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Abstract

The continuously:scaled electronic devices encounter not only the extra quantum
confinement (no matter from the field confinement or from the space confinement)
but also the complicated mechanical stresses (no matter ~the intentional or
unintentional stressors along the arbitrary directions). Both of these two phenomena
cause the crucial impacts on the valence-band structure 'which can greatly alter the
hole electrical properties. In‘other words, these lead to the extra complexities and the
heavy computation burden in the theoretical work. Since the evaluation of the hole
electrical properties such as hole mobility fully rely on the valence subband structures,
with no surprise the precise and fine quality of valence subband structures are
urgently required to achieve the satisfactory calculations. With the six-band &k - p
Schrodinger-Poisson self-consistent method this dissertation will focus on the hole
electrical properties in p-type inversion layer of the electronic devices via the
self-developed simulator, p-NEP (abbreviation of p-type Nano Electronics Physics).

The main purpose of the dissertation is to investigate the hole electrical



properties in silicon inversion layer beneath on the significant quantum confinement
and the complicated mechanical stresses. Based on this main topic, the organization of
this dissertation is described below.

First, an introduction to the valence band structures in p-type inversion layer is
described. Then, the dissertation is focused on the numerical techniques and physical
models of p-NEP. However, according to the algorithm of p-NEP, the CPU time is
extraordinarily long. To overcome the issue, we present a novel computational
accelerator to intrinsically boost a self-consistent six-band k& < p Schrodinger-Poisson
simulation. This accelerator comprises-a-triangular potential based six-band % * p
simulator, a hole effective mass approximation (EMA) technique, and an electron
analogue version of the self-consistent Schrédinger and Poisson’s equations solver.
The outcome of the accelerator furnishes “the initial solution of the confining
electrostatic potential and 1s likely to be close to the realistic one, valid for different
temperatures, substrate doping concentrations, inversion hole densities, and surface
orientations. The results on, (001) and (110) ‘substrates  are supported by those
published in the literature. The overall CPU time is reduced down to around 8% of
that without the accelerator. The application of the proposed accelerator to more
general situations is projected as well.

Secondly, according to three distinct sets of the bulk oriented Luttinger
parameters vyi, 2, and ys, the validity of the bulk oriented Luttinger parameters in the
six-band k - p Schrodinger-Poisson self-consistent method is confirmed. With the the
bulk oriented Luttinger parameters, the realistic hole subband structures in (110)
p-MOSFETs can be well reproduced in comparison with the recent Shubnikov-de
Haas (SdH) oscillation experiment by Takahashi, et al.

Thirdly, the hole mobility change for GPa-level uniaxial stresses along each of



three crystallographic directions are distinguished into four contributing componds: (i)
phonon-limited, (ii) surface-roughness-limited, (iii) scattering-time-limited, and (iv)
conductive-mass-limited mobility changes. It is also dedicated to three key
strain-related material parameters, namely the Bir-Pikus deformation potentials a,, b,
and d, which are widespread in magnitude. To improve such large discrepancies, we
conduct sophisticated calculations on <110>/(001) and <110>/(110) hole
inversion-layer mobility. We find that, to affect the calculated hole mobility
enhancement, a, is weak, b is moderate, and d is strong, particularly for the uniaxial
compressive stress along the <110> .direction. This provides guidelines for an
experimental determination of the primary factor; d, and the secondary factor, b, with
the commonly used values for a,. The user interface (UI) and.simulation process of
p-NEP are further demonstrated. The resulting subbnad structures, threshold voltage,
capacitance, and ‘gate direct tunneling current are all addressed. Finally, we

summarize the conclusions of our works.

Keyword: quantum confinement, mechanical stress, valence-band structure, six-band

k + p Schrodinger-Poisson self-consistent method, Luttinger parameters, Bir-Pikus

deformation potentials, hole mobility.
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Table Captions

Chapter 2

Table 2.1 The function list of p-NEP. The stress conditions in (111) wafer
orientation have not been completed.

Table 2.2  The operational range list of p-NEP. Note that the operational
range is not equal to the limitation range. The operational range
in this table has been verified by the convergent error and

reasonable outputs.
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Table 4.1 The list of the widely used bulk oriented Luttinger parameters
mentioned in the Lawaetz's ~and Humphreys's published

literatures[2], [3].

Chapter S

Table 5.1 List of scattering parameters and Bir-Pikus potentials used in
Section 5.2 and 5.3. Notice that the scattering parameters used in
Section 5.2 and 5.3 are assumed to be independent of the Bir-Pikus

potentials a,, b, and d.
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Table 5.2 List of the modified scattering parameters and Bir-Pikus potentials 99
used in Section 5.4.
Table 5.3 Material parameters used in Section 5.4. y;, y;, and y; are 100
Luttinger parameters; a,, b, and d are the Bir-Pikus potentials; dj
is the optical deformation potential; Agiop 1s the split-off hole
energy; cys, ci2, and cyy are the elastic coefficients; p and ay are
the crystal density and lattice constant of silicon; v; and v, are

the longitudinal and transverse sound velocity.
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Figure Captions

Chapter 1

Fig. 1.1 Constant energy surfaces of heavy-hole, light-hole, and split-off-hole
bulk valence bands in k-space at E-Er=25 meV.

Fig. 1.2 Comparison of existing algorithms [6]-[11], e.g. the constant
effective mass as the conduction band counterpart, the six-band £ « p
method, and the pseudopotential method in. combination with the
Monte Carlo numerical-technique, the iterative numerical technique,
or the analytical triangular potential technique.

Fig. 1.3 Demonstration of the trade-off of the calculation efficiency and

precision between above-mentioned algorithms.

Chapter 2

Fig. 2.1(a) Calculated intra-subband surface roughness scattering rate along
the different k-direction of the first subband of (001) substrate with
the longitudinal -1 GPa stress. The obvious angular dependence can
be found in both cases.

Fig. 2.1(b) Calculated intra-subband surface roughness scattering rate along
the different k-direction of the first subband of (110) substrate with

the longitudinal -1 GPa stress. The obvious angular dependence can
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be found in both cases.

Fig. 2.3 The Bir-Pikus deformation potential parameters are set as a,~ 2.46,
b= -2.1, and d= -4.85, showing the corresponding stress-strain
relationships under three-dimensional stresses on (001) p-MOSFET.

Fig. 2.4 The Bir-Pikus deformation potential parameters are set as a,~ 2.46,
b= -2.1, and d= -4.85, showing the corresponding stress-strain

relationships under three-dimensional stresses on (110) p-MOSFET.

Chapter 3

Fig. 3.1 The flowchart of the simulation methodology in the inversion layer
of pMOSFET. The -methodology consists of two parts: the
computational acceleration part in order ‘to enhance the
convergence speed and the self-consistent part in order to certify
the tolerable error. The green. blocks refer to' the simulation
methodology and the turquoise blocks refer to the outputs from the
upper level simulator.

Fig. 3.2 The calculated hole quantization effective masses and DOS effective
masses versus initial surface field in the simulation flowchart in
Fig. 3.1.

Fig. 3.3 The calculated hole quantization effective masses and DOS effective
masses versus initial surface field for different temperatures of 77,
153, and 300 K in the simulation flowchart in Fig. 3.1.

Fig. 3.4 Calculated (symbols) hole subband energy levels versus inversion

carrier density on (001) surface. The solid lines come from De
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Michielis, et al. [6] for comparison.

3.5(a) Calculated (symbols) hole subband energy levels versus surface
field on (001) substrate. The solid lines come from Low, et al. [§]
for comparison.

3.5(b) The corresponding surface potential versus surface field.

3.6(a) Simulated DOS function for the first subband on (001) substrate
in our work. The red and green solid lines are produced from the
Cartesian and polar coordinate systems, respectively. The dotted
line comes from [8] from comparison.

3.6(b) Simulated DOS. function for the total subbands.on (110) substrate.
The red and green solid lines are produced from the Cartesian and
polar coordinate systems, respectively. The dotted line.comes from
[6].

3.7(a) Comparison of the CPU time between the accelerator enhanced
methodology and the fully self-consistent methodology without the
accelerator on< (001) substrate. The inserted figure shows the
corresponding electrostatic potential profiles.

3.7(b) Comparison of the CPU time between the accelerator enhanced
methodology and the fully self-consistent methodology without the
accelerator on (110) substrate. The inserted figure shows the
corresponding electrostatic potential profiles.

3.8 Computational enhancement factor on (001) substrate versus the
substrate doping concentration under the same inversion hole
density of 1x10" cm™. Also shown are the corresponding CPU
time with and without the accelerator.
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Fig. 3.9 The convergence quality on (001) substrate versus surface field at

77, 153, and 300 K. The convergence conditions in this work are:
(i) below 1% error for the surface field and (ii) 10* V maximum

error for the confining electrostatic potential profile.

Fig. 3.10 Comparison of the convergence quality having no Gummel

iteration and that with the additional Gummel iteration, plotted as a

function of the inversion hole density on (001) substrate at 300 K.

Fig. 3.11 Comparison of the experimental gate capacitance versus gate

voltage curves [13] and those (enly in weak inversion and strong
inversion region) simulated with the convergence criterion of 107
V for the confining potential. From the HRTEM image [13], the
nominal physical gate oxide thickness is 1.89 nm. However, in the
simulation, three different physical gate oxide thicknesses were
used to testify the validity of the chosen convergence. criterion in

this work.

Fig. 3.12 The calculated hole quantization effective masses and DOS

effective masses versus initial surface field under unstressed and
longitudinal -1 GPa stresses through the modified Eq. (3.4.1). The
subbands are simply sorted by the most occupied hole type
(heavy-hole-like, light-hole-like, and split-off-hole-like) in each

subband.

Chapter 4

Fig. 4.1 Illustration of the experimental criteria [4] in the presence of
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density-of-states functions under two bias conditions, Val and V!
with 3 x 10%® cm™ substrate doping (Nap) at 2 K. The abrupt
Fermi distribution can ensure the proper switching.

Fig. 4.2 Low-temperature validity of p-NEP preliminarily confirmed by the
simulated capacitance at 50 K by Schred [5] which adopts the
constant mass self-consistent Schrddinger-Poisson method.
Although the different methods of band structure calculations are
made between Schred and our work, both self-consistent results still
can offer a preliminary comparison.

Fig. 4.3 Low temperature validity of p-NEP preliminarily confirmed by the
experimental hole effective mobility [6] at 77 K and 300 K.

Fig. 4.4 The situation with %"’ and 3’ represented by the subband
energies and Fermi level versus gate volatge with 3 X 10'® cm™
substrate doping (Nsub) and 6 nm oxide thickness of Si0, at 2 K. The
simulation résults are: Kk (Cevc W13 V, Vol ©a)i=.23 V and
N,V ey = 37%10'%2 cm? The ccalculated Vy” ©“ and
NS(C"“ ( VthH) are closed to the experimental values [4].

Fig. 4.5 The impact of y; modulation on subband minimum of (110)
p-MOSFETs. The triangular potential approximation is used to

3 substrate

efficiently quantify this impact with 3 X 10 cm’

doping (Nsw) and fixed 0.25 MV/cm surface field (Fj).
Fig. 4.6 The impact of y, modulation on subband minimum of (110)

p-MOSFETs. The triangular potential approximation is used to

3

efficiently quantify this impact with 3 X 10'® cm™ substrate

doping (Nsup) and fixed 0.25 MV/cm surface field (Fy).
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Fig. 4.7 The impact of y; modulation on subband minimum of (110)
p-MOSFETs. The triangular potential approximation is used to
efficiently quantify this impact with 3 x 10'® cm™ substrate
doping (M) and fixed 0.25 MV/cm surface field (F).

Fig. 4.8 The impact of y; modulation on subband minimum of (001)
p-MOSFETs. The triangular potential approximation is used to
efficiently quantify this impact with 3 x 10'® cm™ substrate
doping (M) and fixed 0.25 MV/cm surface field (F).

Fig. 4.9 The impact of y, modulation -on. subband minimum of (001)
p-MOSFETs. The ‘triangular potential “approximation is used to
efficiently quantify this impact ‘with” 3 x 1016 cm™ substrate
doping (Ngip)-and fixed 0.25 MV/em surface field (Fy).

Fig. 4.10 The impact of y3 modulation on subband minimum of (001)
p-MOSFETs. The triangular potential approximation.is used to
efficiently quantify . this {impact with® 32x 10'® cm” substrate
doping (M) and fixed 0.25 MV/cm surface field (Fy).

Fig. 4.11 The calculated (001)total density-of-states functions using the three
different sets in Table 4.1 for a triangular potential with F=1
MV/em at 300 K.

Fig. 4.12 The calculated (110) total density-of-state functions using the three
different sets in Table 4.1 for a triangular potential with F=1
MV/cm at 300 K.

Fig. 4.13 Comparison of calculated <110>/(110) hole mobility due to phonon
and surface roughness scattering with the Luttinger parameters from
Hensel [3] with the experimental <110>/(110) hole effective
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mobility [8] at 50, 200, and 300 K.

Fig. 4.14 Comparison of calculated <110> and <001>/(110) hole mobility
due to phonon and surface roughness scattering with the Luttinger
parameters from Hesel [3] with the experimental hole effective
mobility data [8] at 2K. Interface-trap- and ionized-impurity-limited
hole mobility (empirical fitting) are involved in calculation using
Matthiessen's rule. Note that the rms height of the amplitude of the
surface roughness A is extracted to be 0.25 nm here which differs
from the value in Fig. 4.13.

Fig. 4.15 Calculated density-of-states effective masses using the y set from

Hesel [3] with 3% 1016 cm™ substrate doping (M) at 2 K and 0 T.

The direct comparison with the measured cyclotron effective masses

is shown.

Chapter 5

Fig. 5.1 Calculated 3-D uniaxial stress dependence of hole inversion-layer
mobility change for different deformation potentials on (001)
substrate. Comparison is done with other groups [8], [9]. The
Bir-Pikus potentials a,=2.1 eV, b=-1.6 eV, and d=-2.7 eV are cited
to the values in [6].

Fig. 5.2 Calculated 3-D uniaxial stress dependence of hole inversion-layer
mobility change for different deformation potentials on (110)
substrate. Comparison is done with other groups [8]. The Bir-Pikus

potentials a,=2.1 eV, b=-1.6 eV, and d=-2.7 eV are quoted to the
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Fig.

Fig.

Fig

Fig.

Fig.

Fig

Fig.

53

54

values in [6].

The device structures for (001) and (110) p-MOSFETs. The
channel direction and applied stress direction are clarified. Here,
three-dimensional  in-plane  longitudinal, transverse and

out-of-plane stress are involved in this dissertation.

Mobility enhancement under longitudinal stress for different
mobility components such as phonon- and
surface-roughness-limited ones at E. = 1.1MV/cm in (001)
p-MOSFET.

. 5.5 Mobility enhancement under transverse stress for different mobility

5.6

5.7

components _such as phonon- and surface-roughness-limited ones
at Eegr = 10IMV/cm in(001) p-MOSFET.

Mobility ‘enhancement under out-of-plane stress for different
mobility components such as phonon- and
surface-roughness-limited ones at® Eir = 1.1MV/em in (001)
p-MOSFET.

Mobility enhancement under. longitudinal stress for different
mobility components such as phonon- and
surface-roughness-limited ones at E.y = 1.2MV/ecm in (110)

p-MOSFET.

. 5.8 Mobility enhancement under transverse stress for different mobility

59

components such as phonon- and surface-roughness-limited ones
at Ecr = 1.2MV/cm in (110) p-MOSFET.

Mobility enhancement under out-of-plane stress for different
mobility components such as phonon- and
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Fig

Fig.

Fig.

Fig.

Fig

Fig

Fig

Fig

surface-roughness-limited ones at E.y = 1.2MV/cm in (110)

p-MOSFET.

. 5.10 The error of Matthiessen's rule for three-dimensional uniaxial

5.11

5.12

5.13

stresses at E¢r= 1.1MV/cm in (001) p-MOSFET.

The error of Matthiessen's rule for three-dimensional uniaxial
stresses at E¢r = 1.2MV/cm in (110) p-MOSFET.

Average scattering time and the extracted conductivity effective
masses for three-dimensional wuniaxial stresses in (001)
p-MOSFET at Ecr = 1.1MV/em.

Average scattering time and the extracted conductivity effective
masses for three-dimensional uniaxial stresses in (110)

p-MOSEET at Ec =1.2MV/cm.

. 5.14 The ratio of total mobility, average scattering time, reciprocal of

conductivity effective mass and density-of-states effective mass
under longitudinal stress in (001) p-MOSFET: at E.s =

1.1MV/cm.

. 5.15 The ratio of total mobility; average scattering time, reciprocal of

conductivity effective mass and density-of-states effective mass

under transverse stress in (001) p-MOSFET at E¢r= 1.1MV/cm.

. 5.16 The ratio of total mobility, average scattering time, reciprocal of

conductivity effective mass and density-of-states effective mass
under out-of-plane uniaxial stress in (001) p-MOSFET at Ec =

1.1MV/cm.

. 5.17 The ratio of total mobility, average scattering time, reciprocal of

conductivity effective mass and density-of-states effective mass
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Fig

Fig

Fig

Fig.

Fig.

Fig.

Fig

under longitudinal uniaxial stress in (110) p-MOSFET at Eg =
1.2MV/cm.

. 5.18 The ratio of total mobility, average scattering time, reciprocal of
conductivity effective mass and density-of-states effective mass
under transverse uniaxial stress in (110) p-MOSFET at E.¢ =
1.2MV/cm.

. 5.19 The ratio of total mobility, average scattering time, reciprocal of
conductivity effective mass and density-of-states effective mass
under out-of-plane uniaxial stress in (110) p-MOSFET at Eq =
1.2MV/cm.

. 5.20 Calculated heavy-hole-like valence subband structures under the
out-of-plane quantum confinement in the presence of longitudinal,
transverse, out-of-plane stresses  on® (001) and (110) wafer
orientations.

5.21 Calculated <110> hole inversion-layer. mobility change, from
[6]-[9] and this work, plotted versus <I110> uniaxial stress on
(001) substrate.

5.22(a) Calculated 3-D wuniaxial stress dependence of hole
inversion-layer mobility change for (001) substrate.

5.22(b) Calculated 3-D uniaxial stress dependence of hole
inversion-layer mobility change for (110) substrate.

. 5.23 Calculated hole inversion-layer mobility enhancement values at
two uniaxial compressive stresses for the reference deformation
potentials and six different conditions (Cl1 to C6). The inset

shows calculated DOS of 2 lowest subbands for C5 and C6é6.
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Fig. 5.24

Flowchart showing the establishment of the guidelines with the
mutual coupling between the Bir-Pikus deform potentials and D,

taken into account.

Fig. 5.25 Comparison of experimental hole inversion-layer effective mobility

Fig. 5.26

Fig. 5.27

Fig. 5.28

(symbols) [21] and calculated hole universal mobility (lines)
versus vertical effective electric field. The scattering parameters
used are listed in Table 5.2 and apply to both (001) and (110)
substrates.

Experimental (symbols).<l10>.hole inversion-layer mobility
enhancement [10],[11] versus <110>"uniaxial compressive stress
on (001) substrate. Calculation results in this work (lines) are
shown for comparison. The inset depicts the case of biaxial stress
with the experimental data from [23],[24].

Comparisons of the calculated hole inversion-layer mobility
change between the varying range of rms height of the surface
roughness from 0.3 to 0.5 nm on (00l) substrate with the
interesting longitudinal compressive stress.

Comparisons of the calculated hole inversion-layer mobility
change between the exponential and Gaussian autocovariance
function with and without the screening effect on  (001)

substrate with the interesting longitudinal compressive stress.

Chapter 6

Fig. 6.1

The basic structure of the simulator p-NEP.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig

Fig

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

The UI for the main program of p-NEP in Fig. 6.1.
The UI for the hole inversion-layer mobility program of p-NEP in
Fig. 6.1.
The UI for the hole gate direct tunneling program of p-NEP in Fig.
6.1.
The UI for the threshold voltage and capacitance programs of
p-NEP in Fig. 6.1.
The calculated subband levels based on the the six-band k - p
triangular potential approximation versus the longitudinal stress in
the (001) p-type silicon inversion layer.
The calculated subband occupancy based on the the six-band k£ - p
triangularpotential approximation versus the longitudinal stress in
the (001) p-type silicon inversion layer. The calculation conditions
are the same as in Fig. 6.6.
The calculated subband structures “along k<;;9- based on the the
six-band k& °_p triangular potential approximation versus the
longitudinal stress in the (001) p-type-silicon inversion layer. The
calculation conditions are the same as in Fig. 6.6.
The fully-iterated (by the six-band k ¢ p Schrodinger-Poisson
self-consistent method) energy contours of the first subband in

(001) silicon p-type inversion layer.

. 6.10 The fully-iterated (by the six-band k ° p Schrodinger-Poisson

self-consistent method) energy contours of the first subband in

(001) germanium p-type inversion layer.

. 6.11 The fully-iterated (by the six-band k ¢ p Schrodinger-Poisson
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Fig.

Fig.

Fig.

Fig.

Fig

Fig

Fig

self-consistent method) energy contours of the first subband in
(001) gallium arsenide p-type inversion layer.

6.12 The fully-iterated (by the six-band k < p Schrodinger-Poisson
self-consistent method) group velocity along k<;;9- overall k-plane
of the first subband in (001) silicon p-type inversion layer.

6.13 The fully-iterated (by the six-band k < p Schrodinger-Poisson
self-consistent method) group velocity along k<;;9- overall k-plane
of the first subband in (110) silicon p-type inversion layer.

6.14 The fully-iterated (by the six-band k£ - p Schrédinger-Poisson
self-consistent method) acoustic phonen, optical phonon, and
surface roughness scattering rate of the first subband in (001)
silicon p-type inversion layer.

6.15 The fully-iterated (by the six-band & < p Schrodinger-Poisson
self-consistent method) acoustic phonon, optical phonon, and
surface roughness scattering rate of the: first subband in (110)

silicon p-type inversion layer.

. 6.16 The unstressed (001) and (110) hole inversion-layer mobility with

and without screening effect with Ng,=1el7 cm” at Temp. =300

K.

. 6.17 The calculated unstressed hole gate direct tunneling current density

are found in the satisfactory agreements with the experimental data

of the different oxide thicknesses [1].

. 6.18 The unstressed capacitance versus gate voltage are compared with

the experimental data from [2] where the stressor originated from

the selective fully silicided (FUSI) gate.
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ig. 6.19 The stressed capacitance versus gate voltage are compared with the 153
experimental data from [2] where the stressor originated from the
selective fully silicided (FUSI) gate.

ig. 6.20 The calculated hole gate direct tunneling current density and 154
capacitance are drawn simultaneously with the varying poly-gate

doping concentrations. The other parameters came from the table
(poly-gate) in Fig. 6.19.

ig. 6.21 The calculated hole gate direct tunneling current density and 155
capacitance are drawn simultaneously with the varying stress
conditions. The other parameters came from the table (poly-gate)

in Fig. 6.19.

ig. 6.22 The calculated hole gate direct tunneling. current density and 156
capacitance are drawn simultaneously with the varying metal-gate

work functions. The' other parameters. came from. the table

(FUSI-gate) in Fig. 6.19.
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Chapter 1

Introduction to Valence-Band Structure in

p-type Inversion Layer

1.1  Overview

As widely recognized, the method of so-called "effective mass theory" can
describe the carriers-moving in the perturbed periodic crystal field by introducing a
mass tensor into Schrodinger equation. Through the ‘cyclotron résonance experiments
[1],[2],[3], the mass tensors of conduction band and valence band can be determined
with some accuracy. However, different conduction and valence bands in diamond
and zinc blende structure semiconductors such as silicon are found: (i) the top valence
band locates at the " point of the first Brillouin zone, in contrast to the conduction
band minimum near the first Brillouin zone edge along <100> directions, and (ii)
within the perturbed energy range around I' point, the conduction band structures
have the more perfectly parabolic property than the obviously anisotropic and
non-parabolic properties existing in the valence band structures as shown in Fig. 1.1
for heavy-, light-, and split-off-hole bands. Furthermore, the extra degeneracy at I
point and the spin-orbit coupling, or even the applied mechanical strain all bring the
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additional complexities in the valence band structures. In order to deal with the above
complexities in the realistic valence band structures, Luttinger and Kohn [4] and Bir
and Pikus [5] separately proposed the experiment associated Luttinger six-band & - p
Hamiltonian and Bir-Pikus deformation potentials which importantly push forward
the theoretical study on the strained valence band structures of diamond and zinc
blende structure semiconductors.

Nowadays, the highly scaled electronic devices encounter not only the extra
quantum confinement (no matter from the field confinement or from the space
confinement) but also the complicated mechanical stresses (no matter the intentional
or unintentional stressors from arbitrary directions). Both of these two phenomena
cause the crucial impacts on the valence band structures which greatly alter the hole
electrical properties.:In other words; these lead to the extra complexity and the heavy
computation burden in the theoretical work: To conclude the existing calculation
methods to deal with the subband structure (due to the extra quantum confinement) in
p-type inversion layer, Fig. 1.2 addresses several algorithms [6]-[11], e.g. the constant
effective mass as the conduction band counterpart, the six<band £ - p method, and the
pseudopotential method in combination with-the Monte Carlo numerical technique
[12], the iterative numerical technique [13], even or the analytical triangular potential
technique. Then, we systematically explain the trade-off between these algorithms
with the calculation efficiency and precision in Fig. 1.3. Since the evaluation of the
hole electrical property such as hole mobility fully relies on the valence subband
structures, with no surprise the precise and fine quality of valence subband structures
are urgently required to achieve the satisfactory calculations. With the six-band & * p
Schrodinger-Poisson self-consistent method as originally demonstrated by Bangert,
von Klitzing and Landwehr [6] and by Ohkawa and Uemura [7], this dissertation will
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focus on the hole electrical properties in p-type inversion layer of the electronic

devices via the self-developed simulator, p-NEP.

1.2  Dissertation Organization

The main purpose of the dissertation is to investigate the hole electrical
properties of the silicon inversion layer beneath in the presences of both the
significant quantum confinement and the complicated mechanical stresses. Based on
this main topic, the organization of this dissertation is described below.

First, an introduction to the-valence band structures in p-type inversion layer is
described in Chapter 1. Then, Chapter 2 of the 'dissertation is focused on the
numerical techniques and physical-models of p-NEP. About the numerical technique,
the six-band k ¢ p Schrodinger-Poisson self-consistent method is used to obtain the
precise valence subband structures, inversion carrier distribution, and self-consistent
potential profile. Concerning the physical models, (i) the phonon scattering rate,
surface roughness scattering rate, and Kubo-Greenwood formula are used to achieve
the elaborate transport calculation; (ii) the WKB approximation method is used to
evaluate hole gate direct tunneling; and (i11) because of the highlighted three
dimensional mechanical stresses in the dissertation, the stress-to-strain tensor is
included as well. In general, p-NEP is a flexible simulator containing the functions of
above calculations with the alternative materials (silicon, germanium, and gallium
arsenide), the alternative wafer orientations ((001), (110), and (111)), the alternative
temperature conditions (2K to 400K), the alternative stress conditions (GPa-level
uniaxial and biaxial stresses), and the alternative substrate doping concentrations
(1x10" to 6x10'® cm™).

However, according to the algorithm of p-NEP, the computation burden is still
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extremely heavy to remain the tolerable computation error. Thus, Chapter 3 presents a
novel computational accelerator to intrinsically boost the self-consistent six-band
k + p Schrodinger-Poisson simulation. This accelerator comprises a triangular
potential based six-band k + p simulator, a hole effective mass approximation (EMA)
technique, and an electron analogue version of the self-consistent Schrodinger and
Poisson’s equations solver. The outcome of the accelerator furnishes the initial
solution of the confining electrostatic potential and is likely to be close to the realistic
one, valid for different temperatures, substrate doping concentrations, inversion hole
densities, and surface orientations. The results on (001) and (110) substrates are
supported by those published in the literature. The overall CPU time is reduced down
to around 8% of that without the accelerator. The application of the proposed
accelerator to more general situations is projected as well.

Secondly, according to three distinct sets of the bulk oriented Luttinger
parameters yi, V2, and ys, the validity of the bulk oriented Luttinger parameters in the
six-band & - p Schrodinger-Poisson self-consistent method is confirmed in Chapter 4.
With the bulk oriented Luttinger parameters, the realistic hole subband structures in
(110) p-MOSFETs can be < well “reproduced’ in comparison with the recent
Shubnikov-de Haas (SdH) oscillation experiment by Takahashi, et al.

Thirdly, the hole mobility change for GPa-level uniaxial stresses along each of
three crystallographic directions are distinguished into four contributions: (i) the
phonon-limited, (ii) the surface-roughness-limited, (iii) the scattering-time-limited,
and (iv) the conductivity-effective-mass-limited mobility changes in Chapter 5. In the
same chapter, it is also dedicated to three key strain-related material parameters,
namely the Bir-Pikus deformation potentials a,, b, and d, which are widespread in
magnitude. To improve such large discrepancies, we conduct sophisticated
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calculations on <110>/(001) and <110>/(110) hole inversion-layer mobility. We find
that, to affect the calculated hole mobility enhancement, a, is weak, b is moderate,
and d is strong, particularly for the uniaxial compressive stress along the <110>
direction. This provides guidelines for an experimental determination of the primary
factor, d, and the secondary factor, b, with the commonly used values for a,. In
Chapter 6, the user interface (UI) and simulation process of p-NEP are demonstrated.
The resulting subbnad structures, threshold voltage, capacitance, and gate direct
tunneling current are discussed. Finally, in Chapter 7 we summarize the conclusions

of our works.
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Simulation in p-type inversion layer
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Fig. 1.2 Comparison of existing algorithms [6]=[11]; e.g. the constant effective mass
as the conduction band counterpatt, the six-band & - p method, and the pseudopotential
method in combination with the Monte Carlo numerical technique, the iterative

numerical technique, or the analytical triangular potential technique.
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Chapter 2

Simulation Tool: p-NEP

2.1 Introduction

Herein, we williintroduce our self-consistent solver, named as p-NEP, of coupled
Poisson and Schrodinger’s equations in a six-band k * p valence-band structure. It can
apply to different surface orientations suchas (001), (110), (111),.and (11x) in general.
And the strain Hamiltonian has already been incorporated into the solver. In Section
2.2, the detailed numerical techniques of p-NEP will be explained. Next, the physical
models in order to calculate hole inversion mobility and gate direct tunneling current
beneath under different stress conditions will be displayed in Section 2.3. Finally, the

functions and operational range of p-NEP will be discussed and listed in a table.

2.2  Numerical Techniques

2.2.1 Time-independent Schrodinger and Poisson’s Equations:

Matrix Techniques

11



It is well-recognized that the time-independent Schrodinger equation in the quantum
mechanics can be expressed in terms of a matrix equation:
hZ

-——VY¥Y+VY=EY¥Y . (2.2.1.1)
2m

This approach is widely adopted in the band-structure simulation when it is focused
on bound or quasi-bound states in a spatially varying potential J inside the highly
scaled semiconductor devices. Let us assume that the wave-function ¥ 1is confined
in a small region of W. We divide this region into ¢ intervals of the equal-distance

Ax =W /(. The ithmesh point is indexed as x;. In general, the wave-function ¥ we

are looking for can be expanded by an orthogonal basis set {i, }

Y=>ay, , 22.1.2
AW

where the y, is the normalized-wave-function at the mesh point x, and the existing
probability of y, “is exactly zero outside the interval n. According to Eq. (2.2.1.1),

the Schrodinger equation in the confined direction can be written numerically as

_h_z[‘P(x—Ax)—2‘P(x)+‘P(x+Ax)
2m A

J+V ()Y (x) =EY(x). (2.2.1.3)

Substituting Eq. (2.2.1.2).into Eq. (2.2.1.3), we get a set of /¢ equations (we are
assuming aq, =a,,, =0, i.e., the wave-function 1s localized in the space W). After

taking the outer product of v, v,, v,, ...y, ,the matrix form of the one dimensional

Schrédinger equation is presented by

Ay B0 0] g,

(Xl)

B A(XZ) B 0 ay,

0 B A, B i |e| i | =0 (2.2.1.4)
: .0

0 0 B 4| law],

with
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h2

Ay = () +V(x)-E, (2.2.1.5)
hZ
B = I (2.2.1.6)

Obviously, Eq. (2.2.1.4) turns the complex differential Schrodinger equation into a
common eigen-value problem and we will get the ¢ eigen-values corresponding to
the ¢ eigen-function. The smallest eigen-value refers to the ground state while the
others refer to the excited states.

For solving the Poisson equation with the matrix technique, there is a
well-known numerical analysis of the Newton-Raphson method (or Newton-Fourier
method) for finding successively better approximations to the zeros (or roots) of a
real-value function. Newton’s method can converge remarkably quickly; especially if
the iteration begins “sufficiently near” the desired root. First, we start with an initial
value, for example vy, and look for the corrésponding function of R. And then, the
function is approximated by its sloped line; and one computes the V-intercept of this
tangent line (which is-easily done with elementary algebra). This V-intercept will
typically be a better approximation to.the function’s root than the original guess, and
the method can be iterated. This iteration process can be expressed as

V=V

n n-1

—AV (2.2.1.7)

N (2.2.1.8)

OR
)
Now, we write the 1D Poisson’s equation for /N x N matrix case as below:

oV
P —f (2.2.1.9)
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-, | )
a2 0
121 0 4 P
AZ? AZ2 AZ? Vv, P
1 2 1 : o : =| (2.2.1.10)
0 A AR AR : :
0
1 ) _VN_le _pN_le
0 A
L ANxN

and let AV = p, where A is second-order differential matrix, o is carrier charge

density:
2 1 1
A A .
1 2 1
A N NS 0
A= 1 2 1 . (2.2.1.11)
. A —— i | |
0
o Sl A
L AZ AZ—NXN
_Vl_
v,
V=|: (2.2.1.12)
_VN_le
_pl_
P>
p=|: ) (2.2.1.13)
_pN_le

Finally, we apply Newton-Raphson method to solve Poisson and Schrédinger
equations self-consistently. Therefore, we can hence express the Poisson equation as
follows:
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AV-p=R (2.2.1.14)

and differentiate the Eq. (2.2.1.13) by V', we can obtain the following:
40P _OR _\n

(2.2.1.15)
ov oV
and Eq. (2.2.1.8) can be rewritten as
R R
AV_E_ﬁ (2.2.1.16)
oV

2.2.2 Six-Band k ¢ p Schrodinger-Poisson Self-Consistent Method

By following the theoretical work by Bangert, von Klitzing and Landwehr [1]
and by Ohkawa and Uemura [2],-a six-band.silicon k * p method, along with the
solving of Schrodinger and Poisson's equations in-a self=consistent potential well
beneath the gate oxide of bulk p-MOSEET, will be employed here: In this simulation

framework, we solve the wave equation iteratively:

|~ Hip (K ey by = —12) 4.V(D)] - €, (2) = E (bt Ky) * &y, (22.2.1)
Here, e is the free electron charge, the confining electrostatic potential V(z) refers to
the solution of Poisson equation from the initial or previous iterative loop; and the
k « p Hamiltonian Hj, is the Luttinger-Kohn Hamiltonian H;x [3] plus the strain
Hamiltonian Hy,,in [4]. Those expressions are given in [5]. Therefore, the 6x6

Hamiltonian is given by
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Hkp:HLK+H.rrralrt: 1
0 -M -I'  -P-0Q M ﬁﬂ
%L* 200 - %L NCYY S N 0
BN VAR EY SN 7o G ) 0 -P-A
2 ° = ], (2.2.2.2)
where

P=P +P
0=0,+0, , (2.2.2.3)
L=L +L,
M=M,+M,
B =2 (6 + k)

m, ’

h2 2 2 2
Qk = 2 }/2 (kx +ky _Zkz)

0

hZ
Lkz_\/gy3(kx_iky)kz

m,,
M, = hz\/§ k2 k2 )=2iyik k

k__zm |:72(x_y)_ 173xy:|

0 .
>

}?9 = _av (gxx + g_vy + EZZ )

(2.2.2.4)
L = —d(gxz —igyz)
3 .
M, =7b(gxx —gw)—ldgxy

the Py, O, Lk, and M are the k-p terms and the P, O, L. and M, are the strain
terms and A is the split-off energy. The Luttinger parameters are vy;, y,, and ys, and

the Bir-Pikus deformation potentials are a,, b, and d.

In the numerical calculation, the wave vector, k_, is replaced by the operator,
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—i—, and the quantization z-direction length (20 nm in this work) in the simulation
Iz

is divided into a mesh of N_ points (N, =101 in this work). Contrary to the
quantization region, the z-direction length of the bulk region is equal to maximum
depletion width plus 400 nm additionally. Thus, focused on the quantization region,
Eq. (2.2.2.1) becomes the 6N, x6N_ eigenvalue problem. Precisely speaking, this

6N, x6N_ eigenvalue matrix can be expressed as the tridiagonal block form

-1 -1
D D', D" 0 0 -| Sk Kok,
0 D D' D" 0 -| & |=Ethk.k) s |s (2.2.2.5)
00 D D BTN o

where each & , is a six-component column vector. D, D’ and D~ are 6x6
xoty

block-diagonal difference operators expressed as below

HkpZHO+Hl ktH, 'kzz

3

+_ Hl _ Hz
2iAz  (Az)*
D’=H +ﬂ, 2226
0 2
(Az)
___H H,
2iz (Az)*

The solving of Eq. (2.2.2.5) yields the same number of the eigenvalue matrices,
E(kyky), as well as the wavefunction & x,(z). With the known equilibrium Fermi level

Ej, the distribution of the total hole density per area P;,(z) can be obtained as follows
1 ; 2 Ei(kyky)-E
Pow(@) = s [ AG @[ - (1 + exp () dkdky,  (2227)

where i is the subband index and &}(z) is the wavefunction at the subband minimum.

Then, to substitute Eq. (2.2.2.7) into the Poisson equation,
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d? e?
w/@=-C (Piny(2) + Paep(2) — Ne(2)), (2.2.2.8)
where Pge,(z) and N.(z) are the density of depleted ionized donors and free

electrons in the depletion layer, the new surface potential }/(z) can be obtained by the

Newton-Raphson method, followed by the next iterative loop via Eq. (2.2.2.1).

2.3  Physical Models

2.3.1 Kubo-Greenwood Formula

The outcomes of the_ solver p-NEP contain the hole subband energy level, the
Fermi level, the wave function, the DOS function; and the strained E-k structure. Then,
the hole inversion<layer mobility can be calculated. using the Kubo-Greenwood

formula [6]-[8]:

e
4T2kgTPiny

Uyx = Zu f dzkvalcl(k) X valcl(k) X Tfotal (k) X fO(k)(l - fO(k))

(2.3.1.1)

where e is the free electron.charge, P;,, is the total hole density per unit area
which sums P;,,(z) along the ‘z-direction, v is the group velocity of subband p
along x direction, and fj is the Fermi-Dirac distribution function in equilibrium. Under
the momentum relaxation time approximation, the total scattering time Tfotal of

subband pin (1) can relate to acoustic phonon scattering, optical phonon scattering,

__1 4, 1
Thorat®  The(®) oy ()

and surface roughness scattering through the expression: +

1

T In this dissertation, eighteen lowest subbands were used in the mobility
ST

calculation.
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2.3.2  Acoustic Phonon Scattering

We followed the isotropic treatment by Fischetti e al. [9] concerning acoustic
phonon scattering, but did not take into account the inelastic and dielectric screening
effects of acoustic phonons in this work. The critical parameter, namely, the acoustic
deformation potential D, is strongly connected to Bir-Pikus deformation potentials

[4],[10],[11]. According to Lawaetz [11], D,. can be formulated as

1
D =a% +c/c (bz +5d2);

_ (3C11+2C12+4C44)'
1 — 5 2
Cc11—C12+3cC
¢, = (c11—C12+3C44) (2.3.2.1)

- )
where c¢; and c; are the average longitudinal and transverse elastic coefficients,
respectively. ¢;1, czpand ¢y, are the elastic coefficient elements whose values are
listed in Table II. The elastic acoustic phonon scattering rate model used in this work
is

1 2mkgTD3c
T = e 2ofouDOSy (B (0), (2.3.2.2)

where F,, is equal to “f |E(’; (Z2)=. &y *(z)|2dz ,~the wavefunction &,(z) overlap
integral between the initial subband x and the final subband v. p and v; denote the

crystal density and the longitudinal sound velocity, respectively. Both intra- and

inter-subband acoustic phonon scattering were considered in this work.

2.3.3  Optical Phonon Scattering
Optical phonon scattering involves the absorption and emission of optical
phonons with the exchange of energy (61.2 meV in this dissertation). According to

Wiley [12] and Costato and Reggiani [13], the optical deformation potential D,, can
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have the following formalism:

+2¢¢ (do\?
D3, = L2t (%), (2.3.3.1)

pPi \ao
where ay is the lattice constant, dj is the deformation potential of optical phonons, and
U, 1is the average sound velocity consisting of the longitudinal and transverse sound
velocity, v; and v, respectively, with the formulation of 72 = (v? + 2v?)/3. Then,

the isotropic absorbing and emitting optical phonon scattering rate can be written as

L__™u s £ D0S,(E,k) T h
_ova vu v( u()‘l’ wop)

T pw

1—fo(Ep () Fhawop) 1,1
h(Ew)  Mer gt (2332)

wop - optical phonon frequency,
Nop - Bose occupation factor of optical phonons
Eq. (2.3.3.2) features both intra="and inter-subband optical phonen scattering but with

no screening effect in this work.

2.3.4  Surface Roughness Scattering

To deal with surface roughness scattering, we firstfollowed Pham, ef al. [14] and
De Michielis, et al., [15] to take only the intra-subband scattering. Then, the screening
effect in the dielectric function as formulated by Yamakawa et a/l.[16] and Gémiz, et
al. [17] was incorporated into the surface roughness scattering rate expression in the

context of the exponential autocovariance function:

1 _ 2n?a%a? 5 (T2
£ (k) n UV (2m)2

[68(E, () — B, () x —E=20 a2k, (234.0)

e(q)x(1+q2212)

A : rms height of the amplitude of the surface roughness,
A : correlation length of the surface roughness,
q: q=|k—kK|

20



0 : angle between k'and k,

n : adjustable factor (= 1/2 in this work),

LY . oy . m deV(z) | (0) ryx gz L(0) diy'@ Lu
reff' reff_f< g (Z)'fo(z)'T‘FEv Eg (Z)'#—Eu 'Z—Z‘go(z)>dZ,

ES)) : energy minimum of subband v

€(q): static wave-vector-dependent dielectric function,

e(q) =1+ e’ F(q)fS(Ev(k')-Eu(k))de'.

2esi€0 q (2m)? ’

F(q) =%, [dz [ dz'|&8(2)|?|€Y (2)|2e~ 1771,

Importantly, Eq. (2.3.4.1) has the ability to adequately handle the angular dependence
of surface roughness scattering, as shown_in Fig. 2.1 in terms of the calculated
unscreened scattering rate versus-hole energy for both (001) and (110) substrates. It
can also be seen from the figure that the scattering angular is more pronounced for

GPa-level stress, especially on the (001) substrate.

2.3.5 WKB Based Hole Gate Direct Tunneling
According to the literatures [18]-[20],the isotropic hole direct tunneling current

density contributed by the uth subband with WKB approximation can be written as

Ju=e fE"?o) F!' - P8 (E) - Tyyks(E) - Ty (E)dE, (2.3.5.1)
u
Jg =2ulu s (2.3.5.2)

where e denotes the elemental charge, Fl.“ is impact frequency of hole' wave packet

. ©
on interface, P,

(E) is the inversion hole density of subband u per energy per area,
Ty ks (E) is the transmission probability through insulator of WKB part, Ty (E) is
the transmission probability through insulator of reflection part. There are eighteen

subbands taken into account in our calculation. The impact frequency is described as
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1
2

F{' = eFs/2 (2mlyyE”) * (2.3.5.3)
Worth noting that the constant quantized effect mass mgN in Eq. (2.3.5.3)
approximately obtained by the triangular potential method will be discussed in
Chapter 3. For the inversion hole density, we calculate it through

P#

inv

(E) = DOS,(E) X fo(E). (2.3.5.4)

Two terms to be considered in the transmission probability through oxide layer, the

|

4Tl @2, (31{12
=exp< e (i )>, (2.3.5.5)

first one is WKB part, which can be modeled as

fOT‘”‘ 2moen(E — eV (2))dz

T ks (E) = exp I— %

3eh|Fpx|
Pcatn = €Xn — elFox|Tox — E,
Pan = exn — E;
where @.q:n 18 the barrier height of the tunneling hole with total energy £ at cathode
side or gate/oxide interface, and ' ¢, is that at anode side or oxide/n-well interface
with y; is the barrier height,of oxide/Si interface. :m,,; is‘an important parameter
featuring the quantum transport in oxide. The WKB approximation is only valid when
the wavefunction phase change is much smaller'than the amplitude change, In other
words, the barrier potential of oxide must be very sharp and high enough to ensure the
validity of WKB method. Another transmission probability is T}{f (E), which is given

as

4v£i,J. (E)vox(@an) 4”5“_ (E+elFox|Tox)vox(@catn)

2 2 ’
vfi‘J_ (B)+v4x(®an) vfi‘J_ (E+e|Fox|Tox) +v5x(Pcath)

TH(E) = (2.3.5.6)
where vs‘fi' L(E) and v;, L(E + q|F,x|T,,) are the group velocities of the holes

incident and leaving oxide. The semi-classical forms can be simply depicted as

I m 26,
vsi,J_(E) = vsi,J_(Z = O) = mgN ’
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Z(E,SO)+qIFoxITox)

Mgate

vé 1 (E + el FoxlToy) =J (2.3.5.7)

Moreover, Vo, (Pgn) and vy, (@cqen) are the magnitudes of the purely imaginary
group velocities of holes at the cathode and anode side within the oxide. The

semi-classical form can be expressed as

1 dEg, 2Epx
vox (B) = 392 = /m—xh (2.3.5.8)

where E,, is the virtual energy in the classical forbidden region of oxide.

2.3.6  Stress-to-Strain Tensor
The stress effect on the warping valance band fundamentally is complex. Instead, we
can use approximate simplification-to deal with the mechanics of materials such as a

general form originating from Hooke’s law as below [21]

o = %[0 —V(% +<Tzz)]» (2.3.6.1)
£, :%[% ~v(e, +ou)]; (23.62)
€., =%[Uﬂ —V(% +0W)} (2.3.6.2)
m=é%,m=%%,m=é@, (2.3.6.3)

where o;; refers to the normal stress component acting on the planes perpendicular to
i-direction, while T;; indicates the shear stress components oriented in the j-direction
acting on the planes perpendicular to i-direction, y;; denotes shear strain, &y, is
average shear strain and is defined as one half the y;;. E, v and G represent the
Young’s modules, Poisson’s ratio and shear modulus of elasticity, respectively. We

therefore establish the elastic strain-stress matrix as follows [22]
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<1 IS, S, S, 0 0 0o,

Yy S12 Sll Slz O 0 0 O-yy

= ofBe Se S0 000 oL (2.3.6.4)
2¢,, o 0 0 S, 0 0|¢7,

2e_ o 0 0 0 S, O0]¢~,
2e,] {0 0 0 0 0 S,|7,]

where S;1,51, and S,, are the elastic stiffness constants. Then, the inverse matrix in

Eq. (2.3.6.4) refers to the strain-to-stress tensor written by

Oyy €12 €11 €12 0 0 01l vy
Ozz Ci2 C12 (11 0 0 0| &2z
|71l 0 0 0 cu 00 00|28z (2.3.6.5)
[szJ 0 0 0 0 Chq 0 2gzx
TxY L 0 0 0 0 0 Cyq _ngy_

[axx] €11 €12 G2 0 0 01 €xx 7

The corresponding relationships between strain and stress under longitudinal,
transverse, and out-of-plane stresses:in (001) and (110) p-MOSEETs are shown in Fig.

2.2 and 2.3.

2.4  Functions of p-NEP

We develop a simulator, p-NEP via the six-band & - p Schrodinger-Poisson
self-consistent method which can furnish the fundamental information in the first step
as follows:

E (ky, ky, k,):bulk valence band structures of heavy hole, light hole, and split-off hole,

0. - .
E,” : quantum-confined subband energy level (minimum point) of subband x,

E, (ky, k) : quantum-confined subband structures on k,-k, plane of subband 4,
&f'(z) + wavefunction at minimum of subband g,
DOS,(E) : density of states of subband u,

Ef : equilibrium Fermi level,
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Pl.’:w (z) : inversion hole density distribution of subband g,

Pgep(2) ¢ density of depleted ionized donors,

V(z) : confining electrostatic potential.

Then, the above fundamental outcomes can evaluate the capacitance, threshold
voltage, hole mobility, and gate direct tunneling current in the second step by the
physical models already discussed before. As to other simulators, the functions and
operational range of the updated p-NEP are listed in Table 2.1 and 2.2, respectively.
Note that the operational range is not equal to the limitation range. The operational
range in this table has been verified by the conyergent error and reasonable outcomes.

The corresponding simulation results will be demonstrated.in Chapter 6.
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Functions of p—NEP

Material Si Ge GaAs
(001)
Wafer Orientation (110)
*(111)

Uniaxial Stress

Stress Condition Long. Biaxial Stress
Trans.

Out-of-Plane

C : Capacitance
V,, : Threshold Voltage
U, Inversion-Layer Mobility
I, : Gate Direct Tunneling Current

Applications

*Stress conditions for (111) wafer oriéntation have not been
completed in p—~NEP program.

Table 2.1 The function list of p-NEP. The stress conditions in (111) wafer

orientation have not been completed.
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Operational Range of p—~NEP

Ref. Conditions:

Temp.=300K, N, ,=1e17 cm3, F.=1 MV/cm, Unstressed Si, Ge, and GaAs

(001) (110) (111)
Temperature (K) 2 & 400
N,,, (cm3) lel5 <> 6el8
F, (MV/cm) 0.016>45 0.05¢> 4.5 0.05¢> 4.5
Uniaxial Stress (GPa) 5 &5
Biaxial Stress (GPa) 56 5

Table 2.2 The operational range list of p-NEP. Note that the operational range is not

equal to the limitation range. The operational range 1n this table has been verified by

the convergent error and reasonable outputs.
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Fig. 2.1(a) Calculated intra-subband. surface-roughness scattering rate along the
different k-direction of the first subband of (001) substrate with the longitudinal -1

GPa stress. The obvious angular dependence can be found in both cases.
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Fig. 2.1(b) Calculated intra-subband. surface.roughness scattering rate along the
different k-direction of the first subband of (110) substrate with the longitudinal -1

GPa stress. The obvious angular dependence can be found in both cases.
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Fig. 2.3 The Bir-Pikus deformation potential parameters are set as a,= 2.46, b=-2.1,
and d= -4.85, showing the corresponding ' stress-strain relationships under

three-dimensional stresses on (001) p-MOSFET.
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Chapter 3

Computational Booster in p-NEP

3.1 Introduction

As widely recognized; the merits of the effective mass approximation (EMA) in
the conduction-band valleys [1]-aretwofold. First, the computation task to execute a
self-consistent Schrodinger and Poisson’s equations solving in the inversion layers of
nMOSFETs is straightforward [1]. Second, the combination of the resulting subband
energy levels and ‘the corresponding electron effective masses can constitute the
conduction-band structure in the inversion layers of nMOSFETs [1].

On the other hand, the wvalence-band structure in the inversion layers of
pMOSFETs is quite complicated in “terms of the strong anisotropy and
non-parabolicity of the hole subbands, as readily described by a six-band &« p
method [2] and the original work done by Bangert, von Klitzing and Landwehr [3]
and by Ohkawa and Uemura [4]. To simplify the hole subband structure calculation, a
triangular potential approximation can be employed [5]. While incorporating the
six-band & + p method into the Schrodinger and Poisson’s equations to solve the more
practical problems, the undertaken numerical calculation becomes so demanding that

the overall CPU time is extremely huge, which might prohibit the valence-band
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structure calculation in a tolerable time. Thus, reducing the CPU time as greatly as
possible in the self-consistent six-band & + p framework is absolutely a relevant issue.

Recently, De Michielis, et al. [6] exhibited one such effort in terms of an
analytical model for the in-plane energy dispersion, followed by a sophisticated
interpolation method by Pham, et al. [7]. However, to produce the hole subband
structure as accurately as possible, a very fine discretization in the two-dimensional
k-space is essential, without accounting for the analytical model [6] or the
interpolation method [7]. It is also noticed that Low, et al. [8] explored the
effectiveness of one-band EMA in capturing the electrostatics property of six hole
bands. Besides, the energy dependence of the hole effective mass was as well taken
into account in the development of the analytical model by De Michielis, et al. [6].
Until now, however, the superior ability ‘of the hole EMA to speed up the
self-consistent six-band confined & * p calculation was not yet demonstrated as a
function of the temperature, the substrate doping concentration, the inversion hole
density, and the surface orientation.

In this work, we construct a new computational accelerator to intrinsically boost
a self-consistent six-band k& +¢p simulator. A very fine grid in the two-dimensional
k-space is adopted, without the use of the efficient discretization approach [6],[7]. The
core of the accelerator lies in the hole EMA whose formulation, essentially different
from those of [6] and [8], can accommodate the use of an electron analogue version of
the self-consistent Schrodinger and Poisson’s equations solver. In the following
sections, we will systematically demonstrate the establishment of the accelerator as
well as its ability to overcome the computational burden in the confined &« p

simulation.
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3.2 Computational Booster

The simulation methodology constructed in this work, as shown in Fig. 1 in
terms of a flowchart, consists of the two main blocks: (i) the new computational
acceleration and (ii) the self-consistent simulation framework. The connection
between the two is the confining potential profile, which is the outcome of the
computational accelerator and serves as the input to the subsequent self-consistent
simulator. Throughout the work, the energy reference point exactly falls on the

classical valence-band edge at the SiO,/Si interface, as illustrated in Fig. 3.1.

3.2.1 Triangular Potential Based Six-Band k +p Method

In the six-band %k *p context, the in-plane wave equation along the quantum
confinement direction z can read as depicted in Eq. (2:2.2.1) where V(z) is the
confining electrostatic potential, ‘&, , (2) .is the wave function,‘and E is the energy

of holes. The originz = 0 represents the SiO,/Si‘interface. Hix in Eq. (2.2.2.1) is the

Luttinger-Kohn Hamiltonian [9] with the split-off energy A of 44 meV in the absence
of the quantum confinement and with the Luttinger parameters of y, =4.22, y, =

0.39, and y, = 1.44 [10]. The computational accelerator starts with the initial
triangular potential profile: V’(z) = F°z where F° is the initial surface field. The
simulation range of interest in the z direction is divided into a mesh of N_ points in
the interval [0, Z,.], where Z,,.. 1s equal to 6E,,./qF," for E,. = 0.3 eV [5]. Then,

Eq. (1) becomes a 6N, x6N_ eigenvalue problem. The grid number on .-k, space is
101 x 101 in a Cartesian coordinate system. Also, a polar coordinate system is

employed where the grid number on k-0 space is 101 x 101. The boundary
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conditions are & , (0)= 0 and &, , (Z,,)= 0. The solution of the eigenvalue

problem yields E(kyk,) and normalized §kxﬂky (z). The Fermi level can then be

determined. To deal with the (110) case, a rotation transformation from the original

(001) k space to (110) k space is required: k, =—k,, &, =%(kx —k,), and
k. =%(kx +k,). The resulting hole subband energy contours, subband level, and

Fermi level on (001) and (110) surface orientations were found to be in good

agreements with those of Fischetti, et al. [5].

3.2.2 Hole Effective Mass Approximation Technique

As shown in Fig. ‘1, the outcomes of the triangular potential based six-band & ¢+ p
simulator contain the constant-energy contours in & plane, the subband energy levels,
the surface potential, and the Fermi level E; of the system. At this point, we
demonstrate how to apply the EMA technique to create the two important parameters
in this work: the hole ‘quantization effective mass and the hole DOS effective mass.

First, the DOS function of subband v can be determined in the Cartesian coordinate

system [2] by
k-space _ k-space
DOS,(E)=U(E ~E,)— x Ared " (ExdE) = drea, 77 (E) = (357 )
2r) dE
and in the polar coordinate system [5] by
DOS,(E)=U(E—E,)— joz” KAEO) 49 (3.2.2.2)

@ry 0 [dE

dK K, (E.,0)

Here, Area!™"(E +dE)— Area’*“(E) represents the area between the E and E

+ dE lines of subband v in k plane, E, is the energy level of subband v, U(E)
represents the unit step function of energy, and the magnitude K, is a function of both
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the energy E and the angle 6. The DOS effective mass of subband v can be obtained

accordingly: m), s (E) = 27xh* x DOS, (E) . While averaging the DOS effective mass of

subband v over the energy, the dependence on hole density distribution must be taken

into account:

() - [ s (E)S (E)- DOS, (E)IE 5223)
j f(E)-DOS,(E)dE

v

where f(E) is the Fermi-Dirac distribution function in equilibrium including the Fermi
level Er. Note that the formalism Eq. (3.2.2.3) is completely different from those of [6]
and [8]. As to quantization effective mass of subband v, it can be readily assessed in a

triangular potential sense [1]:

mby = %2(55"))'3 GneFSO (i + %))2 (3.2.2.4)

where j reflects the status of the wave function at subband minimum (for example, j =
0 for the ground state and 1 for the first excited state). Note that under the quantum
confinement conditions, £s5 and Es in Eq. (3:2:2:4) no longer refer to the pure (bulk)
split-off holes due to the mixing with a fraction of light holes. In other words, E5 and
Es should be seen as individual subbands with respect to the classical reference point,
rather than to the bulk split-off energy point (situated 44 meV away), when
calculating the quantization effective mass. Both the Cartesian and polar coordinate

systems led to the nearly same results. Thus, throughout the work, the Cartesian

coordinate system is adopted, unless mentioned otherwise. The resulting <m1”)0S> and

my,, versus initial surface field are depicted in Fig. 3.2 for subband v = 1 to 6 and Fig.

3.3 for v =1 with different temperatures.

3.2.3 Core Accelerator
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Analogous to the electron counterparts [11],[12], the simple EMA oriented
Schrodinger-Poisson iterative solving can readily be employed using the
aforementioned hole effective masses. First, the Schrodinger equation in pMOSFETs

can be written accordingly:

+ eV(z)|¢p(z) = E¢p(2). (3.2.3.1)

'V d 2
The energy level E, ; of sub-subband j within subband v and the corresponding
normalized wave function ¢, (z) can be obtained by solving the eigen-problem in

Eq. (3.2.3.1). Also in analogue, the expression of the hole density in 2DHG case

becomes

p(2) = z< D05>k Tln(1+eE ;j’} ¢v’j(z)‘2, (3.2.3.2)

The EMA oriented Schrodinger-Poisson iterative solving in pMOSFETs can therefore
be expected to be as fast as nMOSFETs. The Fermi level is. determined in the
self-consistent loop, given , the “surface band bending ‘and substrate doping
concentration. The calculation results have been corroborated using the available
simulator Schred [11].

As mentioned above, the calculated hole quantization and DOS effective masses
contain the information about the anisotropy and non-parabolicity of the subbands.
The outcome of the EMA oriented Schrédinger-Poisson iterative solving, which is the
initial solution of the confined potential profile as illustrated in Fig. 3.1, is likely to be
close to the realistic one. Consequently, a fast convergence in the subsequent
self-consistent six-band k * p simulation can be ensured. This is the fact, as will be

proved later.
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3.3 Results and Discussions

To confirm the validity of the whole simulation methodology in Fig. 3.1, we
quote the existing self-consistent six-band & « p simulation results [6], [8]. First, in
our work, the following convergence criteria were set for the self-consistent six-band
k + p simulator: (i) below 1% error for the surface field and (ii) 10* V maximum error
for the confining electrostatic potential profile. Besides, the grid number N, was set at
301.

Fig. 3.4 depicts the comparison of the simulated subband energy level on (001)
substrate versus inversion-layer hole density with:.that of De Michielis, et al. [6].
Good agreement is achieved. This is also the case in comparison with those of Low, et
al. [8], as given in Fig: 3.5 for-the subband level and surface potential versus the
surface field F;. A small deviation-of split-off hole (SH) subbands.in Fig. 3.4 and 3.5(a)
is due to the fact that the subband level in this work represents the energy minimum
rather than the gamma point. Further evidence exists in terms of the simulated DOS
results, as shown in Fig. 3.6 for (001) and (110) substrates. Evidently, excellent
agreements with those from different sources [6],[8] are obtained. Particularly, a
careful observation leads to the argument that under the same grid number, the
simulated DOS in a polar coordinate system is less “noisy” than the Cartesian one, as
expected from the numerical analysis point of view.

More importantly, we found that relative to the conventional self-consistent
six-band £ « p simulation without the accelerator, the whole computational time with
the accelerator included can be substantially reduced. First of all, the simulation
methodology in Fig. 3.1 can reduce to the conventional self-consistent six-band & « p
simulator only, achieved by simply removing the accelerator part. The CPU time

consumed with and without the accelerator is plotted in Fig. 3.7 for (001) and (110)
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substrates. Interestingly, with the accelerator added, the overall CPU time is reduced
down to around 8% of that without the accelerator for (001) substrate and 17% for
(110) substrate. Note that the relatively large computational time in this work as
compared with that of [7] is due to a larger mesh number in both & space (101x101)
and z direction (N, =301), as well as the lower hardware level and operating system.
Further, we found that in all (001) cases under study, no iteration can be needed in the
self-consistent six-band & * p simulator of the methodology. This means that the
confining electrostatic potential created by the accelerator is in a close proximity of
the realistic one, as shown in the inset of Fig.3.7(a). Even for (110) case in Fig. 3.7(b),
only one iteration step is needed to-make the speecific error satistfied. This explains a
slight increase in the CPU time compared to (001) case.

In addition, wepresent in Fig.-3.8 the enhancement factor of the computational
speed as a function of the doping concentration in the substrate while keeping the
same inversion carrier density. Also shown is the corresponding CPU time with and
without the accelerator. Obviously, the speed enhancement slightly decreases with
increasing doping concentration. The increased caleulation time as found in the
fully self-consistent algorithm/itself with increasing doping concentration is primarily
due to the nature of solving six-band k * p Schrodinger equation (with the same
iteration steps). On the contrary, the increased calculation time in the
accelerator-enhanced algorithm is mainly consumed in the triangular potential based
six-band k& + p Schrodinger solver. The larger increasing rate of calculation time in the
accelerator-enhanced algorithm leads to the observed trend of the speed enhancement.
We also examine the convergence quality in this work in terms of the errors
encountered in the self-consistent simulation part (without any iteration), as shown in
Fig. 3.9 for (001) substrate plotted versus the inversion hole density with the
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temperature as a parameter. It is clear that not only the surface field errors but also the
potential errors are all far below the corresponding critical errors of 1% and 10V,
respectively, valid for the temperature and inversion-layer hole density range
demonstrated. This thereby serves as the corroborating evidence that no Gummel type
iteration can be needed in the (001) self-consistent six-band k& + p simulation.
However, further analysis as depicted in Fig. 3.10 reveals that if the more strict
convergence criterion is set, additional Gummel iterations may be requested in order
to further reduce the errors. In other words, the lower the order of tolerable error, the
more iteration steps needed. Thus, there is a trade-off between the convergence
criterion and the efficiency of the proposed “acceletrator. However, we want to
emphasize that the convergence error of 10 V as adopted in this work is adequate.
This point can be highlighted in Fig. 3.11 in terms of the fitting of the experimental
gate capacitance versus gate voltage curve [13]. Evidently, the fitting quality with the
convergence criterion of 10V is acceptable, especially in the weak inversion region

where the gate capacitance changes sharply with the gate voltage.

3.4 Projection

At this point, two key points can be drawn. First, the initial solution of the
confining potential profile as close to the realistic one as possible is the key to
eliminating or reducing the conventionally required Gummel type iteration steps in
the self-consistent six-band & « p simulation. Thus, the CPU time can be substantially
lowered. Second, the ability to create such potential profile in advance is the main
merit of the proposed hole EMA based accelerator. Moreover, we want to stress that
the hole EMA based accelerator introduced in this work is simple and feasible. Thus,

we can make a projection of the accelerator concerning its general applications.
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First, the proposed accelerator can accommodate the strained p-MOSFETs case,
achieved by incorporating the strain Hamiltonian H;, [5],[14] in the k * p context.
Contrary to the unstrained case, the quantization effective mass extraction in Eq.
(3.2.2.4) should be replaced when the strain effect will be taken into account by the

follows

g =2 (£ - Egulk)_S (%neFSO (+ %))2 (3.4.1)
where EB“K refers to the bulk valence band (HH, LH, or SH) of the most occupied
hole type in subband v. The modified method in Eq. (3.4.1) can extract the more
meaningful quantization effective mass to prevent the unreasonable results from the
huge strain-induced bulk band shift. The unstrained and strained quantization
effective masses extracted by Eq.-(3:4.1) are shown together in Fig. 3.12. Second, to
deal with the ultra-thin film device-adequately, a higher order k ».p framework, such
as the eight-band &= p one (see [15] for the comparison with the'six-band one), may
be needed to replace the six-band one in the methodology in Fig. 3.1. In this case, the
space-induced confinement formula may be required rather than the field induced one
(that is, triangular potential well).in this work. Note thatthe wave function penetration
into the oxide was not taken into ‘account here. However, this issue is considerably
important, especially for the ultra-thin film case. The effect of the wave function
penetration on the applicability of the proposed accelerator, as well as the possible
modification of the accelerator, needs to be further investigated. Finally, the additional
issues of other surface orientations or channel materials, which were not addressed in

this work, should in principle be able to benefit from the proposed accelerator.
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Fig. 3.1 The flowchart of the simulation methodology in the inversion layer of
pMOSFET. The methodology consists of two parts: the computational acceleration
part in order to enhance the convergence speed and the self-consistent part in order to
certify the tolerable error. The green blocks refer to the simulation methodology and

the turquoise blocks refer to the outputs from the upper level simulator.
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Fig. 3.2 The calculated hole quantization effective masses and DOS effective masses

versus initial surface field in the simulation flowchart in Fig. 3.1.
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Fig. 3.3 The calculated hole quantization effective masses and DOS effective masses
versus initial surface field for different temperatures of 77, 153, and 300 K in the

simulation flowchart in Fig. 3.1.
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Fig. 3.4 Calculated (symbols) hole subband energy levels versus inversion carrier
density on (001) surface. The solid lines come from De Michielis, et al. [6] for

comparison.
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Fig. 3.5(a) Calculated (symbols) hole subband energy levels versus surface field on

(001) substrate. The solid lines come from Low, et al. [8] for comparison.
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Fig. 3.6(b) Simulated DOS function for the total subbands on (110) substrate. The red
and green solid lines are produced from the Cartesian and polar coordinate systems,

respectively. The dotted line comes from [6].

54



150 Y v v

Software: Matlab (001) pMOSFET
— | | CPU: Intel(R) core(TM) i7 2.8 GHz N, = 1x10" cm? |
L RAM: 4 GHz _
:: OS: Windows 7 ;I'lel:g.z-\;ioo K
= 100 | . Mesh # on & space: 101 x 101 s -
=
c .;0-0' == =Full 4
i Self-consistency |
2 322 O Accelerator
.6} Enhancement
S 52 -
= N 0.9
O 42
m " " " " "
i 0 50 100 150 200 1
© z (nm)
0
Accelerator Full

Enhancement Self-consistency
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(001) substrate. The inserted figure shows the corresponding electrostatic potential
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profiles.
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the convergence criterion of 10 V for the confining potential. From the HRTEM
image [13], the nominal physical gate oxide thickness is 1.89 nm. However, in the

simulation, three different physical gate oxide thicknesses were used to testify the

validity of the chosen convergence criterion in this work.
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Chapter 4

Hole Band Structure and Inversion-Layer

Mobility Calculation at 2 K

4.1 Introduction

It has been well recognized that the Schrodinger-Poisson self-consistent 4 « p
method (6 X 6 Luttinger-Kohn-matrix) can be used as a tool to quantify the hole
subband structures.in the inversion-layers of p-MOSFETs on (001), (110) or (111)
oriented surfaces [1]: The core of this & + p method lies on the Luttinger parameters 7,
Y2, and y3. The literature value of (y10, yzo, 730) =(4.22, 0.39, 1.44) stemmed from the
analysis of the momentum matrix elements on bulk silicon according to Lawaetz [2].
The other two sets of Luttinger parameters mentioned by Humphreys [3] were also
widely used in silicon valence band calculation. All of them are listed in Table 4.1.
However, the validity of these parameters remained unclear for the extra confinement
originating from the surface electrostatic potential V(z) in p-MOSFETs. Recently,
while conducting the Shubnikov-de Haas (SdH) oscillation experiment down to 2 K,
Takahashi, et al. [4] for the first time directly observed the realistic subband structures
of (110) p-MOSFETs. This experiment provides a good opportunity to delicately
study the subband structures of two-dimensional hole gas (2DHG) via the
self-consistent six-band k « p Schrodinger-Poisson simulation.

In this work, the experimentally constructed hole subband structures [4] will be
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used to examine the validity of the k&« p method in 2DHG, especially the bulk

oriented Luttinger parameters.

4.2 v, Y2, and y; Examination

Simulator p-NEP with the six-band & * p Schrodinger-Poisson self-consistent
method was utilized in this work. The validation of p-NEP was confirmed in the
previous chapter. In particular, the calculated DOS function of (110) p-MOSFET at
300 K as shown in Fig. 3.6(b) is nearly a constant DOS function of the 1* subband. It
means it possible to the detectable proper switching when Fermi level crosses the 2™
subband at low temperatures. In"terms of the recent experimental results in [4], there
are five important measured values-to determine the realistic hole subband structures
at 2 K as illustrated in Fig. 4.1+-tweo threshold voltages which are denoted as V" (L
for the first subband) and V" (H for the second subband) obtained by Shubnikov-de
Haas (SdH) oscillation analysis, one surface carrier density (Ny) at V' bias condition
obtained by C-V measurement, and two cyclotron effective masses mct and m.”.

Then, the calculated solutions must satisfy two-measured cyclotron effective
masses, mt = 0.26my, and mct = 0.43mp, meanwhile consistent with the experimental
Vb =-12V, V' =-2.3 V,and N, = 4 x 10'2 c¢m™. In advance, the low temperature
validity of p-NEP preliminarily confirmed by the simulated capacitance from Schred
[5] and by the experimental hole effective mobility [6] are shown in Fig. 4.2 and Fig.
4.3 respectively. To examine the validity of the bulk oriented Luttinger parameters in
2DHG, the subband structures reproduced by the v,°, v,°, and y3” at 2 K are shown in
Fig. 4.4 with the five crucial calculated values mentioned above. The quite
satisfactory comparisons between the calculated values and experimental data [4] are

obtained. The transition region from the first subband to the second subband which is
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probably due to the Fermi level fluctuation is also marked in Fig. 4.4 by comparing
the experimental transconductance data in [4]. In order to see the y modulation effect
on subband structures, we modulate the ylo, yzo, and y30 in Luttinger-Kohn matrix
within the broad range of +£20% which is based on the error range of the factors 4,
B, and C appearing in the analytical energy surface model expressed by Dresselhaus
[7]. To efficiently quantify the impact of y modulation, the triangular potential
approximation is used in Fig. 4.5, 4.6, and 4.7 to perform the modulation of vy, v2, v3
individually in (110) p-MOSFETs and in Fig. 4.8, 4.9, 4.10 to perform the modulation
of v1, v2, v3 individually in (001) p-MOSFETs. It is obviously seen that the y; and v;
modulations have the stronger and ‘mutually reversely symmetric influences on the
subband levels, but the y, modulation has just slight effects on the subband levels.
Furthermore, though.the different sets ‘of Luttinger parameters in Table 4.1, the
corresponding total ‘density-of-states functions are calculated with a Fi=1 MV/cm
triangular potential as shown in Fig. 4.11 for (001) case and Fig. 4.12 for (110) case.
Similar results can be found between the sets of Luttinger parameters from Lawaetz
[2] and Hesel [3] but with the different results from Balslev.and Lawaetz [3] (due to
around -20% deviation in vy,) as listed in Table 4.1. Based on the results in Fig. 4.4,
4.11, and 4.12, it is followed that using the Luttinger parameters from Lawaetz [2]
and Hesel [3] can obtain more satisfactory comparisons with the experimental data [4].
Thus, the calculated <110>/(110) hole mobility including the phonon and the surface
roughness scattering with the Luttinger parameters from Hesel [3] are drawn together
with the experimental <110>/(110) hole effective mobility at 50, 200, and 300 K [8]
in Fig. 4.13. On the other hand, the calculated <110>/(110) and <001>/(110) hole
mobility at 2 K are shown in Fig. 4.14 for compared with the experimental hole
effective mobility at 2 K from [8]. In Fig. 4.15, the resulting DOS effective masses
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also compare to the measured cyclotron effective masses in [4].

In summary, with the y sets of Lawaetz [2] and Hesel [3] in Table 4.1, the
validity of the bulk oriented Luttinger parameters in 2DHG has been successfully
justified by using the Takahashi, et al.'s Shubnikov-de Haas (SdH) oscillation
experiment at 2 K [4]. These two sets of bulk oriented Luttinger parameters can
therefore directly apply to the subband structure calculation and the hole mobility

calculation, both with the acceptable precision.

4.3 Conclusions

Three published sets of bulk oriented Luttinger. parameters have been
successfully examined by finding- out the possible agreements with the direct
experiments by Takahashi, et-al. The realistic subband structures have been
constructed by theithese comparisons. The resulting hole mobility and DOS effective

masses have clearly been demonstrated-in (110) p-MOSFETs at 2 K.
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Luttinger Parameters 7, ¥, 3
Lawaetz [2] 4.22 0.39 1.44
Hensel [3] 4.285 0.339 1.446
Balslev and Lawaetz [3] 4.23 0.31 1.46

Table 4.1 The list of the widely used bulk oriented Luttinger parameters mentioned

in the Lawaetz's and Humphreys's published literatures [2];[3].
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self-consistent Schrodinger-Poisson method. Although the different methods of band
structure calculations are made between Schred and our work, both self-consistent

results still can offer a preliminary comparison.
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Fig. 4.5 The impact of y;modulation on subband minimum of (110) p-MOSFETs.
The triangular potential approximation is used to efficiently quantify this impact with

3 x 10® cm™ substrate doping (Nsu) and fixed 0.25 MV/cm surface field (Fy).
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Fig. 4.7 The impact of y;modulation on subband minimum of (110) p-MOSFETs.
The triangular potential approximation is used to efficiently quantify this impact with
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Fig. 4.9 The impact of y, modulation on subband minimum of (001) p-MOSFETs.
The triangular potential approximation is used to efficiently quantify this impact with

3 x 10® cm™ substrate doping (Nsuw) and fixed 0.25 MV/cm surface field (Fy).

76



0.25 0.25

X (001') p-M(')SFE'I:s 'I The 1st Sub'band

- _ 0, 0_ @® The 2nd Subband
% 0.20 | v, =(1*N)xv, (v,=1.44) | 4 1pc 3rd Subband f| 0-20
>
m > -
c
L 0.10'- . ' ' ' ' - 0.10
.g N & .
g 0.05 - 0.05
[ E. ‘at the interface l
B 0.00 et T @ - 0.00
(/p) | d
-0.05 z l A 1 s . A -0.05
-20 -10 0 10 20
N (%)

Fig. 4.10 The impact of yymodulation on subband minimum of (001) p-MOSFETs.
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Fig. 4.11 The calculated (001) total density=of-states functions using the three

different sets in Table 4.1 for a triangular potential with Fi=1 MV/cm at 300 K.
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experimental <110>/(110) hole effective mobility [8] at 50, 200, and 300 K.
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Fig. 4.14 Comparison of calculated.<110> and <001>/(110) hole mobility due to
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4.13.
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Chapter 5

Three-Dimensional GPa-Level Stress Altered
Hole Mobility in (001) and (110) Silicon

Inversion Layers

5.1 Introduction

For highly scaled MOSFET devices [1], very complicated mechanical stresses,
no matter the intentional or unintentional streéssors from arbitrary directions, will be
inevitable. The reason is that applied mechanical stresses can boost device
performance [2], [3]. Especially for the three-dimensional structure of multi-gate
transistor such as the commercialized FinFET, the strains generated from the
fin-width and fin-height are directly measured with the absolute values of 0.1% to
0.8% [4], [5]- This range of mixed strains will cause the substantial warping of band
structures in the quantum-confined inversion layer and lead to the carrier mobility
change. So far, many groups presented different calculated results under the uniaxial
and biaxial stresses in (001) and/or (110) p-MOSFETs [6]-[9], concerning the surface
orientations of p-FinFET sidewalls. However, the individual contributions of hole
mobility change from phonon scattering, surface-roughness scattering, conductivity

effective mass, and scattering time are still not fully clear, especially for the 3-D
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stressed conditions. Importantly, in the area of strain altered hole inversion-layer
mobility study to date, the primary factors and guidelines needed to experimentally
determine the unique values of Bir-Pikus deformation potentials, a,, b, and d were not
published, in particular in the GPa-level stress range. In order to clarify these issues,
the research will be discussed as in the following sections.

In Section 5.2, we will focus on the individual contributions of hole mobility
change from three scattering mechanisms: acoustic phonon scattering, optical phonon
scattering, and the surface roughness scattering. Relying on these scattering
mechanisms, the well-known Matthiessen’s rule in the 3-D stressed (001) and (110)
p-MOSFETs also can be verified. The study on‘the scattering-time-limited and the
conductivity-mass-limited mobility changes will be clarified in Section 5.3. Section
5.4 will be devoted to the calculated hole‘inversion-layer mobility change for varying
a,, b, and d. This leads to the establishment of the guidelines which enable, in a
step-by-step manner, an experimental determination of the unique values of the
factors. The parameters used in Section 5.2 and 5.3 are listed in Table 5.1 Notice that
the scattering parameters used.in Section 5.2 and 5.3 are assumed to be independent
of the Bir-Pikus potentials ay, b, and.d. On the contrary, the modified scattering
parameters and Bir-Pikus deformation potentials used in Section 5.4 are listed in

Table 5.2.

5.2 Phonon and Surface-Roughness Limited Hole

Mobility Changes
Firstly, we show the calculated (001) and (110) total mobility changes at the

effective field E.r~ 1.1 MV/cm and 1.2 MV/cm, respectively, and make a comparison
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with the simulated data from [8], [9] in Fig. 5.1 and 5.2. The device structures for
(001) and (110) p-MOSFETs are drawn in Fig. 5.3 in the presence of the longitudinal,
transverse, and out-of-plane stresses. In order to determine the individual

contributions of the phonon and surface roughness scattering, we calculate the hole

u

phonon and k.. Therefore, the total,

mobility individually by replacing Tfotal with t
phonon-limited, and surface-roughness-limited mobility changes can be calculated
separately as illustrated in Fig. 5.4, 5.5, and 5.6 for (001) and 5.7, 5.8, and 5.9 for
(110) with the longitudinal, transverse, and out-of-plane stress, respectively. At first,
as depicted in Fig. 5.4 and 5.7, surface roughness scattering obviously limits the (001)
and (110) mobility enhancement in the region of high longitudinal compressive stress.
Secondly, all highlighted cases here indicate that surface-roughness-limited mobility
is not as sensitiveras phonon-=limited mobility. The reason can be related to the
momentum change ¢ in denominator of Eq. (2.3.4.1) which offsets the change of
density-of-states in the numerator.

Next, we will discuss the validity of Matthiessen’s rule for the universal mobility
on the 3-D stressed (001)and (110) p-MOSFETs. The efror percentage of the mobility

is chosen to quantify the validity of Matthiessen’s rule and the equation can be

described as

HUphonon Usr

1 1
u Error = (( +1)- uTomz>/uT0ml, (52.1)

where u ..., #, and u,, ., are the average mobility over all k-states. As shown in

Fig. 5.10 and 5.11, the errors are about 20 ~ 50% both for (001) and (110) cases and
the value of error can be seen as a function of stress. The large errors due to
Matthiessen’s rule are stronger energy-dependent functions of the group velocity,

scattering time, and density-of-states in the hole inversion layers.
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5.3 Scattering Time and Conductivity Mass

Limited Hole Mobility Changes

According to the effective mass approximation in Section 3.2.2, it is a
quasi-classical treatment which can straightforwardly represent the shape and the
warping of the band structures. As to the conductivity effective mass, it directly
relates to the group velocity along the transport direction and acts an important role in
carrier mobility. However, due to the nature of the non-parabolic and anisotropic
valence bandstructures, the ‘constant conductivity < effective mass is no longer
appropriate to the inversion-layer hole subband structures. Thus, the reversely
extracted conductivity effective mass is incorporated here via

m:;=eXT/U, (5.3.1)
where e is the free electron charge, T refers to the average scattering time, and u
refers to the average mobility. Eq. (5:3:1) can-macroscopically cover the warping of
valence band structure and. reflect the transport properties.as well. T;ytq; 1S the
average scattering time derived elaborately by

2(2712_)2_‘. s dkexaty, ()% £, (K)

Total — 1

;(27[)2” 52 k% [ (k)

(5.3.2)

The results of average scattering time and the extracted conductivity effective masses
are shown in Fig. 5.12 and 5.13 for (001) and (110) cases, respectively. The
conductivity effective masses extracted here are not as similar as the directly
calculated (double differential effective mass) conductivity effective masses near the
I' point of each band structure. The purpose of this inverse extraction process is to

offer the straightforward physical value rather than calculating the hole mobility
86



elaborately.

The scattering-time-limited and the conductivity-mass-limited mobility changes
are illustrated in Fig. 5.14 to 5.16 for (001) and 5.17 to 5.19 for (110) with the
longitudinal, transverse, and out-of-plane stress all taken into account. According to
Eq. (5.3.1), the relationship between the scattering time and the conductivity mass is

represented by:

H(O) _ Trpu(O) x E(O) _ (5.3.3)
10)  7,,(0) (o)

Through the (001) cases in Fig. 5.14 .and 5.15, the non-equivalence between the
longitudinal compressive condition-and transverse.tensile condition can be attributed
to the opposite normal strains as shown in Fig. 2.3: the biaxial tensile strains reduce
the influences of the.shear strains both on the scattering time-and the conductivity
effective mass. Here, we can anticipate the more sensitive warping of 2-D k-space
energy contours of the dominant subbands on (001) than (110) as shown in Fig. 5.20
because the stress-induced variance of the (001) conductivity effective masses and
scattering time are larger-than (110) ones. Therefore, the (110) scattering-time-limited
and the conductivity-effective-mass-limited mobility changes are smaller than the

(001) cases. We also calculate the average 2-D density-of-states effective masses as

DOSTotal(E)x](OdE 1
X, (5.3.4)
IE,(O) ﬂ)dE mo

E©

_ 2
Mpos = 27TH° %

to see the relationship between 2-D density-of-states effective mass and scattering
time under the 3-D stressed conditions. The stress-induced 1/mpog changes are
drawn in Fig. 5.14 to 5.19 with the dashed lines, showing the comparisons with the
scattering-time-limited mobility changes, especially when the surface roughness
influence is absent. This is because 7, depends not only on 1/mp,s term but also
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the momentum-change-dependent term as discussed in Section 2.3.4. The following

expression will make sense in the absent of the surface roughness,

W) _ me(0) o Mpos(0) (5.3.5)

u(©0) (o)~ Mpos(e)

5.4  Effect of Strained k + p Deformation Potentials

on Hole Mobility

The valence-band structure in the inversion layers of silicon p-MOSFETs can be
obtained by self-consistently solving Poisson-and Schrodinger’s equations by p-NEP.
Then, it is a straightforward task to'deal with two-dimensional hole transport issues.
This also is the case for _state-of-the-art p-MOSFETs undergoing the strain
engineering in the manufacturing process: Specifically, to compensate for the mobility
degradation in a scaling direction, GPa-level stresses [10], [ 11] are needed. To match
this trend, it is crucial to accurately calculate the hole inversion-layer mobility in the
strain altered valence-band structure, especially the widely used strained k + p
valence-band structure originating from the works of Luttinger and Kohn [12] and of
Bir and Pikus [13]. So far, howeyer, published calculation results in the context of the
strained k « p valence-band structure differed much from each other [6]-[9], as shown
in Fig. 5.21

Such inconsistencies are likely due to largely spanned values [6], [9] (see Table
5.3) in the Bir-Pikus deformation potentials, a,, b, and d. Indeed, according to
literature sources (see [14]-[17] and the references therein), a,, b, and d were
widespread in terms of the error range: 2.06 eV < a,<2.46 eV, -2.58 eV < b < -1.5
eV, and -5.3 eV < d < -3.1 eV. There were two origins proposed [15] for such large
errors: one of a complicated dependence on the strain conditions making the
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extraction of deformation potentials a hard problem and one of a limited strain range
used in the extraction. For example, b = —2.33 eV and d = —4.75 eV [15] were
representative of small-strain situations and deviations should be expected at large
strain, according to Fischetti, et al. [15]. Although good agreement with the mobility
enhancement data was obtained with another set of a,,, b, and d (see Table I for Wang,
et al.’s work [6]), the corresponding applied uniaxial stress range is not wide enough
(less than 400 MPa in magnitude; see Fig. 18 of [6]).

Importantly, in the area of strain altered hole inversion-layer mobility study to
date, the primary factors and guidelines - needed to experimentally determine the
unique values of a,, b, and d were not published, 1n particular in the GPa-level stress
range. To perform such experimental extraction as rigorously as possible, two
additional factors should be taken into“account. One is the acoustic deformation
potential, D,.. D,. 1s not an independent parameter but a function of a,, b, and d,
according to Bir and Pikus [13], Tiersten [18], and Lawaetz [19]. The second
additional factor is the deformation potential of optical phonons dy or the average
optical deformation potential D,,, which will affect the choice of surface roughness

parameters while making a fit to mobility data.

5.4.1 Effect of Bir-Pikus Deformation Potentials

Calculations with different values of Bir-Pikus parameters were executed for
each of three distinct uniaxial stress directions: (i) in-plane longitudinal stress along
the transport <110> direction; (ii) in-plane transverse stress perpendicular to the
transport <110> direction; and (iii) out-of-plane  stress in the quantum
confinement direction. The results on both (001) and (110) substrates are shown in
Fig. 5.21 for two cases: one of a, = 2.46 eV, b =-2.1 eV, and d = —4.8 eV (close to
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that of [9]) and one of a, = 2.1 eV, b =—-1.6 eV, and d = 2.7 eV (as in [6]). The
calculated 3-D uniaxial stress dependencies of mobility change resemble those
published elsewhere [8], [9]. This confirms the validity of the calculation method in
this work. In Fig. 5.22, one can see that different Bir-Pikus parameters lead to
different strain altered hole mobilities, particularly for the longitudinal compressive
stress.

To determine the primary factors, we made a set of @, = 2.46 eV, b = -2.1 eV,
and d = —4.8 eV as reference. In the subsequent calculation, one of these parameters is
given three distinct values (one reference and two values equal or close to the upper
and lower limits of the aforementioned error range), along with the two remainders
fixed at their reference values. The results are plotted in Fig. 5.23 for two <110>
uniaxial stresses of =2 and —3 GPa on (001) substrate. Note that different sets of a,, b,
and d produce different calculated D,. values according to (1), which will together
alter the amount of the mobility change percentage. It can further be seen from Fig.
5.23 that a change in'a,only has a weak effect on mobility enhancement; the effect of
varying b is moderate; but for.d, its effect is strongly large. The origin is due to the
decreased subband separation‘and the.increased DOS, as shown in the inset of the

figure. The primary factor, d, and the secondary factor, b, also hold for (110) case.

5.4.2 Guidelines and Experimental Determination

Guidelines are established in terms of a flowchart shown in Fig. 5.24. There are
six input parameters: a,, b, d, dy, A, and A. The corresponding D,. and D,, can be
determined according to Eq. (2.3.2.1) and (2.3.3.1), respectively. To facilitate the
procedure, we first took a literature value of 26.6 eV for dy [20] and hence the
corresponding D,,, of 8.5 x10™® eV/ecm. Then, a fit to the experimental unstrained hole
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effective mobility data in Fig. 5.25 as cited elsewhere [21] was carried out, producing
A =0.42 nm and A = 2.6 nm. It can be seen from the figure that a good fitting appears
in the high E.yregion or the universal mobility region, valid for different substrate
orientations and different transport directions. This validates the presented calculation
method. Here, E,y is the vertical effective electric field in the inversion layer, which
was calculated using the empirical formula: E.y = e(7Pin, + Paep) With 1 taken as 1/3
according to Takagi, et al. [22], where P;,, is the inversion-layer density and Py, is
the substrate depletion charge density. Deviations in the low E.4 region are expected
because impurity Coulomb scattering was not-taken into account in this work.

At this point, the number of input parameters reduces to three. Since a, and b are
weak or moderate in effect; we can quote the literature values: a, = 2.46 eV [15] and
b = -2.1 eV [16]. Then, with a guess of'd, the strain.induced hole mobility change
was calculated, an updated d was obtained in-comparison with the experimental data.
This process was iterated until a good fitting is achieved. In this way, we obtained d =
-3.1 eV and D, = 5.62 eV from a fit to hole inversion-layer mobility enhancement
data under uniaxial compressive stress [10], [11]; as depicted in Fig. 5.26.
Biaxial-stress mobility data [23],/[24] also were quoted. Extra calculation for this case
was performed. The result is shown in the inset of the figure. Fairly good agreement
remains, without changing any parameters. The extracted results are listed in Table
5.2. The corresponding calculated hole mobility change at two different £, is shown
in Fig. 5.21 for comparison.

Even making a change of b to —1.6 eV, we found that the reproduction quality is
acceptable, as shown in the inset of Fig. 5.26. Strikingly, such change in b does not
significantly affect the calculated hole mobility enhancement in case of uniaxial stress,
as shown in Fig. 5.26. This invariability supports the published error range of —2.58
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eV < b <-1.5eV [14]-[17]. Above arguments hold for other a, values, as has been
proved in Fig. 5.23. This can reasonably explain the commonly used values of 2.06
eV < a,< 246 eV [14], [17]. Good reproduction of the data is evident and can be
found when a, = 2.46 eV, b = -2.1 eV, and d = -3.1 eV. It is noteworthy that the
experimentally determined d of —3.1 eV in this work is exactly that (-3.1 eV) [16]
based on cyclotron resonance measurements [25].

Above results stemmed from a specific dy of 26.6 eV. As illustrated by the
guidelines in Fig. 5.24, a change in djy may change the extracted surface roughness
parameters. In fact, the quoted mobility,data-sources [10], [11], [21], [23], [24] came
from different manufacturing processes featuring different surface roughness details.
Thus, it is clear that the uncertainty exists in dy or equivalently the surface roughness
parameters. To reflect ‘this, we show in Fig. 5.27 the effect of varying surface
roughness height A Evidently, the calculated hole mobility change in Fig. 5.27 is
almost the same as Fig. 5.26. In other words, the uncertainty in A does not
significantly affect the calculated ‘hole mobility change. This also is the case for
surface roughness correlation length A. Therefore, the extracted parameters as listed in
Table 5.2 remain valid in the presence of the uncertainty in the surface roughness
parameters.

Finally, we add two interesting calculation results, as depicted in Fig. 5.28. First,
the inclusion of the screening effect in surface roughness scattering will reduce the
calculated hole inversion-layer mobility change, particularly in the high stress region.
Second, a change in the surface roughness model from the exponential function to the

Gaussian function does not influence the result.

5.5 Conclusions
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It has been found the phonon-limited mobility change is more stress-sensitive
than the surface-roughness-limited one, and the mobility change ratio can be reversely
proportional to the conductivity effective mass and density-of-states effective mass
only in the absence of the surface roughness-limited mobility change. Individual
contributions of hole mobility change have all be quantified. Calculated hole mobility
change due to varying a,, b, and d has been created and has accounted for 3-D
uniaxial stress conditions. The primary factor d and the secondary factor » have been
drawn. Guidelines have been established, followed by the experimental determination
of a,, b, and d. The literature errors. of the Bir-Pikus deformation potentials have

therefore been improved.
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D, D, ho, L A a, b d | d,
(eV) (10%eV/cm) (meV) (nm) (nm) (eV) (eV) €eV) (eV)
Section 5.2 & 5.3
N,,=1x10"cm? | 5.62 8.5 612 2.6 042 246 21 48 415
T=300K

Table 5.1 List of scattering para
and 5.3. Notice that the sca

to be independent of the
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ac Dap hw”p A A a
(eV) (10%¢V/cm) (meV) (nm) (nm) (eV) (eV) V)  (eV)

Section 5.4
Ngup=1x10"cm3 5.62 8.5 61.2 2.6 0.42 2.46 2.1 3.1 | 26.6
T=300K

Table 5.2 List of the modified scattering parameters and Bir-Pikus potentials used in

Section 5.4.
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a b d dy 4

v split-off
71 72 73 (eV) (eV) (eV) (eV) (eV)
4285 0339  1.446  2.46 2.1 3.1 26.6  0.044
u €12 Cu p a, Vi Ve
(10'° N/m?) (g/lem?) (A) (105 cm/sec)

16.6 6.41 7.94 2.329 5.43 9.04 5.41

Table 5.3 Material parameters-used in Section5.4. y;, v;, and y; are Luttinger
parameters; a,, b,land d are the Bir-Pikus potentials; d is the optical deformation
potential; Ao 1S the split-off-‘hole energy; ¢, c;», and cys are the elastic
coefficients; p and apare the crystal density and lattice constant of silicon; v; and v,

are the longitudinal and transverse sound velocity.
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Fig. 5.1 Calculated 3-D uniaxial stress dependence of hole inversion-layer mobility
change for different deformation potentials on (001) substrate. Comparison is done
with other groups [8], [9]. The Bir-Pikus potentials a,=2.1 eV, b=-1.6 eV, and d=-2.7

eV are cited in [6].
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Fig. 5.2 Calculated 3-D uniaxial stress dependence of hole inversion-layer mobility
change for different deformation potentials on (110) substrate. Comparison is done
with other groups [8]. The Bir-Pikus potentials a,=2.1 eV, b=-1.6 eV, and d=-2.7 eV

are quoted in [6].

102



Out-of-plane <001> Out-of-plane <I1-10>

Long.
Trans. <110>

(001) wafer (110) wafer
Fig. 5.3 The device structures for (001) and (110) p-MOSFETs. The channel

direction and applied stress direction are clarified. Here, three-dimensional in-plane

longitudinal, transverse and out-of-plane stress are involved in this dissertation.
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Fig. 5.4 Mobility enhancement under longitudinal stress for different mobility
components such as phonon- and surface-roughness-limited ones at Ecir = 1.1MV/cm

in (001) p-MOSFET.
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Fig. 5.5 Mobility enhancement under transverse stress for different mobility
components such as phonon- and surface-roughness-limited ones at Eci = 1.1MV/cm

in (001) p-MOSFET.
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Fig. 5.6 Mobility enhancement under out-of-plane stress for different mobility
components such as phonon- and surface-roughness-limited ones at Ecir = 1.1MV/cm

in (001) p-MOSFET.
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Fig. 5.7 Mobility enhancement under longitudinal stress for different mobility

components such as phonon- and surface-roughness-limited ones at E¢i = 1.2MV/cm
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—— PH-limited
—A— SR-limited
1.2 E_g (MVicm)

i, :=121.7 (cm’IV*s

4,=484.9 (cm’/V*s)
u_=282.6(cm’/V*s)

)-

1 0 1
Long. Stress (GPa)

in (110) p-MOSFET.
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Fig. 5.8 Mobility enhancement ‘under transverse stress for different mobility
components such as phonon- and surface-roughness-limited ones at E¢i = 1.2MV/cm

in (110) p-MOSFET.
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Fig. 59 Mobility enhancement under out-of-plane stress for different mobility
components such as phonon- and surface-roughness-limited ones at Eci = 1.2MV/cm

in (110) p-MOSFET.
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Fig. 5.10 The error of Matthiessen's.rule for three=dimensional uniaxial stresses at

Eer=1.1MV/cm in (001) p-MOSFET.
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Fig. 5.11

Eer=1.2MV/cm in (110) p-MOSFET.
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Fig. 5.12 Average scattering time and the extracted conductivity effective masses

for three-dimensional uniaxial stresses in (001) p-MOSFET at E.¢= 1.1MV/cm.
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Fig. 5.13 Average scattering time and the extracted conductivity effective masses

for three-dimensional uniaxial stresses in (110) p-MOSFET at Ecir= 1.2MV/cm.
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Fig. 5.14 The ratio of fotal mobility, average scattering time, reciprocal of
conductivity effective mass and density-of-states effective mass under longitudinal

stress in (001) p-MOSFET at E¢ir=1.1MV/cm.
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Fig. 5.15 The ratio of fotal mobility, average scattering time, reciprocal of
conductivity effective mass and density-of-states effective mass under transverse

stress in (001) p-MOSFET at E¢ir=1.1MV/cm.
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Fig. 5.16 The ratio of total mobility, average scattering time, reciprocal of
conductivity effective mass and density-of-states effective mass under out-of-plane

uniaxial stress in (001) p-MOSFET at Ec= 1.1MV/cm.
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Fig. 5.17 The ratio of fotal mobility, average scattering time, reciprocal of
conductivity effective mass and density-of-states effective mass under longitudinal

uniaxial stress in (110) p-MOSFET at E.is= 1.2MV/cm.
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Fig. 5.18 The ratio of total mobility, average scattering time, reciprocal of
conductivity effective mass and density-of-states effective mass under transverse

uniaxial stress in (110) p-MOSFET at E.is= 1.2MV/cm.
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Fig. 5.19 The ratio of fotal mobility, average scattering time, reciprocal of
conductivity effective mass and density-of-states effective mass under out-of-plane

uniaxial stress in (110) p-MOSFET at E.ir= 1.2MV/cm.
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Fig. 5.22(a) Calculated 3<D wuniaxial stress-dependence of hole inversion-layer

mobility change for (001) substrate.
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for C5 and C6.
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Fig. 5.24 Flowchart showing the establishment of the guidelines with the mutual

coupling between the Bir-Pikus deform potentials and D, taken into account.
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Fig. 5.25 Comparison of experimental holeinversion-layer effective mobility
(symbols) [21] and calculated hole universal mobility (lines) versus vertical effective
electric field. The scattering parameters used are listed in Table 5.2 and apply to both

(001) and (110) substrates.
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Fig. 527 Comparisons of the calculated hole inversion-layer mobility change

between the varying range of rms height of the surface roughness from 0.3 to 0.5 nm
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on (001) substrate with the interesting longitudinal compressive stress.
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between the exponential and Gaussian autocovariance function with and without the
screening effect on (001) substrate with the interesting longitudinal compressive

stress.
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Chapter 6

Demonstration of p-NEP

6.1 User Interface (Ul) and Simulation Process

The numerical techniques-and physical models of p-NEP have already been
introduced in Chapter 2. In this-chapter, the user interface and simulation process of
p-NEP which is written using the well-known' software, MatLab, are discussed. In
addition, the simulation results‘are demonstrated as well.

Firstly, the basic.structure of the simulator p-NEP is shown in Fig. 6.1. It can be
seen that the code of p-NEP is comprised of four parts: (i) a main program of p-NEP
which can yield the hole subband structures, Fermi level, confining electrostatic
potential profile, and so on in the p-type inversion layer; (ii) a hole mobility program
which can evaluate the group velocity over all k-plane, scattering rates based on the
momentum relaxation mechanism, and hole mobility; (iii) a hole gate direct tunneling
program which can calculate the hole gate direct tunneling current with the WKB
approximation; and (iv) a threshold voltage and capacitance program which can
compute the threshold voltage using the linear extrapolation of inversion hole density
and the capacitance versus gate voltage using the formula dQ/dV;.

To the part one, Fig. 6.2 demonstrates the Ul for the main program. First of all,
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we run the m-file named NEP4.m in the window of the current folder. Then, the
setting parameters are keyed in the command window of MatLab one by one. After
completing the input procedure, the popup window for saving path will appear. All
simulation results of p-NEP are saved as the type of MatLab data and the data size of
one bias point is of around three hundred megabyte. To the part two, the Ul for the
hole mobility program is displayed in Fig. 6.3. We start by dropping the wanted
MatLab data into the same folder and running the m-file named
Sub_Program_ Head.m in the window of current folder. Then, we select the loaded
MatLab data and press OK in the popup window. When completing the next popup
window for the scattering parameters setting, the hole mobility program will be
executed. To the part three, the UI for the gate direct tunneling program is illustrated
in Fig. 6.4. The operational procedure is basically the same as that shown in Fig. 6.3,
beside the running m-file named Program Head.m and without the second popup
window.

To the part four, the UI for the threshold voltage and capacitance programs is in
Fig. 6.5. The operational procedure here is divided.into two steps: the first step
represents the threshold voltage calculation and the second step represents the
capacitance calculation. We start by dropping the wanted MatLab data into the same
folder and running the m-file named Program Head.m in the window of current
folder. Then, select the loaded MatLab data and press OK in the popup window. When
the first step is done, the popup figure of the hole inversion density versus gate
voltage and the second popup window which should be keyed with the range of the
linear extrapolation are shown. After that, the results of the second step will appear in

the popup figure as well.
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6.2 Demonstration Results

6.2.1 Hole Subband Structure

The simulation results from the part one of p-NEP in Fig. 6.1 are shown as
follows. Firstly, the triangular potential based hole subband levels, occupancies, and
structures in the stressed p-type silicon inversion layer are shown in Fig. 6.6, 6.7 and
6.8, respectively. In Fig. 6.9, 6.10, and 6.11, the fully-iterated (by the six-band & - p
Schrodinger-Poisson self-consistent method) energy contours of the first subband with

the different materials, silicon, germanium, and gallium arsenide, are illustrated.

6.2.2 Hole Inversion-Layer Mobility

About the part two of p-NEP .in Fig. 6:1; the hole group velocity of the first
subband over all k-plane on both(001) and (110) are shown'in Fig. 6.12 and 6.13. The
corresponding scattering rates versus-energy at asspecific angle 6=0 °are shown in Fig.
6.14 and 6.15. In order to see the screening effect as depicted in Eq. (2.3.4.1), Fig.
6.16 shows the (001) and (110) hole inversion-layer mobility with and without
screening effect. It is reasonable for the larger screening effect to appear in the

stronger inversion layer.

6.2.3 Hole Gate Direct Tunneling and Capacitance

As to the part three and four of p-NEP in Fig. 6.1, the simulation results of the
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hole gate direct tunneling current and capacitance are shown as follows. In Fig. 6.17,
the calculated unstressed hole gate direct tunneling current density are found in the
satisfactory agreements with the experimental data from [1]. Then, the unstressed and
stressed capacitance versus gate voltage can also be satisfactorily compared with the
experimental data from [2] where the stressor originated from the selective fully
silicided (FUSI) gate, in Fig. 6.18 and Fig. 6.19. More practically, the hole gate direct
tunneling current density and capacitance are drawn simultaneously with the varying
poly-gate doping concentrations, stress conditions, and metal-gate work functions in

Fig. 6.20, 6.21, and 6.22.
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Structure of p-NEP
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The six-band £ - p Schrédinger-Poisson self-

consistent method
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Hole Inversion-Layer Hole Gate Direct Threshold Voltage &
Mobility Tunneling Current Capacitance versus Gate Voltage

Fig. 6.1 The basic'structure of the simulator p-NEP.
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inversion layer.
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Fig. 6.11 The fully-iterated (by the six-band & -p Schrodinger-Poisson self-consistent
method) energy contours of the first subband in (001) gallium arsenide p-type

inversion layer.
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Fig. 6.15  The fully-iterated (by. the six<band % - p Schrodinger-Poisson
self-consistent method) acoustic phonon, optical phonon, and surface roughness

scattering rate of the first subband in (110) silicon p-type inversion layer.
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Fig. 6.16 The unstressed (001) and.(110) hole" inversion-layer mobility with and
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Fig. 6.17 The calculated unstressed.hole gate-direct tunneling current density are
found in the satisfactory agreements with the experimental data of the different oxide

thicknesses [1].
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NO stress on the large-size poly- and FUSI-gate

devices
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Fig. 6.18 The unstressed capacitance versus gate voltage are compared with the
experimental data from [2] where the stressor originated from the selective fully

silicided (FUSI) gate.
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-460 MPa stress on the large-size FUSI-gate
device
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Fig. 6.19 The stressed capacitance versus gate voltage are compared with the
experimental data from [2] where the stressor originated from the selective fully

silicided (FUSI) gate.
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Fig. 6.20 The calculated hole gate direct tunneling current density and capacitance
are drawn simultaneously with the varying poly-gate doping concentrations. The other
parameters came from the table (poly-gate) in Fig. 6.19.
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Fig. 6.21 The calculated hole gate direct tunneling current density and capacitance
are drawn simultaneously with the varying stress conditions. The other parameters
came from the table (poly-gate) in Fig. 6.19.

155



o
o

) ) )
L —1— Cal. CV from p-NEP with WF=517eV .
| —O— Cal. CV from p-NEP with WF = 5.02 eV
—4— Cal. CV from p-NEP with WF =4.87 eV

N
o

N
o

l L]
]

Capacitance (pF/cm?)
(3]

1.0} _
0.5} _
0.0 L . N

A 0 1 2
Ve (V)
1000

L v . )

—— Cal. J . from p-NEP with WF =5.17 eV
—O— Cal. J, from p-NEP with WF = 5.02 eV
—— Cal. Jg from p-NEP with WF = 4.87 eV

1
(o]
0.
0.01 L . . ! .
0.0 -0.5 1.0

Vs (V)

100

J (Alcm’)

-

-1.5

Fig. 6.22 The calculated hole gate direct tunneling current density and capacitance
are drawn simultaneously with the varying metal-gate work functions. The other
parameters came from the table (FUSI-gate) in Fig. 6.19.
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Chapter 7

Conclusions

The dissertation demonstrates the study of the hole electrical properties in silicon
inversion layer in presence of both the the significant quantum confinement and the

complicated mechanieal stresses. Conclusions of this work are described as below:

»  We have successfully constructed the simulator p-NEP which can deal with the
hole electrical properties,in silicon inversion layer beneath in the presence of the
significant quantum-confinement and the complicated mechanical stresses. It is
also a flexible simulator covering. the alternative materials (silicon, germanium,
gallium arsenide), the alternative wafer orientations ((001), (110), (111)), the
alternative temperature conditions (2K~400K), the alternative stress conditions
(GPa-level uniaxial, biaxial stresses), and the alternative substrate doping

concentrations (1e15~6¢18 cm™).

»  We have constructed a new computational accelerator based on a hole effective
mass approximation with aim to intrinsically boost a self-consistent six-band
k + p simulation. First of all, a triangular potential based six-band % < p
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simulation has been performed to produce hole quantization and density-of-states
effective masses. Then with those hole effective masses as input, an EMA
oriented Schrodinger-Poisson iterative solving in pMOSFETs has been executed
as rapidly as the electron counterparts. The resulting confining electrostatic
potential profile has been proved to match the realistic one, thus ensuring a fast
convergence in the subsequent self-consistent six-band k < p simulation. This
remains valid for different temperatures, different substrate doping
concentrations, different inversion hole densities, and different surface
orientations. We have found that the overall CPU time is substantially reduced
down to around 8% to 17% of that withoutthe use of the proposed accelerator.
The validity of the chosen convergence criteria has been verified. The simulated
results have been validated by the published ones obtained from the conventional
self-consistent six-band k& * p method alone. The application of the proposed

accelerator to more general applications has been projected.

Three published sets of bulk oriented Luttinger parameters have been
successfully examined by finding out the possible agreements with the direct
experimental results of Takahashi, et al. The realistic subband structures have
been constructed by the these results. The comparisons Hole mobility and DOS

effective masses have been clearly demonstrated in (110) p-MOSFETs at 2 K.

It has been found that the phonon-limited mobility change is more
stress-sensitive than the surface-roughness-limited one, and the mobility change
ratio can be reversely proportional to the conductivity effective mass and
density-of-states effective mass only in the absence of the surface
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roughness-limited mobility change. Individual contributions of hole mobility
change have all be quantified. Calculated hole mobility change due to varying a,,
b, and d has been created and has accounted for 3-D uniaxial stress conditions.
The primary factor d and the secondary factor b have been drawn. Guidelines
have been established, followed by the experimental determination of a,, b, and
d. The literature errors of the Bir-Pikus deformation potentials have therefore

been improved.
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