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The OAAT Method for Phase I Nonlinear Profile Monitoring

Student : Yi-Ling Hsu Advisors : Dr. Jyh-Jen Horng Shiau

Institute of Statistic
National Chiao Tung University

Abstract

Shiau and Sun (2006) proposed an one-at-a-time (OAAT) scheme for Phase I process
monitoring that only discards the most extreme out-of-control sample at a time. Using Shewhart
X chart as an example, they demonstrated that.the OAAT scheme reduces dramatically the
occurrences of false alarms. In this‘paper, we extend this scheme to nonlinear profile monitoring.
We consider a T chart constructed based on the reweighted minimum volume ellipsoid (RMVE)
for profile monitoring. We compare the false-alarm rate (the possibility that an in-control sample
is claimed as out of control) and detecting power.(an out-of-control sample is detected) of the
OAAT scheme with that of the traditional delete-all scheme and confirm that the OAAT scheme
reduces the false-alarm rates while attaining the detecting power in profile monitoring. It is also
found that when the process shift is large enough, the false-alarm rates of the two schemes are
very close for one-sided control charts. Since the Delete-All scheme is more economic in
computation, we provide a statistic as a guide on when to use it for achieving the efficiency.

Finally, we demonstrate the methodologies described in the thesis with two real-life examples.
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1. Introduction

Control chart is a powerful tool in statistical process control (SPC) for achieving process
stability and improving capability through the reduction of variability. The statistic used in
constructing a control chart usually is a quality-related variable or a random vector consisting of
several possibly correlated quality characteristics of a process or a product. However, in many
practical situations, the quality of a process or a product is better characterized by a relationship
between a response variable and one or more explanatory variables. Thus, for a sample, one
observes a collection of data that can be represented by a curve (or profile). The profile can be
linear or nonlinear. In this paper, we consider both casts of linear and nonlinear profile. Linear
profiles are first fitted by a simple linear regression model and the estimated parameters are used
for process monitoring. The monitoring of linear profiles can be applied to a wide variety of
applications. In particular, most of studies in linear profile monitoring have been motivated by
calibration applications. A nonlinear profile very often expressed as a high dimensional data
vector. But most of multivariate data analysis technique will face the ill-condition problem due to
the high correlation between data on the same profile. Because of this, we often use a Hotelling
T statistic of the estimated regression parameters to monitor profiles.

Process monitoring based on control charting usually consists of Phase I and Phase II.
Control charts are used primarily in Phase I to bring the process to the in-control state. The
purpose of this paper is to study the OAAT scheme proposed by Shiau and Sum (2006) for Phase
I profile monitoring. A historical data set is collected and trial control limits are constructed to
determine if the process is in-control. If so, then we have an in-control data set to establish
adequate control limits for future on-line process monitoring.

In Phase I, to construct a control chart to monitor samples collected from the process, we use
the samples to establish trial control limits for the monitoring statistic, such as Hotelling 7°
statistics. For simplicity, if samples are outside the control limit, then we claim that the samples
are out of control. If some samples are out of control, then the process may have assignable

causes for these out-of-control samples. If some assignable causes are found, then these



out-of-control samples should be removed, otherwise, one needs to make a decision on
eliminating these samples or not. No one knows which action is correct without further
information since data points may exceed the limits simply by chance or due to be some
uncovered assignable causes. For being conservative, many practitioners may choose to discard
these potential “out-of-control” samples.  After eliminating these out-of-control samples, the trial
control limits need to be recalculated with the remaining samples to check if the data set still
contains any out-of-control samples. The above screening steps are repeated until no more
out-of-control samples are present. We then use the in-control process data attained in Phase I to
estimate process parameters, €.g., the mean and standard deviation, of the monitoring statistic for
setting up reliable control limits to monitor new process data in Phase II.

Statistically, there are possibilities that some in-control samples will be claimed concluded as
out of control and some out-of-contrel samples as: in control, which are similar to committing
Type I and Type II errors in hypothesis testing; respectively. A good control chart should be able
to control these two types of error rates. Because out-of-control samples usually make the trial
control limits too wide, some out-of-control samples are not detected and removed. On the other
hand, if some in-control samples are eliminated, some estimation efficiency is lost. Thus one
would link to have effective procedure for collecting in-control data for Phase II usage. For more
discussions regarding the differences between analyses of Phase I and Phase II, one is referred to
Mahmoud and Woodall (2004) and Sullivan (2002). We focus on Phase I analysis in this paper.

Robust estimation methods are more effective in detecting unusual data points, and the
control limits constructed with these robust estimates would be more reliable. But robust
estimation for multivariate data or profiles are not as straightforward nor as easily implemented
due to the extensive computation required to obtain the estimates.

Recently, some researches study robust estimation methods for detecting multivariate outliers.
Outliers in multivariate data are more difficult to detect than that in univariate data. Woodruff and
Rocke (1994) discussed some approaches, such as the minimum volume ellipsoid estimator

(MVE) proposed initially by Rousseeuw (1984) and the minimum covariance determinant (MCD)



estimator proposed by Rousseeuw (1984) and Rousseuw and Van Deiessen (1999), are well
suited for detecting multivariate outliers. These approaches can avoid “bad” data to “mask
effects” in multivariate data. Shiau, Yen and Feng (2006) proposed using a Hotelling 7° chart
based on MCD estimators in conjunction with the False Discovery Rate (FDR), and demonstrated
that the chart is effective in detecting a reasonable number of outliers.

Jensen, Birch, and Woodall (2007) compared the standard, MVE and MCD estimator. Figure
1 (from Jensen et al. (2007)) shows that best estimator among the three for various sample sizes
m of the historical data set and percentage of outliers. They concluded that the MVE method is
best for small values of m and proportion of outliers is small. We use two data sets for
demonstration in this study, one is the bioassay data given in Williams, Woodall, Ferry, and
Birch (2007) and the vertical board density profile (VDP) data set given in Walker and Wright
(2000). The bioassay data set consists. ‘of 44 profiles and the VDP data consists of 24 profiles.
Both examples have fewer than 50-samples.-We adopt the MVE estimator in this study, since the
number of profiles m is small in two examples.

Rousseeuw and Leroy (1987)-divided the 'MVE into the MVE and the Reweight MVE
(RMVE). The RMVE is more robust than MVE, because the RMVE estimator is not affected by

outliers. In this paper, we use the RMVE estimator to monitor samples.
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iteration. We refer to the traditional scheme that deletes all of the out-of-control profiles at a time
and claims that it is the “Delete-All” scheme. For comparing two schemes, we use the following
two measures: (i) the false-alarm rate, defined as the probability that an in-control sample is
claimed as out of control; and (ii) the detecting power, is the probability that an out-of-control
sample is detected. For example, let m=25 and m;=3, where m is the number of profiles and m; is
the number of out-of-control profiles. If one in-control profile is claimed as an out-of-control
profile, then the false alarm rate is 1/(25-3). If two out-of-control profiles gets detected, then the
detecting power is 2/3.

In this paper, we use a robust Hotelling T statistic, to monitor profile data for Phase I

analysis, and apply the OAAT scheme to the bioassay data given in Williams, Birch, Woodall,



and Ferry (2007) and to the VDP data given in Walker and Wright (2002). We compare the
Delete-All scheme and the OAAT scheme in terms of the false-alarm rate and detecting power.
We confirm that the OAAT scheme reduces the false-alarm rates while attaining the detecting
power in profile monitoring. It is also found that when the process shift is large enough, the
false-alarm rates of the two schemes are very close for one-sided control charts. Since the
Delete-All scheme is more economic in computation, we provide a statistic as a guide on when to
use it for achieving the efficiency.

Section 2 reviews linear/nonlinear profile monitoring, and robust multivariate control charts.
Section 3 compares the OAAT scheme with the Delete-All scheme, and Section 4 give a
guideline on which scheme to use for real data. Section 5 demonstrates our method with the

bioassay data and the VDP data. Finally, we conclude the thesis in Section 6.

2.Literature Review
2.1 Profile Monitoring
2.1.1 Linear Profiles
There are some literatures on fixed-effect models. For example, Kang and Albin (2000)
combined the EWMA chart with R chart (EWMA-R chart) for Phase II linear profile monitoring.
Because the EWMA chart is not sensitive to shifts on the process variation and not sensitive to
larger shifts on intercept and slope, Kim, Mahmoud, and Woodall (2003) provided a combined
three EWMA chart for Phase II. It can detect shifts quicker than the EWMA-R chart in Kang and
Albin (2000). Mahmoud and Woodall (2004) suggested an F-test approach using indicator
(dummy) variables in a multiple regression model, and proposed the likelihood ratio test for
detecting changes in one or more regression parameters.
There are some literatures on random-effect models. Assume that m profiles are available. For
the i random sample collected over time, we have the observations (x; y;), 1 = 1,2,...,m, and j =
1,2,...,n. For each sample, we assume that the linear regression model relating the independent

variable X to the response Y is



Yy =4+ Ax; + g

Taae7} ij>

i=lL..,m,j=12,.,n, (1)
where 4, o N(ey,00) 5 A, o N(ay,07) , & i'f'N(O,af) ,and X values are fixed and take the
same set of values for each sample.

Shiau, Lin, and Chen (2006) proposed a linear profile monitoring scheme based on the above
random-effect model to incorporate the subject-to-subject variation that exists in many real-life
problems. Jensen, Birch, and Woodall (2006a) proposed a linear mixed model (LMM). The
LMM is very flexible and capable of fitting a large variety of datasets and allows us to account
for the correlation within profiles and to consider the profiles as random samples from a common
population distribution, which may be more realistic in many applications.

There are more literatures on linear profile monitoring and its applications. For example, see
Mestek, Pavlik, and Suchanek (1994),;Stover and. Brill (1998), Brill (2001), Jensen, Birch, and

Woodall (2006a), and the references cited therein.

2.1.2 Nonlinear Profiles

Profiles that cannot be adequately represented by a linear model are generally referred to as
nonlinear profiles. A common approach is to model the nonlinear profiles by a nonlinear
parametric regression model. Taking the estimated parameter vector of the regression function as
the representative of the profiles, monitoring nonlinear profiles can them be considered as a
particular application of multivariate process control problems.

Shiau, Yen, and Feng (2006) proposed a Hotelling 7° chart based on the Minimum
Covariance Determinant (MCD) estimators. And it is effective in detecting any reasonable
number of outliers. Williams, Woodall, and Birch (2003) fitted a nonlinear regression to model
the vertical density profiles (VDP) data, compared three T° control charts (using sample
covariance matrix, successive differences, and intra-profile pooling as estimates of the covariance

matrix, respectively) to monitor the VDP data, and analyzed the advantages and the drawbacks of



the three control charts.

Jensen, Birch, and Woodall (2006b) proposed an approach to detect changes in Phase I,
replacing the nonlinear model (NL model) by nonlinear mixed model (NLM model), such that
the NLM approach has much higher probability of detecting the change than the NL approach.

Shiau, Lin, and Tsai (2006) used the technique of principal components analysis to analyze
the covariance structure of the nonlinear profiles nonparametrically. Ding, Zeng, and Zhou (2006)
proposed using independent components analysis in nonparametric procedures to Phase I analysis
for multivariate nonlinear profiles. The authors mentioned that the high dimension of profile data
and data contamination present a challenge to the Phase I analysis of nonlinear profiles. Such
nonparametric models do not have a specific functional form and have no model parameters to
estimate, but rather one employs smoothing techniques such as local polynomial regression or
spline smoothing to model a profile.

Nonparametric regression techniques provide great flexibility in modeling the response. One
disadvantage of nonparametric smoothing methods is that the subject-specific interpretation of
the estimated nonparametric curve may be more-difficult, and may not lead the user to discover
assignable causes for an out-of-control signal as easily as parametric regression methods.In this
study, we consider the parametric regression method.

There are more literatures on nonlinear profile monitoring and its applications, such as
Williams, Birch, Woodall, and Ferry (2007) proposed nonlinear profile monitoring methods to
monitor the variability of multiple assays.

Assume that we have m profiles of data and each profile contains » measurements. Let y;
refer to the /” measurement of the i profile. A nonlinear profile of an item can be modeled by

the nonlinear (parametric) regression model given generally by

Yy =B+, i=1.,m, j=1,.,n, 2

iid.
where x;; is the ;™ set point of the i profile, & ~ N(0,67), B, isap by 1 vector of parameters



for profiles i, and f(-) is a function which is nonlinear in the parameter vector f,.

Because nonlinear parametric regression estimation is not as easy as linear regression
estimation, we describe a method for nonlinear parametric regression estimation below. We
rewrite the form in (3) by stacking the n observations within each profile into a vector as
Vi =i YViases Vi)' > X% = (X5 X505 %,) "5 (X, B) = (f (50, B), S (%105 By S (%, 8))', and

g =(&,,&,,.--,€,)" . The vector form of Equation (3) is then given by
v, =f(x,B)+e,i=1,.,m 3)

For the nonlinear regression model given in (3), we first obtain the estimate of g, for each
profile. This is usually accomplished by employing the Gauss-Newton procedure and iteration to

obtain the least squares estimates. Define the n by p matrix of the derivatives of f(x;, #,) with

respectto S, as

[ B U GEB) (b))

P 0P P,
S (. B) S X, B) (x5, 8)
F; =

o xB) | P "
B, g o i ?

F % B) S X B) S B)
P 0P p,

Let f(x,.f”) = (/20 BN f iy B £ (5, B))' where B0 is the estimator of f,

atthe a” iteration, and let F'“ be the matrix of derivatives given in (4) evaluated at B . The

an iterative solution for ﬁi is given by
Bl = B+ (B EOY E O (5, - £ (6 B, (5)

See Myers (1990, Chapter 9) or Schabenberger and Pierce (2002, Chapter 5) for a concise



discussion of a nonlinear regression model and estimation. More detailed treatments can be found

in Gallant (1987) or Seber and Wild (2003).

2.2 Minimum Volume Ellipsoid (MVE)

Multivariate quality control (MQC) methods can monitor several variables simultaneously.
Shiau, Yen, and Feng (2006) proposed a robust Hotelling 7° chart based on the MCD approach.
In this study, we take a MVE approach to construct the monitoring statistic for monitoring
nonlinear profiles, and compare the OAAT scheme with the Delete-All scheme.

The goal of the MVE approach is to find good estimators that are not unduly influence by outliers.
For finding an ellipsoid of minimum volume to cover the data set, Rousseeuw (1984) originally
took halfset from non-outlier data. Classical estimation methods like the sample mean and sample
covariance matrix, have low breakdown points while the high breakdown estimators considered
here have breakdown points (h=/(m+p+1)/2]) that approaches 50%, the maximum possible value.
Hence, MVE is effective unless the percentage of outliers is greater than 50%. But the required
computational effort increases exponentially. For-example, if m=25 and p=2, which implies that 4
= (25+2+1)/2 = 14, then there are ‘a total of 25!/14!11!=4,457,400 halfsets that could
potentially be the basis for the MVE estimator. So Rousseeuw and Leroy (1987) proposed an
approximate method to find the MVE estimators by a subsampling algorithm. This subsampling
algorithm takes a fixed number of random subsets each containing only p+1 points. There is still
the same exponential increase, but the computation required is dramatically reduced. For the
example shown earlier with m=25 and p=2, there are 25!/3!122!=2,300 possible subsets, which
is a lot less in computation than the original halfset method.

An algorithm similar to that proposed in Vargas (2003) for computing the MVE estimators for
the mean vector and covariance matrix, except we perform an search than random sampling a

fixed number of times, is described as follows:

(1) For each of the C7, combinations of p+1 different observations, indexed by J={ iy, ...,



Iyt }. Compute the mean and covariance matrix:

_ 1 1 . _
o= g 2B 8o = 2 B BB By

(2) Compute the Mahalanobis distance for each of m samples

d @)= ~B,)'S, " (B.-B,), i=12,.m.

(3) Calculate the volume of the ellipsoid ¥, = m?” det(S,), wherem? is the h'" order statistic of

d; (i), and h=[(m+p+1)/2]. Here [x] stands for the ceiling function of x, integer the smallest

>X.

(4) Keep the J* for which ¥V, is minimal across all C7', replications.

(5) Define

(a) the minimum volume ellipsoid (MVE) statistic by

TZMVE,[ i (ﬂz _BMVE)' MVE_] (ﬂl _EMVE)' (6)
2 2
_ _ ¢ m,”S,. 1
where By =B, Sypp =—5"——, and *, , =(1+ > ).
0.5 -

(b) the reweighted minimum volume ellipsoid (RMVE) statistic by

T2RMVE,i = (ﬂ, _ERMVE)'SRMVEil(ﬂi _ERMVE)‘ (7)

m

Zwiﬂi iwl(ﬂl _BRMVE )(B; _BRMVE)'

n _ =l _
ﬂRMVE I > SRMVE -

2w iwi—l
i=1

i=1

b

. 2 2 :
where w, =1, if T°,,,, < ¥, 005> Wi =0 , otherwise.

l

Because the RMVE estimator does not use the data for which the Mahalanobis distance is
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greater than 005> the RMVE estimator robust to outliers. See Figure 2 for an illustration. We

use the RMVE estimator in our monitoring statistic to detect out-of-control samples.

RMVE estimator

Figure 2: The triangle points are out of control, the solid ellipsoid is based on the RMVE

estimator.

Weuse T7,,,,»as our monitoring statistic-and-the control limit is obtained as follows:

Step1: Without loss of generality, simulate m in-control profiles from multivariate normal
distribution with the mean vector u# =0 and covariance matrix X =/, where / is the
identity matrix.

Step2: Compute estimator 7°,,,, in Equation (7).

Step3: Repeat step 1 and step 2 for N=100,000 times. Then the control limit is set as the
empirical (1-«)' quantify of the 100,000 values of 7°,,,,, where «, =1-(1— 05)i ,

o, 1s the percent false-alarm rate such that the overall false-alarm rate is approximately

a,and a=0.025. See Table B.1 in Appendix B.
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3. A Study of the One-At-A-Time Scheme in Profile
Monitoring Scheme

3.1 Motivation

Williams, Birch, Woodall, and Ferry (2007) proposed a nonlinear profile monitoring method to
monitor a set of Bioassay data. The bioassay data consists of forty-four weeks of in vivo bioassay
results run alongside experimental compounds over a one-year time period. They removed 12
profiles. We wonder that some profiles of the removed profiles may be false alarms. Shiau and
Sun (2006) proposed a one-at-a-time (OAAT) scheme for Phase I process monitoring that only
discards the most extreme out-of-control sample at a time, using Shewhart X chart as an
example, and demonstrate that the OAAT scheme reduces dramatically the occurrences of false

alarms. So, we apply the OAAT scheme to nonlinear profile monitoring.

3.2 The OAAT Scheme
We describe the OAAT procedure (Shiau and Sun, 2006) below:
Step 1. Construct the trial control limits with all of the collected data.
Step 2. If no out-of-control samples areidentified, stop iterating and go to Step 4; otherwise,
discard the most extreme sample.
Step 3. Construct the trial control limits with the remaining samples; go to Step 2.
Step 4. Collect all the samples discarded in the above iterations and inspect the process for

assignable causes.

3.3 Simulation Studies

We use the parametric regression to model nonlinear profiles. Note that the T, statistic in
Equation (9) is invariant under the linear transformation. Thus, without loss of generality, we can
simulate parameters from the multivariate normal distribution with mean vector u =0 and
covariance matrix ¥ =7, where [ is the identity matrix. Since over monitoring statistic T},,, is

constructed based on the estimated parameter vectors of the profile, and the estimated parameter

12



are asymptotically nonlinear, and we simulate the parameter vectors direct from the multivariate
normal distribution in comparing the OAAT and Delete-All schemes. In this way, we avoid

interference of the estimation errors.

3.3.1 Simulation settings
For comparing the OAAT scheme and the Delete-All scheme. With the false-alarm rate and
detecting power, we consider m=25(25)100, m;=3(3)12, p=2 and 4, and |d |=1(1)20, where m is
the number of profiles, m; is the number of out-of-control profiles, p is the dimension, and |J | is
the length of  (i.e., the mean of m; profiles shifts from x4 to u+d). For each combination, we
repeat 100,000 times and take averages of the 100,000 false-alarm rates and 100,000 detecting

power respectively to estimate the actual values.

3.3.2 Results of Simulation Studies

The simulation result are summarized and displayed in Figures 2-11. We observe the followings

from the simulation studies:
(1) From Figures 3 and 4, the false-alarm rate of the OAAT scheme is almost a constant and that

of the Delete-All scheme is much higher, while the detecting power of both schemes are

almost the same for p=2 and p=4.

(@) (b)
False-alarm rate (m =25, m1 =3, and p =2) Power (m =25, m1=3, and p =2)
0.02 1
—— Delete-All(p=2) 0s |
&2 0.015 ’
£ —=— OAAT(p=2) .06 F
§ 001 | 2 .
3 04 | —— Delete-All(p=2)
= 0005 | 02 | — = — OAAT(p=2)
0 O \\\\\\\\\\\\\\\\\\\
1 35 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Mean shift Mean shift

13



Figure 3: Comparisons of the OAAT scheme and Delete-All scheme for m;=3, m=25, and p=2 in

terms of (a) the false-alarm rate, and (b) the detecting power.

(a)

(b)

0.018

false-alarm rate

0.016
0.014
0.012
001 |
0.008
0.006
0.004
0.002

False-alarm rate ( m =25, m1 =3, and p =4)

—e— Delete-All(p=4)

—=— OAAT(p=4)

1 3 5 7 9 11 13 15 17 19
Mean shift

Power

09
08
0.7
06
05
04
03
02

0.1

Power (m =25, m1=3, and p =4)

—+— Delete-All(p=4)

— = — OAAT(p=4)

35 7 9 11 13 15 17 19
Mean shift

Figure 4: Comparisons of the OAAT scheme and Delete-All scheme for m;=3, m=25, and p=4 in

terms of (a) the false-alarm rate;and (b) the detecting power.

(2) The false-alarm rate of the Delete-All scheme decreases as |d| increase. This is due to the fact

that the RMVE estimator is more likely to be “contaminated” by out-of-control samples when

the shift size is small. Then, the center of the ellipsoid is shifted, such that some in-control

samples may be claimed as out of control. Figures 4 and 5 illustrate an example with |d|=5

and 10, respectively. In this example, m=25, m;=3, p=2, |0|=5, and the Sth, 14th, and 21%

samples are the real out-of-control samples. Figure 5 shows that the 14™ sample is not

detected and may have contaminated the RMVE estimator and causes the 7" sample to signal

a false alarm. But in Figure 6, with a larger shift size (|6|=10), all these out-of-control samples

are screened out by the RMVE estimator and then the 7" sample behaves normally.

14



5 times shift (n=25.m1=3.and p=2)
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Figure 5: An example with shift size |6|=5.
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Figure 6: An example with shift size |6/=10.

(3) Figures 7 and 8 compare the effect of p for the OAAT scheme and Delete-All scheme,
respectively. For the OAAT scheme with p=2 or p=4, p shows almost no effects on both of the
false-alarm rate and the detecting power. On the other hand, for the Delete-All scheme, Figure
8 presents a slight effect of p on the false-alarm rate, the smaller the dimension, the larger the

false-alarm rate, but no effects on the detecting power.
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(a) (b)

False-alarm rate of OAAT Power of OAAT
(m =25 and m 1=3) (m =25 and m 1=3)
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Figure 7: Effects of p on the OAAT scheme (a) The false-alarm rate, and (b) the detecting power

for m;=3, m=25, and p=2, 4.

(a) (b)
False-alarm rate of Delete-All Power of Delete-All
0018 (m=25,ml1=3,and p =2) 1 (m =25, m1=3)
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Figure 8: Effects of p on the Delete-All scheme (a) The false-alarm rate, and (b) the detecting

power for m;=3, m=25, and p=2, 4.

(4) From Figures 9 and 10 show that, when m increases, the false-alarm rate decreases and the

detecting power increases for both of the OAAT scheme and the Delete-All scheme, which

are expected.
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(@) (b)

False-alarm rate of OAAT (p =2) Power of OAAT (p=2)
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Figure 9: Effects of m on the OAAT scheme. (a) The false-alarm rate, and (b) the detecting power
for m=25(25)100, m;=3(3)12, and p=2.

(a) (b)
False-alarm rate of Delete-All (p =2) Power of Delete-All (p =2)
0018 %5 (is3) 1
—— m= mil=
0.016 :
0.014 —=— m=50 (m1=6) 8.2 -
o —+—m=75 (m1=9) 0'7 |
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g 0006 0 TSttt ' ——m=75 (m1=9)
& 03 |
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0.002 | 0.1
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Figure 10: Effects of m of the Delete-All scheme. (a) The false-alarm rate, and (b) the detecting

power for m=25(25)100, m;=3(3)12, and p=2.
(5) From Figures 11 and 12, we observes that, when m; increases, the false-alarm rate increases,

the detecting power decreases for both of the OAAT scheme and Delete-All scheme, which is

also expected.
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Figure 11: Effects of the proportion of out-of-control data on the OAAT scheme. (a) The

false-alarm rate, and (b) the detecting power for m,=3(3)12, m=50, and p=2.

(a) (b)
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Figure 12: Effects of the proportion of out-of-control data on the Delete-All scheme. (a) The

false-alarm rate, and (b) the detecting power for m;=3(3)12, m=50, and p=2.

To summary, it is found from the simulation studies, the OAAT scheme performs better than
the Delete-All scheme because the OAAT scheme has a lower false-alarm rate and loses almost
no detecting power. The only drawback of the OAAT scheme is that it is more complicated than
the Delete-All scheme. In the next section, we provide a statistic to determine when to use the
Delete-All scheme for real data, such that the process monitoring can be carried out more

efficiently.
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4. A Guideline for which Scheme to Use

By the simulation results presented in Section 3.3, we see that the OAAT scheme performs
better than the Delete-All scheme in term of the false-alarm rate. But the OAAT scheme takes
more time in computation than the Delete-All scheme. We also noted that the false-alarm rates for
the two schemes are almost the same when the shift size is large. Therefore, if this situation
happens, we may want to use the Delete-All scheme to save some time. Thus, one may like to
have a guideline to decide which scheme to use. It is well known the median is robust to outliers
while the mean is not. If the difference between the mean value and the median of data is large, it
may imply that the shift is large and the out-of-control points are easy to detect. Then it might be

safe to use the Delete-All scheme to save time. Otherwise, we will stick to the OAAT scheme.

4.1 Estimate the Real Variance from the Truncated Data

In Phase I analysis of the historical data set, it is wise to estimate the process parameters, say,
4 and o with in-control data. Suppose we truncate off a(100)% of data, and use the
remaining data to estimate o, thé.estimator will-be biased. We need a method to correct the bias.
If a normal distribution is truncated symmetrically about mean, then we have the relationship

between the variances of the original distribution and the truncated distribution as

L _Var(v)
C

(8)
where C=1-2a¢p(a)/2®(a)-1), Y, is the truncated normal variate on A4=[-a,a],
a=®"'(1-a/2), and Var(Y,) is the variance of the truncated normal distribution with domain
A. For the multivariate case, we also have C=1-2a'p(a)/QdP(d)—-1) with
a=0"(pVl-a+1)/2),and A={Z"?y +u |y €[-a,a]” } with Y ~ N(0,I).

_ Cov(Y

z c 9)
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The proofs are in the appendix. With equation (8) and (9), Tables 1-3 present respectively for
p=12,4, the values of the correction factor C for a =0.0027,0.05,0.1,0.5. For example,
o’ =Var(Y,,;)/0.1426518 where Var(Y..) is the variance of the truncated normal distribution
with 50% truncation. And X =Cov(Y,;)/0.3174066, where Cov(Y, ;) is the covariance
matrix of the truncated multivariate normal distribution with 50% truncation as shown in
Figures 12 and 13. Thus, if we obtain an estimate of o from a set data with 50% trimming, than
we should divide it by C for bias correction. With equation (8) and (9), the variance or
covariance can be estimated by the truncated normal distribution for (1—ea)100% as described in
Subsection 4.1 to avoid being affected by out-of-control data or outliers.

By Equation (8) and (9), Table 1-3 give, respectively for p=1, 2, and 4, the relationship
between the variances of the normal® distribution for various « . Thus an unbiased robust

estimate of o’ or X can be obtained through the.in-control data from Phase I analysis.

Table 1: The value of C for bias correction of the variance estimated by the truncated normal

data for various o (p=1)

v} 0.0027

0.05

0.1

0.5

C 0.97333353

0.7588416

0.6230155

0.1426518

Table 2: The value of C for bias correction of the variance estimated by the truncated normal

data for various o (p=2)

a 0.0027

0.05

0.1

0.5

C 0.9849377

0.8498555

0.7545935

0.3174066
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Table 3: The value of C for bias correction of the variance estimated by the truncated normal

data for various @ (p=4)

v} 0.0027 0.05 0.1 0.5

C 0.9915960 0.9095220 0.8469910 0.5042240
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Figure 13: Truncated normal distribution with 50% truncated (& =0.5). (a) p=1, and (b) p=2.

4.2 The statistic for univariate data
We use the median of data (median(x)) to estimate u, and use the o’ for a =50% in Table
1 to estimate o .The statistic we propose here is
_ X —median(x)

Ly=——F—"", (10)
O

where & is the 50% “trimmed” estimate of o as described in Subsection 4.1. Figures 14 and
15 display the kernel density estimate, a histogram, and the Q-Q plot of 7) obtained from 100,000

simulated samples of size m=100 from the standard normal distribution.
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Figure 14: The density plot of 100,000 simulated 7, values. (a) The density plot, and (b) the

histogram plot.
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Figure 15: The normal Q-Q plot for 100000 simulated statistic 7} .

For the simulation studies, we observe one interesting thing. When the control chart under
study has both upper and lower control limits, then the false-alarm rate of the Delete-All scheme
will not come close to that of the OAAT scheme for larger shifts, which makes the OAAT scheme

the only choice. See Figures 16-18 for examples of the two-tailed X, R, and S charts; and
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Figures 19-20 for one-tailed R and S charts. The number of replications in the simulation is
100,000. Note that R (or S) chart is two-tailed when the subgroup is greater than 6. This can be
explained by the following. Take the X chart as an example, when the shift size gets large, the
center line gets higher, so does both of the control limits. But the width between two limits stays
the same. Then many in-control points close to the LCL eventually will fall below the lower
control limits. Figure 21 depicts this phenomenon. This situation will not happen for one-tailed

control charts.

(a) (b)
False-alarm rate for X-bar chart Power for X-bar chart
(m=25 and m1=3) (m=25 and mI=3)
0.600 D I S e e e
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(] L
0200 =04 — =~ OAAT
= 0.100 02
0.000 0
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Mean Shift Standard error Shift

Figure 16: Detect univariate data by X' chart (two-tailed). (a) The false-alarm rate, and (b) the

detecting power.

(a) (b)
False-alarm rate for R chart Power for R chart
(m=25 and m1=3) (m=25 and m/=3)
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0.006 | y elete-
(4]
50005 | —=—OAAT
0.004 | .
80002 | — = — OAAT
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0.000 0
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Figure 17: Detect univariate data by R chart and the subgroup is greater than 6 (two-tailed). (a)

The false-alarm rate, and (b) the detecting power.
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Figure 18: Detect univariate data by S chart and the subgroup is greater than 6 (two-tailed). (a)

The false-alarm rate, and (b) the detecting power.
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Figure 19: R chart (one-tailed). (a) The false-alarm rate, and (b) the detecting power.
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Figure 20: R chart (one-tailed). (a) The false-alarm rate, and (b) the detecting power.
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Figure 21: An example for X chart. (a) 10 times shift, and (b) no shift.

4.3. Simulation for univariate data

We need a cutoff point of 7} for decision making. Take R and S chart as examples. We
simulate univariate data for different shifts'0=1(1)20, i.e., m; profiles shift from o to oo . For
each setting, we simulate m subgroups of size 5 to obtain m values of R and S. Then use Equation
(12) to compute 7y for each of R and S. Repeat the above steps 100000 times to obtain 100,000
values of 7). Take the average of these 7)’s. The combinations of (m, m;)=(25,3), (25,16), (100,12)

are considered. Figure 22 shows the results. From Figure 22(a)(b), we observe that

(1) When m; increases, T) increases.

(2) When m increases, T decreases.

(3) When 0 increases, Ty increases.

(4) Compared with Figures 18 and 19 in which two false-alarm rate coincide around 6=14 for
R chart and =13 for S chart, we choose 7) =1 as the cutoff point. If 7, >1, then we use

the Delete-All scheme; otherwise use the OAAT scheme.
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Figure 22: T) for simulated univariate data. (a) R chart, and (b) S chart (one-tailed test).

4.4 The Statistic for Multivariate Data

For multivariate data, assume we_have m profiles, each is represented by the estimated
parameter vector, with p by 1 parameter vectors, denoted by p,, i=1,2,...,m. Without loss of
generality, we simulate parameters g, from the multivariate normal distribution with the mean
vector u =0and covariance matrix X =7, where [ is the identity matrix. Denote g the mean
of B.’s, and median(f;) the componentwise median of g ’s. Let S be the “trimmed”

covariance matrix estimate described in Subsection 4.1. We use the following statistic
72 = (B - median($,))'S™ (B~ median(§,)), (1)

to determine which scheme to use.
We simulate multivariate data with mean vector u =0 and covariance matrix =17 (p=2
and m=100), and repeat 100,000 times. We plot the density, histogram and chi-square Q-Q plot of

these 100,000 values of 7;) in Figures 23 and 24. It might be reasonable to assume that the 7
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statistic has a approximate scaled chi-square distribution with p degrees of freedom.
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Figure 23: The plot of the statistic-T;, from simulated multivariate data. (a) The density plot, and

(b) the histogram plot.
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Figure 24: The chi-square Q-Q plot for the statistic 7, from simulated multivariate data.
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4.5 Simulation for multivariate data
We simulate multivariate data with different shifts (|6|=1(1)20). Similar to the unvariate case,

we use Equation (11) to compute 7, . According to Figure 25 and 26, we observe that

(1) When p increases, T, increases.

(2) When m; increases, T, increases.

(3) When m increases, T, decreases.

(4) When 6 increases, T, increases.

(5) By the same argument as before, we choose to use the Delete-All scheme when 7;” >1and

the OAAT scheme, when T, <1 .

To-square for p=2 and p=4 (m=25 and m1=3)

P
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2
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,4@,,
-
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mean shift

Figure 25: 7, from simulated multivariate data for p=2 and p=4.
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Figure 26: T, for simulated multivariate data. (a) p=2, and (b) p=4.

To summary, we recommend always use the’OAAT scheme when the control chart has both

upper and lower control limits. For one limit control chatt, when the T, (or 7;') >1, then use the

Delete-All scheme to save time.
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5. Examples
5.1 Bioassay Data
5.1.1 Data Description

To compare the profile monitoring schemes between the OAAT and the Delete-All schemes,
we analyze the data from DuPont Crop Protection (Woodall, Williams, Birch, and Ferry, 2007).
The data set consists of forty-four weeks (m =44) of in vivo bioassay results run alongside
experimental compounds over a one-year time period.

The commercial compound was diluted to eight doses (0.003, 0.009, 0.028, 0.084, 0.25, 0.76,
2.27, and 6.8 (d=8)) and replicated four times at each dose (» = 4) in 96-well microtiter plates for
each sampling period i. A spectrophotometer measured the optical density (OD) of the plant
organism after the inoculation period.

Let y; represents the K" response toithe /" dose at sampling period i, where i = 1,2, ...m ,j =
1,2,...d and k = 1,2,..., r. For this data set,- we have'm = 44, d = &, and r = 4. Both treated and
untreated wells were measured for growth -inhibition.: The percent control (PC) values were
calculated using the median OD (M) from 96 replications of untreated wells. Williams, Woodall,
Ferry, and Birch (2007) let M; represent the median response of the untreated specimen at
sampling period i. Then, the percent control of the chemical for the & replication of the /" dose

in sampling period i is calculated as

Mi_yg‘/k
M,

1

P Cijk =

i=lL..m,j=1..,d, k=1,.r. (12)

A plot of PCy values for all m = 44 weeks for one of the standards from the DuPont is given
in Figure 27. Because the bioassay data have replications ( = 4), we need to first monitor the
variance within profiles. Williams, Woodall, Ferry, and Birch (2007) referred to it as the variance

profile monitoring.

30



Percent control Percent control Percert control Percent control Percert contral Percent control Percent control Percent contral

Percert cordrol

0o 10

0o

0oo1a

0o 10

0o 10

oo 10

0010

0o 10

0o 10

Week 1 Week 2 Week 4 Week 5

Percent contral
I ]
Percent contral
I ]
Percent contral
oo 10
Percent contral
I ]

-G -2 = -5 -2 2 -5 -2 2 -G -2 =
LogiDoes]) LogiDoes) LogiDoes]) LogiDoes])
Week 7T Week 8 Week 10 Week 11

Percent control
oo
Percent cantrol
oo
Percent control
oo 1
Percent control
oo

-G -2 2 -6 -2 z2 =] -2 z2 -G -2 2
LogiDoes]) LogiDoes) LogiDoes]) LogiDoes])
Week 13 Week 15 Week 16 Week 17

Percent control
o010
Percent control
o010
Percent control
o110
Percent control
o010

|
o
!

@

-2

()
!
m

-2

)

-2

(&)
|
o

-2

8]

LogiDoss) Log(Doss) LogiDooes) LogiDhoss)

Week 19 Week 20

!
m

Percert contral
I ]
Percert contral
I ]
! E
®
o
=
N
-
Percert contral
]
E E
[
o
-
N
[N
Percert contral
I ]

|
o
)

-2

8]

-2

1
m

-2

(&)
|
o

-2

8]

LogiDoes]) LogiDoes) LogiDoes]) LogiDoes])

Week 25 Week 26 Week 27

o
Ib !
]
Percent control
0o 10
n
Ib E
i8] )
Percent contral
0o 10
o
'I\J i
%)
Percent control
0o 10
o
2
. 5
b -
w
o @
Percent control
0o 10

LogiDoes]) LogiDoes) LogiDoes]) LogiDoes])

Week 30 Week 31 Week 32

!
o

Percert control
0o 10
Percent contral
0o 10
Percert control
oo 10

! E

[

o

-

L

L

Percert control

0o 10

|
o
b

-2

]

-2

1
o]

-2

%]
|
o
|
b
b

LogiDoss) Log(Doss) LogiDooes) LogiDhoss)

Week 37 Week 38 Week 41

Percent control
010
Percent control
0o 10
Percent control
oo
ﬁ E
[
o
-
=y
S
Percent control
010

-G -2 = -5 -2 2 -5 -2 2 -G -2 =
LogDoes]) LoglDoes) Log(Does) Log(Does])
Week 44 Week 45 Week 46 Week 47

Percent control
0oo10
Percent contral
0oo10
Percent control
oMo
Percent control
0oo10

-G -2 = -5 -2 2 -5 -2 2 -G -2 =
LogiDoes]) Log(Does) LogiDoes)) LogiDoes])
Week 49 Week 50 Week 51 Week 52

Percert cordrol
0oo10
Percert cantral
0oo10
Percert cordrol
oo 10

-6 -2

8]

-E -2

b

-5 -2

%]

-6 -2

8]

Lo Choe:s] Log(Dnoes) LogiDooes) LogiCooe:s)

Figure 27: Bioassay Data (DuPont Does-Response Data) for all 44 weeks.
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5.1.2 Monitoring for Bioassay Data
We analyze the profiles in the bioassay data in Figure 27 and consider the following

4-parameter logistic model which has been used frequently for dose-response studies (Williams,

et al. (2007)):

y; = A +——"+¢

X..
1+ (215
(C)

i

i=1..,.m,j=1.,n, (13)

where A is the upper asymptote, D, is the lower asymptote, C, is the point where the curve
reaches halfway between A4 and D,,and B, is a parameter representing the rate of increase or
decrease from D, to A4 in Figure 28. Since the estimators of 4, B,, C,, and D, are
correlated, it is more appropriate to.account for the correlation among them when testing for
unusual values of 1:1, , éi , éi and ﬁi. We illustrate the estimated mean profiles for all

forty-four weeks in Figure 29.
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Figure 28: A does-response curve.
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Figure 29 : Estimated mean profiles of all 44 weeks in the bioassay data .
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We use the RMVE in Equation (7) to monitor dose-response profiles. As a result, both the
OAAT and Delete-All schemes remove the same 13", 20", 21%, 22™, 24", 26", 32", 34" 45"
46™ and 48™ profiles in the end. See Figure 30 (a) gives the control chart of the first iteration and

30(b) shows the result of the last iteration in which the remaining 33 profiles are in control.

(a) (b)

RMVE RMVE

200
1

3917349

150
1

L

Tsquare_rmve
‘100
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Tequare_rmws

=V b NN
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Week Waal

Figure 30: The RMVE chart when monitoring unusual profiles. (a) The 44 dose-response profiles

at the first iteration, and (b) the 33 dose-response profiles at the last iteration.

We compute the 7; statistic according to Equation (11) for the original 44 profiles and find
that 7;’=0.992673, very close to the suggested cutoff value 1. The result that both schemes
removed the same set of the profiles is in accordance with the result that 7;) is close 1.

For demonstrating that the OAAT scheme performs better than the Delete-All scheme, we use
the variance profile monitoring of Williams, et al. (2007). Since there are 4 replications at every

. . 2
dose j, estimate o; by
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r

> (PC,, — PCy)

A2 Q2 k=l
O'[.j—Sij—

r—1

Following Williams, et al. (2007), we model &; by the model

log(6;) =10g(S;) =6, +6, log(x;).

Figure 31 displays the fitted results of the 44 variance profiles.
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Figure 31: Estimated variance profiles of all 44 weeks in the bioassay data.
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We use the RMVE statistic in Equation (7) to monitor the variance profiles. The OAAT
scheme removes only the 20™ and 45™ weeks in Figure 32(a)(b), and the Delete-All scheme first
removes 6th, 20th, 22nd, 24th, 26th, and 45" weeks and then removes 16th, 19th, 34" and 44" again.
See Figure 33(a)(b)(c), respectively. The OAAT scheme has 42 profiles remaining, and the
Delete-All scheme has only 34 profiles left. It is apparent that the Delete-All scheme removes a
lot more than the OAAT scheme. It could be a reasonable doubt that the Delete-All scheme picks

come false-alarms.
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2237651

quare_m
0
|
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Tsquare_rmve

Figure 32: The RMVE chart when monitoring the remaining variance profiles by the OAAT

scheme. (a) The 44 variance profiles, and (b) the 42 variance profiles.
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Figure 33: The RMVE chart when monitoring the remaining variance profiles by the Delete-All
scheme. (a) The 44 initial variance profiles, (b) the 38 variance profiles, after the 1*

iteration, and (c) the remaining 34 variance profiles.

Note that the 7;) value for the variance profiles is 0.2747621, indicating it is likely that some
false-alarms are signaled by the Delete-All scheme.

After removing the profiles that signal out of control in the variance profiles monitoring, we
monitor the remaining dose-response profiles. For the 42 remaining profiles, the OAAT scheme
removes 13", 21%, 22", 24™ 26™ 32 34™ 46™ and 48™ weeks, and see Figure 34(a)(b). For
the remaining 34 profiles, Delete-All scheme first removes 13" 32" and 48" weeks, then

removes 21%, and 46™ weeks, see Figure 35(a),(b), and (c), respectively. At the end, the remaining
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33 profiles by the OAAT scheme, and the remaining 29 profiles by the Delete-All scheme, are in

control now.
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Figure 34: The RMVE chart when monitoring the remaining mean profiles by the OAAT scheme.
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Figure 35: The RMVE chart when monitoring the remaining mean profiles by the Delete-All
scheme. (a) The 34 mean profiles, (b) the 31 mean profiles, and (c) the 29 mean

profiles.

Are the additional 6th, 16th, l9th, and 44" profiles signaled by the Delete-All false-alarm rate?
To see this, we plot 44 profiles in Figure 36 with these four profiles highlighted. The 6", 16", and
19" profiles seem fairly normal. But the 44™ profile seems somewhat unusual, and the OAAT
scheme does not remove it. The reason might be that 4 parameters 4, B, C, and D of this profile
are monitored equally weighted by RMVE. Although the parameter B of the 44™ profile is
smaller than the other profiles, the parameters 4, C, and D are fairly similar to that of other
in-control profiles. Thus the difference in B becomes insignificant in the overall measure T, .
If we want to emphasize a particular feature like the increasing rate represented by B, we may

consider put more weights on that component.
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Figure 36: The thick lines are the 6th, 16™ 19" and 44 profiles.

5.2 Vertical Board Density Data (VDP)
5.2.1 Data Description

Manufacturers of engineered wood boards, which include particleboard and medium density
fiberboard, are very concerned about the density properties of the board produced. The density is
measured using a profilometer which uses a laser device to take a series of measurements across
the thickness of the board. A profilometer takes multiple measurements on a sample (usually a
2x2 inch piece) to form the vertical density profile (VDP) of the board.

Vertical Board Density Profile Data from Walker and Wright (2002) contains 24 profiles of
vertical density, each profile consists of 314 measurements, see Figure 37.

We model the VDP profiles, different form that William, et al. (2003), as follows:
b
S(x.p)=dlx, —d[ +c (16)
where i=1,..,24 and j=1,...314. Let B =(a,b,c,d)', where a represents the height of the “bathtub”,

b controls the “flatness” of the “bathtub”, ¢ is the bottom of the “bathtub”; and d is the center of

the “bathtub”. We fitted the VDP model in Equation (16) to the 24 VDP profiles and display

41



them in Figure 38.

VDP of 24 Particle Boards
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Figure:37: The 24 profiles in the VDP data.
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Figure 38: Fittings of the 24 profiles in the VDP data.
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5.2.2 Monitoring the VDP Data
We use the RMVE chart in Equation (9) to monitor the VDP profiles. The results are as
follows. Both the OAAT and the Delete-All schemes remove the 4th, 9th, 17th, 20th, and 24™
profiles, see Figure 39(a)(b). Figure 39(c) shows that the remaining 18 profiles are now in control.

For saving computing time, we suggest using the Delete-All scheme to the VDP data.

(a) (b)

RMVE RMVE

n.
v
I

Taquare

Eoard Eoard

(©)

RMVE

8677607

Eoard

e

Taquare

Figure 39: The RMVE chart when monitor VDP profile. (a) The 24 boards at the first iteration, (b)

the 22 boards at the 2" iteration, and (c) the 18 boards at the final iteration.

We compute the T, statistic for the VDP data, and find that T,’= 4.622674. With 7;’ this
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large, we could just use the Delete-All scheme to monitor profiles. Figure 40 shows all 24 filled
profiles by the model (16). We notice that the highest board (the 3™ board) and the lowest board
(the 6" board) are not removed by both schemes. The same argument about the 44" profile of the

response-dose data may be applied here.
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Figure 40: The 3™ and 6™ profiles are not removed.

53 The 7, Statistic for Examples

We compute the 7, statistic for the bioassay data by Equation (9). The T, statistic is
0.992673 for does-response profile monitoring. Although 0.992673 is almost equal to the cutoff
point 1.0, for being conservative, we suggest using the OAAT scheme. The T, statistic is
0.2747621 for the variance of profiles monitoring, so we should use the OAAT scheme.

For the VDP data, the 7 statistic is 4.622674, which is so large that we could just use the
Delete-All scheme. Hence, before monitoring real data we may use the statistic in Equation (8)
and (9) to decide which scheme to use.

In summary, the results of these two examples agree with the decision criterion 7;'. The
Bioassay data in Subsection 5.1 demonstrate a case that the OAAT scheme performs better than
the Delete-All scheme while the VDP example in Subsection 5.2 demonstrates a case that we

could use the Delete-All scheme to save some computing.
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6. Conclusion
We use the RMVE control chart to monitor profiles, and compare the OAAT scheme with
the Delete-All scheme. The study indicates that the OAAT scheme performs better than the
Delete-All scheme. The OAAT scheme is to run through the whole iterative procedure by
removing out-of-control points one at a time at each iteration and then perform the investigation
for all alarms after all the remaining samples are all in control. This practice may save
tremendous amount of time and money in bringing process to in-control state.

In general, we suggest using the OAAT scheme. This method can lower the false-alarm rate
and retain almost the same detecting power when compared with the Delete-All scheme.
However, the OAAT scheme needs more iterations of control charting than the Delete-All scheme.
Thus we suggest computing the Ty or 7, statistic before applying the monitoring scheme to data.
To decide which scheme to use, if the statistic is gréater than or equal 1.0 or so, then we could use
the Delete-All scheme. The two examples; the bioassay data and the VDP data, successfully
demonstrate the usefulness of the judging criterion of 7;-.

We use the Bioassay Data to demonstrate that the OAAT scheme performs better than the
Delete-All scheme and use the VDP Data to demonstrate how to use a statistic to decide which
scheme to use in order to save some time.

We could give different weights to the parameters estimated from the profile data, because the
extent of importance on each parameter of profiles may be different. Developing an adequate

monitoring scheme for such processes is a potential future research topic.
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Appendix A
A.1. Truncated Normal Distribution
Let Y be a normal variate with mean gz and variance o°. Y, is the correction on
A=J[a,,a,], where —o0<a <a,<owo . The probability of Y falling in this interval is

®((a, — 1)/o)—®((a, — u)/o) - Thus the density of the truncated normal variate Y, is

LpatH

S)= - = s, <Y, <a,, (A.1)
(D(a2 _:u)_q)(al _:u)
g O

where f(-) and ®(-) are the p.d.fand c.d.f of the standard normal distribution.

The Moment Generating Function (MGF) is

ay 1 4 ;l(ﬂ)z
ev d eve? o d
i f S(»)dy - \/gf ly
M ,(6)= B(") =——* = '

CD(aZ;IU)_(D(alO_-IU) - q)(azo_-/u)_q)(al;/u)
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7{ y=(GP )P (ot p)* + 42}
f dy

a«/_

(% “) (4 ”)

-1 a, ;1 y—o‘zt—,u 2
o2 —— ()] 1 J-e 5 (7J dy
oN2rx

CD(az_’u)—CD(al_’u)
(o2 (o)
zt K 1 —o’t—
O' (o)

aq

(% ”) (% ”)

pt+

(% ”) o(h=Hy

3 [@(“2;” —O't)—CD(al_’u—O't)}

M ()=E@E")=¢ 2 o ﬂ) o ﬂ) (A.2)
The expected value is
E(Y,)= M, 1))~ u—a%. (A3)
If a,=—a,,then ¢(a,)=¢(a,),and
E(Y) =M, ()], = u (A4)
Putting the MGF to work again:
B =M, )= 0 a0 S 2y B0 (A5)

Therefore, the variance is
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Var(Y,)=E(Y;)-[EY )]

_ o _ae@)-ap@) [ ea)-e@) | (A.6)
O(a,)-D(a) | D(ay)-D(a)] |

If a,=-a,,then ¢(a,)=¢(a),andlet a=a,

_ 2, 2a¢p(a)
Var(Y,)=o {1 2d(a) 1 } (A.7)
And
» Var(Y,)
o R (A.8)

where C=1-2a¢(a)/(2®(a)-1).

A.2. Truncated Multivariate Normal Distribution
We first consider the case of the standard multivariate normal distribution. Suppose we want
to truncate the distribution such that the p-dimension cube A4=[-a,a]”, covers 1—a of the

distribution. Then

l—a= j j jLex'%;”;dxldxz---dxp
W @)
i 2dn17=$2d@ i NE S
el
=[P(a)-O(-a))’

Because ®(—a)=1-®(a),
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20(a)-1=41-a.
Then
N-a+1

a= @*I(T). (A.9)

It is clear that E(Y,)=0 and cov(Y,)=CI, and C =1-2ap(a)/(2®(a)—-1) as before.

Now for ¥ ~ N(u,%2) . We first transform Y into a standard multivariate normal. Variate
Y*by Y*= 2_71 Y-p. Tl.len we defined the area for truncation by Y* € 4*=[-a,a]” witha
defined in Equation (A.9). Let A={X"?y"+u | y" €[-a,al” } .Then ¥,=Y|A4 follow a

truncated multivariate distribution with p.d.f

1 SO ()
B T
27)2 | 2
fp =21 , for y,eA. (A.10)
-«
1
Since Y, =X?Y*+u, we have
1
E(Y,)=E(Z*Y*+u)=0. (A.11)
and
1 1
Cov(Y,)=ZX2CIX?*=Cx%. (A.12)
Therefore
s :%- (A.13)
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Appendix B

Table B. 1: The control limit for 7 RMVE

m p=2 p=4

10 37.55630 98.12564
11 35.45560 96.15530
12 35.46540 100.8763
13 33.45550 100.4566
14 32.45880 90.86675
15 30.45150 88.32943
16 31.05530 121.6584
17 30.45890 66.05941
18 30.54560 86.77607
19 30.45897 60.03353
20 29.49316 66.08324
21 25.02372 54.18704
22 27.53805 57.81893
23 25.59551 48.71430
24 28.42898 50.91209
25 23.74540 42.67427
26 26.00563 47.13995
27 26.1234 43.46758
28 26.01287 44.68579
29 24.61939 42.11367
30 24.57047 41.78718
31 22.52350 40.19083
32 24.89956 40.32386
33 23.06772 39.17349
34 24.45582 37.81925
35 22.63812 36.83433
36 23.60639 37.88149
37 23.40849 35.35016
38 23.29821 36.55395
39 21.36754 33.84784
40 21.87154 3473321
41 21.11356 32.39634
42 22.37651 35.25474
43 21.75940 31.93997
44 23.05445 35.82981
45 21.6458 33.87700
46 22.56001 34.77634
47 21.94255 31.31152
48 23.69308 33.40600
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49 22.09057 32.20893
50 22.67505 32.17587
51 21.31209 30.62898
52 21.89319 32.05168
53 21.72218 30.67848
54 21.86494 31.20786
55 22.48643 30.84135
56 21.24124 32.00515
57 21.10696 31.78491
58 21.53351 31.78452
59 21.25227 30.91591
60 22.83922 30.39964
61 21.46971 31.89542
62 21.61594 31.60442
63 21.12500 31.34556
64 21.27855 31.86457
65 21.20857 30.79286
66 21.72523 30.94112
67 22.01677 29.92572
68 22.10738 29.87629
69 21.14394 30.14556
70 22:68521 29.01392
71 22.87616 29.50563
72 22.774658 31.35689
73 22.92233 29.51644
74 21.30655 30.29145
75 21.25497 21.25497
76 21.68577 29.83821
77 20.64391 30.09701
78 21.46983 29.51518
79 20.50294 29.47552
80 22.14924 28.79324
81 20.63679 29.32638
82 21.23376 29.04127
83 20.9883 29.24603
84 21.13944 29.32822
85 21.06802 29.13012
86 21.23907 29.3382
87 20.57237 28.52611
88 21.17737 28.34794
89 20.09171 28.84251
90 22.0697 29.49579
91 21.14663 29.24013
92 22.04567 28.78852
93 21.45896 29.42448
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94 21.01456 29.34401
95 21.0017 29.86019
96 21.50454 30.15476
97 21.91065 30.01665
98 20.51235 27.45656
99 20.15563 29.87197
100 20.0556 28.50683
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