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摘 要       

這篇論文中介紹了一個同時適用在 GF(p)和 GF(2m)的抗簡單能量攻擊法

之橢圓曲線運算單元(ECAU)的通用型硬體架構，這個架構能支援最多 512

位元任意長度的有限場。在這個運算單元中提出一種隨機交錯計算 k1P1+k2P2

的演算法，藉此抵抗簡單能量攻擊法。其中的橢圓曲線運算建構在仿射座標

系，並使用高速的蒙哥馬利除法演算法。為了減少硬體複雜度，我們提出了

有限場運算單元(GFAU)來計算同餘加法、減法和蒙哥馬利乘法、除法。 

使用 ASIC 設計流程實現這個架構後，GFAU 所需的合成邏輯閘個數比

先人所提出的少 25%。在所提出的抵抗簡單能量攻擊法的 ECAU 中，我們只

運用一套 GFAU，因此合成結果只需 277.K 個邏輯閘。在 133MHz 的時脈下

進行，計算一筆 512 位元的橢圓曲線純量乘法平均需要 13.76ms，而計算一

筆抵抗簡單能量攻擊法的 k1P1+k2P2運算只需要 27.53ms。 



 
Design and Implementation of an SPA-Resistant Dual-Field Elliptic 

Curve Arithmetic Unit 
 

 
student：Chih-Yeh Tseng 

 

Advisors：Hsie-Chia Chang 
 

 

Department of Electronics Engineering & Institute of Electronics 
National Chiao Tung University 

ABSTRACT 

A universal hardware architecture of SPA-resistant elliptic curve arithmetic 

unit (ECAU) suitable for both GF(p) and GF(2m) is introduced to work in 

arbitrary field lengths within a maximum 512-bit length. The proposed algorithm 

used in ECAU can randomly interleave k1P1+k2P2 operations to cope with SPA. 

The elliptic curve operations are calculated over affine coordinate using high 

speed Montgomery division algorithm. To reduce hardware complexity, the 

sharing architecture called Galois field arithmetic unit (GFAU) is proposed to 

perform modular addition, modular subtraction, Montgomery multiplication and 

Montgomery division. 

After implemented by ASIC design flow, the GFAU occupies 25% less 

synthesized gatecount than previous work. With only one set of GFAU, the 

proposed SPA-resistant ECAU occupies 277.5K gatecount. It averagely takes 

13.76ms to perform one 512-bit scalar multiplication and 27.53ms to perform a 

SPA-resistant 512-bit k1P1+k2P2 operation both at 133MHz clock rate. 
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Abstract

A universal hardware architecture of SPA-resistant elliptic curve arithmetic unit (ECAU)

suitable for both GF (p) and GF (2m) is introduced to work in arbitrary field lengths within

a maximum 512-bit length. The proposed algorithm used in ECAU can randomly inter-

leave k1P1+k2P2 operations to cope with SPA. The elliptic curve operations are calculated

over affine coordinate using high speed Montgomery division algorithm. To reduce hard-

ware complexity, the sharing architecture called Galois field arithmetic unit (GFAU) is

proposed to perform modular addition, modular subtraction, Montgomery multiplication

and Montgomery division.

After implemented by ASIC design flow, the GFAU occupies 25% less synthesized

gatecount than previous work. With only one set of GFAU, the proposed SPA-resistant

ECAU occupies 277.5K gatecount. It averagely takes 13.76ms to perform one 512-bit

scalar multiplication and 27.53ms to perform a SPA-resistant 512-bit k1P1+k2P2 operation

both at 133MHz clock rate.
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Chapter 1

Introduction

1.1 Background

The modern cryptography can be roughly split into two kind: symmetric-key cryp-

tography (secret-key cryptography) and asymmetric-key cryptography (public-key cryp-

tography).

Symmetric-key cryptography means that both the sender and receiver share the same

key or the decryption key can be easily derived from the encryption key. It can be

illustrated in Figure 1.1. This was the only kind of encryption publicly known until June

1976. Now the most popular symmetric-key cryptography algorithm is the Advanced

Encryption Standard (AES) [1].

encryption decryption

plaintext ciphertext plaintext

key

Figure 1.1: Symmetric-key cryptography block diagram

A significant disadvantage of symmetric cryptography is the key management. The

sender and the receiver should exchange the same key through a trusted channel. Besides,

each distinct pair of communication parties must, ideally, share a different key. The

number of keys required increases as the square of the number network members, therefore,

complex key management schemes are demanded to keep them all straight and secret.
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In 1976, Whitfield Diffe and Martin Hellman [2] proposed a novel cryptography called

public-key cryptography (also called as asymmetric-key cryptography), which used dis-

crete logarithm problem to prevent the secret-key from being acquired with known public-

key. It can be illustrated in Figure 1.2. This method of exponential key exchange came

to be known as Diffie-Hellman key exchange. RSA and El-Gamal are two of the popu-

lar public-key cyrptosystems widely used nowadays. The RSA algorithm based on the

difficult of factoring large numbers was published by Rivest, Shamir and Adleman [3] at

MIT1 in 1978. Further, the El-Gamal algorithm based on Diffie-Hellman key agreement

describes the public-key system and digital signature schemes, and it was proposed by

Taher ElGamal [4] in 1985.

encryption decryption

plaintext ciphertext plaintext

public- key secret-key

Figure 1.2: Asymmetric-key cryptography block diagram

The public-key cryptosystem such as RSA is still widely used in electronic commerce

protocols. However, there are many efficient attacks known for both RSA and modular

p discrete log based cryptosystems such as the Number Field Sieve [5] attacks for RSA

and the index calculus attacks for the modular p systems. These methods decrease the

computational time in attacking, therefore the length of the public-key should be much

longer than the secret-key in symmetric cryptography. It is believed to be secure enough

as long as it has sufficiently long keys.

The elliptic curve cryptography (ECC) is kind of public-key cryptography based on

the algebraic structure of elliptic curves over finite fields. It was independently proposed

by Victor S. Miller of IBM2 in 1986 [6] and Neal Koblitz of the University of Washington

in 1987 [7]. There are no subexponential algorithms known for the elliptic curve discrete

logarithm problem (ECDLP) and denotes that there are no efficient mathematical attacks

known on it. Consequently, the parameters for ECC can be chosen to be much smaller

than the parameters for RSA with the same level of resistance against the best known

1Massachusetts Institute of Technology, located in Cambridge, MA, USA. http://web.mit.edu/
2International Business Machines Corporation. http://www.ibm.com/
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attacks. Table 1.1 shows each different parameter size with the same level of security

strengths compared with given cryptography [8].

Table 1.1: Comparable security strength for given cryptography

ECC (e.g., ECDSA) IFC (e.g., RSA) Symmetric key algorithms

f = 160 − 223 k = 1024 -

f = 224 − 255 k = 2048 -

f = 256 − 383 k = 3072 AES-128

f = 384 − 511 k = 7680 AES-192

f = 512 ↑ k = 15360 AES-256

1 ECDSA [9].

2 IFC denotes integer factorization cryptography.

3 f is the size of n, where n is the order of the base point G.

4 k is the size of the modulus p.

Note that in Table 1.1, the difference of the size between ECC and RSA becomes more

enormous as the security level increases. It is attractive that the ECC has much smaller

parameters leads to more significant performance advantages contrast to RSA. Therefore,

the ECC takes advantages for wireless applications where the computing power, memory

and battery life are limited such as smart cards and wireless devices.

Another type of attack called side-channel attack is much more efficient over attacks

based on mathematical theorem. Among them, power analysis, proposed by Paul Kocher,

Joshua Jaffe and Benjamin Jun in 1998 [10], is the most discussed one. This kind of attack

can extract cryptographic keys and other secret information from the device without

invasion. It works over all kinds of public-key and secret-key cyrptosystems. Most of all,

it’s the only efficient attack on elliptic curve cryptosystem. Lots of countermeasures were

proposed to resist power analysis. To learn more information about the countermeasures,

[11] can be referred. A detailed introduction of power analysis attack will be given in

chapter 4.

Furthermore, the performance of ECC mainly depends on the efficiency of its modular

arithmetics, namely, scalar multiplication. Given a positive integer, and a point P on an

3



elliptic curve. The scalar multiplication kP can easily be computed by iterative additions

and doublings. There are some algorithms to compute the multiple of points on elliptic

curves. More details will be discussed in chapter 2.4 later.

1.2 Motivation

The scalar multiplication is the most important operation in an elliptic curve cryp-

tosystem due to the ECDLP. In the traditional affine coordinate elliptic curve point

representation, the result of addition and doubling can be derived through several mod-

ular multiplication and one modular division. Modular multiplication has been improved

by the Montgomery’s technique [12] which will be discussed in chapter 3.1.2. Tradition-

ally, modular division can be achieved by modular multiplication after modular inversion.

Then modular inversion can be done by iterative modular multiplication introduced in the

Fermat’s little theorem or by iterative modular addition, subtraction and shifting intro-

duced by extended Euclidean algorithm. But the first one is extremely time-consuming

and the second one is area-consuming.

Elliptic curve is not only presented in general affine coordinates, it has some different

projective coordinates representations. Equations in elliptic curve scalar multiplication

only consists of modular addition and modular multiplication. Though more multiplica-

tions are utilized, it only requires one modular multiplier. Therefore, most research in

recent years focus on the optimization on the Montgomery multiplication algorithm.

The modular division is further improved and modified with the Montgomery tech-

nique by Yao-Jen Liu in 2007 [13]. In his design, existing inversion after multiplication

algorithm is replaced by just one Montgomery division. Hence the area and the compu-

tational time is reduced, which will be discussed in chapter 3.3.

Therefore, in this thesis, an approach is provided to compute the scalar multiplication

on elliptic curves in both GF (p) and GF (2m), and a unified Montgomery multiplication

and division design is proposed to deal with various finite field degrees and different

primitive polynomials in GF (2m). In this way, performance in terms of the area by

computational time is near to that of projective coordinates algorithms. Therefore affine

coordinates algorithms can be bring back to compete with projective coordinates ones.

4



1.3 Thesis Organization

In this thesis, a universal dual-field elliptic curve arithmetic unit is proposed. In

Chapter 2, the preliminary mathematical background of elliptic curves is introduced. In

Chapter 3, the Galois field arithmetics is introduced. The Montgomery technique is also

involved to improve the multiplication and the division. In Chapter 4, the power analysis

attack and its countermeasures are introduced. In Chapter 5, all the proposed universal

dual-field architectures are described. In Chapter 6, it shows the hardware implementation

results and test consideration. The conclusion is given in Chapter 7.
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Chapter 2

Elliptic Curves

ECDH, ECDSA, ECIES

Elliptic Curve Doubling, Addition, 

Scalar Multiplication, Hash Functions

Galois Field Arithmetics

Complex operations

Fundamental arithmetics

Cryptographic protocols

Figure 2.1: Hierarchal organization of elliptic curve cryptography.

The hierarchal organization of elliptic curve cryptography is in Figure 2.1. Galois

field arithmetics construct the elliptic curve arithmetics and the elliptic curve arithmetics

construct complicated protocols.

Elliptic curves [14] [15] are not ellipses as shown in literal. In mathematics, an elliptic

curve is an algebraic curve defined by a cubic equation such as y2 = x3 + ax + b, which

is non-singular, i.e. its graph has no cusps or self-intersections. Elliptic curves received

their name from their relation to elliptic integrals such as

∫ z2

z1

dx√
x3 + ax + b

and

∫ z2

z1

x dx√
x3 + ax + b

(2.1)

that arose in connection with the computation of the circumference of ellipses.
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2.1 Basic Facts

Let F be an algebraically closed field and F
2 denote the affine plane A

2, the usual plane,

A
2(F) = {(x, y)|x, y ∈ F}. Let C(x, y) be an irreducible polynomial over F, and the curve

C means the set of zeros of C in the affine plane F
2, i.e. {(x, y) ∈ F

2|C(x, y) = 0}.
Assume that P is a point (xp, yp) on the curve C. If both of the partial derivatives vanish

at P , that is ∂C(xp,yp)

∂x
= ∂C(xp,yp)

∂y
= 0, then the point P is called a singular point on the

curve C. A curve is called a singular curve if and only if it has at least one singular

point on it, otherwise it is called a non-singular curve. An elliptic curve commonly used

in cryptography is a non-singular curve because of its better security level relative to a

singular curve. A singular elliptic curve is thought of insecure in general. Definition 2.1

shows the algebraic equation of the elliptic curve in a more general form.

Definition 2.1. An elliptic curve E over the field F defined by an affine Weierstrass

equation is an equation of the form

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, ∀ai ∈ F (2.2)

let E(F) denote the elliptic curve E over F, i.e. the set of points (x, y) ∈ F
2 that satisfy

this equation, along with the point at infinity denoted by O.

Definition 2.2. The point at infinity called O is the intersection of the y-axis and the

line at infinity. The line at infinity is the set of points on the projective plane for which

Z = 0. Therefore, the point at infinity O is (0, 1, 0) in the projective plane, i.e. the

equivalence class with X = Z = 0.

No further details about projective plane are shown in this thesis since only affine

coordinates are discussed in the remaining chapters.

In order to describe a singular or non-singular curve clearly, an important quantity ∆

related to the elliptic curve called the discriminant of E is defined.
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Definition 2.3. ∆ is the discriminant of E and is given by

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, where











































b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4

+a2a
2
3 − a2

4

(2.3)

and the symbols above correspond to (2.2).

Theorem 2.1. A cubic curve defined by a Weierstrass equation (2.2) is singular if and

only if its discriminant ∆ is zero.

The Definition 2.1 is feasible for any field F. However, the elliptic curves commonly

used in cryptography are over the finite field GF (q), where q is either a large prime p or a

power of p. If q is a large prime p, the prime field GF (p), also labeled as Fp or Zp, is a field

of characteristic p where p 6= 2, 3, that is,
∑k

i=1 1 = k 6= 0 for 1 ≤ k < p and
∑p

i=1 1 = 0.

If q is a power of p, denoted by pm, the Galois field GF (pm) is an extension field of GF (p),

where p is typically chosen as 2 for the sake of binary property in hardware. The finite

fields are also called Galois fields, in honor of their discoverer.

On the basis of various characteristics, the Weierstrass equation (2.2) can be simplified

into different forms by a linear change of variables. The following paragraphs shows the

equation for a field of characteristic 6= 2, 3 and a field of characteristic 2.

Let F be a field of characteristic 6= 2, 3 and char(F) denote the characteristic of F.

Since the char(F) 6= 2, substitute (X,Y ) by (X,Y − a1X+a3

2
) on the left hand side in (2.2).

Y 2 + a1XY + a3Y substitute (X,Y ) → (X,Y − a1X + a3

2
)

⇒ (Y − a1X+a3

2
)2 + a1X(Y − a1X+a3

2
) + a3(Y − a1X+a3

2
)

= Y 2 − a2

1

4
X2 − a1a3

2
X − a2

3

4

(2.4)

Notice that both XY and Y term are eliminated so the coefficients a1 and a3 should be

zero. Thus the equation (2.4) results in Y 2 by substitution for a1 = a3 = 0. Further, the

char(F) 6= 3 so substitute (X,Y ) by (X − a2

3
, Y ) on the right hand side in equation (2.2).

X3 + a2X
2 + a4X + a6 substitute (X,Y ) → (X − a2

3
, Y )

⇒ (X − a2

3
)3 + a2(X − a2

3
)2 + a4(X − a2

3
) + a6

= X3 + (−1
3

a2
2 + a4)X + ( 2

27
a3

2 − 1
3
a2a4 + a6)

(2.5)

8



Then again, the X2 term is eliminated so that the coefficient a2 should be zero and the

equation (2.5) results in X3 + a4X + a6 by setting a2 = 0. According to (2.4) and (2.5),

let a1 = a2 = a3 = 0, a4 = a, a6 = b and the equation (2.2) is modified as follows

Y 2 = X3 + aX + b, a, b ∈ F (2.6)

where char(F) 6= 2, 3. Note that the elliptic curve is a smooth curve, i.e. the curve

is non-singular. Review in Theorem (2.1), an elliptic curve should have its discriminant

nonzero. Therefore, the discriminant of the cubic curve (2.6) can be derived through (2.3)

by substitution for a1 = a2 = a3 = 0, a4 = a, a6 = b. Thus ∆ = −16(4a3 + 27b2) 6= 0.

For a field of characteristic 2, only the non-supersingular case is considered. In brief,

non-supersingular has the result of the coefficient a1 6= 0. Since a1 6= 0, substitute (X,Y )

by (a2
1X + a3

a1

, a3
1Y +

a2

1
a4+a2

3

a3

1

) in (2.2) likewise. A simplified form is obtained as follows

Y 2 + XY = X3 + aX2 + b, a, b ∈ F (2.7)

where char(F) = 2. There is no need to care whether or not the cubic polynomial on the

right hand side in (2.7) has multiple roots.

2.2 Elliptic Curves Arithmetics over Affine Coordi-

nates

Elliptic curve cryptography makes use of elliptic curves where the variables and co-

efficients are belong to a finite field. Two kinds of elliptic curves are commonly used in

cryptographic applications. They are prime curves over GF (p) and binary curves over

GF (2m) respectively. Before discussion on the above curves, the elliptic curves over the

reals are first introduced because some of the basic concepts are easier to visualize.

2.2.1 Elliptic Curves over the Reals

According to equation (2.6), a definition for elliptic curves over the reals is given below.

Definition 2.4. A non-singular elliptic curve E over the reals is an equation of the form

y2 = x3 + ax + b (2.8)

where a, b ∈ R are constants such that 4a3 + 27b2 6= 0.
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It can be shown that the condition 4a3 +27b2 6= 0 is necessary and sufficient to ensure

that the equation (2.8) has three distinct roots which may be real or complex numbers.

Figure 2.2 shows two non-singular elliptic curves and one singular elliptic curve whose

equation are y2 = x3 − 4x, y2 = x3 + 73, and y2 = x3 − 3x − 2 respectively.
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Figure 2.2: Elliptic curves over the reals

Let E be a non-singular elliptic curve over the reals. Given two points P and Q on

E, the negative of P , denoted by −P , and the sum P + Q is defined as follows:

1. If P is the point at infinity O, then −P is O and P + Q is Q; that is, O is the

additive identity which is also called zero element of the group of points.

2. If P is not the point at infinity O, then −P is the symmetry point of P on the

curve E; that is, −P is the point with the same x-coordinate and negative the y-

coordinate of P , i.e. −(x, y) = (x,−y). According to equation (2.8), if (x, y) is a

point on the curve E, then the point (x,−y) is consequently on the curve E.

3. If P and Q are different points on E with different x-coordinates, then let l be the

line through P and Q, and the line l intersects the curve E in exactly one more

point R. Then the sum P + Q = −R is defined and is illustrated in Figure 2.3.

4. If P and Q are different points on E with the same x-coordinates, that is, Q is a

symmetry point of P equal to −P , then the sum P +Q = P +(−P ) = O is defined.
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Figure 2.3: Adding two distinct points P + Q = −R

5. If P and Q are the same points on E, then let the line l be the tangent line to the

curve at P and the point R be the only other point of intersection of l with the

curve E. Thus the sum P + Q = P + P = 2P = −R is defined and is illustrated in

Figure 2.4. Furthermore, if the tangent line has a double tangency at P , that is, P

is a point of inflection, then the sum P + Q = P + P = 2P = −P is defined.

In figure 2.3, let (x1, y1), (x2, y2), (x3,−y3) and (x3, y3) denote the coordinates of P ,

Q, R and P +Q respectively. Let l : y = λx+β be the equation of the line through P and

Q then λ = y2−y1

x2−x1

is the slope of the line l and β = y1−λx1 = y2−λx2 is the consequence

of the point P lying on the line l. Assume that t is a variable and (t, λt + β) denotes the

coordinates of arbitrary points on the line l. The point on l simultaneously lies on the

elliptic curve E if and only if (t, λt+β) satisfies equation (2.8) so that (λt+β)2 = t3+at+b

and rearrange it below by order of t.

t3 + (−λ2)t2 + (a − 2λβ)t + (b − β2) = 0 (2.9)

Note that the equation has exactly three distinct roots and two of them are known as x1

and x2. Remember the relation between roots and coefficient mentioned in Viéte formula

first proposed by François Viéte (1540–1603), a French mathematician.

Theorem 2.2. (Viéte’s Formula) Assume P (x) is a polynomial of degree n with roots
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Figure 2.4: Doubling a point 2P = −R

x1, x2, . . . , xn. For 1 ≤ i ≤ n, let Si be the sum of the products of distinct polynomial

roots xj of the polynomial

P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 = 0 (2.10)

where the roots are taken i at a time, i.e. Si is defined as the symmetric polynomial

Πi(x1, . . . , xn) for i = 1, . . . , n, where

Si = Πi(x1, . . . , xn) =
∑

1≤α1<α2<...<αk≤n

xα1
xα2

· · · xαk
(2.11)

For example, the first few values of Si are

S1 = Π1(x1, . . . , xn) =
∑

1≤i≤n

xi = x1 + x2 + x3 + x4 + · · ·

S2 = Π2(x1, . . . , xn) =
∑

1≤i<j≤n

xixj = x1x2 + x1x3 + x1x4 + x2x3 + · · ·

S3 = Π3(x1, . . . , xn) =
∑

1≤i<j<k≤n

xixjxk = x1x2x3 + x1x2x4 + x2x3x4 + · · ·

and so on. Then Viéte’s formula states that

Si = (−1)i an−i

an

(2.12)

Proof. The polynomial P (x) can also be written as

P (x) = an(x − x1)(x − x2) · · · (x − xn)

= an(xn − S1x
n−1 + S2x

n−2 − · · · + (−1)nSn)
(2.13)
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According to equation (2.10), setting the coefficients equal yields

an(−1)iSi = an−i

which is what the Viéte’s formula states for. Q.E.D.

The Viéte formula was proved by Viéte (1579) for positive roots only, and the general

theorem was proved by Gérard Desargues (1591–1661). Therefore the sum of the roots s1

of a monic polynomial shown in (2.9) is equal to minus the coefficient of the second-to-

highest order. A monic polynomial or normed polynomial is a polynomial whose leading

coefficient is equal to 1. It concludes that the third root x3 in (2.9) is equal to λ2−x1−x2

since the sum of the three distinct roots s1 is λ2. Then the y-coordinate of R is λx3 + β

and y3 is minus the y-coordinate of R. Therefore the coordinate of P + Q in terms of

x1, x2, y1, y2 is shown below.

x3 = (
y2 − y1

x2 − x1

)2 − x1 − x2

y3 = (
y2 − y1

x2 − x1

)(x1 − x3) − y1

(2.14)

In figure 2.4, let (x1, y1), (x2, y2), (x3,−y3) and (x3, y3) denote the coordinates of P ,

Q, R and P + Q respectively. Since P and Q are the same point, x2 = x1 and y2 = y1.

Let l : y = λx + β be the equation of the tangent line to the curve E at P . The slope of

the tangent line at P can be derived by differentiation of the equation (2.8) as follows.

d

dx
(y2) =

d

dx
(x3 + ax + b)

(
dy

dx
) =

3x2 + a

2y

(2.15)

So the slope of the tangent line λ =
3x2

1
+a

2y1

. According to (2.14), substitute ( y2−y1

x2−x1

) for

(
3x2

1
+a

2y1

) and x2 = x1, y2 = y1. A formula for doubling a point is obtained.

x3 = (
3x2

1 + a

2y1

)2 − 2x1

y3 = (
3x2

1 + a

2y1

)(x1 − x3) − y1

(2.16)

Table 2.1 shows the addition formula mentioned above.
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Point Addition (P 6= Q) Point Doubling (P = Q)

P + Q

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1

λ = y2−y1

x2−x1

x3 = λ2 − 2x1

y3 = λ(x1 − x3) − y1

λ =
3x2

1
+a

2y1

Table 2.1: Point addition formula over reals.

2.2.2 Elliptic Curves over Prime Fields

Let p > 3 be a prime. Elliptic curves over GF (p) are defined almost the same as they

are over the reals and the operations over the reals are replaced by modulus operations.

Definition 2.5. Let p > 3 be a prime. A non-singular elliptic curve E over the finite

field GF (p) is an equation of the form

y2 ≡ x3 + ax + b (mod p) (2.17)

where a, b ∈ GF (p) are constants such that 4a3 + 27b2 6≡ 0 (mod p).

Assume that (x1, y1), (x2, y2) and (x3, y3) denote the coordinates of P , Q and P + Q

respectively. Then the coordinate of −P is defined as (x1,−y1) and P + (−P ) = O.

According to equation (2.14) and (2.16), the point addition formula of the elliptic curves

over GF (p) is shown in Table 2.2.

Point Addition (P 6= Q) Point Doubling (P = Q)

P + Q

x3 ≡ λ2 − x1 − x2 (mod p)

y3 ≡ λ(x1 − x3) − y1 (mod p)

λ ≡ y2−y1

x2−x1

(mod p)

x3 ≡ λ2 − 2x1 (mod p)

y3 ≡ λ(x1 − x3) − y1 (mod p)

λ ≡ 3x2

1
+a

2y1

(mod p)

Table 2.2: Point addition formula over GF (p)

2.2.3 Elliptic Curves over Extension of Binary Fields

Definition 2.6. Let p(x) be a primitive polynomial of degree m. A non-supersingular

elliptic curve E over the extension of binary field GF (2m) is an equation of the form

y2 + xy = x3 + ax2 + b (2.18)

where a, b ∈ GF (2m) are constants.
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Note that in this subsection, all of the arithmetic operations are defined over GF (2m)

and all of the parameters are belong to GF (2m), too. Assume that (x1, y1), (x2, y2) and

(x3, y3) denote the coordinates of P , Q and P + Q respectively. Then the coordinate of

−P is defined as (x1, x1 + y1) and P + (−P ) = O.

If P 6= Q, let l : y = λx+β be the equation of the line through P and Q then λ = y2+y1

x2+x1

is the slope of the line l and β = y1 + λx1 = y2 + λx2 is the consequence. The following

equation shows all of the points (t, λx + β) on l simultaneously lies on the curve E.

t3 + (λ2 + λ + a)t + (β2 + b) = 0 (2.19)

Thus the third root x3 = λ2 + λ + x1 + x2 + a and the corresponding y-coordinate is

λx3 + β. So the negative of the y-coordinate y3 = (λx3 + β) + x3 = λ(x1 + x3) + x3 + y1.

If P = Q, let l : λx + β be the equation of the tangent line to the curve E at P . The

slope of the tangent line at P can be derived by differentiation of the equation (2.18).

d

dx
(y2 + xy) =

d

dx
(x3 + ax2 + b)

(
dy

dx
) = x +

y

x

(2.20)

So the slope of the tangent line λ = x1 + y1

x1

. Since P = Q, x3 = λ2 + λ + a and

y3 = λ(x1 + x3) + x3 + y1; moreover, there is another formula commonly used for y3 by

changing varibale. Given λ = x1 + y1

x1

=
x2

1
+y1

x1

that leads to λx1 +y1 = x2
1. Thus rearrange

y3 = (λ+1)x3 +λx1 + y1 and adapt it for y3 = (λ+1)x3 +x2
1. Table 2.3 lists all obtained

formulas of the above together for GF (2m).

Point Addition (P 6= Q) Point Doubling (P = Q)

P + Q

x3 = λ2 + λ + x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1

λ = y2+y1

x2+x1

x3 = λ2 + λ + a

y3 = λ(x1 + x3) + x3 + y1

= (λ + 1)x3 + x2
1

λ = x1 + y1

x1

Table 2.3: Point addition formula over GF (2m)
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2.3 Elliptic Curve Arithmetics over Projective Coor-

dinates

Traditionally, the Galois field inversion is accomplished using the Fermat’s little the-

orem described in chapter 3.2.1 which is estimated to take 9 to 30 Galois field multipli-

cation’s computational time in case of GF (p) with p larger than 100 bits [16]. Therefore,

transferring the point coordinates into another coordinates that can eliminate the inver-

sion operation can greatly improve the performance.

Except Affine coordinate, there are four different coordinate systems mentioned in

this section: Homogeneous Projective, Jacobian, Chudnovsky-Jacobian and Modified Ja-

cobian. The computational time is represented in terms of number of multiplications (M)

and squaring (S). For simplicity, the addition, subtraction and multiplication by a small

constant will not be taken into consideration because they are very fast compared to

multiplication, squaring and inversion operations. A comparison table including Affine

coordinate is given at chapter 3.5 in Table 3.6. Note that the equations mentioned in the

following sections are all used over prime field since the prime field operation is the main

concern in this thesis.

2.3.1 Homogeneous Projective Coordinates

In the homogeneous projective coordinates the following transformation functions are

used to substitute x and y in the affine Weierstrass equation in equation 2.2 to get the

projected coordinates:
{

x → X
Z

y → Y
Z

(2.21)

The elliptic curve equation becomes:

Y 2Z = X3 + aXZ2 + bZ3 (2.22)

In this coordinate system, the points P, Q and R are represented as follows:

P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and R = P + Q = (X3, Y3, Z3).

• The addition formulas are given by:

X3 = vA, Y3 = u(v2X1Z2 − A) − v3Y1Z2, Z3 = v3Z1Z2
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where:

u = Y2Z1 − Y1Z2, v = X2Z1 − X1Z2 and A = u2Z1Z2 − v3 − 2v2X1Z2

• The doubling formulas are given by (R = 2P ):

X3 = 2hs, Y3 = w(4B − h) − 8Y 2
1 s2, Z3 = 8s3

where:

w = aZ2
1 + 3X2

1 , s = Y1Z1, B = X1Y1s and h = w2 − 8B

The computational time for addition and doubling operations using homogeneous coor-

dinates is (12M+2S) and (7M+5S) respectively.

2.3.2 Jacobian Coordinates

In the Jacobian coordinates the following transformation functions are used:

{

x → X
Z2

y → Y
Z3

(2.23)

The elliptic curve equation becomes:

Y 2 = X3 + aXZ4 + bZ6 (2.24)

In this coordinate system, the points P, Q and R are represented as follows:

P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and R = P + Q = (X3, Y3, Z3).

• The addition formulas are given by:

X3 = −H3 − 2U1H
2 + r2, Y3 = −S1H

3 + r(U1H
2 − X3), Z3 = Z1Z2H

where:

U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1 and r = S2 − S1

• The doubling formulas are given by (R = 2P ):

X3 = T , Y3 = −8Y 4
1 + M(S − T ), Z3 = 2Y1Z1

where:

S = 4X1Y
2
1 , M = 3X2

1 + aZ4
1 , and T = −2S + M2
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The computational time for addition and doubling operations using Jacobian coordinates

is (12M+4S) and (4M+6S) respectively.

2.3.3 Chudnovsky-Jacobian Coordinates

D. V. Chudnovsky [17] concluded that Jacobian coordinate system provide faster dou-

bling and slower addition compared to projective coordinates. In order to speedup ad-

dition, he proposed the Chudnovsky-Jacobian coordinate system.In this coordinates a

Jacobian coordinates point is represented internally as 5-tupel point (X,Y, Z, Z2, Z3).

The transformation and elliptic curve equations are the same as in Jacobian coordinates,

while the points P, Q, and R represented as follows: In this coordinate system, the points

P, Q and R are represented as follows:

P = (X1, Y1, Z1, Z
2
1Z

3
1), Q = (X2, Y2, Z2, Z

2
2 , Z

3
2 ) and R = P +Q = (X3, Y3, Z3, Z

2
3 , Z

3
3 ).

The main idea in Chudnovsky-Jacobian coordinate is that the Z2, Z3 are already

calculated in the previous iteration and are not necessary to be calculated again in the

current iteration. In other words, Z2
1 , Z3

1 , Z2
2 , Z3

2 are computed during the previous

iteration and fed into the current iteration as inputs, while Z2
3 , Z3

3 need to be calculated.

• The addition formulas are given by:

X3 = −H3 − 2U1H
2 + r2, Y3 = −S1H

3 + r(U1H
2 − X3), Z3 = Z1Z2H, Z2

3 = Z2
3 ,

Z3
3 = Z3

3

where:

U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1 and r = S2 − S1

• The doubling formulas are given by (R = 2P ):

X3 = T , Y3 = −8Y 4
1 + M(S − T ), Z3 = 2Y1Z1, Z2

3 = Z2
3 , Z3

3 = Z3
3

where:

S = 4X1Y
2
1 , M = 3X2

1 + aZ4
1 , and T = −2S + M2

The computational time for addition and doubling operations using Chudnovsky-Jaconian

coordinates is (11M+3S) and (5M+6S) respectively.
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2.3.4 Modified Jacobian Coordinates

Henri Cohen et.al. modified the Jacobian coordinates [16] and claimed that they got

the fastest possible point doubling. The term (aZ4) is needed in doubling rather than in

addition. Taking this into consideration, they employed the idea of internally representing

this term and provide it as input to the doubling formula. The point is represented in

4-tuple representation (X,Y, Z, aZ4). It uses the same transformation equations used in

Jacobian coordinates.

In this coordinate system, the points P, Q and R are represented as follows:

P = (X1, Y1, Z1, aZ4
1), Q = (X2, Y2, Z2, aZ4

2) and R = P + Q = (X3, Y3, Z3, aZ4
3).

• The addition formulas are given by:

X3 = −H3 − 2U1H
2 + r2, Y3 = −S1H

3 + r(U1H
2 − X3), Z3 = Z1Z2H, aZ4

3 = aZ4
3

where:

U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1 and r = S2 − S1

• The doubling formulas are given by (R = 2P ):

X3 = T , Y3 = M(S − T ) − U , Z3 = 2Y1Z1, aZ4
3 = 2U(aZ4

1)

where:

S = 4X1Y
2
1 , U = 8Y 4

1 , M = 3X2
1 + aZ4

1 , and T = −2S + M2

The computational time for addition and doubling operations using Modified Jacobian

coordinates is (13M+6S) and (4M+4S) respectively.

19



2.4 Elliptic Curves Scalar Multiplication

Scalar multiplication is used to compute a multiple of an Elliptic curve point kP ,

where P is an elliptic curve point and k is a positive integer except the condition that k

equals to the order of P , then kP is the point obtained by adding together k copies of P

and this operation dominates the execution time of elliptic curve cryptographic schemes.

2.4.1 Double-and-Add Algorithm

Algorithm 2.1. (Left-Right Double-and-Add Algorithm)

Input: A positive integer k<n, where n is the order of P ; and an elliptic curve point P .

Output: The elliptic curve point kP .

1. Let knkn−1 . . . k1k0 be the binary representation of k, where the leftmost bit kn is 1.

2. Set R = P .

3. For i from n − 1 down to 0 do

3.1 Set R = 2R.

3.2 If ki = 1, then set R = R + P .

4. Output R.

Algorithm 2.2. (Right-Left Double-and-Add Algorithm)

Input: A positive integer k<n, where n is the order of P ; and an elliptic curve point P .

Output: The elliptic curve point kP .

1. Let knkn−1 . . . k1k0 be the binary representation of k, where the leftmost bit kn is 1.

2. Set R = infinity, Q = P .

3. For i from 0 down to n − 1 do

3.1 If ki = 1, then set R = R + Q.

3.2 Set Q = 2Q.

4. Output R.

The double-and-add algorithm is a basic method for calculating scalar multiplication.

It achieves by repeated point double and add operations. The expected number of ones

in the binary representation of k is m
2
, where m is the length of the integer k. The

number of ones in k indicates the number of times that point addition performs and the

number of times that point doubling operation performs is approximately equal to m.
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Thus Algorithm 2.1 averagely takes m
2

times point addition and m times point doubling

to perform m-bit elliptic curve scalar multiplication once.

Algorithm 2.2 calculates the scalar multiplication in an opposite way. It also achieves

by repeated point double and add operations. But if there exist one doubling hardware

and one addition hardware, it can achieve the double and add operations simultaneously.

It is useful in DPA resistant mentioned later in chapter 4.

2.4.2 Addition-Subtraction Method

If P (x, y) ∈ E(Fp) then −P = (x,−y); else if P (x, y) ∈ E(F2m) then −P = (x, x + y).

Thus the point subtraction is as efficient as point addition. Then Algorithm 2.1 is replaced

by using addition-subtraction method and shown in Algorithm 2.3.

Algorithm 2.3. (Addition-Subtraction Method)

Input: A positive integer k<n, where n is the order of P ; and an elliptic curve point P .

Output: The elliptic curve point kP .

1. Let enen−1 . . . e1e0 be the binary representation of 3k, where the leftmost bit en is 1.

2. Let knkn−1 . . . k1k0 be the binary representation of k.

3. Set R = P .

4. For i from n − 1 down to 1 do

4.1 Set R = 2R.

4.2 If ei = 1 and ki = 0, then set R = R + P .

4.3 If ei = 0 and ki = 1, then set R = R − P .

5. Output R.

2.4.3 Binary NAF Method

Owing to point subtraction is as efficient as point addition, the signed digit representa-

tion k =
∑

ki2
i is used, where ki ∈ {0,±1}. A non-adjacent form (NAF) is a useful signed

representation which has the property that no two consecutive bits in k are nonzero and

has the fewest nonzero bits of any signed digit representation of k. Each positive integer

k has its unique NAF, denoted by NAF(k). The NAF of an integer k can be computed

efficiently by using Algorithm 2.4 [18].
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Algorithm 2.4. (NAF of a Positive Integer)

Input: A positive integer k.

Output: NAF(k).

1. Set i = 0.

2. While k ≥ 1 do

2.1 If k is odd, then set ki = 2− (k mod 4) and then set k = k−ki; else set ki = 0.

2.2 Set k = k
2

and i = i + 1.

3. Output k, whose binary representation is (ki−1ki−2 . . . k1k0).

Note that the length of NAF(k) is at most one bit longer than the binary representation

of k and the average density of nonzero bits in NAF(k) is approximately m
3

[19], where m

is the length of the integer k.

Algorithm 2.5. (Binary NAF Method)

Input: NAF(k) and an elliptic curve point P .

Output: The elliptic curve point kP .

1. Let knkn−1 . . . k1k0 be signed digit representation of k, where the leftmost bit kn is 1.

2. Set R = P .

3. For i from n − 1 down to 0 do

3.1 Set R = 2R.

3.2 If ki = 1, then set R = R + P .

3.3 If ki = −1, then set R = R − P .

4. Output R.

Then the Algorithm 2.5 modifies Algorithm 2.1 by using NAF(k) instead of the binary

representation of k and averagely takes approximately m
3

times point addition and m times

point doubling to perform m-bit elliptic curve scalar multiplication once. Furthermore, it

follows that the expected running time of Algorithm 2.3 and Algorithm 2.5 are the same.
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Chapter 3

Galois Field Arithmetics

In abstract algebra, Galois field, named in honor of Évariste Galois(1811–1832), which

has the same meaning with finite fields is a field that contains only finitely many elements.

It plays an important role in number theory, algebraic theory, Galois theory, coding

theory, and cryptography. In an elliptic curve cryptosystem, Galois field arithmetics

occupy almost all computation time. Therefore, the most efficient method to improve the

performance of the entire cryptosystem is to optimize the algorithms for the Galois field

arithmetics.

A thorough introduction to GF (p) and GF (2m) can be found in publications about

abstract algebra. To understand the basic mathematical background required in cryp-

tography, Chapter II in [14] written by Neal Kobitz can be referred. In this chapter,

algorithms for modular multiplication, inversion, and division are respectively introduced

in section 3.1, 3.2, and 3.3. Domain transformation illustrated in section 3.4, and perfor-

mance comparison is shown in section 3.5.

3.1 Modular Multiplication

3.1.1 Traditional Modular Multiplication Algorithm

In human basic cognition, A × B (mod p) ≡ C (mod p), means to multiply A by B,

then to find the product modulo p. But this computation flow does not work with com-

puters, because trial division is involved. A traditional modular multiplication algorithm

for computers is described below.
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Algorithm 3.1. (Traditional Modular Multiplication over GF (p))

Input: A, B and p, where A,B ∈ GF (p) and p is the modulus p.

Output: C, where C ≡ A × B (mod P ).

1. Let am−1am−2 . . . a1a0 be the binary representation of A.

2. Set C = 0.

3. For i from m − 1 to 0 do

3.1. Set C = C × 2.

3.2. Set C = (C + aiB).

3.3. While C ≥ p, set C = C − p.

4. Output C.

The suffix i of the variable indicates the ith bit in the binary representation of the

variable A.

In Algorithm 3.1, the while loop bound C smaller than p. But more than one iteration

are required in the loop, that’s quite annoying. If variable C can be bounded, then

the while loop can be eliminated. From this point of view, the radix-2 Montgomery

multiplication algorithm in sub-section 3.1.3 can be intuitively comprehended.

3.1.2 Montgomery Multiplication Algorithm

Montgomery multiplication algorithm, proposed by P. L. Montgomery in 1985 [12],

computes the modular multiplication without trial division. It turns the modular multi-

plication into iterations of addition and shift operations. Thus the Montgomery multipli-

cation is quite appropriate for hardware implementation. Let the modulus p be an m-bit

integer with 2m−1 ≤ p < 2m, let A, B, C be positive integers smaller than p, and let r be

an integer where p and r are relatively prime, i.e. gcd(p, r) = 1. There exists an integer

r−1 that indicates the multiplicative inverse of r (mod p), i.e. r × r−1 ≡ 1 (mod p). An-

other integer p′ is involved, which satisfies r × r−1 − p × p′ = 1. Here, both r−1 and p′

can be derived by the extended Euclidean algorithm described later in sub-section 3.2.2.

The Montgomery multiplication algorithm is described below.
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Algorithm 3.2. (Montgomery Multiplication Algorithm)

Input: A, B and p, where A,B ∈ GF (p) and p is the modulus p.

Output: C, where C ≡ A × B × r−1 (mod p).

1. Set U = A × B

2. Set V ≡ U × p′ (mod r)

3. Set C = (U + V × p)/r

4. If C ≥ p, then set C = C − p

Proof. Given r × r−1 − p × p′ = 1, so that

p × p′ = r × r−1 − 1 (3.1)

and in step 2,

V = U × p′ − r × r′ (3.2)

where r′ is a positive integer which satisfies V ≡ U×p′ (mod r). Substitute U in equation

3.2 and multiply r on both sides, following equations can be derived.

C × r = U + U × p′ × p − r × r′ × p (3.3)

Substitute equation 3.1 into equation 3.2 and divide r on both sides:

C = U × r−1 − r′ × p (3.4)

Modulo p on both sides of equation 3.4:

C ≡ U × r−1 (mod p) (3.5)

≡ A × B × r−1 (mod p) (3.6)

In step 3, C is the sum of U
r

and V ×p

r
. Both of them are smaller then p, since r is

always set to be an integer larger than p. As a result, C will not be larger than 2 × p.

Just one subtraction in step 4 can bound C in GF (p).

In this way, Algorithm 3.2 is proven. Q.E.D.

In Montgomery multiplication algorithm, the operations of modulo r and divide by r

are both trivial operations since r is always given as 2m. Thus Montgomery multiplication

has the advantage of hardware implementation, and it’s simpler and faster than traditional

modular multiplication.
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3.1.3 Modified Montgomery Multiplication Algorithm

Various methods are proposed to realize the Montgomery multiplication algorithm [20].

The radix-2 Montgomery multiplication algorithm [21] over GF (p) is shown in Algorithm

3.3 and it can be easily adapted to do multiplication GF (2m). Algorithm 3.4 shows the

binary version of the radix-2 Montgomery multiplication algorithm and it has been proven

by [22].

Algorithm 3.3. (Montgomery Multiplication over GF (p))

Input: A, B and p, where A,B ∈ GF (p) and p is the modulus p.

Output: C, where C ≡ A × B × 2−m (mod p).

1. Let am−1am−2 . . . a1a0 be the binary representation of A.

2. Set C = 0.

3. For i from 0 to m − 1 do

3.1. Set T = (C + aiB).

3.2. Set C = (T + t0p)/2.

4. If C ≥ p, then set C = C − p.

5. Output C.

Algorithm 3.4. (Montgomery Multiplication over GF (2m))

Input: A(x), B(x) and P (x), where A(x), B(x) and P (x) ∈ GF (2m), and GF (2m) is

generated by P (x).

Output: C(x), where C(x) ≡ A(x) × B(x) × x−m (mod P (x)).

1. Let A(x) =
∑m−1

i=0 aix
i, ∀ai ∈ GF (2), be the polynomial representation of A(x).

2. Set C(x) = 0.

3. For i from 0 to m − 1 do

3.1. Set T (x) = (C(x) + aiB(x)).

3.2. Set C(x) = (T (x) + t0P (x))/x.

4. Output C(x).

The suffix i of the variable indicates the i-th bit in the binary or polynomial repre-

sentation of the variable, i.e. t0 denotes the least significant bit of T . Note that the

coefficients of the polynomial representation of A(x), i.e. am−1am−2 . . . a1a0, are also the
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binary representation of the integer A(2) since A(2) =
∑m−1

i=0 ai2
i. The addition and

subtraction are the same as those in GF (p) and GF (2m). Furthermore, division by 2 in

GF (p) and division by x in GF (2m) are both shift operations.

Here a more intuitively illustration is given. Algorithm 3.3 can be easily adapted from

Algorithm 3.1. To bound the variable C in Algorithm 3.1, C is set to be (T + t0p)/2 in

Algorithm 3.3. Adding t0p makes (T + t0p) even, thus the right shift operation won’t lose

the least significant bit. In this way, C is always smaller than 2 × p. After the for loop,

only one subtraction is involved to bound C in GF (p). To sum up, C suffers m times

right shift operation, so C is equal to A × B × 2−m (mod p) at last.

3.1.4 Integer Domain and Montgomery Domain

In above section, Montgomery modular multiplication is introduced to speed up the

traditional modular multiplication. However, if integer a is Montgomery modular multi-

plied by integer b, the result is:

MontMul(a, b) ≡ a · b · r−1 (mod p) (3.7)

Hence the Montgomery domain representation of a denoted as A is defined as A = a ·
r (mod p). And the integer domain representation of a denotes an ordinary modular

operation which is defined as a (mod p). If each input of Montgomery modular multiplier

is in the Montgomery domain,

MontMul(A,B) ≡ C

≡ A · B · r−1 (mod p) (3.8)

≡ (a · r) · (b · r) · r−1 (mod p) (3.9)

≡ a · b · r (mod p) (3.10)

≡ c · r (mod p) (3.11)

the output will also be in the Montgomery domain. Which implies that if inputs are

in the Montgomery domain, no matter how many Montgomery modular multiplications

are utilized, the final output is still in the Montgomery domain, and only one domain

transform is required to transform the result back to integer domain representation.
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In elliptic curve cryptosystems, for speed and implementation consideration, the Mont-

gomery modular multiplication is chosen. Thus modular addition, subtraction, and divi-

sion algorithms must also keep the output results in the Montgomery domain representa-

tion. Modular addition and subtraction in Montgomery domain are the same as addition

and subtraction in integer domain. And the modular inversion and division are illus-

trated in later sections.Detailed transformations from and to both domains are described

in section 3.4.

3.2 Modular Inversion

Modular inversion is used in cryptographic applications such as the Diffie-Hellman key

exchange [23], the public and private key pair generations in RSA and point operations in

ECC. Given an m-bit modulus p, modular inversion computes the inversion of a non-zero

field element a ∈ GF (p). The multiplicative inverse of a is denoted as a−1 (mod p), where

a × a−1 ≡ 1 (mod p). Furthermore, the multiplicative inverse of a exists if and only if

a and p are relatively prime and its proof can be found in publications about abstract

algebra.

3.2.1 Fermat’s Little Theory

Fermat’s little theorem was first stated in 1640 by Pierre de Fermat(1601–1665). It

states that if p is a prime number, then for any integer a, ap − a will be evenly divisible

by p. This can be expressed in the notation as follows:

ap ≡ a (mod p) (3.12)

A variant of this theorem is stated in the following form: if p is a prime and a is an integer

co-prime to p, then ap−1 − 1 will be evenly divisible by p. Expressed as follows:

ap−1 ≡ 1 (mod p) (3.13)

The proof of Fermat’s little theorem is given as follows.

Proof. GF (p), can be recognized as:

GF (p) = 1, 2, . . . , p − 1 (3.14)
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Given 1 ≤ a < p, that is a is an element of GF (p). Let k be the order of a, so that

ak ≡ 1 (mod p) (3.15)

By Lagrange’s theorem, k divides the order of GF (p), which is p − 1, so p − 1 = k × m:

ap−1 ≡ ak×m ≡ (ak)m ≡ 1 (mod p) (3.16)

Q.E.D.

Divide both sides of equation 3.13 by a,

ap−2 ≡ a−1 (mod p) (3.17)

the multiplication inverse of a over GF (p) is derived. The multiplicative inverse of a over

GF (2m) can also be derived from Fermat’s little theorem.

a−1 = a2m−2 (3.18)

ap−2 and a2m−2 can be easily derived with iterative multiplications and squares. But when

the modulus p or m is extremely large, too much time will be consumed. This method is

not adopted in this work.

3.2.2 Extended Euclidean Algorithm

The Euclidean algorithm determines the greatest common divisor (GCD) of two inte-

gers. The GCD of a and b, written as gcd(a, b), is the largest positive integer that evenly

divides both a and b. Two integers are called co-prime if and only if their GCD equals 1.

The extended Euclidean algorithm (EEA) [24] is an extension of the Euclidean al-

gorithm and it can be used to find the x and y in Bézout’s identity which is a linear

diophantine equation. Bézout’s identity, named after Étienne Bézout (1730–1783), states

that if a and b are non-negative integers, there exist integers x and y (typically either x

or y is negative) such that

a · x + b · y = gcd(a, b) (3.19)

where x and y can be obtained by the EEA, but they are not uniquely determined.

Set x′ = x − k · b and y′ = y + k · a, then (x′, y′) is another solution to (3.19) since

a · x′ + b · y′ = a(x − k · b) + b(y + k · a) = a · x + b · y = gcd(a, b). Bézout’s identity is

proved as follows.
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Proof. Let G be the set of all positive integers of a·x+b·y, where x and y are integers. Since

G is not empty, it has a smallest element by the well-ordering principle. Let s = a·xt+b·yt

be the smallest element of the set S. According to the division algorithm, there are unique

integers q and r that satisfy a = s · q + r with 0 ≤ r < s. Then

r = a − s · q = a − (a · xt + b · yt)q = a(1 − q · xt) + b(−q · yt) (3.20)

Note that (1− q · xt) and (−q · yt) are both integers so that r should be in the set S. But

the condition 0 ≤ r < s contradicts the premise that s is the smallest element of S. Thus

r must be equal to 0, that is, a = s · q, which indicates that a is divisible by s. Similarly,

b is also divisible by s. Therefore s is one of the common divisor of a and b. Assume that

c is another common divisor of a and b. Let a = c · q1 and b = c · q2, then

s = a · x + b · y = c(q1 · x + q2 · y) (3.21)

which implies c can evenly divide s. Therefore s is the GCD of a and b, i.e. s =

gcd(a, b). Q.E.D.

The extended Euclidean algorithm can be written as following algorithm:

Algorithm 3.5. (Extended Euclidean Algorithm)

Input: Integer A and B, where A < B.

Output: Integer C, where C = gcd(A,B).

1. Set A′ = 1, q = 0.

2. While A′ 6= 0 do

2.1. Set q =
⌊

B
A

⌋

.

2.2. Set A′ = B − q · A.

2.3. If A′ = 0, then set C = A.

2.4. Set B = A, A = A′.

3. Output C.

When a and b are relatively prime, i.e. a · x + b · y = 1, x is the multiplicative inverse

of a (mod b). To find the multiplicative inverse of A, following simultaneous equations

are introduced.
{

R · A + e · p = U

S · A + d · p = V
(3.22)

30



P is set as modulus p, U , V , R,and S are variables, d and e are two variant integer,

but they are not substantially calculated or presented. Initially, U , V , R and S are

respectively set as p, A, 0 and 1:

{

0 · A + e · p = p

1 · A + d · p = A
(3.23)

Here, d and e are 0 and 1 respectively. With EEA, which means elimination method in

simultaneous equations, introduced, finally equation 3.23 turns into equation 3.24:

{

R · A + e · p = 1

0 · A + 0 · p = 0
(3.24)

The algorithm terminates when V = 0, in which case U = 1 and then R · A + e · P = 1

leads to R · A ≡ 1 (mod P ), hence R ≡ A−1 (mod p).

The EEA can solve the equation a · x + b · y = gcd(x, y) efficiently. But there exists a

quotient q in EEA, which means a division is required. As a result, the EEA should be

modified to suit binary representation systems.
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A binary GCD algorithm was first devised by Josef Stein in 1961 and published in

1967 [25]. Before describing this algorithm, three simple facts are introduced as follows:

1. If a and b are both even, then gcd(a, b) = 2 × gcd(a/2, b/2);

2. If a is even and b are odd, then gcd(a, b) = gcd(a/2, b);

3. If a and b are both odd, then gcd(a, b) = gcd(a − b, b);

The modular multiplicative inverse algorithm adapted from the binary GCD algorithm

is described below:

Algorithm 3.6. (Modular Inverse Algorithm over GF (p))

Input: A and P , where A ∈ GF (p) and P is the modulus p.

Output: R, where R ≡ A−1 (mod P ).

1. Set U = P , V = A, R = 0 and S = 1.

2. While V 6= 0 do

2.1. While U is even do

2.1.1. Set U = U/2.

2.1.2. If R is even, then set R = R/2.

2.1.3. Else set R = (R + P )/2.

2.2. While V is even do

2.2.1. Set V = V/2.

2.2.2. If S is even, then set S = S/2.

2.2.3. Else set S = (S + P )/2.

2.3. If U > V , then set U = U − V , R = R − S.

2.4. Else if V ≥ U , then set V = V − U , S = S − R.

3. Output R (mod P ).

Only by iterative subtractions, parity testings, and right shifts, the multiplicative

inverse can be found. In each iteration, the least significant bit of either a or b is reduced,

thus the entire routine takes no more than 2(m − 1) iterations.
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3.2.3 Montgomery Modular Inversion Algorithm

The Montgomery modular inverse [26], based on the EEA, was proposed by Kaliski to

match the Montgomery domain operations. Given an m-bit modulus p, the Montgomery

modular inverse of a non-zero integer a ∈ GF (p) is defined as the integer x,

x ≡ a−1 · 2m (mod p) (3.25)

The Kaliski’s Montgomery inverse algorithm was re-written as follows with combina-

tion of the two phases in one algorithm. It provides two alternative outputs which is in

Montgomery domain’s result and in the integer domain respectively.

Algorithm 3.7. (Montgomery Modular Inverse Algorithm over GF (p))

Input: A and P , where A ∈ GF (p) and P is the modulus p.

Output: R, where

{

R ≡ A−1 · 2m (mod P ).

R ≡ A−1 (mod P ).

1. Set U = P , V = A, R = 0, S = 1 and k = 0.

2. While V > 0 do

2.1. If U is even, then set U = U/2, S = 2S.

2.2. Else if V is even, then set V = V/2, R = 2R.

2.3. Else if U > V , then set U = (U − V )/2, R = R + S and S = 2S.

2.4. Else if V ≥ U , then set V = (V − U)/2, S = S + R and R = 2R.

2.5. Set k = k + 1.

3. While

{

k 6= m

k 6= 1
do

3.1. If R is even, then set R = R/2.

3.2. Else set R = (R + P )/2.

3.3. Set k = k − 1.

4. If R ≥ P , then set R = 2P − R, else set R = P − R.

5. Output R.

Note that the upper in the braces derives Montgomery modular inverse result and the

lower derives modular inverse result, that is to say, output U is equivalent to A−1 · 2m

(mod P ) or A−1 (mod P ) depends on the termination condition in Step 3.
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The Montgomery modular inverse algorithm can also be represented as solving the

simultaneous equation 3.26.

{

R · A + e · p = U

S · A + d · p = V
(3.26)

The difference between modular inverse and Montgomery inverse is described now. In

step 2.1, S is multiplied by 2 while U is even. Which implies that A in the simultaneous

equation is divided by 2. Simultaneously, A in lower equation is also divided by 2. To

ensure the equivalence between the left-side and the right-side of the lower equation, S is

multiplied by 2. Illustrated in equation 3.27:

{

R · A/2 + e/2 · p = U/2

2S · A/2 + d · p = V
(3.27)

Step 2.2 is similar to step 2.1. Note that in step 1, R is set as 0. In fact, this R is −R.

Therefore, in step 3.3, R = −(−R− S) = R + S and in step 3.4, S = S − (−R) = S + R.

With the two identical operations, the hardware cost is reduced. Hence R and S are set

as 0 and 1, no overflow condition on R and S occur. After k iterations, the simultaneous

equation is showed below:

{

R · A/2k + e · p = 1

S · A/2k + d · p = 0
(3.28)

As a result, R ≡ A−1 · 2k. Step 3 iteratively divide R by 2 until R ≡ A−1 · 2m. Step 4

negates R and bound it in GF (p) at the end of this algorithm.

The Step 2 is iterative and it reduces U or V by one bit in each iteration at least.

Step 3 iteratively right shift the result of step 2. When k is subtracted to the field m or

0, variable R equals to −A−1 · 2m or −A−1. In step 4, R is negated back to A−1 · 2m or

A−1. Obviously, U and V initially have at most 2m bits in total since 2m−1 ≤ U < 2m

and 0 < V < U . But U equals 1 and V equals 0 in the last iteration, therefore, the

iteration count in Step 2 takes no more than (2m − 1) iterations. Similarly, U and V

initially have at least m + 1 bits in total while V is equal to 1, thus, the iteration count

in Step 2 takes no less than m iterations. So the boundary of k is m ≤ k < 2m and the

total iteration count i of this algorithm is m ≤ i < 3m. The average iteration count of i

is 2m by simulation of about two millions of different input V .
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If the input is originally in the Montgomery domain, i.e. A ≡ a · 2m (mod P ), then

the output of the Montgomery inverse is given below.

X ≡ (A)−1 · 2m (mod P )

≡ (a · 2m)−1 · 2m (mod P )

≡ a−1 (mod P )

(3.29)

In order to convert the output to the Montgomery domain, an additional Montgomery

multiplication operation is added afterward. If the input is originally in the integer do-

main, i.e. A ≡ a (mod P ), then the output in the integer domain needs m iterations

more than output in the Montgomery domain. The latencies of the Montgomery modular

inverse from and to both domains are listed in the Table3.1:

Table 3.1: Latency of the Montgomery modular in-

verse from and to both domains.

Domain Latency (cycles)

From → To

Int → Int

Int → Mont

Mont → Int

Mont → Mont

MontInv MontMul Total

4m + 1 - 4m + 1

3m + 1 - 3m + 1

3m + 1 - 3m + 1

3m + 1 m + 1 4m + 2

1 Int means integer and Mont means Montgomery.

2 MontInv denotes Montgomery inversion.

3 MontMul denotes Montgomery multiplication.

4 m is the bit length of the modulus p.

3.3 Modular Division

3.3.1 Multiplication after Inversion

The modular division operation is traditionally accomplished by modular inversion

followed by modular multiplication since the modular division is believed to be slow. It
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can be applied to the computation of the parameter λ in ECC. Given two integers a and

b in integer domain, divide a by b is done as follows:

c ≡ a

b
(mod p) (3.30)

≡ a · b−1 (mod p) (3.31)

which can be performed by modular inverse followed by modular multiplication. But in

ECC, operands are represented in the Montgomery domain. Given two integers A and B

in the Montgomery domain, the Montgomery modular division is defined as follows:

C ≡ MontMul(A, MontMul(MontInv(B), r2)) (3.32)

≡ a · b−1 · r (mod p) (3.33)

≡ c · r (mod p) (3.34)

≡ MontDiv(A,B) (3.35)

One extra Montgomery multiplication is required to keep the result in the Montgomery

domain. Table 3.2 shows the latency of traditional method using a Montgomery inversion

followed by a Montgomery multiplication.

Table 3.2: Latency of modular division using traditional method

from and to both domain

Domain Latency (cycles)

From → To

Int → Int

Int → Mont

Mont → Int

Mont → Mont

MonInv MonMul MonMul Total

3m + 1 m + 1 - 4m + 2

3m + 1 m + 1 m + 1 5m + 3

3m + 1 m + 1 - 4m + 2

3m + 1 m + 1 m + 1 5m + 3

3.3.2 Modular Division Algorithm

Given an m-bit modulus p, the modular division of two integers a, b ∈ GF (p), where

b 6= 0, is defined as the integer x,

x ≡ a · b−1 (mod p) (3.36)
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The following algorithm shows a binary add-and-shift algorithm proposed by Sheueling

Chang Shantz [27] for modular divison in a residue class.

Algorithm 3.8. (Modular Division Algorithm over GF (p))

Input: A, B and P , where A,B ∈ GF (p) and P is the modulus p.

Output: R, where R ≡ A · B−1 (mod P ).

1. Set U = P , V = B, R = 0 and S = A.

2. While U 6= V do

2.1. If U is even, then set U = U/2.

2.1.1. If R is even, then set R = R/2.

2.1.1. Else set R = (R + P )/2.

2.2. Else if V is even, then set V = V/2.

2.2.2. If S is even, then set S = S/2.

2.2.2. Else set S = (S + P )/2.

2.3. Else if U − V > 0, then set U = (U − V )/2 and R = R − S.

2.3.3. If R < 0, then set R = R + P .

2.3.3. If R is even, then set R = R/2. Else set R = (R + P )/2.

2.4. Else if V − U ≥ 0, then set V = (V − U)/2 and S = S − R.

2.4.4. If S < 0, then set S = S + P .

2.4.4. If S is even, then set S = S/2. Else set S = (S + P )/2.

3. Output R.

The modular division algorithm above is an iterative process of additions, parity-

testings, and shifts. Like Montgomery modular inverse algorithm, it reduces U or V by

one bit. But it is different that in the last iteration, U and V are both equal to 1. Thus

the entire division routine takes no more than 2(m − 1) iterations.

Like the modular inversion algorithm, the modular division algorithm also works by

using the elimination method for solving the simultaneous equations below, where d and

e are not really computed, too.

{

R · (A−1B) + e · P = U

S · (A−1B) + d · P = V
(3.37)

Note that this algorithm terminates when U = V = 1, in which case R · (A−1B)+ eP = 1

and S · (A−1B) + dP = 1. Since P is a prime, i.e. gcd(A−1B,P ) = 1, the equation above
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definitely exists integer solutions that satisfy R · (A−1B)+e ·P = 1, where R · (A−1B) ≡ 1

(mod P ), that is, R ≡ AB−1 (mod P ). Similarly, S ≡ AB−1 (mod P ), too. And it

can also be easily obtained that an identical equation that fits equation (3.37) is written

below,
{

0 · (A−1B) + 1 · P = P

A · (A−1B) + d · P = B
(3.38)

Thus the two algorithms of modular inverse and division only differ from the initial value

of the variable S with S = A instead. Although d is not really computed, in this case,

d = (−kB), where k is an integer that AA−1 = 1 + kP since AA−1 ≡ 1 (mod P ).

A · (A−1B) + d · P = (1 + kP )B + (−kB) · P = B (3.39)

Thus, there exists an integer d satisfy the equation (3.38).

3.3.3 Montgomery Modular Division Algorithm

Given an m-bit modulus p, the Montgomery modular division of the two integers

a, b ∈ GF (p), where b 6= 0, is defined as the integer q, where

q ≡ a · b−1 · 2m (mod p) (3.40)

And given a primitive polynomial p(x) with degree m which generates the GF (2m), the

Montgomery modular division of the two element a(x), b(x) ∈ GF (2m), where b(x) 6= 0,

is defined as the polynomial q(x), where

q(x) ≡ a(x) · b−1(x) · xm (mod p(x)) (3.41)

An alternative algorithm for calculating the Montgomery modular division or real

modular division suitable for both GF (p) and GF (2m) is proposed by Yao-Jen Liu [13].

The Montgomery modular division algorithm over GF (p) is re-written below:
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Algorithm 3.9. (Montgomery Modular Division Algorithm over GF (p))

Input: A, B and P , where A,B ∈ GF (p) and P is the modulus p.

Output: R, where

{

R ≡ A · B−1 · 2m (mod P ).

R ≡ A · B−1 (mod P ).

1. Set U = P , V = B, R = 0, S = A and k = 0.

2. While V > 0 do

2.1. If U is even, then set U = U/2, S = 2S.

2.2. Else if V is even, then set V = V/2, R = 2R.

2.3. Else if U − V > 0, then set U = (U − V )/2, R = R + S and S = 2S.

2.4. Else if V − U ≥ 0, then set V = (V − U)/2, S = S + R and R = 2R.

2.5. If R ≥ P , then set R = R − P .

2.6. If S ≥ P , then set S = S − P .

2.7. Set k = k + 1.

3. While

{

k 6= m

k 6= 1
do

3.1. If R is even, then set R = R/2.

3.2. Else set R = (R + P )/2.

3.3. Set k = k − 1.

4. Set R = P − R.

5. Output R.

The algorithm above is based on EEA and the binary GCD algorithm [28]. It mainly

modifies the Montgomery modular inverse algorithm by setting the dividend to the initial

value of S. Since S = A at the beginning, there would be overflow conditions. Step

2.5 and step 2.6 bound R and S in GF (p). The Montgomery modular division over

GF (2m) can be simply derived by changing the addition and subtraction to exclusive-

or and changing the overflow condition to degree comparison between R, S,and p. The

Montgomery modular division algorithm over GF (2m) is re-written as follows:
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Algorithm 3.10. (Montgomery Modular Division Algorithm over GF (2m))

Input: A(x), B(x) and P (x), where A(x), B(x) and P (x) ∈ GF (2m) and GF (2m) is

generated by P (x).

Output: R(x), where

{

R ≡ A(x) · B−1 · (x)xm (mod P (x)).

R ≡ A(x) · B−1(x) (mod P (x)).

1. Set U(x) = P (x), V (x) = B(x), R(x) = 0, S(x) = A(x) and k = 0.

2. While V (x) 6= 0 do

2.1. If U(2) is even, then set U(x) = U(x)/x, S(x) = xS(x).

2.2. Else if V (2) is even, then set V (x) = V (x)/x, R(x) = xR(x).

2.3. Else if U(2) − V (2) > 0,

then set U(x) = (U(x) + V (x))/x, R(x) = R(x) + S(x) and S(x) = xS(x).

2.4. Else if V (2) − U(2) ≥ 0,

then set V (x) = (V (x) + U(x))/x, S(x) = S(x) + R(x) and R(x) = xR(x).

2.5. If deg(R) = deg(P ), then set R(x) = R(x) + P (x).

2.6. If deg(S) = deg(P ), then set S(x) = S(x) + P (x).

2.7. Set k = k + 1.

3. While

{

k 6= m

k 6= 1
do

3.1. If R(2) is even, then set R(x) = R(x)/x.

3.2. Else set R(x) = (R(x) + P (x))/x.

3.3. Set k = k − 1.

4. Output R(x).

The total latency of the traditional method above seems worse in Montgomery domain,

so the Montgomery modular division algorithm combines the inversion with multiplica-

tion to improve this shortcoming. The maximum number of iterations in Montgomery

modular division algorithm is 3m or 4m depends on the output is in Montgomery or

integer domain. The average number of iterations consumed in the Montgomery modular

division algorithm is 2m or 3m depends on the output is in Montgomery or integer do-

main. This average number is obtained by over millions of simulation. Table 3.3 shows

each latency in the worst case and the average case of the Montgomery division from and

to both domain. No additional Montgomery multiplication operations is required.

The following table shows the performance comparison between the Montgomery divi-

sion and previous works. B. S. Kaliski Jr. employed two Montgomery multiplication after
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Table 3.3: Latency of Montgomery modular division from and to both

domain

Domain Worst Latency (cycles) Avg. Latency (cycles)

From → To

Int → Int

Int → Mont

Mont → Int

Mont → Mont

GF (p) GF (2m)

4m 4m − 1

3m 3m − 1

4m 4m − 1

3m 3m − 1

GF (p) GF (2m)

3m 3m − 1

2m 2m − 1

3m 3m − 1

2m 2m − 1

one Montgomery inversion [26] and A. Daly et al. used one Montgomery multiplication

after one modular division [29].

Table 3.4: Latency of Montgomery division algorithms comparison.

Operation Best Case Worst Case Ave. Case

MontInv + 2MontMul [26] 3m + 4 5m + 3 4m + 0.5

ModDiv + MontMul [29] 2m + 2 4m − 1 2.5m

MontDiv [13] m + 2 3m 2m

1 m denotes the degree of the Galois field.

Table 3.4 shows that the Montgomery division algorithm in [13] has better performance

than other works.

3.4 Domain Transformation

From above sections, Montgomery domain operations are used in ECC. That is to

say, the integer domain inputs should be transformed into Montgomery domain inputs.

And the Montgomery domain output of the ECC should also be transformed back to

integer domain representation. To do integer domain to Montgomery domain transfor-

mation traditionally, let the integer a multiplied by r2 (mod p), i.e. 22m (mod p), with
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the Montgomery multiplication operation.

A = MontMul(a, r2)

≡ a · r2 · r−1 (mod p)

≡ a · r (mod p)

Note that the constant r2 (mod p) needs to be precomputed externally. But in a universal

design, the modulus p and r are not fixed. Thus additional input port or additional

computational time is demanded. In this thesis, the transformation from integer domain

to Montgomery domain is done by Montgomery dividing a by a constant 1:

A = MontDiv(a, 1)

≡ a · 1−1 · r (mod p)

≡ a · r (mod p)

In this way, m more iterations are consumed than traditional method. But this m itera-

tions are trivial in the entire system.

Similarly, in order to convert the result A back to the integer domain, it can be

achieved by Montgomery multiplying A by a constant 1.

a = MonMul(A, 1)

≡ A · 1 · r−1 (mod p)

≡ (a · r) · 1 · r−1 (mod p)

≡ a (mod p)

3.5 Summary

In section 2.3, the elliptic curve operations on projective coordinates are introduced.

Obviously, the advantage of projective coordinates representations is that no modular

division exists. Hence the hardware cost is lower then the design with a modular division.

However, with the Montgomery division algorithm, one division only costs 2 times of

computational time of one multiplication which is significantly faster than traditional

methods. A comparison table is given below.
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Table 3.5: Scalar multiplication comparison between different coordi-

nates.

Coordinate Affine Projective Jacobian C.J. M.J.

Latency 5 + 4/2 12 + 14/2 10 + 16/2 11 + 14/2 8 + 19/2
(m × n) = 7 = 19 = 18 = 18 = 17.5

1 m denotes the degree of the Galois field.

2 n denotes the length of the scalar.

3 C.J. denotes the Chudnovsky Jacobian coordinate.

4 M.J. denotes the modified Jacobian coordinate.

Table 3.5 shows the comparison between affine coordinate representation and projec-

tive coordinates representations. In this comparison, double-and-add scalar multiplication

is used and the number of addition is estimated as half of the number of doublings. And

in affine coordinate, the division is done by the Montgomery division algorithm proposed

in [13]. The latency of the Montgomery division algorithm is taken as the average one

which is 2m. And the calculation of total latency of one scalar multiplication excludes the

computational time of the domain transformations, the additions, and the subtractions

because the computational time of these operations is trivial comparing to the whole sys-

tem. The latency of one scalar multiplication on affine coordinate is below 40% of scalar

multiplications on other coordinates.

From Table 3.6, we can see that the affine coordinate elliptic curve scalar multiplier

with the proposed GFAU requires about 13.7% cycles of the latency to complete one

elliptic curve scalar multiplication and requires 75% registers of the design in [30].
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Table 3.6: Comparison between different coordinates.

Author Proposed S. B. Ors [30]

Coordinate affine Modified Jacobian

GF operations Add(1) Sub.(1) Add(2m + 1) Sub.(2m + 1)
(avg. cycles) Mul.(m) Div.(2m) Mul.(3m + 4) Inv.(9m2

2
+ 6n)

E.C. Doubling(avg. cycles) 5m + 8 40m + 38

E.C. Addition(avg. cycles) 4m + 6 42m + 56

E.C. Multiplication(avg. cycles) n(7m + 11) n(51m + 66)

Register 15m, 1n 20m, 1n

Multiplier Type Radix-2 Systolic

Hardware GFAU MMM,MAS

1 m denotes the latency of one Montgomery multiplication.

2 n denotes the length of the scalar.

3 GFAU denotes the proposed Galois field arithmetic unit.

4 MMM denotes the Montgomery modular multiplier.

5 MAS denotes Modular Adder/Subtracter.
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Chapter 4

Power Analysis

Power analysis is a kind of side-channel attack in which the adversary collects the power

consumption of a cryptographic hardware device such as a smart card or an integrated

circuit. The adversary can extract cryptographic keys and other secret information from

the device without invasion.

Simple power analysis (SPA) directly interprets the power traces or graphs of electrical

activity over time into useful information. Differential power analysis is a more complex

method. It allows an adversary to compute the intermediate values within cryptographic

computations by statistically analyzing data collected from multiple cryptographic op-

erations. Both SPA and DPA are proposed in 1999 by Paul Kocher, Joshua Jaffe and

Benjamin Jun [10]. In chapter 4.1, simple power analysis and its countermeasures are

introduced. In chapter 4.2, differential power analysis and its countermeasure are intro-

duced. In the chapter 4.3, a double-and-add algorithm that is resistant to SPA and DPA

is proposed.

4.1 Simple Power Analysis

Simple power analysis observes the measurement of the power consumption of a cryp-

tographic device. A trace refers to a set of power consumption measurements taken across

a cryptographic operation. To measure a circuit’s power consumption, a small (e.g., 50

ohm) resistor is inserted in series with the power or ground input. Then, dividing the

voltage difference across the resistor by the resistance yields the current. Equipped with
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extraordinary high sample rate (1GHz) instruments, it’s able to extract the information

at 99% accuracy. Measuring instruments determine the precision of the power analysis.

Obviously, to perform such an attack the side-channel information needs to be strong

enough to be directly visible in the trace. Further, the secret information needs to have

some simple relationship with the operations that the difference in the power trace is

visible.

To exercise a SPA on a specific cryptographic device, the adversary is supposed to

have a detailed comprehension about the implementation. Besides, the parts of the trace

corresponding to the operations under attack needs to be clearly distinguishable from the

whole trace.Using SPA in an unprotected elliptic curve cryptographic device, the power

trace of the doubling operations can be easily distinguished from the addition operations

since the different numbers of Galois field multiplications exist in them.

J. Coron proposed a countermeasure against SPA in 1999 [11] which is showed below

in algorithm 4.1.

Algorithm 4.1. (Double-and-Add Algorithm Resistant against SPA)

Input: A positive integer k < n, where n is the order of P ; and an elliptic curve point

P .

Output: The elliptic curve point kP .

1. Let knkn−1 . . . k1k0 be the binary representation of k, where the leftmost bit kn is 1.

2. Set R[0] = P .

3. For i from n − 1 down to 0 do

3.1 Set R[0] = 2R[0].

3.2 Set R[1] = R[0] + P .

3.3 Set R[0] = R[ki].

4. Output R[0].

This algorithm can be called as double-and-add always algorithm. Unlike traditional

double-and-add algorithm, both double and add are executed regardless of the scanned

bit. Therefore, no conditional branch can be found and one cannot distinguish the scanned

bit is 0 or 1 from SPA.

Another method is to change the double-and-add chain. With an additional basis, the

scalar k can be represented as a series of 0, 1,−1 and the binary NAF method introduced
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in chapter 2.4.3 can be used to resist the SPA. Since the point addition and the point

subtraction contain almost the same operations, one cannot identify them simply from

the observing the power trace. The NAF accelerates the whole scalar multiplication

due to lower Hamming weight, but it requires additional hardware resource. For more

randomness, the width-w NAF method was proposed by K. Okeya and T. Takagi in

2003 [31]. Of course, the more the width w is, the more additional memory space is

required. It requires a table of 2w−2 pre-computed points.

4.2 Differential Power Analysis

Differential power analysis involves statistically analyzing power consumption mea-

surements from a cryptographic device. The attack exploits biases in power consumption

of hardware devices while performing operations. DPA attacks have signal processing and

error correction properties which can extract secrets from measurements which contain

too much noise to be analyzed using simple power analysis. Using DPA, an adversary can

obtain secret keys by statistically analyzing power consumption of multiple cryptographic

operations performed by a vulnerable smart card or other devices.

Assume that the scalar multiplication algorithm is immune against SPA by using

double-and-add always method (Algorithm 4.1)and the adversary can get the interme-

diate results in the operation. The scalar is represented by binary representation as

kn−1, kn−2, · · · , k0 where ki is the i-th bit of the scalar and n is the total length of the

scalar. At step i, the processed point depends only on the first (n− i)bits {kn−1, · · · , ki}
of the secret scalar. When a point is processed, power trace is correlated to the bits of

it. No correlation will be observed if the point is not computed. For example, the second

most significant bit kn−2 can be learned by calculating the correlation between the power

trace and any specific bit of the binary representation of 4P . If kn−2 = 0, 4P is computed

during the binary algorithm. Otherwise, 4P is never computed and no correlation will be

observed. This correlation method is used to classify power traces of several input points

chosen by the attacker.

The following introduces the general form of differential power analysis on ECC. It

is a variant form of the zero-exponent, multiple-data (ZEMD) attack algorithm proposed
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by T.S. Messerges, E. A. Dabbish and R. H. Sloan in 1999 [32]. Assume that the highest

bits,kn−1, kn−2, · · · , kj+1 are known by the attacker (j denotes the current position). A

scenario of DPA which finds kj is given below:

1. The bad boy makes a guess: kj = 1.

2. He chooses several input points P1, · · · , Pt and computes Qi = 2(
∑n−1

d=j kd2
d−j)Pi.

3. Select a certain bit in the binary representation of Q1, · · · , Qt (fixed for all points)

as a selection function g to construct the following two sets:

St = {i : g(Qi) = true} and Sf = {i : g(Qi) = false}.

4. Let Ci = Ci(τ) = power trace obtained from the computation of a full scalar mul-

tiplication kPi. This is a function of the time τ .

5. Let 〈Ci〉i∈S denote the average of the functions Ci for the i ∈ S, S = St ∪ Sf . If

〈Ci〉i∈St
−〈Ci〉i∈Sf

≈ 0, which means the two sets are uncorrelated, it indicates that

the guess of kj is incorrect. On the other hand, if there are spikes in the difference

〈Ci〉i∈St
− 〈Ci〉i∈Sf

, it indicates that the guess of kj is correct.

To sum up, differential power analysis means that the adversary makes one guess on one

specified bit of the secret scalar, then multiplies lots of points by it, classifies these power

trace by any fixed bit of the results, averages these two power trace groups respectively,

gets the difference of these two average traces and then if the guess is right, there exist

spikes in the difference trace, if no spike comes out, then the guess is wrong. In this way,

the secret scalar k can be found out bit by bit.

Since DPA can extract the scalar through statistical analysis, some system parameters

or computation procedures must be randomized. J. Coron proposed three countermea-

sures:

1. Randomization of the private scalar:

#ǫ denotes the order of the elliptic curve E. The scalar multiplication Q = kP can

be computed as Q = (k+n#ǫ)P where n is a random number. This countermeasure

makes the DPA infeasible since the scalar changes at each new execution of the

algorithm. But more computational time is its disadvantage.
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2. Blinding the point P:

Scalar multiplication Q = kP is randomized by adding a secret random point R for

which known as S = kR. The computation is accomplished by Q = k(R + P ) − S.

In a reconfigurable design, different elliptic curve require different S. It means

additional

3. Randomized projective coordinates:

Randomized projective coordinates can use the Homogeneous or Jacobian coordi-

nate to randomize a point P = (x, y). For homogeneous projective coordinate, P

can be randomized to (rx, ry, r) for a random number r ∈ GF (p). Similarly, P can

be randomized to (r2x, r3y, r) in case of using Jacobian coordinates where r is a

random number in GF (p).

Countermeasures above try to randomize the power traces to make it harder for an

adversary to exploit the differences between these traces. Another countermeasure called

randomized exponentiation algorithm which is used to protect RSA cryptosystems pro-

posed in [32] can be modified to resist DPA in elliptic curve cryptosystems. It is randomly

chose one bit in the scalar as a starting bit. Compute the scalar multiplication from the

chosen bit to the most significant bit of the scalar using Algorithm 2.2, and then compute

the remaining scalar to the least significant bit using Algorithm 2.1. The authors of [32]

claim that all power analysis attacks proposed in [32] would be significantly diminished

by this kind of randomized exponentiation.

4.3 Proposed Countermeasures against SPA

In this section, a countermeasure against SPA is proposed. The main idea of it is to in-

terleave two scalar multiplication’s double-and-add chain. Since k1P1+k2P2 is widely used

in elliptic curve cryptographic protocols, for example ECDSA, using a random number

to determine which point should be taken into computation. In this way, if an adversary

tries to extract the key using SPA, he will get a rearranged key composed by interleaved

k1 and k2. The proposed randomized interleaving double-and-add algorithm 4.2 is intro-

duced below:
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Algorithm 4.2. (SPA Resistant Double-and-Add Algorithm)

Input: Two positive integer k1 and k2; and two elliptic curve point P1 and P2.

Output: The elliptic curve point Q = k1P1 + k2P2.

1. Let k1(n)k1(n−1) . . . k1(1)k1(0) be the binary representation of k1; k2(m)k2(m−1) . . . k2(1)k2(0)

be the binary representation of k2, where the leftmost bits k1(n) and k2(m) are 1; and

a random number r.

2. Set Q1 = P1, Q2 = P2, i = n, j = m.

3. While i 6= 0 and j 6= 0 do

3.1 If r = 0, then do

i. Set Q1 = 2Q1.

ii. If k1(i) = 1, then set Q1 = Q1 + P1

iii. Set i = i − 1.

3.2 Else, do

i. Set Q2 = 2Q2.

ii. If k2(j) = 1, then set Q2 = Q2 + P2

iii. Set j = j − 1.

3.3 If i = 0, then set r = 1.

3.4 Else if j = 0, then set r = 0.

4. Set Q = Q1 + Q2.

5. Output Q.

Comparing to the countermeasures described in section 4.1, the proposed algorithm

computes one more scalar multiplication with additional registers and control signal. But

if the linear combination is required in the protocol, additional memory space is required

to save k1P1 and k2P2, it means that no extra resource of hardware and computational

time is employed. The interleaved scalar multiplication can be illustrated as Figure 4.1.
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Figure 4.1: Interleaved scalar multiplication.
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Chapter 5

Proposed Architectures

In this chapter, a bottom-up illustration of the proposed architectures is presented.

The architecture of universal dual-field Galois field arithmetic unit is illustrated in section

5.1. The architecture of universal dual-field elliptic curve scalar multiplier is illustrated

in section 5.2. And the architecture of universal dual-field elliptic curve arithmetic unit

is illustrated in section 5.3. These designs are suitable for any field length which is

shorter than the given ones. Both prime field, GF (p), and binary extension field, GF (2m),

applications are included. All of the background knowledge and mathematical theorems

are mentioned in earlier chapters.

In this thesis, all of hardware implementation are coded in Verilog HDL (hardware de-

scription language) and synthesized on both application-specific integrated circuit (ASIC)

and field-programmable gate arrays (FPGAs). The designs are implemented with UMC1

0.18-µm CMOS process and the Synopsys2 Design Compiler, and the FPGA platform is

Xilinx3 Virtex-4 XC4VLX160.

5.1 Galois Field Arithmetic Unit

In an elliptic curve cryptosystem, four operations : modular addition, modular sub-

traction, Montgomery multiplication, and Montgomery division, are used. Therefore an

area-efficient universal Galois field arithmetic unit (GFAU) is proposed to meet this re-

1United Microelectronics Corporation. The SoC solution foundry. http://www.umc.com
2Synopsys, Inc. The developer of EDA tools. http://www.synopsys.com
3Xilinx, Inc. The developer and fabless manufacturer of FPGAs. http://www.xilinx.com
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quirement. The ”universal” used here indicates that the field length is designed as an

input, length smaller than 512 is permitted. Among these operations, the Montgomery

division is the most complicated, and consumes most iterations. Thus, how to integrate

the other operations into the hardware of Montgomery division algorithm is the most

important topic in this section. Back to the Algorithm 3.9, the Montgomery division flow

is showed below:

U is even
yes

no

V is even
yes

no

U - V > 0

no

yes

U = U

V = (V - U)/2

R = 2R

S = S + R

U = U

V = V/2

R = 2R

S = S

U = U/2

V = V

R = R

S = 2S

U = (U - V)/2

V = V

R = R + S

S = 2S

R ≥ p

R = R - p

S ≥ p

S = S - p

k = k + 1

INITIAL

U = p, V = B, R = 0, S = A, k = 0

yes

no

yes

no

k = length
yes

R is even

no

no

yes

R = (R + p)/2 R = R/2

k = k - 1

R = p - R

V > 0

yes

no

OUTPUT R = (A/B)*2
m
(mod p)

Figure 5.1: Flow chart of the Montgomery division algorithm.
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The Montgomery division algorithm can be separated into three parts:

1. EEA: Bit-wise reduce U and V until V = 0.

2. RECOVER: Divide R by 2 until k = m.

3. NEGATE : Negate R to get the final result.

These three main parts are main states in the finite state machine of the the Montgomery

divider. In part EEA, one subtracter is used to handle (U − V )/2 and (V − U)/2. The

most significant bit (MSB) of U −V determines if the result of U −V should be negated.

R + S, 2R, and 2S can be combined with the conditional subtraction of R and S in

step 2.5 and step 2.6 by one carry-save adder (CSA), three adder, and two multiplexer.

Which is controlled by the MSB of 2R − p or 2S − p and R + S − p respectively. With

these elements, each iteration of part EEA can be accomplished by one cycle. In part

RECOVER, R = (R + p)/2 simply reuse one adder. And in part NEGATE, R = p − R

reuses the only one subtracter. Note that in 2’s complement number system, −p can be

derived by adding 1’s complement of p with 1, that is:

−p = 2m − p = (2m − 1 − p) + 1 = p̄ + 1 (5.1)

Since p is odd, p̄ is always even. Adding p̄ by 1 is simply turning the MSB of p̄ from 0 to 1.

Therefore negating p only requires bit-wise inversing p except the MSB. An incrementer is

spared here. From above analysis, a 514-bit Montgomery divider totally takes one 514-bit

CSA, four 514-bit CPA (including one 514-bit subtracter), one 514-bit negater, one 10-bit

incrementer, and one 10-bit decrementer.

In Montgomery multiplication, looking back to algorithm 3.3, involves two main parts:

1. MM : Adding partial products and modular right shift.

2. RECOVER: Bound C in GF (p).

Part MM executes step 3 in algorithm 3.3 and algorithm 3.4. Step 3 in algorithm 3.3 is

implemented by a CSA and a carry propagation adder (CPA). But step 3 in algorithm

3.4 only requires the CSA. Part RECOVER take charge of step 4 in algorithm 3.3 with

only changing the input of the CSA after part MM. Thus for the dual-field design, the

hardware implementation of the Montgomery multiplication only contains one 514-bit
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CSA and one 514-bit CPA. Besides, modular addition and modular subtraction simply

utilize the existing elements of the Montgomery divider. The graphical illustration of the

flow of the Montgomery multiplication is showed below: Merge the flow of the Montgomery

INITIAL

U = p, V = B, R = 0, S = A, k = 0

yes

k < m

yes

no

OUTPUT R = A*B*2
-m
(mod p)

R = (R + skV+((skvk)+rk)p)/2

k = k + 1

R ≥ p

R = R - p

no

Figure 5.2: Flow chart of the Montgomery multiplication algorithm.

multiplication with the flow of the Montgomery division, part MM in the Montgomery

multiplication and part EEA in the Montgomery division can be replaced by a new part

named as EEA MM. Part RECOVER and part NEGATE are retained in the GFAU. As

a result, the GFAU consists of three main parts:

1. EEA MM : Operation of EEA for the Montgomery division, MM for the Montgomery

multiplication, modular addition, and modular subtraction.

2. RECOVER: Divide R by 2 until k = m in the Montgomery division and bound C

in GF (p) in the Montgomery multiplication.

3. NEGATE : Negate R to get the final result in the Montgomery division and bound

C in GF (p) in the Montgomery multiplication.

55
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EEA_MM

RECOVER

NEGATE

OUTVALUE

IN_VALID

IN_A=0 || IN_B=0

1
0

0

1

MODE=3&V=0

||

MODE=2&K=LENGTH
0

1

MODE=2

0

K=LENGTH

1

0

1

INITIAL

MODE=0 || MODE=1
1

0

Figure 5.3: Finite states transfer chart of the GFAU.

The finite states transfer chart is described in Figure 5.3. In state IDLE, if IN A or

IN B is zero, state machine directly transfers to state OUTVALUE. In state EEA MM, if

addition (MODE 0) and subtraction (MODE 1) are demanded, state machine transfers to

state OUTVALUE and output the result. While multiplication or division is demanded,

state machine transfers to state RECOVER when register V equals to zero or counter

K equals to LENGTH respectively. Division (MODE 3) is the only one operation that

requires state NEGATE. Therefore, if MODE is 2 which means multiplication, the state

machine should directly transfer from RECOVER to NEGATE with doing anything.

State NEGATE transfers to state OUTVALUE when K equals to LENGTH given from

56



input which denotes termination of the division.
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*(-1)
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+ +
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control

control

control
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+1

K_w

10

-1

K
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IN_P
512

MODE
2

FIELD LENGTH
10

control

OUTPUT
512

control

0

INPUT

Figure 5.4: Architecture of the GFAU.

The complete architecture of the GFAU is showed above in Figure 5.4. The control

signal is generated by the finite state machine in Figure 5.3. All inputs are stored through

some combinational logic controlled by the finite state machine in four main registers:

U(514-bit), V(514-bit), S(514-bit), K(10-bit) and two 1-bit register. Values are pulled

out to one level of combinational logic , then temporary wires named as R1, R2, R3, R4,

R5, 2 × R, and 2 × S are produced. These values get through the datapath and another

level of combinational logic and update the value of the registers at each rising edge of

the clock signal. Recall the hardware requirement of the Montgomery division mentioned

before, the chief advantage of the GFAU is revealed: with almost the same hardware

requirement, just changing the control signal, the GFAU can do the four fundamental

operations of arithmetic over the Galois field.
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The implementation results of the proposed universal Galois field arithmetic unit is

given in Table 5.1. It shows the synthesized gate count at 133MHz and shows the area

and speed results on FPGAs. Each number of gates in the field Gatecount consists of two

parts which are non-combinational logic and combinational logic respectively. It doubles

when the bit length doubles. The area is approximately in proportion to the bit length

m of the field.

Table 5.1: Synthesized results for proposed universal dual-field Galois field

arithmetic unit on ASIC and FPGA design.

Length

ASIC FPGA

Area Frequency Slice Frequency
(Gatecount) (MHz) (Slice+Slice FF) (MHz)

128-bit 23.6k (18.9k+4.7k)
133

3764 + 687 52.5

256-bit 47.4k (38.2k+9.2k) 7363 + 1360 35.2

512-bit 97.3k (79.2k+18.1k) 17131 + 2744 20.8

5.2 Elliptic Curve Scalar Multiplier

A universal elliptic curve scalar multiplier (ECSM) simply computes a point P multi-

plied by a scalar k using iterative point doubling and point addition which is illustrated

in section 2.2. There are four main part in the flow of the ECSM which results in four

state in the controlling finite state machine showed below:

1. ItoM : Convert the values from integer domain to Montgomery domain except the

scalar k.

2. DOUBLE : Point doubling calculation.

3. ADD : Point addition calculation.

4. MtoI : Convert the output x and y back to integer domain representation.

The following figure is a flow chart of the ECSM:
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Figure 5.5: State transition chart of the ECSM.

According to section 3.4, the integer domain to Montgomery domain conversion can be

done by a Montgomery division and the Montgomery domain to integer domain conversion

can be done by a Montgomery multiplication. An additional counter determines which

one of the values, including input IN X1, input IN Y1, coefficient IN A, output OUT X,

and output OUT Y, is involved in the Montgomery multiplication or the Montgomery

division. Afterward, Algorithm 2.1 is used to construct the scalar multiplication. The

state transits between state DOUBLE and state ADD according to each bit of the scalar.

If the length of the scalar is 0, which indicates that the output is the point at the infinity,

the state will directly transit to state OUTVALUE and return to state IDLE. If the length
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of the scalar is 1, which indicates the end of the double and add sequence, the finite state

machine will transit to state MtoI.

The architecture consists of five main blocks: registers, combinational logics, GFAU,

FSM, and DA FSM. Four 512-bits inputs are stored in register reg IN X, reg IN Y,

reg IN A, and reg IN P. Coordinates of the intermediate point P3 are stored in reg P3 X

and reg P3 Y. λ is stored in reg LAMBDA. reg TEMP and reg GFAU OUT make it fea-

sible to use only one GFAU without any additional addition or subtraction. Besides, the

value of x3 in the next double or add iteration is changed before y3, however the original

value of x3 is demanded during the calculation of y3, therefore a register is added to store

the original value of x3.

Looking back to section 2.2.2 and 2.2.3, different addition, subtraction, multiplication,

and division exist in the mathematical representation of x3 and y3. All these operation are

executed by only one GFAU since they are time-dependent operations. Every addition and

every subtraction occupies 1 state in a finite state machine called DA FSM that controls

the GFAU. Because the state transition flow chart is quite complicated, it occupies almost

38% area of the whole ECSM. That’s really a huge percentage. The area consumption

percentage is demostated in the following pie graph: Table 5.2 shows the synthesized

18.7%
38%

43.3%

GFAU

combinational 

logics

registers

Figure 5.6: Pie graph of the area consumption of the ECSM.

result of the proposed ECSM. Figure 5.9 shows the architecture of the proposed ECSM.

60



Table 5.2: Synthesize results for proposed ECSM.

ASIC FPGA

Bit-length Gatecount Frequency Slice Frequency
(Gates) (MHz) (Slice+Slice FF) (MHz)

512-bit 225k (171k+54k) 133 34384 + 8505 20.48

It is arranged at the second last page of this chapter.

5.3 SPA-Resistant Elliptic Curve Arithmetic Unit

There is not only scalar multiplication in elliptic curve cryptographic protocols. Point

addition and point addition after scalar multiplication play important roles in elliptic curve

cryptography. For example, k1P1 + k2P2 is the most important part of the elliptic curve

digital signature algorithm (ECDSA). If there is only the elliptic curve scalar multiplier

available, performing the operations above takes extra memory space and extra memory

access time to load and store the scalar multiplication results. Besides, power analysis

have been the most important threat in recent years. A universal SPA&DPA-resistant

elliptic curve arithmetic unit is proposed in this section.

With three more input ports: IN X2 (512-bit), IN Y2 (512-bit) and IN K2 (513-bit);

three more input buffer: reg IN X2 (512-bit), reg IN Y2 (512-bit), and reg IN K2 (513-

bit); two more intermediate point register : reg P4 X and reg P4 Y and modification of

the main finite state machine, the ECAU is designed without additional GFAU.

If one design is meant to act as an elliptic curve cryptographic co-processor, it should

be able to handle the Galois operations and make it more easier for a software engineer

to work with. In the proposed ECAU, to make the most use of the existing control

signal, the operand of a modular operation should be converted to Montgomery domain

before the operation and converted back to integer domain after the operation. Compared

with the design specific for modular operations, the proposed ECAU requires more time

to do modular operations. But when the ECAU is used to accelerate the process of

an elliptic cryptographic protocol, the slight degradation in computational time of the

modular operations can be ignored. With the proposed ECAU, all the software engineer
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has to do is to arrange the order of the input and output of the ECAU.

Load inputs to 

registers

k2 = 0
no

Initial

yes PA

protected

Randomized 

interleaving flow

no

yes

Direct scalar 

multiplication

k1 odd

k1 = k1 /2 

k2 = k1 /2

k1 = k1 /2 + 1

k2 = k1 /2

yes

no

Figure 5.7: Flow chart of the scalar determination scheme.

Figure 5.7 shows the decision flow of the scalar k1 and k2. If the operation contains

two scalar multiplication and one point addition, the ECAU will randomly interleave

these two scalar multiplication. If there is only one scalar multiplication demanded, a

option is given to decide if these scalar multiplication is power analysis protected. If

”yes”, the scalar k1 will be divided into k1 and k2 by half and randomly interleaved. If

”no”, the ECAU will execute direct scalar multiplication. Figure 5.10 demonstrates the

architecture of the proposed ECAU. It is arranged at the last page of this chapter.The

area consumption ratio is demonstrated in Figure 5.8.

From the pie graph, the additional registers mentioned above contributes to the main

part of the increase of area. The modified control signal also increase the area.

Table 5.3 shows the synthesized result of the proposed ECAU.
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Figure 5.8: Pie graph of the area consumption of the ECAU.

Table 5.3: Synthesize results for proposed ECAU.

ASIC FPGA

Bit-length Gatecount Frequency Slice Frequency
(Gates) (MHz) (Slice+Slice FF) (MHz)

512-bit 277.5k (198.5k+79k) 133 54376 + 16319 17.76
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Figure 5.9: Architecture of the proposed ECSM.
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Chapter 6

Implementation Results

Solutions for elliptic curve arithmetics in both software and hardware are given in this

work. The software simulation environment is constructed in C programing languages.

The design and test consideration are discussed in Chapter 6.1. The hardware imple-

mentation results and design flow are described in Chapter 6.2. The RTL synthesizer

uses Synopsys1 Design Compiler for ASIC and Xilinx XST or Synplicity2 Synplify Pro for

FPGA. The Cadence3 Encounter is used for backend Auto Place & Route implementation.

6.1 Design and Test Consideration

The hardware is designed to accelerate the operations on elliptic curves and it deals

with different field parameters using Montgomery technique. The main part in hardware

is the point operation on elliptic curves and the implementation of scalar multiplication

on hardware uses only Double-and-Add algorithm.

The Verilog code for this design was generated using the parameterized module for

different values of m. The test patterns are generated randomly by software. The ver-

ification for the design uses not only hardware-software co-simulation but also confirms

with the examples of NIST4 publications for more confidence. No special technique is

introduced in the FPGA implementation.

1Synopsys, Inc. http://www.synopsys.com/
2Synplicity, Inc. http://www.synplicity.com/
3Cadence Design Systems, Inc. http://www.cadence.com/
4National Institute of Standards and Technology. http://www.nist.gov/
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6.2 Implementation Results and Comparison

6.2.1 ASIC Implementation

Table 6.1 shows the ASIC synthesized result comparison between the proposed GFAU

and the others. The proposed universal dual-field GFAU consumes about 75% of the total

gatecount of the universal dual-field Montgomery multiplier and the universal dual-field

Mongomery divider proposed in [13]. In [33], a dual-field modular divider is proposed.

But it’s modular divider requires one more Montgomery multiplier to convert the result

back into the Montgomery domain.

Table 6.1: ASIC synthesis results comparison

Length Freq.(MHz) Area(Gatecount)

ModDiv [33] MontDiv [13] MontMul [13] GFAU

128-bit 100 22.8k 20.8k 8.3k 23.65k

256-bit 100 45.6k 42.1k 16.3k 47.4k

512-bit 100 N/A N/A 32.1k 97.3k

1 GFAU can be synthesized at clock frequency 133MHz.

2 GFAU is synthesized with UMC 0.18-µm CMOS process.

3 Modular divider in [33] is synthesized with 0.5-µm CMOS process.

4 Montgomery divider and Montgomery multiplier in [13] are synthesized with

UMC 0.18-µm CMOS process.

In this work, a universal dual-field elliptic curve scalar multiplier and a universal dual-

field elliptic curve arithmetic unit are proposed. The most important part of them is the

proposed area-efficient GFAU. The ASIC synthesized gatecount are 226K and 277.5K

respectively at 133MHz clock frequency using TSMC 0.18µm CMOS process. It takes

1.93ms to complete a 192-bit prime field elliptic curve multiplication using the proposed

ECSM. To make a fair comparison, we multiply the GF(P192) equivalent gatecount by

elliptic curve multiplication computational time. The value of ECSM and ECAU are

163.54(gates×ms) and 401.68(gates×ms). It’s better then previous works.

Table 6.2 shows a comparison for the ASIC performance of scalar multiplication.
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Table 6.2: Elliptic Curve Scalar Multiplication ASIC Performance Comparison

Author A. Satoh [34] G. Z. Lu [35] Y. J. Liu [13] ECSM ECAU

Field P192/2
160 P192/2

192 P256/2
256 P512/2

512 P512/2
512

Process .13µm .25µm .18µm .18µm .18µm

Area(Gatecount) 118k 26.7k 292.5k 225k 277k

Freq.(Mhz) 137.7 285.7 75 133 133

EC mult.(ms) 1.44/0.19 9.75/6.75 3.3 1.93 3.86

P192 Equivalent

172.8 260.3 965.25 163.54 401.68Area×EC mult.
(gatecount×ms)

Coordinate projective modified affine affine affineJacobian

Multiplication multiplier systolic radix-2 radix-2 radix-2based radix-2

Division Fermat’s little Fermat’s little Mont. Mont. Mont.
theorem theorem division division division

Note 64-bit 8PEs with universal universal SPA
multiplier w = 8bits architecture architecture resistant

In [13], a novel Montgomery division algorithm is proposed and utilized in the imple-

mentation of a universal dual-field elliptic curve scalar multiplier. The Montgomery mul-

tiplier and the Montgomery divider occupy most of the area and no area reuse technique

is introduced in his work. Therefore, the gatecount is 292.5k when the field length is 256.

The execution time for computing kP in GF (P192) is average 3.3 ms.

In work [35], the design uses Fermat’s Little Theorem for the modular inversion oper-

ation. However, it is not considered efficient in a large field design since the computation

complexity increases significantly.

Besides, the work [34] shows a great performance using a elliptic curve cryptographic

processor. It has a optimized multiplier-based Montgomery multiplier and uses projective

coordinates to avoid inversion operations. In scalar multiplication, it uses software NAF

method to reduce the number of 1 terms in k.

In software simulation on C on Intel Core 2 Duo E7200 and 2G RAM, it takes around

17 seconds averagely to do scalar multiplication once. The simulation results below show
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significant improvement on the computation time for scalar multiplication.

In the auto place and route stage, we face a big problem. The data path in the proposed

design is 512 bit, there are too many wires in it. Therefore, the CAD tool cannot place

them without negative timing slacks and design rule violations. We have tried it on UMC

0.18µm 1P5M, TSMC 0.18µm 1P5M and UMC 90nm 1P9M CMOS processes and enlarge

the timing margin. But all these effort are ineffective. We have also tried 256-bit design,

but it doesn’t work either. It indicates that the parallel architecture is not feasible with

currently available APR tools. We suggest to use word-based architecture like [34] to

solve this question.

6.2.2 FPGA Implementation

The FPGA synthesis result is showed in Table 6.3:

Table 6.3: 512-bit FPGA synthesis results.

GFAU UESM UEAU

Slice 17131 34384 54376

Slice Flip Flop 2744 8505 16319

4 input LUT 33074 65904 94596

Clock rate(MHz) 20.8 20.48 17.75

C. J. McIvor proposed a multiplier-based architecture in [36]. With cascaded 16× 16-

bit multipliers, it only requires 32 clock cycles to accomplish one 256×256-bit Montgomery

modular multiplication. It performs fast operation with relatively high area consumption.

The proposed architectures don’t have good area and timing performance in FPGA

simulation. In our judgement, the highly reused hardware improve the gatecount synthe-

sized by Synopsys design compiler, but in Xilinx ISE, the larger MUXs consume much

more slices than the datapath does. So the result of FPGA synthesis shows more slices

and longer critical path.
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Table 6.4: Elliptic Curve Scalar Multiplication FPGA Performance Comparison

Author C. J. McIvor [36] S. B. Ors [30] Y. J. Liu [13] ECSM ECAU

Field 2256 P160 P256/2
256 P512/2

512 P512/2
512

Platform XC2VP125 XV1000E XC2V8000 XC4VLX160 XC4VLX160

Slices 15755 N/A 18146 34384 54376

Freq.(Mhz) 39.46 91.3 18.768 20.48 17.75

EC mult. 3.86 14 18.77 1.93 3.86
(ms) (256-bit) (160-bit) (192-bit) (192-bit) (SPA)

Coordinate projective modified affine affine affineJacobian

Multiplication multiplier systolic radix-2 radix-2 radix-2based radix-2

Division ModDiv Fermat’s little Mont. Mont. Mont.
theorem division division division

Note 16-bit Not scalar SPA
multipliers optimized multiplier resistant
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Chapter 7

Conclusion and Disscusion

A SPA-resistant solution in hardware to the operations on elliptic curves in both

GF (p) and GF (2m) is given in this thesis. The proposed architecture is implemented

over affine coordinate using a highly integrated Galois field arithmetic. Not only elliptic

curve operations, but also modular arithmetics are provided, thus a software engineer can

easily use it to accelerate all kinds of elliptic curve protocols. According to comparisons

above, the proposed GFAU gives an advantage in area-latency combined comparison,

which gives an opportunity to put affine coordinate computations back into implementing

consideration.

Besides, the proposed SPA-resistant algorithm randomly interleaves two scalar mul-

tiplication k1P1 + k2P2. In this way, least hardware overhead is added than other know

countermeasures. This method may also be resistant to DPA, but it has to be confirmed

by further simulation. For more protection, this algorithm can also be combined with

other countermeasures like windows-NAF method.

However, a big problem occurs in the auto place and route stage. The data path in

the proposed design is 512 bit, there are too many wires in it. Therefore, the CAD tool

cannot place them without negative timing slacks and design rule violations. We have

tried it on UMC 0.18µm 1P5M, TSMC 0.18µm 1P5M and UMC 90nm 1P9M CMOS

processes and enlarge the timing margin. We have also tried a 256-bit version. But all

these effort are ineffective.

We suggest to use word-based architecture to solve this problem. The Montgomery

multiplier can be easily modified into a pipelined word-based architecture, but its hard
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to pipeline the Montgomery divider since there exist data dependency between two con-

secutive iterations. So it may be worth-researching to develop a pipelined Montgomery

divider architecture.
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Ç. K. Koç and C. Paar, Eds., vol. 1717. Springer-Verlag, 1999, pp. 144–157.

[33] L. A. Tawalbeh, A. F. Tenca, S. Park, and C. K. Koç, “Use of elliptic curves in cryp-
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