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考慮韋伯製程平均發生偏移下之製程能力調整 

研究生：盧俊昇                             指導教授：彭文理 

國立交通大學工業工程與管理學系碩士班 

 

摘要 

 製程能力指標被用來衡量製程製造產品符合規格的能力，不僅是提供品質保

證的工具，也是在品質改善方面的一個方針。計算製程能力指標需服從製程為穩

態的前提假設，也就是在生產過程中平均數和標準差不會改變，但是在實務上製

程為動態。當製程發生平均數微小偏移時，有些管制圖可能無法偵測到，造成製

程能力指標高估製程良率，因此必須將製程能力指標進行調整。Bothe (2002) 提

出製程服從常態分配下之製程能力調整方法。事實上，非常態分配製程在業界也

時常出現，因此本研究將針對製程服從韋伯分配提出其製程能力調整方法。由於

調整量的大小與管制圖檢定力息息相關，故本研究先比較三種不同的韋伯管制圖

在相同平均偏移量下之檢定力。再選定檢定力最高的管制圖計算在韋伯分配下應

調整的偏移量，並針對非常態適用的 pkC 指標做調整。在本研究的最後，我們用

一個實例來說明如何在製程服從韋伯分配並考慮製程平均會發生變動，如何調整

製程能力指標 pkC 。 

 

關鍵字：韋伯分配、韋伯管制圖、製程偏移、製程能力指標 
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Abstract 

 Process capability indices (PCIs) have been proposed in the manufacturing 
industry to provide numerical measures on process reproduction capability, which 
are effective tools for quality assurance and guidance for process improvement. 
PCIs are calculated under the assumption that the process is stable (the process 
mean and variation are not change), but in practice, the process is dynamic. If  the 
process mean has a small shift, the control chart doesn’t detect obviously so that 
the PCIs will overestimate the true process capability. For this reason, the PCIs 
have to be adjusted. Bothe (2002) provided the adjustment method for normality 
processes. In this paper, we provide capability adjustment method for Weibull 
processes. The magnitudes of  adjustment is correlated with the detection power 
of  control chart, so we first compare the detection powers of  three Weibull 
control chart under the same mean shift distances, and choose the best powerful 
Weibull control chart to calculate the mean shift adjustments for Weibull 
processes. At the end, we add the adjustment to capability index pkC  of  
non-normal processes. For illustration purpose, an application example is 
presented. 

Keywords: Dynamic pkC , Mean shift, Process capability index, Weibull 
distribution, Weibull control chart.
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1. Introduction 

1.1. Research Background and Motivation 

Process capability indices (PCIs) which provide numerical measure of  
production characteristic to reflect the quality of  product have been used in the 
manufacturing industry. Those indices have become popular as unit-less measures 
on process potential and performance. The most commonly used ones, pC  and 

pkC  discussed in Kane (1986), and more-advanced indices pmC  and pmkC  
developed by Chan et al. (1988) and Pearn et al. (1992). Based on analyzing the 
PCIs, a production department can trace and improve a poor process so that the 
quality level can be enhanced and the requirements of  the customers can be 
satisfied. These PCIs have been defined explicitly as: 

μ μ
σ σ σ σ μ
− − −⎧ ⎫= = =⎨ ⎬

⎩ ⎭ + −2 2
,  min , ,  

6 3 3 6 (
p pk pm

USL LSL USL LSL USL LSL
C C C

T

−

)
 

μ μ
σ μ σ μ

⎧ ⎫− −⎪ ⎪= ⎨ ⎬
+ − + −⎪ ⎪⎩ ⎭

2 2 2 2
min , ,

3 ( ) 3 ( )
pmk

USL LSL
C

T T
 

where  is the upper specification limit,  is the lower specification limit, USL LSL
μ  is the process mean, σ  is the process standard deviation, and T is the target 
value. The index pC  considers the overall process variability relative to the 
manufacturing tolerance, reflecting product quality consistency. The index pkC   
takes the magnitude of  process variance as well as process departure from target 
value, and has been regarded as a yield-based index since it providing lower 
bounds on process yield, and is always used to measure the quality of  the process. 
When data come from normal distribution, for a pkC  level of  1, statistically one 
would expect that the product’s fractions of  defectives, is no more than 2700 parts 
per million (ppm) fall outside the specification limits. At pkC =1.33, the defect 
rate drops to 66 ppm. To attain less than 0.544 ppm defect rate, a pkC  level of  
1.67 is required. At a pkC  level of  2.0, the defective rate reduced to 0.002 ppm. 
The exact number of  nonconformities with fixed pkC  is very depending upon the 
location of  the process mean and the magnitude of  the process variation. pkC  is 
calculated under assumptions that the process is stable (the process mean and 
variation are not change), but in practice, the process is dynamic and the mean 
and variation always change with small movement for momentary, and the some 
control charts can’t detect obviously so that the pkC  will underestimated the true 
number of  nonconformities. 

The changes of  various magnitudes not only happen on normal distribution, 
but also on non-normal distribution. Pyzdek (1995) has mentioned the 
distributions of  certain chemical processes such as zinc plating thickness of  a 
hot-dip galvanizing process are very quite often skewed. Choi (1996) presents an 
example of  a skewed distribution in the ‘active area’ shaping stage of  the wafer’s 
production process. Cygan et al. (1989) have mentioned that the lifetimes of  
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polypropylene films under high ac and dc field stresses be shown as a 
two-parameter Weibull distribution. The Weibull distribution, denoted as Weibull 
( ,  α γ ), with various values of  scale parameter α  and shape parameter γ , covers 
a wide class of  non-normal applications, including product life, product reliability 
and tensile strength of  brittle materials, such as carbon and boron. The abundance 
of  outputs from skewed distribution, the censoring, etc, makes the normality 
assumption often being illegitimate. Specifically, we assure the product lifetime 
which be from skewed distribution by statistic test and historical data. It will lead 
to underrate the probability of  nonconformance that using the adjustment for 
normal case to adjust the non-normal cases. 

1.2. Research Purpose and Objectives 

 Ever since Motorola, Inc. introduced its Six Sigma quality initiative, 
followers of  this philosophy notion should add 1.5σ  when estimating process 
capability. By this idea we will find that 6-sigma actually translates to about 2 
defects per billion opportunities, and 3.4 defects per million opportunities, which 
we normally define as Six Sigma, really corresponds to a sigma value of  4.5. 
When asked the reason for such an adjustment, six-sigma user claim it is 
necessary, but offer only personal experiences and three dated empirical literature. 
Bothe (2002) provided a statistical reason to adjust the overestimated pkC . Bothe 
set the adjustment of  shift in average that was dependent on the same detection 
power of  the control chart, and the data of  Bothe’s study was assumed to be 
approximately normality distribution. However effectively non-normal process 
occurs frequently in practice. If  the process capability indices based on the normal 
assumption concerning the data are used with non-normal observations, the value 
of  the process capability indices may, in a majority of  situation, be incorrect and 
quite likely misrepresent the actual product quality. 

 The control charts are commonly used in many industries for providing early 
warning for the shift in process mean. If  the control chart detects a process mean 
shift, then the process is not under control. The well-known and usual Shewhart 
X  control charts assume that the observed process data come from a 
near-normal distribution. However, when the process distribution is unknown or 
non-normal, the parameter estimators of  sampling distribution may not be 
available theoretically. We can use approximation or simulation to estimate the 
parameters, such as percentile Weibull control chart which uses simulation to get 
the  (upper control limits) and  (lower control limits). But for Weibull 
processes, Erto (2007) used Bayes theorem to provide a Weibull control chart. If  
data come from Weibull distribution, we can control the process more exactly 
than non-normal control chart. 

UCL LCL

In this research, we show that the detection power performance of  three 
Weibull control charts under the same mean shift adjustment which Bothe 
provided when the processes in control is very sensitive to the assumption of  
normality. Then, we compare with the detection power performances of  the three 
control charts. Using the most powerful control chart to provide the statistical 
derived mean shift adjustment based on the chart subgroup size and distribution 
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parameter to calculate the estimator of   when the data is non-normal 
distribution for Weibull distribution. 

pkC

1.3. Thesis Organization  

First, we introduce the research motivation and purpose in Chapter 1. 
Secondly, a brief  introduction of  Bothe’s study and adjustment reason are 
included and adjustment for Gamma processes and Weibull processes in Chapter 
2. In Chapter 3, we introduce the characteristic of  Weibull distribution, and 
introduce some Weibull control charts for Weibull processes, and calculate the 
detection powers of  control charts under the same shift for Weibull processes. We 
compare the detection powers to choose the best one. After that we calculate the 
adjustment for Weibull processes by using the best powerful Weibull control chart. 
In Chapter 4, we introduce the calculation of  dynamic non-normal index , 
and show the dynamic  for Weibull processes. For illustrative purpose, an 
application is presented in Chapter 5. Finally, we give some conclusions in 
Chapter 6. 

pkC
pkC
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2. Literature Review 

 The processes capability adjustment for normal and non-normal distributions 
had been researched. In this section, we will review these papers about 
adjustments for normal processes, Gamma processes and Weibull processes. 

2.1. Process Capability Adjustment for Normal Processes 

Bothe (2002) provided a statistical reason why to add a 1.5σ  shift to the 
average. Assuming the processes approximately normal distribution, control 
charts can’t reliably detect small movement in average. Table 1 displays the 
probabilities of detecting changes in μ  versus subgroup size for 
shift=0.5(0.5)3σ  with n=3, 4 and 5. When μ  had a small movement (ex: 0.5σ , 
1σ ) and the detection power of  Shewhart X  control chart is too small to 
discover. Then, small mean movement affects the PCIs accuracy. However, the 
probability of  nonconformance will increase obviously. For example, when  
is 1.33, the probability of  nonconformance is 64 ppm. If  average occur 

pkC
1σ  shift 

that be difficultly detected by control chart, the probability of  nonconformance 
becomes 1350 ppm. The probability of  nonconformance will increase twenty-fold. 
Bothe considered that adjustments should accord with the same detection 
standard. 

 

Table 1. Probabilities of detection changes in μ  versus subgroup size. 

Subgroup Size 
Shift in μ  

3 4 5 

0.5σ  0.0164 0.0228 0.0299 

  1σ  0.1024 0.1587 0.2225 

1.5σ  0.3439 0.5000 0.6384 

  2σ  0.6787 0.8413 0.9295 

2.5σ  0.9083 0.9772 0.9952 

  3σ  0.9860 0.9986 0.9999 

 

When subgroup size is 4 and mean shift is 1.5σ , the detecting power will be 
0.5. Bothe (2002) considered providing the same detecting power in order to 
define the several adjustments with different subgroup size and called the 
adjustments 50S . By this idea, he set the detecting power to 50 percent and 
computed the several adjustments for different subgroup size. The reason which 
Bothe set the power to 50 percent was we want detect the processes out of  control 
immediately if  the process mean shifts and the 1ARL (average run length)=1 is 
the perfect condition. But in fact, the 1 1ARL =  is impossible. For this reason we 
can just only set the , and the detection power is 1 2ARL = 11 ARL , so we can 
know if   the detecting power is 0.5. The results showed in Table 2. 1 2ARL =
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Table 2 displays shift sizes that have 50 percent chance of  remaining undetected 
for subgroup sizes 1 through 6. Because shifts ranging in size from 0 up to σ50S  
are the ones likely to remain undetected, a conservative approach is to assume 
that every missed shift is as large as σ50S . And Bothe invented dynamic pkC  be 
defined as 

 50 50( ) ( )
 min , .

3 3pk

USL S S LSL
dynamic C

μ σ μ σ
σ σ

− + − −⎡ ⎤= ⎢ ⎥⎣ ⎦
 

The dynamic  could be corrected by subgroup size really not fixed pkC σ5.1  
adjustment. 

 

Table 2. Adjustment values for normal distribution with several subgroup size. 

Subgroup Size 50S  

1 3 

2 2.12 

3 1.73 

4 1.5 

5 1.34 

6 1.22  

 

2.2. Process Capability Adjustment for Gamma Processes 

 When using the index , one of  the most essential is that the process 
monitored is supposed to be stable and the output is approximately normally 
distributed. When the distribution of  a process characteristic is non-normal, PCIs 
calculated using conventional methods could often lead to erroneous and 
misleading interpretation of  the process’s capability. In the recent years, several 
approaches to the problems of  PCIs for the non-normal populations have been 
suggested (see e.g. Pal (2005), Ding (2004), Pearn and Chen (1997), Kotz and 
Lovelace (1998), Somerville and Montgomery (1996), Kocherlakota and Kirmani 
(1992)). Several authors used data transformation techniques such as the Box-Cox 
power transformation, Johnson’s transformations and quantile transform 
techniques to solve this problem. And some authors replaced the unknown 
distribution by a known three or four-parameter distribution. Examples include 
Clments (1989), Franklin and Wasserman (1992), Shore (1998) and Polansky 
(1998). 

pkC

Hsu et al. (2007) provided the process capability adjustment for gamma 
process. For small process mean shifts, it is beyond the control chart detection 
power when process assumed gamma distribution and the process capability will 
be overestimated. They examine Bothe’s approach and find the detection power 
was less than 0.5 when data came from gamma distribution, showing that Bothe’s 
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adjustments are inadequate when we had gamma processes. Then, they calculate 
adjustments which called 50AS under various sample sizes  and gamma 
parameter

n
N , with power fixed to 0.5. Table 3 displays the magnitude of  

adjustments 50AS  which they provided and data comes from Gamma ( ) 
with various values of   and 

 , 1N
1(1)10N = 2(1)10n = . 

 
Table 3. 50AS  values for several subgroup sizes  and various of  Gamma(N, 1).n   

  1 2 3 4 5 6 7 8 9 10 N(0,1) 

2 3.611 3.185 2.992 2.876 2.797 2.738 2.692 2.655 2.625 2.599 2.12 

3 2.732 2.443 2.313 2.236 2.182 2.143 2.113 2.088 2.067 2.050 1.73 

4 2.252 2.034 1.936 1.878 1.838 1.808 1.785 1.767 1.752 1.738 1.5 

5 1.944 1.769 1.690 1.644 1.612 1.588 1.570 1.555 1.543 1.532 1.34 

6 1.727 1.581 1.515 1.476 1.450 1.430 1.415 1.403 1.392 1.384 1.22 

7 1.565 1.439 1.383 1.350 1.327 1.310 1.297 1.286 1.278 1.270 1.13 

8 1.438 1.328 1.279 1.249 1.229 1.215 1.203 1.194 1.186 1.180 1.06 

9 1.336 1.237 1.194 1.168 1.150 1.137 1.127 1.118 1.112 1.106 1.00 

10 1.251 1.162 1.123 1.100 1.084 1.072 1.063 1.055 1.049 1.044 0.95 
 

Hsu et al. (2007) used the most common method for modifying PCIs in the 
non-normal case is the technique of  quantile estimation. Analogous to the normal 
case, where the “natural” process width is between the 0.135th percentile and the 
99.865th percentile, PCIs can be redefined in terms of  their quantiles for possible 
modification in the non-normal case. The quantile definition for pkC  are defined 
as: 

{ }min ,pk puC C= plC  

0.5 0.5

0.99865 0.5 0.5 0.00135

=min , ,
USL F F LSL

F F F F

⎧ ⎫− −
⎨ ⎬− −⎩ ⎭

 

so that the normality assumption can be verified simultaneously. To consider the 
undetected process mean shift, they obtained  pkDynamic C  index for non-normal 
process by modifying Bothe’s  pkDynamic C : 

0.5 50 0.5 50

0.99865 0.5 0.5 0.00135

( ) ( )
 =min , .pk

USL F AS F AS LSL
dynamic C

F F F F
σ σ⎧ ⎫− + − −

⎨ ⎬− −⎩ ⎭
 

By considering an adjustment 50AS σ  in this assessment for undetected shifts in 
process median, the estimate of  dynamic index pkC  will decrease and the 
expected total number of  nonconforming parts will increase. This nonconforming 
level assumes that undetected shifts are happening almost constantly and that 
every one is equal to 50AS σ . 
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2.3. Process Capability Adjustment for Weibull Processes 

Li (2007) provided the process capability adjustment for Weibull process. 
Weibull distribution doesn’t have reproductive, and the parameter of  the X  
distribution can’t be found easily. They used a reference which Lu (2003) provided 
to approximate the cumulative density function of  nX  of  Weibull processes. The 

 and  was 99.865UCL LCL th and 0.135th percentile of  nX  distribution. We call 
the control chart they used is percentile Weibull control chart. Then they used the 
control limits to calculate the detection power for Weibull processes under the 
subgroup size  and shape parameter n γ .  

 

Table 4.  values for several n and various 50AS γ  values when . 0k >

50AS  Weibull distribution(1,γ ) for right shift 

n 1 2 3 4 5 6 7 8 9 10 

2 3.611 2.492 2.009 1.767 1.632 1.536 1.470 1.424 1.387 1.359 

3 2.735 1.967 1.642 1.482 1.373 1.307 1.261 1.228 1.197 1.182 

4 2.250 1.663 1.448 1.309 1.232 1.175 1.138 1.103 1.087 1.071 

5 1.944 1.484 1.301 1.196 1.127 1.084 1.047 1.025 1.006 0.988 

6 1.716 1.343 1.201 1.104 1.043 1.009 0.981 0.960 0.942 0.932 

7 1.569 1.239 1.119 1.037 0.990 0.954 0.928 0.907 0.892 0.881 

8 1.440 1.159 1.051 0.984 0.939 0.905 0.883 0.864 0.852 0.839 

9 1.340 1.086 0.991 0.930 0.891 0.865 0.845 0.828 0.814 0.805 

10 1.251 1.031 0.943 0.889 0.8 35  0.828 0.811 0.797 0.784 0.773  
 

Table 5.  values for several n and various 50AS γ  values when . 0k <

50AS  Weibull distribution(1, γ ) for left shift 

n 1 2 3 4 5 6 7 8 9 10 

2 0.820 1.532 1.888 2.098 2.236 2.333 2.405 2.461 2.504 2.540 

3 0.813 1.356 1.591 1.723 1.808 1.866 1.909 1.941 1.967 1.987 

4 0.802 1.225 1.399 1.494 1.554 1.596 1.626 1.649 1.667 1.681 

5 0.776 1.125 1.263 1.337 1.384 1.416 1.439 1.456 1.470 1.481 

6 0.749 1.047 1.160 1.221 1.259 1.285 1.304 1.318 1.329 1.338 

7 0.724 0.983 1.079 1.131 1.163 1.185 1.201 1.213 1.222 1.230 

8 0.700 0.929 1.013 1.058 1.086 1.105 1.118 1.129 1.137 1.144 

9 0.678 0.884 0.958 0.998 1.022 1.039 1.051 1.060 1.067 1.073 

10 0.658 0.844 0.911 0.947 0.9 96  0.984 0.994 1.003 1.009 1.014  

Since the shape of  the Weibull distribution changing from positive skewness 
to negative skewness with increasing the shape parameter, they discussed two 
different cases. Process mean had right and left shifts. They used this cumulative 

 7



density function to compute the relationship between the mean shift and Type Ⅱ 
error and calculate the mean shift adjustment  which means that the 
processes mean shift  sigma when the detection power of  control chart is 
0.5. Table 4 and Table 5 display the magnitude of  mean shift adjustments  
based on the detection power is 0.5 and data from Weibull (1,

50AS
50AS

50AS
 γ ) distribution for 

various value of  γ = 1(1)10 and n=2(1)10 with right shift ( ) and left shift 
( ). They also used the most common method for modifying PCIs in the 
non-normal case is the technique of  quantile estimation, and the dynamic 

0k >
0k <

pkC  
was as the same as gamma processes which Hsu et al. (2007) provided. 

The adjustments of  Weibull processes are related that which control chart 
you choose to control the process. The Shwehart X  control chart assumed that 
the process data come from a normal or near-normal distribution. When the data 
come from Weibull distribution, we should choose control charts for non-normal 
processes or for Weibull processes to control production process. Padgett and 
Supurrier (1990) use Monte Carlo simulation to construct Shewhart-type control 
charts for percentiles of  strength distributions. Chan and Cui (2003) provided a 
skewness correction X  and R  charts for skewed distribution. This control 
chart proposed a skewness correction method for constructing the X  and R  
control charts for skewed process distributions. Their asymmetric control limits 
are based on the degree of  skewness estimated from the subgroups. Nichols and 
Padgett (2006) provided a bootstrap Weibull control chart. This control chart is 
use bootstrap method to simulate the UC  and  for monitoring Weibull 
percentiles. Erto (2006) provided a Weibull control chart which was used Bayes 
theorem to calculate the sampling distribution of  Weibull percentile. 

L LCL
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3. Control Chart Power Analysis for Weibull Processes 

In this section, we introduce the Weibull distribution, and use three control 
charts for Weibull processes to calculate the detection powers. Then, we analysis 
the detection powers and compare them to find the best powerful control chart to 
calculate the adjustments for Weibull processes. 

3.1. The Weibull Processes  

The Weibull distribution has been often used in the field of  life data analysis 
due to its flexibility. It can mimic the behavior of  other statistical distributions 
such as the normal and the exponential. The Weibull distributions are also used to 
model the time until a given technical device fails. If  the failurerate of  the device 
decreases over time, one chooses 1γ <  (γ  is the shape parameter). If  the failure 
rate of  the device is constant over time, one choose 1γ = , again resulting in a 
decreasing function f. If  the failure rate of  the device increases over time, one 
chooses 1γ >  and obtains a density f which increases towards a maximum and 
then decreases forever. 

The Weibull distribution is non-negative distribution. It can be denoted as 
Weibull ( ,  α γ ) with scale parameter α  and shape parameter γ . The cumulative 
density function function is defined as 

   (1) ( / )( ) 1-e ,  0,  0,  0,x aF X x
γ

α γ−= > > >

and the probability density is 

 
( )1( ) ,  0,  0,  0,

x

f x x e x
γ

γ γ αγα α γ
−− −= > > >   (2) 

The mean and variance are given, respective, by 

   (3) -1[ (1 )],μ α γ= Γ +

and 

   (4) 2 2 -1 2 -1[ (1 2 ) - (1 )].σ α γ γ= Γ + Γ +

Denoting the Weibull distribution is skewed. To know how this distribution 
are different from the normal distribution in term of  the coefficient of  skewness 
and the coefficient of  kurtosis of  the Weibull distribution under study are 
presented in Table 3. The coefficient of  skewness Weibull distribution is given by: 

 
3 1 1 1 1

1 1 2 1 3/2

2 (1 ) 3 (1 ) (1 2 ) (1 3 )
,

[ (1 2 ) (1 )]
γ γ γγ

γ γ

− − −

− −

Γ + − Γ + Γ + +Γ +
=

Γ + −Γ +
γ −

  (5) 

The kurtosis coefficient of  Weibull distribution is given by: 

 2 -1 2 -1 2

( )
,

[ (1 2 ) - (1 )]
f γγ

γ γ
=

Γ + Γ +
  (6) 
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where  is the gamma function and )(xΓ

   (7) 
4 1 2 1 1

2 1 1 1

( ) 6 (1 ) 12 (1 ) (1 2 )

            3 (1 2 ) 4 (1 ) (1 3 ) (1 4 ).

f γ γ γ γ
γ γ γ

− − −

− − −

≡ − Γ + + Γ + Γ + −

Γ + − Γ + Γ + +Γ + 1γ −

The Equations (5) and (6) show that skewness coefficient and the kurtosis 
coefficient are calculated only by using the shape parameter γ . This means that 
the scale parameter α  can not affect the values of  skewness and kurtosis of  
Weibull distributions. Therefore, we fix α = 1 in this study for the Weibull 
distributions. To see how this distribution are different from the standard normal 
distribution in terms of  skewness and kurtosis, Table 6 shows the values of  
skewness and kurtosis (which are defined as the third and fourth moments of  the 
standardized distribution, respectively) of  the Weibull distributions under study. It 
can be found in Table 6 that when the value of  γ  increases from 1 to 3.6, the 
corresponding values of  skewness will become smaller and close to 0. Especially, 
when value of  γ  is 3.6, the skewness coefficient of  the Weibull distribution is 0. 
This means the Weibull (1, 3.6) distribution is symmetric about median and 
appears more nearly normal distribution. When the value of  γ  increases form 
3.6 to 10, the corresponding values of  skewness will become negative and far from 
to 0. From the results through these distributions, we can get some insights of  the 
effects of  non-normality in terms of  skewness and kurtosis. 

 

Table 6. Values of  skewness and kurtosis of  various Weibull distributions. 

Weibull( ,α  γ ) skewness Kurtosis 

Normal(0,1) 0 0 

Weibull(1,1) 2 6 

Weibull(1,2) 0.631111 0.245089 

Weibull(1,3) 0.168103 -0.27054 

Weibull(1,3.6) 0 -0.283255 

Weibull(1,4) -0.087237 -0.25217 

Weibull(1,5) -0.25411 -0.11971 

Weibull(1,6) -0.373262 0.035455 

Weibull(1,7) -0.46319 0.187183 

Weibull(1,8) -0.533726 0.327676 

Weibull(1,9) -0.590657 0.455204 

Weibull(1,10) -0.637637 0.570166  

 

The formula of  these modulus let us know that α  is scale parameter and γ  
is shape parameter. To make short of  the matter, scale parameter can modulate 
the fold of  the mean and the variance. Figure 1 displays Weibull distribution with 

 10



various values of  α  and Figure 2 displays Weibull distribution with various of  
γ . We can find the scale parameter only control the mean and the variance to 
adjust the distribution size. 

 

 
Figure 1. Weibull distribution with various α  

 

 
Figure 2. Weibull distribution with various γ  
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Figure 3(a)-3(j). Propability density functions for Weibull distributions along with 

a normal distribution for the same mean and variance. 
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Figure 3 shows several Weibull distributions along with a normal distribution 
for the same mean and variance. In this study, we let γ =  1(1)10, while  
(without loss of  generality) fixing α = 1 . In Figure 3(a)-3(j) with the increasing 
value of  γ , the Weibull (1,3)  and Weibull (1,4) distributions appear more nearly 
normal distribution. In fact, we demonstrate this convergence property in Table 6 
by calculating the skewness and kurtosis. It can be seen that as the value of  γ  in 
the region of  [3, 4], the skewness and kurtosis of  Weibull distribution will be 
getting much closer to those of  normal distribution. This fact could be also found 
according to Equation (10). When the value of  γ  in the region of  of  [3, 4], the 
form of  Weibull distribution becomes centralizing. Through these distributions, 
we wish to get some insights of  the effects of  non-normality on the detection 
power in terms of  skewness and kurtosis in Section 3. 

3.2. The Detection Power of the Percentile Weibull Control Chart  

In this section we use percentile Weibull control chart to calculate the 
detection power. Let  be a sequence observations of  independent 
and identically distributed in Weibull (

1 2, , , nX X XK
,  α γ ). The detection power was defined 

the probability of outline control chart under the mean being shifted. Its mean 
1-type Ⅱ error β . The detection power is: 

 
1 0

(0.00135) (0.99865) 1 0

Detection power 1- ( )

                            1- ( ),

n x

n xX X

P LCL X UCL k

P F X F k

μ μ σ

μ μ σ

= ≤ ≤ = +

= ≤ ≤ = +
  (8) 

where 1μ  is the mean after process shift ( 0μ  is the mean of  the original process). 
The control limits  and UC  are calculated as LCL L (0.00135)nX  and F (0.99865)nX  
respectively, where 

F
(0.00135)nX  and F (0.99865)nX  are 0.135F th percentile and 99.865th 

of  X  of  sampling distribution. We can obtain the approximate c.d.f. of  nX  
distribution by a reference which Li (2007) provided. Since the nX  distribution is 
not symmetric, we discussed μ  occurred right movement and left movement. 
When , it is mean 0k > μ  occurred right movement; and  means 0k < μ  
occurred left movement. 

Table 7 and Table 8 display the detection power with right process mean shift 
( ) and left process mean shift (0k > 0k < ) when  come from 
Weibull (

1 2, , , nX X XK
,  α γ ) with 1α =  and 1 (1) 10γ = , and the number of  subgroup is 

100000. The magnitude of  shift in the second column on the left is Bothe’s 
capability adjustments determined when data comes from normal distribution 
and the detection power is 0.5. We can find that the detection power is less than 
0.5 when 1γ =  and 2 in Table 7, and 5γ ≥  in Table 8 under Bothe’s capability 
adjustments. The results show that the Bothe’s adjustments are inadequate when 
we have Weibull processes. This is due to Bothe’s approach is based on the 
normality assumption of  the data and the detection power is 0.5. The detection 
power is more than 0.5 when 3γ =  and 4 in Tables 7 and 8. This means that 
Weibull distribution is close to normal distribution when 3γ =  and 4. This fact 
could be also found from Table 6 and Figures 3(c)-3(d). As the value of  γ  in the 
region of  of  [3, 4], the form of  Weibull distribution becomes centralizing. 
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However, the detection power is poorer and far less than 0.5 when data come 
from more skewed Weibull distribution. For example, when 1γ =  and the 
subgroup size 2=n , the detection power is 0.054. It implies Bothe’s adjustments 
are inadequate when we have skewed processes. Consequently, in our study, we 
determined the capability adjustment when process data comes from Weibull 
distribution. 

 

Table 7. Detection power of  the percentile Weibull control chart for  under 

various Weibull distributions. 

0k >

Weibull distribution(1, γ ) for right shift 
n 

Shift 

σ  γ=1 γ=2 γ=3 γ=4 γ=5 γ=6 γ=7 γ=8 γ=9 γ=10 

2 2.12 0.054  0.309 0.525 0.687 0.747 0.785 0.807 0.822 0.833 0.841  

3 1.73 0.091  0.347 0.524 0.664 0.726 0.760 0.782 0.796 0.809 0.815  

4 1.5 0.099  0.375 0.516 0.646 0.699 0.735 0.756 0.775 0.784 0.793  

5 1.34 0.119  0.378 0.514 0.626 0.681 0.712 0.738 0.752 0.764 0.775  

6 1.22 0.141  0.389 0.509 0.614 0.668 0.696 0.719 0.734 0.747 0.755  

7 1.13 0.149 0.385 0.517 0.596 0.645 0.677 0.699 0.715 0.728 0.737 

8 1.06 0.163 0.391 0.516 0.589 0.636 0.666 0.688 0.704 0.717 0.726 

9 1.00 0.175 0.398 0.513 0.582 0.626 0.656 0.678 0.693 0.705 0.714 

10 0.95 0.188 0.403 0.512 0.577 0.620 0.648 0.668 0.684 0.695 0.705   

 

Table 8. Detection power of  the percentile Weibull control chart for  under 

various Weibull distributions. 

0k <

Weibull distribution(1, γ ) for left shift 
n 

Shift 

σ  γ=1 γ=2 γ=3 γ=4 γ=5 γ=6 γ=7 γ=8 γ=9 γ=10 

2 2.12 0.928 0.782 0.550 0.513 0.439 0.387 0.350 0.323 0.304 0.288  

3 1.73 0.906 0.733 0.537 0.506 0.449 0.411 0.384 0.364 0.348 0.337  

4 1.5 0.886 0.702 0.532 0.505 0.458 0.426 0.404 0.385 0.375 0.365  

5 1.34 0.868 0.680 0.527 0.504 0.464 0.436 0.416 0.401 0.390 0.381  

6 1.22 0.852 0.664 0.525 0.504 0.467 0.441 0.424 0.411 0.401 0.393  

7 1.13 0.836 0.649 0.553 0.499 0.466 0.443 0.427 0.416 0.406 0.399 

8 1.06 0.825 0.642 0.552 0.502 0.471 0.450 0.436 0.424 0.416 0.409 

9 1.00 0.814 0.634 0.549 0.503 0.474 0.454 0.440 0.430 0.422 0.415 

10 0.95 0.805 0.629 0.548 0.504 0.477 0.458 0.445 0.435 0.427 0.421  
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3.3. The Detection Power of the Bootstrap Weibull control chart  

The usual Shewhart control charts assume that the observed process data 
come from a near-normal distribution. However, when the distribution of  the 
process under observation is unknown or non-normal such as Gamma or Weibull, 
the sampling distribution of  a parameter estimator may not be available 
theoretically. One of  the ways to estimate parameter is simulation. Nichols and 
Padgett (2006) provided a bootstrap Weibull control chart for Weibull percentiles. 
This control chart is use bootstrap method to construct control chart limits for 
monitoring a specified percentile of  the process distribution. 

The percentile of  the Weibull distribution is  

1

[ ln(1 )] ,    0 <  <1,pW p γα= − − p  

where pW  is the 100 p  th percentile. 

The following steps are used to construct the bootstrap Weibull control chart. 

1. From an in-control, stable process, observe n m×  observations taken from 
Weibull distribution with unknown scale and shape parameters, α  and γ , 
respectively. The observations are denoted by ,  and ijx 1, , ,i = K n

1, , ,j m= K  and are assumed to come from  independent subgroups of  
size . 

m
n

2. Using the maximum likelihood method to find α̂  and γ̂ . The equations 
are 

1
1

1 1 1 1 1 1

1 1

ln ln
  and   .

m n m n m n

ij i ij i ijj i j i j i
m n

ijj i

x x x x x

nm nmx

γγ γ

γ
γ α

−

= = = = = =

= =

⎡ ⎤
⎢ ⎥= − =
⎢ ⎥
⎣ ⎦

∑ ∑ ∑ ∑ ∑ ∑
∑ ∑

γ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

3. Generate a bootstrap subgroup of  size from the Weibull 
distribution using maximum likelihood estimators, 

* * *
1 2,  , , ,nn x x xK

α̂  and γ̂ , as the 
estimated parameters. 

4. Find the parameter MLEs from the bootstrap subgroup and denote these as  
*γ̂ . *α̂  and 

5. For the bootstrap subgroup, find 
1

p*ˆ*ˆ [ ln(1 )] ,    0 <  <1,pW p γα= − −  the 
bootstrap estimate of  the 100 p th percentile, pW . 

6. Repeat steps 3-5 a large number of  times, , obtaining  bootstrap 
estimates of  

B B

pW , denoted by * * *
1 2,  ,  ,  .p p pW W WK B  

7. Order the  bootstrap estimates B *
piW , from smallest to largest. The  

is the (
LCL

0.00135 B× ) value of  the ordered *
piW , and the UC  is the 

(
L

0.99865 B× ) value of  the ordered *
piW . 
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Table 9. Detection power of  the bootstrap Weibull control chart for  under 

various Weibull distributions. 

0k >

Weibull distribution(1, γ ) for right shift 
n 

Shift 

σ  γ=1 γ=2 γ=3 γ=4 γ=5 γ=6 γ=7 γ=8 γ=9 γ=10 

2 2.12 0.066  0.283 0.489 0.572 0.642 0.679 0.717 0.733 0.755 0.758  

3 1.73 0.118  0.306 0.456 0.574 0.644 0.669 0.702 0.710 0.721 0.743  

4 1.5 0.180  0.329 0.476 0.574 0.617 0.646 0.666 0.698 0.716 0.727  

5 1.34 0.169  0.355 0.461 0.543 0.603 0.638 0.669 0.673 0.688 0.722  

6 1.22 0.256  0.344 0.488 0.541 0.581 0.626 0.661 0.674 0.697 0.704  

7 1.13 0.289  0.363 0.488 0.538 0.581 0.618 0.652 0.676 0.678 0.705  

8 1.06 0.305  0.381 0.470 0.538 0.592 0.616 0.656 0.659 0.682 0.691  

9 1.00 0.343  0.384 0.480 0.547 0.581 0.612 0.643 0.656 0.676 0.688  

10 0.95 0.361  0.395 0.491 0.552 0.580 0.634 0.640 0.658 0.682 0.683   

 

Table 10. Detection power of  the bootstrap Weibull control chart for  under 

various Weibull distributions. 

0k <

Weibull distribution(1, γ ) for left shift 
n 

Shift 

σ  γ=1 γ=2 γ=3 γ=4 γ=5 γ=6 γ=7 γ=8 γ=9 γ=10 

2 2.12 0.955  0.795 0.627 0.512 0.440 0.388 0.359 0.334 0.319 0.289  

3 1.73 0.953  0.755 0.592 0.499 0.464 0.419 0.385 0.374 0.362 0.340  

4 1.5 0.952  0.726 0.582 0.496 0.462 0.431 0.391 0.385 0.409 0.385  

5 1.34 0.949  0.707 0.554 0.509 0.465 0.441 0.437 0.434 0.415 0.407  

6 1.22 0.947  0.692 0.574 0.518 0.466 0.482 0.435 0.440 0.434 0.432  

7 1.13 0.946  0.676 0.561 0.494 0.483 0.445 0.466 0.446 0.452 0.456  

8 1.06 0.946  0.667 0.533 0.490 0.480 0.467 0.465 0.442 0.442 0.445  

9 1.00 0.942  0.663 0.559 0.484 0.494 0.455 0.456 0.452 0.427 0.469  

10 0.95 0.943  0.662 0.544 0.511 0.488 0.482 0.492 0.454 0.459 0.473   

 

In order to compare with the detection power of  the percentile Weibull 
control chart, we set the percentile  to be 0.5 to similar the sampling 
distribution of  

p

nX  and the repeated time B  is 100000. Table 9 and Table 10 
display the detection power of  the 50th percentile of  the distribution with shift 
σ xk  when data come from Weibull distribution with the scale parameter 1α =  

and the shape parameter 1 (1) 10γ = . The shift distance in the second column is  
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Bothe’s adjustment as the same as Table7 and Table 8. We can find that the 
detection power is less than 0.5 when 3γ ≤  in Table 9, and 5γ ≥  in Table 10. 
This results show that the Bothe’s adjustments are inadequate too as the same as 
the results in Section 3.2, and when data come from more skewed Weibull 
distribution, we have also the same results in Section 3.2 that the detection power 
is poorer and far less than 0.5. 

3.4. Erto’s Weibull Control Chart for Weibull Processes 

In past section we talk about the Shewhart X  control chart assumed that 
data should come from normal distribution. If  data come from non-normal 
distribution (such as Gamma or Weibull distribution), we just only use simulation 
or approximate to get an inexact results. In order to get an exact result, using a 
Weibull control chart which Erto (2006) provided is a better choice. Erto provided 
a new Shewhart-type control chart of  Weibull percentile. This chart uses Practical 
Bayes Estimators (PBE) of  the Bayes theorem to integrate both technological and 
statistical information analytically. The PBE were developed from engineers’ 
point of  view.  

The Weibull survival function is: 

 { }Sf ; , exp ( ) ; 0; , 0,x x xγα γ α α γ⎡ ⎤= − ≥ >⎣ ⎦  (9) 

where ,  α γ  are scale and shape parameters of  the Weibull distribution. We can 
be immediately reparameterized in terms of  the percentile Rx  and shape 
parameter β , in which the Engineers’ knowledge can be more easily converted: 

 { }Sf ; , exp ( ) ,   0, ,   0,   ln(1 ),R R Rx x K x x x x K Rγγ γ⎡ ⎤= − ≥ > =⎣ ⎦  (10) 

where  and Rx γ  both being unknown.  is equivalent to the 1  
percentile of  the Weibull distribution, for example: if  

Rx R−
0.90R =  and  

hours, then 90% of  the items have lives greater than 1,000 hours.  
=1,000Rx

The uniform prior probability density function in the interval ( 1 2,  γ γ ) is 
assumed to fit the degree of  belief  in the shape parameter β  of  the sampling 
distribution: 

 
( )2 1 2 1 2 11 ; 0;

pdf{ } ,
0; elsewhere

γ γ γ γ γ γ
γ

⎧ − ≥ ≥ > >
= ⎨
⎩

γ

>

  (11) 

it appears to be as non-restrictive as feasible. 

For the selected percentile R  (corresponding to the fixed reliability level 
 ) the prior probability density function is assumed to be the Inverse Weibull: 

x
R

  (12) ( 1)pdf{ } ( ) exp ( ) ; 0; , 0,b b
R R R Rx a b a x a x x a b− + −⎡ ⎤= − ≥⎣ ⎦
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where  and  are scale and shape parameters respectively. It is assumed a b b γ= . 
When the greater γ  is, the more peaked the Weibull probability density function 
is, the smaller the uncertainty in Rx  is and then greater  must be, so b b γ=  is 
the simplest choice. So the probability density function of  Rx  is converted into 
the conditional prior: 

 { } ( 1)pdf ( ) exp ( ) ; , 0.R R Rx a a x a x aγ γγ γ γ− + −⎡ ⎤= −⎣ ⎦ >  (13) 

From Equation (11), the mean value { }RE x  of the probability density function  
is: { } (1 ) (1 1 ).RE x a b= Γ −  From this function and assumed b γ= , we can know 
that: 

 
{ } 1 2

(1 1 )
; (m

m
R

a
E x

) 2.
γ γ γ γΓ −

= = +  (14) 

Usually, a sample array x  of   experimental data is available. If  the 
reliability (measured in terms of  lifetime, tensile strength, breaking strength, etc.) 
of  the items is characterized by the Equation (9), the likelihood of  the sample is 
given by: 

n

 1

11
L( , ) exp .

n
n n

R i
iiR R

K
x x x x

x x
γ

γ γ

γγ −

==

⎛ ⎞ ⎛ ⎞
∝ − ∑∏⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i
γ  (15) 

And from the two priors Equation (10) and (12), the joint probability density 
function of  Rx  and γ  is obtained: 

 1 ( 1)
2 1pdf{ , } ( ) ( ) exp ( ) .R Rx a a x aγγ γ γ γ− − +

Rx γ−⎡ ⎤= − −⎣ ⎦  (16) 

Combining the Equation (14) and (15) by using the Bayes theorem which 
substantially says: 

joint posterior probability density their joint prior likelihood

of unknown parameters probability density function

⎛ ⎞ ⎛
∝ ×⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞ ⎛ ⎞
⎟ ⎜ ⎟
⎠ ⎝ ⎠

 

“Prior” and “posterior” mean before and after obtaining experimental data 
respectively. So, in this way, the theorem fuses the technological prior knowledge, 
summarized into joint prior, with all the information (data and shape of  the 
reliability model) included into likelihood. We can get the joint posterior 
probability density function of  unknown parameters is: 

 { }
2

1

1 ( 1) 1 1

11

( 1)

1

11

exp

pdf , .

!

n n
n n

R i R
ii

R nn n
n

i i
ii

a x x x a K x

x x

n a x a K x d

γ γ γ γ γ γ

γ γ γ γ γ

γ

γ
γ

γ γ

+ − − + − − − −

==
− +

− − −

==

i

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

∑∏

∑∏∫
 (17) 
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From Equation (16), we can calculate the expectations of  Rx  and γ  is: 

 { } { }3 2

1 1

E ; ER

I I
x x x

I I
γ= ,=

,=

 (18) 

where 

   
2

1

( 1)

1

11

( 1 )     1, 2, 3
j

j

n kn n
m

j i i j
ii

I a x a K x n k d j
γ γ γ γ γ

γ
γ γ

− + +
− − −

==

⎛ ⎞= + Γ + −⎜ ⎟
⎝ ⎠

∑∏∫

with the following values for the parameters  and  jm :jk

 1 3 2 1 2 3; 1; 0;m m n m n k k k 1 .γ≡ = = + ≡ = =   

Following the shewhart approach, we can use the Equation (17) to get the center 
line from all the available data, and use a transformation 

 
1

n

R i
i

z x a K xγ γ γ− −

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑  (19) 

to transform the random variable ( ,  Rx γ ) into a standard Gamma one. From this 
way, the Equation (16) of  the probability density function can be transformed to: 

 { }
( 1) 1exp( )

pdf exp( ); 0.
! ( 1)

n nz z z
z x z z

n n

+ −−
= = −

Γ +
≥  (20) 

We can estimate the UC  and  of  L LCL Rx  control chart by inverse the 
Equation (18): 

 

1
1

ˆ
ˆ

1

.
n

R i
i

x z a K x
γ

γ γγ
−

−

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑  (21) 

 The Weibull control chart is more precise than the percentile Weibull control 
chart and Bootstrap Weibull control chart in control Weibull process because Erto 
had provide the sampling distribution of  the control chart and exhibit the  
and  of  the control chart by using the sampling distribution.  

UCL
LCL

3.5. The Detection Power of Erto’s Weibull Control Chart  

 In this section, we use the Erto’s Weibull control chart which Erto provided 
to calculate the detection power when the Weibull process mean has shifted 
distances which is the Bothe’s capability adjustments. 
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Table 11. Detection power of  the Erto’s Weibull control chart for  under 

various Weibull distributions. 

0k >

Weibull distribution(1, γ ) for right shift 
n 

Shift 

σ  γ=1 γ=2 γ=3 γ=4 γ=5 γ=6 γ=7 γ=8 γ=9 γ=10 

2 2.12 0.276 0.649 0.823 0.861 0.906 0.937 0.949 0.955 0.964 0.974  

3 1.73 0.345 0.615 0.736 0.826 0.841 0.871 0.894 0.899 0.914 0.920  

4 1.5 0.454 0.598 0.715 0.778 0.838 0.844 0.861 0.873 0.883 0.890  

5 1.34 0.477 0.588 0.704 0.753 0.806 0.828 0.841 0.859 0.865 0.869  

6 1.22 0.539 0.579 0.686 0.735 0.770 0.803 0.818 0.834 0.840 0.858  

7 1.13 0.589 0.602 0.679 0.727 0.769 0.784 0.812 0.830 0.831 0.849 

8 1.06 0.603 0.607 0.680 0.728 0.763 0.790 0.812 0.827 0.835 0.844 

9 1.00 0.648 0.591 0.656 0.720 0.761 0.781 0.795 0.805 0.822 0.830 

10 0.95 0.656 0.580 0.667 0.715 0.750 0.779 0.796 0.805 0.827 0.830  

 

Table 12. Detection power of  the Erto’s Weibull control chart for  under 

various Weibull distributions. 

0k <

Weibull distribution(1, γ ) for left shift 
n 

Shift 

σ  γ=1 γ=2 γ=3 γ=4 γ=5 γ=6 γ=7 γ=8 γ=9 γ=10 

2 2.12 0.985 0.971 0.972 0.978 0.981 0.984 0.987 0.989 0.990 0.991  

3 1.73 0.983 0.925 0.910 0.900 0.908 0.911 0.917 0.923 0.923 0.926  

4 1.5 0.980 0.889 0.846 0.828 0.819 0.824 0.840 0.841 0.838 0.834  

5 1.34 0.978 0.847 0.795 0.780 0.770 0.769 0.775 0.777 0.785 0.788  

6 1.22 0.977 0.832 0.762 0.743 0.736 0.737 0.734 0.743 0.746 0.747  

7 1.13 0.975 0.810 0.734 0.702 0.691 0.699 0.698 0.709 0.706 0.693 

8 1.06 0.972 0.800 0.719 0.694 0.697 0.690 0.698 0.688 0.688 0.697 

9 1.00 0.973 0.778 0.720 0.680 0.674 0.668 0.674 0.695 0.693 0.692 

10 0.95 0.972 0.785 0.688 0.693 0.680 0.668 0.678 0.689 0.681 0.672  

 

Let  be a sequence observations of  independent and 
identically distributed in Weibull (

1 2, ,....., nX X X
,  α γ ). In order to compare with the detection 

power, we set the reliability level 0.5R =  to similar the sampling distribution of  
x , 1 and 1 (1) 10α γ= =  as the same as the setting in the Section 3.2, and we 
can compute the Rx  from Equation (9). The interval ( 1,  2γ γ ) of  the Uniform 
prior probability density function is set very close to the γ , and the number of  
subgroup is 100000. Table 11 and Table 12 display the detection power of  the 
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Erto’s Weibull control chart when data come from Weibull process with right 
shifts and left shifts. The magnitude of  shifts in the second column on the left is 
Bothe’s capability adjustments as the same as Table 7 and Table 8. We can find 
that the detection power is almost more than 0.5 except 1γ =  and . 
For example, when data come from Weibull(1, 5) with right shift distance 1.5

1,2,3,4n =
σ  

and subgroup size , the detection power of  Erto’s Weibull control chart is 
0.838>0.5. This means that the Bothe’s adjustment is inadequate and will 
over-adjustment the process capability. 

4n =

3.6. Detection Power Comparisons 

In past sections of  this chapter, we have introduced three control charts for 
Weibull processes, and we want to know which control chart is the best powerful 
in control Weibull processes. Comparing the results of  Table 7, Table 9, Table 11, 
and Table 8, Table 10, Table 12 we can find that under the same shift distance the 
detection power of  the Erto’s Weibull control chart is the best powerful control 
chart. For example, when data comes from Weibull ( 1,  5α γ= = ), and subgroup 
size is four, the detection power of  Erto’s Weibull control chart (0.818) is better 
than the detection power of  percentile Weibull control chart (0.699) and the 
detection power of  bootstrap Weibull control chart(0.617). Figure 4, Figure 5, 
display the power curve of  the percentile Weibull control chart (short-dotted line), 
the bootstrap Weibull control chart (long-dotted line) and the Erto’s Weibull 
control chart (line) when data come from Weibull ( 1,  1(1)10α γ= = ) with right 
and left shifts and subgroup size are 2. We can find that the power curve of  the 
Erto’s Weibull control chart is almost on the left of  the power curve of  the other 
two control chart except shape parameter 6γ >  and the mean shifts are small. 
There are other power curves with subgroup size 4,6n =  in Appendix A. 

Although the detection power of  the Erto’s Weibull control chart is less then 
the detection power of  the percentile Weibull control chart in some situations, but 
we want to calculate the adjustment of  pkC  for Weibull processes, we will set the 
detection power is 0.5 to know the mean shifts. When the power=0.5, the mean 
shifts of  the Erto’s Weibull control chart are shorter then the mean shifts of  the 
percentile Weibull control chart and bootstrap Weibull control chart, so we 
choose the Erto’s Weibull control chart to calculate the undetected mean shift 
under designated power. The undetected mean shift adjustment in Table 13 and 
Table 14 is called 50AS  which is the magnitude of  shift we need to adjust based 
on designated detection power of  the Erto’s Weibull control chart is 0.5 and 
process data comes from Weibull ( 1,  γ ) distribution with various value of  
γ = 1(1)10 and the subgroup size n=2(1)15. In Table 13 and Table 14, under the 
same subgroup size the upper row is the 50AS  which calculate by Erto’s Weibull 
control chart and the lower row is the 50AS  which  Li (2007) provided by 
percentile Weibull control chart. We can find that under the same shape 
parameter γ  and subgroup size  the numbers of  the upper row are smaller 
than the numbers of  the lower row.  For example, if  we set 

n
5γ =  and n=5, the 

adjustment of  upper row is 1.020 and the lower row is 1.127. We can conclude 
that our result is distinctly better than the results which Li (2007) provided. 
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Figure 4(a)-4(j). Power curve for subgroup size 2 when α=1, γ=1(1)10, .0k >  
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Figure 5(a)-5(j). Power curve for subgroup size 2 when α=1, γ=1(1)10, .0k <  
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Why not discuss the relationship between  and scale parameter? To 
view the formula of  skewness coefficient and kurtosis coefficient for Weibull 
distribution, we know scale parameter unable to affect these. So the fixed 

50AS

γ  and 
subgroup size can look for the 50AS . We also don’t talk about that when the 
shape parameter 1γ <  because of  the Equation (14). If  the 1γ < , we can’t 
calculate the parameter  for Erto’s Weibull control chart. a

 
Table 13.  values for several subgroup sizes n and various 50AS γ  values 

of  Weibull distribution(1, γ ) for right shifts. 
γ  

n   1 2 3 4 5 6 7 8 9 10 

Erto’s 2.513 1.954 1.703 1.582 1.495 1.446 1.378 1.336 1.321 1.288 
2 

percentile 3.611 2.492 2.009 1.767 1.632 1.536 1.470 1.424 1.387 1.359 

Erto’s 1.867 1.615 1.440 1.330 1.278 1.226 1.190 1.180 1.159 1.122 
3 

percentile 2.735 1.967 1.642 1.482 1.373 1.307 1.261 1.228 1.197 1.182 

Erto’s 1.564 1.415 1.272 1.177 1.123 1.106 1.055 1.045 1.033 1.021 
4 

percentile 2.250 1.633 1.448 1.309 1.232 1.175 1.138 1.103 1.087 1.071 

Erto’s 1.353 1.255 1.140 1.089 1.020 0.998 0.970 0.949 0.951 0.935 
5 

percentile 1.944 1.484 1.301 1.196 1.127 1.084 1.047 1.025 1.006 0.988 

Erto’s 1.203 1.146 1.068 0.992 0.951 0.918 0.905 0.881 0.873 0.859 
6 

percentile 1.716 1.343 1.201 1.104 1.043 1.009 0.981 0.960 0.942 0.932 

Erto’s 1.110 1.065 0.976 0.936 0.885 0.864 0.854 0.835 0.832 0.815 
7 

percentile 1.569 1.239 1.119 1.037 0.990 0.954 0.928 0.907 0.892 0.881 

Erto’s 1.012 0.978 0.946 0.875 0.844 0.817 0.805 0.787 0.774 0.772 
8 

percentile 1.440 1.159 1.051 0.984 0.939 0.905 0.883 0.864 0.852 0.839 

Erto’s 0.925 0.934 0.876 0.829 0.795 0.783 0.757 0.753 0.740 0.730 
9 

percentile 1.340 1.086 0.991 0.930 0.891 0.865 0.845 0.828 0.814 0.805 

Erto’s 0.859 0.890 0.839 0.801 0.753 0.751 0.727 0.711 0.703 0.703 
10 

percentile 1.251 1.031 0.943 0.889 0.853 0.828 0.811 0.797 0.784 0.773 

Erto’s 0.810 0.832 0.789 0.755 0.739 0.725 0.718 0.691 0.671 0.665 
11 

percentile 1.185 0.975 0.899 0.854 0.816 0.799 0.777 0.768 0.756 0.748 

Erto’s 0.773 0.808 0.767 0.719 0.693 0.694 0.674 0.662 0.658 0.647 
12 

percentile 1.110 0.932 0.858 0.820 0.787 0.767 0.752 0.741 0.729 0.722 

Erto’s 0.740 0.789 0.739 0.704 0.692 0.668 0.648 0.649 0.629 0.635 
13 

percentile 1.066 0.893 0.828 0.788 0.763 0.746 0.728 0.721 0.708 0.701 

Erto’s 0.715 0.759 0.714 0.680 0.665 0.645 0.638 0.627 0.601 0.608 
14 

percentile 1.021 0.861 0.801 0.762 0.737 0.723 0.709 0.696 0.688 0.684 

Erto’s 0.667 0.723 0.694 0.663 0.644 0.617 0.609 0.597 0.593 0.583 
15 

percentile 0.974 0.829 0.772 0.745 0.717 0.701 0.689 0.675 0.669 0.660 
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Table 14.  values for several subgroup sizes n and various 50AS γ  values 

of  Weibull distribution(1, γ ) for left shifts. 
γ  

n   1 2 3 4 5 6 7 8 9 10 

Erto’s 0.563 0.960 1.041 1.063 1.062 1.063 1.060 1.064 1.054 1.055 
2 

percentile 0.820 1.532 1.888 2.098 2.236 2.333 2.405 2.461 2.504 2.540 

Erto’s 0.568 0.998 1.113 1.128 1.144 1.157 1.155 1.148 1.153 1.150 
3 

percentile 0.813 1.356 1.591 1.723 1.808 1.866 1.909 1.941 1.967 1.987 

Erto’s 0.563 0.995 1.088 1.115 1.137 1.148 1.139 1.132 1.142 1.142 
4 

percentile 0.802 1.225 1.399 1.494 1.554 1.596 1.626 1.649 1.667 1.681 

Erto’s 0.568 0.998 1.078 1.103 1.129 1.145 1.135 1.124 1.135 1.123 
5 

percentile 0.776 1.125 1.263 1.337 1.384 1.416 1.439 1.456 1.470 1.481 

Erto’s 0.557 0.971 1.074 1.102 1.122 1.130 1.135 1.128 1.132 1.126 
6 

percentile 0.749 1.047 1.160 1.221 1.259 1.285 1.304 1.318 1.329 1.338 

Erto’s 0.542 0.926 1.014 1.065 1.063 1.093 1.098 1.082 1.084 1.079 
7 

percentile 0.724 0.983 1.079 1.131 1.163 1.185 1.201 1.213 1.222 1.230 

Erto’s 0.523 0.872 0.978 0.992 1.026 1.029 1.026 1.020 1.022 1.034 
8 

percentile 0.700 0.929 1.013 1.058 1.086 1.105 1.118 1.129 1.137 1.144 

Erto’s 0.500 0.844 0.922 0.968 0.971 0.978 0.967 0.967 0.967 0.964 
9 

percentile 0.678 0.884 0.958 0.998 1.022 1.039 1.051 1.060 1.067 1.073 

Erto’s 0.482 0.806 0.882 0.902 0.908 0.916 0.920 0.927 0.915 0.922 
10 

percentile 0.658 0.844 0.911 0.947 0.969 0.984 0.994 1.003 1.009 1.014 

Erto’s 0.440 0.717 0.780 0.795 0.799 0.788 0.798 0.802 0.775 0.814 
11 

percentile 0.640 0.810 0.871 0.903 0.923 0.936 0.946 0.954 0.959 0.964 

Erto’s 0.435 0.688 0.741 0.775 0.762 0.771 0.761 0.766 0.767 0.762 
12 

percentile 0.623 0.780 0.835 0.865 0.883 0.895 0.904 0.911 0.916 0.921 

Erto’s 0.421 0.668 0.729 0.740 0.743 0.740 0.745 0.748 0.737 0.727 
13 

percentile 0.607 0.753 0.804 0.831 0.848 0.859 0.867 0.873 0.879 0.882 

Erto’s 0.410 0.643 0.702 0.713 0.712 0.709 0.706 0.709 0.710 0.703 
14 

percentile 0.593 0.728 0.776 0.801 0.816 0.827 0.834 0.840 0.845 0.848 

Erto’s 0.400 0.618 0.678 0.683 0.688 0.684 0.692 0.683 0.683 0.682 
15 

percentile 0.579 0.706 0.751 0.774 0.788 0.798 0.805 0.811 0.815 0.818 
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4. Process Capability Adjustment for Weibull Processes 

4.1 Estimator of pkC  for Non-Normal Processes 

The purpose of  process capability indices, which are statistical measures of  
process capability, is based on several assumptions. Two of  the most important 
assumption is that the process monitored is supposed to be stable and the output 
is approximately normal distribution. When the distribution of  a process 
characteristic is non-normal, PCIs could often lead to erroneous and misleading 
interpretation of  the process capability.  

In the recent years, several approaches the problems of  PCIs for the 
non-normal populations have been suggested. Chen and Pearn (1997) consider 
come generalizations of  these basic capability indices to cover non-normal 
distribution. Since the median is usually the preferable central value for a skewed 
distribution, the index pkC  for non-normal processes were called  were 
defined as: 

NpkC

 
0.99865 0.00135 0.99865 0.00135

min , ,

2 2

Npk

USL M M LSL
C

F F F F

⎧ ⎫
⎪ ⎪− −⎪ ⎪= ⎨ ⎬− −⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (22) 

where  is the 0.1350.00135F th percentile,  is the 99.8650.99865F th percentile and  

is the median. 

M

4.2 Process Capability Adjustment of pkC  for Weibull Processes 

Acknowledging that a process will experience shifts in (median) of  
various magnitudes and knowing that not all of  these will be discovered, some 
allowance for them must be made when estimating outgoing quality so customers 
are not disappointed. Because shifts ranging in size from 0 up to 

0.50F

σ50AS  are the 
likely to main undetected, a conservative approach it to assume that every missed 
shift it as large as . When estimating capability, minus 50AS M σ50AS  is used 
to evaluate how well the process output meets the  and  plus LSL M σ50AS  is 
used for determining conformance to the USL . Both of  these adjustments are 
incorporated into the  formula, now called the “dynamic”  index, by 
making the following modifications: 

pkC NpkC

 50 50

0.99865 0.00135 0.99865 0.00135

( ) ( )
 min ,

2 2

Npk

USL M AS M AS LSL
dynamic C

F F F F
σ σ

⎧ ⎫
⎪ ⎪− + − −⎪ ⎪= ⎨ ⎬− −⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
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            50 50

0.99865 0.00135 0.99865 0.00135

min ,

2 2

USL M AS M AS LSL
F F F F

σ σ
⎧ ⎫
⎪ ⎪− − − −⎪ ⎪= ⎨ ⎬− −⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (25) 

The 50AS  have different results when the process distributions have right 
shifts or left shifts, but we can’t know what sides the processes shift to. In order to 
calculate the , we have to combine the upper row of  Table 13 and Table 14 to 
get an adjustment for Weibull processes with shift distances. Since 

NpkC

50AS  and 
 have an inverse ratio and we would not overestimate the process capability, 

choose a bigger 
NpkC

50AS  is a better choice. Table 15 shows the bigger 50AS  of  
Table 13 and Table 14 when data come from the same parameters and we add the 
subgroup size to 30. For example, when data come from Weibull (1, 5) and =5, 
the 

n

50AS  of  the mean has right shifts is 1.0198 and the 50AS  of  the mean has 
left shifts is 1.1285, the adjustment distances for Weibull (1, 5) and =5 are 
1.1285. We conclude that the adjustment 

n

50 ( 1.12 )AS σ σ⋅ =  is required based on 
the detection power is 0.5 and data comes from Weibull (1, 5).  By including an 
adjustment in this assessment for undetected shifts in median, the estimate of  
capability with decrease and the expected total number nonconforming parts will 
increase.  
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Table 15.  values for several subgroup sizes n and various 50AS γ  values 

of  Weibull distribution(1, γ ). 
γ  

n   1 2 3 4 5 6 7 8 9 10 

2 2.513 1.954 1.703 1.582 1.495 1.446 1.378 1.336 1.321 1.288 

3 1.867 1.615 1.440 1.330 1.278 1.226 1.190 1.180 1.159 1.150 

4 1.564 1.415 1.272 1.177 1.137 1.148 1.139 1.132 1.142 1.142 

5 1.353 1.255 1.140 1.103 1.129 1.145 1.135 1.124 1.135 1.123 

6 1.203 1.146 1.074 1.102 1.122 1.130 1.135 1.128 1.132 1.126 

7 1.110 1.065 1.014 1.065 1.063 1.093 1.098 1.082 1.084 1.079 

8 1.012 0.978 0.978 0.992 1.026 1.029 1.026 1.020 1.022 1.034 

9 0.925 0.934 0.922 0.968 0.971 0.978 0.967 0.967 0.967 0.964 

10 0.859 0.890 0.882 0.902 0.908 0.916 0.920 0.927 0.915 0.922 

11 0.810 0.832 0.789 0.795 0.799 0.788 0.798 0.802 0.775 0.814 

12 0.773 0.808 0.767 0.775 0.762 0.771 0.761 0.766 0.767 0.762 

13 0.740 0.789 0.739 0.740 0.743 0.740 0.745 0.748 0.737 0.727 

14 0.715 0.759 0.714 0.713 0.712 0.709 0.706 0.709 0.710 0.703 

15 0.667 0.723 0.694 0.683 0.688 0.684 0.692 0.683 0.683 0.682 

16 0.650 0.707 0.669 0.667 0.667 0.681 0.663 0.674 0.665 0.656 

17 0.630 0.672 0.644 0.650 0.656 0.637 0.650 0.647 0.646 0.656 

18 0.600 0.663 0.628 0.626 0.640 0.635 0.629 0.631 0.637 0.629 

19 0.580 0.645 0.606 0.626 0.614 0.621 0.611 0.609 0.611 0.612 

20 0.564 0.626 0.596 0.597 0.600 0.601 0.599 0.593 0.603 0.588 

21 0.549 0.604 0.583 0.587 0.582 0.591 0.582 0.580 0.586 0.586 

22 0.549 0.596 0.568 0.588 0.564 0.579 0.572 0.567 0.569 0.567 

23 0.532 0.574 0.558 0.559 0.572 0.564 0.557 0.557 0.552 0.552 

24 0.512 0.562 0.542 0.553 0.548 0.551 0.547 0.544 0.549 0.546 

25 0.500 0.554 0.536 0.548 0.540 0.534 0.546 0.529 0.532 0.534 

26 0.489 0.547 0.528 0.527 0.528 0.516 0.519 0.524 0.526 0.522 

27 0.473 0.532 0.512 0.514 0.520 0.511 0.518 0.509 0.517 0.509 

28 0.468 0.528 0.508 0.512 0.508 0.508 0.496 0.503 0.500 0.494 

29 0.457 0.524 0.505 0.493 0.492 0.492 0.492 0.495 0.493 0.492 

30 0.447 0.517 0.498 0.482 0.494 0.486 0.484 0.479 0.480 0.472 
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5. An Application 

Adjustable speed drives (ASDs) for medium and large size motors are 
increasingly being adopted for the automation, transportation, and control of  
industrial production. However, the usage of  ASDs with ac induction motors has 
led to the premature failure of  the winding insulation. The most often reported 
failure occurs because of  breakdown of  the enameled wire insulation, and 
therefore, attraction of  wire and motor manufacturers.  

It has been observed that the failure of  the inter-turn insulation is more likely 
due to the individual or combined effect of  partial discharge (PD), dielectric 
heating, and space charge formation. Therefore, to survive in the inverter-fed 
motor environment, the insulation of  magnet wire must have high resistance to 
PD, voltage overshoots, and high frequency components that can be above the 
discharge inception voltage. 

 

 

Figure 6. Coating layers of  magnet wire insulation. 

 

 
Figure 7. Pulse voltage test. 

 

Figure 6 shows coating layers of  magnet wire insulation and includes three 
layers (conductor, aromatic polyimide layer, PD resistant layer). Figure 7 is pulse 
voltage test method for wire insulation. For the insulation aging test to be 
representative of  the voltages that result from medium voltage (1.3-7.6 kV) pulse 
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width modulated drives. For the circuit to safely and reliably operate at higher 
voltages it utilizes a chain of  insulated gate bipolar transistor (IGBT) switches 
connected in series. If  there is higher pulse voltage on test object, the surface of  
the insulation starts eroding and partial discharge, but if  the pulse voltage is over  

 and the surface of  the insulation starts eroding, the HV DC source will 
shutdown. The surface roughness as measured by a scanning electron microscope. 
Therefore, the  and  for the voltage are 7.6 kV and 1.3 kV, respectively. 
As shown in Table 16, a part of  historical data is collected. From Figure 8 and 
Figure 9, it is evident to conclude the data collected from the factory are not 
normal distributed. The data analysis results justify that the process is significantly 
away from the normal distribution. By the goodness-of-fit tests, the historical data 
indicates that the process pretty approximates to be distributed as Weibull 
distribution (see Appendix B). The parameters 

USL

USL LSL

α  and γ  of  this Weibull process 
could be estimated from the historical data, giving ˆ 4.797α =  and ˆ 6γ = . 

 

 
Figure 8. Histogram plot of  the historical data. 

 

 
Figure 9. Normal probability plot of  the historical data. 
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Table 16. The 100 observations are collected from the historical data. 

5.992 5.371 4.413 2.486 4.348 3.991 2.892 4.921 4.857 5.051 

4.508 4.695 5.368 4.897 4.245 5.273 5.137 4.746 3.124 1.783 

5.707 4.374 5.463 4.893 4.145 5.208 4.896 4.065 3.507 4.512 

5.933 5.514 5.456 3.107 4.099 5.156 2.830 2.288 4.488 4.501 

4.541 5.219 2.514 5.119 4.558 5.895 4.497 4.973 4.627 5.783 

4.537 2.876 4.141 3.628 4.201 4.390 5.208 5.050 3.765 4.686 

4.207 4.097 4.368 3.986 4.528 4.665 5.112 5.229 3.807 3.479 

4.062 3.525 3.872 4.223 4.170 4.964 3.728 5.360 4.184 4.368 

4.989 3.102 5.470 5.730 4.522 4.153 3.308 2.583 4.456 4.890 

5.269 4.507 2.978 3.503 4.935 3.896 3.394 4.900 4.103 2.379 

 

Accordingly, it is appropriate to use this approach and we can obtain more 
accurate measures of  the three quantiles ( , , and ) and 0.00135F M 0.99865F σ  can 
be calculated by Equation (4). Then the dynamic  index of  this process can 
be calculated as follows: 

NpkC

50 50

0.99865 0.00135 0.99865 0.00135

 min ,

2 2

7.6-4.51-1.145(1.02) 4.51 1.145(1.02) 1.3
                       =min ,

(7.08-1.29) 2 (7.08-1.29) 2

 

Npk

USL M AS M AS LSL
dynamic C

F F F F
σ σ

⎧ ⎫
⎪ ⎪− − − −⎪ ⎪= ⎨ ⎬− −⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎧ ⎫− −
⎨ ⎬
⎩ ⎭
{ }                      =min 0.66,0.71 0.66,=

 

with 50AS =1.145 for n =5 from Table 15. Compared it to the value of  the 
following conventional index : 

{ }

0.99865 0.00135 0.99865 0.00135

min ,

2 2

       =min 1.07,1.11 1.07,

Npk

USL M M LSL
C

F F F F

⎧ ⎫
⎪ ⎪− −⎪ ⎪= ⎨ ⎬− −⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

=

 

Calculated by a traditional capability study ( the shift of  process mean is not 
considered ), we can find that the value of  the modified  is much smaller. 
This result indicates if  the process mean shifts that are not detected then 
unadjusted  would overestimate the actual process yield which is not 
derisible. Our adjustment takes into account those shifts that are not detected so 

NpkC

NpkC
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that the practitioner would be able to keep its quality promise for this process. As 
the adjusted process capability drops below the desired quality level, the 
practitioner should stop the process because the process does not meet his present 
capability requirement. 

As the subgroup size  increases, the shift in process mean have a higher 
probability of  detection. For example, if  =10, the 

n
n 50AS  would be 0.916 for 

Weibull (4.797, 6) from Table 15, and then the dynamic  index is  NpkC

50 50

0.99865 0.135 0.99865 0.00135

 min ,

2 2

7.6-4.51-0.916(1.02) 4.51 0.916(1.02) 1.3
                       =min ,

(7.08-1.29) 2 (7.08-1.29) 2

   

Npk

USL M AS M AS LSL
dynamic C

F F F F
σ σ

⎧ ⎫
⎪ ⎪− − − −⎪ ⎪= ⎨ ⎬− −⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎧ ⎫− −
⎨ ⎬
⎩ ⎭
{ }                    =min 0.74,0.79 0.74,=

 

Changing  from 5 to 10 increases the dynamic  index from 0.66 to 
0.74, and the total number of  nonconforming parts would be reduced. 

n NpkC
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6. Conclusions 

In this thesis, we considered the problem of  how to determine the 
adjustments for process capability with mean shift when data follows the Weibull 
distribution. We first showed the detection powers of  the percentile Weibull 
control chart, bootstrap Weibull control chart and the Erto’s Weibull control chart 
under the Bothe’s adjustments and know the Bothe’s adjustments are inadequate 
when data come from Weibull processes. After comparing the detection power, 
we find the Erto’s Weibull control chart is the best powerful control chart than the 
others. For Weibull processes, we calculated the adjustments for various sample 
sizes ( ) and Weibull shape parameter (n γ ) with detection power of  the Erto’s 
Weibull control chart fixed to 0.5. Using the adjusted process capability formula, 
the engineers can determine the actual process capability more accurately. Tables 
are also provided for engineers/practitioners to use in their in-plant applications. 
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Appendix A. Power Curve for Subgroup Size 4 and 6 

  

  

  

  

  
Figure 10(a)-10(j). Power curve for subgroup size 4 when =1,α  γ=1(1)10, 

. 0k >
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Figure 11(a)-11(j). Power curve for subgroup size 6 when =1,α  γ=1(1)10, 

. 0k >
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Figure 12(a)-12(j). Power curve for subgroup size 4 when =1,α  γ=1(1)10, 

. 0k <
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Figure 13(a)-13(j). Power curve for subgroup size 6 when =1,α  γ=1(1)10, 

. 0k <
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Appendix B. Goodness-of-Fit Tests 

 In this section, we use goodness-of-tests to know the data of  the wire 
insulation in Table 15 are come from normal distribution or not. We set the class 
number is 10. Table 17 show the test results. The first column is class boundaries, 
the second and the third column is observed frequencies and expected 
frequencies. 

From the table of  chi-square distribution, we find  for degrees 
of  freedom = 7 (10-2-1). The computed 

2
0.05 14.06χ =

2 15χ =  is bigger than . We 
have reason to reject the null hypothesis and conclude that the data of  wire 
insulation doesn’t come from normal distribution. We assume the data come from 
Weibull distribution and scale parameter 

2
0.05 14.06χ =

4.797α =  and shape parameter 6γ = . 
In order to prove the assumption, we use goodness-of-test of  wire insulation 
assuming Weibull and show the result in Table 18. 

From Table 18, we find  for degrees of  freedom = 7 (10-2-1). 
The computed  is bigger than . We have no reason to reject 
the null hypothesis and conclude that the Weibull distribution with 

2
0.05 14.06χ =

2 27χ = 0.05 14.06χ =
4.797α =  

and 6γ =  provides a good fit for the distribution of  wire insulation. 

 

Table 17. goodness-of-test of  wire insulation assuming normality 

Class boundaries io ie 2( ) /i i io e e−   

0-3.23 13 10 0.9 

3.23-3.62 6 10 1.6 

3.62-3.90 6 10 1.6 

3.90-4.15 9 10 0.1 

4.15-4.37 11 10 0.1 

4.37-4.60 14 10 1.6 

4.60-4.84 5 10 2.5 

4.84-5.13 15 10 2.5 

5.13-5.52 15 10 2.5 

5.52- 6 10 1.6 

sum   15  
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Table 18. goodness-of-test of  wire insulation assuming Weibull 

Class boundaries io ie 2( ) /i i io e e−   

0-3.30 13 10 0.9 

3.30-3.74 8 10 0.4 

3.74-4.04 6 10 1.6 

4.04-4.29 14 10 1.6 

4.29-4.51 13 10 0.9 

4.51-4.73 9 10 0.1 

4.73-4.95 9 10 0.1 

4.95-5.19 9 10 0.1 

5.19-5.51 12 10 0.4 

5.51- 7 10 0.9 

sum     7  
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