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摘   要 

 

近年來，受情感性疾病 (Mood Disorder) 所苦的病患日益增加，此類疾患

嚴重擾亂病人的情緒，進而對日常生活層面造成不良影響，而其中又屬躁鬱症 

(Bipolar Disorder) 以及重鬱症 (Major Depressive Disorder) 最廣為所知。

情緒性疾病已漸漸成為現代人的主要疾病之一，關於此類疾病的各方面研究也在

近數十年內蓬勃發展，其中，患者腦部結構與功能的異常被認為是情感性疾病的

重要病因之一。 

 關於情感性疾病在腦部異常的研究，主要分為腦結構影像與腦波訊號兩方

面。然而現今對於患者腦波的研究仍顯不足，最主要的困難之一在於如何自腦波

訊號中擷取具有鑑別力的訊號特徵。在本篇論文當中，我們和台北榮民總醫院合

作，取得情緒性疾病患者在休息狀態的腦磁波 (Magnetoencephalography) 訊號

量測資料。受試者包含二十六位躁鬱症患者、二十二位重鬱症患者以及二十五位

做為對照組的健康受試者。在本篇研究中我們分析研究這三個群組的腦磁波訊

號，提出具有鑑別力的訊號特徵並且對此三群組加以分類。 

 在本篇論文中我們使用三種類型的特徵擷取方法，其一是從功率頻譜密度

(Power Spectrum Density)中所擷取的特徵，其次為時序訊號上的複雜度，包含

Lempel-Ziv Complexity 以及 Sample Entropy，最後再總合前兩類型特徵以取得

左右半腦非對稱性的特徵。針對所擷取的特徵，我們使用統計學中的 T 檢定

(t-test)以及線性判別分析(Linear Discriminant Analysis)的方法，挑出有鑑

別力的訊號特徵並藉以將特徵空間的維度降至合理的範圍。在本篇論文中我們對

所擷取的特徵做了詳細的分析與探討，此外並使用支援向量機(Support Vector 

Machine)作為分類器。最後，在任兩群組以及三個群組的分類中得到良好的分類

正確率，證明用於本篇論文中的訊號特徵對於情感性疾病具有一定程度的鑑別能

力。 
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Abstract

Recently, more and more people are suffering from mood disorders such as Bipolar

Disorder(BD) and Major Depressive Disorder(MDD). These mood disorders have become

one of the major illness of modern people. Therefore, researchers are attempting to study

these disorders in different areas, including the abnormality of brain structure and brain

signals.

However, studies about the abnormality of brain signals are still insufficient and incon-

sistent. One of the main difficulties is to obtain significant features for further analysis.

In this work, we studied three groups of resting Magnetoencephalographic signal data col-

lected by Taipei Veterans General Hospital, including 26 patients with BD, 22 patients with

MDD, and 25 normal controls. We then proposed a procedure to classify the three study

groups from each others.

In this work, we studied features obtained from power spectrum density, Lempel-Ziv

complexity, sample entropy, multi-scale entropy, and hemispheric asymmetry. After the

feature extraction, t-test and Linear Discriminant Analysis were applied as feature selection

and also to reduce the features to a reasonable number. We provided methodical analysis

of the selected features. Furthermore, we applied Support Vector Machine to classify the

three groups. The results showed an almost 100% accuracy in the classification, verifying

the significance of our features.
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Introduction



2 Introduction

The first chapter is a brief introduction about some background knowledge of this thesis.

Nowadays mood disorders have been common diseases which effect daily life ill. We first

briefly introduce the mood disorders in section 1.1 and then focus on bipolar disorder and

major depressive disorder. Both bipolar disorder and major depressive disorder are reported

intently relating to brain abnormalities, and are described in the section 1.2.

1.1 Mood Disorders

Nowadays many people suffer from mood disorders. Mood disorders, also known as

affective disorders, are a grouping of psychiatric diseases where the primary symptom is a

disturbance in mood. The patients with mood disorders not only suffer from the abnormal-

ities of mood, but also the differences of biological, behavioral, and social aspects.

According to DSM-IV (Diagnostic and Statistical Manual of Mental Disorders 4th Edi-

tion), which was published by the American Psychiatric Association in 1994, four disor-

ders are included in the category of mood disorders: bipolar disorder, cyclothymic disorder,

dysthymic disorder and major depressive disorder. Bipolar disorder and major depressive

disorder are the most well-known disorders among them, and what follows is a brief intro-

duction of the two disorders.

1.1.1 Bipolar Disorder

Bipolar disorder (BD), also known as manic-depressive disorder and bipolar affective

mood disorder, is a kind of mood disorder that causes unusual shifts in a person’s mood.

And the influences of BD also extend many aspects like sleep, energy, and ability to func-

tion.

People with bipolar disorder periodically exhibit mood episodes including depressive

episodes, manic episodes and mixed episodes. During depressive episodes, individuals

usually experience low mood, feel sad, diminished interest in usual activities and distur-

bances in sleep, appetite, energy, and concentration. Manic episodes typically involve

either extremely happy or irritable mood, accompanied by other changes in behavior, such

as increased activity, decreased need for sleep, flight of ideas, and racing thoughts. Mixed
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episodes include the features of both mania and depression episodes presented at the same

time. The duration of mood episodes typically lasts from a couple of hours to many months.

Between episodes people with BD often return to their usual functioning and personality.

There are two diagnostic types in bipolar disorder according to the type and severity of

mood episodes experienced. Bipolar I disorder is characterized by severe mania episodes

and depression. For a diagnosis of bipolar I disorder, a person must have at least one manic

episode. Bipolar II disorder is characterized by hypomania episodes and often followed by

periods of severe depression.

Up to now, the clinical causes of bipolar disorder are still unknown. Studies suggest

that there may be many contributory factors acting together to produce the illness, such

as genetics, stress, environmental factors, neurobiology, and psychological and social pro-

cesses. In recent decades, many studies have attempted to clarify the neural substrates of

bipolar disorder, and inferred that bipolar disorder has been associated with abnormalities

of brain structure and function.

1.1.2 Major Depressive Disorder

Major depressive disorder (MDD) is also known as major depression, unipolar depres-

sion, or clinical depression. This may be compared with bipolar depression which has the

two poles of depressed mood and mania (i.e., euphoria, heightened emotion and activity).

It is a kind of mood disorders which is characterized by a pervasive and recurrent low mood

or loss of interest or pleasure in usual activities.

Different from patients of bipolar disorder, patients with major depressive disorder ex-

perience at least one major depressive episodes but without manic episodes. A major de-

pressive episode has been defined as a severely depressed mood that persists for at least two

weeks. The patients suffer from recurrent depressive moods, and may feel sad, worthless,

guilty or empty, lose energy and interests in daily life. Some of them also suffer from sleep

disturbances (sleeplessness or too much sleeping). There are also difficulties in concentrat-

ing, social life, and even working. For some, the pain from MDD effects life so deeply that

MDD becomes a major risk factor of suicide.

Causes of major depressive disorder can be roughly classified into two categories, the
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psychological and the biological. In the psychological aspect, the causes may be stress,

environment or life experiences. In the biological aspect, researches have shown that de-

pression is influenced by genetic and brain abnormalities.

1.2 Relative Researches

Although mood disorders affect daily life so significant and have become common

diseases nowadays, the specific cause of these disorders are still a mystery. In recent years,

scientists and clinicians have reached general agreement that these disorders are strongly

correlated with brain dysfunction. The researches about brain abnormalities can be roughly

divided to two categories, brain structural changes and brain signal abnormalities.

1.2.1 Structural Abnormalities of Mood Disorder Patients

In the past decades, the development of neuroimaging techniques has produced a pro-

liferation of studies that have attempted to clarify the brain abnormalities responsible for

mood disorders. The modalities such as positron emission tomography (PET), computed

X-ray tomography (CT), and particularly magnetic resonance imaging (MRI) have con-

tributed to found the structural abnormalities in mood disorders undoubtedly. And Ta-

ble 1.2.1 summarizes the studies which reported structural changes in bipolar disorder and

major depressive disorder [36, 37, 39, 40].

In the BD case, some apparent abnormalities were found. Researchers examined whole

brain volumes and found that although the overall brain volumes of BD patients do not dif-

ferent from volumes of healthy controls, but a global decrease in cortical gray matter was

conclusive, especially in prefrontal cortex (PFC). The temporal cortex was also reported to

be abnormal for many times, but the volume changes are not consistent in these researches.

In the subcortical level, abnormalities of enlargements were reported in amygdala, thala-

mus, and striatum including caudate nucleus and putamen. Besides cortical and subcortical

findings, enlargements of ventricles were found, and be obvious in lateral ventricle and the

third ventricle. Moreover, abnormal reduction was found in cerebellar vermis, which is

generally thought to modulate movement.
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In the MDD case, prefrontal cortex atrophy, cerebellar vermis atrophy and ventricu-

lar enlargements were also found. Contrast to BD patients, the subcortical abnormalities

of MDD patients are decreasing volumes of basal ganglia and hippocampus. The struc-

tural change of amygdala was also discussed, but there is no conclusion about atrophy or

enlargement.

1.2.2 Brain Signal Abnormalities of Mood Disorder Patients

Conpare with neuroimaging, the number of studies relative to brain signal abnormalities

about mood disorder is small, and the study results disagree with each others, especially in

the BD case.

In the MDD case, most researches in resting brain signals are with EEG. These re-

searches indicated that MDD patients had decreased relative delta band power and in-

creased relative theta and alpha band powers [16, 34]. Some indicated increased relative

beta band power [16, 26], but some indicated decreased power [34]. Besides band powers,

coherence was also reported to decrease [26, 34], the correlation of left temporocentral is

related to the severity of depression, and the theta band correlation disappears in MDD

patients [28].

1.2.3 Hemispheric Asymmetry

Hemispheric asymmetry is the relative imbalance of cerebral activities. Resting frontal

EEG asymmetry in the alpha frequency band is believed to reflect certain emotions and

behaviors. It has been proposed that individuals with greater left than right frontal brain

activity are more likely to have the behaviors with approach motivation and positive affect,

while individuals with greater right versus left frontal brain activity are more likely to

behave with withdrawal and negative affect [45]. Besides, Graae found an abnormality of

EEG asymmetry in female adolescent suicide attempters, and suicidal adolescents had a

greater alpha power over left than right hemisphere [20].

Many studies tried to found out the relationship between asymmetry and mood dis-

orders. Asymmetrical resting frontal EEG not only distinguishes currently depressed in-

dividuals from nondepressed individuals, but also distinguishes previously depressed eu-
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thymic individuals from individuals without a history of depression [22]. Some indicated

that frontal EEG asymmetry is sensitive to mood disorder in adults and may characterize

adolescents at risk for mood disorder [43]. Some studies measuring EEG asymmetry in

depressed subjects found the greater left than right alpha band power [9] and reduced left

hemisphere activation [26]. In the BD case, it was reported that increased relative right

frontal activity has been observed in bipolar depression, whereas increased relative left

frontal activity has been observed in mania [4].

1.3 Magnetoencephalographic studies of mood disorders

For Human beings, brain a ruler of our body. It not only coordinates all parts of our

body, also control human consciousness such as memory, though and feeling. Researchers

have devoted themselves to discover the accurate brain functionalities for a long time. Then

various non-invasive techniques to monitor the brain activity, such as the modalities of Elec-

troencephalography (EEG), Magnetoencephalography (MEG), functional Magnetic Reso-

nance Imaging (fMRI), come into being.

MEG and EEG are used to measure the magnetic fields and the scalp electric potentials

produced by the ensemble of neuronal activities inside the brain. And the major advan-

tage of both MEG and EEG is the high temporal resolution (on the order of milliseconds)

rather than fMRI which has a high spatial resolution. Besides, MEG is less affected by the

irregular distortions caused by the skull and tissue compared to EEG.

Although MEG is an excellent modality to study the brain function directly, the amount

of EEG researches about mood disorder is much more than MEG studies. It may be limited

by both the complexity and expense of the technology.

In the studies about mood disorders, many discoveries are found by the structural neu-

roimaging, but the researches relative to EEG and MEG are relatively rare, especially in

MEG. However, more and more evidences show that the mood disorders are correlating

with the abnormal brain function. In this work, we aim to find the differences of brain

activities between patients with mood disorders and healthy subjects with the excellent

modality of MEG.
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1.4 Thesis Scope

The objective of this thesis is to differentiate the patients with mood disorders from

the healthy controls by the resting MEG signals. Fig. 1.1 illustrates the framework of this

thesis. We preprocess the MEG signals and then extract features from them. There are three

kind of features. The first is the PSD features which extract from the power spectral density,

the second is about temporal complexity, and the other one is hemispheric asymmetry. The

features of hemispheric asymmetry are calculated from the features of PSD and temporal

complexity. Finally, those features are used to differentiate the BD patients, MDD patients

and normal controls by classification.

In the following chapters, we will bring up our methods, experiment results and some

discussions about this work. The methods of feature extraction will be introduced in Chap-

ter 2. The classification procedure and the method to select features are introduced in

Chapter 3. In Chapter 4, we will analyze the individual features and then show the clas-

sification results. Then, we will have some discussions and conclusions in Chapter 5 and

Chapter 6.

Features of Asymmetry

avg – PSD
7 ROIs

avg – PSD
7 ROIs

avg – PSD
7 ROIs

Accuracy

8-s epochs
11.38±3.73 epochs

204 channels

8-s epochs
11.38±3.73 epochs

204 channels

PSD
11.38±3.73 segments

204 channels

8-s epochs
11.38±3.73 epochs

204 channels

8-s epochs
11.38±3.73 epochs

204 channels

8-s epochs
11.38±3.73 epochs

204 channels
avg – SampEn

7 ROIs
avg – SampEn

7 ROIs
avg – SampEn

7 ROIs

avg – SampEn
7 ROIs

avg – SampEn
7 ROIs

avg – LZC
7 ROIs

FFT

Classifier

…SEF90

LZC

SampEn

Features of Temporal Complexity

PSD Features

Asymmetric Indices

SE

MF

2~3 min resting data
204 Gra-channels

Artifact-free segments
selection

Figure 1.1: Framework.
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Feature Extraction
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This chapter is concerning how we extract features to differentiate different groups

based on some abnormalities of brain function. There are three kind of features used in this

work. The first is the PSD features in section 2.2, the second is the features about temporal

complexity in section 2.3, and the last is about the hemispheric asymmetry of the brain.

2.1 ROI

According to the function of brain, we divided the brain into seven areas: frontal, cen-

tral, occipital, left frontotemporal, right frontotemporal, left temporal and right temporal.

Discarding the channels in the suburbs of the brain where the activities are rarely weak,

we divided the MEG channels into seven groups according to the seven areas mentioned

above. The seven groups of MEG channels are shown in Fig. 2.1. Besides the seven chan-

nels groups, we also observe the whole brain activities by the union of the seven channel

groups. In another word, we analysis the brain in eight different ROIs: the seven areas

separately and the union of the seven areas.

2.2 PSD features

In this work, we used several spectral based measures to summarize the information of

the power spectral density (PSD).

2.2.1 Band Powers

The frequency bands are defined as delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta

(13-30 Hz) and gamma (30-50 Hz). The power spectrum density is first normalized by the

total power, the areas under PSD curve. And then each band power is calculated from the

average of the power bins within the same frequency band.
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corresponding to the 7 areas. Different colors are used to distinguish different areas, and
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2.2.2 Spectral Measures

Mean frequency (MF) offers a simple means which summaries the whole power spec-

trum. It is defined as the frequency which contains 50% of the PSD power. As a frequency

which divides PSD into equal powers, the mean frequency can roughly present the trend

of band power distribution. The mean frequency is represented in Eq. 2.1, where MF is

calculated from the PSD between 2 Hz and 50 Hz.

It has been used to study the spectrum of Alzheimer’s disease, mild cognitive impair-

ment or vascular dementia patients’ EEG or MEG signals [15, 31].
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Figure 2.2: Schematic representation of MF and SEF90 [44]. The median frequency
(MF) is the freqeuncy that divides the area under the curve in half, and the 90% spectral
edge frequency (SEF90) is the frequency which divides the area area into 90% and 10%.

0.5
50Hz∑
f=2Hz

PSD(f ) =
MF∑

f=2Hz

PSD(f ). (2.1)

Similar to the mean frequency, the 90% spectral edge frequency (SEF90) is defined as

the frequency which separates 90% of the PSD power from 10%. It has been used to study

monitor depth of anaesthesia and Alzheimer’s disease.

Eq. 2.2 represents the calculation of SEF90 which is analogous to the mean frequency

shown in Eq. 2.1.

0.9
50Hz∑
f=2Hz

PSD(f) =
SEF90∑
f=2Hz

PSD(f). (2.2)

Fig. 2.2 shows the concept of MF and SEF90. The MF divides the area under the PSD

curve into equal parts, and the SEF90 divides the area into 90% and 10% parts.

2.2.3 Spectral Ratio Measures

To calculate the spectral ratio measures is a method to emphasize the difference between

the powers of high and low frequency bands.
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Some previous EEG studies successfully used the spectral ratio measures to distinguish

between patients of cognition disorders and Alzheimer’s disease [24,27]. Some other stud-

ies also use the ratio to emphasize the difference between Alzheimer’s disease and elderly

normal controls [8, 32, 38].

Poza used four spectral ratios to differentiate the patients of Alzheimer’s disease from

the normal controls. And the spectral ratios reveal the higher correlation with severity

of dementia than individual relative band powers. According to the characteristics of the

Alzheimer’s disease, Poza evaluate the power ratio of high frequency to low frequency

bands shown in Eq. 2.3 to Eq. 2.6 where relative power was calculated in the frequency

bands: δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz), β1 (13-19 Hz), β2 (19-30 Hz) and γ (30-64

Hz) [32].

r1 =
RP (α)

RP (θ)
. (2.3)

r2 =
RP (α) +RP (β1) +RP (β2) +RP (γ)

RP (δ) +RP (θ)
. (2.4)

r3 =
RP (β1) +RP (β2)

RP (δ)
. (2.5)

r4 =
RP (β2)

RP (δ)
. (2.6)

Due to the different characteristics of mood disorders, we designed different spectral

ratio measures in this work. Based on the observed band power abnormalities of MDD

patients, we used five spectral ratio measures defined in Eq. 2.7 to Eq. 2.11.

rβγ2θα =
RP (β) +RP (γ)

RP (θ) +RP (α)
. (2.7)

rβ2θ =
RP (β)

RP (θ)
. (2.8)

rβ2α =
RP (β)

RP (α)
. (2.9)
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rγ2θ =
RP (γ)

RP (θ)
. (2.10)

rγ2α =
RP (γ)

RP (α)
. (2.11)

2.2.4 Spectral Entropy

Spectral Entropy is a method to quantify the flatness of the power spectral density

(PSD). It applies the Shannon’s entropy computed over the normalized PSD. The entropy

was first defined as a measure for information theory by Shannon [10], and it is a measure

of the spread of the data. A data with a wider and flatter probability distribution will have

higher entropy. On the contrary, a data with a narrower and pecked probability distribution

will have lower entropy.

As applying Shannon entropy to EEG and MEG signals, it quantifies the regularity and

the spectral complexity of the time series. In the first, the PSD of the signal is computed.

And then, the spectral entropy is calculated by using the amplitude components of the PSD

of the signal as the probabilities in Shannon entropy calculations.

In this work, we adopt two spectral entropies. The first type of spectral entropy is de-

fined as Eq. 2.12 where PSDn(f) denotes the normalized PSD of the total power between

2 Hz and 50 Hz.

SE = −
50Hz∑
f=2Hz

PSDn(f)ln[PSDn(f)]. (2.12)

This definition of spectral entropy has been used to study anaesthesia monitor [7], the

spectrum of Alzheimer’s disease [15, 31], and the detection of epilepsy [25].

The above-mentioned SE calculates all frequency bins of power spectral density, and it

will be influenced by the different bandwidth. In other words, it brings about a bias in the

frequency band with larger range. For example, the beta band (13-30 Hz) will have lager

weight than theta band (4-8 Hz) due to the bandwidth. Poza brought up the second type of

spectral entropy to analyze Alzheimer’s disease [30].
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To calculate the second type of spectral entropy (SE2), we denote the average power

at each frequency band as Pj, j = {δ, θ, α, β, γ}. Then we normalize the average power by

the sum of them as Eq. 2.13 where pj represent the probability distribution of each band.

pj =
AP (j)∑
j AP (j)

. (2.13)

Afterwards, we apply Shannon’s entropy as Eq. 2.14 .

SE2 = −
∑
j

pj· ln[pj]. (2.14)

2.3 Temporal Complexity

2.3.1 Lempel-Ziv Complexity

The Lempel-Ziv complexity (LZC) proposed by Lempel and Ziv is a nonparametric

method to evaluate complexity (randomness) of finite sequences [3]. The LZ complexity

measures the number of distinct substrings and the rate of their occurrence along the given

sequence. The more complex data will have larger values.

Lempel-Ziv complexity has been widely used to solve information theoretic problems

and applied to data compression [1,23] and coding [5,42]. In recent years, the LZC has been

applied to biomedical signal analysis as a measurement of the complexity of discrete time

signals. For example, the LZC was used to evaluate the complexity of DNA sequences [21],

and to differentiate different kinds of stimuli [41]. Besides, LZC has also been used to

study the Alzheimer’s disease [14, 19], epileptic seizure time-series data [33], the depth of

anesthesia [46], and the intracranial pressure signals with acute intracranial hypertension

episodes [2].

LZ complexity analysis is based on a coarse-graining of the measurements [46]. In

other words, before calculating the LZ complexity, the signal must be transformed into

a sequence whose elements are only a few symbols. In this work, we convert the MEG

signal x = [x1, x2, . . . , xN ] into a binary sequence. By comparison with the threshold Td,

the original signal x is converted to a binary sequence P = [s1, s2, . . . , sN ] where si is

defined by:
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si =

0 if xi < Td

1 otherwise
(2.15)

We use the median as the threshold Td because of it is robust to outliers [29].

To calculate the LZ complexity, the sequence P is scanned from left to right, and the

subsequence number c(N) is increase by one while a new substring was found. The algo-

rithm of Lempel-Ziv complexity analysis is as follows.

Let S and Q denote subsequence of the sequence P = [s1, s2, . . . , sN ], and SQ be

the concatenation of S and Q. Let π be a operation which deletes the last character in a

sequence, and then SQπ is a substring derived from sequence SQ with its last character

deleted. And then, let ν(SQπ) denote the vocabulary of all different subsequences of SQπ.

Initially, we set the subsequence number c(N) = 1, S = s1, Q = s2, and there-

fore SQπ = s1. In general, we suppose S = s1, s2, . . . , sr, Q = sr+1, and SQπ =

s1, s2, . . . , sr. And then, there are two cases:

1. If Q ∈ ν(SQπ), then Q is a subsequence of SQπ. In other words, Q is not a new

sequence. In this case, S dose not change and Q is renewed to be sr+1, sr+2, . . . , sr+i

until Q /∈ ν(SQπ).

2. If Q /∈ ν(SQπ), then Q is not a subsequence of SQπ. In this case, c(N) in-

creases by one and S is renewed by combining original S with Q. At this time,

S is s1, s2, . . . , sr, sr+1, . . . , sr+i and Q is renewed with Q = sr+i+1.

Repeat the procedure until Q is the last character. At this time, the number of different

subsequences c(N) is the measurement of LZ complexity.

The last step of the procedure is to normalize c(N) in order to obtain a complexity

measure independent of the sequence length. Suppose the number of different symbols is

α and the sequence length is N . It has been proved that the upper bound of c(N) [3] is

lim
N→∞

c(N) = b(N) =
N

logαN
(2.16)

For a binary sequence, α = 2, therefore
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Figure 2.3: LZC concept. An example showing how to transform a segment of time series
into a binary sequence by threshold and the results of LZC calculation [46].

b(N) =
N

log2N
(2.17)

and c(N) can be normalized by the upper bound b(N) as

C(N) =
c(N)

b(N)
(2.18)

Fig. 2.3 illustrates the example of calculating LZC. The time series will first trnasform

into a binary series and then a LZC procedure is appled to calculate the LZC values.

2.3.2 Sample Entropy

Sample Entropy (SampEn) quantifies the regularity of a time series by evaluation the

appearance of repetitive patterns. It has already been widely used to study some biomed-

ical signals. For example, it was applied to representative interbeat interval time series

and differentiate subjects with congestive heart failure and atrial fibrillation from healthy

subjects [13].
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To calculate the sample entropy of x, there are two parameters: m and r. m is the

length of sequences to be compared, and r is the tolerant range of match. Given a time

series x = [x1, x2, . . . , xN ] with length N . First form vectors Xm(1), Xm(2), . . . , Xm(N−
m+ 1) with length of m, and let Xm(i) = [xi, xi+1, . . . , xi+m−1]. Then define the distance

d[Xm(i), Xm(j)] between vectors Xm(i) and Xm(j) as the maximum difference in their

respective scalar components

d[Xm(i), Xm(j)] = max
k=1,2,...,m

(‖xi+k−1 − xj+k−1‖). (2.19)

Define Bm
i (r) as 1/(N −m− 1) times the number of vectors Xm(j) within r of Xm(i)

(the distance between Xm(j) and Xm(i) is less than or equal to r) where 1 ≤ j ≤ N −
m(j 6= i) to exclude self-matches. Then define Bm(r) as:

Bm(r) =
1

N −m

N−m∑
i=1

Bm
i (r) (2.20)

Similarly, define Ami (r) as 1/(N −m− 1) times the number of Xm+1(j) such that the

distance between Xm+1(j) and Xm+1(i) is less than or equal to r. And then set Am(r) as:

Am(r) =
1

N −m

N−m∑
i=1

Ami (r) (2.21)

Finially, SampEn(m, r) is defined by:

SampEn(m, r) = lim
N→∞

[− ln
Am(r)

Bm(r)
] (2.22)

which is estimated by the statistic

SampEn(m, r,N) = − ln
Am(r)

Bm(r)
(2.23)

2.3.3 Multi-Scale Entropy

The entropy-based measurements quantify the regularity of a time series. In theory, an

increase in entropy represents the increase of complexity. However, it may not always be
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Figure 2.4: the concept of sample entropy. xzz.

true in real case. One possible reason may be the fact that these measures are based on a

single scale [12].

Costa brought up a multiscale method based on the sample entropy, and it is a non-linear

method to measure complexity over a range of scales [12].

The MSE procedure is as follows [12,18]. Given a discrete time series x = [x1, x2, . . . , xN ],

consecutive coarse-grained time series yτ = [yτ1 , y
τ
2 , . . . , y

τ
N/τ ] is constructed corresponding

to the scale factor τ . In the first place, the original time series x is divided into nonover-

lapping windows of length τ . Second, we average the data points within the same window

according to Eq. 2.24. Fig. 2.24 illustrates this coarse-grained method. Afterwards, sample

entropy for each coarse-grained sequences is calculated and plotted as a function of the

scale factor.

yτj =
1

τ

jτ∑
i=(j−1)τ+1

x1, 1 ≤ j ≤ N

τ
(2.24)
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2.4 Hemispheric Asymmetry

Hemispheric EEG activation asymmetry in the patients with mood disorders has been

frequently observed in recent years as mentioned in section 1.2.3.

Knott measured the inter-hemispheric absolute power asymmetry for each band in eight

homologous sites (Fp1-Fp2, F7-F8, F3-F4, C3-C4, P3-P4, O1-O2, T3-T4, T5-T6) [26]. In

Knott’s method, the activity asymmetric indices of left hemisphere (L) and right hemi-

sphere (R) were calculated with the formula:

L−R
L+R

(2.25)

In this work, we follow the basic comparison method as Eq. 2.25 but change the site-

based comparison. Unlike the EEG channels, the amount of MEG channels is bigger and

the channels are closed to each other. For this reason, differ from EEG studies, we compare

the brain asymmetry region by region shown in Fig. 2.5. Based on the ROIs mentioned

in section 2.1, we slightly modify the ROI design. In the middle areas (frontal, central

and occipital), we discard the channels directly on the midline of the brain and divide

the other channels into left and right groups. The left and right temporal areas are in

pairs, but we subdivide frontotemporal areas into lateral and interior parts due to the bigger

channel number. In other words, the left lateral- and interior- frontotemporal areas are

corresponding to right lateral- and interior- frontotemporal areas respectively.

Besides the band power asymmetry, we also extend the asymmetric indices to other

features described in section 2.2 and section 2.3.
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Figure 2.5: Schematic illustration of the MEG sensor layout and the ROIs for asym-
metric analysis. There are six areas for observation: frontal, central, occipital, lateral-
frontotemporal, interior-frontotemporal and temporal. The illustration shows the channel
groups corresponding to the six areas, and the same colors stand for the areas in pairs. The
gray channels were excluded due to the week activitis or right in the middle of the brain.
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This chapter is concerning how we select the features with differentiability and de-

sign the classifier. In the following sections, the methods of t-test and Linear Discriminant

Analysis (LDA) are applied to select beneficial feature for classification. And then the clas-

sification will be brought out by Support Vector Machine (SVM) described in section 3.2.

Fig. 3.1 shows the classification procedures in this work.

All Features

T-Test
p < 0.03

LDA

Projection

SVM
Leave-one-out validation

Classification Result
Accuracy = ?

Feature Selection

Dimension Reduction

Classification

Features 
With large weighting

Features 
Reaching a significant level

Features 
With low dimensionality

Figure 3.1: Classification procedures. The figure shows the classification procedures in
this work. The significant level of t-test is set to be the first threshold to select features
in the first place. And then the features selected from t-test are selected again by LDA
method. To reduce the dimensionality of feature set, we then project the selected features
to a subspace with low dimension by LDA projection matrix. Finally, SVM is applied to
classify the final features.
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3.1 Linear Discriminant Analysis

3.1.1 Introduction to LDA

Linear discriminant analysis (LDA) is one of the most popular techniques for data

classification and dimensionality reduction. It was originally developed in 1936 by R.A.

Fisher [17], and has been widely applied in the areas of classification, face recognition,

marketing researches. The LDA method finds the linear combination of features which

best separate two or more classes and the resulting combination may be used as a linear

classifier or for dimensionality reduction before classification.

Fig. 3.2 illustrates a simple idea for LDA projection. It is an example of two dimen-

sional data, and the data is unable to be separated by neither dimension1 nor dimension2

in Fig. 3.2(a). However, in Fig. 3.2(b) we can find a projection matrix and project the

data into a new axis where the projected data are more separable than dimension1 and

dimension2.

dimension 1

dimension 2

(a)

dimension 2

dimension 1

(b)

Figure 3.2: An idea of LDA projection. The figure shows an example of LDA in two
dimensions. The data can not be separate from each other in any of the two axes in (a).
However we may project data into another one dimension axis which is the combination of
the original axes and the projected data is be more separable in (b).

LetK be the number of classes,N be the number of all samples whereNk is the number
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of samples in the kth class. The within-class scatter matrix Sw and the between-class scatter

matrix Sb are defined as

Sw =
K∑
k=1

∑
x∈Class k

(x− µk)(x− µk)T , (3.1)

and

Sb =
K∑
k=1

Nk(µk − µ0)(µk − µ0)
T , (3.2)

where µk is the mean vector of the kth class, and µ0 is the global mean vector defined as

µ0 =
1

N

K∑
k=1

Nkµk. (3.3)

The objective of LDA is to find a projection matrix P which projecting the feature

vectors onto a l-dimensional subspace of the original m-dimensional feature space and the

projected feature vectors maximizes the Fisher’s discriminant ratio. The Fisher’s discrimi-

nant criterion is

J = tr{Sw−1Sb}. (3.4)

Thus the objective function can be written as

PLDA = arg max
P

J = arg max
P

P TSbP

P TSwP
(3.5)

According to the linear algebra, we get

Sw
−1SbP = λP, (3.6)

where the column vectors of projection matrix PLDA are the eigenvectors of Sw−1Sb. In

case of K classes, LDA can reduce dimensionality to 1, 2, . . . , K − 1 dimensions. In the

2-classes case, the vector SbP is always along the (µ1 − µ2) direction, and we can then

obtain PLDA as Sw−1(µ1 − µ2).

3.1.2 Feature Selection

The performance of classifier depends on the interrelationship between the training

sample size and the number of the features. To achieve an acceptable performance, the
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number of training samples grows exponentially with the dimensionality of features [35].

This phenomenon is termed as curse of dimensionality, which leads to the peaking phe-

nomenon in classifier design and impacts on the performance of the classifier. In practice,

it has been observed that the added features may degrade the performance of a classifier if

the number of the training samples is small relative to the number of the features used for

clasification [6]. Therefore, for a fixed sample size, it is necessary to reduce the number of

features to a sufficient minimum. In this work, we use t-test to select the most discrepant

features and apply LDA to reduce the dimensionality of feature set.

Fig. 3.3 is an example of different importances in different dimensions. With LDA,

we can project data to a subspace with low dimension and it is obviously that dimension

2 contribute more than dimension 1 to the projection. It means that dimension 2 is prob-

ably more important than dimension 1 for classification. Thus we select the features with

larger weightings in the projection matrix of LDA in order to get the features favorable for

classification.

dimension 2

dimension 1

Figure 3.3: The weighting of LDA projection matrix.
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(a) (b)

L1

L2

Class A

Class B

L1

L2

Class A

Class B

xA

L1

L2

Class A

Class B

xB

Figure 3.4: The idea of selecting separating hyperplain in SVM. The circles represent
the samples, and different color represent for different groups. In (a), both L1 and L2 can
separate class A from class B successfully. In (b), L1 can separate two classes correctly but
L2 does not, while considering with new sample xA in class A and xB in class B.

3.2 Support Vector Machine

Support Vector Machine (SVM) is a powerful method of classification. In recent years,

SVM has been applied to diverse problems very successfully, such as face recognition.

The main idea of SVM is to determine a decision hyperplane which not only separates

different groups, but also be as far as possible from all samples. Fig. 3.4 depicts this idea.

When considering only the training set just like Fig. 3.4(a), both the two hyperplane L1

and L2 can separate class A from class B well. However, when considering with the new

testing sample xA and xB in Fig. 3.4(b), L2 fail to classify xA to class A even though xA
is close to one of the samples in class A and so does xB and class B. The SVM method

decides which hyperplane separates classes generally, that is, the hyperplane with largest

margin, which is as far as possible from all samples like L1 in Fig. 3.4.

The margin is defined as twice the absolute value of distance of the closest samples to

the separating hyperplane as Fig. 3.5. The samples closest to the separating hyperplane

are defined as support vectors and which completely define the optimal hyperplane. Let

the separating hyperplane be wTx + w0, and then the distance between sample x and the
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Figure 3.5: Margin and support vectors of SVM. The figure shows an example of a linear
SVM for two classes. (a)The samples with black edges are the support vectors, which are
the closest samples to the separating hyperplane. (b)The distance from support vectors to
the largest margin hyperplane is 1/||w||, and the margin is 2/||w||.

hyperplane is given by
|wTx+ w0|
||w||

. (3.7)

The distance is unchanged after scaling w and w0. Thus to make the largest margin hyper-

plane is unique, we add the requirement to support vectors:

|wTx+ w0| = 1. (3.8)

And then, the distance from support vectors to the largest margin hyperplane is 1/||w||, and

the margin is given by 2/||w|| as depicted in Fig. 3.5(b).

The objective of SVM is to maximize the margin 2/||w|| subject to the constraintswTxi + w0 ≥ 1 if xi is a positive example.

wTxi + w0 ≤ −1 if xi is a negative example.
(3.9)

Let yi = 1 if xiis a positive example.

yi = −1 if xiis a negative example.
(3.10)
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Then can convert the problem to minimize

J(w) =
1

2
||w||2 (3.11)

constrained to

yi(w
Txi + w0) ≥ 1,∀i. (3.12)

Using Lagrange multipliers λi to include the constraints:

L =
1

2
||w||2 −

N∑
i=1

λi[yi(w
Txi + w0)− 1], (3.13)

then minimize L relative to w and w0 by setting the partial derivatives to zero and get

w =
N∑
i=1

λiyixi (3.14)

N∑
i=1

λiyi = 0 (3.15)

Substitude Eq. 3.14 an Eq. 3.15 into Eq. 3.13, then the problem is transformed to maximize

L =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjxi
Txj. (3.16)

Subject to the constraints
N∑
i=1

λiyi = 0 and λi > 0,∀i. (3.17)

By Cover’s Theorem, a pattern classification problem cast in a high dimensional space

nonlinearly is more likely to be linearly separable than in a low-dimensional space. If

we apply a transformation φ to all samples so as to lift the original feature spaces to a

high dimensional spaces where the discriminability is stronger, then we can find a linear

discriminant function for transformed data φ(x). Substitute φ into Eq. 3.16

L =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyj[φ(xi)
Tφ(xj)]. (3.18)

We define the kernal function K(xi, xj) as

K(xi, xj) = φ(xi)
Tφ(xj). (3.19)
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To substitute kernal function into Eq. 3.18, and we obtain

L =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjK(xi, xj). (3.20)

Various kernal function choices have been brought up such as Gaussian radial basis

kernal. Gaussian radial basis kernal is

K(xi, xj) = exp(−||x− z||
2

2σ2
). (3.21)

where the σ adjusts the smoothness of the boundary. Such kernal based support vector

machine is often a nonlinear SVM method.
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Experiment Results
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In this chapter, we show the experiment results in this work. We first introduce the

materials used in the experiment, and than show the differences between three groups about

every feature. According to the analysis of each feature, a corresponding classifier was

designed and trained with real data. Finally we show the classification accuracy of these

groups. Further discussions and conclusions will be provided in the next chapter.

4.1 Materials

4.1.1 Subjects

In this work, three study groups are collected, including normal controls (NC), bipolar

disorder (BD), and major depressive disorder (MDD). Patients with BD and MDD were

selected from the outpatients of psychiatric department of Taipei Veterans General Hos-

pital, and the clinical diagnosis was made by two independent psychiatrists according to

DSM-IV criteria. Demographic data of all subjects are summarized in Table 4.1.

The BD group consisted of 26 patients suffering from bipolar disorder, and the MDD

group consisted of 22 patients with major depressive disorder. 25 healthy subjects, matched

by age and without history of any psychiatric disorders and neurological disorders, were

recruited through advertisement from the community. Besides, all of the normal controls

underwent Mini International Neuropsychiatric Interview (M.I.N.I.) before the experiments

to exclude the possible morbidity of major psychiatric illness. All subjects provided written

informed consent to participate in the experiment and study according to the guidelines

approved by the Institutional Committees of Medical Ethics and Radiation Safety.

4.1.2 MEG Device

The minute magnetic field generated by electrical activity within the living human brain

was measured with a whole-head MEG system at Integrated Brain Research Unit of Taipei

Veterans General Hospital (Neuromag Vectorview 306, Neuromag Ltd., Helsinki, Finland.)

The MEG system contains 204 gradiometer sensors and 102 magnetometer sensors which

simultaneously record at 102 distinct sites covering the entire scalp. The system has the
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Figure 4.1: MEG device. The MEG device in Integrated Brain Research Unit of Taipei
Veterans General Hospital.

capabilities of 24 bits analog to digital conversion and up-to-8 kHz sampling rate which

is sufficient to probe the fast dynamic changes inside human brains. Figure 4.1 shows the

MEG device.

Table 4.1: Demographic data of subjects. The table shows the demographic data of the
three groups: normal controls (NC), patients with bipolar disorder (BD), and patients with
major depressive disorder (MDD).

Variable NC BD MDD

n 25 26 22

Gender, n(%), male 9 (36.00) 10 (38.46) 8 (36.36)

Age, mean (SD), years 36.04 (11.19) 34.62 (10.40) 34.18 (9.17)

Handedness, n(%), right 25 (100) 26 (100) 21 (95.45)
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4.1.3 MEG Data Collection

Data recording was performed in a magnetically shielded room (Euroshield, Eura, Fin-

land) at Integrated Brain Research Unit of Taipei Veterans General Hospital. The magnetic

fields were recorded while subjects were seated comfortably and in a resting state, relax,

awake, and with eyes closed for two to three minutes. The signals were recorded at a

sampling rate of 1001.6 Hz and was filtered with a bandwidth of 0.03-330 Hz.

4.2 Data Preprocessing

The brain signal is relative weak as compared with environmental interference noises.

To extract the weak brain signals, experiment should be in a magnetically shielded room.

Besides, in order to enhance signal-to-noise ratio (SNR), some preprocessing procedure is

necessary before the further processing.

The preprocessing steps we used for MEG recordings are as follows and shown in

Figure 4.2. First, we eliminate bad channels which record abnormally. Second, while con-

ducting experiment, eye movement and eye blinking may contaminate the MEG signals.

To avoid the noise, we found out the abnormal scale of Electro-OculoGram (EOG) manu-

ally. Only the segments without eye blinking and eye movement were accepted for further

analysis. Third, signal space projection (SSP) was applied to eliminate the ambient noise.

Furthermore, because the MEG recording may drift along with time due to the device, a

baseline correction was applied in each channel. The baseline is estimated by the mean

of the whole segment. Besides eye movement and eye blinking, there are still some ex-

ternal artifacts like heartbeat, breath, and electromyographic(EMG). Therefore, finally we

use bandpass filter of 2-50 Hz to minimize those unavoidable artifacts. Only the signals

recorded from gradiometer sensors were used in this study, because gradiometer sensors

detect less ambient noise and give the largest signal right above the source [28].
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Figure 4.2: Preprocessing procedures for MEG recordings. In order to enhance SNR,
preprocessing for the recordings is necessary before the further processing. First we elim-
inate the bad channels and choose the segmentations without eye movements for further
analysis. Second, we apply signal space projection (SSP) to eliminate the unbalanced
noise effect on different sensors. Then baseline correction is applied to eliminate the drift
of recordings. Finally, a 2-50 Hz bandpass filter is used to eliminate other artifacts such as
heartbeat and breath.

4.3 Features of Power Spectrum

To characterize the spectral content of each MEG recording, we used the Fourier trans-

form and then extracted the features. Initially, we computed the power spectral density

(PSD) for each epoch and then averaged the PSD for all epochs. To compare with differ-

ent area of brain, we averaged the PSD of different channels based on the ROI showed in

section 2.1.

4.3.1 band power

Fig. 4.3 shows the relative band powers of the five frequency bands, and Table 4.2,

Table 4.3 and Table 4.4 show the p-value of two groups comparisons. Compared with the

three groups, the delta band power of the patients with bipolar disorder are slightly stronger

than others and so do the alpha band power of normal controls. However, these differences

do not reach the significant level (p-value < 0.05). On the other hand, the beta and gamma

band powers of patients with major depressive disorder are stronger significantly, especially

than the normal controls.
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Figure 4.3: Relative band power. The bar chart shows the relative band power in the NC,
BD and MDD groups.
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Table 4.2: The p-values of band power between NC and BD. The differences between
normal controls (NC) and patients with bipolar disorder (BD) are not significant in any
frequency bands.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

Delta 0.979 0.417 0.853 0.566 0.675 0.718 0.961 0.696

Theta 0.452 0.754 0.367 0.734 0.561 0.783 0.898 0.874

Alpha 0.609 0.435 0.383 0.671 0.761 0.495 0.791 0.537

Beta 0.131 0.379 0.165 0.733 0.512 0.341 0.356 0.373

Gamma 0.126 0.239 0.549 0.883 0.765 0.663 0.566 0.942

Table 4.3: The p-values of band power between NC and MDD. Compared with NC, the
relative band power of patients with major depressive disorder (MDD) are quite different
in beta and gamma band, especially in the beta band power of frontal, gamma band power
of central and frontotemporal of brain.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

Delta 0.954 0.778 0.888 0.959 0.927 0.723 0.850 0.952

Theta 0.617 0.290 0.530 0.294 0.178 0.539 0.540 0.620

Alpha 0.127 0.334 0.362 0.233 0.452 0.318 0.519 0.321

Beta 0.048 0.056 0.065 0.077 0.063 0.069 0.056 0.059

Gamma 0.061 0.016 0.731 0.023 0.023 0.188 0.271 0.077
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Table 4.4: The p-values of band power between BD and MDD. Compared BD with
MDD, the significant difference of relative band power are in the gamma band of fron-
totemporal areas.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

Delta 0.915 0.564 0.963 0.585 0.575 0.956 0.903 0.730

Theta 0.830 0.386 0.772 0.466 0.331 0.375 0.464 0.491

Alpha 0.187 0.865 0.984 0.480 0.630 0.787 0.728 0.745

Beta 0.215 0.195 0.804 0.131 0.154 0.355 0.258 0.240

Gamma 0.544 0.178 0.370 0.032 0.061 0.113 0.130 0.096
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Figure 4.4: MF and SEF90. The bar chart shows the MF and SEF90 in all ROIs whithin
the three groups. MF of patients with MDD apparently higher than that of NC and BD
in all ROIs. But MF of BD patients and NC are quite similar. Compared MDD with NC,
patients with MDD are still have a little higher SEF90 in each ROIs. But in the case of
BD and MDD, SEF90 of BD are higher in frontal, central, and frontotemporal, but lower
in others.

4.3.2 MF and SEF90

Fig. 4.4 shows the bar chart of the mean frequency (MF) and the 90% spectral edge

frequency (SEF90), and Table 4.5 and Table 4.3.2 show the detail of the p-value of the

difference between any two groups. Roughly speaking, the MF and SEF90 of MDD are

higher than NC and BD groups.

The MF differences between NC and BD are not clear, but are significantly different

between NC and MDD. Except for the occipital of brain, each ROI reaches significant

level (p-value < 0.05). Compare the MF of BD with MDD, the frontotemporal has clearer

differences, but only the left frontotemporal reaches significant level. On the contrary, the

features of SEF90 do not show any clearer difference between any two groups.
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Table 4.5: The p-values of mean frequency (MF). The MF differences between NC and
BD are unapparent, but significant between NC and MDD. Except for occipital, each ROI
reaches significant level (p-value less than 0.05). Compare the MF of BD with MDD, the
frontotemporal has clearer differences, but only the left frontotemporal reaches significant
level.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

NC vs. BD 0.158 0.523 0.690 0.896 0.878 0.643 0.878 0.739

NC vs. MDD 0.032 0.018 0.549 0.028 0.027 0.020 0.027 0.016

BD vs. MDD 0.249 0.084 0.233 0.034 0.051 0.106 0.106 0.062

Table 4.6: The p-values of the 90% spectral edge frequency (SEF90). The significant
differences of SEF90 are not found no matter what ROI is.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

NC vs. BD 0.261 0.233 0.356 0.882 0.938 0.364 0.341 0.912

NC vs. MDD 0.337 0.079 0.982 0.119 0.104 0.542 0.554 0.273

BD vs. MDD 0.981 0.501 0.377 0.132 0.101 0.135 0.123 0.195
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4.3.3 Spectral Ratio Measures

Fig. 4.5 illustrates the means of the five spectral ratios described in section 2.2.3. In

the MDD case, all means of these spectral ratios are larger than those of BD patients and

NC group no matter what ROI is. The mean spectral ratios of patients with BD are almost

larger than those of NC but smaller than those of MDD patients, besides some areas. The

ratios of gamma to theta band in occipital and temporal are the smallest in the three groups,

and so does the ratio of gamma band to alpha band.

Table 4.3.3, Table 4.3.3 and Table 4.3.3 show the details of the p-values which show the

degree of discrepancy between NC and BD, NC and MDD, and BD and MDD respectively.

There are no obvious differences between NC and BD groups, but not between NC and

MDD groups. The most different feature are the ratio of (RP (β) + RP (γ))/(RP (θ) +

RP (α)) and the ROI of central of the brain. Ratio of (RP (β)+RP (γ))/(RP (θ)+RP (α))

in most ROIs are significant different between NC and MDD, besides occipital. Moreover,

the ratio of gamma to theta band (RP (γ)/RP (θ)) reaches the strong significant level of p

< 0.01 in central and right temporal of brain. Besides, in the case of comparison of BD and

MDD patients, only the ratio of gamma to theta band (RP (γ)/RP (θ)) reach the significant

level of p < 0.05.

Table 4.7: The p-values of spectral ratios between NC and BD. In the NC and BD case,
the spectral ratios do not differentiate BD from NC in any ROIs.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

RP (β)+RP (γ)
RP (θ)+RP (α)

0.116 0.190 0.275 0.543 0.439 0.316 0.428 0.333
RP (β)
RP (θ)

0.160 0.365 0.322 0.461 0.441 0.297 0.303 0.378
RP (β)
RP (α)

0.307 0.168 0.163 0.458 0.461 0.203 0.320 0.227
RP (γ)
RP (θ)

0.128 0.200 0.419 0.612 0.650 0.880 0.761 0.875
RP (γ)
RP (α)

0.300 0.119 0.810 0.497 0.574 0.717 0.931 0.494
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Figure 4.5: Spectral Ratios. The bar charts show five kinds of spectral ratios. For all
spectral ratios, MDD patients have larger ratio means than NC and BD patients in all ROIs.
All of the ratio means of BD patients are larger than those of NC and smaller than those of
MDD, except for ratios of gamma to theta band in occipital and temporal areas and ratio of
gamma to alpha band in occipital.
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Table 4.8: The p-values of spectral ratios between NC and MDD. The differences
of NC and MDD in spectral ratios are obvious. In all of the areas of brain, except
for occipital area, the spectral ratios of beta and gamma band to theta and alpha band
(RP (β) + RP (γ)/RP (θ) + RP (α)) reach the significant level of p less than 0.05. And
then, four of the five ratios in central of brain also reach the significatn level. Moreover,
the ratio of gamma to theta band (RP (γ)/RP (θ)) reach the significant level of p less than
0.01 in central and right temporal of brain. Besides, the spectral ratio of beta to alpha band
(RP (β)/RP (α)) and the ratio of gamma to alpha band (RP (γ)/RP (α)) also get well
distinctions between NC and MDD groups.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

RP (β)+RP (γ)
RP (θ)+RP (α)

0.018 0.020 0.101 0.028 0.024 0.030 0.037 0.027
RP (β)
RP (θ)

0.071 0.060 0.250 0.077 0.072 0.105 0.106 0.096
RP (β)
RP (α)

0.031 0.040 0.111 0.056 0.061 0.044 0.066 0.046
RP (γ)
RP (θ)

0.077 0.005 0.856 0.012 0.009 0.129 0.162 0.057
RP (γ)
RP (α)

0.070 0.043 0.705 0.063 0.099 0.181 0.389 0.135

Table 4.9: The p-values of spectral ratios between BD and MDD. To differentiate BD
from MDD using spectral ratios, the frontotemporal areas are more discriminable than
other areas of brain, especially in the ratio of gamma to theta band (RP (γ)/RP (θ)) the
differences reach significant level.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

RP (β)+RP (γ)
RP (θ)+RP (α)

0.126 0.163 0.736 0.064 0.086 0.237 0.181 0.163
RP (β)
RP (θ)

0.305 0.282 0.806 0.211 0.213 0.583 0.419 0.345
RP (β)
RP (α)

0.095 0.333 0.883 0.139 0.178 0.376 0.356 0.310
RP (γ)
RP (θ)

0.619 0.139 0.357 0.043 0.041 0.151 0.140 0.103
RP (γ)
RP (α)

0.352 0.605 0.526 0.221 0.310 0.348 0.476 0.388
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Figure 4.6: Spectral Entropies. The barchart illustrates the mean of spectral entropies for
the three groups.

4.3.4 Spectral Entropy

Fig. 4.6 illustrates the means of the spectral entropies described in section 2.2.4. It

shows that the SE1 of MDD patients are larger than NC and BD patients, so do SE2 in all

ROIS.

Table 4.10 and Table 4.11 show the p-value of t-test between any tow of the three

groups. In the case of SE1, although there is no features reaching significant level, the

difference between NC and MDD patients are a little significant than NC and MDD. In the

case of SE2, the NC and BD groups do not show any clear difference, but p-values of SE2

between NC and MDD groups reach the significant level in frontal and frontotemporal.

Besides, in both SE1 and SE2 cases, the differences between BD and MDD patients are a

little obvious in frontotemporal and temporal, especially SE2 in left frontotemporal.

Table 4.10: The p-values of spectral antropy (SE1). In the case of NC and MDD groups,
the differences are more obvious than in the case of NC and BD groups, but the differ-
ences do not reach significant level. In the BD and MDD case, there are distinctions in
frontotemporal and temporal areas, but also can not reach the significant level.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

NC vs. BD 0.082 0.376 0.934 0.958 0.651 0.862 0.702 0.918

NC vs. MDD 0.052 0.130 0.276 0.146 0.083 0.206 0.234 0.156

BD vs. MDD 0.663 0.364 0.183 0.101 0.109 0.108 0.073 0.109
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Table 4.11: The p-values of spectral antropy 2 (SE2). The p-values between NC and
BD groups do not show any differences. In the NC and MDD cases, differences are in the
frontal and frontotemporal, especially in frontal and right frontotemporal. In the BD and
MDD case, only SE2 in left frontotemporal can reach significant level.

Variable Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

NC vs. BD 0.068 0.517 0.625 0.735 0.592 0.980 0.805 0.853

NC vs. MDD 0.012 0.125 0.235 0.059 0.042 0.124 0.171 0.121

BD vs. MDD 0.394 0.232 0.441 0.022 0.075 0.090 0.068 0.115

4.4 Temporal Complexity

To characterize the temporal signal content of MEG recordings, we calculate LZC and

sample entropy (SampEn). The features were calculate for each channel and then we aver-

age the features within the same ROIs. To get a stable result, then we average them for all

epochs. The method of multi-scale entropy described in sec 2.3.3 is applied to not only the

sample entropy but LZC method, and the scale range of 1 to 20 is taken into account.

4.4.1 LZC

Fig. 4.7 shows the multi-scale LZ complexity of all ROIs. The values of LZC of MDD

patients are larger than NC and BD patients in all scales and all ROIs. In the frontal,

the three group are quite similar, especially BD and MDD. In frontotemporal, temporal,

occipital, and all brain, LZC values of MDD patients are larger than NC and BD patients,

and the NC and BD patients are quite similar, especially in frontotemporal. Besides, LZC

values in central are separate between the three groups.

Table 4.4.1 to Table 4.4.1 show details of the p-values of t-test between two groups.

LZ complexities of BD patients do not different from NC obviously, but different from

the MDD patients. The differences between BD patients and MDD patients are significant

in frontotemporal and temporal, especially in right hemesphere. The differences between

MDD patients and NC are in the frontal, central and frontotemporal.



48 Experiment Results

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

LZ
C

Frontal

NC
BD
MDD

(a) Frontal

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

LZ
C

Central

NC
BD
MDD

(b) Central

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

LZ
C

Left−Frontotemporal

NC
BD
MDD

(c) Left-Frontotemporal

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

LZ
C

Right−Frontotemporal

NC
BD
MDD

(d) Right-Frontotemporal

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

LZ
C

Right−Temporal

NC
BD
MDD

(e) Left-Temporal

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

LZ
C

Right−Temporal

NC
BD
MDD

(f) Right-Temporal

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

LZ
C

Occipital

NC
BD
MDD

(g) Occipital

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

LZ
C

All

NC
BD
MDD

(h) All

Figure 4.7: Multi-scale LZC. The illustration shows the mean values of LZ complexity
and corresponding to scale factors from one to twenty.
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Table 4.12: The p-values of Lempel-Ziv complexity (LZC) between NC and BD in
multiple scales. In the NC and BD case, the differences in frontal and central areas are
slightly clearer than others, but there is no feature which reaches significant level.

Scale Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

1 0.236 0.246 0.376 0.909 0.996 0.460 0.373 0.975

2 0.216 0.264 0.414 0.913 0.984 0.476 0.371 0.980

3 0.205 0.274 0.421 0.917 0.980 0.495 0.391 0.978

4 0.208 0.279 0.448 0.942 0.970 0.507 0.405 0.989

5 0.208 0.281 0.470 0.889 0.964 0.540 0.390 0.996

6 0.216 0.298 0.493 0.905 0.994 0.512 0.411 0.992

7 0.214 0.298 0.521 0.946 0.979 0.516 0.440 0.999

8 0.229 0.292 0.551 0.959 0.968 0.609 0.421 0.981

9 0.195 0.302 0.561 0.991 0.933 0.619 0.465 0.970

10 0.152 0.310 0.618 0.960 0.921 0.669 0.478 0.931

11 0.140 0.322 0.656 0.996 0.883 0.627 0.534 0.922

12 0.139 0.365 0.739 0.972 0.872 0.686 0.511 0.905

13 0.171 0.355 0.780 0.971 0.839 0.723 0.548 0.882

14 0.156 0.420 0.831 0.995 0.760 0.856 0.608 0.858

15 0.118 0.388 0.841 0.996 0.801 0.918 0.623 0.836

16 0.180 0.394 0.864 0.957 0.732 0.917 0.602 0.831

17 0.179 0.411 0.894 0.967 0.741 0.917 0.736 0.824

18 0.166 0.412 0.988 0.994 0.656 0.970 0.732 0.759

19 0.153 0.445 0.999 0.988 0.674 0.973 0.827 0.767

20 0.061 0.404 0.937 0.894 0.595 0.933 0.810 0.689
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Table 4.13: The p-values of Lempel-Ziv complexity (LZC) between NC and MDD in
multiple scales. The differences in frontal, central and frontotemporal areas reach signifi-
cant level.

Scale Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

1 0.072 0.030 0.697 0.048 0.027 0.231 0.246 0.083

2 0.071 0.038 0.686 0.061 0.034 0.245 0.268 0.096

3 0.078 0.044 0.687 0.073 0.043 0.257 0.281 0.110

4 0.087 0.048 0.643 0.086 0.047 0.270 0.295 0.116

5 0.101 0.051 0.649 0.092 0.055 0.255 0.292 0.124

6 0.101 0.058 0.610 0.113 0.061 0.251 0.260 0.128

7 0.082 0.057 0.554 0.118 0.063 0.243 0.262 0.122

8 0.078 0.061 0.517 0.120 0.065 0.234 0.252 0.121

9 0.082 0.064 0.500 0.126 0.064 0.205 0.269 0.122

10 0.066 0.065 0.447 0.117 0.064 0.201 0.219 0.112

11 0.050 0.067 0.383 0.112 0.058 0.200 0.230 0.103

12 0.041 0.074 0.342 0.100 0.064 0.165 0.207 0.098

13 0.057 0.062 0.329 0.100 0.048 0.161 0.177 0.090

14 0.031 0.080 0.253 0.079 0.046 0.129 0.177 0.080

15 0.025 0.074 0.241 0.090 0.061 0.111 0.133 0.076

16 0.048 0.080 0.198 0.079 0.040 0.096 0.159 0.071

17 0.032 0.080 0.208 0.076 0.041 0.096 0.137 0.069

18 0.028 0.083 0.159 0.077 0.048 0.100 0.147 0.064

19 0.032 0.103 0.165 0.097 0.056 0.136 0.133 0.076

20 0.024 0.108 0.143 0.123 0.054 0.103 0.127 0.071
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Table 4.14: The p-values of Lempel-Ziv complexity (LZC) between BD and MDD in
multiple scales. The most different areas between BD and MDD are frontotemporal and
temporal, and reach significant level in right hemisphere in most scales.

Scale Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

1 0.416 0.205 0.197 0.050 0.016 0.063 0.040 0.059

2 0.454 0.223 0.212 0.062 0.019 0.070 0.042 0.067

3 0.511 0.241 0.214 0.072 0.022 0.075 0.047 0.075

4 0.533 0.246 0.208 0.081 0.027 0.082 0.050 0.081

5 0.598 0.258 0.222 0.099 0.032 0.081 0.046 0.091

6 0.578 0.268 0.215 0.115 0.032 0.071 0.041 0.090

7 0.488 0.256 0.203 0.113 0.033 0.068 0.046 0.087

8 0.434 0.278 0.196 0.103 0.035 0.085 0.039 0.088

9 0.524 0.275 0.189 0.104 0.034 0.075 0.048 0.091

10 0.539 0.270 0.190 0.103 0.035 0.079 0.039 0.091

11 0.470 0.263 0.174 0.089 0.034 0.072 0.048 0.087

12 0.427 0.239 0.185 0.083 0.039 0.064 0.039 0.086

13 0.443 0.212 0.194 0.089 0.030 0.068 0.034 0.084

14 0.324 0.210 0.171 0.059 0.034 0.073 0.040 0.078

15 0.302 0.211 0.162 0.071 0.038 0.076 0.029 0.077

16 0.397 0.222 0.141 0.075 0.031 0.059 0.032 0.075

17 0.244 0.211 0.157 0.055 0.031 0.057 0.038 0.073

18 0.292 0.208 0.156 0.067 0.048 0.084 0.042 0.084

19 0.387 0.236 0.164 0.085 0.059 0.097 0.054 0.097

20 0.650 0.281 0.170 0.142 0.080 0.087 0.047 0.119
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4.4.2 SampEn

The values of the parameters used to calculate sample entropy (SampEn) are m=1, and

r=0.25 times of the standard deviation (SD) of the time series. While the scale factor is

different, the r will also different due to the change of SD of the time series.

Fig. 4.8 shows the mean multi-scale entropy of sample entropies for all ROIs. The

values of SampEn are larger than other groups in most ROIs and scales. SampEn of the

three groups are similar in occipital, but are separate in central and. In left-frontotemporal,

frontotemporal and the whole brain, the sampEn of NC and BD patients are quite similar,

but sampEn of MDD patients are larger than NC and BD patients.

Table 4.4.2, Table 4.4.2, and Table 4.4.2 show the detail of the p-values of t-test between

NC and BD patients, NC and MDD patients, and BD and MDD patients respectively. To

compare with NC, sample entropies of BD patients are different in frontal, and the differ-

ences reach the significant level with larger scales. The sampEn differences between NC

and MDD patients are mainly in frontotal, central, and frontotemporal. Those differences

reach the significant level (p < 0.05) in central and frontotemporal with smaller scales, and

some of them even reach the strong significant level of p < 0.01. The sampEn differences

between BD and MDD patients are in the frontotemporal and temporal, and those sampEn

with smaller scales reach the significant level.
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Figure 4.8: Multi-scale entorpy (SampEn). The illustration shows the mean values of
sample entropies and corresponding to scale factors from one to twenty.



54 Experiment Results

Table 4.15: The p-values of sample entropy (SampEn) between NC and BD in multiple
scales. Sample entropy differences between NC and BD in frontal area reach significant
level in larger scales.

Scale Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

1 0.130 0.208 0.409 0.891 0.842 0.346 0.444 0.916

2 0.114 0.199 0.426 0.887 0.812 0.351 0.469 0.905

3 0.102 0.195 0.449 0.879 0.779 0.366 0.494 0.884

4 0.096 0.191 0.469 0.874 0.740 0.376 0.523 0.863

5 0.086 0.190 0.486 0.854 0.705 0.384 0.539 0.842

6 0.076 0.191 0.517 0.862 0.676 0.395 0.585 0.819

7 0.068 0.193 0.535 0.843 0.656 0.399 0.594 0.806

8 0.054 0.192 0.569 0.822 0.625 0.411 0.628 0.776

9 0.057 0.205 0.604 0.806 0.585 0.400 0.657 0.765

10 0.040 0.207 0.640 0.822 0.569 0.433 0.693 0.740

11 0.032 0.209 0.700 0.818 0.530 0.445 0.708 0.712

12 0.028 0.251 0.718 0.800 0.499 0.417 0.762 0.714

13 0.021 0.275 0.735 0.847 0.521 0.439 0.805 0.713

14 0.023 0.282 0.772 0.887 0.448 0.452 0.841 0.700

15 0.019 0.326 0.810 0.935 0.456 0.464 0.876 0.704

16 0.034 0.345 0.795 0.994 0.373 0.448 0.936 0.715

17 0.026 0.365 0.829 0.872 0.414 0.413 0.830 0.708

18 0.023 0.455 0.864 0.902 0.446 0.384 0.997 0.751

19 0.034 0.540 0.874 0.943 0.380 0.382 0.934 0.766

20 0.034 0.558 0.872 0.790 0.393 0.330 0.959 0.802
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Table 4.16: The p-values of sample entropy (SampEn) between NC and MDD in mul-
tiple scales. The differences of sample entropy between NC and MDD are apparent in
frontal, central, and frontotemporal areas. Some features in these areas with smaller scales
reach the significant level of p-value smaller than 0.05, and reach the significant level of
p-value smaller than 0.01 in right frontotemporal in scale of 6 to 11.

Scale Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

1 0.063 0.026 0.616 0.028 0.013 0.259 0.197 0.056

2 0.065 0.028 0.604 0.030 0.012 0.265 0.192 0.059

3 0.065 0.031 0.583 0.031 0.012 0.271 0.184 0.061

4 0.065 0.032 0.564 0.031 0.011 0.274 0.171 0.061

5 0.062 0.033 0.543 0.031 0.011 0.267 0.164 0.059

6 0.058 0.034 0.516 0.031 0.010 0.262 0.145 0.057

7 0.061 0.035 0.483 0.029 0.010 0.262 0.139 0.056

8 0.057 0.037 0.472 0.028 0.009 0.260 0.125 0.055

9 0.060 0.038 0.422 0.027 0.009 0.273 0.114 0.053

10 0.058 0.043 0.406 0.029 0.009 0.243 0.114 0.054

11 0.064 0.045 0.354 0.036 0.009 0.263 0.111 0.054

12 0.076 0.055 0.343 0.032 0.011 0.291 0.104 0.058

13 0.087 0.065 0.346 0.036 0.012 0.298 0.106 0.063

14 0.112 0.079 0.302 0.061 0.015 0.361 0.119 0.074

15 0.163 0.106 0.305 0.074 0.020 0.360 0.142 0.089

16 0.260 0.140 0.292 0.110 0.023 0.465 0.136 0.106

17 0.288 0.216 0.343 0.122 0.044 0.530 0.217 0.148

18 0.386 0.294 0.344 0.227 0.084 0.686 0.200 0.200

19 0.421 0.422 0.374 0.308 0.071 0.843 0.238 0.251

20 0.553 0.464 0.401 0.410 0.184 0.911 0.319 0.341
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Table 4.17: The p-values of sample entropy (SampEn) between BD and MDD in mul-
tiple scales. The sample entropies of BD are different from the sample entorpies of MDD
in frontotemporal and temporal areas, and reach significant level in smaller scales.

Scale Frontal Central Occipital Frontotemporal Temporal All

Left Right Left Right

1 0.623 0.246 0.196 0.036 0.018 0.057 0.047 0.066

2 0.690 0.267 0.200 0.038 0.019 0.059 0.049 0.071

3 0.740 0.288 0.203 0.041 0.020 0.064 0.050 0.077

4 0.756 0.303 0.207 0.042 0.021 0.068 0.051 0.082

5 0.779 0.310 0.209 0.046 0.022 0.068 0.052 0.087

6 0.792 0.313 0.216 0.046 0.024 0.071 0.055 0.092

7 0.862 0.317 0.213 0.048 0.025 0.073 0.054 0.096

8 0.900 0.339 0.231 0.052 0.027 0.078 0.056 0.107

9 0.902 0.332 0.228 0.058 0.031 0.082 0.057 0.112

10 0.994 0.368 0.246 0.061 0.036 0.081 0.069 0.128

11 0.876 0.386 0.253 0.083 0.044 0.096 0.073 0.148

12 0.782 0.384 0.264 0.088 0.060 0.100 0.084 0.165

13 0.607 0.415 0.286 0.092 0.070 0.110 0.097 0.188

14 0.566 0.471 0.282 0.138 0.114 0.137 0.120 0.230

15 0.348 0.523 0.311 0.155 0.142 0.140 0.156 0.271

16 0.322 0.593 0.303 0.180 0.217 0.170 0.166 0.310

17 0.230 0.761 0.358 0.287 0.300 0.178 0.203 0.405

18 0.134 0.795 0.384 0.270 0.414 0.207 0.261 0.460

19 0.138 0.880 0.413 0.363 0.477 0.262 0.235 0.516

20 0.100 0.909 0.434 0.345 0.738 0.337 0.334 0.598
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4.5 Hemispheric Asymmetry

We applied the formula of asymmetric indices of Eq. 2.25 to all the features we de-

scribed in section 4.3 and section 4.4.

4.5.1 Band Power

Fig. 4.9 shows the mean hemisphere asymmetry of relative band powers of the three

groups. The positive value of asymmetric indices mean that the power of left hemisphere

is stronger than right. On the other hand, the negative values mean the power of left hemi-

sphere is weaker than right. If the value is closer to zero, it means that the powers of left

and right hemisphere are more symmetric.In the frontal, the relative band powers in left

hemisphere are larger than in right hemisphere no matter what ROI is. Both BD and MDD

patients have stronger relative power than NC in frontal in all frequency bands. Besides

frontal and occipital, all ROIs have the characteristic of right stronger than left in all bands.

Table 4.5.1, Table 4.5.1 and Table 4.5.1 show the details of the p-values of t-test between

two groups: NC and BD, NC and MDD, and BD and MDD. In the NC and BD case, the

clear differences of power asymmetry are in the frontal and central, especially in delta and

theta bands. In the NC and MDD case, the differences between them are the theta and

alpha bands in the frontal. In the BC and MDD case, the differences of power asymmetry

are significant in central.

Table 4.18: The p-values of band power asymmetry between NC and BD. Band power
asymmetry shows the difference of delta and theta band in frontal and central, especially
of theta band in frontal (p < 0.01).

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

Delta 0.037 0.055 0.207 0.683 0.222 0.995

Theta 0.002 0.025 0.480 0.975 0.467 0.635

Alpha 0.086 0.475 0.641 0.628 0.823 0.237

Beta 0.117 0.105 0.477 0.677 0.795 0.484

Gamma 0.326 0.053 0.143 0.700 0.324 0.508
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Figure 4.9: Hemispheric asymmetry of relative band power. The bar chart shows the
mean hemisphere asymmetry of relative band power in the NC, BD and MDD groups.
F:Frontal, C:Central, O:Occipital, FT:Frontotemporal, T:Temporal.
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Table 4.19: The p-values of band power asymmetry between NC and MDD. The sig-
nificant differences between NC and MDD patients are the theta and alpha band powers in
the frontal.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

Delta 0.225 0.957 0.598 0.501 0.633 0.657

Theta 0.011 0.572 0.808 0.269 0.738 0.786

Alpha 0.040 0.095 0.955 0.390 0.945 0.443

Beta 0.383 0.751 0.684 0.242 0.899 0.629

Gamma 0.111 0.179 0.898 0.166 0.766 0.936

Table 4.20: The p-values of band power asymmetry between BD and MDD. The dif-
ferences of asymmetric band powers between BD and MDD patients appear in central, and
reach the significant level.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

Delta 0.266 0.084 0.479 0.232 0.438 0.671

Theta 0.559 0.017 0.373 0.216 0.677 0.897

Alpha 0.704 0.009 0.651 0.200 0.757 0.863

Beta 0.532 0.060 0.335 0.150 0.892 0.992

Gamma 0.400 0.003 0.252 0.191 0.272 0.613

4.5.2 Spectral Measures

Fig. 4.10 illustrates the mean of MF and SEF90 asymmetry. The main difference is that

the MF asymmetries of NC are stronger than both BD and MDD patients, especially BD

patients. Table 4.5.2 and Table 4.5.2 are the p-values of t-test between the three groups.

Only in the NC and BD case, there is significant difference of MF asymmetry in frontal.
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Figure 4.10: Hemispheric asymmetry of MF and SEF90. The bar chart shows the mean
of MF and SEF90 asymmetry in all ROIs whithin the three groups. F:Frontal, C:Central,
O:Occipital, FT:Frontaltemporal, T:Temporal. In frontal, the MF and SEF90 asymmetry of
NC are apparently stronger than BD and MDD patients.

Table 4.21: The p-values of MF asymmetry. Compared with BD patients and NC, the
difference of MF asymmetry in frontal are significant. In the NC and MDD case, the
differences do not reach the significant level.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

BD 0.020 0.895 0.678 0.622 0.476 0.909

MDD 0.067 0.599 0.077 0.852 0.883 0.413

BD vs. MDD 0.658 0.501 0.093 0.498 0.602 0.408

Table 4.22: The p-values of SEF90 asymmetry. The difference of SEF90 asymmetry
between the three groups are not significant.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

BD 0.080 0.937 0.591 0.744 0.504 0.739

MDD 0.410 0.709 0.787 0.421 0.504 0.958

BD vs. MDD 0.355 0.646 0.860 0.596 0.173 0.757
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4.5.3 Spectral Ratio Measures

Fig. 4.11 shows the bar chart of the mean of spectral ration asymmetry between the

three groups. The spectral ratio asymmetries of NC are obviously larger than BD and MDD

patients in the frontal. The hemispheric asymmetries of RP (β)/RP (α), RP (γ)/RP (α),

and (RP (β)+RP (γ))/(RP (θ)+RP (α)) in the central are smaller in MDD case than NC

and BD.

Table 4.5.3, Table 4.5.3 and Table 4.5.3 show the detail of the p-value of t-test be-

tween NC and BD, NC and MDD, and BD and MDD respectively. From the table, the

differences between NC and BD patients are in the frontal. In the NC and MDD case, the

differences of spectral ratio asymmetries are the (RP (β) +RP (γ))/(RP (θ) +RP (α)) in

frontal, RP (β)/RP (θ) in frontal, and RP (β)/RP (α) in central. The only one difference

of spectral ratio asymmetry between BD and MDD is the ratio of RP (β)/RP (α) in the

central.

Table 4.23: The p-values of spectral ratio asymmetry between NC and BD. Spectral
ratio differences between NC and BD patients are only in frontal.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

RP (β)+RP (γ)
RP (θ)+RP (α)

0.037 0.885 0.791 0.781 0.111 0.608
RP (β)
RP (θ)

0.021 0.515 0.830 0.632 0.140 0.986
RP (β)
RP (α)

0.320 0.723 0.982 0.834 0.349 0.466
RP (γ)
RP (θ)

0.013 0.638 0.938 0.762 0.986 0.897
RP (γ)
RP (α)

0.278 0.712 0.805 0.834 0.657 0.628
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Table 4.24: The p-values of spectral ratio asymmetry between NC and MDD.
Compared NC with MDD patients, the differences of spectral ratio asymmetry are
only (RP (β) + RP (γ))/(RP (θ) + RP (α)) in frontal, RP (β)/RP (θ) in frontal, and
RP (β)/RP (α) in central.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

RP (β)+RP (γ)
RP (θ)+RP (α)

0.023 0.105 0.698 0.802 0.675 0.874
RP (β)
RP (θ)

0.030 0.681 0.886 0.695 0.473 0.765
RP (β)
RP (α)

0.071 0.026 0.694 0.946 0.942 0.740
RP (γ)
RP (θ)

0.155 0.582 0.717 0.712 0.562 0.904
RP (γ)
RP (α)

0.286 0.303 0.895 0.932 0.885 0.614

Table 4.25: The p-values of spectral ratio asymmetry between BD and MDD. The
asymmetry of the spectral ratio RP (β)/RP (α) between BD and MDD patients are signif-
icant different in the central.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

RP (β)+RP (γ)
RP (θ)+RP (α)

0.686 0.085 0.493 0.963 0.262 0.710
RP (β)
RP (θ)

0.971 0.330 0.930 0.887 0.386 0.815
RP (β)
RP (α)

0.372 0.028 0.635 0.868 0.369 0.623
RP (γ)
RP (θ)

0.243 0.913 0.782 0.949 0.541 0.819
RP (γ)
RP (α)

0.964 0.411 0.936 0.780 0.524 0.973
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Figure 4.11: Hemispheric asymmetry of spectral ratios. The bar charts show the hemi-
spheric asymmetry of five kinds of spectral ratios. In the NC case, the ratio asymmetry of
RP (β)/RP (θ), RP (γ)/RP (θ), and (RP (β)+RP (γ))/(RP (θ)+RP (α)) are larger than
those of BD and MD pateints. In the MDD case, the ratio asymmetry of RP (β)/RP (α)
and (RP (β)+RP (γ))/(RP (θ)+RP (α)) are obviously smaller than NC and BD patients.
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Figure 4.12: Hemispheric asymmetry of spectral entropies. F:Frontal, C:Central,
O:Occipital, FT:Frontotemporal, T:Temporal.

Table 4.26: The p-values of spectral entropy 1 (SE1) asymmetry. Compared with NC,
BD and MDD patients have differences in frontal, but only BD reach the significant level.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

NC vs. BD 0.029 0.865 0.501 0.544 0.313 0.544

NC vs. MDD 0.059 0.172 0.887 0.389 0.241 0.837

BD vs. MDD 0.762 0.095 0.434 0.815 0.746 0.651

Table 4.27: The p-values of spectral entropy 2 (SE2) asymmetry. The difference be-
tween NC and BD patients reach a significant level in the frontal.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

NC vs. BD 0.043 0.928 0.194 0.271 0.066 0.591

NC vs. MDD 0.083 0.159 0.825 0.629 0.410 0.449

BD vs. MDD 0.710 0.127 0.116 0.380 0.233 0.930



4.5 Hemispheric Asymmetry 65

4.5.4 Spectral Entropy

Fig. 4.12 shows the mean of spectral entropy asymmetries of the three groups. In the

frontal, NC has obvious larger asymmetric values of both type of spectral entropies than BD

and MDD patients. On the contrary, patients with MDD have smaller asymmetric values

of both spectral entropies in the central.

Table 4.5.3 and Table 4.5.3 show the p-values of t-test between any tow of the three

groups. Only the comparison between NC and BD patients reach the significant level.

4.5.5 Lempel-Ziv Complexity

Table 4.5.5, Table 4.5.5 and Table 4.5.5 show the p-values of t-test of LZC asymmetries

between NC and BD, NC and MDD, BD and MDD respectively. In the NC and BD case,

the features of asymmetric LZC in frontal reach the significant level in most scales, and

some of them reach the level of p < 0.01. In the NC and MDD case, the LZC asymmetries

in frontal also have significant differences between the two groups. Besides, in the BD

and MDD case, the differences of LZC asymmetries are in central with larger scales and in

interior-frontotemporal with smaller scales.
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Table 4.28: The p-values of LZC asymmetry between NC and BD in multiple scales.
The p-values of frontal show a significant difference in hemispheric asymmetry of LZC.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

1 0.030 0.747 0.742 0.868 0.426 0.727

2 0.031 0.763 0.691 0.848 0.354 0.632

3 0.014 0.687 0.881 0.877 0.404 0.641

4 0.026 0.554 0.828 0.687 0.477 0.677

5 0.041 0.944 0.790 0.806 0.448 0.465

6 0.035 0.964 0.663 0.818 0.380 0.619

7 0.007 0.491 0.658 0.690 0.454 0.722

8 0.005 0.754 0.614 0.744 0.648 0.346

9 0.053 0.750 0.791 0.590 0.741 0.473

10 0.015 0.591 0.754 0.573 0.608 0.358

11 0.037 0.590 0.734 0.497 0.880 0.716

12 0.011 0.357 0.830 0.465 0.725 0.453

13 0.071 0.941 0.773 0.569 0.795 0.455

14 0.009 0.395 0.679 0.391 0.544 0.305

15 0.083 0.872 0.822 0.379 0.835 0.226

16 0.005 0.555 0.791 0.435 0.536 0.187

17 0.140 0.634 0.922 0.475 0.205 0.501

18 0.011 0.373 0.896 0.361 0.156 0.236

19 0.031 0.460 0.582 0.402 0.195 0.577

20 0.012 0.583 0.783 0.303 0.397 0.329
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Table 4.29: The p-values of LZC asymmetry between NC and MDD in multiple scales.
The differences of LZC asymmetries are obvious in frontal, but only the features with larger
scales reach the significant level.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

1 0.069 0.520 0.445 0.460 0.328 0.826

2 0.075 0.475 0.444 0.380 0.375 0.823

3 0.068 0.499 0.574 0.363 0.375 0.815

4 0.069 0.583 0.526 0.286 0.405 0.813

5 0.099 0.456 0.495 0.351 0.325 0.761

6 0.071 0.294 0.607 0.333 0.255 0.886

7 0.033 0.633 0.493 0.308 0.208 0.856

8 0.044 0.407 0.478 0.304 0.248 0.829

9 0.040 0.398 0.525 0.273 0.193 0.614

10 0.080 0.392 0.746 0.285 0.220 0.767

11 0.066 0.558 0.366 0.201 0.308 0.792

12 0.016 0.426 0.463 0.268 0.356 0.600

13 0.014 0.161 0.267 0.296 0.109 0.759

14 0.002 0.271 0.301 0.255 0.209 0.575

15 0.048 0.327 0.282 0.228 0.533 0.707

16 0.034 0.362 0.243 0.205 0.201 0.445

17 0.053 0.117 0.228 0.259 0.230 0.626

18 0.025 0.386 0.285 0.329 0.229 0.594

19 0.048 0.409 0.269 0.364 0.233 0.947

20 0.036 0.072 0.168 0.291 0.259 0.733
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Table 4.30: The p-values of LZC asymmetry between BD and MDD in multiple scales.
There are some features of LZC asymmetries with larger scales reach the significant level
in central, and some with smaller scales in interior-frontotemporal.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

1 0.800 0.291 0.676 0.498 0.077 0.952

2 0.771 0.265 0.717 0.417 0.075 0.870

3 0.544 0.245 0.708 0.362 0.086 0.883

4 0.722 0.209 0.699 0.400 0.126 0.913

5 0.768 0.353 0.700 0.386 0.071 0.761

6 0.842 0.241 0.938 0.352 0.044 0.781

7 0.691 0.203 0.833 0.408 0.033 0.903

8 0.566 0.203 0.872 0.365 0.086 0.523

9 0.887 0.174 0.753 0.441 0.093 0.888

10 0.587 0.099 0.995 0.471 0.050 0.568

11 0.799 0.192 0.661 0.416 0.195 0.941

12 0.885 0.067 0.665 0.599 0.154 0.816

13 0.504 0.142 0.504 0.528 0.135 0.690

14 0.695 0.044 0.633 0.663 0.451 0.640

15 0.878 0.184 0.468 0.646 0.573 0.403

16 0.314 0.179 0.234 0.438 0.351 0.558

17 0.540 0.019 0.297 0.476 0.995 0.827

18 0.854 0.089 0.495 0.946 0.934 0.525

19 0.739 0.091 0.182 0.851 0.951 0.620

20 0.686 0.019 0.165 0.928 0.616 0.511



4.5 Hemispheric Asymmetry 69

4.5.6 Sample Entropy

Table 4.5.6, Table 4.5.6 and Table 4.33 show the p-values of t-test of sample entropy

asymmetries between NC and BD, NC and MDD, BD and MDD respectively. Compare

NC with BD patients, the sample entropy asymmetries are significant different with smaller

scales in frontal, and with larger scales in interior-frontotemporal. Compare BD with MDD,

there are also significant differences in occipital and interior-frontotemporal with larger

scales. However, in the NC and MDD case, there are no obvious differences found.
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Table 4.31: The p-values of SampEn asymmetry between NC and BD in multiple
scales.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

1 0.034 0.890 0.480 0.977 0.615 0.463

2 0.032 0.848 0.434 0.983 0.485 0.427

3 0.030 0.829 0.403 0.974 0.406 0.425

4 0.030 0.808 0.354 0.946 0.329 0.397

5 0.030 0.680 0.311 0.964 0.264 0.401

6 0.028 0.664 0.289 0.899 0.234 0.340

7 0.032 0.608 0.279 0.923 0.216 0.353

8 0.039 0.637 0.278 0.944 0.195 0.339

9 0.061 0.652 0.185 0.959 0.146 0.291

10 0.028 0.805 0.209 0.995 0.101 0.321

11 0.060 0.680 0.188 0.959 0.062 0.366

12 0.034 0.698 0.215 0.891 0.044 0.255

13 0.052 0.853 0.154 0.986 0.069 0.284

14 0.087 0.617 0.232 0.935 0.043 0.289

15 0.046 0.677 0.199 0.964 0.032 0.316

16 0.080 0.678 0.179 0.837 0.016 0.272

17 0.172 0.561 0.281 0.949 0.052 0.345

18 0.071 0.792 0.356 0.944 0.018 0.212

19 0.177 0.765 0.339 0.964 0.012 0.250

20 0.056 0.978 0.297 0.922 0.007 0.223
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Table 4.32: The p-values of SampEn asymmetry between NC and MDD in multiple
scales.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

1 0.103 0.868 0.781 0.466 0.382 0.745

2 0.114 0.756 0.800 0.383 0.371 0.698

3 0.122 0.685 0.846 0.339 0.389 0.637

4 0.132 0.645 0.860 0.324 0.375 0.569

5 0.130 0.708 0.912 0.291 0.384 0.565

6 0.150 0.715 0.885 0.288 0.371 0.504

7 0.134 0.766 0.950 0.281 0.417 0.477

8 0.184 0.688 0.976 0.296 0.435 0.422

9 0.317 0.667 0.955 0.287 0.458 0.328

10 0.240 0.592 0.953 0.340 0.384 0.451

11 0.282 0.641 0.964 0.295 0.302 0.381

12 0.240 0.830 0.813 0.372 0.384 0.292

13 0.312 0.774 0.832 0.380 0.537 0.309

14 0.321 0.802 0.524 0.343 0.401 0.298

15 0.173 0.876 0.651 0.368 0.441 0.390

16 0.390 0.907 0.402 0.380 0.301 0.271

17 0.605 0.856 0.402 0.375 0.623 0.394

18 0.697 0.911 0.223 0.468 0.603 0.252

19 0.741 0.413 0.363 0.337 0.519 0.202

20 0.473 0.867 0.333 0.699 0.333 0.195
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Table 4.33: The p-values of SampEn asymmetry between BD and MDD in multiple
scales. p-value of Sample Entropy of BD vs. MDD.

Variable Frontal Central Occipital Frontotemporal Temporal

Lateral Interior

1 0.643 0.741 0.742 0.420 0.659 0.779

2 0.576 0.581 0.668 0.312 0.795 0.783

3 0.525 0.492 0.588 0.263 0.939 0.839

4 0.498 0.443 0.516 0.259 0.951 0.874

5 0.493 0.399 0.419 0.209 0.813 0.874

6 0.427 0.394 0.406 0.239 0.760 0.859

7 0.481 0.383 0.335 0.205 0.647 0.898

8 0.425 0.350 0.278 0.203 0.570 0.942

9 0.334 0.349 0.208 0.170 0.412 0.999

10 0.250 0.414 0.173 0.192 0.371 0.841

11 0.346 0.356 0.140 0.130 0.316 0.996

12 0.278 0.537 0.111 0.149 0.170 0.942

13 0.291 0.616 0.062 0.211 0.158 0.953

14 0.378 0.425 0.038 0.226 0.137 0.982

15 0.487 0.544 0.044 0.259 0.098 0.815

16 0.227 0.738 0.009 0.378 0.092 0.969

17 0.312 0.424 0.034 0.281 0.105 0.871

18 0.060 0.860 0.012 0.382 0.035 0.823

19 0.176 0.645 0.033 0.241 0.041 0.904

20 0.105 0.848 0.028 0.728 0.041 0.973
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4.6 Classification Results

After the procedure of feature extraction, we have totally 756 features. We select useful

features and classify them according to the procedures depicted in Fig. 3.1. First, the

features with p-value smaller than 0.03 were reserved. Second, the features were ordered by

the weighting of projection matrix in LDA, and then the features with larger weighting were

selected for classification. Support vector machine (SVM) was then used for classificaion

where we used the LIBSVM tools [11] with radial kernal and a leave-one-out validation to

evaluate accuracy.

What follows is the result of these procedures for classification. Section 4.6.1 to sec-

tion 4.6.2 are concerning about the two-groups classifications, and section 4.6.4 is about

the three-groups classification.

4.6.1 Normal Control vs. Bipolar Disorder

In the beginning of the NC and BD classification, there were totally 756 features, in-

cluding PSD features, features of temporal complexity, and the brain asymmetric features

of them. The first step, we set a p-value threshold as p < 0.03 to select the features, and

then 31 of 756 features were preserved.

Then LDA was applied to the 31 features which reached the significant of p < 0.03.

From LDA, a projection matrix was gotten. We chosen features by the weighting of the

projection matrix in a decreasing order. And then LDA was applied again to the new

features selected by the weighting, and then project the features to one dimension and

classified by svm with a leave-one-out validation. Fig. 4.13(a) is the map of accuracy and

the number of selected features. We can see that with LDA projection, the combination of

24 features with larger weighting is sufficient to get 100% accuracy.

Finally, we choosed the features with the largest weighting in LDA projection matrix as

the final features. Table 4.6.1 shows these features and Fig. 4.13(b) shows the distribution

of the one dimensional feature which was projected by the LDA projection matrix from 24

features. The one dimensional feature is linearly separate, and got a classification accuracy

of 100%.
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Table 4.34: The features used in NC and BD classification. The 24 features are finially
used to classify NC and BD patients, and are sorted by the weighting in decreasing order.
The feature of rB2T represents the spectral ratio of beta band power to theta band power
(RP (β)/RP (θ)).

Weighting Feature name ROIs

1 1.98457262 Asymmetry SampEn scale=03 frontal

2 -1.78261301 Asymmetry SampEn scale=05 frontal

3 -1.54122528 SampEn scale=13 Frontal

4 0.99134190 SampEn scale=12 Frontal

5 0.77102447 Asymmetry LZC scale=03 frontal

6 0.73446601 Asymmetry SampEn scale=19 interior-frontotemporal

7 -0.62631195 Asymmetry LZC scale=04 frontal

8 0.50526149 Asymmetry LZC scale=08 frontal

9 -0.42286715 Asymmetry SampEn scale=16 interior-frontotemporal

10 -0.41936631 Asymmetry SampEn scale=06 frontal

11 0.41031930 SampEn scale=15 Frontal

12 -0.37058944 Asymmetry SampEn scale=20 interior-frontotemporal

13 0.36019586 Asymmetry rB2T frontal

14 0.24925431 SampEn scale=17 Frontal

15 -0.24766209 Asymmetry rG2T frontal

16 0.23275340 Asymmetry SampEn scale=18 interior-frontotemporal

17 -0.23177122 Asymmetry MF frontal

18 -0.21870709 Asymmetry theta frontal

19 -0.21305363 Asymmetry LZC scale=14 frontal

20 0.19206423 Asymmetry SampEn scale=10 frontal

21 -0.15493302 Asymmetry LZC scale=10 frontal

22 0.15283248 Asymmetry LZC scale=18 frontal

23 -0.12515979 Asymmetry LZC scale=07 frontal

24 0.09990728 Asymmetry theta central
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Figure 4.13: Results of the NC and BD classification.
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Figure 4.14: Results of the NC and MDD classification.

4.6.2 Normal Control vs. Major Depressive Disorder

First, we sifted 55 features from totally 756 features by a threshold of p < 0.03. Then

LDA was applied to the 55 selected features which reached the significant level. From

LDA, a projection matrix was gotten. We chosen features by the weighting of the projection

matrix in a decreasing order. And then LDA was applied again to only the new features

selected by the largest weighting, and then project the features to a one dimension space

and classified by svm with a leave-one-out validation. Fig. 4.14(a) is the map of accuracy

and the number of selected features. We can see that with LDA projection, the combination

of 37 features with larger weighting is sufficient to get 100% accuracy.
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Table 4.35: The features used in NC and MDD classification. The 37 features are finially
used to classify NC and MDD patients, and are sorted by the weighting in decreasing order.

Weighting Feature name ROIs

1 -14.01774542 SampEn scale=08 Right-Frontotemporal

2 -13.63825602 SampEn scale=10 Right-Frontotemporal

3 12.77152235 SampEn scale=12 Right-Frontotemporal

4 11.23568247 SampEn scale=07 Left-Frontotemporal

5 -10.93894964 SampEn scale=08 Left-Frontotemporal

6 8.12984708 SampEn scale=15 Right-Frontotemporal

7 -7.76276291 SampEn scale=16 Right-Frontotemporal

8 -7.40142785 SampEn scale=07 Right-Frontotemporal

9 -6.95764122 SampEn scale=01 Left-Frontotemporal

10 6.45049846 SampEn scale=01 Right-Frontotemporal

11 6.12959971 SampEn scale=09 Right-Frontotemporal

12 4.46160166 SampEn scale=03 Right-Frontotemporal

13 3.94147113 MF Right-Frontotemporal

14 3.92347404 SampEn scale=09 Left-Frontotemporal

15 3.78727188 SampEn scale=04 Right-Frontotemporal

16 3.51463991 ratio Gamma/Theta Left-Frontotemporal

17 -3.15803665 gamma Right-Frontotemporal

Then, we used thease 37 features with the largest weighting in LDA projection matrix

as the final features. Table 4.6.2 and Table 4.6.2 show the 37 features used for classification.

Fig. 4.14(b) shows the distribution of the one dimensional feature which was projected by

the LDA projection matrix from the selected 37 features. The one dimensional feature are

linearly separate, and got a classification accuracy of 100%.
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Table 4.36: The features used in NC and MDD classification. The 37 features are finially
used to classify NC and MDD patients, and are sorted by the weighting in decreasing order.
The feature of ratio BG2TA represents the spectral ratio of the sum of beta and gamma band
powers to the sum of theta and alpha band powers ((RP (β)+RP (γ))/(RP (θ)+RP (α))).

Weighting Feature name ROIs

18 2.94641587 SampEn scale=02 Right-Frontotemporal

19 -2.71046140 ratio Gamma/Theta Central

20 -2.56638010 MF Left-Frontotemporal

21 2.39732852 SampEn scale=02 Left-Frontotemporal

22 2.35965965 ratio BG2TA Central

23 -2.35158901 ratio BG2TA Right-Frontotemporal

24 2.14702434 LZC scale=15 Frontal

25 2.01076164 SampEn scale=05 Right-Frontotemporal

26 -1.99082568 LZC scale=01 Right-Frontotemporal

27 1.99019020 SampEn scale=14 Right-Frontotemporal

28 1.92155568 ratio BG2TA Left-Temporal

29 -1.86764138 SampEn scale=06 Right-Frontotemporal

30 -1.72296591 MF Left-Temporal

31 1.58483320 SampEn scale=11 Right-Frontotemporal

32 -1.58336487 LZC scale=20 Frontal

33 1.52990182 gamma Central

34 -1.42253021 SampEn scale=13 Right-Frontotemporal

35 -1.38197055 ratio BG2TA Frontal

36 -1.14072261 gamma Left-Frontotemporal

37 1.05130077 SampEn scale=01 Central
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4.6.3 Bipolar Disorder vs. Major Depressive Disorder
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Figure 4.15: Results of the BD and MDD classification.

In the two-group classification of BD and MDD patients, we first selected the features

reaching the significant level of p < 0.03 and 24 features were selected. And then LDA

was applied to the 24 features and then got a projection matrix. We selected the features

with higher weighting in the projection matrix, and then LDA was applied again to the new

selected features. Fig. 4.15(a) is the map of accuracy and the number of selected features.

Then we found that the combination of 17 features got the hightest accuracy of 95.83%.

Then, we used these 17 features with the largest weighting in LDA projection matrix

as the final features. Table 4.6.3 shows the 17 selected features and Fig. 4.15(b) shows

the distribution of the one dimensional feature which was projected by the LDA projection

matrix from the selected 17 features. The one dimensional feature is linearly separate, and

got a classification accuracy of 95.83%. And the confusion matrix is

Table 4.37: The confusion matrix of the BD and MDD classification. 2 patients with
MDD were classified to the BD group.

BD MDD

BD 26 0

MDD 2 20
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Table 4.38: The features used in BD and MDD classification. The 17 features are finially
used to classify BD and MDD patients, and are sorted by the weighting in decreasing order.

Weighting Feature name ROIs

1 -2.83793749 SampEn scale=02 Right-Frontotemporal

2 -2.79725404 LZC scale=03 Right-Frontotemporal

3 2.61441807 LZC scale=04 Right-Frontotemporal

4 2.59517446 SampEn scale=04 Right-Frontotemporal

5 -1.41301179 SampEn scale=07 Right-Frontotemporal

6 -1.22504464 LZC scale=02 Right-Frontotemporal

7 1.15325490 SampEn scale=03 Right-Frontotemporal

8 0.90333558 LZC scale=01 Right-Frontotemporal

9 0.71481472 SampEn scale=01 Right-Frontotemporal

10 0.56142456 SampEn scale=06 Right-Frontotemporal

11 -0.38640497 SampEn scale=05 Right-Frontotemporal

12 0.21251990 Asymmetry SampEn scale=16 occipital

13 -0.16385012 Asymmetry SampEn scale=18 occipital

14 0.13790595 LZC scale=13 Right-Frontotemporal

15 0.09340350 Asymmetry LZC scale=17 central

16 -0.08185154 Asymmetry gamma central

17 0.07862150 Asymmetry alpha central
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4.6.4 The three groups classificaiton

94 features were chosen by the p-values of p < 0.03. The 94 features are the union set

of the features of p < 0.03 from the t-test between NC and BD, NC and MDD, and BD and

MDD.

Fig. 4.16(a) is the map of accuracy and the number of selected features. We can see that

with LDA projection, the combination of 52 features with larger weighting is sufficient to

get 100% accuracy. The weighting here are the square sum of the two dimensions. And

then these 52 features with the largest square sum of weighting are projected by the LDA to

a 2 dimensional space showed in Fig. 4.16(b). And we got the 100% classification accuracy.

Table 4.6.4 and Table 4.6.4 show the 52 selected features used to 3-groups classification.
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Figure 4.16: Results of the 3-groups classification.
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Table 4.39: The features used in 3-groups classification. The 52 features are finially
used to classify NC, BD and MDD patients, and are sorted by the square sum of the two
weightings in decreasing order. The feature of ratio BG2TA represents the spectral ratio
of the sum of beta and gamma band powers to the sum of theta and alpha band powers
((RP (β) +RP (γ))/(RP (θ) +RP (α))).

Weighting 1 - 2 Feature name ROIs

1 0.3089 -0.3975 SampEn scale=12 Right-Frontotemporal

2 0.2368 -0.2749 Asymmetry SampEn scale=03 frontal

3 -0.2476 0.2646 SampEn scale=05 Right-Frontotemporal

4 0.2582 -0.2215 LZC scale=01 Right-Frontotemporal

5 -0.2569 0.1780 gamma Left-Frontotemporal

6 -0.2093 0.1990 SampEn scale=15 Right-Frontotemporal

7 -0.2405 0.1392 ratio BG2TA Left-Frontotemporal

8 -0.1804 0.1890 SampEn scale=07 Right-Frontotemporal

9 0.2363 -0.1054 MF Left-Frontotemporal

10 -0.1570 0.2025 SampEn scale=04 Right-Frontotemporal

11 -0.1082 0.2162 SampEn scale=06 Right-Frontotemporal

12 -0.2284 0.0351 Asymmetry SampEn scale=05 frontal

13 0.1917 -0.1118 SampEn scale=09 Left-Frontotemporal

14 -0.1846 0.0791 SampEn scale=09 Right-Frontotemporal

15 0.1815 -0.0834 SampEn scale=01 Right-Frontotemporal

16 0.1470 -0.1313 SampEn scale=11 Right-Frontotemporal

17 0.0200 0.1839 ratio BG2TA All

18 0.1516 -0.0923 ratio BG2TA Frontal

19 -0.0602 0.1559 Asymmetry SampEn scale=18 interior-frontotemporal

20 0.1311 -0.0811 SampEn scale=02 Right-Frontotemporal

21 -0.0248 -0.1508 ratio BG2TA Central

22 0.0619 -0.1392 SampEn scale=01 Central

23 -0.1357 -0.0599 LZC scale=15 Frontal

24 0.0891 -0.1181 SampEn scale=01 Left-Frontotemporal

25 0.1093 -0.0943 gamma Right-Frontotemporal

26 -0.0440 -0.1372 LZC scale=04 Right-Frontotemporal
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Table 4.40: The features used in 3-groups classification. 52 features are finially used to
classify NC, BD and MDD patients, and are sorted by the square sum of the two weightings
in decreasing order. The feature of ratio BG2TA represents the spectral ratio of the beta
and gamma band power to the theta and alpha band power ((RP (β) +RP (γ))/(RP (θ) +
RP (α))).

Weighting 1 - 2 Feature name ROIs

27 -0.1046 0.0971 MF Right-Frontotemporal

28 0.0202 0.1411 Asymmetry SampEn scale=06 frontal

29 0.0293 0.1285 MF Central

30 -0.0734 -0.1058 SampEn scale=18 Frontal

31 0.0956 -0.0841 SampEn scale=14 Frontal

32 0.0961 -0.0830 Asymmetry LZC scale=07 frontal

33 -0.0539 0.1124 Asymmetry SampEn scale=18 occipital

34 -0.1225 -0.0030 SampEn scale=02 Central

35 -0.0956 0.0651 SampEn scale=15 Frontal

36 0.0827 -0.0780 SE2 Left-Frontotemporal

37 -0.0020 -0.1131 ratio BG2TA Left-Temporal

38 0.0833 -0.0745 SampEn scale=13 Right-Frontotemporal

39 -0.0077 0.1032 gamma Central

40 -0.0492 0.0859 LZC scale=18 Frontal

41 -0.0918 0.0201 LZC scale=03 Right-Frontotemporal

42 0.0540 0.0723 SampEn scale=13 Frontal

43 0.0192 -0.0879 Asymmetry SampEn scale=16 occipital

44 -0.0060 -0.0882 SampEn scale=14 Right-Frontotemporal

45 0.0310 0.0824 SampEn scale=08 Left-Frontotemporal

46 0.0871 0.0091 LZC scale=15 Right-Temporal

47 -0.0851 0.0037 MF Right-Temporal

48 -0.0537 0.0648 SampEn scale=10 Left-Frontotemporal

49 0.0512 0.0596 SampEn scale=16 Right-Frontotemporal

50 -0.0247 0.0730 LZC scale=13 Right-Frontotemporal

51 -0.0150 0.0747 Asymmetry LZC scale=04 frontal

52 0.0513 -0.0556 ratio BG2TA Right-Frontotemporal
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4.7 Correlation Between Rating and Features

To verify the relationship between the features for classification and the diseases, we

calculated the significance of correlation between them. Table 4.41 shows the subject de-

mographic data used to calculate correlation where 4 MDD were excluded due to missing

data.

19 ratings are included: duration of illness (duraill), Montgomery-sberg Depression

Rating Scale (MADRS), Hamilton Depression Scale (HAMD-17), Hospital Anxiety Rat-

ing Scale(HARS), Young Mania Rating Scale (YMRS), number of depressive episode (de-

pepiso), number of manic episode (manicepi), number of total episode (totepiso), manic-

depression ratio (mdratio), major depressive episode (minimdd), dysthymia (mindysth),

suicidality (minisuic), (Hypo) manic episode (inimani), Panic disorder or agoraphobia

(minipani), agoraphobia (miniagor), social anxiety disorder (minisp), Obsessive compul-

sive disorder (miniocd), Posttraumatic stress disorder (miniptsd), and generalized anxiety

disorder (minigad).

Fig. 4.7 and Fig. 4.7 show the significance of correlation between ratings of BD pa-

tients and the 24 selected features for classification which are listed in Table 4.6.1. The

correlations of agoraphobia and obsessive compulsive disorder are discarded in this table

due to all subjects have the same rating value. Fig. 4.7 to Fig. 4.7 show the significance of

correlation between ratings of MDD patients and the 37 selected features for classification

which are listed in Table 4.6.2 and Table 4.6.2. In MDD case, rating value of (hypo) manic

episode are all the same for all MDD subject, thus we discard the result from the table.

Table 4.41: Demographic data of subjects. The table shows the demographic data of BD
group and MDD group used for calculating correlation between features and ratings.

Variable BD MDD

n 26 18

Gender, n(%), male 10 (38.46) 5 (27.78)

Age, mean (SD), years 34.62 (10.40) 35.44 (8.99)

Duration of illness, mean (SD), years 7.96 (6.13) 8 (5.82)
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5.1 Suitable Spectral Ratios for Mood Disorders

The concept of spectral ratios originated from the studies of Alzheimer’s disease (AD).

It is based on the particular phenomenon of this disease, slowing. The powers of the high

frequencies are increasing apparently, and the powers of the low frequency band are de-

creasing. That is, the activities of the brain slow down. According to this, the researchers

using the ratio of high to low frequency band power to enhance the difference of the slowing

phenomenon.

However, mood disorders do not have the same characteristic of slowing, and that is

different from Alzheimer’s disease. Thus the spectral ratios designed for Alzheimer’s dis-

ease may not work so well in the cases of mood disorders just like in AD case. To consider

the characteristics of mood disorders, five new spectral ratios described in section 2.2.3

were designed to enhance the difference between different groups. These spectral ratios

are mainly based on the discrepancies between NC and the patients with major depres-

sive disorder. Because all of the beta and gamma band powers of MDD patients are larger

than NC, and the theta and alpha band powers are almost smaller as shown in Fig. 4.3.

Therefore, we use the ratio of beta and gamma bands to theta and alpha bands to reveal the

differences between high frequencies to slow frequencies in mood disorders.

Table 5.1 shows the comparison of different spectral ratios between NC and MDD pa-

tients. The first three rows of the table are the spectral ratios brought up by the studies about

Alzheimer’s disease, and the last five rows are the ratios we used in this work. Obviously,

most of the ratios we used have clearer differences between the two group than those used

for Alzheimer’s disease.

5.2 Spectral Entropies

In this work, we adopted two spectral entropies. The first type of spectral entropy (SE1)

is defined in Eq. 2.12 where all frequency bins in PSD are directly used to calculate spectral

entropy. However, we often focus on the frequency bands rather than each frequency bins

while researching on brain activities. Moreover, the resolutions in frequency are different

in low frequencies and high frequencies. For example, theta band is generally defined
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as 4-8 HZ, alpha band is 8-13 Hz, and beta band is 13-30 Hz. Each band has different

bandwidth: theta band is 4 Hz, alpha band is 5 Hz, and beta band is 17 Hz. Therefore,

different frequency bands have different weighting and contribution in the first type of

spectral entropy (SE1).

On the contrary, SE2 which is defined in Eq. 2.14 uses average power of individual

frequency bands, and the value won’t be influenced by the width of the frequency band.

Although the two spectral entropies are quite similar, they have their meaning. In this

work, both of them were adopted and they show different results. The hemispheric asym-

metries of SE1 show the differences between NC and BD patients, and NC and MDD

patients in frontal. On the contrary, SE2 shows the differences between NC and MDD

in the frontal and frontotemporal, and between BD and MDD in the frontotemporal and

temporal.

5.3 The Parameters in Multi-scale Sample Entropy

The objective of MSE method described in section 2.3.3 is to measuring entropy at

different scales. When MSE method was applied to sample entropy, there is an issue about

the parameters r and m in sample entropy.

r is the tolerant range of match. If the distance between two subsequences is larger

than r, then the two subsequences are different, otherwise they are considered as equal

subsequences. The output of sample entropy provides a likelihood measure that two se-

quences within tolerance range r remain close at the next point. The smaller the sampEn

is, the more regular the sequence is. As the r decrease, the sampEn increases because the

criterion for the similarity becomes strict. Typically, r is suggested to be 10% to 25% of

standerd deviation (SD) of the sequence.

The MSE algorithm brings up the idea of using sample entropy for different scale τ

and then creating several coarse-grained sequences with different scales. Some studies

set r at a certain percentage of the original time series SD, and remains constant for all

scales [12,18]. However, the coarse-grained sequences are reconstructed by means of every

τ sample points in original time series. That is similar to smoothing of the data, and cause
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Figure 5.1: The influence of different r in multi-scale sample entropy. (a) Original white
noise signal. (b) The change of standard deviation with different scales. (c) The change of
sample entropies with different scales where the red stands for the situation that r is fixed
and the blue stands for individual r varing with different scales.
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the decreasing of SD. Therefore, when the scale τ increases, the corresponding standard

deviation of the time series will decrease. If we set r at a certain percentage of the original

time series SD, the r will be relatively larger in the coarse-grained sequences with τ > 1.

It means the looser criterion of similarity and lead to a smaller value of sample entropy.

Fig. 5.1 shows a simple experiment of MSE in white noise. After scaling the original

signal, the standard deviation decreases showed in Fig. 5.1(b). Fig. 5.1(c) shows a MSE

result by using the fixed r for all scales and using the individual r as 0.25 times of SD in

every scale.

m is a window size (subsequence length) used for compare. To deside the parameter

of m in multi-scale analysis, we consider an experiment showed in Fig. 5.2 and which was

brought up by Costa [13]. In the experiment, Costa tried the parameter m between m = 1

and m = 8, and found that the mean values of sample entropies vary less than 2% and the

coefficient of variation (the ratio of standard deviation to mean) is less than 3% for two

types of noise between m = 1 and m = 5. Besides, the sample entropies and coefficient

of variation increase with larger m due to the finite number of data points since it need a

longer time series for statistical accuracy. It means that the value of parameter m doesn’t

influence the sample entropy significantly. Therefore, we use m = 1 in this work for well

efficiency.

Figure 5.2: The influence of different m in multi-scale sample entropy [13].
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5.4 Features for Classification

In the two-groups classification of NC and BD patients, the features about hemispheric

asymmetry seems very important, and this characteristic is obvious especially in the frontal

and the interior-frontotemporal. The most important features, with largest weightings, are

almost about temporal complexity including LZ complexity and sample entropy. The next

are the asymmetry of spectral ratios in frontal, and then MF and theta band. Besides asym-

metric features, only the feature of sample entropies play a part in classification.

To verify the relationship between these features and bipolar disorder, we calculated

the significance of correlation between them. YMRS and the number of manic episode

have a consistent result, and they are correlated with sample entropy in frontal with scales

of 12 to 17. Manic-depression ratio correlates with asymmetric indices of sample entropy,

LZC and mean frequency (MF) in frontal. Dysthymia has the strongest correlation (p ≈
0.001) with asymmetric sample entropy in interior-frontotemporal where the scales are

large. Posttraumatic stress disorder has a similar result to dysthymia, but the correlation

is not as strong as dysthymia. Besides, about (hypo) manic episode, the correlations with

asymmetric relative theta band power and spectral ratio of beta to theta ratio are significant

in frontal.

In the classification of NC and MDD patients, the features with the largest weighting

are almost locate in the frontotemporal, especially in right frontotemporal. The next are

in the central and frontal, and a liitle locate in the left temporal. The features with the

largest 15 weightings are all sample entropies, besides MF. Gamma band powers and the

spectral ratios about gamma band also contribute to classification. Contrast to the classi-

fication between NC and BD patients, there are no hemispheric asymmetric features used

for classification.

The features selected for classification between NC and MDD are correlated with dys-

thymia, agoraphobia, social anxiety disorder, posttraumatic stress disorder, and the indices

about depression: MADRS, HAMD-17, and HARS. Among them, MADRS and HARS

are closely related with major depressive disorder, but the correlation with dysthymia does

not reach significant level. MADRS and HARS are correlated with sample entropy in fron-

totemporal of the scales around 15, and others are LZC in frontal, spectral ratio of beta
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and gamma power to theta and alpha power in frontal, central, temporal, and then MF in

frontotemporal and left temporal. Agoraphobia is realated to the spectral ratio of beta and

gamma band power to theta and alpha band power in frontal, central, right frontotemporal

and left temporal. In the case of social anxiety disorder, significant correlations occur in

sample entropy in right frontotemporal, LZC in frontal, and relative gamma band power in

central. Besides, posttraumatic stress disorder only correlate with sample entropy in right

frontotemporal.

In the classification of BD patients and MDD patients, the features about temporal com-

plexity play an important role. Twelve of seventeen selected featurs are LZC and sample

entropy in the right frontotemporal, and the others are the features about hemispheric asym-

metry in the occipital and central. They are sample entropies in the occipital and the LZC,

gamma and alpha band power in the central.



Chapter 6

Conclusions



100 Conclusions

In this work, we tried to differentiate BD patients, MDD patients and healthy controls

by the resting MEG signals.

We began from the feature extraction. Eight ROIs and three kinds of features are in-

cluded in this work. The ROIs include frontal, central, occipital, left frontotemporal, right

frontotemporal, left temporal, right temporal, and an union of the seven area. The features

are about power spectral density (PSD), temporal complexity, and hemispheric asymmetry.

About the PSD features, we first analyzed the relative band power. To enhance the differ-

ence of band powers, we designed the spectral ratios which are beneficial to classification

of mood disorders. MF and SEF90 were used to summarize the trend of band power dis-

tribution. And then two types of spectral entropies were used to quantify the flatness of

the power spectral density. About the features of temporal complexity, LZC and sample

entropy (SampEn) were applied to measure the complexity of time series. To overcome

the problems caused by different sampling rate, multi-scale entropy (MSE) is applied to

not only sample entropy but also LZC. About the features of hemispheric asymmetry, we

normalized the difference, of the features mentioned above, between left and right hemi-

sphere.

For all ROIs and all kinds of features, there are totally 756 features extracted. To select

a reasonable number of features for classification, t-test and Linear Discriminant Analysis

(LDA) were applied. The p-values of t-test assist in select the features with a significant

difference. LDA was then used to determine which feature is beneficial to classification.

Not only for selecting features, LDA also used to reduce the feature set. We used the

projection matrix of LDA to project features set into a low dimension space where there is

a better distinction between group and group. Finally, the classification was brought out by

support vector machine (SVM). By this procedure, we project the 756 dimensional feature

space into a one or two dimensional subspace, and then used for classification. The result

of classification showed that we got almost 100% accuracy through this procedure.

The weighting of the projection matrix showed the importance of a feature for classifi-

cation. From the weightings, we got a conclusion about the most different features between

group and group as follows:

- NC vs. BD Asymmetry of LZC and sample entropy in frontal, and interior-frontotemporal.
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- NC vs. MDD Sample entorpies in frontotemporal.

- BD vs. MDD LZC and Sample entropies in right frontotemporal.
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