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利用OAAT方法監控第一階段非線性剖面資料之研究 

 

 
 
 

                 研究生：許怡玲                    指導教授：洪志真 博士  

 

國立交通大學統計學研究所  

 

摘 要  

Shiau 和 Sun (2006) 針對第一階段製程監控提出OAAT法，即研究一次只

剔除一個最極端的管制外樣本點的作法。模擬研究顯示，「OAAT」法可大幅

降低假警報之發生，因此，我們將此方法推廣到剖面資料的監控。本文使用

一個建構於加權最小橢球體積(Reweighted Minimum Volume Ellipsoid)估計量之 T
2
 

控制圖來監控剖面資料。我們比較OAAT法和傳統的方法(每次管制界限外的樣

本點全部刪除)的假警報率(製程在穩定狀態，但監控統計量落在管制界限建

以外的比例)和偵測力(製程發生改變，而監控統計量落在管制界限以外）。我

們證明OAAT法可以降低製程監控的假警報，而且研究結果也發現當製程偏移

的夠大和管制界限是單邊的時候，這兩個方法的假警報是非常接近的。因為

傳統的方法在計算上是較經濟的，所以我們提出一個統計量當準則去決定何

時使用哪個方法，可使製程監控更精確更有效率。最後，我們利用兩個真實

資料去證明我們所提出的理論方法。 
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Student：Yi-Ling Hsu           Advisors：Dr. Jyh-Jen Horng Shiau 
 
 

Institute of Statistic 
National Chiao Tung University 

 
 

Abstract  
Shiau and Sun (2006) proposed an one-at-a-time (OAAT) scheme for Phase I process 

monitoring that only discards the most extreme out-of-control sample at a time. Using Shewhart 

X  chart as an example, they demonstrated that the OAAT scheme reduces dramatically the 

occurrences of false alarms. In this paper, we extend this scheme to nonlinear profile monitoring. 

We consider a T2 chart constructed based on the reweighted minimum volume ellipsoid (RMVE) 

for profile monitoring. We compare the false-alarm rate (the possibility that an in-control sample 

is claimed as out of control) and detecting power (an out-of-control sample is detected) of the 

OAAT scheme with that of the traditional delete-all scheme and confirm that the OAAT scheme 

reduces the false-alarm rates while attaining the detecting power in profile monitoring. It is also 

found that when the process shift is large enough, the false-alarm rates of the two schemes are 

very close for one-sided control charts. Since the Delete-All scheme is more economic in 

computation, we provide a statistic as a guide on when to use it for achieving the efficiency. 

Finally, we demonstrate the methodologies described in the thesis with two real-life examples.  
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1. Introduction 

Control chart is a powerful tool in statistical process control (SPC) for achieving process 

stability and improving capability through the reduction of variability. The statistic used in 

constructing a control chart usually is a quality-related variable or a random vector consisting of 

several possibly correlated quality characteristics of a process or a product. However, in many 

practical situations, the quality of a process or a product is better characterized by a relationship 

between a response variable and one or more explanatory variables. Thus, for a sample, one 

observes a collection of data that can be represented by a curve (or profile). The profile can be 

linear or nonlinear. In this paper, we consider both casts of linear and nonlinear profile. Linear 

profiles are first fitted by a simple linear regression model and the estimated parameters are used 

for process monitoring. The monitoring of linear profiles can be applied to a wide variety of 

applications. In particular, most of studies in linear profile monitoring have been motivated by 

calibration applications. A nonlinear profile very often expressed as a high dimensional data 

vector. But most of multivariate data analysis technique will face the ill-condition problem due to 

the high correlation between data on the same profile. Because of this, we often use a Hotelling 

T
2
 statistic of the estimated regression parameters to monitor profiles. 

Process monitoring based on control charting usually consists of Phase I and Phase II. 

Control charts are used primarily in Phase I to bring the process to the in-control state. The 

purpose of this paper is to study the OAAT scheme proposed by Shiau and Sum (2006) for Phase 

I profile monitoring. A historical data set is collected and trial control limits are constructed to 

determine if the process is in-control. If so, then we have an in-control data set to establish 

adequate control limits for future on-line process monitoring. 

   In Phase I, to construct a control chart to monitor samples collected from the process, we use 

the samples to establish trial control limits for the monitoring statistic, such as Hotelling T2 

statistics. For simplicity, if samples are outside the control limit, then we claim that the samples 

are out of control. If some samples are out of control, then the process may have assignable 

causes for these out-of-control samples. If some assignable causes are found, then these 
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out-of-control samples should be removed, otherwise, one needs to make a decision on 

eliminating these samples or not. No one knows which action is correct without further 

information since data points may exceed the limits simply by chance or due to be some 

uncovered assignable causes. For being conservative, many practitioners may choose to discard 

these potential〝out-of-control〞samples.  After eliminating these out-of-control samples, the trial 

control limits need to be recalculated with the remaining samples to check if the data set still 

contains any out-of-control samples. The above screening steps are repeated until no more 

out-of-control samples are present. We then use the in-control process data attained in Phase I to 

estimate process parameters, e.g., the mean and standard deviation, of the monitoring statistic for 

setting up reliable control limits to monitor new process data in Phase II. 

Statistically, there are possibilities that some in-control samples will be claimed concluded as 

out of control and some out-of-control samples as in control, which are similar to committing 

Type I and Type II errors in hypothesis testing, respectively. A good control chart should be able 

to control these two types of error rates. Because out-of-control samples usually make the trial 

control limits too wide, some out-of-control samples are not detected and removed. On the other 

hand, if some in-control samples are eliminated, some estimation efficiency is lost. Thus one 

would link to have effective procedure for collecting in-control data for Phase II usage. For more 

discussions regarding the differences between analyses of Phase I and Phase II, one is referred to 

Mahmoud and Woodall (2004) and Sullivan (2002). We focus on Phase I analysis in this paper. 

Robust estimation methods are more effective in detecting unusual data points, and the 

control limits constructed with these robust estimates would be more reliable. But robust 

estimation for multivariate data or profiles are not as straightforward nor as easily implemented 

due to the extensive computation required to obtain the estimates. 

Recently, some researches study robust estimation methods for detecting multivariate outliers. 

Outliers in multivariate data are more difficult to detect than that in univariate data. Woodruff and 

Rocke (1994) discussed some approaches, such as the minimum volume ellipsoid estimator 

(MVE) proposed initially by Rousseeuw (1984) and the minimum covariance determinant (MCD) 
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estimator proposed by Rousseeuw (1984) and Rousseuw and Van Deiessen (1999), are well 

suited for detecting multivariate outliers. These approaches can avoid “bad” data to “mask 

effects” in multivariate data. Shiau, Yen and Feng (2006) proposed using a Hotelling T2 chart 

based on MCD estimators in conjunction with the False Discovery Rate (FDR), and demonstrated 

that the chart is effective in detecting a reasonable number of outliers. 

Jensen, Birch, and Woodall (2007) compared the standard, MVE and MCD estimator. Figure 

1 (from Jensen et al. (2007)) shows that best estimator among the three for various sample sizes 

m of the historical data set and percentage of outliers. They concluded that the MVE method is 

best for small values of m and proportion of outliers is small. We use two data sets for 

demonstration in this study, one is the bioassay data given in Williams, Woodall, Ferry, and 

Birch (2007) and the vertical board density profile (VDP) data set given in Walker and Wright 

(2000). The bioassay data set consists of 44 profiles and the VDP data consists of 24 profiles. 

Both examples have fewer than 50 samples. We adopt the MVE estimator in this study, since the 

number of profiles m is small in two examples. 

Rousseeuw and Leroy (1987) divided the MVE into the MVE and the Reweight MVE 

(RMVE). The RMVE is more robust than MVE, because the RMVE estimator is not affected by 

outliers. In this paper, we use the RMVE estimator to monitor samples. 
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Figure 1: A summary of the preferred estimator for p=2. (from Jensen et al. (2007)) 

 

      For detecting out-of-control profiles and preventing losing too many in-control profiles, Shiau 

and Sun (2006) proposed an iterative procedure called One-At-A-Time (OAAT) scheme that 

discards only the most extreme beyond-limits point and then updates the control limits at each 

iteration. We refer to the traditional scheme that deletes all of the out-of-control profiles at a time 

and claims that it is the〝Delete-All〞scheme. For comparing two schemes, we use the following 

two measures: (i) the false-alarm rate, defined as the probability that an in-control sample is 

claimed as out of control; and (ii) the detecting power, is the probability that an out-of-control 

sample is detected. For example, let m=25 and m1=3, where m is the number of profiles and m1 is 

the number of out-of-control profiles. If one in-control profile is claimed as an out-of-control 

profile, then the false alarm rate is 1/(25-3). If two out-of-control profiles gets detected, then the 

detecting power is 2/3. 

In this paper, we use a robust Hotelling T2 statistic, to monitor profile data for Phase I 

analysis, and apply the OAAT scheme to the bioassay data given in Williams, Birch, Woodall, 
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and Ferry (2007) and to the VDP data given in Walker and Wright (2002). We compare the 

Delete-All scheme and the OAAT scheme in terms of the false-alarm rate and detecting power. 

We confirm that the OAAT scheme reduces the false-alarm rates while attaining the detecting 

power in profile monitoring. It is also found that when the process shift is large enough, the 

false-alarm rates of the two schemes are very close for one-sided control charts. Since the 

Delete-All scheme is more economic in computation, we provide a statistic as a guide on when to 

use it for achieving the efficiency. 

Section 2 reviews linear/nonlinear profile monitoring, and robust multivariate control charts. 

Section 3 compares the OAAT scheme with the Delete-All scheme, and Section 4 give a 

guideline on which scheme to use for real data. Section 5 demonstrates our method with the 

bioassay data and the VDP data. Finally, we conclude the thesis in Section 6. 

 

2. Literature Review 
2.1 Profile Monitoring 

 2.1.1 Linear Profiles 

There are some literatures on fixed-effect models. For example, Kang and Albin (2000) 

combined the EWMA chart with R chart (EWMA-R chart) for Phase II linear profile monitoring. 

Because the EWMA chart is not sensitive to shifts on the process variation and not sensitive to 

larger shifts on intercept and slope, Kim, Mahmoud, and Woodall (2003) provided a combined 

three EWMA chart for Phase II. It can detect shifts quicker than the EWMA-R chart in Kang and 

Albin (2000). Mahmoud and Woodall (2004) suggested an F-test approach using indicator 

(dummy) variables in a multiple regression model, and proposed the likelihood ratio test for 

detecting changes in one or more regression parameters. 

There are some literatures on random-effect models. Assume that m profiles are available. For 

the ith random sample collected over time, we have the observations (xi, yij), i = 1,2,…,m, and j = 

1,2,…,n. For each sample, we assume that the linear regression model relating the independent 

variable X to the response Y is  
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0 1 , 1,..., , 1, 2,..., ,ij i i ij ijy A A x i m j nε= + + = =                       (1) 

 

where 
. . . . . . . . .

2 2 2
0 0 0 1 1 1~ ( , )  ,  ~ ( , ) , ~ (0, ) 

i i d i i d i i d

i i ij iA N A N Nα σ α σ ε σ , and X values are fixed and take the 

same set of values for each sample.  

Shiau, Lin, and Chen (2006) proposed a linear profile monitoring scheme based on the above 

random-effect model to incorporate the subject-to-subject variation that exists in many real-life 

problems. Jensen, Birch, and Woodall (2006a) proposed a linear mixed model (LMM). The 

LMM is very flexible and capable of fitting a large variety of datasets and allows us to account 

for the correlation within profiles and to consider the profiles as random samples from a common 

population distribution, which may be more realistic in many applications. 

There are more literatures on linear profile monitoring and its applications. For example, see 

Mestek, Pavlik, and Suchanek (1994), Stover and Brill (1998), Brill (2001), Jensen, Birch, and 

Woodall (2006a), and the references cited therein. 

 

2.1.2 Nonlinear Profiles 

Profiles that cannot be adequately represented by a linear model are generally referred to as 

nonlinear profiles. A common approach is to model the nonlinear profiles by a nonlinear 

parametric regression model. Taking the estimated parameter vector of the regression function as 

the representative of the profiles, monitoring nonlinear profiles can them be considered as a 

particular application of multivariate process control problems. 

Shiau, Yen, and Feng (2006) proposed a Hotelling T2 chart based on the Minimum 

Covariance Determinant (MCD) estimators. And it is effective in detecting any reasonable 

number of outliers. Williams, Woodall, and Birch (2003) fitted a nonlinear regression to model 

the vertical density profiles (VDP) data, compared three T2 control charts (using sample 

covariance matrix, successive differences, and intra-profile pooling as estimates of the covariance 

matrix, respectively) to monitor the VDP data, and analyzed the advantages and the drawbacks of 
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the three control charts. 

Jensen, Birch, and Woodall (2006b) proposed an approach to detect changes in Phase I, 

replacing the nonlinear model (NL model) by nonlinear mixed model (NLM model), such that 

the NLM approach has much higher probability of detecting the change than the NL approach. 

Shiau, Lin, and Tsai (2006) used the technique of principal components analysis to analyze 

the covariance structure of the nonlinear profiles nonparametrically. Ding, Zeng, and Zhou (2006) 

proposed using independent components analysis in nonparametric procedures to Phase I analysis 

for multivariate nonlinear profiles. The authors mentioned that the high dimension of profile data 

and data contamination present a challenge to the Phase I analysis of nonlinear profiles. Such 

nonparametric models do not have a specific functional form and have no model parameters to 

estimate, but rather one employs smoothing techniques such as local polynomial regression or 

spline smoothing to model a profile. 

Nonparametric regression techniques provide great flexibility in modeling the response. One 

disadvantage of nonparametric smoothing methods is that the subject-specific interpretation of 

the estimated nonparametric curve may be more difficult, and may not lead the user to discover 

assignable causes for an out-of-control signal as easily as parametric regression methods.In this 

study, we consider the parametric regression method. 

There are more literatures on nonlinear profile monitoring and its applications, such as 

Williams, Birch, Woodall, and Ferry (2007) proposed nonlinear profile monitoring methods to 

monitor the variability of multiple assays. 

Assume that we have m profiles of data and each profile contains n measurements. Let yij 

refer to the jth measurement of the ith profile. A nonlinear profile of an item can be modeled by 

the nonlinear (parametric) regression model given generally by 

 
( , ) 1,..., , 1,..., ,ij ij i ijy f x i m j nε= + = =β ,                            (2) 

 

where xij is the jth set point of the ith profile, 
. . .

2~ (0, )
i i d

ij iNε σ , iβ  is a p by 1 vector of parameters 
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for profiles i, and ( )f ⋅  is a function which is nonlinear in the parameter vector iβ .  

Because nonlinear parametric regression estimation is not as easy as linear regression 

estimation, we describe a method for nonlinear parametric regression estimation below. We 

rewrite the form in (3) by stacking the n observations within each profile into a vector as 

1 2( , ,..., ) 'i i i iny y y=y , 1 2( , ,..., ) 'i i i inx x x=x , 1 2( , ) ( ( , ), ( , ),..., ( , )) 'i i i i i i in if f x f x f x=x β β β β , and 

1 2( , ,..., ) 'i i i inε ε ε=ε . The vector form of Equation (3) is then given by 

 

( , ) 1,...,i i i if i m= + =y x β ε , .                             (3) 

 

For the nonlinear regression model given in (3), we first obtain the estimate of iβ  for each 

profile. This is usually accomplished by employing the Gauss-Newton procedure and iteration to 

obtain the least squares estimates. Define the n by p matrix of the derivatives of ( , )i if x β with 

respect to iβ  as 

 

1 1 1

1 2

2 2 2

1 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , ) .

( , ) ( , ) ( , )

i i i i i i

i i ip

i i i i i i
i i

i i ipi
i

in i in i in i

i i ip

f x f x f x

f x f x f x
fF

f x f x f x

β β β

β β β

β β β

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂= = ⎢ ⎥∂ ⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

"

"

# # % #

"

β β β

β β β
x β
β

β β β

                    (4) 

 

Let ( ) ( ) ( ) ( )
1 2( , ) ( ( , ), ( , ),..., ( , )) 'a a a a

i i i i i i in if f x f x f x=x β β β β , where ( )ˆ a
iβ  is the estimator of iβ  

at the tha  iteration, and let ( )a
iF  be the matrix of derivatives given in (4) evaluated at ( )ˆ a

iβ . The 

an iterative solution for ˆ
iβ  is given by  

 
( 1) ( ) ( ) ( ) 1 ( ) ( )ˆ ˆ ˆˆ ˆ ˆ( ' ) ' ( ( , )).a a a a a a

i i i i i i i iF F F f+ −= + −β β y x β                      (5) 
 

See Myers (1990, Chapter 9) or Schabenberger and Pierce (2002, Chapter 5) for a concise 
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discussion of a nonlinear regression model and estimation. More detailed treatments can be found 

in Gallant (1987) or Seber and Wild (2003). 

 

2.2 Minimum Volume Ellipsoid (MVE) 

Multivariate quality control (MQC) methods can monitor several variables simultaneously. 

Shiau, Yen, and Feng (2006) proposed a robust Hotelling T2 chart based on the MCD approach. 

In this study, we take a MVE approach to construct the monitoring statistic for monitoring 

nonlinear profiles, and compare the OAAT scheme with the Delete-All scheme. 

The goal of the MVE approach is to find good estimators that are not unduly influence by outliers. 

For finding an ellipsoid of minimum volume to cover the data set, Rousseeuw (1984) originally 

took halfset from non-outlier data. Classical estimation methods like the sample mean and sample 

covariance matrix, have low breakdown points while the high breakdown estimators considered 

here have breakdown points (h=[(m+p+1)/2]) that approaches 50%, the maximum possible value. 

Hence, MVE is effective unless the percentage of outliers is greater than 50%. But the required 

computational effort increases exponentially. For example, if m=25 and p=2, which implies that h 

= (25+2+1)/2 = 14, then there are a total of 25!/14!11! 4, 457, 400=  halfsets that could 

potentially be the basis for the MVE estimator. So Rousseeuw and Leroy (1987) proposed an 

approximate method to find the MVE estimators by a subsampling algorithm. This subsampling 

algorithm takes a fixed number of random subsets each containing only p+1 points. There is still 

the same exponential increase, but the computation required is dramatically reduced. For the 

example shown earlier with m=25 and p=2, there are 25!/ 3!22! 2,300=  possible subsets, which 

is a lot less in computation than the original halfset method. 

 An algorithm similar to that proposed in Vargas (2003) for computing the MVE estimators for 

the mean vector and covariance matrix, except we perform an search than random sampling a 

fixed number of times, is described as follows: 

 

(1) For each of the 1
m
pC +  

combinations of p+1 different observations, indexed by J={ i1, … , 
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ip+1}. Compute the mean and covariance matrix: 

 
                                          1 1, ( )( ) '.

1 i J i i
i i Jp p∈ ∈

= = − −
+ ∑ ∑J J J

J
β β  S β β β β   

  
(2) Compute the Mahalanobis distance for each of m samples 

  
            2 1( ) ( ) ' ( ), 1, 2,.., .i J id i i m−= − − =J J Jβ β S β β   

 

(3) Calculate the volume of the ellipsoid 2 det( ),pm=J J JV S  where 2mJ  is the hth order statistic of 
2 ( )d iJ , and h=[(m+p+1)/2]. Here [x] stands for the ceiling function of x, integer the smallest 

x≥ . 

(4) Keep the *J  for which JV  is minimal across all 1
m
pC +  replications. 

(5) Define 

   (a) the minimum volume ellipsoid (MVE) statistic by 

 
2 1

, ( ) ' ( ).MVE i i MVE MVE i MVET −= − −β β S β β                          (6) 

 

where 
2 2

,
2

,0.5

, ,m p
MVE MVE

p

c m
χ

= = J J*
J*

S
β β  S

 

and
 

2 2
,

15(1 ) .m pc
m p

= +
−  

    (b) the reweighted minimum volume ellipsoid (RMVE) statistic by  

  
2 1

, ( ) ' ( ).RMVE i i RMVE RMVE i RMVET −= − −β β S β β                        (7) 

 

1 1

1 1

( )( ) '
, ,

1

m m

i i i i RMVE i RMVE
i i

RMVE RMVEm m

i i
i i

w w

w w

= =

= =

− −
= =

−

∑ ∑

∑ ∑

β β β β β
β  S  

2 2
, ,0.05where 1  ,   ;  0  ,  otherwise.i MVE i p iw if T wχ= < =

  

Because the RMVE estimator does not use the data for which the Mahalanobis distance is 
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greater than 2
,0.05pχ , the RMVE estimator robust to outliers. See Figure 2 for an illustration. We 

use the RMVE estimator in our monitoring statistic to detect out-of-control samples. 

 

 

 

 

 

 

 

 
 

 

Figure 2: The triangle points are out of control, the solid ellipsoid is based on the RMVE 

estimator. 
 

We use 2
RMVET , as our monitoring statistic and the control limit is obtained as follows: 

  Step1: Without loss of generality, simulate m in-control profiles from multivariate normal 

distribution with the mean vector =μ 0  and covariance matrix IΣ = , where I is the 

identity matrix. 

  Step2: Compute estimator 2
RMVET  in Equation (7). 

  Step3: Repeat step 1 and step 2 for N=100,000 times. Then the control limit is set as the 

empirical (1 ) 'α−  quantify of the 100,000 values of 2
RMVET , where 

1

1 (1 )m
Iα α= − − , 

Iα  is the percent false-alarm rate such that the overall false-alarm rate is approximately 

α , and α =0.025. See Table B.1 in Appendix B. 
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3. A Study of the One-At-A-Time Scheme in Profile 
Monitoring Scheme   

3.1 Motivation 

Williams, Birch, Woodall, and Ferry (2007) proposed a nonlinear profile monitoring method to 

monitor a set of Bioassay data. The bioassay data consists of forty-four weeks of in vivo bioassay 

results run alongside experimental compounds over a one-year time period. They removed 12 

profiles. We wonder that some profiles of the removed profiles may be false alarms. Shiau and 

Sun (2006) proposed a one-at-a-time (OAAT) scheme for Phase I process monitoring that only 

discards the most extreme out-of-control sample at a time, using Shewhart X  chart as an 

example, and demonstrate that the OAAT scheme reduces dramatically the occurrences of false 

alarms. So, we apply the OAAT scheme to nonlinear profile monitoring. 

 

3.2 The OAAT Scheme 

We describe the OAAT procedure (Shiau and Sun, 2006) below:  

Step 1. Construct the trial control limits with all of the collected data.  

Step 2. If no out-of-control samples are identified, stop iterating and go to Step 4; otherwise, 

discard the most extreme sample.  

Step 3. Construct the trial control limits with the remaining samples; go to Step 2.  

Step 4. Collect all the samples discarded in the above iterations and inspect the process for 

assignable causes.  

 

3.3 Simulation Studies 

We use the parametric regression to model nonlinear profiles. Note that the 2
RMVET  statistic in 

Equation (9) is invariant under the linear transformation. Thus, without loss of generality, we can 

simulate parameters from the multivariate normal distribution with mean vector =μ 0 and 

covariance matrix IΣ = , where I is the identity matrix. Since over monitoring statistic 2
RMVET  is 

constructed based on the estimated parameter vectors of the profile, and the estimated parameter 
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are asymptotically nonlinear, and we simulate the parameter vectors direct from the multivariate 

normal distribution in comparing the OAAT and Delete-All schemes. In this way, we avoid 

interference of the estimation errors.  

 

 

3.3.1 Simulation settings 

For comparing the OAAT scheme and the Delete-All scheme. With the false-alarm rate and 

detecting power, we consider m=25(25)100, m1=3(3)12, p=2 and 4, and | δ |=1(1)20, where m is 

the number of profiles, m1 is the number of out-of-control profiles, p is the dimension, and |δ | is 

the length of δ (i.e., the mean of m1 profiles shifts from μ  to +μ δ ). For each combination, we 

repeat 100,000 times and take averages of the 100,000 false-alarm rates and 100,000 detecting 

power respectively to estimate the actual values. 

 

3.3.2 Results of Simulation Studies 

The simulation result are summarized and displayed in Figures 2-11. We observe the followings 

from the simulation studies: 

(1) From Figures 3 and 4, the false-alarm rate of the OAAT scheme is almost a constant and that 

of the Delete-All scheme is much higher, while the detecting power of both schemes are 

almost the same for p=2 and p=4. 
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Figure 3: Comparisons of the OAAT scheme and Delete-All scheme for m1=3, m=25, and p=2 in 

terms of (a) the false-alarm rate, and (b) the detecting power. 
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Figure 4: Comparisons of the OAAT scheme and Delete-All scheme for m1=3, m=25, and p=4 in 

terms of (a) the false-alarm rate, and (b) the detecting power. 

 

(2) The false-alarm rate of the Delete-All scheme decreases as |δ| increase. This is due to the fact 

that the RMVE estimator is more likely to be “contaminated” by out-of-control samples when 

the shift size is small. Then, the center of the ellipsoid is shifted, such that some in-control 

samples may be claimed as out of control. Figures 4 and 5 illustrate an example with |δ|=5 

and 10, respectively. In this example, m=25, m1=3, p=2, |δ|=5, and the 5th, 14th, and 21st 

samples are the real out-of-control samples. Figure 5 shows that the 14th sample is not 

detected and may have contaminated the RMVE estimator and causes the 7th sample to signal 

a false alarm. But in Figure 6, with a larger shift size (|δ|=10), all these out-of-control samples 

are screened out by the RMVE estimator and then the 7th sample behaves normally. 
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Figure 5: An example with shift size |δ|=5. 

 

 
Figure 6: An example with shift size |δ|=10. 

 

(3) Figures 7 and 8 compare the effect of p for the OAAT scheme and Delete-All scheme, 

respectively. For the OAAT scheme with p=2 or p=4, p shows almost no effects on both of the 

false-alarm rate and the detecting power. On the other hand, for the Delete-All scheme, Figure 

8 presents a slight effect of p on the false-alarm rate, the smaller the dimension, the larger the 

false-alarm rate, but no effects on the detecting power. 
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Figure 7: Effects of p on the OAAT scheme (a) The false-alarm rate, and (b) the detecting power 

for m1=3, m=25, and p=2, 4. 
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Figure 8: Effects of p on the Delete-All scheme (a) The false-alarm rate, and (b) the detecting 

power for m1=3, m=25, and p=2, 4. 

 

(4) From Figures 9 and 10 show that, when m increases, the false-alarm rate decreases and the 

detecting power increases for both of the OAAT scheme and the Delete-All scheme, which 

are expected. 
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Figure 9: Effects of m on the OAAT scheme. (a) The false-alarm rate, and (b) the detecting power 

for m=25(25)100, m1=3(3)12, and p=2. 
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Figure 10: Effects of m of the Delete-All scheme. (a) The false-alarm rate, and (b) the detecting 

power for m=25(25)100, m1=3(3)12, and p=2. 

 

(5) From Figures 11 and 12, we observes that, when m1 increases, the false-alarm rate increases, 

the detecting power decreases for both of the OAAT scheme and Delete-All scheme, which is 

also expected. 
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Figure 11: Effects of the proportion of out-of-control data on the OAAT scheme. (a) The 

false-alarm rate, and (b) the detecting power for m1=3(3)12, m=50, and p=2. 
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Figure 12: Effects of the proportion of out-of-control data on the Delete-All scheme. (a) The 

false-alarm rate, and (b) the detecting power for m1=3(3)12, m=50, and p=2. 
 

To summary, it is found from the simulation studies, the OAAT scheme performs better than 

the Delete-All scheme because the OAAT scheme has a lower false-alarm rate and loses almost 

no detecting power. The only drawback of the OAAT scheme is that it is more complicated than 

the Delete-All scheme. In the next section, we provide a statistic to determine when to use the 

Delete-All scheme for real data, such that the process monitoring can be carried out more 

efficiently. 
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4. A Guideline for which Scheme to Use 
By the simulation results presented in Section 3.3, we see that the OAAT scheme performs 

better than the Delete-All scheme in term of the false-alarm rate. But the OAAT scheme takes 

more time in computation than the Delete-All scheme. We also noted that the false-alarm rates for 

the two schemes are almost the same when the shift size is large. Therefore, if this situation 

happens, we may want to use the Delete-All scheme to save some time. Thus, one may like to 

have a guideline to decide which scheme to use. It is well known the median is robust to outliers 

while the mean is not. If the difference between the mean value and the median of data is large, it 

may imply that the shift is large and the out-of-control points are easy to detect. Then it might be 

safe to use the Delete-All scheme to save time. Otherwise, we will stick to the OAAT scheme. 

 

4.1 Estimate the Real Variance from the Truncated Data 

In Phase I analysis of the historical data set, it is wise to estimate the process parameters, say, 

μ  and 2σ  with in-control data. Suppose we truncate off α(100)% of data, and use the 

remaining data to estimate 2σ , the estimator will be biased. We need a method to correct the bias. 

If a normal distribution is truncated symmetrically about mean, then we have the relationship 

between the variances of the original distribution and the truncated distribution as 

 
2 ( )AVar Y

C
σ =                              (8) 

 

where 1 2 ( ) (2 ( ) 1) ,C a a aϕ= − Φ − AY  is the truncated normal variate on [ , ],A a a= −  
1(1 2),a α−= Φ −  and ( )AVar Y  is the variance of the truncated normal distribution with domain 

.A For the multivariate case, we also have ' '1 2 ( ) (2 ( ) 1)C a a aϕ= − Φ −  with 
' 1(( 1 1) / 2)a p α−= Φ − + , and 1/ 2 * *{ | [ , ] }pA a a= Σ + ∈ −y μ  y  with * (0, ).Y N I∼  

 
( ) .Cov

C
Σ = AY                               (9) 
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The proofs are in the appendix. With equation (8) and (9), Tables 1-3 present respectively for 

4 2, ,1=p , the values of the correction factor C  for 0.5 ,0.1 ,05.0 ,0027.0=α . For example, 
2

,0.5( ) / 0.1426518AVar Yσ =  where Var(YA,α) is the variance of the truncated normal distribution 

with 50% truncation. And ,0.5( ) / 0.3174066,CovΣ = AY  where Cov( ,0.5AY ) is the covariance 

matrix of the truncated multivariate normal distribution with 50% truncation as shown in  

Figures 12 and 13. Thus, if we obtain an estimate of 2σ from a set data with 50% trimming, than 

we should divide it by C  for bias correction. With equation (8) and (9), the variance or 

covariance can be estimated by the truncated normal distribution for (1 )α− 100% as described in 

Subsection 4.1 to avoid being affected by out-of-control data or outliers. 

By Equation (8) and (9), Table 1-3 give, respectively for p=1, 2, and 4, the relationship 

between the variances of the normal distribution for various α . Thus an unbiased robust 

estimate of 2σ  or Σ  can be obtained through the in-control data from Phase I analysis. 

 

Table 1: The value of C for bias correction of the variance estimated by the truncated normal 

data for various α  ( 1=p ) 

α 0.0027 0.05 0.1 0.5 

C  0.97333353 0.7588416 0.6230155 0.1426518 

 

Table 2: The value of C for bias correction of the variance estimated by the truncated normal 

data for various α  ( 2=p ) 

α 0.0027 0.05 0.1 0.5 

C  0.9849377 0.8498555 0.7545935 0.3174066 
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Table 3: The value of C for bias correction of the variance estimated by the truncated normal 

data for various α  ( 4=p ) 

α 0.0027 0.05 0.1 0.5 

C  0.9915960 0.9095220 0.8469910 0.5042240 

 

                   (a)                                     (b) 

 
Figure 13: Truncated normal distribution with 50% truncated (α =0.5). (a) p=1, and (b) p=2. 

 

4.2 The statistic for univariate data 

We use the median of data (median(x)) to estimate μ , and use the 2σ  for =α 50% in Table 

1 to estimate 2σ .The statistic we propose here is 

 

σ̂
)(

0
xmedianxT −

= ,                            (10) 

 

where σ̂  is the 50% “trimmed” estimate of σ  as described in Subsection 4.1. Figures 14 and 

15 display the kernel density estimate, a histogram, and the Q-Q plot of T0 obtained from 100,000 

simulated samples of size m=100 from the standard normal distribution. 
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                    (a)                                    (b) 

 
Figure 14: The density plot of 100,000 simulated T0 values. (a) The density plot, and (b) the 

histogram plot. 

 

 
Figure 15: The normal Q-Q plot for 100000 simulated statistic T0 . 

 

For the simulation studies, we observe one interesting thing. When the control chart under 

study has both upper and lower control limits, then the false-alarm rate of the Delete-All scheme 

will not come close to that of the OAAT scheme for larger shifts, which makes the OAAT scheme 

the only choice. See Figures 16-18 for examples of the two-tailed X , R, and S charts; and 
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Figures 19-20 for one-tailed R and S charts. The number of replications in the simulation is 

100,000. Note that R (or S) chart is two-tailed when the subgroup is greater than 6. This can be 

explained by the following. Take the X  chart as an example, when the shift size gets large, the 

center line gets higher, so does both of the control limits. But the width between two limits stays 

the same. Then many in-control points close to the LCL eventually will fall below the lower 

control limits. Figure 21 depicts this phenomenon. This situation will not happen for one-tailed 

control charts. 
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Figure 16: Detect univariate data by X  chart (two-tailed). (a) The false-alarm rate, and (b) the 

detecting power. 
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Figure 17: Detect univariate data by R chart and the subgroup is greater than 6 (two-tailed). (a) 

The false-alarm rate, and (b) the detecting power. 
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Figure 18: Detect univariate data by S chart and the subgroup is greater than 6 (two-tailed). (a) 

The false-alarm rate, and (b) the detecting power. 
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Figure 19: R chart (one-tailed). (a) The false-alarm rate, and (b) the detecting power. 
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Figure 20: R chart (one-tailed). (a) The false-alarm rate, and (b) the detecting power. 

 

                   (a)                                      (b) 

    
Figure 21: An example for X  chart. (a) 10 times shift, and (b) no shift. 

 

4.3. Simulation for univariate data 

We need a cutoff point of T0 for decision making. Take R and S chart as examples. We 

simulate univariate data for different shifts δ=1(1)20, i.e., m1 profiles shift from σ  to δσ . For 

each setting, we simulate m subgroups of size 5 to obtain m values of R and S. Then use Equation 

(12) to compute T0 for each of R and S. Repeat the above steps 100000 times to obtain 100,000 

values of T0. Take the average of these T0’s. The combinations of (m, m1)=(25,3), (25,16), (100,12) 

are considered. Figure 22 shows the results. From Figure 22(a)(b), we observe that  

 

(1) When m1 increases, T0 increases. 

(2) When m increases, T0 decreases. 

(3) When δ increases, T0 increases. 

(4) Compared with Figures 18 and 19 in which two false-alarm rate coincide around δ=14 for 

R chart and δ=13 for S chart, we choose T0 =1 as the cutoff point. If 0 1T ≥ , then we use 

the Delete-All scheme; otherwise use the OAAT scheme. 
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                   (a)                                      (b) 

 
Figure 22: T0 for simulated univariate data. (a) R chart, and (b) S chart (one-tailed test). 

 

4.4 The Statistic for Multivariate Data 

For multivariate data, assume we have m profiles, each is represented by the estimated 

parameter vector, with p by 1 parameter vectors, denoted by iβ , i=1,2,…,m. Without loss of 

generality, we simulate parameters iβ  from the multivariate normal distribution with the mean 

vector 0=μ and covariance matrix IΣ = , where I is the identity matrix. Denote β  the mean 

of iβ ’s, and ( )imedian β  the componentwise median of iβ ’s. Let S be the “trimmed” 

covariance matrix estimate described in Subsection 4.1. We use the following statistic 

 

0

2 1( ( )) ' ( ( )),i iT median S median−= − −β β β β                  (11)  

 

to determine which scheme to use. 

We simulate multivariate data with mean vector 0=μ  and covariance matrix IΣ =  (p=2 

and m=100), and repeat 100,000 times. We plot the density, histogram and chi-square Q-Q plot of 

these 100,000 values of 2
0 T  in Figures 23 and 24. It might be reasonable to assume that the 2

0T
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statistic has a approximate scaled chi-square distribution with p degrees of freedom. 

 

                    (a)                                    (b) 

 
Figure 23: The plot of the statistic 2

0 T from simulated multivariate data. (a) The density plot, and 

(b) the histogram plot. 

 

 
Figure 24: The chi-square Q-Q plot for the statistic 2

0T from simulated multivariate data. 
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4.5 Simulation for multivariate data 

We simulate multivariate data with different shifts (|δ|=1(1)20). Similar to the unvariate case, 

we use Equation (11) to compute 2
0 T . According to Figure 25 and 26, we observe that  

 

(1) When p increases, 2
0 T  increases. 

(2) When m1 increases, 2
0 T  increases. 

(3) When m increases, 2
0 T  decreases. 

(4) When δ increases, 2
0 T  increases. 

(5) By the same argument as before, we choose to use the Delete-All scheme when 2
0 1T ≥ and 

the OAAT scheme, when
 

12
0 <T

.
. 

 

 
Figure 25: 2

0 T  from simulated multivariate data for p=2 and p=4. 
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(a)                                     (b) 

 
Figure 26: 2

0 T  for simulated multivariate data. (a) p=2, and (b) p=4. 

 

To summary, we recommend always use the OAAT scheme when the control chart has both 

upper and lower control limits. For one limit control chart, when the 2
0 0(or ) 1T T ≥ , then use the 

Delete-All scheme to save time. 
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5. Examples 
5.1 Bioassay Data 

 5.1.1 Data Description 

To compare the profile monitoring schemes between the OAAT and the Delete-All schemes, 

we analyze the data from DuPont Crop Protection (Woodall, Williams, Birch, and Ferry, 2007). 

The data set consists of forty-four weeks (m =44) of in vivo bioassay results run alongside 

experimental compounds over a one-year time period. 

The commercial compound was diluted to eight doses (0.003, 0.009, 0.028, 0.084, 0.25, 0.76, 

2.27, and 6.8 (d=8)) and replicated four times at each dose (r = 4) in 96-well microtiter plates for 

each sampling period i. A spectrophotometer measured the optical density (OD) of the plant 

organism after the inoculation period.  

Let yijk represents the kth response to the jth dose at sampling period i, where i = 1,2, …,m , j = 

1,2,…,d, and k = 1,2,…, r. For this data set, we have m = 44, d = 8, and r = 4. Both treated and 

untreated wells were measured for growth inhibition. The percent control (PC) values were 

calculated using the median OD (Mi) from 96 replications of untreated wells. Williams, Woodall, 

Ferry, and Birch (2007) let Mi represent the median response of the untreated specimen at 

sampling period i. Then, the percent control of the chemical for the kth replication of the jth dose 

in sampling period i is calculated as 

 

,  1,..., ,  1,..., ,  1,.., .i ijk
ijk

i

M y
PC i m j d k r

M
−

= = = =                    (12) 

 

A plot of PCijk values for all m = 44 weeks for one of the standards from the DuPont is given 

in Figure 27. Because the bioassay data have replications (r = 4), we need to first monitor the 

variance within profiles. Williams, Woodall, Ferry, and Birch (2007) referred to it as the variance 

profile monitoring. 
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Figure 27: Bioassay Data (DuPont Does-Response Data) for all 44 weeks. 
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5.1.2 Monitoring for Bioassay Data 

We analyze the profiles in the bioassay data in Figure 27 and consider the following 

4-parameter logistic model which has been used frequently for dose-response studies (Williams, 

et al. (2007)): 

 

,  1,...,  ,  1,.., ,
1 ( ) i

i i
ij i ij

ij B

i

D Ay A i m j nx
C

ε−
= + + = =

+
                 (13) 

 

where iA  is the upper asymptote, iD  is the lower asymptote, iC  is the point where the curve 

reaches halfway between iA  and iD , and iB  is a parameter representing the rate of increase or 

decrease from iD  to iA  in Figure 28. Since the estimators of iA , iB , iC , and iD  are 

correlated, it is more appropriate to account for the correlation among them when testing for 

unusual values of ˆ
iA  , ˆ

iB  , ˆ
iC  and ˆ

iD . We illustrate the estimated mean profiles for all 

forty-four weeks in Figure 29. 

 

 
Figure 28: A does-response curve. 
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Figure 29 : Estimated mean profiles of all 44 weeks in the bioassay data . 
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We use the RMVE in Equation (7) to monitor dose-response profiles. As a result, both the 

OAAT and Delete-All schemes remove the same 13th, 20th, 21st, 22nd, 24th, 26th, 32nd, 34th, 45th, 

46th, and 48th profiles in the end. See Figure 30 (a) gives the control chart of the first iteration and 

30(b) shows the result of the last iteration in which the remaining 33 profiles are in control. 

   

                    (a)                                    (b) 

 
Figure 30: The RMVE chart when monitoring unusual profiles. (a) The 44 dose-response profiles 

at the first iteration, and (b) the 33 dose-response profiles at the last iteration. 

 

We compute the 2
0T

 
statistic according to Equation (11) for the original 44 profiles and find 

that 2
0 T =0.992673, very close to the suggested cutoff value 1. The result that both schemes 

removed the same set of the profiles is in accordance with the result that 2
0 T  is close 1. 

For demonstrating that the OAAT scheme performs better than the Delete-All scheme, we use 

the variance profile monitoring of Williams, et al. (2007). Since there are 4 replications at every 

dose j, estimate 2
ijσ  by 
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2 2 1
( )

ˆ .
1

r

ijijk
k

ij ij

PC PC
S

r
σ =

−
= =

−

∑
                                (14) 

 

Following Williams, et al. (2007), we model 2ˆijσ  by the model 

 
2 2

0, 1,ˆ( ) ( ) ( ).ij ij i i ijlog log S log xσ θ θ= = +                           (15) 

 

Figure 31 displays the fitted results of the 44 variance profiles. 
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Figure 31: Estimated variance profiles of all 44 weeks in the bioassay data. 
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We use the RMVE statistic in Equation (7) to monitor the variance profiles. The OAAT 

scheme removes only the 20th and 45th weeks in Figure 32(a)(b), and the Delete-All scheme first 

removes 6th, 20th, 22nd, 24th, 26th, and 45th weeks and then removes 16th, 19th, 34th and 44th again. 

See Figure 33(a)(b)(c), respectively. The OAAT scheme has 42 profiles remaining, and the 

Delete-All scheme has only 34 profiles left. It is apparent that the Delete-All scheme removes a 

lot more than the OAAT scheme. It could be a reasonable doubt that the Delete-All scheme picks 

come false-alarms. 

  

                (a)                                    (b) 

 
Figure 32: The RMVE chart when monitoring the remaining variance profiles by the OAAT 

scheme. (a) The 44 variance profiles, and (b) the 42 variance profiles. 
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                    (a)                                    (b) 

 
 

(c) 

 

Figure 33: The RMVE chart when monitoring the remaining variance profiles by the Delete-All 

scheme. (a) The 44 initial variance profiles, (b) the 38 variance profiles, after the 1st 

iteration, and (c) the remaining 34 variance profiles.  

 

Note that the 2
0 T  value for the variance profiles is 0.2747621, indicating it is likely that some 

false-alarms are signaled by the Delete-All scheme.  

After removing the profiles that signal out of control in the variance profiles monitoring, we 

monitor the remaining dose-response profiles. For the 42 remaining profiles, the OAAT scheme 

removes 13th, 21st, 22nd, 24th, 26th, 32nd, 34th, 46th, and 48th weeks, and see Figure 34(a)(b). For 

the remaining 34 profiles, Delete-All scheme first removes 13th, 32nd, and 48th weeks, then 

removes 21st, and 46th weeks, see Figure 35(a),(b), and (c), respectively. At the end, the remaining 
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33 profiles by the OAAT scheme, and the remaining 29 profiles by the Delete-All scheme, are in 

control now. 

                 (a)                                   (b) 

 
Figure 34: The RMVE chart when monitoring the remaining mean profiles by the OAAT scheme. 

(a) The 42 mean profiles, (b) the 33 mean profiles. 

 

                 (a)                                    (b) 
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(c) 

 
Figure 35: The RMVE chart when monitoring the remaining mean profiles by the Delete-All 

scheme. (a) The 34 mean profiles, (b) the 31 mean profiles, and (c) the 29 mean 

profiles. 

 

Are the additional 6th, 16th, 19th, and 44th profiles signaled by the Delete-All false-alarm rate? 

To see this, we plot 44 profiles in Figure 36 with these four profiles highlighted. The 6th, 16th, and 

19th profiles seem fairly normal. But the 44th profile seems somewhat unusual, and the OAAT 

scheme does not remove it. The reason might be that 4 parameters A, B, C, and D of this profile 

are monitored equally weighted by RMVE. Although the parameter B of the 44th profile is 

smaller than the other profiles, the parameters A, C, and D are fairly similar to that of other 

in-control profiles. Thus the difference in B becomes insignificant in the overall measure 2
RMVET . 

If we want to emphasize a particular feature like the increasing rate represented by B, we may 

consider put more weights on that component.  
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Figure 36: The thick lines are the 6th, 16th, 19th, and 44th profiles. 

 

5.2 Vertical Board Density Data (VDP) 

5.2.1 Data Description 

Manufacturers of engineered wood boards, which include particleboard and medium density 

fiberboard, are very concerned about the density properties of the board produced. The density is 

measured using a profilometer which uses a laser device to take a series of measurements across 

the thickness of the board. A profilometer takes multiple measurements on a sample (usually a 

2x2 inch piece) to form the vertical density profile (VDP) of the board. 

Vertical Board Density Profile Data from Walker and Wright (2002) contains 24 profiles of 

vertical density, each profile consists of 314 measurements, see Figure 37. 

We model the VDP profiles, different form that William, et al. (2003), as follows:  

  

 cdxaf
b

iji +−=),( βx                               (16) 

 

where i=1,..,24 and j=1,…314. Let ( , , , ) 'a b c d=β , where a represents the height of the “bathtub”, 

b controls the “flatness” of the “bathtub”, c is the bottom of the “bathtub”; and d is the center of 

the “bathtub”. We fitted the VDP model in Equation (16) to the 24 VDP profiles and display 
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them in Figure 38. 

 

 
Figure 37: The 24 profiles in the VDP data. 

 

 

 

 

 



 

 

 

43

 

 

 

Figure 38: Fittings of the 24 profiles in the VDP data. 
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5.2.2 Monitoring the VDP Data 

We use the RMVE chart in Equation (9) to monitor the VDP profiles. The results are as 

follows. Both the OAAT and the Delete-All schemes remove the 4th, 9th, 17th, 20th, and 24th 

profiles, see Figure 39(a)(b). Figure 39(c) shows that the remaining 18 profiles are now in control. 

For saving computing time, we suggest using the Delete-All scheme to the VDP data. 

 

                  (a)                                   (b) 

 

 (c) 

 
Figure 39: The RMVE chart when monitor VDP profile. (a) The 24 boards at the first iteration, (b) 

the 22 boards at the 2nd iteration, and (c) the 18 boards at the final iteration. 

 

We compute the 2
0T  statistic for the VDP data, and find that 2

0T = 4.622674. With 2
0T  this 
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large, we could just use the Delete-All scheme to monitor profiles. Figure 40 shows all 24 filled 

profiles by the model (16). We notice that the highest board (the 3rd board) and the lowest board 

(the 6th board) are not removed by both schemes. The same argument about the 44th profile of the 

response-dose data may be applied here. 

 

 
Figure 40: The 3rd and 6th profiles are not removed. 

 

5.3 The 2
0 T  Statistic for Examples 

   We compute the 2
0 T  statistic for the bioassay data by Equation (9). The 2

0 T
 
statistic is 

0.992673 for does-response profile monitoring. Although 0.992673 is almost equal to the cutoff 

point 1.0, for being conservative, we suggest using the OAAT scheme. The 2
0 T

 
statistic is 

0.2747621 for the variance of profiles monitoring, so we should use the OAAT scheme. 

For the VDP data, the 2
0 T

 
statistic is 4.622674, which is so large that we could just use the 

Delete-All scheme. Hence, before monitoring real data we may use the statistic in Equation (8) 

and (9) to decide which scheme to use. 

In summary, the results of these two examples agree with the decision criterion 2
0T . The 

Bioassay data in Subsection 5.1 demonstrate a case that the OAAT scheme performs better than 

the Delete-All scheme while the VDP example in Subsection 5.2 demonstrates a case that we 

could use the Delete-All scheme to save some computing. 
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6. Conclusion 

We use the RMVE control chart to monitor profiles, and compare the OAAT scheme with 

the Delete-All scheme. The study indicates that the OAAT scheme performs better than the 

Delete-All scheme. The OAAT scheme is to run through the whole iterative procedure by 

removing out-of-control points one at a time at each iteration and then perform the investigation 

for all alarms after all the remaining samples are all in control. This practice may save 

tremendous amount of time and money in bringing process to in-control state. 

In general, we suggest using the OAAT scheme. This method can lower the false-alarm rate 

and retain almost the same detecting power when compared with the Delete-All scheme. 

However, the OAAT scheme needs more iterations of control charting than the Delete-All scheme. 

Thus we suggest computing the T0 or 2
0T

 
statistic before applying the monitoring scheme to data. 

To decide which scheme to use, if the statistic is greater than or equal 1.0 or so, then we could use 

the Delete-All scheme. The two examples, the bioassay data and the VDP data, successfully 

demonstrate the usefulness of the judging criterion of 2
0T . 

We use the Bioassay Data to demonstrate that the OAAT scheme performs better than the 

Delete-All scheme and use the VDP Data to demonstrate how to use a statistic to decide which 

scheme to use in order to save some time. 

We could give different weights to the parameters estimated from the profile data, because the 

extent of importance on each parameter of profiles may be different. Developing an adequate 

monitoring scheme for such processes is a potential future research topic. 
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Appendix A 
A.1. Truncated Normal Distribution 

Let Y be a normal variate with mean μ  and variance 2σ . YA is the correction on 

1 2[ , ]A a a= , where 1 2a a−∞ < < < ∞ . The probability of Y falling in this interval is 

2 1(( ) ) (( ) )a aμ σ μ σΦ − − Φ − . Thus the density of the truncated normal variate YA is 

 

1 2
2 1

1 ( )
( ) ,  ,

( ) ( )
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y
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μϕ
σ σ
μ μ

σ σ

−

= < <
− −

Φ −Φ
                  (A.1) 

where ( )f ⋅  and ( )Φ ⋅  are the p.d.f and c.d.f of the standard normal distribution. 

 

The Moment Generating Function (MGF) is 
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The expected value is 
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( ) ( )( ) '( ) | .
( ) ( )A A t
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ϕ ϕμ σ=

−
= = −

Φ −Φ
                 (A.3) 

 
If 2 1a a= − , then 2 1( ) ( )a aϕ ϕ= , and 

 

0( ) '( ) | .A A tE Y M t μ== =                                  (A.4) 

 
Putting the MGF to work again: 
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Therefore, the variance is 
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2 2

2
2 2 2 1 1 2 1

2 1 2 1

( ) ( ) [ ( )]

( ) ( ) ( ) ( )            1  .
( ) ( ) ( ) ( )

A A AVar Y E Y E Y

a a a a a a
a a a a

ϕ ϕ ϕ ϕσ

= −

⎧ ⎫⎡ ⎤− −⎪ ⎪= − −⎨ ⎬⎢ ⎥Φ −Φ Φ −Φ⎣ ⎦⎪ ⎪⎩ ⎭

                  (A.6) 

 
If 1 2a a= − , then 2 1( ) ( )a aϕ ϕ= , and let 2a a=   
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And 

 
2 ( ) .AVar Y

C
σ =                              (A.8) 

where 1 2 ( ) (2 ( ) 1)C a a aϕ= − Φ − . 

 

A.2. Truncated Multivariate Normal Distribution 

We first consider the case of the standard multivariate normal distribution. Suppose we want 

to truncate the distribution such that the p-dimension cube [ , ]pA a a≡ − , covers 1 α−  of the 

distribution. Then 
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Because ( ) 1 ( ),a aΦ − = −Φ  
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2 ( ) 1 1 .pa αΦ − = −  

Then 

 

1 1 1( ).
2

p

a α− − +
= Φ                         (A.9) 

It is clear that ( ) 0 and cov( ) ,  and 1 2 ( ) (2 ( ) 1)  as before.A AE Y Y CI C a a aϕ= = = − Φ −  

Now for ~ ( , )N μ ΣY
.
. We first transform Y into a standard multivariate normal. Variate 

Y* by 
1

2 -
−

= ΣY* (Y μ) . Then we defined the area for truncation by * [- , ]PA a a∈ =Y*  with a 

defined in Equation (A.9). Let 1/ 2 * *{ | [ , ] }pA a a= Σ + ∈ −y μ  y  . Then | A≡AY Y
 
follow a 

truncated multivariate distribution with p.d.f 
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Since 
1
2= ΣAY Y* + μ , we have 

 
1
2( ) ( ) 0E E= Σ =AY Y*+ μ .

 

                     (A.11) 

 
and 

 
1 1
2 2( )Cov CI C= Σ Σ ΣAY = .

 

                      (A.12) 

 
Therefore 

 
( ) .Cov

C
Σ = AY                             (A.13) 
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Appendix B 
 

Table B. 1: The control limit for 2
RMVET  

m p=2 p=4 
10 37.55630 98.12564 
11 35.45560 96.15530 
12 35.46540 100.8763 
13 33.45550 100.4566 
14 32.45880 90.86675 
15 30.45150 88.32943 
16 31.05530 121.6584 
17 30.45890 66.05941 
18 30.54560 86.77607 
19 30.45897 60.03353 
20 29.49316 66.08324 
21 25.02372 54.18704 
22 27.53805 57.81893 
23 25.59551 48.71430 
24 28.42898 50.91209 
25 23.74540 42.67427 
26 26.00563 47.13995 
27 26.1234 43.46758 
28 26.01287 44.68579 
29 24.61939 42.11367 
30 24.57047 41.78718 
31 22.52350 40.19083 
32 24.89956 40.32386 
33 23.06772 39.17349 
34 24.45582 37.81925 
35 22.63812 36.83433 
36 23.60639 37.88149 
37 23.40849 35.35016 
38 23.29821 36.55395 
39 21.36754 33.84784 
40 21.87154 34.73321 
41 21.11356 32.39634 
42 22.37651 35.25474 
43 21.75940 31.93997 
44 23.05445 35.82981 
45 21.6458 33.87700 
46 22.56001 34.77634 
47 21.94255 31.31152 
48 23.69308 33.40600 
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49 22.09057 32.20893 
50 22.67505 32.17587 
51 21.31209 30.62898 
52 21.89319 32.05168 
53 21.72218 30.67848 
54 21.86494 31.20786 
55 22.48643 30.84135 
56 21.24124 32.00515 
57 21.10696 31.78491 
58 21.53351 31.78452 
59 21.25227 30.91591 
60 22.83922 30.39964 
61 21.46971 31.89542 
62 21.61594 31.60442 
63 21.12500 31.34556 
64 21.27855 31.86457 
65 21.20857 30.79286 
66 21.72523 30.94112 
67 22.01677 29.92572 
68 22.10738 29.87629 
69 21.14394 30.14556 
70 22.68521 29.01392 
71 22.87616 29.50563 
72 22.74658 31.35689 
73 22.92233 29.51644 
74 21.30655 30.29145 
75 21.25497 21.25497 
76 21.68577 29.83821 
77 20.64391 30.09701 
78 21.46983 29.51518 
79 20.50294 29.47552 
80 22.14924 28.79324 
81 20.63679 29.32638 
82 21.23376 29.04127 
83 20.9883 29.24603 
84 21.13944 29.32822 
85 21.06802 29.13012 
86 21.23907 29.3382 
87 20.57237 28.52611 
88 21.17737 28.34794 
89 20.09171 28.84251 
90 22.0697 29.49579 
91 21.14663 29.24013 
92 22.04567 28.78852 
93 21.45896 29.42448 
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94 21.01456 29.34401 
95 21.0017 29.86019 
96 21.50454 30.15476 
97 21.91065 30.01665 
98 20.51235 27.45656 
99 20.15563 29.87197 
100 20.0556 28.50683 

 


