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Capability Adjustment for Weibull Processes with Mean Shift Consideration
Student: Chun Seng Lu Advisor: Dr. W. L. Pearn

Department of Industrial Engineering and Management
National Chiao Tung University

Abstract

Process capability indices (PCIs) have been proposed in the manufacturing
industry to provide numerical measures on process reproduction capability, which
are effective tools for quality assurance and guidance for process improvement.
PCIs are calculated under the assumption that the process is stable (the process
mean and variation are not change), but in practice, the process is dynamic. If the
process mean has a small shift, the control chart doesn’t detect obviously so that
the PCIs will overestimate the true process capability. For this reason, the PCIs
have to be adjusted. Bothe (2002) provided the adjustment method for normality
processes. In this paper, we provide capability adjustment method for Weibull
processes. The magnitudes of adjustment is correlated with the detection power
of control chart, so we first compare the detection powers of three Weibull
control chart under the same mean shift distances, and choose the best powerful
Weibull control chart to calculate the mean shift adjustments for Weibull
processes. At the end, we add the adjustment to capability index C,, of
non-normal processes. For illustration purpose, an application example is
presented.

Keywords: Dynamic C, , Mean shift, Process capability index, Weibull
distribution, Weibull control chart.
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1. Introduction
1.1. Research Background and Motivation

Process capability indices (PCIs) which provide numerical measure of
production characteristic to reflect the quality of product have been used in the
manufacturing industry. Those indices have become popular as unit-less measures
on process potential and performance. The most commonly used ones, C, and
C, discussed in Kane (1986), and more-advanced indices C,, and C,,
developed by Chan er al. (1988) and Pearn et al. (1992). Based on analyzing the
PClIs, a production department can trace and improve a poor process so that the
quality level can be enhanced and the requirements of the customers can be

satisfied. These PClIs have been defined explicitly as:

b

.H{USL—/J /J—LSL} USL—LSL
30 Klez

USL-LSL
Cp=—, Cpk=m1 o =
60 6yJc? +(u—T)

C..~min USL-p__ _ pu-ISL |
3Jo? +(u=T) 3o’ +(u-T)

where USL is the upper specification limit, LSL 1is the lower specification limit,
4 1s the process mean, o is the process standard deviation, and T is the target
value. The index C, considers the overall process variability relative to the
manufacturing tolerance, reflecting product quality consistency. The index C,,
takes the magnitude of process variance as well as process departure from target
value, and has been regarded as a yield-based index since it providing lower
bounds on process yield, and is always used to measure the quality of the process.
When data come from normal distribution, for a C,, level of 1, statistically one
would expect that the product’s fractions of defectives, is no more than 2700 parts
per million (ppm) fall outside the specification limits. At C,, =1.33, the defect
rate drops to 66 ppm. To attain less than 0.544 ppm defect rate, a C,, level of
1.67 is required. Ata C,, level of 2.0, the defective rate reduced to 0.002 ppm.
The exact number of nonconformities with fixed C,, is very depending upon the
location of the process mean and the magnitude of the process variation. C,, is
calculated under assumptions that the process is stable (the process mean and
variation are not change), but in practice, the process is dynamic and the mean
and variation always change with small movement for momentary, and the some
control charts can’t detect obviously so that the C,, will underestimated the true
number of nonconformities.

The changes of various magnitudes not only happen on normal distribution,
but also on non-normal distribution. Pyzdek (1995) has mentioned the
distributions of certain chemical processes such as zinc plating thickness of a
hot-dip galvanizing process are very quite often skewed. Choi (1996) presents an
example of a skewed distribution in the ‘active area’ shaping stage of the wafer’s
production process. Cygan et al. (1989) have mentioned that the lifetimes of

1



polypropylene films under high ac and dc field stresses be shown as a
two-parameter Weibull distribution. The Weibull distribution, denoted as Weibull
(a, y), with various values of scale parameter « and shape parameter y, covers
a wide class of non-normal applications, including product life, product reliability
and tensile strength of brittle materials, such as carbon and boron. The abundance
of outputs from skewed distribution, the censoring, etc, makes the normality
assumption often being illegitimate. Specifically, we assure the product lifetime
which be from skewed distribution by statistic test and historical data. It will lead
to underrate the probability of nonconformance that using the adjustment for
normal case to adjust the non-normal cases.

1.2. Research Purpose and Objectives

Ever since Motorola, Inc. introduced its Six Sigma quality initiative,
followers of this philosophy notion should add 1.50 when estimating process
capability. By this idea we will find that 6-sigma actually translates to about 2
defects per billion opportunities, and 3.4 defects per million opportunities, which
we normally define as Six Sigma, really corresponds to a sigma value of 4.5.
When asked the reason for such an adjustment, six-sigma user claim it is
necessary, but offer only personal experiences and three dated empirical literature.
Bothe (2002) provided a statistical reason to adjust the overestimated C . Bothe
set the adjustment of shift in average that was dependent on the same detection
power of the control chart, and the data of Bothe’s study was assumed to be
approximately normality distribution. However effectively non-normal process
occurs frequently in practice. If the process capability indices based on the normal
assumption concerning the data are used with non-normal observations, the value
of the process capability indices may, in a majority of situation, be incorrect and
quite likely misrepresent the actual product quality.

The control charts are commonly used in many industries for providing early
warning for the shift in process mean. If the control chart detects a process mean
shift, then the process is not under control. The well-known and usual Shewhart
X control charts assume that the observed process data come from a
near-normal distribution. However, when the process distribution is unknown or
non-normal, the parameter estimators of sampling distribution may not be
available theoretically. We can use approximation or simulation to estimate the
parameters, such as percentile Weibull control chart which uses simulation to get
the UCL (upper control limits) and LCL (lower control limits). But for Weibull
processes, Erto (2007) used Bayes theorem to provide a Weibull control chart. If
data come from Weibull distribution, we can control the process more exactly
than non-normal control chart.

In this research, we show that the detection power performance of three
Weibull control charts under the same mean shift adjustment which Bothe
provided when the processes in control is very sensitive to the assumption of
normality. Then, we compare with the detection power performances of the three
control charts. Using the most powerful control chart to provide the statistical
derived mean shift adjustment based on the chart subgroup size and distribution

2



parameter to calculate the estimator of C, when the data is non-normal
distribution for Weibull distribution.

1.3. Thesis Organization

First, we introduce the research motivation and purpose in Chapter 1.
Secondly, a brief introduction of Bothe’s study and adjustment reason are
included and adjustment for Gamma processes and Weibull processes in Chapter
2. In Chapter 3, we introduce the characteristic of Weibull distribution, and
introduce some Weibull control charts for Weibull processes, and calculate the
detection powers of control charts under the same shift for Weibull processes. We
compare the detection powers to choose the best one. After that we calculate the
adjustment for Weibull processes by using the best powerful Weibull control chart.
In Chapter 4, we introduce the calculation of dynamic non-normal index C,,
and show the dynamic C, for Weibull processes. For illustrative purpose, an
application is presented in Chapter 5. Finally, we give some conclusions in
Chapter 6.



2. Literature Review

The processes capability adjustment for normal and non-normal distributions
had been researched. In this section, we will review these papers about
adjustments for normal processes, Gamma processes and Weibull processes.

2.1. Process Capability Adjustment for Normal Processes

Bothe (2002) provided a statistical reason why to add a 1.50 shift to the
average. Assuming the processes approximately normal distribution, control
charts can’t reliably detect small movement in average. Table 1 displays the
probabilities of detecting changes in u versus subgroup size for
shift=0.5(0.5)3c with n=3,4 and 5. When g had a small movement (ex: 0.50,
1o) and the detection power of Shewhart X control chart is too small to
discover. Then, small mean movement affects the PCIs accuracy. However, the
probability of nonconformance will increase obviously. For example, when C
is 1.33, the probability of nonconformance is 64 ppm. If average occur 1o shift
that be difficultly detected by control chart, the probability of nonconformance
becomes 1350 ppm. The probability of nonconformance will increase twenty-fold.
Bothe considered that adjustments should accord with the same detection
standard.

Table 1. Probabilities of detection changes in x versus subgroup size.

Shiftin 1 Subgroup Size
3 4 5
050 0.0164 0.0228 0.0299
lo 0.1024 0.1587 0.2225
150 0.3439 0.5000 0.6384
20 0.6787 0.8413 0.9295
250 0.9083 0.9772 0.9952
30 0.9860 0.9986 0.9999

When subgroup size is 4 and mean shift is 1.5 o, the detecting power will be
0.5. Bothe (2002) considered providing the same detecting power in order to
define the several adjustments with different subgroup size and called the
adjustments S.,. By this idea, he set the detecting power to 50 percent and
computed the several adjustments for different subgroup size. The reason which
Bothe set the power to 50 percent was we want detect the processes out of control
immediately if the process mean shifts and the ARL, (average run length)=1 is
the perfect condition. But in fact, the ARL =1 is impossible. For this reason we
can just only set the ARL =2, and the detection power is 1/ARL,, so we can
know if ARL =2 the detecting power is 0.5. The results showed in Table 2.



Table 2 displays shift sizes that have 50 percent chance of remaining undetected
for subgroup sizes 1 through 6. Because shifts ranging in size from 0 up to S;,o
are the ones likely to remain undetected, a conservative approach is to assume
that every missed shift is as large as S;,0 . And Bothe invented dynamic C, be
defined as

dynamic C,, = min{USL —(u+850) (4—S850) —LSL]

30 ’ 30

The dynamic C, could be corrected by subgroup size really not fixed 1.50
adjustment.

Table 2. Adjustment values for normal distribution with several subgroup size.

Subgroup Size S
1 3
2 2.12
3 1.73
4 1.5
5 1.34
6 1.22

2.2. Process Capability Adjustment for Gamma Processes

When using the index C,, one of the most essential is that the process
monitored is supposed to be stable and the output is approximately normally
distributed. When the distribution of a process characteristic is non-normal, PCIs
calculated using conventional methods could often lead to erroneous and
misleading interpretation of the process’s capability. In the recent years, several
approaches to the problems of PCIs for the non-normal populations have been
suggested (see e.g. Pal (2005), Ding (2004), Pearn and Chen (1997), Kotz and
Lovelace (1998), Somerville and Montgomery (1996), Kocherlakota and Kirmani
(1992)). Several authors used data transformation techniques such as the Box-Cox
power transformation, Johnson’s transformations and quantile transform
techniques to solve this problem. And some authors replaced the unknown
distribution by a known three or four-parameter distribution. Examples include
Clments (1989), Franklin and Wasserman (1992), Shore (1998) and Polansky
(1998).

Hsu et al. (2007) provided the process capability adjustment for gamma
process. For small process mean shifts, it is beyond the control chart detection
power when process assumed gamma distribution and the process capability will
be overestimated. They examine Bothe’s approach and find the detection power
was less than 0.5 when data came from gamma distribution, showing that Bothe’s
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adjustments are inadequate when we had gamma processes. Then, they calculate
adjustments which called A4S,, under various sample sizes n and gamma
parameter N , with power fixed to 0.5. Table 3 displays the magnitude of
adjustments AS,, which they provided and data comes from Gamma (N , 1)
with various values of N =1(1)10 and »n=2(1)10.

Table 3. AS,, values for several subgroup sizes 7 and various of Gamma(X, 1).
1 2 3 4 5 6 7 8 9 10 [N(O,1)
3.611(3.185(2.992(2.876(2.797|2.738|2.692|2.655|2.625|2.599| 2.12
2.732|2.44312.313|2.236(2.182|2.143|2.113|2.088 |2.067|2.050| 1.73
2.25212.034|1.936|1.878|1.838|1.808|1.785|1.767|1.752|1.738| 1.5
1.94411.769|1.690|1.644|1.612|1.588|1.570|1.555|1.543|1.532| 1.34
1.727|1.581|1.515(1.476|1.450|1.430|1.415]1.403|1.392|1.384| 1.22
1.565|1.439/1.383|1.350(1.327|1.310(1.297|1.286(1.278|1.270| 1.13
1.4381.3281.279|1.249|1.229|1.215|1.203|1.194|1.186|1.180| 1.06
1.336|1.237|1.194|1.168 | 1.150|1.137|1.127|1.118 | 1.112|1.106 | 1.00
1.25111.162|1.123|1.100|1.084 | 1.072 | 1.063 | 1.055|1.049 | 1.044 | 0.95

O [0 ([ [ON || |Ww(d

—_
o

Hsu et al. (2007) used the most common method for modifying PCIs in the
non-normal case is the technique of quantile estimation. Analogous to the normal
case, where the “natural” process width is between the 0.135™ percentile and the
99.865™ percentile, PCIs can be redefined in terms of their quantiles for possible
modification in the non-normal case. The quantile definition for C,, are defined
as:

C,, =min {cpu,cpl}

i { USL—Fy,  Fys—LSL }
E).99865 _E).S , E).s - E).omss ,
so that the normality assumption can be verified simultaneously. To consider the

undetected process mean shift, they obtained Dynamic C,, index for non-normal
process by modifying Bothe’s Dynamic C

dynamic Cpk=min{U SL—(Fys + AS40) (Fys = AS40) = LSL}

0.99865 Fo.s E).s - Fo.00135

By considering an adjustment AS,,o in this assessment for undetected shifts in
process median, the estimate of dynamic index C, will decrease and the
expected total number of nonconforming parts will increase. This nonconforming
level assumes that undetected shifts are happening almost constantly and that
every one is equal to A4S, 0.



2.3. Process Capability Adjustment for Weibull Processes

Li (2007) provided the process capability adjustment for Weibull process.
Weibull distribution doesn’t have reproductive, and the parameter of the X
distribution can’t be found easily. They used a reference which Lu (2003) provided
to approximate the cumulative density function of X, of Weibull processes. The
UCL and LCL was 99.865™ and 0.135™ percentile of X, distribution. We call
the control chart they used is percentile Weibull control chart. Then they used the
control limits to calculate the detection power for Weibull processes under the
subgroup size n and shape parameter y .

Table 4. AS,, values for several n and various y values when £>0.

AS, Weibull distribution(1, y ) for right shift

n 1 2 3 4 5 6 7 8 9 10

2 3.611 | 2.492 | 2.009 | 1.767 | 1.632 | 1.536 | 1.470 | 1.424 | 1.387 | 1.359
3 2.735 | 1.967 | 1.642 | 1.482 | 1.373 | 1.307 | 1.261 | 1.228 | 1.197 | 1.182
4 2.250 | 1.663 | 1.448 | 1.309 | 1.232 | 1.175 | 1.138 | 1.103 | 1.087 | 1.071
5 1.944 | 1.484 | 1.301 | 1.196 | 1.127 | 1.084 | 1.047 | 1.025 | 1.006 | 0.988
6 1.716 | 1.343 | 1.201 | 1.104 | 1.043 | 1.009 | 0.981 | 0.960 | 0.942 | 0.932
7 1.569 | 1.239 | 1.119 | 1.037 | 0.990 | 0.954 | 0.928 | 0.907 | 0.892 | 0.881
8 1.440 | 1.159 | 1.051 | 0.984 | 0.939 | 0.905 | 0.883 | 0.864 | 0.852 | 0.839
9 1.340 | 1.086 | 0.991 | 0.930 | 0.891 | 0.865 | 0.845 | 0.828 | 0.814 | 0.805
10 | 1.251 | 1.031 | 0.943 | 0.889 | 0.853 | 0.828 | 0.811 | 0.797 | 0.784 | 0.773

Table 5. AS,, values for several n and various y values when £<0.

AS, Weibull distribution(1, y) for left shift

n 1 2 3 4 5 6 7 8 9 10

2 0.820 | 1.532 | 1.888 | 2.098 | 2.236 | 2.333 | 2.405 | 2.461 | 2.504 | 2.540
3 0.813 | 1.356 | 1.591 | 1.723 | 1.808 | 1.866 | 1.909 | 1.941 | 1.967 | 1.987
4 0.802 | 1.225 | 1.399 | 1.494 | 1.554 | 1.596 | 1.626 | 1.649 | 1.667 | 1.681
5 0.776 | 1.125 | 1.263 | 1.337 | 1.384 | 1.416 | 1.439 | 1.456 | 1.470 | 1.481
6 0.749 | 1.047 | 1.160 | 1.221 | 1.259 | 1.285 | 1.304 | 1.318 | 1.329 | 1.338
7 0.724 | 0.983 | 1.079 | 1.131 | 1.163 | 1.185 | 1.201 | 1.213 | 1.222 | 1.230
8 0.700 | 0.929 | 1.013 | 1.058 | 1.086 | 1.105 | 1.118 | 1.129 | 1.137 | 1.144
9 0.678 | 0.884 | 0.958 | 0.998 | 1.022 | 1.039 | 1.051 | 1.060 | 1.067 | 1.073
10 | 0.658 | 0.844 | 0.911 | 0.947 | 0.969 | 0.984 | 0.994 | 1.003 | 1.009 | 1.014

Since the shape of the Weibull distribution changing from positive skewness
to negative skewness with increasing the shape parameter, they discussed two
different cases. Process mean had right and left shifts. They used this cumulative



density function to compute the relationship between the mean shift and Type II
error and calculate the mean shift adjustment AS.,, which means that the
processes mean shift AS;, sigma when the detection power of control chart is
0.5. Table 4 and Table 5 display the magnitude of mean shift adjustments AS.,
based on the detection power is 0.5 and data from Weibull (1, y) distribution for
various value of y =1(1)10 and n=2(1)10 with right shift (£>0) and left shift
(£<0). They also used the most common method for modifying PCIs in the
non-normal case is the technique of quantile estimation, and the dynamic C,,
was as the same as gamma processes which Hsu ez al. (2007) provided.

The adjustments of Weibull processes are related that which control chart
you choose to control the process. The Shwehart X control chart assumed that
the process data come from a normal or near-normal distribution. When the data
come from Weibull distribution, we should choose control charts for non-normal
processes or for Weibull processes to control production process. Padgett and
Supurrier (1990) use Monte Carlo simulation to construct Shewhart-type control
charts for percentiles of strength distributions. Chan and Cui (2003) provided a
skewness correction X and R charts for skewed distribution. This control
chart proposed a skewness correction method for constructing the X and R
control charts for skewed process distributions. Their asymmetric control limits
are based on the degree of skewness estimated from the subgroups. Nichols and
Padgett (2006) provided a bootstrap Weibull control chart. This control chart is
use bootstrap method to simulate the UCL and LCL for monitoring Weibull
percentiles. Erto (2006) provided a Weibull control chart which was used Bayes
theorem to calculate the sampling distribution of Weibull percentile.



3. Control Chart Power Analysis for Weibull Processes

In this section, we introduce the Weibull distribution, and use three control
charts for Weibull processes to calculate the detection powers. Then, we analysis
the detection powers and compare them to find the best powerful control chart to
calculate the adjustments for Weibull processes.

3.1. The Weibull Processes

The Weibull distribution has been often used in the field of life data analysis
due to its flexibility. It can mimic the behavior of other statistical distributions
such as the normal and the exponential. The Weibull distributions are also used to
model the time until a given technical device fails. If the failurerate of the device
decreases over time, one choosesy <1 (y is the shape parameter). If the failure
rate of the device is constant over time, one choose y =1, again resulting in a
decreasing function f. If the failure rate of the device increases over time, one
chooses 7 >1 and obtains a density f which increases towards a maximum and
then decreases forever.

The Weibull distribution is non-negative distribution. It can be denoted as
Weibull (&, y) with scale parameter « and shape parameter y . The cumulative
density function function is defined as

F(X)=1-e“? x>0, >0, >0, 1)

and the probability density is

f(x)=ya7x""e (;)7, x>0, a>0, y>0, 2)

The mean and variance are given, respective, by
p=allA+yh)], 3
and
o’ =a’[TA+2y)-T*A+ ). 4)
Denoting the Weibull distribution is skewed. To know how this distribution
are different from the normal distribution in term of the coefficient of skewness

and the coefficient of kurtosis of the Weibull distribution under study are
presented in Table 3. The coefficient of skewness Weibull distribution is given by:

2%+ ) =30+ HPA+2y )+ T(1+3y7")

, 5
1 [CA+2y ™) -T*(1+y DI )
The kurtosis coefficient of Weibull distribution is given by:

7 a2 ©

T[r+2y")-T A+ P



where TI'(X) isthe gamma function and

f)=-6T* 1+, H+12I A+ Hra+2y™") -

7
A(1+2y ) —4Tr(1+y HraA+3yH+rd+4y™). 0

The Equations (5) and (6) show that skewness coefficient and the kurtosis
coefficient are calculated only by using the shape parameter y. This means that
the scale parameter o can not affect the values of skewness and kurtosis of
Weibull distributions. Therefore, we fix o =11n this study for the Weibull
distributions. To see how this distribution are different from the standard normal
distribution in terms of skewness and kurtosis, Table 6 shows the values of
skewness and kurtosis (which are defined as the third and fourth moments of the
standardized distribution, respectively) of the Weibull distributions under study. It
can be found in Table 6 that when the value of y increases from 1 to 3.6, the
corresponding values of skewness will become smaller and close to 0. Especially,
when value of y is 3.6, the skewness coefficient of the Weibull distribution is 0.
This means the Weibull (1, 3.6) distribution is symmetric about median and
appears more nearly normal distribution. When the value of y increases form
3.6 to 10, the corresponding values of skewness will become negative and far from
to 0. From the results through these distributions, we can get some insights of the
effects of non-normality in terms of skewness and kurtosis.

Table 6. Values of skewness and kurtosis of various Weibull distributions.

Weibull(e, ) skewness Kurtosis
Normal(0,1) 0 0
Weibull(1,1) 2 6
Weibull(1,2) 0.631111 0.245089
Weibull(1,3) 0.168103 -0.27054

Weibull(1,3.6) 0 -0.283255
Weibull(1,4) -0.087237 -0.25217
Weibull(1,5) -0.25411 -0.11971
Weibull(1,6) -0.373262 0.035455
Weibull(1,7) -0.46319 0.187183
Weibull(1,8) -0.533726 0.327676
Weibull(1,9) -0.590657 0.455204

Weibull(1,10) -0.637637 0.570166

The formula of these modulus let us know that « 1is scale parameter and y
1s shape parameter. To make short of the matter, scale parameter can modulate
the fold of the mean and the variance. Figure 1 displays Weibull distribution with
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various values of o and Figure 2 displays Weibull distribution with various of
7. We can find the scale parameter only control the mean and the variance to
adjust the distribution size.

Weibull PDF with various scale parameter

— Weibull(1, 5)
ﬂ === Weibull(Z, 5)
=== Weibull(3, 5)
1.5} “==es Weibull(4, 5 |
—— Weibull(5, 5)

density

Figure 1. Weibull distribution with various «

Weibull PDF with various shape parameter

4 : . . .
—— Weibull(1, 1)
3.9¢ = Weibull(1, 2) |
== Weibull(1, 3)
3r “ees Weibull(l, 5) | ]
—— Weibuli(1, 10)
2.5} -

density

Figure 2. Weibull distribution with various y
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Figure 3 shows several Weibull distributions along with a normal distribution
for the same mean and variance. In this study, we let y = 1(1)10, while
(without loss of generality) fixing «a =1. In Figure 3(a)-3(j) with the increasing
value of y,the Weibull (1,3) and Weibull (1,4) distributions appear more nearly
normal distribution. In fact, we demonstrate this convergence property in Table 6
by calculating the skewness and kurtosis. It can be seen that as the value of y in
the region of [3, 4], the skewness and kurtosis of Weibull distribution will be
getting much closer to those of normal distribution. This fact could be also found
according to Equation (10). When the value of y in the region of of [3, 4], the
form of Weibull distribution becomes centralizing. Through these distributions,
we wish to get some insights of the effects of non-normality on the detection
power in terms of skewness and kurtosis in Section 3.

3.2. The Detection Power of the Percentile Weibull Control Chart

In this section we use percentile Weibull control chart to calculate the
detection power. Let X, X,,...,X, be a sequence observations of independent
and identically distributed in Weibull (&, 7). The detection power was defined
the probability of outline control chart under the mean being shifted. Its mean
I-type II error f. The detection power is:

Detection power =1-P(LCL < X, < UCL‘ 1 =y, +ko,)
8)
=1-P(F X(0.00135) = X <F*(099865)‘:u1 Uy + ko),

where 4, 1isthe mean after process shift (4, is the mean of the original process).
The control limits LCL and UCL are calculated as Fy o155 and Fy o
respectively, where Fy o35 and Fy ggees are 0. 135 percentlle and 99.865"
of X of sampling distribution. We can obtain the approximate c.d.f. of X,
distribution by a reference which Li (2007) provided. Since the X, distribution is
not symmetric, we discussed x occurred right movement and left movement.
When £>0, it is mean u occurred right movement; and £<(0 means u
occurred left movement.

Table 7 and Table 8 display the detection power with right process mean shift
(k>0) and left process mean shift (#<0) when X,,X,,...,X, come from
Weibull (e, y) with ¢=1 and y=1(1) 10, and the number of subgroup is
100000. The magnitude of shift in the second column on the left is Bothe’s
capability adjustments determined when data comes from normal distribution
and the detection power is 0.5. We can find that the detection power is less than
0.5 when y=1 and 2 in Table 7, and y >5 in Table 8 under Bothe’s capability
adjustments. The results show that the Bothe’s adjustments are inadequate when
we have Weibull processes. This is due to Bothe’s approach is based on the
normality assumption of the data and the detection power is 0.5. The detection
power is more than 0.5 when y =3 and 4 in Tables 7 and 8. This means that
Weibull distribution is close to normal distribution when y =3 and 4. This fact
could be also found from Table 6 and Figures 3(c)-3(d). As the value of y in the
region of of [3, 4], the form of Weibull distribution becomes centralizing.
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However, the detection power is poorer and far less than 0.5 when data come
from more skewed Weibull distribution. For example, when y =1 and the
subgroup size n =2, the detection power is 0.054. It implies Bothe’s adjustments
are inadequate when we have skewed processes. Consequently, in our study, we
determined the capability adjustment when process data comes from Weibull
distribution.

Table 7. Detection power of the percentile Weibull control chart for #>0 under
various Weibull distributions.
Shift Weibull distribution(1, y) for right shift
! o vy=1 | y=2| y=3|y=4| y=5]| vy=6| v=7| vy=8| v=9 | v=10
2 | 212 0.054 | 0.309 | 0.525 | 0.687 | 0.747 | 0.785 | 0.807 | 0.822 | 0.833 | 0.841
3 | 1.73 | 0.091 | 0.347 | 0.524 | 0.664 | 0.726 | 0.760 | 0.782 | 0.796 | 0.809 | 0.815
4 | 1.5 | 0.099 | 0.375 | 0.516 | 0.646 | 0.699 | 0.735 | 0.756 | 0.775 | 0.784 | 0.793
5134 0.119 | 0.378 | 0.514 | 0.626 | 0.681 | 0.712 | 0.738 | 0.752 | 0.764 | 0.775
6 | 1.22 | 0.141 | 0.389 | 0.509 | 0.614 | 0.668 | 0.696 | 0.719 | 0.734 | 0.747 | 0.755
7 | 1.13 ] 0.149 | 0.385 | 0.517 | 0.596 | 0.645 | 0.677 | 0.699 | 0.715 | 0.728 | 0.737
8 | 1.06 | 0.163 | 0.391 | 0.516 | 0.589 | 0.636 | 0.666 | 0.688 | 0.704 | 0.717 | 0.726
9 | 1.00 | 0.175 | 0.398 | 0.513 | 0.582 | 0.626 | 0.656 | 0.678 | 0.693 | 0.705 | 0.714
10 | 0.95 | 0.188 | 0.403 | 0.512 | 0.577 | 0.620 | 0.648 | 0.668 | 0.684 | 0.695 | 0.705

Table 8. Detection power of the percentile Weibull control chart for £<0 under

various Weibull distributions.

Shift Weibull distribution(1, y) for left shift
" o y=1|y=2| y=3| vy=4| y=5| vy=6| v=7| vy=8| v=9 | v=10
2 | 212 ]0.928 | 0.782 | 0.550 | 0.513 | 0.439 | 0.387 | 0.350 | 0.323 | 0.304 | 0.288
3 | 1.73 1 0.906 | 0.733 | 0.537 | 0.506 | 0.449 | 0.411 | 0.384 | 0.364 | 0.348 | 0.337
4 | 1.5 [ 0.886 | 0.702 | 0.532 | 0.505 | 0.458 | 0.426 | 0.404 | 0.385 | 0.375 | 0.365
5| 1.34 | 0.868 | 0.680 | 0.527 | 0.504 | 0.464 | 0.436 | 0.416 | 0.401 | 0.390 | 0.381
6 | 1.22 [ 0.852 | 0.664 | 0.525 | 0.504 | 0.467 | 0.441 | 0.424 | 0.411 | 0.401 | 0.393
7 | 1.13 | 0.836 | 0.649 | 0.553 | 0.499 | 0.466 | 0.443 | 0.427 | 0.416 | 0.406 | 0.399
8 | 1.06 | 0.825 | 0.642 | 0.552 | 0.502 | 0.471 | 0.450 | 0.436 | 0.424 | 0.416 | 0.409
9 | 1.00 | 0.814 | 0.634 | 0.549 | 0.503 | 0.474 | 0.454 | 0.440 | 0.430 | 0.422 | 0.415
10| 0.95 | 0.805 | 0.629 | 0.548 | 0.504 | 0.477 | 0.458 | 0.445 | 0.435 | 0.427 | 0.421
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3.3. The Detection Power of the Bootstrap Weibull control chart

The usual Shewhart control charts assume that the observed process data
come from a near-normal distribution. However, when the distribution of the
process under observation is unknown or non-normal such as Gamma or Weibull,
the sampling distribution of a parameter estimator may not be available
theoretically. One of the ways to estimate parameter is simulation. Nichols and
Padgett (2006) provided a bootstrap Weibull control chart for Weibull percentiles.
This control chart is use bootstrap method to construct control chart limits for
monitoring a specified percentile of the process distribution.

The percentile of the Weibull distribution is
1
W,=al-In(l1-p)I", 0<p<l,
where W, isthe 100 p  percentile.
The following steps are used to construct the bootstrap Weibull control chart.

1. From an in-control, stable process, observe nxm observations taken from
Weibull distribution with unknown scale and shape parameters, ¢ and y,
respectively. The observations are denoted by x,, i=1,...,n, and
j=1,...,m, and are assumed to come from m independent subgroups of
size n.

2. Using the maximum likelihood method to find @ and 7. The equations

are

1

1
g 3N x| > |
. z]’:IZi:lxi/ lnxi _ j=1 z':1xif Inxi j=1 i:lxij
nm

~ - and o=
7 nm
22

/4

3. Generate a bootstrap subgroup of size #, x;,x,,...x,, from the Weibull
distribution using maximum likelihood estimators, & and 7, as the
estimated parameters.

4. Find the parameter MLEs from the bootstrap subgroup and denote these as
4" and 7.

5. For the bootstrap subgroup, find W, = 4’ [-In(1- p)]%*, 0<p<l1, the
bootstrap estimate of the 100 p th percentile, W, .

6. Repeat steps 3-5 a large number of times, B, obtaining B bootstrap
estimates of W,, denoted by w.,, W, ’

e Wiy ooy W

7. Order the B bootstrap estimates W;., from smallest to largest. The LCL
is the (0.00135xB) value of the ordered W;, and the UCL 1is the
(0.99865 % B) value of the ordered Wpt. .
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Table 9. Detection power of the bootstrap Weibull control chart for £>0 under

various Weibull distributions.

Shift Weibull distribution(1, y) for right shift
B o y=1 | y=2| y=3| y=4| vy=5| vy=6| vy=7| vy=8| vy=9 | =10
2 212 0.066 | 0.283 | 0.489 | 0.572 | 0.642 | 0.679 | 0.717 | 0.733 | 0.755 | 0.758
3 |1.73 ] 0.118 | 0.306 | 0.456 | 0.574 | 0.644 | 0.669 | 0.702 | 0.710 | 0.721 | 0.743
4 | 1.5 | 0.180 | 0.329 | 0.476 | 0.574 | 0.617 | 0.646 | 0.666 | 0.698 | 0.716 | 0.727
5 |1.34 | 0.169 | 0.355 | 0.461 | 0.543 | 0.603 | 0.638 | 0.669 | 0.673 | 0.688 | 0.722
6 | 1.22 | 0.256 | 0.344 | 0.488 | 0.541 | 0.581 | 0.626 | 0.661 | 0.674 | 0.697 | 0.704
7 | 1.13 | 0.289 | 0.363 | 0.488 | 0.538 | 0.581 | 0.618 | 0.652 | 0.676 | 0.678 | 0.705
8 | 1.06 | 0.305 | 0.381 | 0.470 | 0.538 | 0.592 | 0.616 | 0.656 | 0.659 | 0.682 | 0.691
9 | 1.00 | 0.343 | 0.384 | 0.480 | 0.547 | 0.581 | 0.612 | 0.643 | 0.656 | 0.676 | 0.688
10| 0.95 | 0.361 | 0.395 | 0.491 | 0.552 | 0.580 | 0.634 | 0.640 | 0.658 | 0.682 | 0.683

Table 10. Detection power of the bootstrap Weibull control chart for £<0 under
various Weibull distributions.

Shift Weibull distribution(1l, y) for left shift
! o y=1 | y=2| y=3| y=4| v=5| v=6| vy=7| y=8| v= v =10
2 | 212 ] 0.955|0.795 | 0.627 | 0.512 | 0.440 | 0.388 | 0.359 | 0.334 | 0.319 | 0.289
3 1173 (0.953|0.755|0.592 | 0.499 | 0.464 | 0.419 | 0.385 | 0.374 | 0.362 | 0.340
4 | 1.5 {0952 ]0.726 | 0.582 | 0.496 | 0.462 | 0.431 | 0.391 | 0.385 | 0.409 | 0.385
5 | 1.34 | 0.949 | 0.707 | 0.554 | 0.509 | 0.465 | 0.441 | 0.437 | 0.434 | 0.415 | 0.407
6 | 1.22 | 0.947 | 0.692 | 0.574 | 0.518 | 0.466 | 0.482 | 0.435 | 0.440 | 0.434 | 0.432
7 | 1.13 | 0.946 | 0.676 | 0.561 | 0.494 | 0.483 | 0.445 | 0.466 | 0.446 | 0.452 | 0.456
8 | 1.06 | 0.946 | 0.667 | 0.533 | 0.490 | 0.480 | 0.467 | 0.465 | 0.442 | 0.442 | 0.445
9 | 1.00 | 0.942 | 0.663 | 0.559 | 0.484 | 0.494 | 0.455 | 0.456 | 0.452 | 0.427 | 0.469
10| 0.95 | 0.943 | 0.662 | 0.544 | 0.511 | 0.488 | 0.482 | 0.492 | 0.454 | 0.459 | 0.473

In order to compare with the detection power of the percentile Weibull
control chart, we set the percentile p to be 0.5 to similar the sampling
distribution of X, and the repeated time B is 100000. Table 9 and Table 10
display the detection power of the 50™ percentile of the distribution with shift
ko, when data come from Weibull distribution with the scale parameter o =1
and the shape parameter y =1 (1) 10. The shift distance in the second column is
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Bothe’s adjustment as the same as Table7 and Table 8. We can find that the
detection power is less than 0.5 when y <3 in Table 9, and y>5 in Table 10.
This results show that the Bothe’s adjustments are inadequate too as the same as
the results in Section 3.2, and when data come from more skewed Weibull
distribution, we have also the same results in Section 3.2 that the detection power
1s poorer and far less than 0.5.

3.4. Erto’s Weibull Control Chart for Weibull Processes

In past section we talk about the Shewhart X control chart assumed that
data should come from normal distribution. If data come from non-normal
distribution (such as Gamma or Weibull distribution), we just only use simulation
or approximate to get an inexact results. In order to get an exact result, using a
Weibull control chart which Erto (2006) provided is a better choice. Erto provided
a new Shewhart-type control chart of Weibull percentile. This chart uses Practical
Bayes Estimators (PBE) of the Bayes theorem to integrate both technological and
statistical information analytically. The PBE were developed from engineers’
point of view.

The Weibull survival function is:
Sf{x;a,y}= exp[—(x/a)q; x>0; a,y>0, 9

where «, y are scale and shape parameters of the Weibull distribution. We can
be immediately reparameterized in terms of the percentile x, and shape
parameter 2, in which the Engineers’ knowledge can be more easily converted:

Sf {x; xy, 7} =exp[ -K(x/x,) ], x20,%,, y>0, K=In(l/R),  (10)

where x, and y both being unknown. x, is equivalent to the 1-R
percentile of the Weibull distribution, for example: if R=0.90 and x, =1,000
hours, then 90% of the items have lives greater than 1,000 hours.

The uniform prior probability density function in the interval (y,, y,) 1s
assumed to fit the degree of belief in the shape parameter £ of the sampling
distribution:

V(r,-n),  7nz2rzn>0, >y
pdf{y} = /(r2-11) 2 ! 2o (11)
0; elsewhere

it appears to be as non-restrictive as feasible.

For the selected percentile x, (corresponding to the fixed reliability level
R ) the prior probability density function is assumed to be the Inverse Weibull:

pdf{xy}=ab(ax,) " exp[~(ax,)" |; %, 20,  ,b>0, (12)
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where a and b are scale and shape parameters respectively. It is assumed b=y .
When the greater y 1is, the more peaked the Weibull probability density function
is, the smaller the uncertainty in x, is and then greater b must be, so b=y is
the simplest choice. So the probability density function of x, is converted into
the conditional prior:

pdf{xR|7/}=a7/(axR)’(7”) exp[—(axR)’y]; a,y>0. (13)

From Equation (11), the mean value E{x,} of the probability density function
is: E {xR} =(1/a) T(1-1/b). From this function and assumed b=y, we can know
that:

- ra-1/y,)
E{xg}

Usually, a sample array x of 7 experimental data is available. If the
reliability (measured in terms of lifetime, tensile strength, breaking strength, etc.)
of the items is characterized by the Equation (9), the likelihood of the sample is
given by:

; Y =1 +72)/2. (14)

L@m,y)oc[lyJ [1x" exp[—ﬁyixf]. (15)
X i=1

R Xp i=l

And from the two priors Equation (10) and (12), the joint probability density
function of x, and y isobtained:

pdf{xcg, 7} = (7, —1) " ay (ax,) 7 exp[ —(axy) 7 |. (16)

Combining the Equation (14) and (15) by using the Bayes theorem which
substantially says:

joint posterior probability density their joint prior likelithood
oC X
function

of unknown parameters probability density

“Prior” and “posterior” mean before and after obtaining experimental data
respectively. So, in this way, the theorem fuses the technological prior knowledge,
summarized into joint prior, with all the information (data and shape of the
reliability model) included into likelthood. We can get the joint posterior
probability density function of unknown parameters is:

yha x, 7! fo‘l exp[—xR_'V [a‘7 +K ley ﬂ
. an

pdf {xp,7|x} = = =

—(n+1)
P2 B n B B n
n!J.2)/”a7l_le.7l (a7+KZx[yj dy
" ; :
i=1 i=1
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From Equation (16), we can calculate the expectations of x, and y is:

I .

I I
I’

E{x; |2} = E{y|x} =[—j, (18)

where
n

" —(n+l)+k;
I, :fhﬂfa‘yl_[xf_l(a‘HK xfj T(n+1-k)dy j=1,2,3,
i=1

j
n i-1

with the following values for the parameters m, and &, :
m=my=n;, my=n+1; k=k=0;, k=1/y.

Following the shewhart approach, we can use the Equation (17) to get the center
line from all the available data, and use a transformation

z=x; (a"y +K Zn:xiyJ (19)

to transform the random variable (x,, y) into a standard Gamma one. From this
way, the Equation (16) of the probability density function can be transformed to:

_ Zn eXp(—Z) I Z(n+1)—1

n! C(n+1)

pdf {z|x} exp(-z); z>0. (20)

We can estimate the UCL and LCL of x, control chart by inverse the
Equation (18):

1
1 n =
Xy=z7 (a'7+Kin7j7. 1)
i=1

The Weibull control chart is more precise than the percentile Weibull control
chart and Bootstrap Weibull control chart in control Weibull process because Erto
had provide the sampling distribution of the control chart and exhibit the UCL
and LCL of the control chart by using the sampling distribution.

3.5. The Detection Power of Erto’s Weibull Control Chart

In this section, we use the Erto’s Weibull control chart which Erto provided
to calculate the detection power when the Weibull process mean has shifted
distances which is the Bothe’s capability adjustments.
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Table 11. Detection power of the Erto’s Weibull control chart for £>0 under
various Weibull distributions.
Shift Weibull distribution(1, y) for right shift

o y=1| v=2| v=3|v=4| y=5|y=6| vy=7| v=8| v=9 | v=10
2.12 [ 0.276 | 0.649 | 0.823 | 0.861 | 0.906 | 0.937 | 0.949 | 0.955 | 0.964 | 0.974
1.73 1 0.345 | 0.615 | 0.736 | 0.826 | 0.841 | 0.871 | 0.894 | 0.899 | 0.914 | 0.920

1.5 |0.454 | 0.598 | 0.715 | 0.778 | 0.838 | 0.844 | 0.861 | 0.873 | 0.883 | 0.890
1.34 | 0.477 | 0.588 | 0.704 | 0.753 | 0.806 | 0.828 | 0.841 | 0.859 | 0.865 | 0.869
1.22 1 0.539 | 0.579 | 0.686 | 0.735 | 0.770 | 0.803 | 0.818 | 0.834 | 0.840 | 0.858
1.13 | 0.589 | 0.602 | 0.679 | 0.727 | 0.769 | 0.784 | 0.812 | 0.830 | 0.831 | 0.849
1.06 | 0.603 | 0.607 | 0.680 | 0.728 | 0.763 | 0.790 | 0.812 | 0.827 | 0.835 | 0.844
1.00 | 0.648 | 0.591 | 0.656 | 0.720 | 0.761 | 0.781 | 0.795 | 0.805 | 0.822 | 0.830
0.95 | 0.656 | 0.580 | 0.667 | 0.715 | 0.750 | 0.779 | 0.796 | 0.805 | 0.827 | 0.830

NO |00 [ [ ON | [ x| (DN
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Table 12. Detection power of the Erto’s Weibull control chart for £<0 under
various Weibull distributions.

Shift Weibull distribution(1, y) for left shift
B o y=1|v=2 | vy=3|y=4| y=5| y=6| v=7| v=8| v=9| v=10
2 21210985 |0.971 | 0.972 | 0.978 | 0.981 | 0.984 | 0.987 | 0.989 | 0.990 | 0.991
3 | 1.73 | 0.983 | 0.925 | 0.910 | 0.900 | 0.908 | 0.911 | 0.917 | 0.923 | 0.923 | 0.926
4 | 1.5 [ 0.980 | 0.889 | 0.846 | 0.828 | 0.819 | 0.824 | 0.840 | 0.841 | 0.838 | 0.834
5 | 1.34 | 0.978 | 0.847 | 0.795 | 0.780 | 0.770 | 0.769 | 0.775 | 0.777 | 0.785 | 0.788
6 | 1.22 | 0.977 | 0.832 | 0.762 | 0.743 | 0.736 | 0.737 | 0.734 | 0.743 | 0.746 | 0.747
7 | 1.13 1 0.975| 0.810 | 0.734 | 0.702 | 0.691 | 0.699 | 0.698 | 0.709 | 0.706 | 0.693
8 | 1.06 | 0.972 | 0.800 | 0.719 | 0.694 | 0.697 | 0.690 | 0.698 | 0.688 | 0.688 | 0.697
9 | 1.00 | 0.973 | 0.778 | 0.720 | 0.680 | 0.674 | 0.668 | 0.674 | 0.695 | 0.693 | 0.692
10 | 0.95 | 0.972 | 0.785 | 0.688 | 0.693 | 0.680 | 0.668 | 0.678 | 0.689 | 0.681 | 0.672

Let X,,X,,...,X, be a sequence observations of independent and
identically distributed in Weibull (&, 7). In order to compare with the detection
power, we set the reliability level R=0.5 to similar the sampling distribution of
X, a=land y=1(1) 10 as the same as the setting in the Section 3.2, and we
can compute the x, from Equation (9). The interval (y,, 7,) of the Uniform
prior probability density function is set very close to the y, and the number of
subgroup is 100000. Table 11 and Table 12 display the detection power of the
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Erto’s Weibull control chart when data come from Weibull process with right
shifts and left shifts. The magnitude of shifts in the second column on the left is
Bothe’s capability adjustments as the same as Table 7 and Table 8. We can find
that the detection power is almost more than 0.5 except y=1 and n=1,2,3,4.
For example, when data come from Weibull(1, 5) with right shift distance 1.5«
and subgroup size n =4, the detection power of Erto’s Weibull control chart is
0.838>0.5. This means that the Bothe’s adjustment is inadequate and will
over-adjustment the process capability.

3.6. Detection Power Comparisons

In past sections of this chapter, we have introduced three control charts for
Weibull processes, and we want to know which control chart is the best powerful
in control Weibull processes. Comparing the results of Table 7, Table 9, Table 11,
and Table 8, Table 10, Table 12 we can find that under the same shift distance the
detection power of the Erto’s Weibull control chart is the best powerful control
chart. For example, when data comes from Weibull (« =1, y =5), and subgroup
size is four, the detection power of Erto’s Weibull control chart (0.818) is better
than the detection power of percentile Weibull control chart (0.699) and the
detection power of bootstrap Weibull control chart(0.617). Figure 4, Figure 5,
display the power curve of the percentile Weibull control chart (short-dotted line),
the bootstrap Weibull control chart (long-dotted line) and the Erto’s Weibull
control chart (line) when data come from Weibull (a =1, y =1(1)10) with right
and left shifts and subgroup size are 2. We can find that the power curve of the
Erto’s Weibull control chart is almost on the left of the power curve of the other
two control chart except shape parameter y > 6 and the mean shifts are small.
There are other power curves with subgroup size n=4,6 in Appendix A.

Although the detection power of the Erto’s Weibull control chart is less then
the detection power of the percentile Weibull control chart in some situations, but
we want to calculate the adjustment of C,, for Weibull processes, we will set the
detection power is 0.5 to know the mean shifts. When the power=0.5, the mean
shifts of the Erto’s Weibull control chart are shorter then the mean shifts of the
percentile Weibull control chart and bootstrap Weibull control chart, so we
choose the Erto’s Weibull control chart to calculate the undetected mean shift
under designated power. The undetected mean shift adjustment in Table 13 and
Table 14 is called AS,, which is the magnitude of shift we need to adjust based
on designated detection power of the Erto’s Weibull control chart is 0.5 and
process data comes from Weibull (1, y) distribution with various value of
y =1(1)10 and the subgroup size n=2(1)15. In Table 13 and Table 14, under the
same subgroup size the upper row is the AS,, which calculate by Erto’s Weibull
control chart and the lower row is the AS,, which Li (2007) provided by
percentile Weibull control chart. We can find that under the same shape
parameter y and subgroup size # the numbers of the upper row are smaller
than the numbers of the lower row. For example, if we set y =5 and n=5, the
adjustment of upper row is 1.020 and the lower row is 1.127. We can conclude
that our result is distinctly better than the results which Li (2007) provided.
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Why not discuss the relationship between AS,, and scale parameter? To
view the formula of skewness coefficient and kurtosis coefficient for Weibull
distribution, we know scale parameter unable to affect these. So the fixed y and
subgroup size can look for the AS;,. We also don’t talk about that when the
shape parameter y <1 because of the Equation (14). If the y <1, we can’t
calculate the parameter a for Erto’s Weibull control chart.

Table 13. AS,, values for several subgroup sizes n and various y values
of Weibull distribution(1, y) for right shifts.

4 1 |21 3| 4|56 | 7| 8] 9110

Erto’s |2.513|1.954/1.703|1.582|1.495|1.446|1.378|1.336(1.321|1.288
percentile(3.611(2.492|2.009|1.767|1.632|1.536|1.470(1.424|1.387|1.359
Erto’s [1.867|1.615/1.440(1.330|1.278|1.226{1.190|1.180{1.159|1.122
percentile(2.735|1.967|1.642|1.482|1.373|1.307|1.261|1.228|1.197(1.182
Erto’s [1.564(1.415(1.272{1.177|1.123|1.106{1.055|1.045/1.033|1.021
percentile|2.250|1.633|1.448|1.309|1.232|1.175|1.138|1.103|1.087(1.071
Erto’s {1.353]1.255/1.140(1.089{1.020(0.998|0.970/0.949|0.951|0.935
percentile|1.944(1.484/1.301{1.196|1.127/1.084/1.047|1.025|1.006/0.988
Erto’s {1.203]1.146/1.068(0.992(0.951/0.918|0.905/|0.881|0.873|0.859
percentile(1.716(1.343/1.201|1.104{1.043|1.009|0.981|0.960(0.942(0.932
Erto’s {1.110(1.065]0.976(0.936(0.885|0.864|0.854/0.835|0.832|0.815
percentile(1.569(1.239|1.119|1.037|0.990]0.954/0.928|0.907|0.892|0.881
Erto’s [1.012]0.978|0.946/0.875|0.844(0.817]0.805|0.787/0.774|0.772
percentile(1.440(1.159|1.051|0.984/0.939|0.905|0.883|0.864|0.852|0.839
Erto’s {0.925/0.934/0.876(0.829(0.795/0.783|0.757|0.753|0.740|0.730
percentile(1.340(1.086/0.991|0.930]0.891|0.865|0.845|0.828|0.814|0.805
Erto’s |0.859]0.890/0.839(0.801(0.753|0.751|0.727|0.711]0.703]0.703
percentile|1.251|1.031]0.943|0.889(0.853|0.828|0.811|0.797|0.784/0.773
Erto’s |0.810(0.832]0.789(0.755(0.739(0.725|0.718|0.691|0.671|0.665
percentile|1.185|0.975/0.899|0.854|0.816|0.799(0.777/0.768|0.756|0.748
Erto’s |0.773]0.808]0.767(0.719(0.693|0.694/0.674|0.662|0.658|0.647
percentile(1.110(0.932/0.858|0.820|0.787|0.767|0.752|0.741|0.729(0.722
Erto’s |0.740(0.789/0.739/0.704(0.692|0.668|0.648|0.649|0.629|0.635
percentile(1.066(0.893|0.828|0.788|0.763|0.746|0.728|0.721|0.708|0.701
Erto’s ]0.715]0.759|0.714/0.680|0.665|0.645|0.638|0.627/0.601|0.608
percentile(1.021(0.861|0.801|0.762|0.737|0.723|0.709|0.696|0.688|0.684
Erto’s |0.667]0.723]0.694(0.663|0.644/0.617|0.609|0.597|0.593|0.583
percentile(0.974(0.829|0.772|0.745|0.717|0.701|0.689|0.675|0.669|0.660

n

2

10

11

12

13

14

15
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Table 14. AS., values for several subgroup sizes n and various y values
of Weibull distribution(1, y) for left shifts.

4

n

1

2

3

4

5

10

2

Erto’s

0.563

0.960

1.041

1.063

1.062

1.063

1.060

1.064

1.054

1.055

percentile

0.820

1.532

1.888

2.098

2.236

2.333

2.405

2.461

2.504

2.540

Erto’s

0.568

0.998

1.113

1.128

1.144

1.157

1.155

1.148

1.153

1.150

percentile

0.813

1.356

1.591

1.723

1.808

1.866

1.909

1.941

1.967

1.987

Erto’s

0.563

0.995

1.088

1.115

1.137

1.148

1.139

1.132

1.142

1.142

percentile

0.802

1.225

1.399

1.494

1.554

1.596

1.626

1.649

1.667

1.681

Erto’s

0.568

0.998

1.078

1.103

1.129

1.145

1.135

1.124

1.135

1.123

percentile

0.776

1.125

1.263

1.337

1.384

1.416

1.439

1.456

1.470

1.481

Erto’s

0.557

0.971

1.074

1.102

1.122

1.130

1.135

1.128

1.132

1.126

percentile

0.749

1.047

1.160

1.221

1.259

1.285

1.304

1.318

1.329

1.338

Erto’s

0.542

0.926

1.014

1.065

1.063

1.093

1.098

1.082

1.084

1.079

percentile

0.724

0.983

1.079

1.131

1.163

1.185

1.201

1.213

1.222

1.230

Erto’s

0.523

0.872

0.978

0.992

1.026

1.029

1.026

1.020

1.022

1.034

percentile

0.700

0.929

1.013

1.058

1.086

1.105

1.118

1.129

1.137

1.144

Erto’s

0.500

0.844

0.922

0.968

0.971

0.978

0.967

0.967

0.967

0.964

percentile

0.678

0.884

0.958

0.998

1.022

1.039

1.051

1.060

1.067

1.073

10

Erto’s

0.482

0.806

0.882

0.902

0.908

0.916

0.920

0.927

0.915

0.922

percentile

0.658

0.844

0.911

0.947

0.969

0.984

0.994

1.003

1.009

1.014

11

Erto’s

0.440

0.717

0.780

0.795

0.799

0.788

0.798

0.802

0.775

0.814

percentile

0.640

0.810

0.871

0.903

0.923

0.936

0.946

0.954

0.959

0.964

12

Erto’s

0.435

0.688

0.741

0.775

0.762

0.771

0.761

0.766

0.767

0.762

percentile

0.623

0.780

0.835

0.865

0.883

0.895

0.904

0.911

0.916

0.921

13

Erto’s

0.421

0.668

0.729

0.740

0.743

0.740

0.745

0.748

0.737

0.727

percentile

0.607

0.753

0.804

0.831

0.848

0.859

0.867

0.873

0.879

0.882

14

Erto’s

0.410

0.643

0.702

0.713

0.712

0.709

0.706

0.709

0.710

0.703

percentile

0.593

0.728

0.776

0.801

0.816

0.827

0.834

0.840

0.845

0.848

15

Erto’s

0.400

0.618

0.678

0.683

0.688

0.684

0.692

0.683

0.683

0.682

percentile

0.579

0.706

0.751

0.774

0.788

0.798

0.805

0.811

0.815

0.818
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4. Process Capability Adjustment for Weibull Processes
4.1 Estimator of C,, for Non-Normal Processes

The purpose of process capability indices, which are statistical measures of
process capability, is based on several assumptions. Two of the most important
assumption is that the process monitored is supposed to be stable and the output
1s approximately normal distribution. When the distribution of a process
characteristic 1s non-normal, PCIs could often lead to erroneous and misleading
interpretation of the process capability.

In the recent years, several approaches the problems of PCIs for the
non-normal populations have been suggested. Chen and Pearn (1997) consider
come generalizations of these basic capability indices to cover non-normal
distribution. Since the median is usually the preferable central value for a skewed
distribution, the index C,, for non-normal processes were called C,, were
defined as:

C. —min USL-M M - LSL 22)

ot |:E).99865 3 E).omss } ’ |:E)499865 - E)Aomss } ’
2 2

where F, ;s is the 0.135" percentile, F} o, is the 99.865" percentile and M

is the median.

4.2 Process Capability Adjustment of C,, for Weibull Processes

Acknowledging that a process will experience shifts in Fj.,(median) of
various magnitudes and knowing that not all of these will be discovered, some
allowance for them must be made when estimating outgoing quality so customers
are not disappointed. Because shifts ranging in size from 0 up to AS,,o are the
likely to main undetected, a conservative approach it to assume that every missed
shift it as large as AS.,. When estimating capability, M minus AS, o is used
to evaluate how well the process output meets the LSL and M plus AS,o is
used for determining conformance to the USL. Both of these adjustments are
incorporated into the C, formula, now called the “dynamic” C,, index, by
making the following modifications:

USL—(M + AS,,0) (M — ASsy0)— LSL
[%.99865 _ E).00135 :| ’ ‘:E).99865 — E).omas :l

dynamic C,, =min

2 2
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USL—M — AS,c M —AS,,c—LSL

|:E).99865 — E).ooms :| ’ |:E).99865 — Fo.00135 }
2 2

=min

(25)

The AS,, have different results when the process distributions have right
shifts or left shifts, but we can’t know what sides the processes shift to. In order to
calculate the C,,,, we have to combine the upper row of Table 13 and Table 14 to
get an adjustment for Weibull processes with shift distances. Since A4S, and
Cy have an inverse ratio and we would not overestimate the process capability,
choose a bigger AS, is a better choice. Table 15 shows the bigger A4S,, of
Table 13 and Table 14 when data come from the same parameters and we add the
subgroup size to 30. For example, when data come from Weibull (1, 5) and n=5,
the AS,, of the mean has right shifts is 1.0198 and the AS;, of the mean has
left shifts is 1.1285, the adjustment distances for Weibull (1, 5) and n=5 are
1.1285. We conclude that the adjustment AS,,-o(=1.120) is required based on
the detection power is 0.5 and data comes from Weibull (1, 5). By including an
adjustment in this assessment for undetected shifts in median, the estimate of
capability with decrease and the expected total number nonconforming parts will
increase.
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Table 15. AS,, values for several subgroup sizes n and various y values
of Weibull distribution(1, y).

n

1

2

3

4

10

2.513

1.954

1.703

1.582

1.495

1.446

1.378

1.336

1.321

1.288

1.867

1.615

1.440

1.330

1.278

1.226

1.190

1.180

1.159

1.150

1.564

1.415

1.272

1.177

1.137

1.148

1.139

1.132

1.142

1.142

1.353

1.255

1.140

1.103

1.129

1.145

1.135

1.124

1.135

1.123

1.203

1.146

1.074

1.102

1.122

1.130

1.135

1.128

1.132

1.126

1.110

1.065

1.014

1.065

1.063

1.093

1.098

1.082

1.084

1.079

1.012

0.978

0.978

0.992

1.026

1.029

1.026

1.020

1.022

1.034

NeN e NIENENo WG, N ET-NE RO )

0.925

0.934

0.922

0.968

0.971

0.978

0.967

0.967

0.967

0.964

—_
o

0.859

0.890

0.882

0.902

0.908

0.916

0.920

0.927

0.915

0.922

—_
—_—

0.810

0.832

0.789

0.795

0.799

0.788

0.798

0.802

0.775

0.814

—_
(NS}

0.773

0.808

0.767

0.775

0.762

0.771

0.761

0.766

0.767

0.762

—_
W

0.740

0.789

0.739

0.740

0.743

0.740

0.745

0.748

0.737

0.727

—_
1SN

0.715

0.759

0.714

0.713

0.712

0.709

0.706

0.709

0.710

0.703

—_
i

0.667

0.723

0.694

0.683

0.688

0.684

0.692

0.683

0.683

0.682

—_
(@)}

0.650

0.707

0.669

0.667

0.667

0.681

0.663

0.674

0.665

0.656

—_
~

0.630

0.672

0.644

0.650

0.656

0.637

0.650

0.647

0.646

0.656

—_
co

0.600

0.663

0.628

0.626

0.640

0.635

0.629

0.631

0.637

0.629

—_
\O

0.580

0.645

0.606

0.626

0.614

0.621

0.611

0.609

0.611

0.612

[\
e}

0.564

0.626

0.596

0.597

0.600

0.601

0.599

0.593

0.603

0.588

[\
—_

0.549

0.604

0.583

0.587

0.582

0.591

0.582

0.580

0.586

0.586

N
N

0.549

0.596

0.568

0.588

0.564

0.579

0.572

0.567

0.569

0.567

N
W

0.532

0.574

0.558

0.559

0.572

0.564

0.557

0.557

0.552

0.552

[\
IS

0.512

0.562

0.542

0.553

0.548

0.551

0.547

0.544

0.549

0.546

N
9]

0.500

0.554

0.536

0.548

0.540

0.534

0.546

0.529

0.532

0.534

[\
(@)}

0.489

0.547

0.528

0.527

0.528

0.516

0.519

0.524

0.526

0.522

N
~

0.473

0.532

0.512

0.514

0.520

0.511

0.518

0.509

0.517

0.509

N
oo

0.468

0.528

0.508

0.512

0.508

0.508

0.496

0.503

0.500

0.494

N
\O

0.457

0.524

0.505

0.493

0.492

0.492

0.492

0.495

0.493

0.492

W
(e}

0.447

0.517

0.498

0.482

0.494

0.486

0.484

0.479

0.480

0.472

28




5. An Application

Adjustable speed drives (ASDs) for medium and large size motors are
increasingly being adopted for the automation, transportation, and control of
industrial production. However, the usage of ASDs with ac induction motors has
led to the premature failure of the winding insulation. The most often reported
failure occurs because of breakdown of the enameled wire insulation, and
therefore, attraction of wire and motor manufacturers.

It has been observed that the failure of the inter-turn insulation is more likely
due to the individual or combined effect of partial discharge (PD), dielectric
heating, and space charge formation. Therefore, to survive in the inverter-fed
motor environment, the insulation of magnet wire must have high resistance to
PD, voltage overshoots, and high frequency components that can be above the
discharge inception voltage.

S R

PD Resistant
Layer

Aromatic
Polyimide Layer

Figure 6. Coating layers of magnet wire insulation.
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Figure 7. Pulse voltage test.

Figure 6 shows coating layers of magnet wire insulation and includes three
layers (conductor, aromatic polyimide layer, PD resistant layer). Figure 7 is pulse
voltage test method for wire insulation. For the insulation aging test to be
representative of the voltages that result from medium voltage (1.3-7.6 kV) pulse
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width modulated drives. For the circuit to safely and reliably operate at higher
voltages it utilizes a chain of insulated gate bipolar transistor (IGBT) switches
connected in series. If there is higher pulse voltage on test object, the surface of
the insulation starts eroding and partial discharge, but if the pulse voltage is over
USL and the surface of the insulation starts eroding, the HV DC source will
shutdown. The surface roughness as measured by a scanning electron microscope.
Therefore, the USL and LSL for the voltage are 7.6 kV and 1.3 kV, respectively.
As shown in Table 16, a part of historical data is collected. From Figure 8 and
Figure 9, it is evident to conclude the data collected from the factory are not
normal distributed. The data analysis results justify that the process is significantly
away from the normal distribution. By the goodness-of-fit tests, the historical data
indicates that the process pretty approximates to be distributed as Weibull
distribution (see Appendix B). The parameters « and y of this Weibull process
could be estimated from the historical data, giving & =4.797 and 7 =6.

18

Historical data

Figure 8. Histogram plot of the historical data.
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Table 16. The 100 observations are collected from the historical data.

5.992| 5.371 | 4.413 | 2.486 | 4.348 | 3.991 | 2.892 | 4.921 | 4.857 | 5.051

4.508 | 4.695 | 5.368 | 4.897 | 4.245 | 5.273 | 5.137 | 4.746 | 3.124 | 1.783

5.707 | 4.374 | 5.463 | 4.893 | 4.145 | 5.208 | 4.896 | 4.065 | 3.507 | 4.512

5.933 | 5.514 | 5.456 | 3.107 | 4.099 | 5.156 | 2.830 | 2.288 | 4.488 | 4.501

4.541| 5.219 | 2.514 | 5.119 | 4.558 | 5.895 | 4.497 | 4.973 | 4.627 | 5.783

4.537| 2.876 | 4.141 | 3.628 | 4.201 | 4.390 | 5.208 | 5.050 | 3.765 | 4.686

4.207 | 4.097 | 4.368 | 3.986 | 4.528 | 4.665 | 5.112 | 5.229 | 3.807 | 3.479

4.062 | 3.525 | 3.872 | 4.223 | 4.170 | 4.964 | 3.728 | 5.360 | 4.184 | 4.368

4.989 | 3.102 | 5.470 | 5.730 | 4.522 | 4.153 | 3.308 | 2.583 | 4.456 | 4.890

5.269 | 4.507 | 2.978 | 3.503 | 4.935 | 3.896 | 3.394 | 4.900 | 4.103 | 2.379

Accordingly, it is appropriate to use this approach and we can obtain more
accurate measures of the three quantiles (Fy 55, M, and Fjq) and o can
be calculated by Equation (4). Then the dynamic C,, index of this process can
be calculated as follows:

USL-M ~ AS.,c M —AS,0—LSL

|:E).99865 = E),00135 } ’ ‘:E).99865 — F0.00135 jl
i/ 2

_ i | 7:6-4.51-1.145(1.02) 4.51-1.145(1.02)-1.3
(7.08-1.29)/2 ° (7.08-1.29)/2

=min {0.66,0.71} = 0.66,

dynamic C,,, =min

with AS;,=1.145 for n=5 from Table 15. Compared it to the value of the
following conventional index :

USL-M M — LSL

[F0.99865 - E).00135 } , [F0.99865 - E).oons }
2 2

=min {1.07,1.11} =1.07,

Cy

P = N

Calculated by a traditional capability study ( the shift of process mean is not
considered ), we can find that the value of the modified C,, is much smaller.
This result indicates if the process mean shifts that are not detected then
unadjusted C,, would overestimate the actual process yield which is not
derisible. Our adjustment takes into account those shifts that are not detected so
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that the practitioner would be able to keep its quality promise for this process. As
the adjusted process capability drops below the desired quality level, the
practitioner should stop the process because the process does not meet his present
capability requirement.

As the subgroup size 7z increases, the shift in process mean have a higher
probability of detection. For example, if #=10, the AS,, would be 0.916 for
Weibull (4.797, 6) from Table 15, and then the dynamic C,,, index is

USL-M - AS,,c M — ASyo—LSL

F0.9986S — E),135 , F0.99865 — E).00135
2 2

_ i |7:6:451-0.916(1.02) 4.51-0916(1.02)-1.3
(7.08-1.29)/2 (7.08-1.29)/2

=min {0.74,0.79} = 0.74,

dynamic C,,, =min

Changing 7 from 5 to 10 increases the dynamic C,,, index from 0.66 to
0.74, and the total number of nonconforming parts would be reduced.
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6. Conclusions

In this thesis, we considered the problem of how to determine the
adjustments for process capability with mean shift when data follows the Weibull
distribution. We first showed the detection powers of the percentile Weibull
control chart, bootstrap Weibull control chart and the Erto’s Weibull control chart
under the Bothe’s adjustments and know the Bothe’s adjustments are inadequate
when data come from Weibull processes. After comparing the detection power,
we find the Erto’s Weibull control chart is the best powerful control chart than the
others. For Weibull processes, we calculated the adjustments for various sample
sizes (n) and Weibull shape parameter () with detection power of the Erto’s
Weibull control chart fixed to 0.5. Using the adjusted process capability formula,
the engineers can determine the actual process capability more accurately. Tables
are also provided for engineers/practitioners to use in their in-plant applications.
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Appendix A. Power Curve for Subgroup Size 4 and 6
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Figure 10(a)-10(j). Power curve for subgroup size 4 when «a=1, 7y =1(1)10,

E>0.
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Appendix B. Goodness-of-Fit Tests

In this section, we use goodness-of-tests to know the data of the wire
insulation in Table 15 are come from normal distribution or not. We set the class
number is 10. Table 17 show the test results. The first column is class boundaries,
the second and the third column is observed frequencies and expected
frequencies.

From the table of chi-square distribution, we find y, =14.06 for degrees
of freedom = 7 (10-2-1). The computed x> =15 is bigger than y., =14.06. We
have reason to reject the null hypothesis and conclude that the data of wire
insulation doesn’t come from normal distribution. We assume the data come from
Weibull distribution and scale parameter o =4.797 and shape parameter y =6.
In order to prove the assumption, we use goodness-of-test of wire insulation
assuming Weibull and show the result in Table 18.

From Table 18, we find ., =14.06 for degrees of freedom = 7 (10-2-1).
The computed y* =7 is bigger than y;, =14.06. We have no reason to reject
the null hypothesis and conclude that the Weibull distribution with o =4.797
and y =6 provides a good fit for the distribution of wire insulation.

Table 17. goodness-of-test of wire insulation assuming normality

Class boundaries o, e (0,—¢)" /e,

0-3.23 13 10 0.9
3.23-3.62 6 10 1.6
3.62-3.90 6 10 1.6
3.90-4.15 9 10 0.1
4.15-4.37 11 10 0.1
4.37-4.60 14 10 1.6
4.60-4.84 5 10 2.5
4.84-5.13 15 10 2.5
5.13-5.52 15 10 2.5
5.52- 6 10 1.6
sum 15
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Table 18. goodness-of-test of wire insulation assuming Weibull

Class boundaries 0, e (0,—¢)" /e,

0-3.30 13 10 0.9
3.30-3.74 8 10 0.4
3.74-4.04 6 10 1.6
4.04-4.29 14 10 1.6
4.29-4.51 13 10 0.9
4.51-4.73 9 10 0.1
4.73-4.95 9 10 0.1
4.95-5.19 9 10 0.1
5.19-5.51 12 10 0.4

5.51- 7 10 0.9

sum 7
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