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Abstract

Electromyography (EMG) signal, as a physiological signal generated during muscle
contraction, implicates several important messages, such as the muscular force level and
operator’s intention. It is very suitable to serve as the control signal for the manipulation of
the rehabilitation device, human-assisting robot and others. To develop an effective robot
motion governing based on using EMG signal, this dissertation proposes a so-called initial
point detection method to discriminate the up limb motion onset by detecting the instant when
the magnitude of the extracted EMG feature reaches the upper critical value and offset when
that descends to the lower critical value from onset state. Consequently, the mapping between
the limb EMG signals and the corresponding robot arm movements can be established very
quickly. Meanwhile, due to the individual fuzziness, the tuning of the system parameters for
the individual user is not that straightforward. Thus the concept of the fuzzy system is
employed so that the tedious process encountered in the trial-and-error method can be avoided.
While the proposed system is shown to be effective for robot motion governing, it is not
appropriate to serve as a classifier for more than 1-DOF (degree of freedom) limb motion as it
has larger muscle mutual interference. To tackle this, the EMD is applied to decompose the
EMG signals into several intrinsic mode functions (IMFs). Each IMF represents different
physical characteristic, so that the major muscular movements can be recognized. Meanwhile,
for multi-DOF limb motion, the fuzzy system adopted for 1-DOF motion is not efficient
enough for the tuning of the critical values for each individual user. For its excellence on
adaptation, the adaptive neuro-fuzzy inference system (ANFIS) is employed to realize the
fuzzy system. Because neither complicated computation nor training and learning processes
are needed, the proposed scheme not only simplifies system complexity, but also increases the
efficiency in motion governing.



Acknowledgements

E#HF TS 27 sk
Ao ELE N R {ER M FRRT AR L i F R adp a

oo X OEERGE S RAEE S -

||/m1§§gﬁﬂlu-g\ﬁ \H-:'I__?:Z\ %i%&-ﬁ&&’ﬁ

R R R R RALK
N B an

B2HE -

RS SR L)

E SN N R

R

F & 4 e . : e 7 EECE

e 2O AR ALY .. .

Bois A 2 R Y S NS SR A P A o



Conten

ts

BB B e [
AADSTIACT. ...t i
ACKNOWIBAGEMENTS ...ttt e e bbb e iii
INtroduction ...........coooveeenerevccnneee. ot . O R O I . -1-
1.1 MotivatiQik Tk T S . ..................cc.eceeeen -4 -
12 ConiuDURIEEF. ......................cccoocvvreneee TR e . ................ -6-
(CHEF o(c, . ofoee— @] 0 W . T -8-
Proposed EMG-Based Upper-Limb Robot Control System .......c..ccoceveveeiiisiiiiesnee e -9-
21  eadSiENal MeaSHISTITETTETIN CEREEES (Gt ... 2 T ... -10 -
2.2 R U R e i ... O -11-
2.3  SEERNDtion ClassiTiCNEET SR S ................ 0. S .. -17 -
2.3. 7% 2 Rllal Point etCCTLaRN /R mrrommm . ................. S ... -17 -
ExperimentSVESICN ... & "W SR - S § SR A -22 -
31 EXPERmERtal'SEtP™. ...l e -25-
3.2  One-DOF Robot Arm Movement Control ..., -31-
Multi-DOF Robot Arm Mo W - 45 -
4.1 Adaptive Neuro-Fuzz BIENCE SYSIEM....c.ueiiiiiiiiesieeie e -45 -
4.2 EXperimental RESUILS..........ooviiieeie e -51-
421 EXPEIMENT L oottt ettt nre s -52-

A = {0 1= 111 1=] 1 PSS -55-

4.2.3  EXPEIMENT 3 ..ottt sttt sttt sae b nre s -57 -
CONCIUSTONS ...ttt e et b e er e ar e e nne s - 60 -
5.1 FULUIE RESEAICI ... - 62 -



Bibloigraphy ....

Publication List




List of Tables

1-1 EMG based human-assisting manipulators............ccocuuviieiinnenene e -6-
2-1 Feature extraction name and formula............cccoovniiiininciice s -12 -
3-1 Mapping from EMG t0 robot MOVEMENT ..........cccceiiiiiieiiieie e - 24 -
3-2 iWork ETH-256 specifications...... RS - 26 -

3-3 National Instrument USB-6009 A/D data acquisition device specifications................. - 27 -
3-4 Mitsubishi Rv-2ATobotair ) SpeCifications ... - -29-
3-5 Physical date e O . T -32-
3-6 Critical es V .. pirica g ML . R -32-
3-7 Fuzzy rule I;' ... o T ... . -39-
3-8 Critic ll 5 Via . Lo - 40 -
4-1 Train[[OLCRURESEt ................. WSS ol . ........... 0 S . -49 -
4-2 PhysidHISERRT the fourgsuNECiaT - — ... ... -52 -

Vi



List of Figures

2-1 Proposed EMG-based upper-limb robot control system............ccccoveveivieiievecieceee, -10-
2-2 Flow chart for empirical mode decoOmMPOSITION .........ccoovririiirieieienesese e -14 -
2-3 An example of empirical EMG signal and corresponding empirical mode decomposition
components, including 3 IMFs and 1 residue (trend): (a) muscle in relaxation and (b)
muscle in flexion. .... .4 T R L .. - 16 -
2-3 (Cont.) An example of empirical EMG signal and corresponding empirical mode
decomposition components, including 3 IMFs and 1 residue (trend): (a) muscle in
relaxati QEESUEFEE) Mmusqie=frefevroll B ol g - T . G- -17 -
2-4 Conceptual diagram for single and double critical value detection: (a) single critical value
and ((EJNSiS e CruENE e T o ... O P .. -19-
2-5 An example of EMG signal evaluation of Biceps Brachi using MAV............ccceuee..... -20 -
2-6 Feasibility evaluation by performing the motion of elbow up and down for fifty times
continuously (numbers 0-3 correspond to STOP, UP, DOWN, and ERROR,
respectiveiy] S . S RN T TTTTO TR, .. A W .. -21-

3-1 Electrode locations: (a) Biceps Brachii and Pectoralis Major, and (b) Triceps Brachii and

Teres Minor. ......... 0. A e S . T -23-
3-2 Illustrations of classification outputs corresponding to the robot arm movements....... -24 -
3-3 System implementation of the proposed SCNEME. ...........ccoviiiririeienee e -26 -
-4 TWOTK ETH-=256. ....eeiviiiiiiieiisiieieie ettt ettt st b s e e e e -27 -
3-5 National Instrument USB-6009 A/D data acquisition devicCe. ..........ccccoovevervrenieeieennn. -28 -
3-6 LabView Development System CONSOIE..........ccueiveiieiiiieieece et -28 -
3-7 Mitsubishi RV-2A robot arm axis definition. ..., -30-
3-8 EXPErIMENTAl SELUPD. ....eeviieieiii ettt ettt sre e e s e sbe e nneas -30-

vii



3-9 Filtered EMG signals for SUDJECES A-C. ......ooiuieieiieiicecc e -33-

3-9 (Cont.) Filtered EMG signals for SUDJECES A-C. ....cooiiiiiiiiiiieecee e -34-
3-10 EMG feature variations for SUDJECES A-C......ocoveiveiieiiccceee e -35-
3-10 (Cont.) EMG feature variations for SUDJECES A-C. ......ccoceriiiriinieieie e -36 -
3-11 Outputs from the classifier for SUDJECtS A-C.......ccocveiiiiiiieiece e -37 -
3-12 Fuzzy partitions of MAV, BZC, and CVy (CV)). ceocveiiiiiieeciesie e -39 -
3-13 Filtered EMG signals for SUDJEELS A-C...vei ittt -41 -
3-13 (Cont.) Filtered EMG signals for SUBJECtS A-C. ..iiiiueiioiiiitin ittt -42 -
3-14 EMG feature variations for SUDJECES A-C.......cveiiiiiii it saeita st e -42 -
3-14 (Cont.) EMG feature variations for SUDJECES A-C. .......coooiiiiiienririiiiiiie it -43 -
3-15 Outputs from the classifier for SUDJECIS A-C...c...coeiieoviiieiiriire e i -44 -
4-1 Conceptual diagram of the proposed ANFIS for CV, and CV, determination. ............. -48 -
4-2 Structure of the ANFIS for the proposed SYStem. ..........ccoeiieeiiiieiicis e snae e -50 -
4-3 Bell-shaped membership functions for input variables...................c..ocoove it eennesee e -51-
4-4 Results TomEeriment M . gl o rrarrerrerressessessersarsnsseereeneereerre oSN M ... -53-
4-4(Cont.) RESTIESEE o Xl i T . B k. | 2 W ... -54 -
4-5 Results for eXPEriMENL 2. .....cc...o..oo e cee s eie e s steee e e sdeanasibann e anata e eneeeneenenes -55-
4-5 (Cont.) Results TOr EXPEIIMENT 2. ...........cooiiiiiieieee e ssiibe st asbesnasie et seeseeeseeneeeennes - 56 -
4-5 (Cont.) Results fOr eXPErIMENT 2. .........oimmmemaiseaeeareessessseasaeaeaeeseesseessesseeseessesseessens -57 -
4-6 ReSUItS TOr XPEriMENT 3. ..o - 58 -
4-6 (Cont.) Results fOr eXPeriment 3. ..........coeiiiiiiie e -59 -

viii



Chapter 1

Introduction

Nowadays, the number of disabled and elderly is increasing. With a decreasing birthrate, the
development of the human-assisting manipulators is imperative for them to alleviate the
dependence and improve the quality of life. Teach box, joystick, and keyboard, are traditional
devices used for manipulation. Currently, voice control also becomes an alternate [1]. Along
with the development in the areas of sensing and measurement techniques, signal processing,
and biomedical engineering, it-is-no-longer a dream by using the physiological signals to serve
as the control signal for the computer, home appliances, mechanical devices, etc.

EMG is a physiological signal generated from the exchange of ions across muscle fiber
membranes during muscle contraction. Its amplitude ranges between 0~10 mV (peak to peak)
or 0~1.5 mV (root mean square). Its frequency, varying according to the motion and
individual, ranges between 0~500 Hz, with a distribution mainly around 50~150 Hz [2]. By
applying the conductive elements or electrodes on the skin surface, or invasively within the
muscle, EMG signal can thus be measured. As EMG implicates several important messages,
such as the muscular force level and operator’s intention, it is very suitable to serve as the
control signal, and also leads to a natural and intuitive manipulation. Researchers have

devoted to the study of applying EMG for controlling human-assisting robots and



rehabilitation devices for the physically handicapped as well as the elderly to improve their

life quality. Fukuda et al. [3] proposed teleoperating a human-assisting manipulator by using

EMG signals. Artemiadis and Kyriakopoulos [4] proposed an EMG-based position and force

control scheme for robot arm. Ferreira et al. [5] applied the EMG and EEG

(electroencephalogram) for developing the interfaces for robot systems. Gao et al. [6]

developed a robotic arm wrestling system based on EMG and artificial neural network.

Gopura and Kiguchi [7] developed exoskeleton robots for assisting the motion of physically

weak individuals based on EMG and fuzzy control. Ito et al. [8] presented prosthetic speed

control by wtilizing the relation of the proportion of muscular contraction level. Oppenheim et

al. [9] proposed using EMG as an input device for the Nintendo Wii™ video game console.

Huang et al. [10] proposed using the EMG signals combined with the pattern recognition

technique to identify user locomotion modes. Aso et al. [11] presented using EMG to drive

the electric car. And, Harada et al. [12] proposed using EMG to control robot finger.

Because EMG exhibits high nonlinearity and. fuzziness [13-15], even for the same motion

executed by the same person, different EMG measurements may be obtained under different

circumstances. Among these researches, EMG signals were identified to be affected by noises,

such as ECG (electrocardiogram) crosstalk, electromagnetic induction from power lines, and

arm and cable movements. Meanwhile, muscle mutual interference, physiological condition

(e.g., fatigue), skin impedance and temperature, etc., also contribute to the fuzziness of the



EMG signals, which are time-varying and highly nonlinear. These properties result in the

difficulty in extracting proper EMG features for motion classification.

To extract and recognize the intended movement pattern from EMG, several methods have

been proposed, in time domain, such as mean absolute value, variance, bias zero-crossing,

Willison amplitude, autoregressive model [16-18], Euclidean distance and standard deviation

[19], and hidden Markov model [20] , etc., and in frequency domain, such as Fourier

transform [21] and wavelet analysis [22, 23]. However, those approaches in the time domain

induce high computational complexity [17]. Meanwhile, EMG signals are nonlinear and

non-stationary signals, especially for contraction levels higher than 50% of maximum

voluntary.contraction (MVVC) [24]. But the data must be linear and strictly stationary for

Fourier transform [25]. As for the wavelet analysis, a mother wavelet has to be defined a

priori [26]. Unsuitable mother wavelet may lead to unsatisfactory results. Some researchers

proposed using the learning approach, e.g., the neural network [6, 27, 28], and reported salient

performance. But, the learning approach demands certain computational load and incurs some

system complexity for the learning and training processes involved.

Alternatively, Hilbert-Huang transform (HHT) is a time-frequency method. Based on the

local time scale of the data, it decomposes a signal into several intrinsic mode functions

(IMFs) via empirical mode decomposition (EMD), and then calculates the instantaneous

frequency of each IMF at any point in time via Hilbert transform. Hence, it can be used for



nonlinear and non-stationary data analysis. HHT has been broadly applied in numerous
scientific disciplines and investigations, e.g., analysis on the bioelectricity signal, failure
testing, and earthquake signal etc. [29]. Several researchers have applied HHT to EMG
related studies. Xie and Wang. [24] and Peng et al. [30] adopted HHT to find the features of
muscular fatigue. Ma and Luo [29] proposed using HHT and AR-model to extract the SEMG
feature to recognize the hand-motions. Wang et al. [31] presented a feature extraction
technique based on empirical mode decomposition to classify the walking activities from
accelerometry data. Chen et al. [32] employed HHT to extract the frequency features of the
stump to control transfemoral prosthesis. Zong and Chetouani [25] presented a feature

extraction technique based on HHT for emotion recognition from physiological signals.

1.1 Motivation

To develop an EMG based human-assisting manipulator needs to well consider the influence
from the muscle type, strength of muscle contraction, fatigue level, strategy in performing the
task, and others. Several EMG based human-assisting manipulators have been proposed,
whose feature extraction and classification/recognition designs are summarized in Table 1-1.
These manipulators require either complicated computation or tedious training and learning
processes, as a result, the practicality is decreased. As the commercial prosthesis have no

profound theory and complex mechanism, meanwhile, their operations are simple and easy,



we, therefore, propose a simple and effective system for governing robot arm motion via the
upper limb EMG signal, whose feature extraction and classification designs are listed in Table
1-1 as well. With the assistance of the proposed system, the physically weak individual
(disabled, injured or elderly) can do some important daily activities such as eating from spoon,

drinking from cup and pouring from a bottle, etc. by themselves without needing assistance

from others. In addition to t e proposed method can further

be used for gove he devices with

bidirectional .con n | i \ d radio for

instance.



Table 1-1 EMG based human-assisting manipulators

Human-assisting

EMG

Classification/

) Feature Extraction N Reference
manipulators Channel Recognition
) Fast Fourier
Robot finger 3 Neural network [12]
transform
Robot Neuro-fuzzy
8 MAV [14]
exoskeleton approach
VAR, BZC,
) autoregressive Acrtificial neural
Prosthetic hand 2 [17]
model, and spectral | network
estimation
Transfemoral )
J 5 Hilbert-Huang transform [32]
prosthesis
Switching
Integral of absolute i :
' regime decoding
value, zero corssing, e
Robot arm 11 : model, principal [33]
VAR, Median
component
frequency i
analysis,
Initial point This
Robot arm 4 : EMD . .
detection dissertation

1.2 Contribution

The contribution of this dissertation is proposing an EMG-base robot control system to

provide a natural and intuitive manipulation for governing robot arm motion. The presented

initial point detection method [34, 35] discriminates the upper limb motion onset by detecting

the instant when the magnitude of the extracted EMG feature reaches the upper critical value

(CV,) and offset when that descends to the lower critical value (CV|) from onset state.

-6-




Consequently, the mapping between the upper limb EMG signals and the corresponding robot

arm movements can be established very quickly. Meanwhile, due to the individual fuzziness,

such as the muscular fatigue, skin impedance and temperature, and muscle mutual

interference, etc., the tuning of the system parameters for the individual user is not that

straightforward. As an effective means for tackling the system with uncertainties [36-38], thus

the concept of the fuzzy system Is employed, so that the tedious process encountered in the

trial-and-error method can be avoided. Because neither complicated computation nor training

and learning processes are needed, this method not only simplifies system complexity, but

also increases the efficiency in-motion governing. While the proposed system is shown to be

effective for robot motion governing, it is not appropriate to serve as a classifier for more than

1-DOF (degree of freedom) limb motion, as limb motion of multi-DOF induces larger muscle

mutual interference. To tackle this, the EMD is applied to decompose the EMG signals into

several IMFs. Each IMF represents different physical characteristic, so that the major

muscular movements can be recognized. To reduce the computational load in EMD, a

sixth-order band-pass Butterworth filter and a dedicated data sampling window are employed.

Meanwhile, for multi-DOF upper limb motion, the fuzzy system adopted for 1-DOF motion is

not efficient enough for the tuning of the CV, and CV, for each individual user. For its

excellence on adaptation, the adaptive neuro-fuzzy inference system (ANFIS) [39-42] is

employed to realize the fuzzy system. The ANFIS has been successfully implemented in



biomedical engineering for classification [43-46] and robot control [47, 48]. A series of
experiments are performed to demonstrate the effectiveness and feasibility of the proposed
system in governing a 3-DOF robot arm motion via four surface EMG electrodes placed on
Biceps Brachii, Triceps Brachii, Pectoralis Major, and Teres Minor. While the results are
shown to be effective for robot motion governing, the limitation of this system is that fixed
critical values (CVs) are suitable for robot motion governing for. about 5 ~ 10 minutes,
depending on the complexity of the motion. After that, the fatigue of the muscle led to
inconsistent classification. We suggest the proposed system not to be used when the subject
feels fatigued. Meanwhile, at this stage of the research, this EMG-based robot control system

will be based on human upper-limb motion, as a starting point.

1.3 Organization

In Chapter 2, the proposed EMG-based upper-limb robot control system is described,
including the modules for EMG signal measurement and processing, feature extraction, and
motion classification. Chapter 3 describes the experimental setup, design and experimental
results for 1-DOF robot arm movement control. Those for 3-DOF robot arm movement are
presented in Chapter 4. Finally, conclusions along with some future works are given in

Chapter 5.



Chapter 2
Proposed EMG-Based Upper-Limb Robot Control
System

To provide a simple and effective approach for governing robot arm motion in real time via
EMG signals, we propose using upper limb EMG signals to. develop an EMG-based robot
motion governing system as the movements involved in it are not complicated. Figure 2-1
shows the system diagram of the proposed EMG-based upper-limb robot control system,
which consists of three main modules: signal measurement and processing, feature extraction,
and motion-classification. The signal measurement and processing module measures the raw
EMG signals of the upper limb and also filters out the noises. The filtered EMG signals are
then sent to the feature extraction module to derive their features. With these features, the
motion classification module determines the corresponding arm movements and generates the
commands to drive the human-assisting robot. From the resultant robot motion, the operator
evaluates the performance and determines the next movement. These three modules are

described below.



Upper-limb Sional Filtered
motion Igha EMG
Operator Measurement Feature

& Processing Extraction

A

Features

Robot Motion v

motion _quan- command Motion

------------ Assisting Robot Classification

Figure 2-1 Proposed EMG-based upper-limb robot control system

2.1 Signal Measurement and Processing

For EMG signal measurement, the locations and areas of those muscles involved during upper
limb movement are needed to consider. The measurement also depends on the regions where
the electrodes are placed. To obtain more precise-EMG signals, the electrodes need to be
placed on the midline of the muscle belly, with the electrodes aligned parallel to the muscle
fibers. The recommended inter-electrode distance (from one differential electrode to the other)
is about 1~2 cm [2, 49]. Several types of noises may affect the measurement of the EMG
signals, such as ECG crosstalk, electromagnetic induction from power lines, and arm and

cable movements. The ECG crosstalk can be suppressed by measuring signals from those

-10 -



muscles away from the heart. The frequency of the electromagnetic noise is around 60 Hz.
While a notch filter at that frequency can be an option, it should be avoided, because EMG
has large signal contributions at these and neighboring frequencies. We thus let the proposed
approach tackle its influence as the disturbance. Meanwhile, the frequency distribution for the

arm and cable movements is around 0 to 20 Hz, which can be tackled using a high-pass filter.

2.2 Feature Extraction

To extract-and recognize the intended movement pattern from EMG, several methods have
been proposed, in time domain, such as mean absolute value (MAV), variance (VAR), bias
zero-crossing (BZC), Willison amplitude (WAMP) [16,17], autoregressive model, Euclidean
distance and standard deviation, and hidden Markov model , etc., and in frequency domain,
such as Fourier transform and wavelet analysis. Among them, MAV, VAR, BZC and WAMP
are four famous feature extraction indices for EMG signal. The formulae for these indices are
listed in Table 2-1, in which X, denotes the kth sampling data in the window for computing
the feature and N is the window length. MAYV is taken as the estimation for signal power and
VAR that for power density. Both MAV and VAR are frequently used to estimate the

contraction level of the muscle. BZC, which includes a bias value for dealing with noise

-11 -



interference, counts the zero-crossing, i.e., the number of times the signal passes the zero
value. And, WAMP is used to count the number of times the signal amplitude exceeds a
predefined threshold, indicating the contraction level of the muscle. The proposed system
adopts MAYV as the feature extraction index, because we intend to evaluate the contraction

level of the muscle. Meanwhile, VAR can also be an alternative.

Table 2-1 Feature extraction name and formula

Name Formula
1 N
MAV " wn W
13,
VAR vme:m;xk

BZC — Y sgn[(X, ~0.4) (X, , ~04)]

BzC 1, if x>0

sgn(x) =
— {0, others

N
WAMP =" f (X, = X,.]);
k=1

WAMP {1 ,if x> threshold
f(x)=

0 , if otherwise

However, the aforementioned methods are not appropriate to serve as a classifier for more
than one-DOF upper limb motion as it has larger muscle mutual interference. Alternatively,
the EMD method is one of solutions as it decomposes the EMG signals into several IMFs.
Each IMF represents different physical characteristic and strength, so that the major muscular

movement can be recognized. The following is an introduction of the EMD process.

-12-



Figure 2-2 shows the flow chart of the EMD process, which deconstructs the complete

signal into a set of IMFs in eight steps (with Steps 1 to 5 for the sifting process) [32, 50]:

Step 1: Identify the local maxima in the filtered EMG data x(t) by interpolating between the

maxima and connect them via a cubic spline curve to obtain the upper envelope U (t)

Step 2: Apply the same actions in . Step 1 to identify the local minima and obtain the lower

envelope Lit).
Step 3: Compute the mean value of the upper and lower envelope m,(t):

ml(t)=M (2-1)

Step 4: Subtract the running mean value m, (t) from the original data x(t) to obtain the first

component h,(t):

h (t) = x(t)-m, (1) (2-2)
Step 5: lterate Steps 1-4 on h,(t) for k times until the resulting component h,(t)

(hyg)(t)—my (t) ) satisfies two conditions: (a) the difference between the number of local

extremes and that of zero-crossings is zero or one and (b) the running mean value is zero.

Step 6: Designate c,(t)=hy, (t) if hy, meets the two requirements mentioned above.

Step 7: Subtract the first IMF c,(t) from the original data to obtain the residual r,(t):

r(t)=x(t)-c,(t) (2-3)

-13-



Step 8: Treat ry(t) as the new data and repeat Steps 1-7 on r(t) to obtain all the
subsequent i.e., r,(t)=r(t)—c,(t) ,..., r,(t)=r,4(t)—c,(t)until the final residual r,(t)

meets the predefined stopping criteria as a monotonic function, considered as the trend.

Based on the procedure above, the original data x(t) can be exactly reconstructed by a linear

superposition:
(0= c,0)+r,0) (24

where n is the number of IMFs.

Empirical Mode Decomposition

I
I
1 A4
I
[l

Filtered x(t) o hi(t) Intrinsic
EMG 1y Shifting Mode
Signals PO Functions

i f

Figure 2-2 Flow chart for empirical mode decomposition

The number of IMFs depends on the characteristic of data. A complex data can be

decomposed into more IMFs, which increases the computational load in EMD. As EMG

signals are complex physiological signals, high data sampling window results in the fact that

the mapping between the upper limb EMG signals and the corresponding robot arm

-14 -



movements can not be established in the expected time. After several experiments, we found
combining a sixth-order band-pass Butterworth filter with a window with 20 samples per
second can reduce the computational load, meanwhile, the sampled data can be decomposed
into three IMFs within one second. Among which, the 2" IMF is on behalf of the limb
movement. Figure 2-3 shows an example of the EMD process on the dedicated EMG data
sampling window when muscle relaxes and flexes. Each of them includes the empirical EMG
signal x(t), three IMFs (ci(t), ca(t), cs(t)), and residue (rs(t)). The summation of IMFs and
residue exactly equals to the empirical EMG signal. By judging from Figures 2-3(a) and (b),
ci(t) shall-be the background noise induced by skin impedance and temperature, cable
movement; etc., since its magnitude does not vary with arm movement evidently. In contrast,
those of cy(t) and cs(t) are varied. As the strength of the magnitude of cy(t) increases when

muscle flexes, therefore, c,(t) is on behalf of the limb movement.

-15 -
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2.3 Motion Classification

2.3.1 Initial Point Detection

Because the movements involved in the proposed system are not complicated, an initial point

detection method is proposed to deduce the motion intention from the EMG signal. The
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reason for the naming is because this method determines the onset of the upper limb motion
via detecting the instant when the magnitude of the extracted EMG feature reaches the critical
values. Due to its simplicity, real-time motion governing can be achieved. In the proposed
classifier design, we start with the single critical value detection, in which the state of the
muscle MS is determined by checking if the initial value for the feature exceeds a predefined

critical value:

1fE, GV
s:{ > (2:5)

0, ' otherwise

where Fy stands for the k th feature and CV the critical value. An active MS corresponds to an
""ON’’ robot command and an inactive one for that of "OFF’’, as illustrated in Figure 2-4(a).
Figure 2-5 shows an example, in which MAV is used to evaluate the EMG signal of Biceps
Brachii. In Figure 2-5, section A indicates the muscle state during relaxation, and section B
that during flexion, both of which exhibit.some fluctuations. We thus propose a concept of
double critical value detection, as illustrated in Figure 2-4(b). In Figure 2-4(b), the state of the
muscle MS is determined to be active when the initial value for the feature Fi is larger than
the upper critical value CV,, and MS inactive when Fy is smaller than the lower critical value

CV

-18 -



1 if F, >CV
s={"_ X u (2-6)
0,if F, <CV,
W
- Robot Command ot Command
_r.-' '--.,'l"l|
i Ie critical value l E S h Crltl ||.'l e
Figure 2-4 Cg .-' ptual diagra d C ; ue :iHL on: (a) single
critical ve { (b) douk
The selec Vy implies

that the user has to ge "'-‘: Ee force to move the robot arm. 1t ma
in addition to the increase of S s /

arge CV, may make the robot arm stop its

d to muscle fatigue,

,a small CV, results in

low tolerance against the noise. Mea

movement earlier than that of the user, while a small CV, leads to the opposite. The

approaches of the trial-and-error method and fuzzy system can be utilized for determining

CV,and CV,.

-19-



Voltage (V)

|
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Time (100 ms)

Figure 2-5 An example of EMG signal evaluation of Biceps Brachi using MAV.

To demonstrate that CVs, CV,, and CV,, can be set to be fixed under certain condition in a
period of time, we chose a set of fixed CVs empirically and performed the motion of elbow up
and down for fifty times continuously. The experimental results in Figure 2-6 show consistent
classification, except the twenty-fifth trial (marked in red). The entire process lasted for about
10 minutes. After that, the fatigue of the muscle led to inconsistent classification. It indicates
that fixed CVs are appropriate for the proposed system to govern robot motion for a certain
period of time, but should not be used when the subject felt fatigued.

Several factors influence the realization of the classifier, including feature selection,

number of samples for feature extraction, and choice of the CVs. It is suggested to use

-20 -



features with smooth waveforms. A larger number of samples may be helpful for feature

extraction, at the expense of efficiency and delay.

Classification Output
—_-
1
C——

|
0 Time (second) a4

Figure 2-6 Feasibility evaluation by performing the motion of elbow up and down for fifty
times continuously (numbers0-3- correspond to STOP, UP, DOWN, and ERROR,

respectively).
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Chapter 3

Experimental Design

The proposed EMG-based upper-limb robot control system is using four sets of electrodes
placed on Biceps Brachii (BB), Triceps Brachii (TB), Pectoralis Major (PM), and Teres
Minor (TM), as shown in Figure 3-1, to control the robot arm movement of either one DOF or
multi-DOFs. For the proposed detection method, the classifier is designed to let the feature
extracted from the BB correspond to upper limb flexion, that from the TB for extension, that
from PM for internal rotation, that-from TM for external rotation, that from the synthesis of
BB and PM, for flexion-internal rotation, and that from the synthesis of TB and TM for
extension-external rotation. Their muscle states will determine whether it is an up, down,
turn-left, turn-right, up-left and down-right movement. Due to some muscle crosstalk or
imprecise feature identification, sometimes it may lead to conflict movement decision
between the two muscles. Under such circumstances, the classifier will output an error signal.
Therefore, there are eight outputs for the classifier: STOP, UP, DOWN, LEFT, RIGHT,
UP-LEFT, DOWN-RIGHT and ERROR.

Table 3-1 summarizes the mapping from EMG to robot movement. When EMG signals
from all channels (CH1~4) are determined to be OFF, the classifier outputs O as relaxation;
ON for CH1 and OFF for the others, outputs 1 as flexion; ON for CH2 and OFF for the others,

outputs 2 as extension; ON for CH3 and OFF for the others, outputs 3 as internal rotation; ON
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for CH4 and OFF for the others, outputs 4 as external rotation; simultaneously ON for CH1 &

CH3 and OFF for the others, outputs 5 as flexion plus internal rotation; simultaneously ON

for CH2 & CH4 and OFF for the others, outputs 6 as extension plus external rotation; and

simultaneously ON for undefined channels, outputs 7 as error detection. Figure 3-2 illustrates

the classification outputs corresponding to the robot arm movements.

Pectora

~

Bice I.-'

Figure 3-1 E II‘ b) Triceps

Brachii and Te
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Table 3-1 Mapping from EMG to robot movement

EMG -
) Classifier
BB | TB | PM | TM Upper Limb Status Robot Arm
Output
(CH1)|(CH2)|(CH3)|((CH4)
OFF | OFF | OFF | OFF Relaxation 0 STOP
ON | OFF | OFF | OFF Flexion 1 J2 axis UP
OFF | ON | OFF | OFF Extension 2 J2 axis DOWN
OFF | OFF - J1 axis TURN
ON | OFF Internal Rotation 3
LEFT
OFF | OFF ) J1 axis TURN
OFF | ON External Rotation 4
RIGHT
ON | OFF | ON | OFF Flexion-Internal Rotation 5 J5 axis UP
OFF | ON | OFF | ON Extension-External Rotation 6 J5 axis DOWN
The others Error T STOP
Classifier Output
6 LT i W o ________lT
5 o G M _ _ _ oo -
4 | o e e ____
3 _________________________

Figure 3-2 Illustrations of classification outputs corresponding to the robot arm movements
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3.1 Experimental Setup

A series of experiments were performed to evaluate the performance of the proposed system.
Figure 3-3 shows the implementation of the proposed system for experiments. In Figure 3-3,
the measured EMG signals are first amplified using the ETH-256 physiological signal
amplifier (manufactured by iWorx Systems, USA, the specifications are listed in Table 3-2
and the hardware is shown in Figure 3-4), and the amplified analog signals (voltages) then
transformed into digital signals via National Instrument USB-6009 A/D data acquisition
device (the specifications are-listed-in Table 3-3 and the hardware is shown in Figure 3-5)
with 1KS/s sampling rate. The digital signals are further forwarded to the LabVIEW
development system, as Figure 3-6 shown, which includes a sixth-order band-pass
Butterworth filter with the cut-off frequencies at 20 and 400 Hz, respectively, a
10-sampling-data-window feature extractor, and a motion classifier. \Via the processing, robot
motion commands can be determined, and then sent to a 6-DOF Mitsubishi RV-2A robot
manipulator for execution (the specifications are listed in Table 3-4, and the axis definition is
shown in Figure 3-7, only J1, J2 and J5 axes manipulated). The experimental setup is shown
in Figure 3-8.

The effectiveness of the proposed scheme is demonstrated via the following two
experiments: (1) 1-DOF robot arm movement governing and (2) multi-DOF robot arm

movement governing. The experimental results for the former are described in Sec. 3.2, and
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those for the later in Chapter 4 due to its complexity.

E__ E EMG Analog — Dlgltal E._._._._._._._._._._._._i
=— isignal| EMG signal ata. signal i | Butterworth | i
FEmEEEE——™ Amplifier —>| Acquisition > Filter !
— Device i
l“j—_T| : v E
: Feature
Extractor i
! Robot O Motion v
S motion.__ | > L command, WM Motion | |
s Classifier
g ‘L abView Developmenté
. T b |
Figure 3-3 System implementation of the proposed scheme.
Table 3-2 iWork ETH-256 specifications
Number of Channel 2
Operation Modes Bridge/Biopotential (ECG, EMG, EEG)
Gain x1, x5, x10, x100, x500, x1K, x5K
Filters High Pass (Hz): DC, 0.03, 0.3, 3
Low Pass (Hz): 5, 50, 150, 2K, 10K
Input Impedance 10 GQ
Output Impedance 100 GQ
Input Connector DIN & BNC
Output Connector BNC
Offset Range 5~+5V
Common Mode Rejection 85db@200Hz
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ations

Analog Output

Sampling rate: 150 S/s

Number of channel: 12

Digital 1/0
Counter: 32 bit
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Figure 3-5 National Instrument USB-6009 A/D data acquisition device.
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Figure 3-6 LabView Development System Console.
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Table 3-4 Mitsubishi RV-2A robot arm specifications

Degrees of freedom 6
Maximum load capacity

. 2Kg
(rating)
Maximum reach radius 621 mm
Pose repeatability +0.04 mm
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Upper arm
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Shoulder -~

Figure 3-7 Mitsubishi RV-2A robot arm axis definition.

= T.?~

Figure 3-8 Experimental setup.
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3.2 One-DOF Robot Arm Movement Control

Two sets of electrodes placed on the Biceps Brachii, marked as CH1, and the Triceps Brachii,
marked CH2, respectively, shown in Figure 3-1, are used to govern the motion of RV-2A.
First things first, the setting of CV, and CV, has to be determined for the invited subjects. In
the first set of experiments, we used the empirical method to determine CV, and CV, for the
three invited male subjects, with their physical data listed in Table 3-5 and derived CV, and
CV, in Table 3-6. Their determination is customized for each individual subject through an
extensive trial-and-error procedure-according to the effectiveness on classification. The
subject was asked to contract/extend his upper limb to move robot arm, J2 axis, from 0 to 90
degrees, 90 to O degrees, 0 to 45 degrees, 45 to 90 degrees, 90 to 45 degrees, and 45 to 0
degrees. The moving speed of the robot arm is 6 deg./sec. We define the successful
discrimination rate (SDR) as the times that the robot arm successfully follows the motion of

the subject out of the total number of classification:

Number of successful motion following
— x100%
Total number of classification

SDR =

3-1)
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Table 3-5 Physical data of the three male subjects

Muscle for
Subject Height (cm) Weight (kg)
electrode
A 174 70 Ordinary
B 166 60 Slender
C 164 82 Fat

Table 3-6 Critical values via the empirical method

Biceps Brachi Triceps Brachi
Subject
CV, CV, CV, CV|
A 4.5 2.2 4 28
B 3.2 2.2 45 3
C 5 2.8 5 3.3
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The experimental results are shown in Figures 3-9 to 3-11. Figure 3-9 shows the EMG
signals after band-pass filtering for subjects A-C, in which larger amplitudes indicate larger
forces during the movements of the flexor/extensor. Figure 3-10 shows the variations of MAV
features corresponding to the filtered EMG signals in Figure 3-9. Based on these features, the

classifier determines the corresponding upper limb movements, while more evident feature




variations lead to better discrimination. Figure 3-11 shows the outputs from the classifier,
where numbers 0-3 in the vertical coordinate denote STOP, UP, DOWN, and ERROR
respectively, and I-VI the stages of 0°-90°, 90°-0°, 0°-45°, 45°-90°, 90°-45°, and 45°-0°.
Subject C reported that he felt a little bit fatigued. It might be due to higher CV, and CV,
demanded him to make more effort for movement. The SDR for the subjects is 95.5%, 97%,

and 95.5%, respectively, indicating quite successful motion following.

Filtered Biceps Brachii EMG
20 T T T T T

_ 10t g
=2
o
> 10- B
_20 | | | | | | | L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Sample
Filtered Triceps Brachii EMG
20 T T T T T
_ 1or E
2
()
E 0
o
> 10k B
.20 | 1 1 1 1 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample
(a) Subject A

Figure 3-9 Filtered EMG signals for subjects A-C.
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Figure 3-9 (Cont.) Filtered EMG signals for subjects A-C.
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Figure 3-10 EMG feature variations for subjects A-C.
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Classification Output
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Figure 3-11 Outputs from the classifier for subjects A-C.
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Due to the individual fuzziness, the tuning of the system parameters for the individual user
is not that straightforward. Thus the concept of the fuzzy system [35, 51, 52] is employed for
CV, and CV, determination, so that the tedious process encountered in the trial-and-error
method can be avoided. MAV (signal power) and BZC (zero crossing) were chose as the
input variables of the fuzzifier, as each of them provides the time- and frequency-domain
estimation, respectively. Figure 3-12 shows the fuzzy sets used for MAV, BZC, and CV, (CV)),
where W, M, and S stand for weak, middle, and strong, L, M, and H for low, middle, and high,
v, 0, and € (n) the strength of MAV, BZC, and CV,, (CV)), respectively, and ua wg and uc (up)
the membership function for MAV, BZC and CV, (CV)). With them, the fuzzifier transforms
the extracted features into the linguistic values. The fuzzy rules, listed in Table 3-7, are
obtained from the empirical knowledge acquired via extensive experiments. The values of y
and o are empirically set to be 1/3 of the MAV and BZC, respectively, and € and n are 2 and
1.4 times of y. The fuzzy inference engine determines the jth firing strength ¢; of the jth fuzzy
rule via Eq.(3-2):

.y B o (3-2)
And, the defuzzifier utilizes the center of gravity (COG) method to map the inferred fuzzy

action into a nonfuzzy value of CV, (CV)):

2.4z

cv, (cv)) =12 (3-3)

2

j=
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where n is the number of fuzzy rule and z; the strength of CV, (CV)) at the jth fuzzy rule.

Ha o HB 4 Heo) o

In the second set of experiments, the fuzzy system is used to determine CVs for each

individual user, listed in Table 3-8, and asked the subjects to perform the same movements as
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those they did in the first set of experiments. The experimental results are shown in Figures
3-13 to 3-15. Figure 3-13 shows the filtered EMG signals, Figure 3-14 variations of the MAV
features, and Figure 3-15 outputs from the classifier. The SDR for the subjects is 95.5%, 97%,
and 97%, respectively, also indicating quite successful motion following. From Tables 3-6

and 3-8, different set of CVs were derived by the empirical method and fuzzy system, while

both of them led to success zy system may be with

better potential w ses the ability of

automatic pa
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Figure 3-13 Filtered EMG signals for subjects A-C.
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Figure 3-14 EMG feature variations for subjects A-C.
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Figure 3-14 (Cont.) EMG feature variations for subjects A-C.
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Figure 3-15 Outputs from the classifier for subjects A-C.
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Chapter 4
Multi-DOF Robot Arm Movement Control

While the proposed system is shown to be effective for 1-DOF robot motion governing, it is
not appropriate to serve as a classifier for more than 1-DOF upper limb motion as it has larger
muscle mutual interference. To tackle this, the EMD method is applied in feature extraction
design. To reduce the computational load in EMD, a sixth-order band-pass Butterworth filter
and a window with 20 samples per second are employed. The muscle state was determined by

the root mean square (RMS) of the 2™ IMF, c¢,(t), expressed as:
Fx = RMS(co(t), 0<t <20 (4-1)

Meanwhile, for multi-DOF upper limb motion, the fuzzy system adopted for 1-DOF motion is
not efficient enough for the tuning of the critical values for each individual user. For its

excellence on adaptation, the ANFIS is employed to realize the fuzzy system.

4.1 Adaptive Neuro-Fuzzy Inference System

Figure 4-1 shows the conceptual diagram of the proposed ANFIS for CV, and CV,
determination, which consists of fuzzifier, fuzzy rule, fuzzy inference engine, defuzzifier and

ANFIS. Fuzzifier transforms the measured EMG signals of Biceps Brachii (BB), Triceps
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Brachii (TB), Pectoralis Major (PM), and Teres Minor (TM) into linguistic variables. One
degree of Sugeno-type inference system is employed to depict the fuzzy rule in fuzzy
inference engine. The fuzzy rules are formulated as
R'": IF BB is A; and TB is B; and PM is C; and TM is D; THEN CV, (CV)) = pi xBB +
qixTB + r; xPM +s; xTM, i &{1,2, ....,54} (4-2)
where BB, TB, PM, and TM are the input variables, A, B, C, D.= {W, M, S} linguistic
variables, CV, (CVy) the output variable, and [p;, g, r. _s;| the consequent parameter set.
Defuzzifier transforms the fuzzy results of the inference into a real CV, (CV;) using weighted
averaged method. ANFIS uses the least-squares method to identify the consequent parameter
set and the backpropagation gradient descent method to set the premise parameters of the
membership function to emulate the given training data set, listed in Table 4-1, where IN,, INy,
IN, INg stand for the EMG signals of BB, TB, PM and TM, respectively, OUT for CV,, W, M,
S, VL, L, H and VH for weak, middle, strong, very low, low, high and very high. By
extensive experiments, the values of the W; M, S in INa~INy are empirically set to be 1/3, 2/3,
1 of IN;~INg, respectively, and those of VL, L, M, H and VH in OUT are 1/3, 2/3, 1, 4/3, 5/3
of IN,~INg; CV,is set to be 0.7 times of CV,. By considering the conditions, such as skin
impedance and temperature, etc. are different from those of the training, the aforementioned
values can be divided by a compensating parameter, A, ranging from 0.8 to 1.3. The

procedures for determining the CV, and CV, are shown in the following:
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Step 1: Set the compensating parameter, A, to be 0.8 in the proposed ANFIS to obtain the first
set of CVy and CV,.

Step 2: Ask the operator to perform the motion of flexion, extension, internal rotation, and
external rotation two times consecutively.

Step 3: If the SDR is lower than 80%, add 0.1 to A and iterate Steps 2-3 until the SDR is equal
to or more than 80%.

The proposed ANFIS consists of five layers as shown in Figure 4-2. Layer 1 is the input
layer. Each node in this layer represents an input variable of the model with the membership
function:

Of = 1y (BB), Oi; =g (TB), Opg = pc (PM), Ojto = 4p (TM), i=123  (4-3)

The bell-shaped membership function is employed, shown in Figure 4-3, and expressed as

1 :
1, (BB) = . i=123 (4-4)
. K {[(BB v }b‘
" : i=123 (4-5)
h 1+{mB-c)a P
1 ,
s (PM) = . i=123 (4-6)
; " {[(PM =Rl }b‘
i .
Hpi (TM) = , 1=123 (4-7)

b.
1+{[(TM —¢;)la ]2}'
where [ai b; ci] represent the premise parameter set. Layer 2 is the inference layer. Each

node in this layer is multiplied by the input signal to become w;:

Oiz =W, = (BB)x 115 (TB) % 11 (PM) x g5 (TM), 1 =1,2,---54 (4-8)
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w; stands for the firing strength of the rule. Layer 3 is the normalization layer that normalizes

the firing strength by calculating the ratio of i firing strength to their sum:

OI3 =Wi _ Wi ' i =1'2,...’54 (4'9)

Layer 4 is the output layer. Each node multiplies the normalized firing strength by the
consequent function to generate the qualified consequent of each rule. The output of the node
is computed as

o) =w.CV, (CV,); =W, (p;BB+0,TB+FKPM +sTM ), i=12,--54  (4-10)
Layer 5 is the defuzzification layer, which computes the weighted average of the output

signals from the output layer:

54
Zizlwi CV,(CV));

5 54 __
Oi =5 zizlwiCVu (CV| )i = 54 (4-11)
W
—
Training ANFIS
Data
Fuzzy System
|
Fuzzy Rule
I~
- ) * i ¢ Cv,BB, TB,PM,TM
B_lcepsBrachl_l_ Fuzzy (CV,,BB.TB,PM,TM)
Tncepg Braqhu Fuzzifier p| Inference » Defuzzifier " >’ C
Pectoralis Major Engine
Teres Minor

Figure 4-1 Conceptual diagram of the proposed ANFIS for CV, and CV, determination.
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Table 4-1 Training data set
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Figure 4-2 Structure of the ANFIS for the proposed system.
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4.2 Experimental Results

The effectiveness of the proposed scheme for governing multi-DOF robot arm movement is
demonstrated via asking two male and two female subjects (with their physical data listed in
Table 4-2) to perform the following three experiments: (1) the motion of flexion, extension,
internal rotation, and external rotation for four times consecutively, (2) the motion of flexion
plus internal rotation, and extension plus external rotation for three times consecutively, and
(3) the motion of elbow up, down, internal rotation, external rotation, flexion plus internal
rotation, and extension plus external rotation for two times consecutively. Experiment 1 is

used to check the feasibility of the proposed system for recognizing several multi-DOF upper
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limb motions, experiment 2 to check the capability of the proposed system for recognizing the

motion with larger muscle mutual interference, and experiment 3 to evaluate the operation

duration of the proposed system.

Table 4-2 Physical data of the four subjects

) ) _ Muscle for
Subject Height (cm) Weight (kg) Gender
electrode
A 166 60 Male Slender
B 164 82 Male Fat
C 155 52 Female Ordinary
D 150 50 Female Ordinary

4.2.1 Experiment 1

The results for experiment 1 are shown in Figure 4-4 which includes the subject’s CH1-4
filtered raw EMG signals, CH1-4 muscle states, and the classification output. The muscle
states reveal that subjects C and D had significantly mutual muscle interferences occurred
during movements, especially subject'D. The SDR for the subjects is 97%, 100%, 87.9%, and
81.8%, respectively. The proposed system still achieved quite high a successful

discrimination rate for subject D though.
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Figure 4-4(Cont.) Results for experiment 1.
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4.2.2 Experiment 2

Different from the motions performed in experiment 1, the motions in experiment 2 are
determined via detecting the instant when both magnitudes of the extracted BB and PM (TB
and TM) reach their individual upper critical value simultaneously. These motions led to not
only larger mutual muscle interferences but also higher muscle coupling. The experimental
results are shown in Figure 4-5. The muscle states reveal that the subjects’ forces acting on
BB and PM (TB and TM) sometimes did not reach individual upper critical value
simultaneously. Nevertheless, the goal was still achieved, and the SDR for the subjects is
84.6%, 92.3%, 76.9%, and 100%, respectively, indicating that the proposed system dealt with

these complicated motions successfully.
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Figure 4-5(Cont.) Results for experiment 2.

4.2.3 Experiment3

To evaluate the operation duration of the proposed system, we asked the subjects to perform
the motion of elbow up, down, internal rotation, external rotation, flexion plus internal
rotation, and extension plus external rotation continuously. In average, the subjects felt
fatigued after continuously executing the motions twice. The results for experiment 3 are
shown in Figure 4-6. The SDR for the subjects is 96%, 92%, 72%, and 84%, respectively,
indicating quite successful motion following except for subject C. When examining the

muscle state of subject C, we found the severe mutual muscle interference present in her
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motion of extension plus external rotation.
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Figure 4-6 Results for experiment 3.
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Chapter 5

Conclusions

The main aim of the dissertation is proposing a simple and practicable approach, a so-called
initial point detection method, to discriminate the upper limb motion onset by detecting the
instant when the magnitude of the extracted EMG feature reaches the upper critical value CV,
and offset when that descends to the lower critical value CV; from onset state. By integrating
the method with the EMD and the fuzzy system, the mapping between the upper limb EMG
signals and the corresponding robot arm movements can be established very quickly and
reliable. A series of experiments have been performed to demonstrate the feasibility and
effectiveness of the proposed system. Because neither complicated computation nor training
and learning processes are needed, the proposed scheme not only simplifies system
complexity, but also increases the efficiency in motion governing. With the assistance of the
proposed system, the physically weak individual (disabled, injured or elderly) can do some
important daily activities such as eating from spoon, drinking from cup and pouring from a
bottle, etc. by themselves without needing assistance from others. In addition to the robot arm
motion governing, the proposed method can further be used for governing the different
fundamental applications, such as the devices with bidirectional commands (on/off,
increment/decrement), prosthetic hand, TV and radio for instance.

Although the experimental results demonstrate the feasibility of the proposed system, the
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classifier can not recognize the state while the forces acting two muscles (BB and PM or TB

and TM) do not reach individual upper critical value simultaneously. Meanwhile, its

performance has not yet been evaluated by the physically handicapped and elderly. The

muscle contractions in these people will often be very weak so that the magnitudes of their

EMG signals might be lower than those of the background noises. The feature extractor and

be suitable for them and

need to be modified. Besic . " | the position of the robot
EMG bas Sisting th a controller that

accurately but also the
as well as

muscular maoc

system co
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5.1 Future Research

While the experimental results are shown to be effective for robot motion governing, the
limitation of this system is that fixed CVs are suitable for robot motion governing for about 5
~ 10 minutes, depending on the complexity of the motion. After that, the fatigue of the muscle
led to inconsistent classification. Consequently, the proposed system should not be used when
the subject feels fatigued. Besides, the movements involved in the proposed system only
focus on the upper limb motions, and the subjects are all sound limbs and younger. Whether it
is suitable for governing full limb movements and operating by physically weak individual
remain to be investigated. In future works, we plan to lengthen the operation time by adopting
the strategy-of varying CVs with the detection of the fatigue in the system. We also plan to
extend the proposed system for full limb movement governing. In addition, we also
demonstrate the performance of the proposed system for subjects that are the physically

handicapped and with age.

-62 -



Bibloigraphy

[1]

[2]

[3]

[4]

[5]

[6]

K. Watanabe, C. Jayawardena, and K. Izumi, “Intelligent interface using natural voice

and vision for supporting the acquisition of robot behaviors,” IEEE International

Conference on Sensors, pp. 374-377, Oct. 2006.

C. J. D. Luca, “The use of surface electromyography in biomechanics”, Journal of

Applied Biomechanics, vol. 13, no. 2, pp. 135-163, 1997.

O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, “A human-assisting manipulator

teleoperated by EMG signals and arm motions,” IEEE Transactions on Robotics and

Automation, vol. 19, no. 2, pp. 210-222, Apr. 2003.

P. K. Artemiadis and K. J. Kyriakopoulos, “EMG-based position and force control of a

robot arm: application to teleoperation and orthosis,” IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, pp. 1-6, Sep. 2007.

A. Ferreira, W. C. Celeste, F. A. Cheein, T. F. Bastos-Filho, M. Sarcinelli-Filho, and R.

Carelli, “Human-machine interfaces based on EMG and EEG applied to robotic

systems,” Journal of NeuroEngineering and Rehabilitation, vol. 5, no. 10, pp. 1-15, Mar.

2008.

Z. Gao, Q. Song, Y. Nie, J. Lei, Y. Yong, and Y. Ge, “Conceptual design and

implementation of arm wrestling robot,” IEEE/RSJ International Conference of

-63-



Intelligent Robots and Systems, pp. 4582-4586, Oct. 2006.

[71 R. A. R. C. Gopura and K. Kiguchi, “EMG-based control of an exoskeleton robot for

human forearm and wrist motion assist,” IEEE International Conference on Robotics and

Automation, pp. 731-736, May 2008.

[8] K. Ito, T. Tsuji, A. Kato, and M. Ito, “An EMG-controlled prosthetic forearm in three

degrees of freedom using ultrasonic motors,” Proceedings of the Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1487-1488,

Nov. 1992.

[9] H. Oppenheim, R. S. Armiger, and R. J. Vogelstein, "WIIEMG: a real-time environment

for control of the Wii with surface electromyography,” Proceedings of IEEE

International Symposium on Circuits and Systems, pp. 957 — 960, Jun. 2010.

[10] H. Huang, T. A. Kuiken, and R. D. Lipschutz, “Strategy for identifying locomotion

modes using surface electromyography,” IEEE Transaction on Biomedical Engineering,

vol. 56, no.1, pp. 65-73, Jan. 2009.

[11] S. Aso, A. Sasaki, and H. Hashimoto, “Driving electric car by using EMG interface,”

IEEE Conference on Cybernetics and Intelligent Systems, pp. 1-5, Jun. 2006.

[12] A. Harada, T. Nakakuki, M. Hikita, and C. Ishii, "Robot finger design for myoelectric

hand and recognition of finger motions via Surface EMG,” IEEE Conference on

Automation and Logistics, pp. 273-278, Aug. 2010.

-64 -



[13] H. Graichen, K. H. Englmeier, M. Reiser, and F. Eckstein, “An in vivo technique for
determining 3D muscular moment arms in different joint positions and during muscular
activation — application to the supraspinatus,” Clinical Biomechanics, vol. 16, no. 5, pp.
389-394, June. 2001.

[14] K. Kiguchi, T. Tanaka, and T. Fukuda, “Neuro-fuzzy control of a robotic exoskeleton
with EMG signals,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 481-490,
Aug. 2004.

[15] A. Soares, A. Andrade, E. Lamounter, and R. Carrijo, “The development of a virtual
myoelectric prosthesis controlled by an EMG pattern recognition system based on neural
networks,” Journal of Intelligent Information Systems, vol. 21, no. 2, pp. 127-141, 2003.

[16] M. Z. Kermani, B. C. Wheeler, K. Badie, and R. M. Hashemi, “EMG feature evaluation
for movement control of *upper extremity prostheses,” IEEE Transaction on
Rehabilitation Engineering, vol. 3, no. 4, pp. 324-333, Dec. 1995.

[17] H. P. Huang and C. Y. Chen, “Development of a myoelectric discrimination system for a
multi-degree prosthetic hand,” Proceedings of IEEE International Conference on
Robotics and Automation, pp. 2392-2397, May 1999.

[18] Y. Li, Y. Tian and W. Chen, “Multi-pattern recognition of SEMG based on improved BP
neural network algorithm,” Proceedings of the 29™ Chinese Control Conference, pp.

2867-2872, Jul. 2010.

- 65 -



[19] A. Phinyomark, S. Hirunviriya, C. Limsakul, and P. Phukpattaranont, “Evaluation of
EMG feature extraction for hand movement recognition based on Euclidean distance and
standard deviation,” International Conference on Electrical Engineering/Electronics
Computer Telecommunications and Information Technology, pp. 856 — 860, May 2010.

[20] M. Meng, Q. She, Y. Gao, and Z. Luo, “EMG signals based gait phases recognition
using hidden Markov models,” IEEE International Conference on Information and
Automation, pp. 852-856, Jun. 2010.

[21] J. Gora, P. M. Szecowka, and A. R. Wolczowski, “Control of dexterous hand - algorithm
implementation issues,” International Conference on Information Technology and
Applications in Biomedicine, pp. 1-4, Nov. 2009.

[22] S. Karlsson, J. Yu, and M. Akay, “Enhancement of spectral analysis of myoelectric
signals during static contractions using wavelet methods,” IEEE Trans. Biomed. Eng. vol.
46, pp. 670-684, Jun. 1999.

[23] K. Mahaphonchaikul, D. Sueaseenak, C. Pintavirooj, M. Sangworasil, and S.
Tungjitkusolmun, “EMG signal feature extraction based on wavelet transform,”
International  Conference on  Electrical  Engineering/Electronics ~ Computer
Telecommunications and Information Technology, pp. 327 — 331, May 2010.

[24] H. Xie and Z. Wang, “Mean frequency derived via Hilbert-Huang transform with

application to fatigue EMG signal analysis,” Computer Methods and Programs in

- 66 -



Biomedicine, vol. 82, pp. 114-120, 2006.

[25] C. Zong and M. Chetouani, “Hilbert-Huang transform based physiological signals

analysis for emotion recognition,” IEEE International Symposium on Signal Processing

and Information Technology, pp. 334-339, Dec. 2009.

[26] A. O. Andrade, S. Nasuto, P. Kyberd, C. M. Sweeney-Reed, and F. R. Van Kanijn,”

EMG signal filtering based on empirical mode decomposition,” Biomedical Signal

Processing and Control, vol. 1, pp. 44-45, 2006.

[27] P. Afshar and Y. Matsuoka, “Neural-based control of a robotic hand: evidence for

distinet muscle strategies,” Proceedings of IEEE International Conference on Robotics

and Automation, pp. 4633-4638, May 2004.

[28] N. Bu, M. Okamoto, and T. Tsuji, “A hybrid motion classification approach for

EMG-based human-robot interfaces using Bayesian and neural networks,” IEEE

Transactions on Raobotics, vol. 25, no. 3, pp. 502-511, Jun. 2009.

[29] W. Ma and Z. Luo, “Hand-motion pattern recognition of SEMG based on Hilbert-Huang

transformation and AR-model,” IEEE International Conference on Mechatronics and

Automation, pp. 2150-2154, Aug. 2007.

[30] B. Peng, X. Jin, Y. Min, and X. Su, “The study on the SEMG signal characteristics of

muscular fatigue base on the Hilbert-Huang transform,” Lecture Notes in Computer

Science, vol. 3991, pp. 140-147, 2006.

-67 -



[31] N. Wang, E. Ambikairajah, B. G. Celler, and N. H. Lovell, “Accelerometry based

classification of gait patterns using empirical mode decomposition,” IEEE International

Conference on Acoustics, Speech, and Signal Processing, pp. 617-620, Apr. 2008.

[32] L. Chen, P. Yang, L. Zu, and X. Guo, “Movement recognition by electromyography

signal for transfemoral prosthesis control,” IEEE Conference on Industrial Electronics

and Applications, pp. 1127-1132, May 2009.

[33] P. K. Artemiadis and K. J, Kyriakopoulos, “A switching regime model for the

EMG-based control of a robot arm,” IEEE Transactions on Systems, Man, and

Cybernetics-Part B: Bybernetics, vol. 41, no. 1, pp. 53-63, Feb. 2011.

[34] H. J. Liuand K. Y. Young, “An Adaptive Upper arm EMG-based robot control system,”

International Journal of Fuzzy Systems, vol. 12, no. 3, pp. 181-189, Sep. 2010.

[35] H. J. Liu-and K. Y. Young, “An efficient approach for EMG-based robot control,”

International Journal of Electrical Engineering, vol. 17, no. 5, pp. 327-336, Oct. 2010.

[36] C. A. Chen, H. K. Chiang, and J. C. Shen, “Fuzzy sliding mode control of a magnetic

ball suspension system”, International Journal of Fuzzy Systems, vol. 11, no. 2, pp.

97-106, Jun. 20009.

[37] C. H. Wang, C. H. Lin, B. K. Lee, C. N. Liu, and C. Su, “Adaptive two-stage fuzzy

temperature control for an electroheat system”, International Journal of Fuzzy Systems,

vol. 11, no. 1, pp. 59-66, Mar. 2009.

- 68 -



[38] H. Y. Chan, Y. S. Yang, F. K. Lam, Y. T. Zhang, and P. A. Parker, “Fuzzy EMG

classification for prosthesis control,” IEEE Transactions on Rehabilitation Engineering,

vol. 8, no. 3, pp. 305-311, Sep. 2000.

[39] J. S. R. Jang, “ANFIS: Adaptive network based fuzzy inference system,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-683, May/Jun.

1993.

[40] B. K. Lee, K. H. Lee, and B. S. Chen, “State estimation of stochastic T-S fuzzy

systems,” International Journal of Fuzzy Systems, vol. 8, no. 1, pp. 46-56, Mar. 2006.

[41] C. Y. Kuo and H. F. Wang, “Overview of fuzzified neural networks with comparison of

learning mechanism,” International Journal of Fuzzy Systems, val. 10, no. 2, pp. 71-83,

Jun. 2008.

[42] M. J. Er, F. Liu, and M. B. Li, “Self-constructing fuzzy neural networks with extended

Kalman filter,”” International Journal of Fuzzy Systems, vol. 12, no. 1, pp. 66-72, Mar.

2010.

[43] A. Subasi, “Application of adaptive neuro-fuzzy inference system for epileptic seizure

detection using wavelet feature extraction,” Computers in Biology and Medicine, vol. 37,

no. 2, pp. 227-244, 2007.

[44] C. K. S. Vijila, P. Kanagasabapathy, S. Johnson, and V. Ewards, “Artifacts removal in

EEG signal using adaptive neuro fuzzy inference system,” IEEE International

- 69 -



Conference Signal Processing, Communications and Networking, pp. 589-591, Feb.

2007.

[45] S. Micera, W. Jensen, F. Sepulveda, R. R. Riso, and T. Sinkjer, “Neuro-fuzzy extraction

of angular information from muscle afferents for ankle control during standing in

paraplegic subjects: an animal model,” IEEE Transactions on Biomedical Engineering,

vol. 48, no. 7, pp. 787-794, Jul. 2001.

[46] R. T. Lauer, B. T. Smith, and R. R. Betz, “Application of a neuro-fuzzy network for gait

event detection using electromyography in the child with cerebral palsy,” IEEE

Transactions on Biomedical Engineering, vol. 52, no. 9, pp. 1532-1540, Sep. 2005.

[47] J. 1. Park, J. H. Cho, M. G. Chun, and C. K. Song, “Neruo-fuzzy rule generation for

backing up navigation of car-like mobile robots,” International Journal of Fuzzy Systems,

vol. 11, no. 3, pp. 192-201, Sep. 2009.

[48] M. Y. Shieh and K. H. Chang, “An optimized neuro-fuzzy controller design for bipedal

locomotion,” International Journal of Fuzzy Systems, vol. 11, no. 3, pp. 137-145, Sep.

2009.

[49] K. Henryk, S. Grzegorz , and N. Anton, "Effect of Electrode Position on EMG Recording

in Pectoralis Major," Journal of Human Kinetics, vol.17, pp. 105-112, 2007.

[50] N. E. Huang, S. Zhen, S. R. Long, M. C. Wu, H. H. Shin, Q. Zheng, N.C. Yen, C. C.

Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for

-70 -



nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of

London, vol. 454, no. A, pp. 903-995, 1998.

[51] C. T. Chen, H. C. Chen, Y. Y. Hu, and C. C. Wong, “ Fuzzy balancing control of a

small-size humanoid robot based on accelerometer,” International Journal of Fuzzy

Systems, vol. 11, no. 3, pp. 146-

[52] C. T. Linand C.

-71 -



Publication List

Journal Papers

[1] H.J. Liu, and K. Y. Young, “An adaptive upper arm EMG-based robot control system,”
International Journal of Fuzzy Systems, vol. 12, no. 3, pp 181-189, Sep. 2010.

[2] H.J. Liy, and K. Y. Young, “An efficient approach for EMG-based robot control,”
International Journal of Electrical Engineering, vol. 17, no. 5, pp 327-336, Oct. 2010.

[3] H.J. Liu, and K. Y. Young, “Applying wave-variable-based sliding mode impedance
control for robot teleoperation,” Accepted by International Journal of Robotics and
Automation.

[4] H. J..Liu, and K. Y. Young, “Upper limb EMG-based robot motion governing using
empirical mode decomposition and adaptive neural fuzzy inference system,” in

preparation for submission to Journal of Intelligent and Robotic Systems.

Conference Papers

[1] H.J. Liu, and K. Y. Young, “Robot motion governing using upper limb EMG signal
based on empirical mode decomposition,” IEEE Conference on Systems Man and
Cybernetics, pp. 441-446, Oct. 2010.

[2] H.J. Liuand K. Y. Young, ”Dealing with a bilateral teleoperation system with varying

-72-



time delay,” National Symposium on System Science and Engineering, Taipei, Taiwan,
June, 2007.

[3] H.J.Liu, P.C. Liu, and K. Y. Young, “Robot motion governing based on forearm EMG
signals,” International Conference on Service and Interactive Robotics, Taipei, Taiwan,

August, 2009.

-73-



	摘要
	Abstract
	Acknowledgements
	Introduction
	1.1 Motivation
	Table 1-1 EMG based human-assisting manipulators 

	1.2 Contribution
	1.3 Organization

	Proposed EMG-Based Upper-Limb Robot Control System
	Figure 2-1 Proposed EMG-based upper-limb robot control system
	2.1 Signal Measurement and Processing
	2.2 Feature Extraction
	Table 2-1 Feature extraction name and formula
	Figure 2-2 Flow chart for empirical mode decomposition
	Figure 2-3 An example of empirical EMG signal and corresponding empirical mode decomposition components, including 3 IMFs and 1 residue (trend): (a) muscle in relaxation and (b) muscle in flexion.
	Figure 2-3 (Cont.) An example of empirical EMG signal and corresponding empirical mode decomposition components, including 3 IMFs and 1 residue (trend): (a) muscle in relaxation and (b) muscle in flexion.


	2.3 Motion Classification
	2.3.1 Initial Point Detection
	Figure 2-4 Conceptual diagram for single and double critical value detection: (a) single critical value and (b) double critical value.
	Figure 2-5 An example of EMG signal evaluation of Biceps Brachi using MAV.
	Figure 2-6 Feasibility evaluation by performing the motion of elbow up and down for fifty times continuously (numbers 0-3 correspond to STOP, UP, DOWN, and ERROR, respectively).


	Experimental Design
	Figure 3-1 Electrode locations: (a) Biceps Brachii and Pectoralis Major, and (b) Triceps Brachii and Teres Minor.
	Table 3-1 Mapping from EMG to robot movement
	Figure 3-2 Illustrations of classification outputs corresponding to the robot arm movements


	3.1 Experimental Setup
	Figure 3-3 System implementation of the proposed scheme.
	Table 3-2 iWork ETH-256 specifications
	Figure 3-4 iWork ETH-256.
	Table 3-3 National Instrument USB-6009 A/D data acquisition device specifications
	Figure 3-5 National Instrument USB-6009 A/D data acquisition device.
	Figure 3-6 LabView Development System Console.
	Table 3-4 Mitsubishi RV-2A robot arm specifications
	Figure 3-7 Mitsubishi RV-2A robot arm axis definition.
	Figure 3-8 Experimental setup.






	3.2  One-DOF Robot Arm Movement Control
	Table 3-5 Physical data of the three male subjects
	Table 3-6 Critical values via the empirical method
	Figure 3-9 Filtered EMG signals for subjects A-C.
	Figure 3-9 (Cont.) Filtered EMG signals for subjects A-C.
	Figure 3-10 EMG feature variations for subjects A-C.
	Figure 3-10 (Cont.) EMG feature variations for subjects A-C.
	Figure 3-11 Outputs from the classifier for subjects A-C.
	Figure 3-12 Fuzzy partitions of MAV, BZC, and CVu (CVl).
	Table 3-7 Fuzzy rule base
	Table 3-8 Critical values via the fuzzy system
	Figure 3-13 Filtered EMG signals for subjects A-C.
	Figure 3-13 (Cont.) Filtered EMG signals for subjects A-C.
	Figure 3-14 EMG feature variations for subjects A-C.
	Figure 3-14 (Cont.) EMG feature variations for subjects A-C.
	Figure 3-15 Outputs from the classifier for subjects A-C.





	Multi-DOF Robot Arm Movement Control
	4.1 Adaptive Neuro-Fuzzy Inference System
	Figure 4-1 Conceptual diagram of the proposed ANFIS for CVu and CVl determination.
	Table 4-1 Training data set 
	Figure 4-2 Structure of the ANFIS for the proposed system.
	Figure 4-3 Bell-shaped membership functions for input variables.



	4.2 Experimental Results
	Table 4-2 Physical data of the four subjects

	4.2.1 Experiment 1
	Figure 4-4 Results for experiment 1.
	Figure 4-4(Cont.) Results for experiment 1.

	4.2.2 Experiment 2
	Figure 4-5 Results for experiment 2.
	Figure 4-5 (Cont.) Results for experiment 2.
	Figure 4-5 (Cont.) Results for experiment 2.

	4.2.3 Experiment 3 
	Figure 4-6 Results for experiment 3.
	Figure 4-6 (Cont.) Results for experiment 3.


	Conclusions
	5.1  Future Research

	Bibloigraphy
	Publication List

