IN_B=0
0

EEA_MM

MODE=0 || MODE=1
1
0

MODE=3&V=0

1896
states transfer chart. . e GFAU.

: Fini

The finite states transfer chartiis de)6 Rigure 5.3. In state IDLFE, if IN_A or
IN_B is zero, state machine directly transfers to state OUTVALUE. In state EEA_MDM, if
addition (MODE 0) and subtraction (MODE 1) are demanded, state machine transfers to
state OUTVALUE and output the result. While multiplication or division is demanded,
state machine transfers to state RECOVER when register V equals to zero or counter
K equals to LENGTH respectively. Division (MODE 3) is the only one operation that
requires state NEGATE. Therefore, if MODE is 2 which means multiplication, the state
machine should directly transfer from RECOVER to NEGATE with doing anything.
State NEGATE transfers to state OUTVALUE when K equals to LENGTH given from

26

input which denotes termination of the division.

R

\4

\4

S

combinational logic

-control

| L

datapath

R1 R3 R4 R5 2*S 2*R -P K
514 514~ 514 514 514 514 514 S~ 10
[
\ ; o~ control
*-1) v [+ | [+l
v vilL + | [+ | \ v
SB l l SB control
R1subR2 R3addR4 R3addR4addR5 2Ror2S K w

INPUT.IN_A IN B IN+P' MODE . EIELD:» LENGTH;

‘512*

512* 512*

4 v

10*

combinational logic

—control

514~

U

5144~
Y

The complete architécture of the GFAU is showed above in Figure 5.4. The control
signal is generated by the finite state.nachine in Figtire 5.3" All inputs are stored through
some combinational logic controlled byl the finite state machine in four main registers:
U(514-bit), V(514-bit), S(514-bit), K(10-bit) and two 1-bit register. Values are pulled
out to one level of combinational logic , then temporary wires named as R1, R2, R3, R4,
R5, 2 x R, and 2 x S are produced. These values get through the datapath and another
level of combinational logic and update the value of the registers at each rising edge of
the clock signal. Recall the hardware requirement of the Montgomery division mentioned
before, the chief advantage of the GFAU is revealed: with almost the same hardware

requirement, just changing the control signal, the GFAU can do the four fundamental

Figutre 5.44 ‘Architecture of the GFAU.

514

7

R

0

514
A

7

S

10 Y
A

K

7

\ 4 Vv
WWW%

control

YOUTPUT

operations of arithmetic over the Galois field.

27

The implementation results of the proposed universal Galois field arithmetic unit is
given in Table 5.1. It shows the synthesized gate count at 133MHz and shows the area
and speed results on FPGAs. Each number of gates in the field Gatecount consists of two
parts which are non-combinational logic and combinational logic respectively. It doubles
when the bit length doubles. The area is approximately in proportion to the bit length
m of the field.

Table 5.1: Synthesized results for proposed universal dual-field Galois field
arithmetic unit on ASIC and FPGA design.

ASIC FPGA
Length Area Slice Frequency
(Gatecount Slice+Slice FF) ~ (MHz)
128-bit 23.6k (18. | 7 64 + 687 52.5
256-bit 47.4k (88.2K-+9. ;. 35.2

512-bit 20.8
5.2 Elliptic Curve
A universal ellipti ' li SM i putes a point P multi-
plied by a scalar k using i tive point doub A i lition which is illustrated
in section 2.2. There a . t SM which results in four

state in the controlling finite

1. ItoM: Convert the values from integer domain to Montgomery domain except the

scalar k.
2. DOUBLE: Point doubling calculation.
3. ADD: Point addition calculation.
4. Mtol: Convert the output x and y back to integer domain representation.

The following figure is a flow chart of the ECSM:

o8

INITIAL

OUTVALUE

1
DOUBLEorADD
1

Figure 5.5: State transition chart of the ECSM.

According to section 3.4, the integer domain to Montgomery domain conversion can be
done by a Montgomery division and the Montgomery domain to integer domain conversion
can be done by a Montgomery multiplication. An additional counter determines which
one of the values, including input IN_X1, input IN_Y1, coefficient IN_A, output OUT_X,
and output OUT.Y, is involved in the Montgomery multiplication or the Montgomery
division. Afterward, Algorithm 2.1 is used to construct the scalar multiplication. The
state transits between state DOUBLE and state ADD according to each bit of the scalar.
If the length of the scalar is 0, which indicates that the output is the point at the infinity,
the state will directly transit to state OUTVALUE and return to state IDLE. If the length

29

of the scalar is 1, which indicates the end of the double and add sequence, the finite state
machine will transit to state Mtol.

The architecture consists of five main blocks: registers, combinational logics, GFAU,
FSM, and DA_FSM. Four 512-bits inputs are stored in register reg IN_X, reg IN_Y,
reg IN_A, and reg IN_P. Coordinates of the intermediate point P3 are stored in reg P3 X
and reg P3_Y.)\ is stored in reg LAMBDA. reg TEMP and reg GFAU_OUT make it fea-
sible to use only one GFAU without any additional addition or subtraction. Besides, the
value of x3 in the next double or add iteration is changed before y3, however the original
value of x3 is demanded during the calculation of y3, therefore a register is added to store
the original value of z3.

Looking back to section 2.2.2 and 2.2.3, different addition, subtraction, multiplication,
and division exist in the mathematical representéitio’n of T3 and y3. All these operation are
executed by only one GFAU'SInce they are time-dependent operations. Every addition and
every subtraction occupies 1 state in a finite state machine éalled DA_FSM that controls
the GFAU. Because the state transition ﬂew chart is quite compliczxted, it occupies almost
38% area of the whole ECSM. Thatls-really & huge I;ercentagé. ’1;he area consumption
percentage is demostated in the following pie ’graﬁh: Table 5.2 s}ibws the synthesized

18.7%
registers

38%

combinational
logics

Figure 5.6: Pie graph of the area consumption of the ECSM.

result of the proposed ECSM. Figure 5.9 shows the architecture of the proposed ECSM.

60

Table 5.2: Synthesize results for proposed ECSM.

ASIC FPGA
. Gatecount Frequency Slice Frequency
Bit-length (Gates) (MHz) "~ (Slice+Slice FF) (MHz)
512-bit 225k (171k+54k) 133 34384 + 8505 20.48

It is arranged at the second last page of this chapter.

5.3 SPA-Resistant Elliptic Curve Arithmetic Unit

available, performi e ations abo¥ < space and extra memory

access time to load. amn ¢ ati 3 i ides, power analysis

With three mope N NCY2 (512-bityrand IN_K2 (513-bit);
three more input buffers: eg IN ri 1 EBE‘ and reg IN_K2 (513-

be able to handle the Galois operations and make it more easier for a software engineer
to work with. In the proposed ECAU, to make the most use of the existing control
signal, the operand of a modular operation should be converted to Montgomery domain
before the operation and converted back to integer domain after the operation. Compared
with the design specific for modular operations, the proposed ECAU requires more time
to do modular operations. But when the ECAU is used to accelerate the process of
an elliptic cryptographic protocol, the slight degradation in computational time of the

modular operations can be ignored. With the proposed ECAU, all the software engineer

61

has to do is to arrange the order of the input and output of the ECAU.

Load inputs to
registers

PA
protected

no

l

k1=k1/2+1 k1=k1/2
k2=k1/2 kz=k1/2

I
1 !
Randomized Direct scalar
interleaving flow multiplication

Figure 5.7: Flow ehartrofsthessealarrdetermination scheme.

Figure 5.7 shows thé decision flow of the scalar ki and ks.*If the operation contains
two scalar multiplication and’one point.addition, the ' ECAU will randomly interleave
these two scalar multiplication. If there is omly“one scalar multiplication demanded, a
option is given to decide if these scalar multiplication is power analysis protected. If
"yes”, the scalar k; will be divided into k; and ko by half and randomly interleaved. If
"no”, the ECAU will execute direct scalar multiplication. Figure 5.10 demonstrates the
architecture of the proposed ECAU. It is arranged at the last page of this chapter.The
area consumption ratio is demonstrated in Figure 5.8.

From the pie graph, the additional registers mentioned above contributes to the main

part of the increase of area. The modified control signal also increase the area.

Table 5.3 shows the synthesized result of the proposed ECAU.

62

35.1%
GFAU

43%

combinational 21.9%
logics registers

Table 5.3: Synthesize results for proposed ECAU.

ASIC FPGA
. Gatecount Frequency Slice Frequency
Bit-length (Gates) (MHz) "~ (Slice+Slice FF) (MHz)
512-bit 277.5k (198.5k+79k) 133 54376 + 16319 17.76

63

79

registers except regK LENGTH
1

combinational logic — control
SI12% 5123 512 2~ N~ 104~
_ \ 4 \4 \4 \4 \ 4 \ 4
A4 \ 4
control 3 control
reg_Counter reg K LENGTH Y10
IN X1 INY1T | INK
si2h 512+ 513
{ other INPUTSs IN_P INA | K LENGTH
~_ ¥+ s12< kS
i f 5129
\4 Y A 4 A\ 4 \4 v Y
combinational logic — control
514~ 51 =
Y re - X P33 Y —

INPUT_registers 5134 5124 s1- 5124
vy reg IN_K vy | reg X1 y reg temp reg MMMD OUT vy reg LAMBDA vy INFINITY

10n-bit, I m- bit registers % ! vy 4

control control
1 51

(OUTPUT X OUTPUT Y wriNtY: QUTPUT

~7

Figure 5.9: Architecture of the proposed ECSM.

99

registers except regKl LENGTH and regK2 LENGTH
-

combinational logic

— control

control

siz siMmsi Ak N 104
=N = va Ly ¥ v v v

control contror L N INA INB INP MODE FIELD LENGTH

L B
reg_KI1_LENGTH reg_K2_LENGTH reg_Counter
INPUT
GFAU
IN_X1 INYI IN Kk, IN X2 KI_|LENGIH.
sizdh sz sizk 512~ 104~
i other INPUT IN_P INA [“INK2 INY2 | K2_ LENGTH; E “
+ 51 s s1k 512 104 g OUTPUT
51 N /
4 Y VvV VvV ¥ ¥V VYV VY'Y y i
combinational logic
CLEA T ERCTES ST LT e e 1y] T PO e S T
i“s_“_‘ ius_., t é.ys_.n_ rep—P3-X i regPa-¥ reg—P4-X 5‘ reg—PA—Y
INPUT_ regfsters 5,0 sie 514 si4 si24 514 3 S
y reg_temp y reg P2 X y reg P2 Y yreg M) OUT vy reg LAMBDA vy INFINITY] vy reg X1 y INFINITY 12
[(A A A A ()]
0 0 3 0
15n-bit, 2 m- bit'tegisters

Y

i i) A 4

0 0
+ A * A 4
control control
51. 51
\d \

control

i OUTPUT X1

OUTPUT Y1

control
51 51
\é

L
INFINITY OUTPUTX2 ~ OUTPULY? | OUTPUT

Figure 5.10: Architecture of the proposed ECAU.

Chapter 6

Implementation Results

Solutions for elliptic curve arithmetics in both software and hardware are given in this

The design and test con 6.1. The hardware imple-
mentation results andidesig i i 2. The RTL synthesizer
uses Synopsys' Desi npil S X Synplicity? Synplify Pro for

The hardware is ¢ curves and it deals
with different field pa main part in hardware
is the point operation o L on of scalar multiplication

The Verilog code for this design was generated using the parameterized module for
different values of m. The test patterns are generated randomly by software. The ver-
ification for the design uses not only hardware-software co-simulation but also confirms
with the examples of NIST* publications for more confidence. No special technique is

introduced in the FPGA implementation.

1Synopsys, Inc. http://www.synopsys.com/

2Synplicity, Inc. http://www.synplicity.com/

3Cadence Design Systems, Inc. http://www.cadence.com/

4National Institute of Standards and Technology. http://www.nist.gov/

66

6.2 Implementation Results and Comparison

6.2.1 ASIC Implementation

Table 6.1 shows the ASIC synthesized result comparison between the proposed GFAU
and the others. The proposed universal dual-field GFAU consumes about 75% of the total
gatecount of the universal dual-field Montgomery multiplier and the universal dual-field
Mongomery divider proposed in [13]. In [33], a dual-field modular divider is proposed.
But it’'s modular divider requires one more Montgomery multiplier to convert the result

back into the Montgomery domain.

Table 6.1: ASIC synthesis results comparison

128-bit
256-bit
512-bit

23.65k
47.4k
97.3k

field elliptic curve arithmetic unit are proposed. The most important part of them is the
proposed area-efficient GFAU. The ASIC synthesized gatecount are 226 K and 277.5K
respectively at 133MHz clock frequency using TSMC 0.18um CMOS process. It takes
1.93ms to complete a 192-bit prime field elliptic curve multiplication using the proposed
ECSM. To make a fair comparison, we multiply the GF(Pjg2) equivalent gatecount by
elliptic curve multiplication computational time. The value of ECSM and ECAU are
163.54(gatesxms) and 401.68(gatesxms). It’s better then previous works.

Table 6.2 shows a comparison for the ASIC performance of scalar multiplication.

67

Table 6.2: Elliptic Curve Scalar Multiplication ASIC Performance Comparison

is introduced in his wi

The execution time for ¢

In work [35], the design uses

refore, the gatecount is 292. 3
i P in GF(Plgg i

:3.3 ms.

Author A. Satoh [34] | G.Z.Lu [35] | Y. J. Liu [13] ECSM ECAU
Field P192/216O P192/2192 P256/2256 P512/2512 P512/2512
Process A3pm 25pm A8um A8pum A8pum
Area(Gatecount) 118k 26.7k 292.5k 225k 277k
Freq.(Mhz) 137.7 285.7 75 133 133
EC mult.(ms) 1.44/0.19 9.75/6.75 3.3 1.93 3.86
P192 Equivalent
AreaxEC mult, 172.8 260.3 965.25 163.54 401.68
(gatecount x ms)
Coordinate projective modified affine affine affine
Multiplication mul ke -2 radix-2 radix-2
‘ radix-2
Division ’s little | Fi / Mont. Mont.
v heorém- ; divi division division
Note .64— . 'vei';s universal SPA
iplier t architecture | resistant
In [13], a novel omery di oposed a lized in the imple-
mentation of a uni 1 dual-fiel 1C_Curve sca. arimultiplié e Montgomery mul-
tiplier and the Mo r 'ry di rmrea 0 area reuse technique

n the field length is 256.

for the modular inversion oper-

ation. However, it is not considered efficient in a large field design since the computation

complexity increases significantly.

Besides, the work [34] shows a great performance using a elliptic curve cryptographic

processor. It has a optimized multiplier-based Montgomery multiplier and uses projective
coordinates to avoid inversion operations. In scalar multiplication, it uses software NAF
method to reduce the number of 1 terms in k.

In software simulation on C on Intel Core 2 Duo E7200 and 2G RAM, it takes around

17 seconds averagely to do scalar multiplication once. The simulation results below show

68

significant improvement on the computation time for scalar multiplication.

In the auto place and route stage, we face a big problem. The data path in the proposed
design is 512 bit, there are too many wires in it. Therefore, the CAD tool cannot place
them without negative timing slacks and design rule violations. We have tried it on UMC
0.18um 1P5M, TSMC 0.18um 1P5M and UMC 90nm 1P9M CMOS processes and enlarge
the timing margin. But all these effort are ineffective. We have also tried 256-bit design,
but it doesn’t work either. It indicates that the parallel architecture is not feasible with
currently available APR tools. We suggest to use word-based architecture like [34] to

solve this question.

6.2.2 FPGA Implementation

The FPGA synthesis resu

[

C. J. Mclvor proposedsa . ased a in With cascaded 16 x 16-
; ’ 56 x 256-bit Montgomery
modular multiplication. It penforms opera atively high area consumption.

The proposed architectures don’t ha 0ood area and timing performance in FPGA
simulation. In our judgement, the highly reused hardware improve the gatecount synthe-
sized by Synopsys design compiler, but in Xilinx ISE, the larger MUXs consume much
more slices than the datapath does. So the result of FPGA synthesis shows more slices

and longer critical path.

69

Table 6.4: Elliptic Curve Scalar Multiplication FPGA Performance Comparison

Author C. J. Mclvor [36] | S. B. Ors [30] | Y. J. Liu [13] ECSM ECAU
Field 2256 256/2256 P512/2512 P512/2512
Platform X ; XVI1000E = 8000 | XC4VLX160 | XC4VLX160
Slices 5 R 34384 54376
Freq.(Mhz)) 46— b AER 20.48 17.75
EC mult. [— 77 1.93 3.86
(ms) (it (192-bit) (SPA)
Coordinate yrojec affine affine affine
Multiplication unltipli radix‘ radix-2 radix-2
ased 1X-2 = i
Divisi T iv ermat’s little Mont. Mont.
tvision iy theorem division division
Note 16- ot scalar SPA
multipliers ptimized multiplier resistant

70

Chapter 7

Conclusion and Disscusion

A SPA-resistant solution in hardware to the operations on elliptic curves in both

GF(p) and GF(2™) is given i

‘." posed architecture is implemented

tiplication ki P; + K e “added than other know

countermeasures. Thig] it has to be confirmed

However, a big problem occurs in the auto place and route stage. The data path in
the proposed design is 512 bit, there are too many wires in it. Therefore, the CAD tool
cannot place them without negative timing slacks and design rule violations. We have
tried it on UMC 0.18um 1P5M, TSMC 0.18um 1P5M and UMC 90nm 1P9M CMOS
processes and enlarge the timing margin. We have also tried a 256-bit version. But all
these effort are ineffective.

We suggest to use word-based architecture to solve this problem. The Montgomery

multiplier can be easily modified into a pipelined word-based architecture, but its hard

71

to pipeline the Montgomery divider since there exist data dependency between two con-
secutive iterations. So it may be worth-researching to develop a pipelined Montgomery

divider architecture.

72

Bibliography

1]
2]

Advanced Encryption Standard (AES), FIPS PUBS Std. 197, 2001.

W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, vol. IT-22, no. 6, pp. 644-654, 1976.

logarithms,” in Proceedings of CR % on uces: | ptology. New York,
NY, USA: Spiin '

J. Cowie, B. D y . aclit-E . K. stra, P. L. Montgomery,

and J. Zaye yvide T a ing: : On to 512 bits.”
in ASTACRYRZE "96: B in -Jﬁ @@Q’;’i_ 1 ce on the Theory and
Applications of Ci 0 nformation Securily, 1996, pp. 382-394.

V. S. Miller, “Use of ¢ in Advances in Cryptology -

Springer-Verlag, 1986, pp. 417-426.

N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, no.
177, pp. 203-209, January 1987.

Recommendation on Key Management, NIST Special Publications Std. 800-57, 2005.

Public Key Cryptography For The Financial Services Industry: The FElliptic Curve
Digital Signature Algorithm (ECDSA), ANSI Std. X9.62, 2005.

73

Y

[10] B. J. Paul Kocher, Joshua Jaffe, “Differential power analysis,” in Advances in Cryp-
tology - Crypto 99 Proceedings, ser. Lecture Notes in Computer Science, M. Wiener,

Ed., vol. 1666. Springer-Verlag, 1999, pp. 388-397.

[11] J.-S. Coron, “Resistance against differential power analysis for elliptic curve cryptog-
raphy,” in CHES’99, ser. Lecture Notes in Computer Science, C. K. Kog¢ and C. Paar,
Eds., vol. 1717. Springer-Verlag, 1999, pp. 292-302.

[12] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of
Computation, vol. 44, no. 170, pp. 519-521, April 1985.

[13] Y. J. Liu, “An implementation of universal dual-field scalar multiplication on elliptic

curve cryptosystems.” Master’s thesis, National Chiao Tung University, 2007.

[14] N. Koblitz, A course New York, NY, USA:

, NY, USA: Springer-

[16] A. M. H. Co : teellip ve ex ion using mixed co-
e Notes in Computer

Science, K. Ohta . Pei, | erlag, 1998, pp. 51-65.

[17] numbers generated by

7

addition in formal groups an factorization tests,” in Advances in

ado, FL, USA, 1986, pp. 385-434.

[18] J. A. Solinas, “Efficient arithmetic on koblitz curves,” Des. Codes Cryptography,
vol. 19, no. 2-3, pp. 195-249, 2000.

[19] F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve using

W

addition-subtraction chains,” Informatique théorique et Applications, vol. 24, pp.

531-544, 1990.

[20] Cetin Kaya Kog, T. Acar, and B. S. Kaliski, Jr., “Analyzing and comparing mont-
gomery multiplication algorithms,” IEEE Micro, vol. 16, no. 3, pp. 26-33, June 1996.

74

21] C. D. Walter, “Montgomery exponentiation needs no final subtractions,” FElectronics
g Yy €xXp

Letters, vol. 35, no. 21, pp. 1831-1832, October 1999.

[22] C. K. Kog and T. Acar, “Fast software exponentiation in GF(2*),” in ARITH ’97:
Proceedings of the 13th Symposium on Computer Arithmetic (ARITH "97). Wash-
ington, DC, USA: IEEE Computer Society, 1997, p. 225.

23] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. Info.
Theory, vol. I'T-22, pp. 644-654, November 1976.

[24] D. E. Knuth, The Art of Computer Programming, 3rd ed. Addison-Wesley, 1998,

vol. 2, ch. Seminumerical Algorithms.

[27] S. C. Shantz, cuclid’s gc \tgoIEry 1 to the great divide,”
Sun Micros : | ¢ 2001.

[28] N. Takagi, “A vlsi ' ; nle rision the binary GCD algo-
rithm,” IEICH ’) 728, May 1998

[29] A. Daly, W. P. Mazhane, T. Fast modular division for

[30] L. B. S. B. Ors and J. Vandewalle, “Hardware implementation of an elliptic curve
processor over gf(p),” in 14th IEEE International Conference on the Application-

Specific Systems, Architectures, and Processors (ASAP03), 2003, pp. 433-443.

[31] K. Okeya and T. Takagi, “The width-w naf method provides small memory and fast
elliptic scalar multiplications secure against side channel attacks,” in C'T-RSA 2003,
ser. Lecture Notes in Computer Science, M. Joye, Ed., vol. 2612. Springer-Verlag,
2003, pp. 328-343.

75

[32]

[33]

E. A. D. T. S. Messerges and R. H. Sloan, “Power analysis attacks of modular
exponentiation in smartcards,” in CHES 99, ser. Lecture Notes in Computer Science,

. K. Kog and C. Paar, Eds., vol. 1717. Springer-Verlag, 1999, pp. 144-157.

L. A. Tawalbeh, A. F. Tenca, S. Park, and C. K. Kog, “Use of elliptic curves in cryp-
tography,” in Tharty-FEighth Asilomar Conference on Signals, Systems, and Comput-
ers, vol. 1, November 2004, pp. 483-487.

A. Satoh and K. Takano, “A scalable dual-field elliptic curve cryptographic proces-
sor,” IEEE Trans. Comput., vol. 52, no. 4, pp. 449-460, 2003.

G. Z. Lu, “Hardware implementation of elliptic curve cryptosystem over finite fields

GF(p) and GF(2™),” Master’s thesi

ational Chiao Tung University, 2004.

ardware elliptic curve crypto-

graphic processor over G 75 0m ¢ its and Systems, vol. 53,

76

WLooE A
TERE

CY RN FENEES-EENTERY.

90.9 ~ 95.6 M=z~ T+ 1&F

95.9 ~ 97.11 &

	Thesis
	Design and Implementation of an SPA-Resistant Dual-Field Elliptic Curve Arithmetic Unit
	Design and Implementation of an SPA-Resistant Dual-Field Elliptic Curve Arithmetic Unit

	THESIS_final
	作者簡歷

