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Optimal Transceiver Designs for MIMO Systems

Student: Chien-Chang Li ~ Advisor: Yuan-Pei Lin

Institute of Electrical Control Engineering
National Chiao Tung University

Abstract

This dissertation consists of two parts. In the first part, we consider the
joint design of transceiver and bit allocation for multiple-input multiple-
output (MIMO) channels. _In the literature, there have been many re-
sults on designing transceivers for-MIMO channels.. In these results, the
transceivers are designed fora given bit allocation or designed with real
bit allocation. In this thesis, first wejointly optimize the transceiver with
real-valued bit allocation” for maximizing bit rate over MIMO channels.
The optimal transceiver and bit.allocation are obtained in a closed form.
Second we consider the connection'between the power-minimizing and rate-
maximizing problems with bit allocation. We will show that if a transceiver
is optimal for the power-minimizing problem, it is also optimal for the rate
maximizing problem and the converse is true. The result holds whether
the bit allocation is integer-constrained or not. Based on the duality, we
develop algorithms to find the optimal solution for the power-minimizing
problem and rate-maximizing problem with integer bit constraint.

In the second part, we consider the design of transmitting and receiv-
ing windows for multicarrier systems. For multicarrier systems, frequency
characteristics play an important role in the design of the transmitting and
receiving filters. To improve frequency separation, windowing techniques

are often used. As these are frequency based characteristics, a filterbank

1ii



representation provides a natural and useful way for formulating the prob-
lem. In this thesis, we propose a unified filterbank approach to design the
transmitting and receiving windows for multicarrier systems. Using the
filterbank approach, the frequency separation among the subchannels can

be improved.
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Chapter 1

Introduction

This thesis consists of two parts. Part I is on the design of bit allocation and
transceiver for MIMO channels. Part II is on the design of transmitting and
receiving windows for multicarrier systems. The introduction of parts I and II

are given in section 1.1 and 1.2°respectiyely.

1.1 Transceiver-designs for MIMO Systems

Multiple-input multiple-output (MIMO) channels arise in applications such as
wireless communication systems that.use multiple antennas, multicarrier commu-
nication systems, and also telephone cables that consist of many twisted pairs.
They represent a way to model a wide variety of scenarios. In this part, we focus
on the transceiver design with bit allocation for MIMO channels. The design
of the MIMO transceivers can be formulated as the optimization problem of an
objective function based on the performance of each subchannels.

Transceiver designs for a given bit allocation. For a given bit allocation,
many criteria have been considered in the transceiver designs for MIMO channels,
e.g., [1]-[17]. Optimal transceivers that maximize the mutual information are
proposed in [1]-[5]. Transceiver designs that minimize mean-square error (MMSE)
are considered in [6]-[9]. Optimal transceivers that minimize the bit error rate

(BER) are derived in [10]-[13]. Optimal transceivers that minimize the transmit



power are proposed in [14][16]. Using the MMSE receiver, unified frameworks
for designing MIMO systems with a power constraint are proposed in [17]. A
number of useful objective functions can be considered in this framework. For
example, the optimal MMSE transceivers that maximize the bit rate and mutual
information can be designed using this unified approach.

Transceiver designs with real-valued bit allocation. In [1]-[17], the
transceivers are designed for a given bit allocation. Recently, bit allocation is
also incorporate in the design of the MIMO system [18]-[27]. Optimal transceivers
with bit allocation that minimize the transmit power are proposed in [18][22]. Op-
timal transceiver with bit allocation designs that use the bit rate maximization
criterion are addressed in [23]-[25]. Transceiver designs that consider a num-
ber of design criteria are proposed: in-[26.-27]. For example, power-minimizing
transceiver, rate-maximizing transceiver, capacity-maximizing transceiver and
BER-minimizing transceiver.can be obtained using [26,-27]. For the transceivers
designs in [18]-[27], a smaller transmit power or a higher bit rate than the cases
without bit allocation can be-achieved. Hence bit allocation plays an important
role in the power minimization” and.rate maximization problems. However, the
bit allocation obtained in these designs ‘are not integers in general. The MIMO
transceiver design for minimizing transmit power or maximizing bit rate with
integer bit constraint is not solved and still open.

Integer bit allocation for multicarrier systems. For the multicarrier
systems, integer bit allocation has been considered [29]-[36]. The problem of
designing integer bit allocation for maximizing bit rate and minimizing transmit
power in multicarrier systems is considered in [29]. Algorithms for allocating
integer bits to minimize transmit power is proposed in [30]-[31]. In [32], an
optimal bit loading algorithm is presented for minimizing BER in multicarrier
system. In [33], a bit loading algorithm is proposed to increase the noise margin

(additional amount of noise that the system can tolerate). Problems of finding



the integer bit allocation for maximizing a concave function is considered in [34],
where it is shown that a greedy algorithm can be used to find the optimal solution.
In [35], an efficient bit loading algorithm is proposed to minimize an arbitrary
convex objective function. The algorithm proposed in [34] and [35] can be used
to find the optimal integer bit allocation for both the power-minimizing problem
or rate-maximizing problem when a ZF transceiver is given. In [36], an integer
bit allocation is proposed to maximize the transmission bit rate in the presence of
intercarrier interference. An integer bit allocation for minimizing the quantization
error of multiple sources is proposed in [37]. The algorithms in [29]-[37] can be

used to find integer bit allocation only when a transceiver is given.

1.2 Multicarrier System

Multicarrier system has attracted considerable attention in recent years as a prac-
tical technology for high-speed data transmission over.frequency selective chan-
nels [45]-[47]. The discrete Fourier transform (DFT) based multicarrier system
has been recognized as a very cost-effective realization of multicarrier transceivers.
Several important applications of multicarrier system have been found in discrete
multitone (DMT) systems such as asymmetric digital subscriber lines (ADSL)
[48] and very high speed digital subscriber lines (VDSL) [49][50], and orthogo-
nal frequency division multiplexing (OFDM) systems such as wireless local area
network [51] and digital video broadcasting (DVB) [52]. A generic multicarrier
system is shown in Fig. 1.1. Fy(z2), Fi(z), -+, Fa—1(2) are the transmitting fil-
ters and Hy(z), H1(z), -, Hy_1(2) are the receiving filters. In second part of
this thesis, we consider the design of the transmitting and receiving filters of the
multicarrier system. In the design of the multicarrier system, the frequency char-
acteristics of the transmitting and receiving filters are important considerations.
The stopband attenuation of the transmitting and receiving filters determines

how well the subchannels will be separated in the frequency domain. In the con-
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Figure 1.1: Multicarrier system.

ventional multicarrier system, the transmitting and receiving filters come from
rectangular windows. Since the sidelobes of the rectangular window are large,
the conventional multicarrier system has.a poor frequency separation in both the
transmitter side and the receiver: side.

Frequency characteristic at the transmitter.. At the transmitter side,
poor frequency separation leads to significant spectral leakage. In some applica-
tions, the PSD (power spectral density) of the transmitsignal is required to have
a large roll-off in certain frequency bands. Hence poor frequency separation could
pose a problem in such applications. For-example in some wired transmission ap-
plication, the PSD of the transmitted signal needs to fall below a threshold in the
transmission bands of the opposite direction to avoid interference [48, 49]. The
PSD should also be attenuated in amateur radio bands to reduce interference to
radio transmission or egress [49].

Frequency characteristic at the receiver. In some applications such as
VDSL and ADSL transmission, the multicarrier systems share its spectrum with
different types of radio transmission, for example, amplitude-modulation stations
and amateur radio [48, 49, 50]. These radio signals can be coupled into telephone
wires and interfere with the VDSL signal at the receiving side. This type of

noise in a VDSL transmission system is known as radio frequency interference



(RFI) ingress [53]. At the receiver side, the spectral roll-off of the receiving filters
determine how the tones are affected by RFI interference. A faster roll off means
the effect of RFI diminishes faster and fewer neighboring tones are affected. Poor
frequency separation results in poor out-of-band rejection. Since the receiving
filters of the conventional multicarrier system come from the rectangular window,
many neighboring tones can be affected by the RFT ingress.

Improving the Frequency characteristics. In the literature, many meth-
ods have been proposed to improve the frequency characteristics of the trans-
mitter. To improve the spectral roll-off of the transmitted signal, a number
of continuous-time pulse shaping filters have been proposed, [54]-[59]. Usually
continuous-time pulse shapes are designed based on an analog implementation
of transmitters and a digital implementation is not admitted [60]. Discrete-time
windows have been considered in [61]-]63]: The design of overlapping windows
for OFDM with offset QAM (quadrature amplitude modulation) over ISI free
channels are studied fully in-[62, 63]. More recently, transmitting windows with
the cyclic-prefixed property have been proposed in [64, 65| for egress control.
Windows that are the inverse of a raised cosine function are optimized in [64],
to minimize egress emission. To compensate for the transmitter window, the
corresponding receiver requires post-processing equalization [64, 65]. Per-tone
windows are proposed in [66] for shaping transmitted spectrum. The shaping of
spectrum allows more tones to be used for transmission.

At the receiver side, windowing is also often applied to improve the frequency
characteristics. Commonly used windows include Hanning window and Blackman
window [75]. In [67], Muschallik use Nyquist windows, which have the property
that shifts of the window in the time domain add to a constant, to improve the
reception of OFDM systems. Optimal Nyquist windows are considered in [68] to
mitigate the effect of additive noise and carrier frequency offsets. To improve RFI

suppression, receiver windowing is proposed first in [69] by Spruyt et al. For the



suppression of sidelobes without using extra redundant samples, it is proposed in
[70] to use windows that introduced controlled IBI, later removed using decision
feedback. To minimize the RFI and channel noise, the receiver windowing is
proposed in [71]. The optimal window can be found using the statistics of the
received RFI and noise [71]. A combination of raised-cosine window and per tone
equalizer are proposed to suppress RFI interference in [72]. However, the channel
information is required in these designs. in [73], channel-independent windows
are designed by minimizing the sidelobe energy. In this case, ISI (inter symbol
interference) is introduced and post processing is required to cancel ISI. Using
statistics of channel noise and RFI, a joint design of the TEQ and the receiving

window for maximizing bit rates is given in [74].

1.3 Chapter Outline

The designs of transceivers with bit allocation for MIMO channels are discussed
in Chapter 2-Chapter 5 and-the designs of transmitting and receiving windows
for the multicarrier system are discussed in-Chapter 6-Chapter 8. Details of the
research contributions in each chapter-are.as-follows.

Chapter 2

In this section, we introduce the MIMO systems. We consider both the ZF and
MMSE receivers. For the QAM modulation, symbol error rate and bit allocation
are also given in this chapter.

Chapter 3

In this chapter, we consider the design of the zero-forcing transceivers for MIMO
channels. We jointly optimize the transceiver and bit allocation to maximize the
transmission rate for a given target error rate and transmit power. Using the high
bit rate assumption, we can simplify the optimization problem and the optimal
transceiver can be easily found by the Hadamard inequality and the Poincaré

separation theorem.



Chapter 4

In this chapter, we consider the rate maximizing problem in chapter 4 but the
receiver is MMSE. In this design, we do not use the high bit rate assumption.
We jointly optimize the transceiver and bit allocation to maximize the bit rate
subject to a given error rate and a given transmit power. There are no constraints
on the transceiver or the bit allocation. Using the majorization theorem [42],
the optimal transceiver and bit allocation can be obtained in a simple close-
form and the optimal solution diagonalizes the channel into parallel independent
subchannels.

Chapter 5

In this chapter, we study the connections between the power minimization and
rate maximization problem. For the problems without integer bit constraint,
we will show that these two, problems have the same solution. However, the
result does not generalize completely to-the case with-an integer constraint on
bit allocation. We show that the power minimization and rate maximization
criterion yield the same solution if the statement of problems are modified slightly.
Moreover, we also show how to find the optimal solution of the power-minimizing
problem and rate-maximizing problem with the integer bit constraint.

Chapter 6

In this chapter, we will give an overview of the multicarrier system. We will
derive the filterbank representation of the multicarrier system. We also study
the spectral leakage at the transmitter and RFI interference at the receiver.
Chapter 7

In this chapter, we design the receiving windows to improve the frequency sep-
aration among the receiving filters. We will consider both the case when the
statistics of the interference is available to the receiver (informed receiver) and
the case when it is not (uninformed receiver). The frequency responses of the

proposed windows achieve a good trade-off in spectral roll-off between high fre-



quency and low frequency than that of rectangular window, Hanning window,
Blackman window, Kaiser window and the window design method in [71]. As a
result, fewer tones will be dominated by RFI interference. The proposed win-
dows in both cases are channel independent and can be obtained in a closed form
solution.

Chapter 8

In this chapter, we propose a unified filterbank framework for the design of win-
dows for multicarrier systems. The approach is more general than the conven-
tional windowing technique. We will use the so-called subfilters to enhance the
frequency selectivity of the transmitting and receiving filters while maintain-
ing the orthogonality among the subchannels. For the transmitter side spectral
leakage can be reduced and for the receiver side'RFI can be further suppressed.
When the subfilters form a DET bank, they can be tied nicely to the conventional
windowing such as in [65], [71], and chapter 2. The windows can be optimized
through the design of subfilters and frequency separation among the subchannels

can be considerably improved.



Chapter 2

Overview of MIMO Systems

MIMO systems arise in many different scenarios such as wired-line systems or
multi-antenna wireless systems. In this chapter, we will give an overview of the

MIMO communication systems.

2.1 Systems Model

A generic MIMO communication system-is shown in'Fig=2.1. The MIMO channel
is modeled by a P x N memoryless matrix H. The P x 1 channel noise q is
additive white Gaussian noise with variance Ng: The transmitter matrix F is of
size N x M. The receiver matrix G is of size M x P. The input of the transmitter

is s, an M x 1 vector of modulation symbols.

X

q
S F H +>@¢>—> +> S
M N P M

Figure 2.1: MIMO communication system.

The symbols are assumed to be zero mean and uncorrelated; hence the auto-

2

correlation matrix A, = E[ss'] is a diagonal matrix with [A,]x, = o2, , where the

notation X' denotes the conjugate transpose of X. The total transmit power P



is
M—1

P = E{x'x} = Te(FAFT) = Y " [F'F02,,
k=0
where x is the transmitter output. The output of the receiver is given by

s = GHFs + Gq,

where e = (Gq is the error vector. Defined the error vector as

The mean-squared error (MSE) matrix is given by
E = Elee'],

and the error variance of the k-th subchannel is o¢ ‘= [E]g.

2.2 Z7ZF and MMSE Receivers

(2.1)

(2.2)

(2.4)

In this section, we will introduce the ZF and MMSE receivers for a given trans-

mitter.

ZF Receiver. The zero-forcing condition is'given by

GHF =1,,.

(2.5)

To achieve zero-forcing, the rank of F, H, G must be larger than or equal to M.

In Lemma 2.1, we will show that without loss of generality we can choose G as

the pseudo inverse of HF'.

Lemma 2.1 [t is no loss of generality to choose G as the pseudo inverse of HF.

That s,

G = (FTH'HF) 'FTH".

10
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In this case, the MSE matriz becomes

E = NyGG' = Ny(FTH'HF) . (2.7)

Proof: Suppose (G, F) is a transceiver pair that satisfies the zero-forcing condi-
tion in (2.5). Let G be the pseudo inverse of HF, i.c.,
G = (FTH'HF)'FiHT. (2.8)

Then we have G'HF = I,;. Define A = G — G'. Since (G,F) and (G',F) are
both zero-forcing, we have AHF = 0. It follows that AG't = 0. When we use

G, the noise variance at k-th subchannel is given by
No[GG i = No[(G + ANGC 4 D) i > No[G G T, (2.9)

where we have used AG'T = 0.and [AAT > 0. Therefore, we will have smaller

subchannel noise variances when-we replace G-with- G’ Using (2.6), we have the

MSE matrix as in (2.7). ANN
For the ZF case, the receiver.in (2.6) and the MSE matrix in (2.7) depend on

the channel matrix H, the transmitter. F, and-neise variance Nj.

MMSE Receiver. For the MMSE case, the receiver is obtained by minimizing

the mean square error [27], i.e.,
G = arg m&n Ele'e]. (2.10)

Let y be the signal received at the receiver, i.e., y = HFs + q. Using the orthog-
onality principle [44], we can find G by solving

Eley'] = 0. (2.11)
Then the MMSE receiver is given by
G = E[sy'E[yy'] (2.12)

= A FTHIHFAFH' + NIp| ™ (2.13)

11



Substituting (2.13) into (2.4), the MSE matrix becomes
E=A, - AFH[HFAFH + NIy "HFA,. (2.14)

For the MMSE case, the receiver in (2.13) and the MSE matrix in (2.14) depend
on the channel matrix H, the transmitter F, noise variance Ny, and the signal
autocorrelation matrix A,. If 62 = 0 for some k, using (2.14) we have o7, = 0.

Reduced system of the MMSE and ZF transceiver. For both the ZF and

2

MMSE transceivers, the signal power o7 assigned to the i-th subchannel may be
equal to zero and thus s; = 0. In this case the autocorrelation matrix Ay is not
invertible. Suppose M, subchannels are assigned nonzero power. Let s, be the
M, x 1 vector obtained by deleting the entries of s that are assigned with zero
power. Let F, be the N x M, matrix obtained by deleting the columns of F that
correspond to the subchannels assigned with zero power. Then the transmitter

output x is
x=Fs=F,s,. (2.15)

When we consider the transmitter, ¥, with input s,, the transmitter output is
the same as the original system. Hence we can consider only the subchannels
assigned with nonzero power. Let A, be the M, x M, diagonal matrix obtained
by deleting the columns and rows of A, with zero power. Since A, is invertible,

the reduced M, x M, MSE matrix becomes

— Ity —17-1 P
E, — { [N, 'FIH'HF, + A ']7", for the MMSE receiver; (2.16)

No(FIHHF, )1, for the ZF receiver.

2.3 Symbol Error Rate

For the QAM modulation, suppose the power allocation A, transmitter F, and

the number of bits loaded on k-th subchannel b, are given. Then the symbol

12



error rate ¢ of the k-th subchannel can be approximated by [45]

1 33
ek~4<1—W)Q< ﬁ) (2.17)

where

2 /2 .
G, = { o, /02 for the ZF receive; (2.18)

o2 Joi —1, for the MMSE receiver.

The function Q(z) is the area under a Gaussian tail, i.e., Q(z) = (1/v27) [ e~ /?du.

2.4 Bit Allocation

Suppose the power allocation A, and the transmitter F are given. Then [ in
(2.18) can be determined. For the QAM modulation, equation (2.17) relates the
error rate to ;. It can be used to obtaimthe number of bits that can be loaded
on the k-th subchannel for a given-g; and target symbol error rate ¢, [38]. By
rearranging the terms in (2.17), we get

B =log, (1 + @) (2.19)
Iy

where I'y = $[Q 7" (ex/4)]*. The total number of bits that can be transmitted in

one block is

-1 M-1 ﬁ
k
B=> b= log, (1 + F_k) (2.20)

2.5 Summary

In this section, we gave an overview of a generic MIMO communication system.
We have introduced the ZF and MMSE receivers when the transmitter and power
allocation, and channel are given. We also introduced the symbol error rate and

bit allocation when the QAM modulation is used.

13



Chapter 3

Rate-Maximizing Zero-Forcing
Transceivers with Bit Allocation

In this chapter, we will jointly design the transceiver and bit allocation for max-
imizing bit rate for the ZF transeeiver.-Using the high bit rate assumption, we
can simplify the optimization.problem.- The solutions.are obtained in two steps.
Firstly, we design the optimal bit and power-allocation for a given transceiver
and a given power constraint. Secondly, we design the-optimal transceiver that
maximizes the bit rate based on the optimal bit and power allocation. In the
second step, the optimal transceiver.can be easily found by the Hadamard in-
equality and the Poincaré separation theorem. The optimal transceiver and bit

allocation can be obtained in a closed form.

3.1 Problem Formulation

Suppose the target error rate of all the subchannels are equal to €. Using the high

bit rate assumption, i.e., 2% > 1, the bit allocation by, in (2.19) is approximated

by ,
br = log, ( T ) (3.1)

2
o; I

We will see in section 3.2 that such an assumption facilitates the derivation of

the optimal transceiver. Using the high bit rate assumption, the problem of

14



maximizing bit rate subject to a zero-forcing constraint and a total transmit

power constraint P, can be formulated as

2

maximize B = Y1 "log, (fg—:r)v o2 = No|GGT],

G, F, {02}
Tr(FAFT) < Py
subject to { GHF =1,
afk >0,k=0,1,---, M —1.

k

(3.2)

In section 3.2, we derive the optimal bit allocation and transmitter for the rate

maximization problem.

3.2 Optimal Zero-Forcing Transceiver

First, we will find the power allocation that maximizes the bit rate for a given

zero-forcing transceiver. To this end, we use the Karush-Kuhn-Tucker (KKT)

condition [77]. Let afz be a local maximum for the. optimization problem in

(4.6). Then there exists constants a and py, for k= 0,1, .-, M — 1 such that:

1. a <0.

2. up <0, for k=0,1,---, M~ 1.

2 M-1
3 ai< o' log (—r) +a(Te(FAFT) =Po)+ ¥ pu(—02)

k=0

4. a(Tr(FAFT) — Py) = 0.

2 —452
o‘sk—crsli‘

5. ,uk(—azk):() :O,fOTk:O,l,---,M—l,
02 —=g2*
Sk Sk

=0.

2 42
O'Sk—O'S]:

)

By solving the above conditions, the optimal power allocation is given by

Py
O'2 =

o M[FTF)g

15
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From (3.3), we can see that the power allocation depends only on the transmitter

for the given Py and M. Using (3.3), the bit rate is given by

B = Mz_:llogQ (MF Ff]; - ) (3.4)
— [FTF]0?,
M-1
P
=1 . 3.5
082 ( g} MF[FTF]kkagk) (3:5)

Next, we will design the optimal zero-forcing transceiver that maximizes the bit
rate in (3.5). Suppose the P x N channel matrix H has rank K. Let the singular

value decomposition of H be

H:U[’g g]vt (3.6)

where the K x K diagonal matrix A contains the nonzero singular values of H.
The P x P matrix U and the N XN matrix V are unitary. We assume that
the elements of A are in noninereasing order and /& > M so that solutions of

zero-forcing transceivers exist.

Lemma 3.1 Without loss of generality, we can_express F to be of the following

form:

sz{ﬂ, (3.7)

for appropriate K x M matriz A of rank M.
Proof: Suppose (G, F) is a transceiver pair that satisfies the zero-forcing condi-

tion. As V is unitary, F can always be represented as

F:V{il}, (3.8)

where A is a K x M matrix, A; is an (N — K) x M matrix, and the notation 7'

. /
denotes the transpose. Define a new transceiver F as

F':v[ﬂ. (3.9)

16



Then we have

GHF = GHF. (3.10)

Therefore, when we replace the transmitter by F', the new system still satisfies
the zero-forcing condition GHF = I,,. As the receiver is not changed, the new
system has the same subchannel noise variances and hence the same bit rate
performance. Now, let us compare the transmit power of F and F for the same

A,. The transmit power when we use F is
Tr(FAFT) = Tr(AAAT) + Tr(AAAD). (3.11)

Note that the transmit power with F' is Tr(F' AJF'T) = Tr(AAAT) < Tr(FALFT).
This means a transmitter of the form in (3.7) is no loss of generality. JAVAVAN

Using Lemma 3.1 and Lemma, 2.1. the receiver G is given by
G =(ATAZA) [ ATA 0 ]UI, (3.12)

where A is the matrix given-in (3.7). In this case, the noise variance at the k-th

subchannel becomes

02 = No[GGHpp.= No[(ATAZA) . (3.13)

€k

Note that the transmitter and receiver in (3.7) and (3.12) have the same form as
those in [28] and [14]. The transceivers in [28] and [14] are designed for minimizing
the transmit power for a given bit allocation, while we jointly design the optimal
transceiver and bit allocation for maximizing the transmission rate. Lemma 3.1
lead us to conclude that the matrix A in (3.7) is the only part of the transceiver
left to be designed. Using the expression of F in Lemma 3.1 and the expression

of 07 in (3.13), the bit rate in (3.5) becomes

P 1
B = log, [(MJ\OTOFW@} : (3.14)

where ® = [0 [ATA] ik [(ATA2A) 4. To maximize b, we need to find A that

minimizes ®.

17



Optimal structure of A. Applying the Hadamard inequality [41], we have

o = ﬂl[ATA]kk[(ATMA)‘l]kk (3.15)
> de_t[ATA]det[(ATA2A)‘1]. (3.16)

The equality holds if and only if the matrix A satisfies the following two con-
ditions: 1) ATA is diagonal, and 2) ATA?A is diagonal. The first condition
means that the columns of A are orthogonal, while the second means that the
columns of AA are orthogonal. As AA is orthogonal, we can express it as
AA = QD, for some K x M unitary matrix Q such that Q'Q = I,;, and
some M x M nonsingular diagonal matrix D. As A is nonsingular, we can write
A = A7'QD. Then the product of the two determinant quantities in (3.16)
becomes det[ATA]det[(ATA2A) 1 = det(QTA_?Q). Hence the bit rate in (3.14)
is simplified to

B=1 .
9% | (FAer) det(QTA2Q)

Note that the bit rate in (3.17) is independent of D. Without loss of generality,

(3.17)

we can choose D to be any M < M nonsingular‘diagonal matrix. For example,
we can choose D = I;. To achieve the maximal bit rate, we need to find Q that
minimizes det(QTAT2Q).

Optimal Q: We can find Q with the help of the Poincaré separation theorem
[41], which is presented below for convenience.

Poincaré separation theorem [41]: Let B be an n x n Hermitian matriz and C
be an n x r unitary matriz with C'C = I,. Then we have p;(B) < p;(C'BC) <
Pn_rsi(B), 1 =0,1,--- r—1, where the notation p;(X) denotes the i-th smallest
eigenvalue of X.

By the Poincaré separation theorem, we have [A72]; < p;(QTAT2Q), i =
0,1,---, M — 1, where we have used the property that the diagonal elements

of A are in nonincreasing order. Since the diagonal matrix A is nonsingular,

18



we know that A~? is positive definite and [A™2]; > 0 for i = 0,1,--- | K — 1.

Therefore, we have

M—1

det(Q'AT’Q) = [ m(Q'AT*Q) (3.18)
o

> || [A%)i = det(AD), (3.19)
=0

where A, is an M x M diagonal matrix whose diagonal elements consist of the
M largest singular values of H. The inequality in (3.19) becomes an equality

when we choose

_ | T
a-[1] 20
With this choice of Q and D = I,,, we have
A—l
A=A'QD = {OM } (3.21)

Using (3.7) and (3.12), the optimal transceiver is given by

-1
F:V[QM}, G={Ty 0JU'. (3.22)
The maximal bit rate in (3.17) is given by b= log2[(MI;30F)Mdet(AI2\/I)]. Substitut-
ing (3.22) into (3.3) and (3.13), we have
2 Forro 2
Usk = M[AM]kk and Uek = No. (323)

Using (2.19), the number of bits allocated to the k-th subchannel becomes

2 ke |- (3.24)

b = logy |1+ (WOOF)[AM]

We can see that more bits are assigned to subchannels that correspond to larger

singular values of the channel.
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Remarks:

1. Note that if we choose D = A,;, we have

F:V“’M], G=[A;} o]U. (3.25)

In this case, afk = Py/M and all subchannels are assigned the same power.
The bit allocation and bit rate are the same as the case when we choose
D = I);. This is because the signal to noise ratio o2 /o7, is not affected by
D. Therefore, bit assignment and hence bit rate performance will be the

same.

2. In (4.50), the bits are not integers in general. We can use truncation,
ie., by = |bi], where the motation |z| denotes the largest integer that
is less than or equal to 2. Zero-hits may be assigned to some subchannels
(l~)k = 0if Py[A2,]xr < MNgL) and the power allocated to these subchannels
is wasted. In this case, we will remove the worst subchannel and compute
bit and power allocationn the remaining subchannel. We continue like this
until all the power is used by subchannels with nonzero bits. The iterative
bit allocation algorithm is given below.

Integer bit allocation algorithm:
Let My be the number of subchannels that will be assigned nonzero bits.

Initially, set My = M.

(a) Compute &, = %ﬁyjﬁk for k=0,1,---,My— 1.

(b) If & > 1for k=0,1,---, My — 1, then go to step (c). Else, if & < 1
for some subchannels, set My = My — 1 and go to step (a).

(c) Compute the bit allocation by by = [logy(1+ &) for 0 < k < M,.
For My < k < M, we set b, = 0.

20



3.3 Simulations

In the simulation, we evaluate the performance of the proposed method. The
number of subchannels M is 4. The channel used is a 4 x 4 MIMO channel
(P =N =4). The elements of H are complex Gaussian random variables whose
real and imaginary parts are independent with zero mean and variance 1/2. The
noise vector q is assumed to be complex Gaussian with E[qq'] = I,. QAM
modulation is used for the input symbols. Optimal zero-forcing transceiver in
(3.22) is used for the proposed method. Although the high bit rate assumption
(b, > 1) is used in the derivation of the optimal transceivers, the assumption is
not used in the computation of transmission bit rate in the simulations. We will
use the integer bit allocation in remark 2instead.

Fig. 3.1 shows the transmission rates for different transmit power to noise ratio
(Py/Np). The symbol error rates are-1072 for all the subchannels. The transmis-
sion rates are averaged over 10° random channel realizations. For comparison, we
have also shown the results of three zero-forcing systems: the maximum signal to
noise ratio (MSNR) transceiver in [8]; the unit noise variance (UNV) transceiver
in [14], and the SVD-waterfilling solution-in {3], ‘and also the results of two op-
timal transceivers in [13] that are designed using a minimum mean square error
(MMSE) criterion and a maximum mutual information (MMI) criterion. Both of
the MMSE [13] and MMI [13] systems use MMSE reception. In the UNV [14] and
MSNR (8] systems, as all the subchannels have the same signal to noise ratios, the
same bits are assigned for all subchannels. For the MMSE and MMI systems, we
use the bit loading method mentioned in equation (46) of [13]. Fig. 3.1 shows that
the proposed method can achieve a bit rate considerably higher than MMSE [13],
UNV [14], and MSNR [8], and slightly better than MMI [13] and SVD-waterfilling
[3]. We should note that, although the proposed system is zero-forcing, it is still
better than the two MMSE systems in [13], in which the noise statistics is also
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taken into consideration. In Fig. 3.2, we plot the bit error rates averaged over
10% random channel realizations when the total number of bits per block is fixed
to eight for the same six systems. For the proposed method, we compute the
bit allocation that is obtained when Py/Ny = 12 dB (the corresponding bits per
block is eight in Fig. 3.1) and the same bit allocation is used in generating the
plot in Fig. 3.2. Similarly, we allocate bits for the other five system such that the
number of total bits is eight. In Fig. 3.2, we can see that the proposed method
has the smallest bit error rate. The bit error rate of the proposed zero-forcing

system is even smaller than the MMI [13], which use a MMSE receiver.

| ——k— proposed method
8 —O— SVD-waterfilling [3]
—<— MMI[12]
—b— MMSE [12]
o 6 —HB— UNV[13]
8 —<&— MSNR [7]
Qo
g
2 4
= n
24
&
)
ot & & 2% *
0 2 4 6 8 10 12
PN, (dB)

Figure 3.1: Transmission bit rates for a fixed error rate.

3.4 Summary

In this chapter, we have designed the transceiver over an MIMO channel for
maximizing transmission rate. The bit allocation and transceiver were jointly
optimized subject to a total power constraint for a fixed error rate. Using a high
bit rate assumption, we showed that we can simultaneously obtain the optimal

bit allocation and transceiver easily. We have demonstrated through simulations
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Bit error rate

i —<&— MSNR [7]
10 '} —8— UNV[13]
—b— MMSE [12]
—<4— MMI[12]
—O— SVD-waterfilling [3]
—¥—— proposed method

10 ' ;
0 5 10 15 20 25
P,/N, (dB)

Figure 3.2: Bit error rate performance.

that the proposed method can indeed achieve a higher transmission rate although

the high bit rate assumption.is not used in the computation of bit allocation.
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Chapter 4

Optimal MMSE Transceivers
with Bit Allocation to Maximize
Bit Rate

In chapter 3, we have designed the ZF transceiver for maximizing bit rate using
the high bit rate assumption.«In this chapter, we will design the rate-maximizing
transceiver for the MMSE receiver. In this design, we do not use the high bit
rate assumption as in chapter 3. .We will find the optimal solution using the
majorization theory. We will show the optimal MMSE receiver is in fact zero-
forcing. Based on the optimal solution, we-can-also develop an algorithm to find

the optimal integer bit allocation.

4.1 Preliminaries

In this chapter, we will use the majorization theorem to solve the optimization

problem. Some related notation and results from [42] are given in this section.

Definition 4.1 [42] Let x, y be n x 1 vectors, and the elements of x and'y be

in nonincreasing order. We say X is majorized by 'y (ory majorizes X) if

Zf:olxl
le_o Xy

and it is denoted by x <y.

SE oy, 0<k<n-—1
n—1

=0 ylv

A

(4.1)
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Definition 4.2 [42] A real valued function ¢ defined on an n-dimensional space

Q is said to be Schur-convex on € if

o(x) < o(y),

whenever x <y, for all x,y € .

(4.2)

Proposition 4.1 [42] Let X be an N x N Hermitian matriz with diagonal ele-

ments denoted by the vector d and eigenvalues denoted by the vector X. Then we

have

d=< A

Proposition 4.2 [42] Schur-convexlinear combination. Let

P-1
f($05xla - ,I'P—l) = Za'lg(xl)>
=0

where xg < 17 < - < xp_qand assume the following conditions:

1. ap1 Zap o922 a Za920.

dg(z)
2. =2

< 0 (g(z) monotone decreasing).

2

Y

9(z)
dx?

3.

>0 (g(z) convex).

Then f(xg,x1, - ,xp_1) i Schur-convex on {xg,x1, - ,Tp_1}.

(4.3)

(4.4)

Proposition 4.3 [42] Let a;, b;, i = 1,--- ,n, be two sets of numbers. Let the

nonincreasing arrangement of a; and b; be a; and b; respectively, i.e., a3 > ay >

> an andlglzlggz---zi)n. Then we have

n n
E a;b; > E ibp—it1.
i—1 i—1
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4.2 Problem Formulation

In this section, we will formulate the problem of designing the optimal transceiver
for maximizing bit rate. Assume the symbol error rates (SER) are the same for all
the subchannels. The problem of maximizing bit rate subject to a total transmit

power constraint P can be formulated as

. M- o _
maximize b=7> 1o log, (1 + (a2k 1) /F) (4.6)

IR €

subject to Tr(FAJFT) < Py.

The following Lemma shows that without loss of generality we can assume the

diagonal elements of A is either 0 or 1.

Lemma 4.1 For the bit rate mazimization problem in (4.6), there is no loss of
generality to assume that o2 € {01}
Proof: Suppose the system (F, A;) is optimal for'the bit rate maximization
problem in (4.6). In general,” A, is not invertible. If a?k = 0 for some k, using
(2.14) we have ng = 0. Let M, be the number of nonzero elements in A,. From
section 2.2, we can consider only the subchannels assigned with nonzero power.
Let the reduced transmitter be F, and the reduced power allocation be A,., where
A, is invertible. Now, consider a new MMSE ‘system (F, A,) which is given by
A, =1 M,, and

F=F,AY2 (4.7)

Then the transmit power when we use F and A, is given by
Tr(FAF') = Tr(F,A,Fl). (4.8)

Clearly, the transmit power of the new system is the same as the original system.
Now let’s compare the bit rate of the original system with the new system. For
the new system, the MSE matrix is E = A;l/zErAflﬂ, and hence the k-th

subchannel signal to noise ratio is

~2 2

O -1 _ % (4.9)
02 o2o72 g2’ '
ek er" sk ek
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which is the same as the original system. As the bit loading formulation in (2.20)
depends only the subchannel signal to noise ratios, we can conclude that the bit
rate of the new system is the same as the original system. Therefore, without
loss of generality we can assume o2, € {0,1}. AAN

In the next section, we will assume Uzk € {0,1} and find the optimal MMSE

transceiver that maximize the transmission rate in (4.6).

4.3 Optimal Transceiver Design

Suppose the P x N channel matrix H has rank K. Let the singular value decom-
position of H be

_ A O |
H_U{O O]V, (4.10)

where the K x K diagonal matrix A contains.the nonzero singular values of H
in nonincreasing order, i.e., A\g > Ay =>"::+> Ag.q. The P x P matrix U and the

N x N matrix V are unitary.

Lemma 4.2 Without loss of generality, the transmitter can be expressed as

F:V[OA], (4.11)

for appropriate K x M matriz A. For the choice of F in (4.11), the reduced MSE
matriz E, in (2.16) is given by

E, = [N;'ATA2A, + 1,7, (4.12)

where A, is obtained by removing the columns of A that correspond to the sub-
channels assigned with zero power.

Proof: As V is unitary, F' can always be represented as

sz[il], (4.13)
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where A is a K x M matrix and A, is an (N — K) x M matrix. Define a new
transmitter F' as

F :V[‘H. (4.14)

Then we have HF = HF' Using (2.14), we can see that the new MSE matrix E’
is equal to E, i.e., E'=E. Therefore, the new system has the same subchannel
error variances and hence the same bit rate performance. Now, let us compare

the transmit power. The transmit power when we use F is

Tr(FAFT) = Tr(AAAT) + Tr(AAAT). (4.15)
Note that the transmit power with F' is

Tr(F AF'T) = Tr(AAAD < Tr(FAFY). (4.16)

This means a transmitter of ‘the form in (4:11) is no loss of generality. We can
verify that when the transmitter is as in (4:11), the reduced MSE matrix is as
given in (4.2).

AAN
Note that the transmitter in (4.11)‘has the same form as in (3.7) for the ZF case.
Using Lemma 4.2, the problem is reduced to the design of the matrix A only.
The following Lemma shows that the optimization of A can be further simplified

to that of a unitary matrix and a diagonal matrix.

Lemma 4.3 When the the transmission rate in (4.6) is mazximized, the MSE

matrix E is diagonal. Then the matriz A in lemma 4.2 is of the form
A =A'QD, (4.17)

for some K x M unitary matriz Q such that Q'Q = I, and some M x M
diagonal matriz D.

Proof: Let g(z) = logy(1 + (7! —1)/T) and = > 0. Then we have % < 0 and

x —
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% > 0 for x > 0. Suppose (Ag, F) is optimal for (4.6). Let M, denote the
number of nonzero elements in the optimal power allocation. Let (F,, A,) be
the reduced system obtained for the optimal solution. Without loss of general-
ity, we can assume {U;k} is in nondecreasing order!. Using Proposition 2, the

transmission rate

b{o? ) - MZ og, 1+ (O_i SIBE Jgg(azr,k) (4.18)

is a schur-convex function on {agr’k}. Suppose E, is not diagonal. Let the eigen-
value decomposition of E, be E, = TA.T', where T is unitary and the diagonal
elements of A, denoted by A, are in nondecreasing order. Now consider a new
transmitter F = F,T. The new transmission power Tr(FF') is the same as the
case when we use F,.. Using (2.16), the MSE matrix of the new system is given

by

E = [N, 'F'HHF + 1! (4.19)
=[N, 'TIF,/HHF, T + 1] (4.20)
= T'E, T (4.21)
= A, (4.22)

The new subchannel noise will be decorrelated when we use F and the subchannel
noise variances are A.g,---,Aem—1. By Proposition 1, we have that {A.;} >

{02 }. Then by Definition 2, we have

b({Aer}) > b({07, })- (4.23)

That is, a higher bit rate can be achieved when the subchannel noise are decor-

related. This is a contradiction, so E, must be diagonal, which implies E is

!Assume F, is optimal for the problem in (4.6) and 07 | = [E;|x is not in nondecreasing
order. Let the new transmitter be F = F,P, where P is a permutation matrix. Then the new
MSE matrix E is E = PTE,P. Let P be chosen such that 2 = [E]x is in nondecreasing
order. We can verify that the transmit power and bit rate of new system are the same as the
case when we use F,. Therefore, it is no loss of generality to assume ¢?  in nondecreasing

€rk
order.
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diagonal. Using the expression of E, in (4.12), we know that ATA%A, is diago-
nal. Since AIAQAT is diagonal, the columns of AA, are orthogonal. Let M, be

the number of nonzero elements in A;. We can express AA, as
AA, = QyDo, (4.24)

for some K x M, unitary matrix Qg such that Qng = I, and some nonsingular

M, x M, diagonal matrix Dy. Rearranging (4.24), we can write A, as
A, = A'QuD,. (4.25)

Note that A, is obtained by removing some columns of A. Since the columns
removed from A do not affect the transmit power and bit rate, without loss
of generality we can assume these columns are zero vectors. Hence A can be

expressed as

A =A"'QD, (4.26)

where Q is a K x M unitary matrix such that Q, can be obtained by removing
the columns of Q and D is an M. x M diagonal matrix whose diagonal elements
consists of the diagonal elements ‘of Dg and zero. ANAN
Using the expression of the matrix A in (4.17), the transmit power can be written

as
Tr(FAFT) = Tr(AAAT)

= Tr(D'QTA"2QDA,) (4.27)
= Yl o2 |diP[QTAT2Q]s,
where dj, denotes the k-th diagonal element of D. In this case, the k-th subchannel

error variance is

— 1 ifo? =1
2 _ ) NP DT T 4.28
T { 0, if 02 =0, (4.28)
which depends on d; only but not Q. The bit allocation becomes
|di|?
b =1 1 4.2
= tog, (it + (4.29)
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Hence the problem in (4.6) becomes

M—1 d
max1mlzze b= Zk o log, |N];|F +1
Q, |dg|

. > i 1P QTAT? Qi < P,
subject to {|dk|220 for k=0,1,---,M — 1.
(4.30)

In (4.30), di and the unitary matrix Q are the only free parameters left to be
determined. As the subchannel noise variances do not depend on the unitary
matrix Q, changing Q affects only the transmission power but not the bit rate.

The following lemma shows us how to find the optimal Q.

Lemma 4.4 One optimal choice of Q for the problem in (4.30) is

Q= { I(f‘f ] . (4.31)
In this case, the transmit power can-be written as
M-1 M—1
Y 1 PIQIA” QL= IdiP[A Tk (4.32)
k=0 k=0

where Ay is an M x M diagonal matriz whose diagonal elements consists of the
M largest singular value of H.

Proof: We first establish a lower bound on the expression of the transmit power
in (4.27) for any given Q and dj. That is,

M-

S

|4 P [QTAT* Q)i Idk\ (A3 Tk (4.33)

k=0 0

e
Il

where A, is an M x M diagonal matrix whose diagonal elements consists of the
M largest singular value of H. The lower bound can be achieved by choosing Q
as in (4.31). To prove (4.33), for convenience, we extend the M-point sequence

dy to a K-point sequence dy, by zero padding, i.e.,

(4.34)

g 0Sk<M—1
FTl10, M<k<K-1.
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Without loss of generality, we can assume that |dy| is in nonincreasing order?,
and thus so is |d;|. Let Q; be a K x (K — M) matrix such that the K x K matrix
Qo =] Q Q] is unitary. Then the transmit power in (4.27) can be rewritten

as

K-1
Ak P[QTATQlik = > |di [QIAQolir = D |di[*cu, (4.35)
k=0 0

M—

=

k=0

e
Il

where oy, = [QEA‘2QO]M. Let {ax} be the nondecreasing arrangement of {ay}.

Then by Proposition 4.3 we have

K-1 K-1
|dk|20ék 2 | k|2ak (436)
k=0 k=0
Now, let us define a function ¢ as
KEv o
o({aa})="— > ldul*Ga. (4.37)
k=0

Note that the function ¢({dx}) is schur-convex on {@y}. To see this, let g(x) =

—x, v > 0. Because % < 0 and % > 0 for x> 0, by Proposition 4.2 we

know that ¢({ar}) = S iy ldx|*g(@x) is schir=convex on {a;}. Let 7, be the
k-th eigenvalues of Q(T)A_2Q0 in nondecreasing-otder, i.e., 7, = [A7?|y. By

Proposition 4.1, we know {7} > {a;}", which implies
o({ar}) < o({m}) (4.38)
as ¢ is schur-convex. This means
K-1 K-1
PRARTE PR A (4.39)
k=0 k=0

Using (4.36), (4.39), and the facts that the last K — M elements of {d} are zeros
and v, = [A™?]gx, we have the inequality in (4.33). Now, we will use (4.33) to

2For the case that {|dx|} is not in nonincreasing order, let D' = PDPT and Q' = QP7,
where P is the permutation matrix such that |d;€| is in nonincreasing order. We can verify the
new transmission rate and the new transmit power for D’ and Ql are the same as the case when
we use D and Q. Therefore, it is no loss of generality to assume that {|di|} is in nonincreasing
order
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show that one optimal choice of Q is as given in (4.31). Suppose Q* and dj are
optimal. Then using (4.33) we have

M-—1 M—
> 1P QTATQ Z (4.40)
k=0 k=0

Suppose St A PIQFTAT2Q e > ooty |di 2 [A3 ke Consider the new Q
and dj, given by

M—l * |2 *T A —2()* 1/2
. - d A
Q= [16” } , and dj, = ( | ’“‘ Q7A~Q ]’“’f) d. (4.41)
Z o |di2[AL
The transmit power of the new system is
M-1 M-1
Z AP [QTAT QL = D . i P [QTATQ i, (4.42)
k=0

which is the same as the optimal solution. Since dy > dy, the bit rate of the
new system is is larger than. that of the optimal system. This contradicts the
assumption that Q* and dj -are optimal for the problem in (4.30). Hence for the
optimal solution Q* and dj,the equality in (4.40) must hold and one optimal
choice of Q* is as given in (4.31). ANN

Using the expression of transmit power in (4.32), the problem in (4.30) can

be simplified as

maximize
{‘dk|2} Zéwol 10g2 ('dk| +1>
(4.43)
. > im0 |del’[A3f ke < Po,
subject to {|dk\220 k=0,1,---, M —1.

To solve (4.43), only |dy|? remain to be designed. We can use the Karush-Kuhn-
Tucker (KKT) condition [77]. Let |d}|* be a local maximum. Then there exists
constants « and [, for k= 0,1,--- , M — 1 such that:

1. a <0.
2. Op, <0, for k=0,1,---, M — 1.
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M-1

_ 2 _ _
3 —( Lo log, (1 + %)m@iﬁi& di (A7 S Po)+ X m(—\dkm)
= 0.

4. a0l Ak P AG e — Po) = 0.

|di|>=|dj|?

5. Br(—|di|?) =0 =0, fork=0,1,---,M —1.

|di,[2=|dy|?

By solving condition 2, we have

1
(|d5]? + NoI') log, 2

+ A ke — Be = 0. (4.44)

Suppose o = 0. Since |d}|?, [A}7]re, and log, 2 are all positive, using (4.44) we

have

]
_ 0. 4.45
O (2= NoD) loge2/ (4.45)

This contradicts condition 2.“Hence we have e < 0:" As o # 0, condition 3 is

reduced to
M—

—

| PN ke = Po. (4.46)
k=0
If 3, < 0, then using condition 5 we have |d.|* =0 If 3, = 0, by (4.44) we have

\d;|? = ozlogeg[lA;f]kk — NoT, (4.47)
Thus the optimal |d}|? is given by
—1 +
where ()%t = max(x,0), and the constant « is chosen to satisfy
M-1 _1 RS
kZ:O (ozlog62 —~ NOF[AM]kk) =D (4.49)

The solution in (4.44) is the so-called “water-filling” solution. The number of

bits allocated to the k-th subchannel is given by

b, =1 % 1 4.50
k_OgQ NOF+ . ( )
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From (4.48), we see that for subchannels that correspond to larger singular values
of the channel, {|d;|?} is larger and more bits are assigned. Once the optimal
{|d;]?} is obtained by (4.48), the bit allocation in (4.50) can be determined. Using
the choice of Q in (4.31), the matrix A becomes

A= { Ag41 }D. (4.51)

Substituting (4.51) into (4.13), the optimal transmitter is given by

F Vl 6‘541 }D, (4.52)

Using the optimal transmitter in (4.52), the optimal receiver in (2.13) becomes
G =D[ L/ 0 juUf, (4.53)

where D is a diagonal matrix'whose diagonal elements is

g d:

Djp = — =22 4.54
[Pl P IPAE (4:54)
In the optimal solution, only dj depends on the transmit power F, and the given
error rate. The unitary matrices V, U-and.-the diagonal matrix Aj; depend only

on the channel matrix H. When the optimal transceiver is applied, the output

of the receiver is given by

§ = GHFs + Gq (4.55)

= Ts +n, (4.56)

where n = Gq and T = GHF. The autocorrelation of n is NoDD', which is
a diagonal matrix. The overall transfer function T is diagonal and the diagonal
element is

|di|?

S ] N 4.57
1+ Nyt |dy|? (4.57)

[T x
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Let T, be the M, x M, diagonal matrix obtained by removing the rows and
columns of T that correspond to the zero diagonal elements. Then T, is the

overall transfer function of the reduced system, i.e.,
s, =T,s, +G,q. (4.58)

Since T, is diagonal, for the same transmitter F, and signal autocorrelation
matrix A,, we can a ZF receiver that achieve the same bit rate. Consider a ZF
receiver given by G, .; = T 1G,. We have G, . fo‘ = Ij;.. The unbiased signal
to noise ratio of the k-th subchannel for the new system is

1 1

T = = (4.59)
NO [Grvszr,zf]kk NO [Tr_lGT’GT’J[Tr ]kk
= l[Tr]kk|2 (4.60)
No[G Gl

which is the same as the optimal selution. Thus the bit rate of the ZF system
is the same as the optimalssolution. This implies the solution of the MMSE
transceiver is the same as the ZF transceiver.

In general, the bit allocation obtained in (4.50) is not integer. To obtain the
solution with integer bit allocation,-we can use the results of [34]. The results
in [34] shows the greedy algorithm is optimal when a transceiver with diagonal
structure is given. The algorithm is shown below:

Greedy algorithm for integer bit allocation:
Suppose the power constraint Py is given. Initially, set by = by = --- =by;_1 = 0.

Define the power increase of k-th subchannel as Ap, = Nol[A 7] re (251 — 2%).
1. Compute Ap,, for k=0,1,--- , M — 1.
2. Find the index ¢ such that Ap, is minimal. Set b; = b; + 1.

3. Computed the transmit power P = ZkM:BI NoI'(2% — 1)[A;/I2]kk If P < P,
go to step 1. If P = Py, the optimal bit allocation is {by,- - ,by—1}. If
P > P,, then the optimal bit allocation is {bg,- - ,b; — 1, ,byr—_1}.
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4.4 Simulations

In this section, we evaluate the performance of the proposed method. The number
of subchannels M is 4. The channel used is a 4 x 4 MIMO channel (P = N =
4). The elements of H are complex Gaussian random variables with zero mean
and unit variance. The noise vector q is assumed to be complex Gaussian with
Elqq'] = I;. QAM modulation is used for the input symbols. In the following
examples, we will use the optimal transceiver in (4.52) and (4.53). In (4.50), the
bits are not integers in general. For integer bit allocation, we will use the greedy
algorithm to find the optimal solution.

Example 1. Fig. 4.1 shows the transmission rates for different transmit power to
noise ratio (Py/Np). The symbol error.rates-are 1072 for all the subchannels. The
transmission rates are evaluated for 10° channel realizations. For comparison, we
have also shown the results of five more systems: thebit rate maximizing zero-
forcing transceiver in chapter 3, the zero-forcing transceiver in [18], the zero-
forcing maximum signal to noise ratio (MSNR) transceiver in [8], and the zero-
forcing unit noise variance (UNV) transceiver in [14]; and also the results of the
optimal transceivers in [13] that using a maximum mutual information (MMI)
criterion. In the UNV [14] and MSNR [8] systems, as all the subchannels have
the same signal to noise ratios, the same bits are assigned for all subchannels.
For the MMI systems, we use the bit loading method mentioned in equation (46)
of [13]. For the system in [18], we use the bit allocation in (24) of [13] and then
truncate it to be integer. Fig. 4.1 shows that the proposed method can achieve
a higher bit rate. For example, when Fy/Ny = 12 dB, the number of bits that
can be transmitted is 9 per block for the proposed system, 8 for the system in
chapter 3, 7.8, 6, 3, and 2 respectively for MMI [13], [18], UNV [14] and MSNR
[8] systems. The proposed method can achieve a higher bit rate the other five

systems.
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—O— proposed method
—¥—— chapter 3

8¢ —<— MMmI[12]
—b—[16]

—H&— UNV [13]

- —<&— MSNR [7]

bits per block

PN, (dB)

Figure 4.1: Transmission bit rates for a fixed error rate.

To better illustrate the advantage of the propesed method, we show in Fig. 4.2
the bit allocation when the data blocks are sent over afixed channel for Py/Ny =

20 dB. The channel matrix H in this case is given by

—0.31 = 0.36¢ 0.28 — 0.43¢."=0.91 —0.73¢ ' ~0.05 + 0.64¢
—0.12+0.17¢ 0.53 —0.86¢" —1.65+4-0.942 ~ 0.03 — 0.212
—0.15+0.17¢ 1.2640.22: 0.64 —0.302." 1.57+0.737
0.38 +0.05¢  0.86 — 0.95¢ ~=1.30-—=0.10: —0.05 — 0.24:

H= (4.61)

In the proposed method, the bits are allocated according to the subchannel
signal to noise ratios, and 16 bits per block can be transmitted for this channel.
15 and 14 bits per block can be transmitted respectively for the transceiver in
chapter 3 and MMI [13]. For UNV [14] and MSNR |[8], all subchannels carry the
same number of bits. The number of bits that can be transmitted in each block
are eight and four respectively.

Example 2. In Fig. 4.3, we plot the bit error rates for a fixed transmission
rate. The total number of bits per block is fixed to eight for the same five systems
in example 1. For the proposed method, we compute the bit allocation that is
obtained when Fy/Ny = 11 dB (the corresponding bits per block is eight for the

proposed system in Fig. 4.1) and the same bit allocation is used in generating
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Figure 4.2: Bit allocation for the channel in (4.61) when P,/Ny = 20 dB.

the plot in Fig. 4.3. Similarly,»we allocate bits for the other five system as in
example 1 such that the number of total bits is eight. The bit error rates are
evaluated for 10° channel realizations. In Fig: 4.3, we can see that the proposed

method has the smallest bit.error rate.
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Figure 4.3: Bit error rate performance.

4.5 Summary

In this paper, we considered the problem of maximizing the bit rate over MIMO
channels. The transceiver ‘and bit allocation are jointly optimized without a
high bit rate assumption. The optimal transceiver is obtained in a simple closed
form. In the simulation, we have‘demenstrated-that more bits can be transmitted
when compared with earlier systems that use the same constellation size for all

subchannels or systems that have a high bit rate assumption on bit allocation.
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Chapter 5

On the Duality of Transceiver
Designs for MIMO Channels

In chapter 3 and chapter 4, we optimized the transceiver to maximize the trans-
mission rate. Another commonly: used-optimally criteria for MIMO transceiver
design is transmission power. JJn the literature, bit rate maximization and power
minimization problems are wviewed as different problems. The solution of these
two problems have been obtained independently when-the bit allocation is not
constrained to be integers. These two problems with integer bit allocation are
still open. In this chapter, we will-consider the connection between these two
problems. We will first consider the case without integer constraint. We will
show that if a transceiver is optimal for the power-minimizing problem, it is also
optimal for the rate maximizing problem, and vice versa. For the case when the
bit allocation is constrained to be non-negative integer, we will show the duality
continue to hold with a modification in the rate maximization problem. Using
the duality, we will develop an algorithm to find the optimal solutions of rate

maximization problem when an integer bit constraint is imposed.
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5.1 Power-minimizing and Rate-maximizing
Transceiver design

Power-minimizing and rate-maximizing problems with real bit allocation have
been considered in [14]-[22] and [23]-[24]. The aim of this section to establish
the connection between these two and show that they are dual problems. For a
given symbol error rate constraint € and target bit rate By, the power-minimizing

problem .47, with real bit allocation can be formulated as [14]-[22]
minimize P =SV Ft 2
e P=3% o [F'Fluog,

F7{U§k}7{bk} 5 1
B =0 b > By, (5.1)

(o) bject t
SUDIER RO o <, E=0,1,--- M —1,

where ¢ is the symbol error rate of:the k-th subchannel. Given a symbol error
rate € and power constraint P, the rate-maximizing problem .7, with real bit

allocation is [23]-[24]

maximize B =S Y1}
. F {02, },{bx} 20 %
rate . P = ZﬁBI[FTF]kkUE _<_ PO:
subject to {€k§€, * k=0,1,---,M—1.
(5.2)

In either problem, we need to design the triplet (F,{c?2 },{bc}), i.e., designing
the transmit matrix F, power allocation {o? }, and bit allocation {b} jointly to
maximizing bit rate or minimizing power. The following lemmas will be useful

for subsequent discussion.

Lemma 5.1 Given a channel matriz, consider a system with a fixed power al-
location {afk} and error rate constraint €. Suppose the transmit power of the
system is equal to oF, where F is some N x M matrix such that HF # 0 and «
1s a positive real number. Then the transmit power and the achievable bit rate of
the system are continuous and strictly increasing functions of a.

Proof: See Appendix A.
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Using Lemma 5.1 we know that for the same error rate, the power and bit rate
are both continuous and increasing functions of oe. This implies that if we increase
the transmit power by choosing o > 1, the bit rate will always be increased. Next
we will show that if we decrease o2 for some subchannel & and keep the other
symbol variances {afl}l?gk unchanged, the error variance of all subchannels will

be decreased.

Lemma 5.2 Consider the MIMO transceiver in Fig. 2.1 with a given transmitter

F, channel matriz H, and MMSE receive G. Suppose afk > 0 for some k. If we

2 2 2 2 2 ~
500 105 1o Oyt oo, 05, and vary only of, , then the error variances

keep o

2 - 2
o, are functions of o, and

el _—4 2 g
l _O-sk |[E]lk| ) fO’f’l—O,"' >M_1 (53)

Each error variance Ugl s am increasing and continuous function of agk. More-
over, o7, is a strictly increasing and concave function of o?, .
Proof: See Appendix B.

In the following lemma, we will show that inequalities in the power-minimizing

problem (5.1) and the rate-maximizing problem (5.2) become equalities when

optimal designs are used.

Lemma 5.3 If (F*, {07*}, {b;}) is optimal for the power-minimizing problem
o in (5.1), the transmission bit rate B is equal to the target bit rate By and
all the error rate €, are equal to €. Similarly, for the rate-mazximizing problem
Gyare 0 (5.2), the transmit power P of the optimal solution is equal to Py and
all the error rate €, are equal to €.
Proof: See Appendix C.

Using Lemma 5.1 and Lemma 5.3, we can show that, for the problem .27 ..

the maximal bit rate is a strictly increasing function of the power constraint.

That is, B*(P;) < B*(P,) whenever P; < P5, where B*(x) denotes the maximal
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bit rate for .47, when the power constraint is x. To see this, let P, < P. It
follows that B*(P;) < B*(P,). So we only need to show that B*(P;) # B*(Ps).
Suppose B*(P,) = B*(P,) for P, < P,. By Lemma 5.3, the transmit power of the
optimal solution that achieves B*(P;) is equal to P;. Using Lemma 5.1, we can
always find a new system that achieves bit rate B > B*(P,) using power P = P,

which contracts the definition of B*(P,). This completes the proof.

Remarks:

1. Lemma 5.3 shows that all the inequalities in constraints of 7., and .27
become equalities when the solutions are optimal. This means that when
the optimal transmitter F* and power allocation {o}?} are given for @,
or yq, the bit allocation‘can be obtained directly using €, = € in (2.19).
Therefore, we only need-to design F and {agk} directly but not bit allocation

in these two problems:

2. When the error rate is_constrained to-be equal to e for all subchannels, it
has been shown that equality in the power and bit rate constraints will hold
[22][24][27] using majorization theorem [42] and optimization theorem [77].
In Lemma 5.3 we consider error rate inequality constraint in addition to

power and bit rate inequality constraints.

Using Lemma 5.1 and Lemma 5.3, we establish the duality between .¢7,,, and
Gy ate in Theorem 5.1 and Theorem 5.2.

Theorem 5.1 Given a target transmission rate By and symbol error rate con-
straint €, suppose the transmitter F* and power allocation {a;f} form an optimal
solution for ., and the minimized power is P*. Now, given transmit power
constraint Py = P* and symbol error rate constraint ¢, the same F* and {07}’

also maximize the bit rate for the problem in ... Furthermore, the mazimized
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rate in this case is equal to By.

Proof: As F* and {U;f} are optimal for .o7,,,, the minimized transmit power is

M-1

Pt =Y [FTFuor. (5.4)

k=0

By Lemma 5.3, the total bit rate is equal to the target rate By and all the symbol
error rates €, are equal to e. Now, let us consider the problem in .o, with power
constraint Py = P* and error rate constraint e. Suppose F and {62 } are optimal
for ... By Lemma 5.3, the transmit power used in this case is equal to P*
and symbol error rates are equal to e. Since we already know F* and {a;f} can
achieve bit rate By with transmit power P*, the maximal bit rate B achieved in

Yyrqte must be larger than or equal to By, 1.e.,
B> Bo: (5.5)

If B = By, we get the desired result that F* and {a;f} are also optimal for o7, ,..
Suppose B > By, i.e., more than By bits can be transmitted when P* is given.
Consider a new transceiver with transmitter E“= aF, where 0 < a < 1, and
power allocation {&Ek} is unchanged. "By Lemma 5.1 we know the bit rate of
such a system is a strictly increasing function of a and is continuous on «a. So
we can always find o < 1 such that B' = By. Since o < 1, the required power is
smaller than P*. This is a contradiction to the assumption that P* is the minimal
transmit power when By is given in the power-minimizing problem. Therefore,
the maximal bit rate is By. Since (F*, {07?}) can achieve bit rate rate By with

power P*, it is an optimal solution for .o7, ... ANAN

Theorem 5.2 Given a transmit power constraint Py and symbol error rate con-
straint €, suppose the transmitter F* and power allocation {U;f} form an optimal
solution for the rate-maximizing problem ., and the maximized rate is B*.

Then the same F* and {07’} also minimize the transmit power for the problem
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oy When the target bit rate By is equal to B* and symbol error rate constraint

18 €. Furthermore, the minimized power in this case is equal to F.

Proof: As F* and {a;f} are optimal for the problem %%, by Lemma 5.3, the
transmit power used in this case is equal to the constraint P, and the error rate
is g =efor k=0,---,M — 1. Consider the problem .7,,, with target bit rate
By = B* and error rate constraint e. Suppose (F, {62 }) is an optimal solution
for 47,4, and the minimized power is P. By Lemma 5.3, the transmitted bit rate
is equal to the target B* and all the error rates are e. Also the minimal power P
in %7,,, must be smaller than or equal to F, since we already know F* and {U;f

can achieve bit rate B* with transmit power Py, i.e.,
P < P, (5.6)

If the minimized transmit pewer P is equal to Py, we get the desired result that
F* and {U;f} are also optimal for .7, Suppose P < Py, i.e., transmit power
smaller than F, can be achieved when target rate B is B*. Consider a new system
with transmitter F* = oF and power_allocation {67 }, where a = \/?/]5 > 1.
Then the transmit power of the new systeni is P° = P,. Using Lemma 5.1 we
know the bit rate of the new system will be larger than B* for the same error rate
constraint €. This is a contradiction to the assumption that B* is the maximal
bit rate for .27, when Py is given. Therefore, the minimal power P is equal to

Py and (F*, {0?}) is an optimal solution for 7,e,. ANN

Theorems 5.1 and 5.2 together show that if a transceiver is optimal in the
power-minimizing problem, it is also optimal in the rate-maximizing problem,
and vice versa. In the above discussion, the bits b, assigned to the subchannel
are not constrained to be integers. Such a duality also exists for the case when bit

allocation is constrained to be integer. However, there are some subtle differences
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as we will see in the next section.

5.2 Transceiver design with integer bit alloca-
tion

In this section, we consider the power-minimizing problem and rate-maximizing
problem with integer bit allocation. With the constraint of integer bit allocation,

the power-minimizing problem becomes

minimize P = S"MYFiR ag
F {02, },{bx} Zk—o[ ]kk .

(%ow,int) 2/[:?)1 bk > B07 (57)
subject to € < €, k=0,1,--- /M —1,
b, € ZT, k=0,1,--- ,M—1,

where Z7 denotes the set of nonnegative integers.” The rate-maximizing problem

with integer bit allocation is formulated as

. M—1
maximize B=Y ,_ by
F7{U§k}7{bk}

(fQ{rate,int) ]];J:Bl[FTF]kko-gk S P07
subject to e <€, k=0,1,--- , M —1,
b 2T, k=0,1,---, M —1.
(5.8)

The following lemma shows that for the power-minimizing problem with integer
bit constraint, the inequalities in the bit rate constraint and error rate constraint
become equalities when the solution is optimal. This is similar to the power
minimization problem without integer constraint. Such a property does not hold

for the rate maximization problem with integer constraint as we will see later.

Lemma 5.4 For the power-minimizing problem oy int i (5.7), the bit rate of
the optimal solution is equal to By and the symbol error rates €, = € for all k.
Proof: See Appendix D.

Lemma 5.4 leads to the following result that if a solution is optimal for .75y, int,

it is also optimal for 7.qc int-
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Theorem 5.3 Consider the power-minimizing problem 2oy, int With a target trans-
mission rate By and symbol error rate constraint e. Suppose (F*, {o:}, {b;})
is optimal for oy int, and in this case the minimized power is P*. Now for
the problem 7,4 ins with transmit power constraint Py = P* and error rate con-
straint €, the same (F*, {022}, {b;}) also maximizes the transmission rate and

the maximized rate is equal to By.

Proof: As (F*, {037}, {b}}) is optimal for the problem @y int. By Lemma 5.4,
the bit rate is B* = Zg/[:f]l by = By, and all the symbol error rates satisfy €; = e.
Now, let us consider the problem .4 i With power constraint /) = P* and
error rate constraint e. Suppose (F, {a2 }. {be}) is optimal for the problem

yateint a0d the maximal bit rate is

—

B= Y . (5.9)
k=0

All the corresponding error-rates ¢, satisfy €< e and the transmit power P
satisfies the power constraint; L.e., "P+< P* Since we already know the solution
of o int can achieve bit rate By with-power P*, the maximal bit rate B in
yqte,ine MUSt be larger than or equal to By, i.e., B > By. We will prove the
theorem by showing (i) the transmit power P is equal exactly to P*, and (ii) the
maximized rate B is in fact equal to By.

(i) P = P*: Suppose P < P*. This means F, {b,}, and 2 can achieve
a smaller transmit power and still satisfy all the constraints in .27, ine. This
contradicts the assumption that F*, {b}}, and U;f are optimal for @, ine. S0 We
have P = P*.

(i) B = By: If B = By, we get the desired result that (F*, o2, {b}}) is
optimal for o7 4e int. Suppose B > By. Similarly to the procedure in Lemma 5.4,

we can find another system that achieves bit rate B = B—1 > By, with transmit

power P' < P* and error rate e;g < e. This contradicts the assumption that (F*,
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{022}, {b}}) is optimal for &gy ini. Therefore, we conclude that the maximized
bit rate for the problem .47 4 int is By and the power used is P*. Therefore, the
solution (F*, {072}, {b;}) of Ppouins is also an optimal solution for the problem
Drate,int- AAA

In Section 5.1, we saw that the transmit power of the optimal solution for the
rate-maximizing problem is equal to the power constraint /4 when the bit loading
is not constrained to be integer. Such a property may not hold when there is
integer bit constraint as we will see later. When the symbol error rate constraint
e is fixed, the maximal rate for o7 4 in is a function of the power constraint F.
Similarly, for a fixed €, the minimal power of .7, in: is & function of target rate

By. For convenience, we use P ,(x) to denote the minimal transmit power for

int

*

*+(z) to denote as the maximal

pow int When the target bit rate z is given-and B
bit rate for o7 4 it When the power constraint is .

The function B} ,(x) and P’

*
wnt ]

(). Using theorem 3, we will see that B;;,(x)
is not continuous. It is a staircase-like function as shown in Fig. 5.1(a). This
means a nonzero increase in the power constraint does not necessarily implies a
nonzero increase in the maximized bit rate. Thisisdifferent from the case without
integer constraint in section 5.1. To explain this, consider the problem @7,y int

with two target bit rates By and By +1. Let P, = P;,(B;y) and P, = P, (B +1).

int

We can plot the minimal transmit power as a function of target bit rate as in

Fig. 5.1(b). By Theorem 5.3, we know B, ,(P;) = By and B}, ,(P,) = B;+1. Now

wnt int

suppose the power constraint P for @74 ins is such that P, < Py < P,. Then the

maximal bit rate B

1 (Po) for @.ate int is equal to By as we will see next. Since we

already know that the maximal bit rate is B; when the power constraint is P,

(Py) > By. Suppose B}, (FPy) > By. This contradicts the fact that

*
we have B; o

wnt

P, is the minimal power for 27, i, When the target bit rate is By + 1. Hence we

have B

wnt

P, < Py < P,, the maximal bit rate is B, ,(FPy) = B;. When the power constraint

int

(Py) = Bi. This implies that for any power constraint P that satisfies
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Py = P,, the maximal bit rate is increased to By + 1. Therefore, B} ,(z) is the
staircase like function in Fig. 5.1(a).

From the plot of B, (%) in Fig. 5.1(a) we can see that for .7.q¢e ;1 there can
be many solutions that achieve the same maximal bit rate, but with transmit
power smaller than Fy. Hence for the problem .47 4¢ int, the results in Lemma 5.3
is not true any more and the results of the real bit allocation case do not carry
over to the the integer bit allocation case. To establish the duality with @, int,
we will consider the solution that achieve the maximal rate B with the smallest

transmit power among all possible solutions.

Maximal bit rate B’ ,(F))

(3

B +2 el . o
Bi+1 L —
By o —o0
| | | >
| P P Ps Py

Transmit power constraint

()

Minimal transmit power P: (Bj)

Py .
P °
P °

| | | »

B, Bi+1B;+2 By

Target bit rate
(b)

Figure 5.1: (a) Maximal bit rate as a function of power constraint for o7 qsc int-
(b) Minimal transmit power as a function of target bit rate for .%,uy int.
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Theorem 5.4 Consider the problem gt int with power constraint Fy and sym-
bol error rate constraint €. Suppose (F*, {03}, {b;}) forms the solution that has
the smallest transmit power P* among all possible solutions. Let the mazximized
rate be B*. Given target rate By = B* and error rate constraint € for the problem
pow int; the same solution also minimizes the transmit power and the minimal

power is P*.

Proof: As (F*, {b;}, {a;f ) is optimal for @7.qtc int, the maximized rate is B* =
2/:)1 bi. The transmit power is P* < I, and all the error rates satisfy € < e.
Consider the power minimizing problem .o7,,,, ;»; With target bit rate By = B* and
the same error rate constraint e. Suppose (F, {b;}, {2 }) is optimal for @ou,int
and the minimized power is P. By Lemma 5.4, the bit rate Zg/[:f]l by, s equal to
the target bit rate B*. Since we already know (F*, {b;}, {0:?}) can achieve bit
rate B* with transmit power P*, the minimal power P-must be smaller than or
equal to P*, ie., P < P*. .If P is equal to P*, we get the desired result that
(F*, {bp}, {03?}) is an optimal solution for .oy, ins. Assume P is smaller, i.e.,
P < P*. This means (F, {}, &3 ).can achieve bit rate B* with a smaller power
P. Tt contradicts the assumption that (F*, {bt}, 0:%) is the optimal solution
for the problem @74 in: that has the smallest transmit power. Hence we have
P = P* and the solution (F*, {b;}, 0:?) is optimal for @, int- ANN
Theorem 5.3 shows that the optimal solution obtained in the power-minimizing
problem is also an optimal solution in the rate-maximizing problem. Theorem 5.4
shows that the solution with the smallest transmit power in the rate-maximizing
problem is also optimal in the power-minimizing problem.
Remark on ZF receiver: The derivations in Section 5.1 and Section 5.2
are considered for the MMSE receiver. Duality between the power minimization
and rate maximization problems also hold for the ZF case. For the MMSE case,

we have used the results in Lemmas 5.1, 5.3, and 5.4 to prove the main results
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in Theorems 5.1-5.4. Lemma 5.2 is used in the proof of Lemmas 5.3 and 5.4. For
the ZF case, Lemma 5.2 is not needed as the MSE matrix of the ZF receiver in
(2.14) is independent of the power allocation. Using the methods of MMSE case,
we can prove the results in Lemmas 5.1, 5.3, 5.4, and also Theorems 5.1-5.4 for

the ZF case.

5.3 Optimal solution for transceiver design with
bit allocation

Many optimal transceiver designs have been proposed to solve the power mini-
mization problem .o7,,, [14]-[22] and bit rate maximization problem 7. [23]-[27].
For the power minimization problem with integer bit allocation, the solution has
been found in [24]. There is no solution yet for the rate maximization problem
with integer bit allocation. In Section 5.3.1, we will review the solution of 27,
and 27.. (no integer constraint on bit allocation). In Section 5.3.2, we will re-
view the solution of @7, ini-and show how to find the solutions of @7.4¢c jns uSing

the solution of @y, int-

5.3.1 Optimal solution of .@,,, and <7, ..
Let the singular value decomposition of the P x N channel matrix H be

_ A O
H_U[O O}V, (5.10)

where A is diagonal that contains the nonzero singular values of H. The elements
of A are in nonincreasing order. The P x P matrix U and the N x N matrix V
are unitary. For the power-minimizing problem .47,,, with target bit rate By and

error rate constraint e, the solution is given by [22, 26]
F =V,D'/?, (5.11)

where V; contains the first M columns of V and D is a diagonal matrix with

diagonal element [D]p; = (a — [A]ZNol')*, where (v)* = max(x,0). The con-
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stant « is chosen such that ZkM:BI b, = By. The power allocation afk is equal
to one. The solution of rate-maximizing problem .47, with power constraint P

and error rate constraint € is given by [24, 26]
F =V,D'?, (5.12)

where D is a diagonal matrix with diagonal element [D]y, = (3 — [A];2NoD)*.
The constant 3 is chosen such that ZQ/IZBI[D]% = Py. The power allocation
ng =1

Note that the overall transfer function T = GHF of the optimal solutions of
oy AN Ay g1 is a diagonal matrix that can be singular. Let T, be the M, x M,
nonsingular diagonal matrix obtained by removing the rows and columns of T
that correspond to the zero diagonal elements: -Consider the reduced system
(F,, A,) with the ZF receiver given by G,y = T 'G,, where G, is the MMSE
receiver for the system (F, =A,). It can be verified that the unbiased signal to
noise ratio of the ZF receiveris the same as that of the-optimal MMSE solution.
Thus the bit rate of the ZF receiver is the same as the optimal MMSE receiver.
Therefore, for @7,,, and ... the optimal solution of the MMSE transceiver is

the same as the ZF transceiver.

5.3.2 Optimal solution of %7, n+ and .qtc int

First, we will review the optimal solution for o7,y in:-

Optimal solution for .7, i:[24]

The optimal power-minimizing transceiver can be found using [15] if the optimal
integer bit allocation is given to us. However, we do not know optimal bit allo-
cation beforehand. Nonetheless, for a given target bit rate By, there are only a
finite number of possible integer bit allocation. In particular, {b;} is such that
by, € ZT and

bo+b1—|—"'+bM_1 :BO. (513)
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For each integer bit allocation {b;} that satisfies the condition in (5.13), we
remove the subchannels that correspond to by = 0. Then we can use the result
in [15] to find the transceiver that minimizes the transmit power. The optimal
solution of @, n: can be obtained by choosing the integer bit allocation and
transceiver that have the minimal transmit power among all the possible integer
bit allocations. From [24], we know that the optimal solution of &7,y in: for
the MMSE receiver is different from that for the ZF receiver. When B, and
M become large, the number of possible bit allocation L becomes large and the
computational cost for solving @ int Will be large.

Optimal solution for .27 jn:

For the rate-maximizing problem .27 4 iy With power constraint F, if the max-
imal rate B}

wnt

on Theorem 5.3. We can find“B?

it

(Py) is known, we can solve- it using the solution of @7, it based
(L) using an iterative search. For example,

> (Bo)-< Py, we increase By by
(Bg) > Py. Then Bz, (Py) = By—1. To

(Fo) < B*(FRy), where B*(F)

starting from By = 1 we compute P (By). 1f Pz
(By) again until P’

*
one and compute P; Ve

wnt

reduce the number of iterations we note that- B ,
is the maximal bit rate of the rate imaximization problem .27, without integer
bit constraint. As a result, B} ,(F) < |B*(FP)]|, where the notation |[z]| de-
notes the largest integer that is less than or equal to z. Using this property and
Theorem 5.3 we have the following algorithm.

Algorithm for finding the solution of .7 4 int:

1. Initially, given the power constraint Fy, compute the maximal bit rate

B*(Py) for @.qte. Then set By = | B*(P)].

2. Given the target bit rate By, find the optimal bit allocation and transceiver
for minimizing transmit power in @, in;. Compute the minimal power

F);;Lt(BO)'

3. If P

wnt

(Bo) > Py, set By = By — 1 and go to step 2. If P}

int

(B()) S PQ, then
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the maximal bit rate B;,,(Fy) = Bo.

In this algorithm, the number of iterations is equal to | B*(F)| — B;,,(Fp). This

int
number is in fact less than M as we explain below. Suppose | B*(Fy) | — B}, (FPo) >
M. Let {b;} be the optimal real-valued bit allocation of @4, i.e., B*(Fy) =
M Lbr. Then {|b;]} is also a valid integer bit allocation that satisfies the error
rate constraint. Since {bj} is real, we have |B*(F)] — 2/1261 by < B*(Ry) —
MlbE] < M. This implies S0 tbi] > B

int
definition of B} (). Therefore we have |B*(Fy)| — B},

wnt

(Fy), which contradicts the
(FPy) < M. Note the
number M is an upper bound of the number of iterations. As the optimal solution
for o7, 4ie.int is obtained using the solution of 7,4, int, the optimal solution of the

MMSE receiver is different from that of the ZF receiver.

5.4 Simulation

In the simulations, we will demonstrate the duality between power-minimizing
problem and rate-maximizing problem: In-thefollowing examples, the number of
subchannels M is 4. The noise vector q is assumed to be complex white Gaussian
with E[qq'] = I;. The symbol error rate constraint e is assumed to be 107*. In
examples 1-2, we use a fixed 4 x 4 MIMO channel as shown in example 1. In
examples 3-4, the results are averaged over random channels. For the problems
oy a0d 2,1, We use the solutions in Section 5.3.1. For 7,0y int and @ gpe int,
we use the solutions in Section 5.3.2.

Example 1. Duality between .7,,, and 4,.. In this example, we will
demonstrate the results in Theorem 5.1 and Theorem 5.2. Consider a 4 x 4

channel H that is given by

—05+06¢ —-05—-1.1¢ 02-02: 04-0.57

—03+06:¢ —02414¢ —04+09 08—0.57

—01+4+05 —04-03¢ 09403 0140.2¢
1.1+06: —-05+04: 00-02¢ —-03+14:

(5.14)
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(a)

(b)

By (bits) | P*(By) (dB) Py = P*(B,) (dB) | B*(By) (bits)
) 3.2833 3.2833 2
1 8.0001 8.0001 1
6 11.1790 11.1790 6
g 13.7891 13.7801 8
10 16.1370 16.1370 10

Table 5.1: (a) Minimal power P(By) for ., when By = 2,4,6,8,10 bits. (b)
Maximal bit rate for 7., when the power constraint Py = P(By).

Given target bit rate By, we use (5.11) to find the optimal transceiver, and
(2.1) to compute the corresponding transmit power P*(By) for the problem .7, .
Table 5.1(a) shows the minimal transmit power P*(B;) when the target bit rates
are By = 2,4,6,8,10 bits. Using the minimized power in Table 5.1(a) as power
constraint, Table 5.1(b) shows, the maximal bit rate for the rate maximizing
problem .#7,,.. The rates ar¢-computed using (2.20) for the optimal transceiver
in (5.12). We can see that B*(P*(By)) = By and the solution of the power-
minimizing problem is also optimal for the rate-maximizing problem as we have
shown in Theorem 5.1.

Table 5.2(a) shows the maximal bit rate B*(P,) for /.. when the power
constraints are Py = 2,4,8,16,32 dB. Table 5.2(b) shows the minimal power
P*(By) for the problem .47,,, when the target bit rates are equal to the maximized
rate in Table 5.2(a). We can see that P*(B*(Fy)) = P and the solution of rate-
maximizing problem is also a solution of the power-minimizing problem as we
have shown in Theorem 5.2.

Example 2. ZF and MMSE receivers for 4/,,, ,;. When there is no
integer bit constraint, the optimal solution with ZF receiver and the optimal
solution with MMSE receiver are the same. When there is integer constraint,
the solutions are in general different as we demonstrated in this example. We

use the same channel as in example 1. Let us compute the optimal integer bit
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(a) (b)

B (B) | B (Py) (bits) Bo = B*(By) (bits) | P*(By) (dB)
2 1.6108 1.6108 2
1 2.2447 2.2447 1
8 3.0999 3.0999 S
16 0.8702 0.8792 16
32 98,7063 98,7063 32

Table 5.2: (a) Maximal bit rate for 7., when Py = 2,4, 8,16,32 dB. (b) Minimal
power P(By) for ,,, when By = B(F).

allocation and transceiver of .27,y iy When MMSE reception is considered. We
use the method mentioned in section 5.3.2. The target bit rate By is set to be 8

bits. In this case the optimal integer bit allocation is

bg 3
e | 3

b=, e |
bs 0

and the minimal transmit power is 13.891 dB. The optimal transmitter is given

by
—1.35 — 0.36i " 0:83 = 1.197" <0.68 + 0.82i

F_ —1.63 +1.6120.22 4- 0.51%  0.28 — 0.45¢ (5.15)
| —0.39+0.52¢ 1.15+0:28; —1.93 —0.15 |’ ’

0.05 —1.95 —2.03

and the overall transfer function T is

0.98 0.0021 0
T=GHF = | 00021 097 0 |. (5.16)
0 0 094

We can see that the overall transfer function for the MMSE receiver is not di-
agonal. For the ZF case. For the ZF case, the minimized power is 13.8915 dB,
which is very close to the MMSE case.

Example 3. Duality between ,,, and %.,.. In this example, we use
random channels to demonstrate the connections between power minimization

and rate maximization problems. The channel is of size 4 x 4 and the elements
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are complex Gaussian random variables whose real and imaginary parts are in-
dependent with zero mean and variance 1/2. Monte Carlo simulation using 10°
channel realizations is used to generate the following results. For each channel,
we compute the optimal solutions of 7, and 7. using (5.11) and (5.12) in
Section 5.3.1. Fig. 5.2 shows the maximal transmission rates B*(P,) of @4 as a
function of power constraint. Fig. 5.3 shows the minimal transmit power P*(Bj)
of %, as a function of target bit rate. We can observe the duality between that
the power-minimizing and rate-maximizing problems from Fig. 5.2 and Fig. 5.3.
For example, the minimal power of @7, is 9 dB when the target bit rate is 5
bits. When we set the power constraint in .27, to be 9 dB, the maximal bit rate
is 5 bits. On the other hand, the maximal bit rate of .o, is 9 bits when the
power constraint is 15 dB. When we set-the target bit rate in 7, to be 9 bits,

the minimal power is 15 dB.

Maximal bit rate

0 5 10 15 20
Transmit power constraint B (dB)

Figure 5.2: Maximal bit rate B*(Fy) for 7.4 as a function of power constraint
Py without integer constraint.

Example 4. Minimal power for .7,,,;,, and maximal bit rate for
yate,int- We use the same random channel as in example 3. In Table 5.3, we

compute the minimal transmit power of @, ine With MMSE and ZF receivers.
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N
o

[N
a1

10t

Minimal transmit power (dB)

0 5 10 15
Target bit rate B, (bits)

Figure 5.3: Minimal transmit power P*(By) for 47,,, as a function of target bit
rate By without integer constraint.

When the target bit rate is By, the minimal transmit powers of the MMSE case
and the ZF case are denoted by P

wnt,mmse

(Bo) and Py, . ;(Bo), respectively. For
comparison, we also show the transmit power *(By).of 7,,, (without integer
constraint). We can see that-the'gap between Py, .., .. (Bo) and Py, (Bo) is
small. Also, the difference between Py .(B0) and P*(By) is smaller than 0.21
dB. In Table 5.4, we compute the maximal bit rate of @74 in: for the MMSE and
ZF receivers. The maximal bit rate for the MMSE and ZF cases are denoted
respectively by B, ...(Fo) and By, (o). Also shown in Table 5.4 is the
maximal bit rate B*(Fy) of 7.4, (without integer constraint). We can see that
(Fy) and
B*(Pp) is smaller than 0.6 bits. This gap is less than 0.15 bits per symbols.

B, .1(Fo) is close to B, s (F0). The difference between B,

int,mmse

5.5 Summary

In this chapter, we consider two commonly used transceiver design criteria: power

minimization criterion and rate maximization criterion. The duality are derived
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By (bits) | P (Bo) (AB) | Py (Bo) (AB) | Py e Bo) (dB)
2 2.1167 2.3322 2.3254
4 7.1634 7.3107 7.3078
6 10.6614 10.7832 10.7826
8 13.4708 13.5796 13.5788
10 159114 16.0175 16.0170
12 18.1311 18.2314 18.2312
14 20.1976 20.2972 20.2970

Table 5.3: Transmit power of 47,,, (without integer bit allocation), @, int (ZF),
and oy int (MMSE) when the target bit rate is By = 2,4, 6,8, 10, 12 bits.

Py (dB) | B*(Fo) (dB) | Biyyo;(Fo) (0it5) | Big e (Po) (b115)
2 2.0305 1.4549 1.4572
4 2.7096 2.1549 2.1557
6 3.5429 2.9858 2.9865
8 4.5391 3:9689 3.9700
10 5.7103 5.1326 5.1333
12 7.0629 6.4788 6.4794
14 8.5888 8.0033 8.0037
16 10.2714 9.6811 9.6815

Table 5.4: Bit rate of .o (without integer bit: allocation), .7 e it (ZF), and
yate.int (MMSE) when the target bit rate is Py =2:4, 6, 8, 10, 12, 14, 16 dB.

for these two problems. If there is no integer bit constraint, the optimal solution
in either one solution is also optimal in the other problem. When there is an
integer bit constraint, we have shown the rate-maximizing problem is equivalent
to the power-minimizing problem with power modifications. Using the duality,
the optimal solution of the rate maximization problem with integer bit constraint
can be found using the solution of the power minimization problem. Simulation

results have been shown to demonstrate the duality of these two problems.
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Chapter 6

Overview of Multicarrier Systems

Multicarrier systems have found many applications in DMT systems and OFDM
systems. For the multicarrier systems, the frequency band of the channel is
divided into a number of subchannels and information is transmitted on each of
the subchannel. In this chapter; we will introduce the multicarrier systems and

find the filterbank representation of the multicarrier systems.

6.1 DFT Based -Multicarrier System

so(n) > > 1) ] o
1/,
$,(1) —> IDFT > p/S cyclic ) discard " s/p | |PFT
wil, > prefix &> prefix [ > wi
s m— e BT e
1/har

Figure 6.1: Block diagram of the DFT based multicarrier system.

The block diagram of the DFT based multicarrier system is as shown in
Fig. 6.1. The input of the transmitter s is an M X 1 vector of modulation

symbols. The symbol vector s are assumed to be zero-mean and uncorrelated.
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The autocorrelation matrix of the input vector s is assumed to be
Rs = é?sIM. (61)

The channel is modeled as an FIR filter of order L, i.e.,

C(z) = c(n)z™". (6.2)

=0

3

The channel noise ¢(n) is assumed to be a circularly symmetric complex Gaussian
random process with zero mean and variance Ny. The channel noise ¢(n) is
assumed to be uncorrelated with the symbols si(n). At the transmitter, IDFT

is applied to the input symbol vector s and the output vector x is
x =WTs, (6.3)

where W denotes the M x M normalized DFT matrix given by

1 s 2TTmmn
(Wlmn = e for 0 < < M — 1.

VM

The outputs are converted to a block of M serial samples by the parallel to serial
operation (P/S). Then a cyclic prefix of length ¥ is inserted by copying the last v
samples of the block to the beginning. The length of the cyclic prefix v is chosen
so that v > L, which ensures that inter=block-interference (IBI) can be removed
easily by discarding the prefix at the receiver.

At the receiver, after prefix removal the samples are blocked into M by 1
vectors r by the serial to parallel operation (S/P). When there is no channel
noise, it can be shown that the transfer matrix from x to r is the M x M circulant

matrix given by

[ c(0) 0 c(L) c(1) 7
c(1) ¢(0)
: c(L)
Ceire = | ¢(L) 0 : (6.4)
0o ¢(0) :
SO
L 0 0 ¢(L) (1) ¢(0) _




In the presence of channel noise, the received vector r is
r=CgX+q, (6.5)
where q is the blocked channel noise vector of size M. Then the DFT matrix is
applied, i.e.,
y = Wr (6.6)
= WC,,.W's + Wq. (6.7)

From [41], we know that circulant matrices C,;,. can be diagonalized using DFT

and IDFT matrices,
Ceire = WIAW, (6.8)

where A is a diagonal matrix. The diagonal element A\, of A corresponding to

the M-point DFT of the channel impulse response; i.e.,
A= [Alge = C(2) | =cSsm i (6.9)
The DFT output vector becomes
y =As + Wqe (6.10)

Then the scalar multipliers 1/\g, which are called frequency domain equalizers
(FEQ), are applied to y. The transceiver is ISI free and the receiver is a zero-
forcing receiver. The receiver outputs are identical to the inputs of the transmitter
in the absence of channel noise. From (6.10), the signal to noise ratio (SNR) of
the k-th subchannel is given by

_ ‘)\k|2gs

Be=0

(6.11)

Transmission rate: For the QAM modulation, suppose the target symbol error
rate €, are given. Then the number of bits loaded on the k-th subchannel can be

computed by (2.19), i.e.,
b, = log, (1 + @) (6.12)
Iy
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Suppose the sampling time of the system is 7. Then the transmission rate is

i b,
given by vy

R === (6.13)
Complexity:

The main computations of the transceiver are those of the IDFT and DFT matri-
ces, for which fast algorithms can be applied. The complexity of the transmitter
is simply that of an IDFT matrix and the complexity of the receiver is that of a
DFT matrix plus M multiplications for FEQs. Moreover, except for the FEQs,

the computations are channel independent.

6.2 Filterbank Representation

In this section, we will look at the multicarrier system from the viewpoint of fil-
terbanks, which will be usefulfor later-discussion, In Fig. 6.1, the operation ‘P/S’

followed by the insertion of ‘eyclie prefix can be viewed as the interconnection of

]

followed by ‘P/S’ for every N = M 4 v parallel samples as shown in Fig. 6.2(a).

the matrix

The 'P/S’ operation is represented using decimators and a delay chain in the
figure. On the other hand, the operation ‘discard prefix’ followed by ‘serial to
parallel” and M-point DF'T for every M samples in Fig. 6.1 can be viewed as

‘serial to parallel’ for every N samples followed by the matrix
[0 W .

as shown in Fig. 6.2(a). Thus the transmitter and receiver can be redrawn as in
Fig. 6.2(a), where we have combined the two matrices at the transmitter as one
matrix G.

As G is a constant matrix, we can exchange G and the expanders; the result-

ing transmitter is as shown in Fig. 6.2(b). Similarly, we can exchange [ 0 W ] )
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G q(n)

x(n) r(n)
e AN ) N BN
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s, (n)
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Vs
\ AN N /
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q(n)
p(n) x(n) ) V()
54() AN > > C(2) » N [—>—>
-1 1/x,
( ) zZ z
(b) s (n N > )
] ?.N G 1 ) [0 W] {N 1,
s ) (n) N ° ° N
- = \ L> / T
transmitting > 4 (& HEE W receiving
filterbank filterbank

Figure 6.2: Matrix forms of the transmitter and receiver for the DMT system.

and the decimators to yield the receiver shown in Fig. 6.2(b). Note that the 1 x M
system from p(n) to x(n) is LTI Let’s call the 1 x M transmitting bank f(z),
then f(z) is a row vector given by [ 1 z7' ... z~(W=1]G. Each element of
the row vector can be obtained by multiplying out the above expression. Suppose

the k-th element is Fj(z) (k-th transmitting filter), we have
Wk =i (6.14)

where W = e¢7727/M Then the transmitter in Fig. 6.2(b) can be redrawn as in

Fig. 6.3. Now consider the receiver side. Denote the M x 1 system from r(n) to
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Figure 6.3: Filterbank representation of the DMT system.
v(n) in Fig. 6.2(b) as h(z). We can write h(z) as
h(z) =] 0 W] _ : (6.15)

Suppose the k-th element is Hj(z) (the k-th receiving filter), we have

ZV

Hy(2) = 5 z_: Wikt (6.16)

We can redraw the receiver as the receiving bank structure in Fig. 6.3. Note
the first transmitting filter Fy(z) is a rectangular window of length N. All the
other transmitting filters are scaled and frequency-shifted versions of the first

transmitting filter (prototype filter),
Fr(2) = WY Ey(2W5). (6.17)

Similarly, the first receiving filter is also a rectangular window, but of length M.
All the other receiving filters are scaled and frequency-shifted versions of the first

receiving filter,

Hy(2) = W Hy(2W5). (6.18)

This means both the transmitting and receiving filters form the DFT bank struc-

ture [76].
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Figure 6.4: The magnitude response of the transmitting and receiving filters for
M =4 and v = 2.(a) the transmitting filters, and (b) the receiving filters.

A numerical example of the transmitting and receiving filters for M = 4 and
v = 2 is shown in Fig. 6.4. The magnitude response of the two prototype filters
Fy(z) and Hy(z) are drawn with a solid line. The magnitude response of all the
other filters, which are shifted versions of the corresponding prototype filters, are
drawn with a dotted line. We can see that the first sidelobe has an attenuation

of about 13 dB only and the stopband decays slowly. The attenuation is not
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adequate in many applications. In chapter 7 and chapter 8, we will design the
transmitting and receiving windows to improve the frequency characteristics at

the transmitter and receiver side.

6.3 Transmitted Power Spectrum

The filterbank representation allows us to express the power spectrum of the
transmitted signal z(n) in terms of the transmitting filters. For OFDM systems
in wireless applications, the inputs si(n) can be assumed to be uncorrelated and
the transmitted power spectrum has been derived in [60]. The assumption of
uncorrelated input symbols is not valid for DMT systems in wired applications.
This is because the DMT system uses_baseband transmission and the signal to
be transmitted is real. This requires that the-inputs of the IDFT matrix have
the conjugate symmetric property, sg(n). = sy, (n),.k = 1,2,--- M — 1, and
so(n) is real. For even M, usually the case in practice, sy;/2(n) is also real. This
conjugate symmetric property means that the symbols assigned to the second half
and the first half of the subchannels are related.Therefore for DMT systems, we
can no longer assume that the inputs are.uncorrelated.

For those inputs si(n) that are in conjugate pairs, let the real part be s,(:) (n)
and the imaginary part be s,(f)(n). We can treat these real parts and imaginary
parts as random processes and assume, reasonably, that these random processes
are white, uncorrelated, jointly wide-sense stationary with zero mean and variance
Esk/2. The scalar 1/2 is included so that the variance of si(n) is & . For the k-
th and (M — k)-th subchannels; the inputs are a complex conjugate pair. When
the transmitting filters are shifted versions of the prototype filter as in (6.17)
and the prototype has real coefficients, the coefficients of the transmitting filters
are also in conjugate pairs, fa;—r(n) = fi(n). As a result, the outputs of each
pair are also conjugates of each other. Now instead of considering the output of

individual subchannel, let us consider the sum of outputs of each pair. Let the
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output of the k-th transmitting filter be wy(n) as indicated in Fig. 6.3 and define
wi(n) = w(n) + war—k(n) Then wj(n) = 2Real{wy(n)} and it can be written as

) =23 (A OA (= N0 = 4207 n = ND)

where f,y) (n) and f,gi) (n) are respectively the real and imaginary part of fi(n).
As the real and imaginary parts of the transmitter inputs are uncorrelated, the

power spectrum of wj,(n) is

2€s,k

S ED @+ RO (E)).

Sw]; (ejw) =

It turns out the summation of the two terms on the right hand side is equal to the
&T’k(|Fk(ej“’)|2 + | Far—x(€’“)]?). We can obtain the transmitted power spectrum
by summing up contributions from wy(n), pluswg(n) and wy/o(n) (if M is even).

We arrive at the following simple expression for the transmitted spectrum

1
(€19) = ~ Z ErlFr(e™)] (6.19)

We can further observe that-if an equal power allocation is used, the inputs
of all the subchannels have the same.variance &, and the transmitted power
spectrum becomes the same as that of the OFDM system derived in [60]. In
some applications of the DMT system such as VDSL and ADSL, and the OFDM
system such as wireless local area networks [81], only a subset of the subchannels
are actually used for data transmission. Thus the transmitted spectrum becomes

(99 = Zsskm (/)] (6.20)

keU

where U is the set of tones that are used for the current transmission. As Fj(e/*)
is not ideal filter, the spectrum is nonzero not only in the frequency bins of
the subchannels that are used but also in other frequency bands as well. This is
referred to as spectral leakage. The sidelobes of the transmitting filters directly

affect the amount of spectral leakage.
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6.4 Radio Frequency Interference

DFT based multicarrier system in Fig. 6.1 have been found applications in DMT
systems, e.g., ADSL and VDSL [49][50]. In ADSL and VDSL environment, radio
frequency signals such as amateur radio and AM radio may interfere the received
signal at the receiver. This kind of noise is called the radio frequency interference
(RFI). The radio interference is known to be of a narrowband nature but has a
large amplitude in frequency. For the duration of one DMT symbol, it can be
considered as a sum of sinusoids. We assume that RFI interference occurs at
frequency w; with amplitude «; and phase 6;, [ = 0,---, R — 1. Thus we can

model the interference as

R-1

v(n) = Z apcos(wint-0,). (6.21)

=0
To analyze the effect of v(n), we apply the interference-only signal v(n) to the

DMT receiver as shown in Fig. 6.5.

UNC Vo(n) A
v(n) MHy () > g N D>
ul(n) yl(n) }\41
>H1(Z) %N >
uM—l(n) qu(n) }\‘M—l
—»H, (D> yN >

Figure 6.5: Filter bank representation of the receiver with windowing.

The output of the i-th receiving filter is

=

o [Hi(ej“’l)ej(“’l””l) + Hi(e—jwz)e—j(wzm@z)]_ (6.22)

N~

ui(n) =

N
i
o
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Using (6.18), we have

Hi(ej“l) — 6j27r1/i/er_[0(ej(u.)l—27ri/M))7 and Hi(e_j“l) — 6j27rui/MH0(ej(—wl—27ri/M)).
(6.23)

The output u;(n) becomes

ui(n) = %TZ_OIalejzm/M[Ho(ej(wz—zm'/M))ej(wmwz) + HO(e—j(wl+27ri/M))e—j(wm—i-el)].

(6.24)
We can see that the amplitude of u;(n) is scaled by the prototype filter Hy(e/*)
at frequencies {Fw; —2mi/M}/='. Suppose there is one RFI source occurs in the
frequency band of the 0-th subchannel, i.e., 0 < w; < 27/M for some [. Then
uy(n), ug(n), - -, upr—1(n) will be large if the sidelobes of Hy(e’*) are large. Thus
the spectral roll-off of the Hy(e’*) determines how neighboring tones are affected
by RFI. For the DMT system, since the prototype filter of the receiving filter is
a rectangular window, the sidelobe is large and results-in poor RFI suppression.
In the next section, we willsintroduce the conventional windowing technique to

improve the frequency characteristics:

6.5 Summary

In this section, we introduced the multicarrier systems. The filterbank represen-
tation of the multicarrier systems was also derived. Using the filterbank repre-
sentation, we have shown the power spectrum of the the multicarrier systems and
the spectral leakage. We have also introduced the RFI interference in the DSL

applications.
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Chapter 7

Receiver Window Designs for
Radio Frequency Interference
Suppression for Multicarrier
Systems

In chapter 6, we have introduced the multicarrier-system and its filterbank repre-
sentation. We have also studied the RFI interference in the multicarrier system.
The spectral roll-off of the receiving filters-determine how neighboring tones are
affected by RFI. To improve the frequency characteristics of the receiving filters,
windowing technique is often used at the receiver. In this chapter, first we will in-
troduce the conventional windowing technique. Then we will design the receiving
windows to mitigate the RFI interference by minimizing the total interference.
We will consider both the informed receiver (RFI information available to the
receiver) and uninformed receiver (RFI information unavailable to the receiver).
In either case, the proposed window is channel independent and can be obtained

in a closed form.
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7.1 Receiver Windowing in Multicarrier System

For the conventional DMT system, the sidelobes of the receiving filters are too
large to have a good RFI suppression. As a result, windowing technique is often
applied at the receiver to suppress the RFI suppression. To apply windows,
the receiver takes the last M + (3 samples, multiplies the first 5 samples by the
coefficients w,, n =10,1,---, 6 — 1, and multiplies the last 3 samples by 1 — w,,
where w,, are free parameters [71]. In other words, the M + 3 samples are applied

by a window of the following form.

b
g = 1M—6 s (71)
15— b
where b = [by -+ -bg_1]T, and the notation 1, dehotes an n x 1 column vector

whose elements are equal to one. In-this chapter, we assume the channel order
is smaller than or equal to v = . This implies only the first v — 3 samples
contain the interference from the previous block. Since the first v — 3 samples
are discarded, there will be no IBIL. This operation is shown in Fig. 7.1(a). After
applying the window g, the receiver folds the first 6 samples and adds to the last
(3 samples, which is shown in Fig. 7.1(b). Combining the operation in Fig. 7.1(a)
and Fig. 7.1(b), the implementation of the windowing operation is shown in
Fig. 7.2.

The windowing operation in Fig. 7.2 can be represented by an M x N matrix

B. The matrix B is given by

Bo| Iy |die@[0 T ], (72)

where diag(g) is a diagonal matrix with the elements of g on its diagonal.
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Figure 7.2: Receiver with windowing in the multicarrier system.
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Figure 7.3: Frequency response of receiving windows.

Some commonly used windew are Hanning window, Blackman window, and
Kaiser window. These windows are computed using (7.1), where b, is defined by
the following equations [75]:

Hanning window.
b, = 0.5 — 0.5¢cos(zn/(8+ 1)), 0 <n < 3. (7.3)
Blackman window.
b, = 0.54 — 0.46 cos(mn/(B+ 1)), 0 <n < 3. (7.4)

Kaiser window.

p = Dol —[(n— a)/al?)!/?]
" Io(7)

where a = f+1, and I(+) represents the zeroth-order modified Bessel function of

, 0<n<p, (7.5)

the first kind. + is the shape parameter. Fig. 7.3 shows the frequency response of
the rectangular window, Hanning window, Blackman window, and Kaiser window
with shape parameter § = 5. We can see that the rectangular window has larger

sidelobes than the other three windows.
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7.2 Filterbank Representation of Receiver Win-
dowing in Multicarrier System

In this section, we derive the filterbank representation of the receiver with win-
dowing. The representation will be useful in analyzing the interference of individ-
ual tones. Similar to (6.15), the M receiving filters H;(z) fori =0,1,---, M — 1
are related to B and W by

Hy(2) 1
H,(2) _WB z
_ = : : (7.6)
Hyy(2) AN

The equivalent filter bank representation is shown in Fig. 6.5. Using the expres-
sion of B in (7.2), we can verify that the coefficients of the first receiving filter

ho(n) are given by

b—n—l/-l—ﬁv _(V - 1) << _(V - ﬁ)a
' 1 1, ~(N—-pg—-1<n< -y
h = 7.7
O(H) \/M 1_b—n—N+,37 _(N_1> Sng _<N_6>7 ( )
0, otherwise.
Comparing (7.7) with (7.1), we have
ho(=v + )
VMg = ; : (7.8)
ho(—N + 1)

Thus the magnitude response of vV Mg is equal to the magnitude response of
hg(n). We can further verify that all the receiving filters are shifted versions of

the first receiving filter except for some scalars,
H,(z) = W™ Hy(zW"). (7.9)

We can see that the new receiving filters {H;(2)}M ! still have the DFT bank

structure.
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7.3 Informed Window

For the DMT system, the RFI interference is modeled as in (6.21). When we
apply the interference-only signal v(n) to the receiver, the output of the i-th
receiving filter H, (/) is

R-1
1 . , .
ui(n) = 5 > e T 4 ¢ eIt ], (7.10)
=0

where ¢;; = H;(e’*') and ¢;; = H;(e77“t). The interference at the i-th receiver
output is y;(n) = u;(Nn), which has the same amplitude as u;(n). Note that the
RFT interference due to the I-th source will be small if a}(|c]* + |c}2|2) is small.

Hence the RFI interference of the i-th individual tone will be small if
R—1
Ji = ZO@Q(ICuIQJr leiil?) (7.11)
=0

is small. The total RFT interference can be mitigated by minimizing

icU

R-1 A\ : /- , (7.12)
= T X o (HeE AR )
icU 1=0
where we have used
ci = WP H,(e?@=2mi/M)) and cg,i = WP H (eI wit2mi/M) (7.13)

U is the set of tones that are used for the current transmission. From (7.7) we

can verify that H,(e/“1=27/M)) can be given in terms of b as
Hy(e/ =™/ = ¢, + a] b, (7.14)

where the notation ’{” denotes Hermitian, b;; is a scalar and a;; is an 3 x 1 column
vector given respectively by

v+M—-1 )
tl,i — Z ej(wl—2m/M)k’

(7.15)

k=v
(] = I2mI/ME=B4m) _ ci(a—2mi/M)(N~=F+m)
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Similarly, we can verify that Hj(e™7(+2m/M)) can be expressed by
H(')(e—j(wz+27ri/M)) _ tg’i + a’;ib, (716)

where b}, and a’;; are respectively

v+M-—1

- _ —j(wi+2mi/ M)k
Li 2 c ’ (7.17)
(@] = eI 2T/ w=pem) _ o=t 2mi/ M)N=p4m)
Using (7.14)-(7.17), the objective function can be written in terms of b as
J=bTAb + bt +t'b + ¢, (7.18)

where A is an X (f matrix, t is an §x 1 vector, and c is a scalar given respectively

by

i

a2 i st
o [agiag+ ahal

M
S

>
I
HQM

[al ztlz +alztlz] (719)

Z clital® + 16,7

’;U
,_.o

QM ilng

To minimize the objective function'in (7.18), we.can use the method of optimiza-
tion in [77] to obtain a closed-form solution. 'In particular, when the objective
function J in (7.18) is minimal, the optimal b must satisfy 0J/0b = 0. The

optimal solution can be written as follows
b = —[R(A)]"TR(t). (7.20)

where the notation (X ) denote the real part of X. In the above solution, channel

information is not required; only the statistics of the RFI interference are needed.

7.4 Uninformed Window

We now consider the case when the statistics of RFI interference are not available

to the receiver (uninformed receiver). In this case, the frequency and amplitude
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of RFT are not known. We can minimize the total interference by minimizing the

stopband energy of Hy(e’)

mows L dw
O A= (121)

where w is the stopband bandedge. From (7.7) we can write Hy(e/*) as
Hy(e*) = s'g, (7.22)

where g is the window vector and s is an (M + ) X 1 column vector given by

ejw(’/fﬁ)

ejw(v—pB+1)

s = (7.23)
ejw(l/{’—M—l)

Then the stopband energy ¢, can be rewritten as

2m—ws i dw ;
O = (g'ss'g);— =g'Qe. (7.24)
where
2T —w,
s .d
Q :/ SST%. (7.25)
The elements of ) are given by
__sin(m—n)ws m % n
[Q]mn = { FUE:n_n) (726)
1-— e m =n.
The window vector g can be written as
g=d+ Eb, (7.27)

where dT =0 1}, ],and ET =[1I5 0 —I;].

As a result, the objection function can be given in terms of b,

¢n = (d + Eb)TQ(d + Eb), (7.28)
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Similarly to the informed window, using the method of optimization in [77],
we can obtain the following optimal uninformed solution b that minimizes the

stopband energy
b=—(ETQE) " (ETQ"d). (7.29)

In this case, neither the channel nor the RFI information is needed for obtaining

the window.

7.5 Simulations

In this section, we will evaluate the proposed window design technique. The
channels used for our evaluations are seven VDSL loops [49]. The DFT size
M = 1024, cyclic prefix v = 80, and window dength § = 10. The channel noise
consists of AWGN of -140 dBmy FEXT and NEXT erosstalk as described in [49].
The time domain equalizer of length-20 is used to shorten the channel to length
less than 70 [79]. The RFILinterference is of differential mode with strength -
55dBm [49]. Three RFI sources with frequencies at 1.44, 1.9, and 2.0MHz are
considered. In this simulation, the RFI signal is generated as in [49]. We will first
use VDSL loop1 of length 4500ft as‘an example to examine the frequency response
of the proposed window and demonstrate the effect on subchannel interference
and SINR.

Frequency response: Suppose the statistics of RFI is available to the re-
ceiver. We compute w using (7.20) and obtain the informed window form (7.1).
Fig. 7.4 shows the frequency response of the informed window g. For comparison,
we have also shown the frequency responses of the Hanning window, Blackman
window, and Kaiser window with shape parameter 3 = 5 [75]. We can see that
the informed window has a faster roll-off in low frequency while the other three
windows have much smaller sidelobes in high frequency. However, the roll-off in

high frequency will not be important when the sidelobes are so small that RFI
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is not the dominating noise. As the proposed window has the characteristics of
fast roll-off in low frequency, fewer tones will be dominated by RFI as we will see

next.

80
~~~~~~~ Hanning window
60 Informed window 1
----- Kaiser window
40 ) — — — Blackman window

Magnitude response (dB)

0 0.2 0.4 0.6 0.8
Frequency normalized by 1t

Figure 7.4: Frequency response of receiving windows.

Subchannel Interference: We compute the interference power at the re-
ceiver outputs for the receiving windows. Fig. 7.5 shows the RFI interference
power of individual tones for the informed window, uninformed window, win-
dow in [71], Hanning window, Blackman window, and Kaiser window with shape
parameter 5 = 5. In Fig. 7.5(a), we compare with the window in [71] and Han-
ning window. In Fig. 7.5(b), we compare with Blackman window and Kaiser
window. We can see that the informed window and uninformed windows have
lower RFI power than the other four windows near the RFI source frequencies.
Also shown in Fig. 7.5(a) and Fig. 7.5(b) are the combined effects of channel
noise (AWGN, FEXT, and NEXT) and the residual ISI for the informed window,
uninformed window, window in [71], Hanning window, Blackman window, and
Kaiser window, which are labeled as “other noise (informed)”, “other noise (un-

informed)”, “other noise (Window [71])”, “other noise (Hanning)”, “other noise
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(Blackman)”, and “other noise (Kaiser)”. In both Fig. 7.5(a) and Fig. 7.5(b), the
curves of “other noise” overlap with each other and are indistinguishable in the
figure. From Fig. 7.5, we can see that RFI is dominating in the tones around the
RFT frequencies. For the tones away from the interference sources, other noise is
dominating. As a result, higher attenuation of the window in high frequency is of
little significance. In this case, the commonly used Hanning window and Black-
man window are over designed in high frequency region. The proposed windows,
due to their faster roll-off in low frequency, has fewer RFI dominating tones.

Subchannel SINRs: Fig. 7.6 shows the SINRs of the individual tones for
both informed and uninformed windows. For comparison, in Fig. 7.6(a)(b), we
have also shown the SINRs of the window in [71], Hanning window, Blackman
window and Kaiser window with shape parameter.5 = 5. From Fig. 7.6(a)(b) we
see that the SINRs of the informed and uninformed window are higher than those
of the other windows near the RFI source frequency, i.e., in the tones where RFI
interference is dominating. .This is due to the fact that the proposed windows
achieve a better trade-off in-low frequency- and high frequency. Therefore, we
can transmit more bits in the neighboring tones-by using the proposed windows.
The two curves corresponding to the two proposed windows almost overlap with
each other. This shows that the use of uninformed window leads to only a minor
performance degradation.

Table 1 shows the bit rates for seven VDSL loops [1] with window length
6 = 10, where VDSL loop 1 to 4 are of length 4500 ft. The sampling frequency
is f, = 4.416 MHz. For comparison purpose, we have also included the bit rates
of the rectangular window, Hanning window, Blackman window, Kaiser window,
and the window in [71]. In addition, the bit rates for the case when there is no
RFI interference are also shown in the table. From the table, we can see that the

proposed windows have better performance for all the test loops.
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Figure 7.5: Subchannel interference power of the DMT system with windowing.
(a) Informed window, uninformed window, window in [71], and Hanning win-
dow. (b) Informed window, Blackman window, and Kaiser window with shape
parameter 0 = 5.

7.6 Summary

We have proposed a window design method for RFI suppression in DMT sys-
tems. The proposed windows strike a balance between low frequency and high

frequency response. Thus, fewer tones are dominated by RFT and better bit rates
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Figure 7.6: Subchannel SINRs of the DMT system with windowing. (a) Informed
window, uninformed window, window in [71], and Hanning window. (b) Informed
window, Blackman window, and Kaiser window with shape parameter § = 5.

is achieved. We consider both the case when the receiver knows the statistics
of the interference (informed receiver) and the case when the statistics are not
available to the receiver (uninformed receiver). In both cases the windows are
channel independent and can be obtained in a closed form. Windows designed for

uninformed receiver (interference-independent window) has the advantage that
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Loop 1 2 3 4 ) 6 7

informed 20.74 | 20.42 | 18.94 | 11.25 | 26.60 | 22.75 | 17.97
uninformed | 20.60 | 20.40 | 18.90 | 11.22 | 26.58 | 22.70 | 17.94
rectangular | 19.72 | 19.49 | 17.95 | 10.40 | 26.38 | 21.92 | 16.94
Hanning 20.23 | 19.96 | 18.59 | 10.90 | 26.48 | 22.33 | 17.42
Blackman | 20.14 | 19.86 | 18.48 | 10.80 | 26.39 | 22.32 | 17.46
Kaiser # =5 | 20.38 | 20.02 | 18.78 | 10.97 | 26.46 | 22.33 | 17.68
window [71] | 20.24 | 20.23 | 18.82 | 11.06 | 26.52 | 22.60 | 17.79
No RFI 23.34 | 22.78 | 21.49 | 13.45 | 27.59 | 22.39 | 20.57

Table 7.1: Bit rate (Mbits/sec) on VDSL loops.

the window coefficients need not be updated when the statistics of the RFI in-
terference changes. We also shows not knowing the statistics of the RFI source

leads to only a minor performance degradation.
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Chapter 8

A Filterbank Approach to
Window Designs for Multicarrier
Systems

In chapter 7, we have designedthe receiving windows for RFI suppression at
the receiver. At the transmitting side, -spectral leakage is also an important
issue in the multicarrier system, and transmitting windows have been used to
mitigate the out of band spectral leakage. Better frequency separation among
the transmitting filters leads to a smaller out-of-band spectral leakage and also
less interference to radio frequency transmission. In this chapter, we will propose
a unified filterbank approach to the design of transmitting/receiving windows
for multicarrier systems. The approach used here will be more general. We will
introduce the so-called subfilters. The use of subfilters will enhance the frequency
selectivity of the transmitting and receiving filters. It can be shown that the
receiving windows in chapter 7 are special cases of this filterbank approach. The
filterbank viewpoint provides an additional insight into the transmitter design
for spectral leakage reduction as well as to the receiver design for interference

suppression.
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8.1 System Model

From section 6.3 and section 6.4, we know that the spectral leakage at the trans-
mitter and the number of subchannels affected by RFT at the receiver depend on
the sidelobes of the transmitting and receiving filters. To have a better frequency
selectivity, we will design the transmitter and receivers using the filterbank repre-
sentation in Fig. 6.3. Employing the polyphase identity [76], we observe that the
transfer function T ;(z) from the i-th transmitter input s;(n) to the k-th signal

yr(n) at the receiver is given by
Thi(2) = [Hi(2)C(2) Fi(2)] |y » (8.1)

where the notation [A(z)];y denotes the N-fold decimated version of A(z). Note
that the DMT system has zero inter-block ‘and .inter-subchannel ISI, and the
transmitter inputs are the same as the réceiver outputs si(n) = $x(n) when there

is no channel noise. As yy(n).= \p8x(n), we-have
Tk,(z) — )\k(S(k' — Z) (82)
Summarizing, we can obtain the following lemma.
Lemma 8.1 Consider the system ‘in Fig-6.3." The transfer function Ty ;(2) from
the i-th transmitter input s;(n) to the k-th signal yx(n) at the receiver is given by
Tk,(z) :)\kd(k‘—i), ng’,iSM—l. (83)
The result holds for any FIR filter C(z) of order L < v. The constant \y, are the
M -point DFT of c¢(n).

So long as the order of C'(2) is not larger than v, the system is free from inter-block
interference and inter-subchannel interference. This means that, if we cascade
another filter before or after the channel, as long as the product of this extra
filter and C'(z) has order no larger than v the overall system remains ISI free. We
will use this observation later to design transmitters and receivers in the following

sections.
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8.2 Receivers with Subfilters

To improve the frequency selectivity of the receiving filters, we introduce the
subfilters Qr(z) to the receiving bank, as shown in Fig. 8.1. With the subfilters,
the k-th effective receiving filter becomes H}(z) = Hg(z)Qk(z); the frequency
responses of the receiving filters are further shaped by the subfilters. The transfer
function from the i-th transmitter input s;(n) to the k-th signal yi(n) at the
receiver becomes

Thi(2) = [Hir(2)(Qr(2)C(2)) Fil2)] iy » (8.4)
which is the same expression as (8.1) except that the channel is replaced by
the composite channel Q(z)C(z). From the result in Lemma 8.1, we know the
system is free from ISI as long as the order of the composite channel is not larger
than v. In particular, T,;(2) is the same as in (8.3) except that the coefficients A

are now the M-point DFT of.the compaosite channel.

Lo 5
4 0,0 ESLA o y”

(n) yM ()

MQM1<2>HHM1<2> e s,

Y

Figure 8.1: The receiving bank with subfilters.

We can choose the subfilters coefficients so that A; remain the same after the

subfilters are included. To have this property, we need
Qi /My = 1 (8.5)

i.e., the k-th DFT coefficient of Qx(z) normalized to one. In the special case
that the subfilters are chosen as shifted versions of the first subfilter, Qx(z) =
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Qo(zWF), then Q1 (e?2™*/M) is equal to Qo(e?°). This means that the FEQ coeffi-
cients remain the same if the DC value of the first subfilter is one. This translates
to the time-domain condition that the sum of the coefficients is one. Suppose

that QQo(2) is a causal FIR filter of order /3, then the condition is

ZQO(”) =L (8.6)

This condition can be easily satisfied by a simple normalization. Therefore we can
design the first subfilter without constraint and then normalize the coefficients
to one. The normalization in (8.6) will be assumed in the following discussions.
Furthermore when the subfilters are shifted versions of the first subfilter, the new
receiving filter becomes Hj(z) = W= H}(2W*). They are also shifted versions
of the new prototype filter H|(z).except for some scalars. We will see below that
in the special case Qx(z) = Qo(2W*), these receiving filters form a DFT bank and
thus can be implemented efficiently as we discussed in chapter 7. The complexity

is almost the same as the conventional DMT system without subfilters.

8.3 Implementation of Receiving Bank with Sub-
filters

The new prototype filter is the product of Qo(z) and the rectangular window
Hy(z) given in (6.16). Let the coefficients of Hy(z) be b;/v/ M and we write it as

v M+p-1

bii.

Hy(z) = (8.7)

We will call b; receiver window coefficients for reasons that will become clear

later. Using the relation Hj(z) = W"*H}(2W"*), we can write the new k-th
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receiving filter as

Zu_ﬁ M+3-1
H(z) = DA U (8.8)
VM S
2V =P
= (1 W) (), (89)
where
1
0 . z
g(z) = 1, Ly |diag (bo b1 -+ barypo1) : : (8.10)
ZM—i'—ﬁ—l

Using the above equation, the new receiving bank h'(z) as indicated in Fig. 8.1
can be written as h'(z) = 2" ®Wg(z): Using this expression and the Noble
identity for decimators [76], we obtain the same implementation as in Fig. 7.2.
This means when the subfilters are chosen as shifted versions of the first subfilter,
the receiver with subfilters is-the same as the usual receiver windowing described
in chapter 7. Thus the windowing technique in chapter 7 can be viewed as a

special case of the subfilter problems'in section 8.2.

8.4 Window coefficients b,

The new prototype filter H)(z) is the convolution of hg(n) and a much shorter
go(n). As ho(z) is a rectangular window, each window coefficient by is a partial
sum of the coefficients of ¢o(n). With the normalization in (8.6), most of the
window coefficients are equal to one, except for those on the two ends. The middle
M — 3 coefficients are equal to one, the remaining coefficients, ( coefficients
on each side, have non-unity values. Fig. 7.1(a) gives an example of window
coefficients. Furthermore, we can verify that the time shifts of b, add up to one,

in particular

> b =1 (8.11)

{=—0c0
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This is known as the time-domain Nyquist property [67, 68]. The subfilter view-
point has the advantage that the time-domain Nyquist property is satisfied in-
herently and the expression can be easily incorporated in the receiving window

design.

8.5 Design of Receiver Subfilters

The frequency selectivity of the receiving filters are important for RFI suppres-
sion. The radio interference is known to be of a narrowband nature. For the
duration of one DMT symbol, it can be considered as a sum of sinusoids. To
analyze the effect of interference, we can apply an interference-only signal v(n)
to the receiver in Fig. 8.1. Suppose there are J interference sources, and the

interference is modeled as

J—1

v(n) = Z 1 cos(wn + 6;). (8.12)
1=0

The interference term at the output of the k-th receiving filter Hj(z) is

J—1
Uk(n) = 3 E 1 [Hlff(ejwl)ej(wm-i-el) + Hl’c(e—ﬂwl)e—J(wm-i-@l)} ) (8.13)
=0

Minimization of interference terms requires the knowledge of 1;, w; and 6;.

First let us consider the case when the information of the interference is
not available. In this case, we can alleviate the effect of interference in the k-
th subchannel by minimizing the stopband of the receiving filters. When the
receiving filters are frequency shifted versions of the prototype, we use the same

objective function as in section 7.4 to design Qy(2).

2T —Ws
on = / | H) (7)) dw. (8.14)

To consider the optimization of the above objective function, we note that Hy(z) is

the product of Qg(z) and Hy(z). We can write its Fourier transform as Hj(e’¥) =
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Hy(e7*)75(w)qo, where qq is an 3 x 1 vector consisting of the coefficients of go(n)
and 7g(w) is the 1 x 8 row vector (1 e ... e77) Therefore, we can write

the stopband energy as
én = q\Baq, (8.15)
where
B— / | Ho(e)27 ()7 5(w) o (8.16)
weOoy,
To avoid a trivial solution, we can fix the energy of the first subfilter to be one,
ngo = 1. The matrix B is always positive definite because the objective function
represents the stopband energy of the prototype filter, which is always positive.
The minimization of the objective function becomes the optimization of the first
subfilter such that the quadratic form.dn (8.15) is minimized. To minimize ¢y, we
can choose qq as the eigen vector associated with the smallest eigen value of B.
Such an approach does not dépend on the RFI statisties or the channel; it has the
advantage that the subfilters need to be designed only once. The subfilters need
not be redesigned when the interference changes. When Q(z) is not constrained
to be frequency shifted version of Qy(z), we can.design Qr(z) to minimize the

stopband energy of H,(z), i.e.,

/

2T —wy )
Orn = / |H,.(e7*)]?dw, (8.17)

/
S

where w! = ws + 2wk /M is the stopband bandedge of the k-the receiving filter.
Let o' = w — 27k /M. Using H(e’*) = Hy(e’)Qr(e’*) and (6.18), we have

2T —ws
Orp = / |H0(6jwl)|2|Qk(€j(wl+27rk/M))|2dW/- (8-18)

Thus the optimal subfilter Q(2) will satisfy Q(2) = Qo(2W*). Therefore, for
the case that the information of the interference sources is not available to the
receiver, the solution of minimizing gfs,m individually is the same as that of mini-

mizing ¢y.
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If the information of the interference sources is available to the receiver, the
subfilters can be individually optimized. The amplitude of the k-th interference
signal ug(n) is a nonlinear function of the k-th subfilter coefficients. To simplify
the problem, note that the interference due to the I-th source will be small if
w2 (|Hj (e7)]? + |Hj (e77*t)|?) is small. The k-th subchannel interference can be

mitigated by designing Qx(z) to minimize ¢y,

J-1

Sk = Y 1 ([Hy (@) + [Hi(e 7)) (8.19)

=0

We can write ¢y, in a quadratic form similar to that in (8.15) and find the optimal
subfilters. Such an optimization requires only the amplitudes and frequencies, but
not the phases, of the interference sources. When the subfilters are so designed,
the receiving bank does not have the DET-bank structure in Fig. 7.2. Nonetheless,
the receiver can be implemented with a much reduced complexity using the sliding
window approach in [76]. When the subfilters @r(z) areshifted versions of Qo(2),
we can design Qo(z) to minimize the total interference », ¢y, (as shown in

section 7.3).

8.6 Transmitter with Subfilters

Similar to the case of the receiving end, we can also introduce subfilters to the
transmitter side to improve the frequency selectivity of the transmitting filters.
Fig. 8.2 shows the transmitting bank with subfilters. Suppose the subfilters are
FIR filters Py (z) with order a. The k-th new transmitting filter is

Fl(2) = Fi,(2) Pi(2). (8.20)

The new transmitting filters are of length N + «, as Fi(z) are of length N. Now
the transfer function from the i-th transmitter input s;(n) to the k-th signal yy(n)

at the receiver (Fig. 6.3) becomes
Tri(2) = [Hy(2)(Pi(2)C(2)) Fi(2)] v (8.21)
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We can also apply the result in Lemma 8.1 here. The overall system remains
ISI free as long as the order of the subfilters « satisfy a + L < v. The transfer
function Tj;(2) is the same as in (8.3), except that now the coefficients A, are the
M-point DFT of pi(n)*c(n). As in the case of receiver windowing, we can choose
the subfilters to be shifted versions of the first subfilter, i.e., Py(2) = Py(zW*).
In this case we can have \; remain the same after subfilters are included by
normalizing the DC value of Py(z) like that in (8.6) (Without loss of generality,
such a normalization will be assumed in the following discussion.) Furthermore,
as we will derive next, the resulting transmitting filters form a DFT bank, which

can be implemented very efficiently.

50— AN o Fo@)_ | Poe)
5,0 —» AN S () Ph@)

sM_l(n)—% AN H Fih(2) H Py 1(2) 4T

Figure 8.2: The transmitting bank with subfilters.
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8.7 Implementation of Transmitting Bank with
Subfilters

Similar to the receiver case, when the subfilters are frequency shifted versions of
the first subfilter, the new transmitting filters are also frequency shifted versions of
the new prototype except for some scalars. In particular, F}(z) = W E}(zW*).

Let the coefficients of the prototype be a;/v M and

1 N+a-1
Fg(z)zﬁ > (8.22)
=0

Like the case of receiver windowing, we call these a; window coefficients. As
there is a frequency shifting relation among the transmitting filters, we can obtain
the coefficients of all the other transmitting filters given the coefficients of the
prototype. Arranging all the transmitting as a row vector, we have the new
transmitting bank f'(z) = (Fg(2) Fi(z) - Fj; (%)) as indiciated in Fig. 8.2.

The new transmitting bank-can be expressed as

F(z) =1 271 2V GEY), (8.23)
where
0 I
-1 v
G(z)z(Do Dlg ) Iy | Wi (8.24)
I, 0

The matrices Dy and D; are diagonal matrices given respectively by
diag (ao a --- aN_l) , and diag (aN aNi1 - aN+a_1) )

Such an expression of the transmitting bank gives rise to the implementation
in Fig. 8.3, where we have used the Noble identity for exchanging LTT filters and
expanders [76] to move G(2V) to the left of the expanders. The coefficients a;
come from convolution of an N-point rectangular window with a much shorter
po(n) of length a. When the sum of the coefficients of pg(n) is normalized to one,
most of the coefficients a; are equal to one. Only the remaining 2« coefficients can

have non-unity values and only for these coefficients multiplications are needed.
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Figure 8.3: Efficient DF'T implementation of the transmitting bank.

Connection with the usual transmitter windowing. Observing the
DFT bank implementation in Fig. 8.3, we see that for each input block, M-point
IDFT is performed, followed by the insertion of cyclic prefix of length v and also
the insertion of suffix of length a.. The resulting vector p(n), as shown in Fig. 8.3,
is of size N +«a. The window coefficients are applied to each vector. Then the last
« samples of the previous block are added to the first o samples of the current

block, as shown in Fig. 8.4. This is the same as the usual transmitter windowing

[49].

output due to the

(i—1)-th block

output due to the

i-th block

(i~1)N

v
(i—1)N+v

M

a
iN

iN

IN+v

Figure 8.4: Time-domain illustration of transmitter windowing.
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8.8 Design of Transmitter Subfilters

For the transmitter side, let us first consider the case when the transmitting filters
are constrained to be shifted versions of one prototype. From the expression in
(6.19), we see that spectral leakage can be minimized by minimizing the stopband
energy of the prototype filter Fj(z). Following a procedure similar to the design
of receiver subfilters, we can write the stopband energy ¢ of the prototype F{j(2)

as

¢; = PhApo, (8.25)

where

A= | Fo (7)) 27! ()T (w)dw. (8.26)

UJEOf
where Oy denotes the stopband of the prototype filter. We can see that ¢; can

be minimized by choosing pg to be the eigenvector associated with the minimum
eigenvalue of A.
Now consider the case when the subfilters are not constrained. The total

spectral leakage is
/ S (jw)dw, (8.27)
WEQy,

where S, (jw) is the transmitted spectrum given in (6.19) and O, denotes the
band in which leakage is undesired. The total leakage can be minimized if we can

minimize the individual contribution ¢ s from each subchannel,

Or.p = / |F}(e7)|*dw, (8.28)
WEOy,

where O,, denotes the bands that are not used. We can write ¢, ¢ in a quadratic
form like that in (8.25) and find the optimal subfilters. In this case the subfilters
do not form a DFT bank, and neither do the new transmitting filters. An efficient

implementation of the resulting transmitting bank can be found in [66].
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8.9 Simulations

Example 1. Receiver Subfiltering—RFI reduction. In this example, we
design the subfilters for RFI reduction at the receiver. The DFT size is M = 512
and cyclic prefix length is v = 40. The order of the subfilters is 3 = 10. The
channel used in this example is VDSL loop#1 (4500 ft) [49]. and the channel
noise is AWGN of —140 dBm. Model 1 differential mode RFI interference is
considered [49]. Four RFI sources are assumed in the simulations, at respectively
660, 710, 770 and 1050 KHz, of strength -60, -40, -70, and -55 dBm, respectively.
The sampling frequency is f; = 2.208 MHz.

We will consider two different subfilter designs. In the first design, the sub-
filters Qx(z) are shifted versions of Qg(z) and only Qo(z) needs to be designed.
The subfilter Qy(z) is the solution to the minimization problem in (8.15). In this
case the receiving filters form'a DFT-bank and the solution is the same as that in
section 7.4. In the second design, the RFI source is known to the receiver and the
subfilters Qr(z) are individually optimized by minimizing the objective function
¢k in (8.19). The SINRs (signal-tornoise-interference ratio) of the subchannels
are as shown in Fig. 8.5. The first case is-labelled ‘DFT bank (chapter 7 )’ while
the second case ‘Subfilters (RFI known)’. For comparison, we have also shown
the subchannel SINRs for the cases of rectangular, Hanning windows, and also
the window from [71]. The receivers with subfilters enjoy higher SINRs for the
tones that are close to the RFI frequencies, especially when the statistics of the
RFT source is known and the subfilters are optimized individually. As a result,
higher transmission rates can be achieved. The transmission rate of the first case
is 7.44 Mbits/sec, and that of the second case is 8.54 Mbits/sec. The transmission
rates for the cases of rectangular, Hanning windows, and [71] are 6.84, 7.16, and
7.27 Mbits/sec, respectively.

Example 2. Transmitter Subfiltering—spectral leakage suppression. The
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Figure 8.5: The subchannel SINRs.

block size M = 512 and prefix. length v = 40.-The order « of the subfilters is
20. First we consider the case when the subfilters are shifted versions of the
first subfilter Py(z) and thus-the transmitting filters form a DFT bank. We form
the positive definite matrix A and compute the eigenvector corresponding to the
smallest eigenvalue to obtain ‘pg..Second we design the subfilters by minimizing
the individual ¢y, ; in (8.28) for each subchannel. The first case is labelled ‘Subfil-
ters (DFT bank)’ while the second case ‘Subfilters’. Fig. 8.6 shows the spectrum
of the transmitter output. The subcarriers used are 38 to 90 and 111 to 255.
The subcarriers with indices smaller than 38 are reserved for voice band and up-
stream transmission, and those with indices between 91 and 110 are for egress
(interference of DMT signals to wireless radio frequency transmission) control.
Also shown in the figure are the output spectrums when the rectangular window
and transmitter window of [64] is used. The transmitter window in [64] requires
no extra cyclic prefix but additional post-processing is needed at the receiver.
We see that the spectrum with the subfilters has a much smaller spectral leakage

in unused bands.
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Figure 8.6: The power spectrum of the transmitted signal.

8.10 Summary

In this chapter, we have presented a filterbank approach to the design of trans-
mitter /receiver by introducing subfilters:” The frequency separation among the
subchannels can be considerably improved. - Better separation among the trans-
mitting filters translates to less spectral leakage in the transmitted spectrum while
better separation among the receiving filters leads to improved RFI suppression.
As these are frequency based characteristics, the filterbank transceiver represen-
tation provides a natural and useful framework for formulating the problem. The
transmitter /receiver designs are converted to simple eigen-problems and closed

form solutions have be obtained.
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Chapter 9

Conclusion

In the first half of the thesis, we considered the problem of designing the transceiver
with bit allocation. In the earlier works, the transceiver were designed for a given
constellation or designed with real-valued bit allocation. In chapter 3, we designed
the zero-forcing transceiver with bit allocation for maximizing bit rate under the
high bit rate assumption. The optimal-transceiver and bit allocation can be
obtained in a closed form using simple Hadamard inequality and the Poincaré
separation theorem. In chapter 4, we designed the MMSE transceiver with bit
allocation for maximizing bit ‘Tate. In this approach, we did not use the high
bit rate assumption. We have shown that the optimal solution diagonalizes the
channel matrix and optimal solution can be obtained by the water-filling solution.
For the rate maximizing problem. In chapter 5, we derived the dualities between
the power-minimizing problem and the rate-maximizing problem with bit alloca-
tion. We considered both the case without the integer bit constraint and the case
when the integer bit constraint is imposed. We have shown that whether the bit
allocation is integer-constrained or not, if a transceiver is optimal for the power-
minimizing problem, it is also optimal for the rate maximizing problem and the
converse is true. We also presented an algorithm to find the optimal solution for
the power-minimizing problem and the rate-maximizing problem with integer bit

constraint.
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In the second half of this thesis, we considered the problems of designing the
transmitting and receiving windows for the multicarrier systems. For the multi-
carrier system, better separation among the transmitting filters translates to less
spectral leakage in the transmitted spectrum while better separation among the
receiving filters leads to improved RFI suppression. In chapter 7, we designed the
receiving wondows for RFT suppression in the multicarrier system. We consider
both the case when the receiver knows the statistics of the interference and the
case when the statistics are not available to the receiver. In both cases the win-
dows are channel independent and can be obtained in a closed form. In chapter 8,
we proposed a filterbank approach to the design of transmitter and receiver by in-
troducing subfilters. The filterbank transceiver representation provides a natural
and useful framework. At the receiver side, we design the subfilters to mitigate
RFT interference. The proposed filterbank approach here is more general. The
design in chapter 7 is the special case of the filterbank approach when the subfil-
ters are constrained to be the frequency shifted version.of the first subfilter. At
the transmitter side, we design the subfilters to minimize the spectral leakage.
The designs of the transmitting and. receiving subfilters are converted to simple

eigen-problems and closed form solutions can be obtained.
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Future work:

e For the transceiver design with integer bit constraint, an exhaustive search
is used to find the optimal solutions. In the future work, it is interesting to

solve the problems with integer bit constraint in a closed form.

e The MIMO channel considered in this thesis is memoryless, in the future

we will consider the case when the MIMO channel has a memory.

e The duality between the power minimization problem and rate maximiza-
tion problem has been proposed in this thesis. In the future we will try
to find the connection between other design criteria, for example, BER

minimization or capacity maximization.
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Appendix A: Proof of Lemma 5.1

Let us consider the system (F,., A,), where F,. is the N x M, matrix obtained by
deleting the columns of F that correspond to the subchannels assigned with zero
power and A, is the M, x M, diagonal matrix obtained by deleting the columns
and rows of A with zero power. The transmit power and bit rate of (F,, A,) is

the same as (F, Ay). Define the new transmitter as
F = oF,, (A-1)

where o > 0 is a scalar. Let us consider the new system (F, A,) and fix the

target error rate to be e. The new transmit power is given by
Tr(FA,FT) = o?*Tx(F,A, F1). (A-2)

So the new transmit power is.a continuous and strictly increasing function of a.
Next we will show the new rachievable bit rate is also a continuous and strictly

increasing function in terms'of . The MSE matrix of the new system becomes

E = [N, 'FIH'HF, +A'] " (A-3)

Let 02 = [A]u and 67 = [E]y. The achievable transmission bit rate is

B= Mil log, (1 + (i — 1) /r). (A-4)

k=0 €k

The derivative of B with respect to « is

0B 1 Mrz‘l —o2 50 052 (A5)
da log.2 &~ 02 5:2+T—1 da’
To derive &ﬁk /dar, we compute the derivative of E with respect to a [40]
5) DRNYG) D
- _E E A-6
Ja Ja (A-6)
— —2aN;'EFIH'HF,E. (A-7)
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We have

95 [OE
Oa {

= 8—@} = —2a Ny Ak, (A-8)

where A = EFIH'HF,E is positive semi-definite and thus [A], > 0. We now
show that the diagonal elements of A can not all be zeros. Suppose [A]gx = 0 for
k=0,---, M, —1. This means all the norms of the columns of HF,E are ZEeros,
ie., HF,E =0. AsE is invertible, HF,E =0 implies HF,, = 0. In this case, no
signal is transmitted and only the noise q is received by the receiver. Therefore,
the diagonal elements of A cannot be all zeros. Substituting (A-8) into (A-5),
we have

g—i 0. (A-9)
Hence the bit rate B of the fiew system is a continuous and strictly increasing

function of «. JAVAVAN
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Appendix B: Proof of Lemma 5.2

Define the set
U={i:0ol >0,0<i<M—1}. (B-1)

From (2.14), we have [E], = 0for I ¢ U or k ¢ U. So (5.3) holds when [ ¢ U
or k ¢ U. We only need to consider (5.3) for I,k € U. Let F, and A, be
the reduced transmit matrix and reduced symbol autocorrelation matrix as we
defined in Section2.2. Suppose the k-th symbol s, corresponds to the my-th
symbol in the system with transmitter F, and autocorrelation matrix A,. For

[ € U, the noise variance afl is given by
0l = [E]ll = [Er]mz,mz = [(N()_lFIHTHFT + qul)_l]mz,ml' (B'2)

The derivative of o7 with respect to o7 s

a 2
ol [aE] = {8ET] ' B3
1) my,my

2 2 2
doz, Jog, Jdo?,

The derivative of E, with respect to o3, is [40].

I, oE, 1

2 T 2
Jos, Jo

Sk

E,. (B-4)

Using (2.16), E, = [N, 'FIH'HF, + A']~!, we have

0 0
OB, !
So we can obtain
OE, _
0o? = 05k4 my, €y s (B_6)
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where e, is the my-th column of E,. Using (B-3) and (B-6), for [ € U we have

Oo?
e —4 T B
8J§k - [Jsk emkemk]ml,ml (B 7)
= 03 Bl (B-8)
=0, |[Elixl” (B-9)

As o *|[E]|* > 0, we conclude that o7, is an increasing and continuous function

of o2 . Using (B-9), we have

0c?
AR (B-10)
Sk

2

which means o7,

is strictly increasing on o2 . The second order derivative of o7,

with respect to o2 is

%o Jo?
ek _ —6_4 —4 . 5 2 e
80’4k =520 0, F 05 20, 80; (B-11)
Sk Sk
o2
=20, 0, (=) (B-12)
Sk

As 02 < o2 for the MMSE receiver; we have

Po?
B <0, (B-13)
dog,
which implies afk is a strictly concave function of afk. ANAN
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Appendix C: Proof of Lemma 5.3

Equalities hold in the power-minimizing problem.

Suppose (F*, A", {b;}) is optimal for .27,,, and the minimized power is P*.
Let {€;} and B* be the symbol error rates and bit rate achieved by the optimal
solution. Then we have € < e and B* > B,. First we show that ¢ = € for all k.
Suppose the ko-th subchannel is assigned with nonzero power 0;*30 > 0 and the
error rate is €, < €. Consider a new system with the same transmitter F* and

bit allocation {b;}, but power allocation is changed to

*2 _
52 _ { aol k= ko, (C-1)

o 02, otherwise.

where 0 < o < 1, to be chosen later. Usingy(2.1), the new transmit power P is

~ M—1
P =% [F1F a6 < P (C-2)

k=0
The bit rate of the new system is still B* as bit allocation is not changed. Next we

will show that there always exists o/ <1 such that the same error rate requirement

will be satisfied, i.e.,

& —4(1 1 735316 < C-3
€ = - 21);/2 Q (21)2 — 1)5‘3k = €. ( - )
Using Lemma 5.2, when a < 1 we have

52 <o fork=0,---,M—1. (C-4)

€L e ?

Using (C-1) and (C-4) we have

5.2 *2
&Qk = *I; for k # k07 (C—5)
€L €L

which implies €, < €; < € for k # ky. For k = k¢, we rearrange the inequality in

(C-3), and the error rate constraint for the ko-th subchannel can be rewritten as

5.2

>y, (C-6)

eko
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where

= (55 [ ()]

— *2 *2 : * *2 %2 . . .
Choose v = o7 / 0%, Since e, < €, we have o7 / o¢. > 7, which implies that

a < 1. Using (C-4) we have

~2 *2
(o o,

kg €k

ko ko

i.e., &, < e. With this choice of «, the new system (F*, {b;}, {62 } ) can achieve
a smaller transmit power P < P* and still satisfy all the constraints in .o7,q,.
This contradicts the assumption that P* is the minimal power when By is given.
Hence we have that € = € for all k. Next we prove that the bit rate B* is equal
to By. Assume the bit rate is

B* >By: (C-8)

Consider a new system with“transmitter F = aF* and A, = A", where a > 0 is
a scalar. For the target error rate e, we know from Lemma 5.1 that the bit rate
of the new system is a strictly increasing and continuous function of a. So we
can properly choose a < 1 such that-the new bit rate B = B,. In this case, the
required power is smaller than P*. This contradicts the assumption that P* is
the minimal power when B is given. Hence the equality in the bit rate constraint
will hold when the design is optimal.

Equality holds in the rate-mazximizing problem.

Suppose (F*, A", {b;}) is optimal for o7 and the maximized bit rate is B*.
Let P* and {e;} be the transmit power and error rates of the optimal solution.
Then we have P* < P, and €, < e. First we show that €; = e for all k. Suppose for
the ko-th subchannel, U:fo >0 and €, < e. From (2.17) we know that the error
rate € is a continuous and increasing function of the number of bits allocated

when SNR (3, is fixed. For the same F* and A", we can increase the number of
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bits allocated to the ky-th subchannel such that the new error rate €, satisfies
€y < Ery < €. (C-9)

The error rates of other subchannels are not affected while a higher bit rate be
achieved. This contradicts the assumption that B* is the maximal bit rate when
the power constraint F is given. Hence we have that €} = € for all k. Now let us

show P* = P,. Assume the transmit power is
P < P,. (C-10)

Consider the new system with transmitter F = aF* and As = A", where o =
\/W > 1. The power of the new system is P = Fy. From Lemma 5.1, the bit
rate of the new system is a strictly increasing function of a, and we have B > B*.
This contradicts the assumption that-B* is the maximal bit rate when the power
constraint P, is given. Hence the power constraint.will hold when a solution is

optimal for o7,.,. JAVAVAN
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Appendix D: Proof of Lemma 5.4

Suppose (F*, {022}, {b}}) is optimal for @ it Let €} be the error rate on the
k-th subchannel of the optimal system. Then €} is given by

1 305
i=1(-zm)o( |z s) o

where the k-th SNR f; = 0.2 /0%? — 1 as the receiver is MMSE. The minimized

power P* is given by

M-1
P S D)
k=0
where U;f = [As"]gx. The bit rate B* is B* = ,]nggl b;. Using the technique in

the proof of Lemma 5.3, we can showthat € = € for all k. But the technique

does not work for property B* = By and a different proof is needed. Suppose

B* > By, (D-3)

*2

Suppose o > 0 and by, > O-for some ko-th-subchannel. Consider a new system

with the same transmitter F* “but.the bit allocation is changed to

s ] by, =L k= ko,
b = { bz(j otherwise, (D-4)

and power allocation is changed to

52 :{ aaSk . k= ko, (D-5)

Sk 0:?,  otherwise.

where 0 < a < 1 and « will be chosen later. The bit rate of the new system is
B = B* —1 > B,. The transmit power P of the new system is smaller than P*

because

M-1 M-1
P=> [FTF o2 < Y [FTF|uor = P~ (D-6)
k=0 k=0

Next, we will show that with appropriate choice of a, the error rate €; of the new

system still satisfies the error rate constraint in @, int. Using (2.17), & is can
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be expressed as

where 3 = 62, /52 — 1. Observe that the symbol error rate ¢ of the new system
will be smaller than €} if the quantity in the Q function of (D-8) is larger than
or equal to that in the Q function of (D-1), i.e.,

1 (a2 1 (o
[ [

When a < 1, using Lemma 5.2 we have

52 <o?ifork =0 M —1. (D-10)

€ — Er?

For k # ko, using (D-4), (D-5), and (D-10), -we have

1 o2 1 o2
ik ) e ) (b1
€L €k

which implies €, < €; = € for k' koo For k'="kj, we can always find o < 1 such

that (D-9) is satisfied. For example, we can choose

1 ko — 1
o= 14+ — s, D-12
ﬁzo + 1 < 2bk0 . 161@) ( )

x B
It can be verified that 1 —a = fko 1-— 2;0_1 > 0. So we have a < 1. In this
Prott 2 ko —1

case, we have
~2 *2 *2

s, aoy: oy 9bry 1

0 _ 0 0 _ *

2 T 52 > — =1+ 721720 1ﬁk0. (D-13)
eko eko eko -

Rearranging (D-13), we can see that (D-9) is satisfied for k = ky. Therefore, we
have €, < e; = € for all k. This means (F*, {52 }, {br}) can achieve a smaller
transmit power and still satisfies all the constraints in 7,4y, ;. This contradicts
the assumption that (F*, {b;}, {0:}) is optimal for 7eu,in:. Hence the total bit
rate B* of the optimal MMSE system must be equal to By. ANAN
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