EAREETIEWSTAT

"t @ X

TG 5Nk SR 2 R E WS R A

o %‘,I’I_‘, l—‘
WL T L

Mixed Mode SoftMAC Latency Evaluation Platform
for Real-time Embedded System

= !

B T RS R

FPERBEBATEFARNA

%%%%ﬁﬁﬁiﬁgﬁﬁﬁ%%ﬁ%
Mixed Mode SoftMAC Latency Evaluation Platform

for Real-time Embedded System

oA st Student : Kun-Fong Lu
ISP SHa Advisor : Sheau-Ling Hsieh
FEF Terng-Yin Hsu
Bz i+ F
Foaof Buna g oo
A L g 2
AThesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2008

Hsinchu, Taiwan, Republic of China

PERAREAY S ER

i &

WTER S d T - REmEAag o Fr SDRI—’WFI”" i‘gﬁ’SD ’Eﬁﬁi

B I v R AT M AL ke A B SDR 2 b enf A ARG % AL 9 m 4
BT B I P 2 4 0 SORMAC - 57 1% Tt § Rehtiies B 5 - 2§ 7540
JERRIE: X NN | gt~ it > R > IEEE 80211 & £ A - B @ﬁﬁlt‘ MAZ R ff S Jp 2L

A ST R T AZRIUEWEIR S RAERNE APER- BT LR
@A ey BT Lo Aoy @ﬁ%%ﬁﬁﬁi@ﬁﬁﬁa’ﬁ%%ﬁﬁimg
Flfed § 4 ﬁ‘ﬁ'%f'/%@‘i’ cm DR R B E BT A VAR Flet o AR -
B amEARN P RE - U TRES L F 0 50 WRERRE T A TREH
ﬁ}aw@%@@m@%’%a,%%%»'}ﬁﬁ#ﬁzkﬁﬁai%’ﬂaﬂﬁi
fed ARSI A 2 B oA (T s 3 R L3R mutex 84 0 A g A 1Y
pricA 2 BV o HoBE-R o @ mutex g F 1% spinlock f G E gEBR S N AR
AR Rt 5’3‘ ey Bpd A7 5N 17 @ 2 hofp B A en gy 2 JN K SL L 3F 0T Arau 2 IRen
B AT Y o RS T Y A RE T B dligE s 2 frﬁit/?ﬁ%ﬂ
i""ﬁa‘;’l% T pE SOftMAC » T & SoftMAC F B3z ATents 2.m 2@ * R % > »l4e i n
simulator -

ad

i)

Abstract

In the past few years, researchers have devoted to developing software defined radio (SDR)
significantly due to the demand of next generation wireless communications. The technique
replaces hardware components with software in the physical layer. The protocol above SDR is
also considered to be able to alter adaptively for different media access control (MAC)
mechanisms. SoftMAC, a transparent, flexible and low cost software component for data link
layer MAC protocol, fulfills this objective. However, IEEE 802.11 requires rigid interframe
space during a transaction. It restrains the protocol unable to be implemented completely in
software. In order to cope with the requirement, we need a platform that delivers the
responses both hardware-wise and software-wise to evaluate the time difference between the
two approaches. Since the responses for time-critical control frame are usually manipulated
by hardware, it can only be received by software.in menitor mode. Therefore, we proposed a
mechanism that mixes station and :monitor modes in Linux wireless driver. Furthermore, to
overcome the barrier, real-time embedded system is' demanded for developing since it
generates responses rapidly. Nevertheless, the embedded system architecture is quite different
from desktops. The processor is not capable of hardware random number generator, and the
operating system kernel is outdated that mutex lock is not supported. We discovered that the
hardware random number generator can be replaced by software; mutex lock can be
substituted by spinlock. Notwithstanding these replacements have been proved feasible on
desktops, the driver still cannot work completely as expected on target machines. Thus, we
have done the experiments totally on desktops. The experiment results show that control
frames can be received by software in station mode. We encourage the researchers to involve
in real-time SoftMAC and verify their designs on SoftMAC but not on simulator, e.g. ns

simulator.

=&

BOEGPER > WA R Fre 2 AE B B G OEELY G kK
Pricdb T K EFadp o A i EP D L AL Euﬂz,gﬂ@g
Henfgiz o ¥ oob o R E R S i o Eddie o Keven Fe4iz B4
FHREIFPFEH &£DI PFes o3 ‘\mﬁﬂii:fwwz’xi » BiS B R WA e A B A

2 ER LA e EE

Table of Contents

B s [
AADSTTACT. ... bbb bbbttt b e I
B PSPPSR i
TaDIE OF CONLENTS. ...ttt bbbt e s eneas \Y;
LISE OF FIQUIES. ...ttt bbbttt et b et bbbt b v
Chapter 1 INrOGUCTION.c..iiiiieiic e bbbttt ene e 1
Chapter 2 BaCKGIOUNG.........oouiiiiiiiieieie ettt bbbt n s 5
2.1 MAC LaYer DELAIIS......c.oeieieieiiieiie i 5
2.2 LINUX WITEIESS DIIIVET.......iiiiiiiiiite ittt 9
2.3 IEEE 802.11 Operation IMOES.ccueiriieiiieiesiesiese s 10
2.4 Override MAC ProtOCOL........ccoiiiiiiiiii e 12
Chapter 3 PIAtfOrmM DESIGN........ociiiiiiiiieieite et 14
3.1 MEASUIEMENT SCENANO.eiueetieieeiieie ittt sb e 14
3.2 Mixed Mode Latency EVAlUALION. ..o 15
Chapter 4 Implementation...........ccooere s BB RIES 1o 17
4.1 Setting Up ENVIFONMENL..... e .. s s otasdeeeneeeeeeseesie st ee e s sns 17
4.2 Mixing the MOUES............un bt s 17
4.3 Porting to Embedded SYSTEM. . it e bsmi et 19
Chapter 5 RESUITS........oviiiiieeee e Feb it p st eak s Lian e ettt ettt e bbb 21
Chapter 6 Conclusion and FUTUIre WOTKi ...ttt 25
RETEIEICES. ... bbbttt bbbttt b bt 26

List of Figures

Figure 1-1 Next generation wireless communication SCENANO............coovririeieerierierese e 2
Figure 2-1 Hardware/Software components of wireless adapters..........ccccvverveieiinnienieniennens 5
Figure 2-2 Transition from conventional bus system to SSB architecture............cccocevvervennns 6
Figure 2-3 IEEE 802.11 RTS/CTS 4-way handshake.............cccoceviiiiniiniiniene e 8
Figure 2-4 Linux wireless driver direCtory StTUCTUIE.........ccueiieiieiiiieseeie e 9
Figure 2-5 Frame receiving path in station MOde...........coooeiieiiiiiiienee e 10
Figure 2-6 Timing diagram of frame receiving in station MOde............ccceverieiieriniesieeneeins 11
Figure 2-7 Frame receiving path in Monitor MOGE..........cocviiriieieniereeie e 12
Figure 3-1 Scenario of latency measurement platform...........cccooeiiiiniiiin e 14
Figure 3-2 Mixed mode for latency mMeasuremMeNt.........ccoeueiieiieieerie e 15
Figure 3-3 Timing diagram of packet transmission in mixed mode..............ccoccervriiennennnne. 16
Figure 4-1 Filter configuring ProCEAUIE.coiuiiiiiieiesie ettt 18
Figure 4-2 Integrating Linux wireless driver into Kernel...........ccooooeieiiiiiienneeeeee 20
Figure 5-1 Packets captured in Station MOE...........ccoeieeiiiiniieie s 21
Figure 5-2 Packets captured in MONITOr MOOBALE S .. ervereerreerieeierieerieeie et ee e 22
Figure 5-3 Packets captured in MiXedMMOUE. ... v orifiseeeeseee et 22
Figure 5-4 Patched kernel header files for target:machings.................ccooveveieieniiiniciiciee 23
Figure 5-5 Patched kernel source files for target machings............c.ccocooreiiiiiieinciciee 24

Chapter 1 Introduction

SoftMAC makes a transit to the Media Access Control (MAC) layer from hardware to
software. Traditional network communication is classified into several layers which are
dedicated for specific tasks. Higher layers tend to be implemented in software. Conversely,
lower layers are likely to be carried out by hardware. However, in order to gain more
flexibility and reduce the cost induced by hardware. Lower layers are considered to be
implemented with increased software portion. SoftMAC plays an important role for fulfilling
this objective.

For instance, the next generation of wireless communication system may involve Software
Define Radio (SDR) that can accommodate various protocols concurrently. SDR supports
different protocols by replacing some hardware components with software. The idea of SDR
is initially developed by US military but ismeager to’commercialize due to its excellence.
Consequently, substantial effort has been dedicated to apply it onto the physical (PHY) layer

of the SDR terminal.

School House

p
@

Mobile Device

Corporate
Buildings

o S =
= 8 28,
*...-‘

Ll

Residential Area

Military Building

CONNECTIONS LEGEND:

Wired Connection

Various Technologies/Multi-Protocol

- aa Radio Channel

Figure 1-1: Next generation wireless communication scenario
i ! r":-' :]
Figure 1-1 depicts the next generation.wireless:communication scenario. In the future, the

mobile devices will be required adal-)ﬂti'\}ely changi'r-ig from one network to another. The
modulation, coding and data handling mechanisms may vary within different radio protocols.
SDR enables the mobile devices to roam through different environments without specific
hardware requirement.

Besides, different devices also provide different channel access control mechanisms.
Studies for SDR encourage us to extend the concept onto the data link layer. The data link
layer is usually composed of software and hardware. The commercial Wi-Fi modules are
equipped with a chip to cooperate with driver. A subset of the MAC protocol is implemented
in microcode and executed by the MAC chip. It manipulates time critical frames, such as
beacon frame, request to send (RTS)/clear to send (CTS), ACK and so forth. These frames are

required to fit into a time period with a short interframe space (SIFS) in between them.

Because of the proprietary concern, the driver and microcode are rarely released in source
form. The research has been confined due to the non-transparency.

Therefore, the SoftMAC research platform has been developed by Michael Neufeld et al. in
2005 [1].The combination of various layer 2 protocols has been achieved by overriding the
original MAC protocol. The study might have been far more interesting if they have included
the original MAC protocol. There is a barrier in software implementation of the original
protocol, since it requires the frames being sent in a timely fashion. Hyunseok Lee and Trevor
Mudge point out the difficulty in their study [2]. In addition, a dual-processor platform has
been proposed to meet the hard real-time constraint.

Recent researches in wireless networking have largely deployed the experiment
environment by using commodity products. These products offer better cost-performance
ratio. Furthermore there are abundant.resources that can be acquired on the Internet, such as
Linux wireless driver on linuxwireless [5]. The time consuming for developing the
fundamental software is eliminated-though: The researchers can therefore concentrate on the
design of novel concepts. Besides, building up.-a real environment enables researchers to
inspect the problems may occur as applying the design into reality.

Several attempts have been made to SoftMAC. Michael Neufeld et al. investigates a
mechanism to ignore the time critical task, whilst Hyunseok Lee and Trevor Mudge exploit a
supplemental processor to respond to the time critical frames. However, ignoring time critical
task is not practical to infrastructural environment since IEEE 802.11 has been largely
deployed to these places. For the compatibility, we have to adopt the standard IEEE 802.11
protocol. Although the supplemental processor proposed by Hyunseok Lee and Trevor Mudge
can meet the time requirement, it cannot be carried out without specific hardware support.
Recently, however, real-time techniques are evolving from time to time. Processing ability is
also increasing as time passes. The barrier, time constraint, may be able to break up with these

advances.

In addition, even if the IEEE 802.11 has been commercialized for a long period, numerous
evidences have been presented by previous research that it fails to guarantee the security. John
Bellardo and Stefan Savage have reported the vulnerabilities of IEEE 802.11 [3].
Deny-of-Service is able to carry out by deauthentication since the message is not
authenticated itself. Any other station can generate a deauthentication to a victim. Moreover,
network allocation vector (NAV) offers another way to force other stations unable to transmit.
NAV is originally used by CTS/RTS mechanism to prevent collisions that induced by hidden
terminal. Once the station receives RTS or CTS, further transmission can only be performed
until the duration indicated by NAV expired. Nevertheless, they have argued that most of the
commodity devices reset the NAV improperly. In general, the commodity products do not
offer modification to microcode or driver. Therefore, their examination of NAV was done on
ns simulator.

So far, however, there has been little discussion. about how we can counter the time
constraint without a specific hardware. The -aim.of this-paper is to examine the mechanism
that we can use for measuring the latency.of the frames. It enables us to verify the software
efficiency in timing perspective. To overcome the real-time constraint, a porting procedure
will also be performed on a real-time embedded system. The system with real-time
characteristic may be able to respond the message more rapidly.

The rest of this paper is structured as follows. In section 2, a comprehensive overview of
IEEE 802.11 MAC layer will be given. Section 3 describes the concepts of the experimental
platform. Section 4 explains how we achieved these concepts. Section 5 gives the result.

Section 6 concludes this paper.

Chapter 2 Background

2.1 MAC Layer Details

Linux Kernel

Linmx Wireless Driver

b43 cfgB0211

ssh maci0211

i

Y| | Bovzoso || /Benssx
Fadio

MAC Data
Service

MAC
Management
MPDU Service
Generation

MAC Layer
Management
Entity

¥ ¢

Transmission I Reception I

Buffalo WLI2-PCI-G545

Figure 2-1: Hardware/Software components of wireless adapters

A network communication is accomplished through layer to layer. Packets received from
PHY layer are manipulated by radio chip and then forwarded to MAC layer. As illustrated in
figure 2-1, this transaction is performed on sonics silicon backplane (SSB). BCM43xx

retrieves the packet from SSB and verifies whether the packet is valid or not. If it is valid,

BCM43xx will generate a response or pass it to Linux wireless driver. Here driver behaves as
an interface between operating system and BCM43xx.

All the on-chip communications are take advantage of SSB. Whereas the ssb provides the
APIs to other modules, the cfg80211 offers the configuration interface to the operating system

that takes effect on b43 and mac80211.

Figure 2-2: Transition from conventional bus system to SSB architecture

Figure 2-2 depicts the transition from conventional bus system to SSB architecture. In
traditional system, each component has its own architecture. It complicates the
implementation and lowers the performance of system bus. The SSB functions as a switch
that allows on-chip communications to be done by accessing the corresponding memory
address. Thus, the interfaces between devices can be unified. The design is therefore
simplified and becomes more efficient.

The key features of IEEE 802.11 MAC include distribute coordination function (DCF),
point coordination function (PCF), backoff procedure, physical and virtual carrier sense,
RTS/CTS exchange, fragmentation, defragmentation, retransmission, duplicate filtering,
synchronization, power management, association and reassociation. Some of these features

are included in the major components of BCM43xx. The major components of BCM43xx

including the following unit.

1)

2)

3)

4)

S)

6)

7)

MAC Data Service

a) Exchange data between logical link control and MAC sublayer.

b) Validate request parameters and attach a basic MAC header before sending the MSDU
to MAC sublayer.

c) Extract the address and status info then remove the MAC header and indicates LLC to
receive the MSDU.

MAC Management Service

a) Exchange management frame with LLC.

MPDU Generation

a) Fragment MSDU into MPDUs.

Protocol Control

a) Generate RTS/CTS, ACK and announcement traffic indication message (ATIM).

b) Route data frames to MAC Data-Service-and ‘management frames to MAC layer
management entity (MLME).

Transmission

a) Send an MPDU to the PHY layer.

b) Calculate the random backoff time.

Reception

a) Receive an MPDU from the PHY layer.

b) Validate received frames.

c) Detect duplicated frames.

d) Defragment the fragmented frames.

e) Maintain channel state based on physical and virtual carrier sense.

MLME

a) Record power save state.

b) Manage the station state such as scanning, join, beacon, active/passive, associate,

reassociate, disassociate, authenticate, and deauthenticate.

Source RTS Drata

Destination CTS ACK

o » Contention Window

Other NAV (RTS) f/ /f/

NAV (CTS)

Drefer Access Backoft After Defer

Figure 2-3: IEEE 802.11 RTS/CTS 4-way handshake

In order to share the medium with multiple_devices, the contention between difference
devices must be avoided by some means. IEEE-802.11 adopts the carrier sense multiple
access/collision avoidance (CSMA/CA) to ensure that only one transmission can occur in the
same time. As shown in figure 2-3, the RTS/CTS 4-way handshake prevents from other
stations to interfere the transmission. In order to gain the throughput as much as possible, the
interframe spaces during this transaction are required to be SIFS. According to IEEE 802.11
standard, the SIFS is defined as 28us or 10us depending on the PHY layer modulation which
can be frequency-hopping spread spectrum (FHSS), direct sequence spread spectrum (DSSS)
or infrared (IR). The latter two mechanisms require the 10us SIFS while the other one need
SIFS to be 28us. This is why current researches are escaping from IEEE 802.11 or employing

an FPGA to satisfy the time requirement.

2.2 Linux Wireless Driver

compat-wireless-2.6

ssh

wireless

linux
include —
net
net
drivers
ssh
mac80211
net
wireless

Figure 2-4: Linux wireless driver directory structure

The Linux wireless driver has beén developing by-Linux wireless group. The project is
aimed on designing a standard IEEE 802.11 MAC protocol stack for Linux operating system.
Besides, a large number of device drivers are also included to support various wireless
adapters. Currently, mac80211 is responsible for high-level MLME operations, whereas
low-level operations are handled by hardware or firmware. With mac80211, operating system
invokes the APIs to write Linux wireless drivers. The mac80211 is currently resides in kernel
space but it will be moved to user space ultimately.

The term SoftMAC is defined on Linux wireless website as a type of wireless card where
the MLME is expected to be managed in software and the mac80211 serves as a driver API to
these wireless cards. However, our definition to SoftMAC is the whole MAC protocol being

implemented in software. The term SoftMAC will be used to refer to our definition

throughout this paper.

b43

To be able to operate the Broadcom chipset properly, four kernel modules are required: ssb,
cfg80211, b43 and mac80211. The directory structure that has shown in figure 2-4 are the
directories which correspond to the components needed by the experiment. All modules have
the same name as the directory where they are located except cfg80211. The cfg80211 is
located in wireless directory. All the files reside in the directories shown in figure 2-4 will be
ported onto target machine. The header files will be put into an independent directory to avoid

conflict with conservative header files. Section 4 will describe the procedure in more detail.

2.3 IEEE 802.11 Operation Modes

Linux Wireless Driver

maci0211

Station Monitor

/BCM43xx No
MAC Layer Management

reg = sta

Control frame ?

v

Transmission

Reception

Figure 2-5: Frame receiving path in station mode

In IEEE 802.11 wireless adapter, there are several operation modes that can be set.

However, only station and monitor modes will be described in this paper. As a station, it

10

operates as a finite state machine that defined in microcode, which replies the control frame
by itself and passes the data frames to upper layer. Figure 2-5 illustrates the procedure of a
frame being received. The BCM43xx has been configured as a station by setting the
corresponding bit to the MAC control register. There are also different receiving path in Linux
wireless driver. In station mode, the basic service set identifier (BSSID) and Ethernet address
of the frame need to be compared to confirm the validation of the frame. Figure 2-6 illustrates

the time sequence for frame receiving in station mode.

BCM2050 BCM43xx MACS0211 Application

Frame

Control Frame
Data Frame

L

L

Figure 2-6: Timing diagram of frame receiving in station mode

11

Linux Wireless Driver

maci0211

Station Monitor

/BCM43xx
MAC Layer Management

reg = mnitr

FPass all frames to upper laver

v

Transmission I

Reception

Figure 2-7: Frame receivingpathin monitor mode

Figure 2-7 depicts the receiving. flow in.monitor mode. The MAC control register is
configured with the bits that required by monitor. Under the monitor mode, all the frames that
percept by the radio will be passed to Linux wireless driver by the MAC without extra
manipulation. The driver receives the frames without regarding to what BSSID they belong to
or which Ethernet address they bound for. Additionally, since the main function of monitor
mode is to intercept all the frames which are transmitting on the air, the transmission

component has become inactive.

2.4 Override MAC protocol

The SoftMAC proposed by Michael Neufeld et al. is oriented to accommodate different
protocols concurrently. To accomplish this goal, there are six primary tasks to be done.

1) Override 802.11 MPDU frame format

12

2) Eliminate ACK and retransmission

3) Eliminate RTS/CTS exchange

4) Eliminate virtual carrier sense

5) Control PHY clear channel assessment (CCA)
6) Control transmission backoff.

The first three tasks were achieved by configuring the adapter into monitor mode. They
take the advantage of Atheros chipset to be able to transmit the frames in monitor mode by
marking them as retry frame. Eliminating NAV can be done by changing the MAC address
since it is only applied when the destination address matches. The CCA function is also
provided by the Atheros chipset. Eventually, transmission backoff can be controlled by
contention register settings. Although Michael Neufeld et al. have achieved multi protocols by
overriding the original behavior, they abandon the functionality to accommodate IEEE 802.11.

Our goal will focus on facilitating IEEE 802.11 being able to integrate into Soft MAC.

13

Chapter 3 Platform Design

3.1 Measurement Scenario

In principle, a generic approach would be slower than a specific approach and so as
software implementation to hardware implementation. Thus, the software MAC must be
slower than a hardware MAC since the hardware MAC is a specific hardware approach with
particular microcode that is dedicated to the IEEE 802.11 MAC protocol. As described in
previous section, SIFS has been defined as 10 us in IEEE 802.11 standard. This can be the
major concern because the software implementation will spent much more time than hardware

implementation does.

Communicate Access Point

Intercept

Host with SofthAC

Figure 3-1: Scenario of latency measurement platform

In order to estimate the possibility of software implementation for strict time constraint
protocol, we need a third party that can observe the time difference between software packet
and hardware packet. Figure 3-1 depicts the scenario of the measurement platform. A usual
communication is performing between the host and the AP. The sniffer measures the

difference by intercepting the packets sent by the host.

14

Except the time measurement platform, a real-time system can facilitate the process to
shorten the frame generating duration. As real-time application has been widely deployed, the
real-time requirement will be the basic functionality to embedded system. The response time
on these systems will be shorter than normal system. Thus, we will also port the Linux

wireless driver onto a target machine with real-time characteristic.

3.2 Mixed Mode Latency Evaluation

Linux Wireless Driver Real-titne Unit
Atl: Arrival time 1
e sorviac |1 30 Aival e 2
Station | Mondtox Generate 19,1-1;01[393' Dt = Atl - At

Time difference between

Data+Control hariware and software

/]/3_ Ch43xx / \ respoTe
MAC Layer I{I:umgement A;u'ffer \

Teg = stafromtr

Packet analyzer

Pass all framed to upper layer _
and generate responges for control frames Dt Atl
- |I-L

ardware

At2
Software
Transmission Reception

5| /

Figure 3-2: Mixed mode for latency measurement

The difficulty of the SoftMAC implementation is the timing limitation. Therefore, we need
a platform to evaluate the time difference between software and hardware. A sniffer with
packet analyzer can be employed for this task. In order to compare the arrival time for both

responses, the host must be able to generate both responses in hardware and software

15

concurrently. The sniffer can thus calculate the time difference between different frames.
Figure 3-2 depicts the inner architecture of the host and how the sniffer calculates the
difference. The host is capable of mixing station and monitor mode so that control frames can
also be received by the upper layer but not filtered by BCM43xx. Whereas the BCM43xx
reply to the control frames as usual. The sniffer intercepts the responses and records the
arrival time for each frame. The Dt can be calculated by subtracting At2 from Atl. Figure 3-3

illustrates the time sequence of frame traversal between different components.

Real-time

Sniffer BCM2050 BCM43xx MACSE0211 it Application

Frame

Hardware Data+Comntrol

Data Frame

Software

Dt

L

Figure 3-3: Timing diagram of packet transmission in mixed mode

However, the real-time unit for generating responses is not discussed in this paper. It can be

in any form that is helpful to accelerate the frame generating task. Such as real-time task

supported by some real-time operating systems.

16

Chapter 4 Implementation

4.1 Setting Up Environment

To set up the experiment environment, we need an AP and two hosts with wireless adapter.
The WHR-HP-G54 is used as the AP and wireless adapter WLI2-PCI-G54S is equipped to the
hosts running Linux 2.6.23.9 kernel. One of the hosts is employed as our SoftMAC platform
so the Linux wireless driver has been installed onto the host. Besides, the code modification
will be performed on this host. Another host became the sniffer that intercepts the packets sent
by SoftMAC platform, thus Wireshark has been installed onto the sniffer. Wireshark is the

tool that we used for capturing the packets.

4.2 Mixing the Modes

As discussed in previous sectionsthere are different reeeiving path in protocol stack as well
as on BCM43xx chip. A code modification.is needed-for mixing the receiving path. The
microcode executed on the chip manipulates the ffames according to the register value. We
need to set the B43 MACCTL PROMISC bit which enforces the adapter to enter
promiscuous mode. In promiscuous mode, the host can receive any packets even if the packet
is not destined to the host. Moreover, the B43 MACCTL KEEP CTL bit must be set for

preserving the control frames instead of filtering and responding them in the chip.

17

mac80211 b43

mode has been changed, b43 op configure filter will invoke b43 adjust opmode to change

to the requested mode. However, b43 op configure filter is invoked as a callback function by
local »ops— configure filter in module mac80211. The mac80211 invokes local—ops—
configure filter by ieee80211 configure filter which sets the changed flags prior to
local »ops—-configure filter. The ieee80211 configure filter invokes the callback function
according to the local»monitors which is set in ieee80211 open. The ieee80211 open has
different treatments for different modes. If the interface type is MNTR, local>monitors will
be increased and proper configuration will be set. Therefore, we can set local—monitors to 1.
The driver b43 will configure the register automatically if the flag was set.

Furthermore, the main receive path is the function prepare for handlers. The path for

18

station mode filters the frames which contain different BSSID. Even if the BSSID matches,
the Ethernet address must also be compared or multicast flag must be examined. The packets
can only be received when BSSID matched and Ethernet address matches or it is a multicast
packet. In order to mix the receive path, we have to remove these filtering procedures for

station receive path.

4.3 Porting to Embedded System

BCM6358 is our target machine for verifying the design. It is a MIPS based embedded
system and equipped with BCM4318 wireless adapter. It runs on Linux 2.6.8.1 operating
system while Linux wireless driver requires kernel 2.6.22 or above. In general, kernel
modules are highly dependent on contemporary, kernel. Without corresponding linkage to a
kernel object, the module cannot be*compiledrcorrectly. The linked kernel object offers the
functions that required by the module.

In addition, the hardware architecture-between target and desktop is also different. Since
x86 processor provides hardware random number ‘generator, the driver utilizes the component
to generate random number. Nevertheless, MIPS do not support this function so that we have
to use software random number generator instead. Furthermore, Linux wireless driver employ
mutex lock to serve the critical sections, whereas kernel 2.6.8.1 supports spinlock but not
mutex lock. Thus, the mutex lock must be replaced by spinlock.

Moreover, the Linux wireless driver we used is an independent package that is not
integrated into kernel release. Although the Linux 2.6.24 includes the driver, it was not
released during this project. Therefore, we integrated it into the Linux kernel that we used. In
order to integrate the modules into kernel, the Makefile must be modified and Kconfig must
be added at first. Secondly, the header files must be compared to see the differences between

them. There are different approaches for header file replacement which depends on how

19

different they are. a) add/modify the statement in the header file. b) replace the header file
with new one. c¢) header files coexist in different directories. Finally, add or modify the kernel

files for the differences by referring to kernel 2.6.23.9.

linux
compat
linux

. ssh
include

net compat

net wireless h43
drivers

ssh

mac80211
net
wireless

Figure 4-2: Integtating Linux wareless driver into kernel

As shown in figure 4-2, the Linux wireless driver is distributed into two directories, drivers
and net. The Makefile in these directories must be modified to add the modules path so that
the options can be seen in menuconfig. Furthermore, some header files have to exist in unique

directory other than original directory.

20

Chapter 5 Results

(untitled) - Wireshark

Fle Edit View Go Capture Analyze Statistics Help

ol e Qaxpe M A FEEE accal $EE~ 8

[Y]E\Iter: I ~ || &= Expression... i Clear vj"Apply

No. . Time Source Destination Protocol | Info =
910 3.931236 192.168.11.5 203.66.88.89 TCP 52986 > http [ACK] Seq=8243 Ack=55982 Win=63776 Len=0 TSV=2755509501 TSER=826357044
911 3.931585 203.66.88.89 192.168.11.5 TCP [TCP segment of a reassembled PDU]
912 3,931742 203.66.88.89 192.168.11.5 HTTP HTTP/L.1 260 OK (GIF89a)
913 3.931775 192.168.11.5 203.66.88.89 TCcP 52986 > http [ACK] Seq=8243 Ack=57595 Win=63584 Len=0 TSV=2755509501 TSER=826357044
914 3,931890 192,168.1L.5 203.66.88.89 HTTP GET /pu/img/upload/adtag/x1/h5_978429.jpg HTTP/L.1
915 3,933216 203.66.88.89 192.168.11.5 HTTP HTTP/1.1 304 Not Modified
916 3.943575 203.66.88.89 192.168.11.5 TCP [TCP segment of a reassembled PDU]
917 3.943958 203.66.88.89 192.168.11.5 HTTP HTTP/1.1 200 OK (JPEG JFIF image)
918 3.944061 192.168.11.5 203.66.88.89 52986 > http [ACK] Seq=8751 Ack=60458 Win=63776 Len=0 TSV=2755509514 TSER=826357045
919 3,972951 192.168.11.5 203.66.88.89 TCP 52983 > http [ACK] Seq=11358 Ack=77416 Win=63776 Len=0 TSV=2755509543 TSER=826357044
920 5.048706 Buffalo_c7:e5:Ge Buffalo_e8:42:14 ARP Who has 192.168.11.57 Tell 192.168.11.1 [
921 5.048721 Buffalo_e8:42: 14 Buffalo_c7:e5:0e ARP 192,168.11.5 is at 00:16:01:e8:42:14
922 8.605095 203.66.88.88 192.168.11.5 TCP http > 33769 [FIN, ACK] Seq=29998 Ack=537 Win=24616 Len=0 TSV=2192443488 TSER=275550
923 8.644927 192.168.11.5 203.66.88.88 cp 33769 > http [ACK] Seq=537 Ack=29999 Win=63584 Len=0 TSV=2755514215 TSER=2192443488 ||

b Frame 918 (66 bytes on wire, 66 bytes captured)

b Ethernet II, Src: Buffalo_e8:42:14 (00:16:01:e8:42:14), Dst: Buffalo_c7:e5:0e (00:16:0Ll:c7:e5:0e)

b Internet Protocol, Src: 192.168.11.5 (192.168.11.5), Dst: 203.66.88.89 (203.66.88.89)

b Transmission Control Protocol, Src Port: 52986 (52986), Dst Port: http (80), Seq: 8751, Ack: 60458, Len: 0

0066 00 16 01 c7 e5 Ge 66 16 01 e8 42 14 08 66 45 60 o ..B...E

0016 00 34 94 66 46 00 46 06 b7 14 c0 a8 0b 65 ch 42 4.fg.@B
0020 58 59 ce fa 00 50 f6 36 5d 82 fc eb b9 f7 80 18 XY...P.6]. o

0030 07 c9 de 04 06 G0 61 01 08 0a a4 3d bd Ga 31 41 o =0 1A
0046 35 35 55

File: "/tmp/etherXXXXQBIOCM" 345 KB 00:00:08 Packets: 923 Displayed: 923 Mark... Profile: Default

Figure 5-1:"Packets captured in-station mode

Figure 5-1 shows the Wireshark captured results for station mode operation. The adapter
operates as a station and the received packets are decoded as the Ethernet frames. As shown in
figure 5-2, the adapter captures all packets that appeared within the transmission range while
we configured the adapter into monitor mode. The radiotap header is retained if the packets
were received in monitor mode, and Wireshark decodes the packets as IEEE 802.11 packets.
After modified the code to mix the station and monitor modes, the adapter still operates well
as it would be in station mode. Nonetheless, the control frames are also received by the
adapter. Since Wireshark decodes the frames as Ethernet frame, the improper decoding mess
up the frame information as we can see in figure 5-3. However, we can still recognize the

control frame from contents.

21

Fle Edit View Go Capture Analyze Statistics Help

SBage Qaxgs nesr v T3 ([EE @
‘E]Blter: || iL" <p Expression... H f QearHJauplﬂ
No. . Time Source Destination Protocol | Info [
550 14.042092 Buffalo_c7:e5:0f Apple_74:1b: 05 IEEE 802 Probe Response, SN=1195, FN=0, Flags=....R...C, BI=100, SSID="jack ap"
551 14.049929 Buffalo_c7:e5:0f Apple_74:1b:05 IEEE 802 Probe Response, SN=1195, FN=0, Flags=....R...C, BI=180, SSID="jack_ap"
552 14.052829 Draytek 36:0e:d9 Broadcast IEEE 802 Beacon frame, SN=1384, FN=0, Flags=........C, BI=100, SSID="ADSLab"
553 14.095380 Buffalo_c7:e5:06f Broadcast IEEE 802 Beacon frame, SN=1196, FN=8, Flags=. ...C, BI=l@O, SSI jack_ap"
554 14,128217 3com_fd:al:0d Broadcast IEEE 802 Beacon frame, SN=3823, FN=0, Flags= .C, BI=100, SSID="bsp"
555 14.152381 3com_fd:al:0d Intel_22:dc:49 IEEE 802 Probe Response, SN=3824, FN=0, Flag 3L BI=1066, SSID="bsp"
556 14.153427 3com_fd:al:0d Intel 22:dc:49 IEEE 802 Probe Response, SN=3824, FN=0, BI=186, SSID="bsp"
557 14.154461 3com_fd:al:0d Intel_22:dc:49 IEEE 802 Probe Response, SN=3824, FN=0, BI=106, SSID="bsp"
558 14.156426 3com_fd:al:0d Intel_22:dc:49 IEEE 802 Probe Response, SN=3824, FN=0, BI=186, SSID="bsp"
559 14.165469 Z-Com_16:68:c4 Intel 22:dc:49 IEEE 802 Probe Response, SN=27086, FN=0, 3y BI=100, SSID="WL1"
197756 Buffalo c7:e5:0f Broadcast Beacon frame, £
561 14.228981 Z-Com_l6:68:c4 Broadcast Beacon frame, R
562 14.230588 3com _fd:al:0d Broadcast IEEE 802 Beacon frame, SN=3825, FN=@, Flags=........C, BI=100,
563 14.257595 Draytek 36:0e:d39 Broadcast IEEE 802 Beacon frame, SN=1386, FN=0, Flags=. C, BI=l00, ADSLab" [
b Frame 560 (106 bytes on wire, 106 bytes captured)
P Radiotap Header v@, Length 18
b IEEE 802.11 Beacon frame, Flags:C
b IEEE 802.11 wireless LAN management frame
6060 00 GO 12 G0 Oe 50 66 00 10 02 aa 69 80 04 d7 60 ..P
06016 00 60 80 00 06 00 ff ff ff ff ff ff 00 16 01 c7 o o
0020 e5 6f 00 16 0L c7 e5 Of d0 4a 8b 11 f9 b6 12 60 o .J o
0036 00 60 64 60 OL 04 66 07 6a 61 63 6b 5f 61 70 O1 d.. jack_ap
0040 04 82 84 8b 96 03 61 07 05 04 00 61 00 GG 2a O1 o o . E
0056 00 2f 01 G0 32 08 6c 12 18 24 30 48 60 6c dd 06 /.o.2 J$OH L.
0060 00 10 18 02 01 f0 76 ad 34 60 Lo.p. 4
File: "/tmp/etherXXXXhm625e" 68 KB 00:00:14 Packets: 563 Displayed: 563 Mark... Profile: Default
Lo J e E .-
+ — l e :
L =] F K
Figure 5-2:-Packets capt
L 3
= T
i = 4
Fle Edit View Go Capture Analyze Statistics Help
Sl el o P > =Ei=El @ aaal
B@aod Gaxes nes AT [EE @
‘E]Blter || |~ || s Expression.. H fgearHJapplﬂ
No.. | Time Source Destination Protocol | Info o]
2426 13.701814 192.168.1L.5 203.66.88.88 TCP. 58039 > http [ACK] Seq=572 Ack=70 Win=5856 Len=0 TSV=2755360312 TSER=1712206630
2427 13.703699 OmronTat 6f AMD_00:0f: 50 0x1260 Ethernet IT
2428 13.716440 Emulex_al AMD_00: 6f: 50 0x1260 Ethernet II
2429 13.719567 192.168.11.5 203.66.88.89 TP 42526 > http [ACK] Seq=7529 Ack=104116 Win=63776 Len=0 TSV=2755360330 TSER=82634212(
2430 13.720869 Madge_b4:46:bb AMD_00: 0f: 50 0x1200 Ethernet II
2431 13.748833 AbbIndus_1f:47:bb AMD_00: 6f: 50 0x1260 Ethernet II
2432 13.759572 192.168.1L.5 203.66.88.88 TCP 58040 > http [SYN] Seg=0 Win=5840 Len=0 M55=1460 TSV=2755360370 TSER=0 WS=5
2433 13.760952 Xerox_51:47:bb AMD_00:0f: 50 0x1260 Ethernet II
2434 13.767526 Informat_6b:47:bb AMD_00: 0f: 50 0x1200 Ethernet II
2435 13.767546 203.66.88.88 192.168.11.5 TCP http > 58040 [SYN, ACK] Seq=0 Ack=1l Win=24616 Len=0 TSY=3507806871 TSER=2755360370 W |
2436 13.767664 192.168.1L.5 203.66.88.88 TCP 58040 > http [ACK] Seg=1 Ack=1 Win=5856 Len=0 TSV=2755360378 TSER=350780687L1
2437 13.767732 192.168.11.5 203.66.88.88 HTTP GET /Beeband/1life4080424house.jpg HTTP/L.1
2438 13.768905 Novell_7@: bb AMD_00: 0f: 50 0x1200 Ethernet II &
2439 13.775655 TelsistI_88:47:bb AMD_00:0f: 50 0x1260 Ethernet IT Iv]

b Frame 2428 (114 bytes on wire, 114 bytes captured)
b Ethernet II, Src: Emulex_a0:46:bb (00:08:c9:a:46:bb), Dst: AMD_G0:0f:50 (00:00:1a:00:0f:50)
P Data (180 bytes)

0000 00 00 la 00 OFf 50 G0 G0 c9 al 46 bb 12 060 00 00
0010 10 62 b4 09 80 04 d5 G0 0O 00 80 60 60 60 ff ff
0020 ff ff ff ff 00 16 6L c7 e5 0f 00 16 01 c7 e5 Of
0030 b0 9d 8b al 46 bb 12 G0 00 00 64 60 01 04 00 07
0040 6a 61 63 6b 5f 61 70 G1 04 82 84 8b 96 03 01 07
0050 05 04 00 01 06 G0 2a 01 00 2f 01 60 32 08 Oc 12
0060 18 24 30 48 60 6c dd 66 00 10 18 02 01 fO e5 f3
0070 ab el

File: "/tmp/etherXXXx2qDLEU" 1040 KB 00:00:14 Packets: 2608 Displayed: 2608 Ma... Profile: Default

Figure 5-3: Packets captured in mixed mode

22

linux

inclade

-

ASI-INips

atomic.h
bug.h

io.

offset.h
pei_channel
rec.h

compat

bitops.h
crypto.h
debugfs.h
eeprom_23cx6.h
genetlinlc.h
ieee80211.h
if_addr.h

if ether.h
if.h
if_link.h
leds.h
log2.h
neighbour.h
netdevice.h
netlinl.h
nl80211.h
pei_ids.h
rinetlink h
scatterlist.u
uaccess.h
wireless.h

T

linux

bitops.h
crypto.h
device v ssh
dma-mapping.h

etherdevice .k

firmwware.h Iow_ramdomn.h

interrupt.h io.h

jiffies.h peih

kernel h pei_regs.h

kmod pih

kobject.h ssh_driver_chipconmnon.h

List.h ssh_driver_extif.h
netdevice.h ssb_driver_mips.h

netlinlz.h ssb_driver pci.h
pecih ssh.h
pmh ssh_regs.h

reupdate.h
rinetlink.h
serial_core.h
serial.h
skbuff.h
slab.h

smp.h
spindock.h
timner.h
workquene.h

net

plkt_cls.h
sock.h
compat

cfg80211.h
coropat.h
genetlinlc.h
ieee80211 crypt.h
ieee80211 1
ieee80211 radiotap.h
w_handler.h
mac30211.h
netlinlz.h

sock.h

wext.h

wireless.hh

Figure 5-4: Patched kernel header files for target machines

For the porting procedure, the wireless modules cannot be compiled correctly at the

beginning. By modifying the kernel module linked with the wireless modules, the wireless

modules can be compiled correctly. However, there are still some routines needed by the

wireless modules that do not exist. We patched the kernel by referring to kernel 2.6.23.9. After

all the procedures being added or modified, the wireless modules can be inserted correctly.

Figure 5-4 lists the header files that have been modified. The kernel source files have been

listed in figure 5-5. The modified files are in red.

23

crypto

api.c

base .
Keonfig wireless
Makefile
cOre.C
devres.c Keonfig

firmware.c
firmware_class.c

Makefile

drivers

43

Kconfig
Makefile
3. h
debugfs.c
debugfs.h
dma.c
dma.h
leds.c
leds. h
lo.c

lo.h
main.c
main.h
pemcia.c
pemcia.h
phy.c
phy.h
pio.c
pio.h
rikill.c
rikill.h

svsfs.c

Keonfig
Makefile

pei

pei-driver.c

linux

kernel

printk.c
time.c
timer.c

work queue. ¢

ssb

Keonfig
Malkefile

b43_pei_bridge.c
driver_chipcommon.c

driver_extif.c

driver_mipscore.c

driver_peicore.c
main.c
pei.c

peihost_wrapper.c

pemeia.e
SCan.¢
ssh_private.h

Kconfig

Malk efile
devres.c
iomap_copy.c
kobject.c
kobject_uevent.c

core

rtnetlink.c
skbuff.c

mm net

mac80211

netlink

Mak efile
attr.c

Kconfig

Mak efile
aAes_com.c
aes_cem.h

cfg.c

cfg.h

compat.c
debugfs. ¢
debugfs. h
debugfs_kev.c
debugfs kev.h
debugfs_netdev.c
debugfs_netdev.h
debugfs_sta.c
debugfs_sta.h
event.c
ieeeS0211.¢
ieee80211_iface.c
ieee80211 |
ieee80211_ijoctl.c
ieee80211_kev.h
ieee80211 ledc
ieee80211_ledh
ieee80211_rate.c
ieee80211_rate.h
ieee80211_sta.c

kev.c

michael.c

michael.h
re80211_pid algo.c
re80211_pid debugfs.c
re80211 pid h
rc80211_simple.c
regdomain.c

r.c

sta_info.c

sta_info.h

tkip.c

tkip.h

tx.¢

util.c

wep.c

wep.h

wine. ¢

wine.h

wpa. ¢

wpa.h

Figure 5-5: Patched kernel source files for target machines

24

sched

sch_api.c

wireless

Keonfig
Makefile
core.¢
core.h
nl80211.¢
nl80211Lh
radiotap.c
systs.c
sysfs.h
wext.c

Chapter 6 Conclusion and Future Work

This paper has investigated the mechanism for facilitating SoftMAC latency measurements.
In order to compare the time difference between hardware and software, we proposed the
mixed mode transmission. Both the hardware-wise and software-wise MAC responses must
be transmitted concurrently. The sniffer can therefore intercept these frames and calculate the
time difference between them. Our experimental results show that the driver can be modified
to receive control frames so that further study can be done to the real-time SoftMAC.
Although the ported wireless modules cannot operate as expected on target machines, we
have done the same modification on desktops. We proved that hardware random number
generator can be replaced with software. Furthermore, mutex lock can be substituted by
spinlock. In the future, we will continue on tracing why the wireless modules cannot operate
completely as expected on target machines, dnvaddition, we will move towards the real-time

SoftMAC that is suitable for the platform.

25

References

[1]

[6]

Michael Neufeld, Jeff Fifield, Christian Doerr, Anmol Sheth, and Dirk Grunwald,
"SoftMAC — Flexible Wireless Research Platform, " Proc. HotNets-IV, College Park,
Maryland, USA, Nov. 2005.

Hyunseok Lee, and Trevor Mudge, "A Dual-Processor Solution for the MAC Layer of a
Software Defined Radio Terminal," CASES 2005, San Francisco, California, USA, Sep.
2005.

John Bellardo, and Stefan Savage, “802.11 Denial-of-Service Attacks: Real
Vulnerabilities and Practical Solutions.” In Proceedings of USENIX Security
Symposium, August 2003.

IEEE 802.11-1999, "Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, " Jun. 2003

http://linuxwireless.org

http://becm-v4.sipsolutions.net

26

	Cover.pdf
	Abstract.pdf
	Draft.pdf

