TRy S D E SRR PR =)
2 H

Neural Fuzzy System Embedded with Particle Swarm Optimizer
and Its Applications

P o3 2 RFPHM
A FRE R RKE

PoE AR - O- & - 8

P gk FER T E Y R 2 A Sl ks 2 R

Neural Fuzzy System Embedded with Particle Swarm Optimizer
and Its Applications

Foyo4 D RE Student : Miin-Tsair Su
I EFR g Advisor : Chin-Teng Lin

A Dissertation
Submitted to Institute of Electrical and Control Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in
Electrical and Control Engineering

February 2012

Hsinchu, Taiwan, Republic of China

PE AR - O- & 2 2

R ¥ ey gl

B il A B F ey i Lo

£ 2

Apwm e P otk g i i N ALECR k2 AR o gk L A
B4 F B 20 O Biosh A (S isk B B (Functional-Link-Based Neuro-Fuzzy
Network, FLNFN) o gt — %l e fioks e e 3¢ a Bl 40 i 4o e ok v 5 Hoks 2
Alents 30 o o 30§15 2 30dg o T 2ba b doliol Ben 38 k) S E RAE fe et
KA o Bl o o FLNFN HCZPE o §8 2 38 cniadp o 304548 0 7 0 i gy ~ R 8
b E g% o s 3 AR i P 1‘%#1?'] Do A2 L& 5= A3MA o k-

o APRD T - BRRFHLALFERL (IPSO) HF Y 22 KRR

MBI R c AP/ DL BRI FERVFLEZIZIZELEFTEE (IA)

RN

JodeF HEL (PSO) kit F RHF Y BHZIA Y o T - fERAEE wEL S
fot iR (BFPSO) el & 5% 20 ¥ i 5 2 - Bk i B 2k n s enfi
BFPSO /7 & /2 2 & ¥4 BFO endf it 8 H kg (TR T RBBEdb: > a AEB
FE2EZE 2B 2REd PSO ke o % gt - 3 5% [T A rB o
FrRBEHORREFBREIEGN T A5 23 P s BALRARYRLEZIEAF o
E N PN u&&gp:,?é@mﬁ%#ﬁgxfm,;ﬁuw KM Aok T B TEAE S R o

W FRAEEY R FAE Y A IR Y UFY TR R KR

Bk Rl o S dc VORI P N GLred AR PR R A LRI HE
i %2 (DMPSO) > %3 B S e ik 2 15 B30 cnip 1 € - £ s > 20
PR ? i el PSO 5 A#HZ B Y mE 2R L AL o4 4L o

R R B R P T TRk g T

Neural Fuzzy System Embedded with

Particle Swarm Optimizer and Its Applications

Student : Miin-Tsair Su Advisor : Dr. Chin-Teng Lin

Institute of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

This dissertation proposes.the evolutionary neural fuzzy system, designed using
functional-link-based neuro-fuzzy network «~(FLNFN) model embedded with
PSO-based learning algorithms. The FLNFN model uses a functional link neural
network to the consequent part of the fuzzy rules: The consequent part uses a
nonlinear functional expansion to form arbitrarily complex decision boundaries. Thus,
the local properties of the consequent part in the FLNFN model enable a nonlinear
combination of input variables to be approximated more effectively. This dissertation
consists of three major parts. In the first part, the efficient immune-based particle
swarm optimization (IPSO) learning method is presented to solve the skin color
detection problem. The proposed IPSO algorithm combines the immune algorithm
(IA) and particle swarm optimization (PSO) to perform parameter learning. In the
second part, another hybrid parameter learning algorithm, called bacterial foraging
particle swarm optimization (BFPSO), is introduced for classification applications.
The proposed BFPSO algorithm performs local search through the chemotactic

movement operation of BFO whereas the global search over the entire search space is

accomplished by a PSO operator. In this way it balances between exploration and
exploitation enjoying best of both the worlds. In the third part, instead of using hybrid
techniques, the distance-based mutation operator is introduced to improve the
population diversity. The learning algorithm consists of structure learning and
parameter learning. The structure learning depends on the entropy measure to
determine the number of fuzzy rules. The parameter learning, based on distance-based
mutation particle swarm optimization (DMPSQO), can adjust the shape of the
membership function and the corresponding weights of the consequent part. Finally,
the proposed PSO-based learning algorithms are applied in various classification and
control problems. Results of this dissertation demonstrate the effectiveness of the

proposed methods.

-jv -

U
TRARCINNE SOE Ak AFERBNA S JIEFEAPE LG R
R HREEE L R AT B B gy PR o bk
FPE s g KPRz Pl iaT » R AF Y IRF I hF L2 &
BHEFFRT DARIZER o B B4 R d ke XA TR friR o
EHTHRFFELA P2 ARFE - EERE BRI AR L TR
FREFRFR AR CRLBE LB CF DRI G TR ke
T REARHY (Ko
Bl kB LI - BLE TR
BREYEEER 2 R
HepEiE o BE AR 0 A
L

¥ PR FPE R A TIF
'.:-,5‘ By N

Yo HdI R
P & iR £ B E MR mIES > L £i55 A
om0 PR F L E Ao - B R SR RS
» WA KRB FBT o PERFFEM S FIGEMA A
AR ox BFRE e B ST R E MR ot gt B
$ e gl ey At REE o FF T AR L e £
B R TREMTRT O P A L AR %A
P i I NI A T gAY o dEd B ETip T ASE E ST N R
B F AR RN AR L IR AR RS #Y g ey
oL RAAFY gtk e
g4 ALt gk P Al B e Frpac
E O RAAFL R A R P EFE BN o T LA e i KB VR
» FEEREFFL
SRR AE N R RS RS S o B R s R o
Wird NP T - B AW FRE RAN P
GRS CE R - s
FRE 5 4 Af@%%z

Fegx
FEWE s

) 3B
B Ns R R HENEE DR FY K

/EH”"‘“erfe %l[&};ﬁPF’E e E - l[%l%"’ 3T 1

V

MmZ

A

= 2

AN AERIFDPFLINGEE v 2a Ef N mE L Rt B o

PR ARG © iR o) TR HA P F g A P 3] A ehd
ToAL RRAMEREEAHALBESEIF - F o FEFFL R LF LR
B i AL FAPR S RARRE SN L FEEf R A LE o

fE kA& k%_%r@ﬁJﬂmﬁ EHEP ¥R AR AR
FTOATHE BRI REBABEFIFITH RAFUCREIER B ORS
WAL L0 LAGEANR ML o

Flatgd ' B F IS AnRAMR L S KENDEFL S e A gk
SR A mE - - RE O EAS LG AR B BRIEP

B is ’E‘:L»—LL’/‘QL;&\?{;;““Qé et B KFAEFLAL R AT ZF o

Bpd AT HZ

P EAR-O- &= 2% Lp

-Vi-

Table of Contents

ChiINESE ADSIIACT ..o [
ENGlisSh ADSIIACT.........oiieeic e ii
ACKNOWIBAGEMENT ... s Y
Table Of CONENESooiiie e vii
List Of TaDIES ... IX
LISE OF FIQUIES ... e X
Chapter 1 INtrodUCHIONcoiiiiiiiiiceee e 1
I\ [Y= (o] o SRS 1
1.2 LITEIAtUIE SUIMVEY ...ceeiiiiiiieie ettt sttt sttt sttt snes 6
1.3 Organization Of DISSErtationcevueieeririienie e 11
Chapter 2 Structure of the Functional-Link-Based Neuro-Fuzzy Network
... 14
Chapter 3 Immune Algorithm Embedded with Particle Swarm Optimizer
for Neuro-Fuzzy Classifier-and Its Apphicationsc.ccccccevveieieennnn. 19
3.1 Basic Concepts of the Artificial Immune System............ccooeviiiiniiicien, 20
3.2 Clonal Selection THEOY ...iiie e i aiieniaae et i e nneas 21
3.3 The Efficient Immune-Based PSO Learning Algorithm.............ccccoovinnnnne 22
3.3.1 Code fuzzy rule Into antiBOdY ..o .t iiineeiieiice e 23
3.3.2 Determine the initial parameters by self-clustering algorithm 25
3.3.3 Produce initial population.......c.ioo e 25
3.3.4 Calculate affinity ValUesccooeiiiiiieiiee e 26
3.3.5 Production of sub-antibodiesccooeeiiiiiiiiiee e 26
3.3.6 Mutation of sub-antibodies based on PSO............cccoeiiiiiiiiiiineee 27
3.3.7 Promotion and suppression of antibodiesccccecvvevieiieeiie e, 28
3.3.8 ElitiSM SEIECHION ..o s 30
3.4 SKIN COolOr DELECLION.ccviitieiieieeiee ettt 30
3.5 Concluding REMAIKS........c.coiiiiiiie et 34
Chapter 4 An Evolutionary Neural Fuzzy Classifier Using Bacterial
Foraging Oriented by Particle Swarm Optimization Strategy.................. 37
4.1 Basic Concepts of Bacterial Foraging Optimizationccccevveviencniene. 38
g I O 0 T=1 1 T DL LSRR 38
A.1.2 SWAIMING .ottt sttt ae b e beeneesreenbeeneenees 39
4.1.3 REPIOUUCTION ..ottt ittt 40
4.1.4 Elimination-and-DiSPersal ... 40
4.2 Learning Algorithms for the NFS Model...........cccooeiiiiiiniee 41

- Vii -

4.3 Hlustrative EXAMPIESocveiieieeeceseee e 44

Example 1: Iris Data Classificationcccccvvveerieieiienece e, 45
Example 2: Wisconsin Breast Cancer Diagnostic Data Classification........ 52
Example 3: Skin Color DeteCtionccevveieeiieiiiie e 55
4.4 ConCluding REMAIKS.cccviiieiiieieieese s e e 57

Chapter 5 Nonlinear System Control Using Functional-Link-Based
Neuro-Fuzzy Network Model Embedded with Modified Particle Swarm

(@] 0111 001 T S OSSPSR 59
5.1 Learning Scheme for the FLNFN Model...........cccoooivieiiiie i 60
5.2 Structure Learning Phaseccccviiveii i 62
5.3 Parameter Learning PRaSe...........cccviveiiiieiieeie e 64
5.4 HUSErative EXAMPIEScc.ccieiieieiieieeie e e st nne s 67
Example 1: Multi-Input Multi-Output Plant Control..............ccccccvevvvivenenn. 67
Example 2: Control of Backing Up the Truckccccoevvevviieineic e, 70
Example 3: Control of Water Bath Temperature System...........cccccvevvvenene. 75
5.5 Concluding REMAIKS.oisi i i i e seeie e e e sreenee e sre e 81
Chapter 6 Comparisons and. DISCUSSIONS. . .uiturreiireeeieeeiieeseeeereeesree e 83
6.1 COMPATISONS ..vvvveeead b it iiisaadana e drsessansabasesiedesaesseesseessesseessenssnsseesseassessensses 83
6.1.1 Skin Color Detection Using DMPSOcc....cccooiviiiieeie e 83

6.1.2 Skin Color Detection Results Comparison with Different Approaches
.. 88
6.2 DISCUSSIONS ...t feibatie e eve st sve et abans v sbe sttt et b bbb b i 89
Chapter 7 Conclusions and FUture Worksc.cccooe e 91
BibIIOgraphyooveeie e 95
a0 o] [0 U o]) OSSP 110

- viii -

List of Tables

Table 3.1: The accuracy rate with different generations (%)ccceveevvevveieiieesnene. 33
Table 3.2: Performance comparison with various existing models from the CIT
database (Training data: 6000; Generations: 2000)cccereerierieereereseese e seeneeas 34
Table 4.1: Classification accuracy using various methods for the iris data. 51
Table 4.2: Average re-substitution accuracy comparison of various models for the iris
data classification ProbIEM.coieiiie i 52

Table 4.3: Classification accuracy for the Wisconsin breast cancer diagnostic data. ..54
Table 4.4: Average accuracy comparison of various models for Wisconsin breast

CaNCEr AIAGNOSTIC UALA.ecveeeeeiesieee et e re e e e esreeaeanaenreas 55
Table 4.5: Performance comparison with various existing models from the CIT
AALADASE. ...ttt 56
Table 5.1: Performance comparison of the FLNFN-DMPSO, FLNFN-PSO,
CNFC-ISEL, SEFC and MFS-SE controllers for the MIMO plant.............ccccccvvvenen. 70
Table 5.2: Performance comparison of various controllers to control of backing up the
L0 o O o e USSP 75
Table 5.3: Performance comparison of various controllers for the water bath
temperature CONIIOI SYSTEIM. cuuiiio.viieeieesseasieattennaeseeeee et sbmre e sreeseesseesaeeeeeraesreeeesneenneas 81
Table 6.1: Performance comparison with PSO-.and-DMPSO methods from the CIT
database (Training data: 6000; Generations: 2000) .iciciveieereeiesieieee e eee e 84
Table 6.2: Performance comparison:with various existing models from the CIT
database (Training data: 6000; Generations: 2000)cccereerierieerrereseeseerieseeneeas 88
Table 6.3: The roles of 1A, BFO and PSO in the proposed learning algorithm........... 90

-iX -

List of Figures

Figure 1.1: The taxonomy of global optimization algorithms.c.cccceevviiiiieiennns 5
Figure 1.2: Aggregation chart for applications of the PSO over different years. 6
Figure 1.3: Taxonomy Of PSO.ccoiciiiie et 7
Figure 1.4: The variations 0f PSO.c.cccviiiieiice e 9
Figure 2.1: Structure of the selected neuro-fuzzy system model............ccccceevvevvennnee. 16
Figure 3.1: The clonal selection prinCiple..........ccovveviieiieciiie e 22
Figure 3.2: Flowchart of the proposed IPSO algorithm...........cccccvvvevveveicieceese e 24
Figure 3.3: Coding a neuro-fuzzy classifier into an antibody in the IPSO method.25
Figure 3.4: The flowchart of the mutation Step.........cccocvevvvieiieeii e 28
Figure 3.5: The coding of antibody population............ccccceeeiviieiinii e 29
Figure 3.6: Flowchart of the skin color detection System.cccccccevvveveivesieesn e 31
Figure 3.7: The accuracy rate with different generations.cccccvvveviviieiieieeriene 32
Figure 3.8: The learning curves of the three methods using the CIT database............. 33
Figure 3.9: Original color imagesfrom CIT facial database.c.cccccovvevvirirrnnnne. 35
Figure 3.10: Results of skin color detection with 3 dimension input (Y, Cb and Cr)..36
Figure 4.1: Flowchart of propased BFPSO method.........cc....oooevveiiiiiiececeeec 44
Figure 4.2: Iris data: iris sestosa (»), iris versiolor (o), and iris virginica (o). 47
Figure 4.3: The distribution of input training patterns and final assignment of three
FUIBS. ¢ bttt ans ettt et bbbt bttt eneas 50
Figure 4.4: Learning curves of the'NFS-BFPSO method, the NFS-BFO method, and
the NFS-PSO MENOG.ciiiiiiiiee e 51
Figure 4.5: Input membership functions for breast cancer classification. 53
Figure 4.6: Learning curves from the NFS-BFPSO method, the NFS-BFO method and
the NFS-PSO MENOG.ccviiiiiieee e 54
Figure 4.7: The learning curves of the three methods using the CIT database............. 56
Figure 4.8: Original face images from CIT database...........c.ccccevvviiviveieiieiiienr e 57
Figure 4.9: Results of skin color detection with 3 dimension input (Y, Cb, Cr).......... 57

Figure 5.1: Flowchart of the proposed learning scheme for the FLNFN model.......... 61
Figure 5.2: Learning curves of best performance of the FLNFN-DMPSO,

CNFC-ISEL, SEFC and MFS-SE in MIMO plant control.cccccccvvieviveveiieiienns 68
Figure 5.3: Desired (solid line) and model (dotted line) output generated by

FLNFN-DMPSO in MIMO plant cControl.cccccveviiieieeiesieseee e 69
Figure 5.4: Errors of proposed FLNFN-DMPSO in MIMO plant contral. 69
Figure 5.5: Diagram of simulated truck and loading zone...........c..cccoovevveieiienneiene. 71

Figure 5.6: Learning curves of best performance of the FLNFN-DMPSO,

CNFC-ISEL, SEFC and MFS-SE in control of backing up the truck.ccccoe.... 72
Figure 5.7: Trajectories of truck, starting at four initial positions under the control of

the FLNFN-DMPSO after learning using training trajeCtories..........ccocvvvververesvennnn 74
Figure 5.8: Conventional training SCEME.cccccveieiiieie e 76
Figure 5.9: The regulation performance of the FLNFN-DMPSO controller for the
WALET DTN SYSTEM. ...t ns 79
Figure 5.10: The behavior of the FLNFN-DMPSO controller under impulse noise for
the Water DAt SYSTEIM.ecie e nre s 80
Figure 5.11: The behavior of the FLNFN-DMPSO controller when a change occurs in
the water bath SyStem dYNAMICS.ceoiiieiiiii e 80
Figure 5.12: The tracking performance of the FLNFN-DMPSO controller for the
WALET DAL SYSTEM. . .iiiiiiiie et ns 81
Figure 6.1: The learning curves of PSO and DMPSO methods using the CIT database.
.. 84
Figure 6.2: Original face images from CIT repoSitory.........cccccevvveierveseereesieesresiennns 85
Figure 6.3: Fitness maps generated by awell-trained FLNFN-DMPSO..................... 86
Figure 6.4: Masks generated by a‘well-trained skin color classifier..............cccccocu.ee. 87
Figure 6.5: Results of skin color detection with YCbCr color space.............cccevernnnee. 88

-Xi -

Chapter 1

Introduction

1.1 Motivation

Fuzzy systems and neural networks have attracted the growing interest of
researchers in various scientific and engineering areas. The number and variety of
applications of fuzzy systems and neural networks [1-6] have been increasing, ranging
from consumer products and industrial process control to medical instrumentation,
information systems, and decision analysis.

Fuzzy systems are structured numerical estimators. They start from highly
formalized insights about the structure of categories found in the real world and then
articulate fuzzy IF-THEN rules as a kind of expert knowledge. Fuzzy systems
combine fuzzy sets with fuzzy rules to produce overall complex nonlinear behavior.
Neural networks, on the other hand, are trainable dynamical systems whose learning,
noise-tolerance, and generalization abilities grow out of their connectionist structures,
their dynamics, and their distributed data representation. Neural networks have a large
number of highly interconnected processing elements (nodes) which demonstrate the
ability to learn and generalize from training patterns or data; these simple processing
elements also collectively produce complex nonlinear behavior.

The performance of fuzzy systems critically depends on the input and output
membership functions, the fuzzy rules, and the fuzzy inference mechanism. On the
other hand, the performance of neural networks depends on the computational
function of the neurons in the network, the structure and topology of the network, and

the learning rule or the update rule of the connecting weights. The advantages and

-1-

disadvantages of fuzzy systems and neural networks are summarized as follows [7]:

The advantages of the fuzzy systems are:

e capacity to represent inherent uncertainties of the human knowledge with
linguistic variables;

* simple interaction of the expert of the domain with the engineer designer
of the system;

e easy interpretation of the results, because of the natural rules
representation;

* easy extension of the base of knowledge through the addition of new
rules;

* robustness in relation of the possible disturbances in the system.

The disadvantages of the fuzzy systems are:

* incapable to generalize, or either, it only answers to what is written in its
rule base;

* not robust in relation the topological changes of the system, such changes
would demand alterations in the rule base;

* depends on the ‘existence of a expert to determine the inference logical
rules;

The advantages of the neural networks are:

* learning capacity;
* generalization capacity;
* robustness in relation to disturbances.

The disadvantages of the neural networks are:

e impossible interpretation of the functionality;
e difficulty in determining the number of layers and number of neurons.
The hybrid neuro-fuzzy systems [8-34] possess the advantages of both neural
networks (e.g. learning abilities, optimization abilities, and connectionist structures)
and fuzzy systems (e.g. humanlike IF-THEN rules thinking and ease of incorporating
expert knowledge). In this way, we can bring the low-level learning and

computational power of neural networks into fuzzy systems and also high-level,

humanlike IF-THEN rule thinking and reasoning of fuzzy systems into neural
networks.

There are several different ways to develop hybrid neuro-fuzzy systems;
therefore, being a recent research subject, each researcher has defined its own
particular models. These models are similar in its essence, but they present basic
differences. The most popular neuro-fuzzy architectures include: 1) Fuzzy Adaptive
Learning Control Network [8][20][21][29][35]; 2) Adaptive-Network-Based Fuzzy
Inference System [24]; 3) Self-Constructing Neural Fuzzy Inference Network [25];
and 4) Functional-Link-Based Neuro-Fuzzy Network [32][33]. The advantages of a
combination of neural networks and fuzzy inference systems are obvious [8][34-36].
Fusion of artificial neural networks-and fuzzy inference systems have attracted the
growing interest of researchers in various scientific.and engineering areas due to the
growing need of adaptive .intelligent systems to solve the real world problems
[8][9][19][20][24][25][30][33-38].

No matter which neuro-fuzzy architecture is.chosen, training of the parameters is
the main problem in designing a neuro-fuzzy system. Backpropagation (BP)
[20][24][25][32][35][38][39] training is commonly adopted to solve this problem. It is
a powerful training technique that can be applied to networks with a forward structure.
Since the steepest descent approach is used in BP training to minimize the error
function, the algorithms may reach the local minima very quickly and never find the
global solution. The aforementioned disadvantages lead to suboptimal performance,
even for a favorable neuro-fuzzy system topology. Therefore, technologies that can be
used to train the system parameters and find the global solution while optimizing the
overall structure are required.

Figure 1.1 sketches a rough taxonomy of global optimization methods [40].

Generally, optimization algorithms can be divided in two basic classes: deterministic

-3-

and probabilistic algorithms. Deterministic algorithms are most often used if a clear
relation between the characteristics of the possible solutions and their utility for a
given problem exists. Then, the search space can efficiently be explored using for
example a divide and conquer scheme. If the relation between a solution candidate
and its “fitness” are not so obvious or too complicated, or the dimensionality of the
search space is very high, it becomes harder to solve a problem deterministically.
Trying it would possible result in exhaustive enumeration of the search space, which
is not feasible even for relatively small problems. Then, probabilistic algorithms come
into play.

An especially relevant family of probabilistic algorithms is the Monte
Carlo-based approaches. They trade«in guaranteed correctness of the solution for a
shorter runtime. This does not.mean that the results obtained using them are incorrect
- they may just not be the global optima. An important.class of probabilistic Monte
Carlo metaheuristics is evolutionary computation (EC). It encompasses all algorithms
that are based on a set of multiple solution candidates (called population) which are
iteratively refined. This field of optimization is also a class of soft computing as well
as a part of the artificial intelligence area. Some of its most important members are
evolutionary algorithms (EAs) and swarm intelligence (SI).

The particle swarm optimization (PSO) developed by Kennedy and Eberhart in
1995 [41-43], is a relatively new technique. Although PSO shares many similarities
with evolutionary computation techniques, the standard PSO does not use evolution
operators such as crossover and mutation. PSO emulates the swarm behavior of
insects, animals herding, birds flocking, and fish schooling where these swarms
search for food in a collaborative manner. Each member in the swarm adapts its

search patterns by learning from its own experience and other members’ experiences.

Deterministic
State Space Branch and Algebraic
Search Bound Geometry
Probabilistic
Monte Carlo
Algorithms *
! T | -
(Stochastic) | | Evolutionary
Hill Climbing Computation (EC)
A .
Random | | Memetic
Optimization Algorithms
Simulated | | E\'nlutionar'\; Harmonic
Annealing (SA) Algorithms (EA) Search (HS)
A
Tabu Search | | | | Genetic Algorithms Swarm
(TS) (GA) Intelligence (SI)
Parallel | | | | Learning Classifier Ant Colony
Tempering System (LCS) Optimization (ACO)
Stochastic | | | | ‘Evolutionary Particle Swarm
Tunneling Programming Optimization (PSO)
Direct Monte | | Evolutionary Differential
Carlo Sampling Strategy (ES) Evoelution (DE)
| | Genetic Standard Genetic
Programming (GP) Programming
Linear Genetic
Programming
Grammar Guide
Genetic Prog.

Figure 1.1: The taxonomy of global optimization algorithms.

During the past several years, PSO has been successfully applied to a diverse set
of optimization problems, such as multidimensional optimization problems [44],
multi-objective optimization problems [45-47], classification problems [48][49], and
feedforward neural network design [39][50-53]. Aggregation chart for applications of

the PSO over different years is shown in Figure 1.2 [54].

500

445
450 423

404
400

350
300

250 234

Citation

200

150 146

100

69

50 32

0 0 1 2 3 vk

0 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Year

Figure 1.2: Aggregation chart for applications of the PSO over different years.

In this dissertation, we proposed the novel learning algorithms embedded with
particle swarm optimizer for-the neural fuzzy system in both classification and

nonlinear system control applications.

1.2 Literature Survey

The underlying motivation for the development of PSO algorithm is the social
behavior of animals, such as bird flocking, fish schooling and swarm theory. To
simulate social behavior, bird flocking searches for food in an area. Each bird flies
according to self-cognition and social information. Self-cognition is the generalization
produced by past experience. The social information is the message that is shared by

the society. The strategy of the birds is to maintain the good experiences by referring

to the knowledge of the others. A PSQ’s taxonomy is shown as Figure 1.3 [54].

PSO Algorithms Classified According to ...

Continuity

_E Continuous
Discrete - Binary

— Pyramid

Topology

Star

Fuzzy
j— Fuzziness
Crisp
Adaptive —
Dissipative Accordance
Adaptive - Dissipative —
Attractive —
Repulsive Attraction

P

Attractive - Repulsive —

Genetic Algorithms —

Simulated Annealing —

Ant Colony Optimization —

Bacterial Foraging Optimization }

Compound with
other heuristics

Immune Algorithms

Neural Network —

Fuzzy Logic —

Active

Passive

Activity

Aggregation

Congregation

Grouping

Static

Dynamic

Mobility

Divided

Undivided

Divisibility

Quantum

Non-Quantum

Type of Particle

Interactive

Non-Interactive

Interaction

Determinestic

SR

Probabilistic

Uncertainity

— Small

— Random Graphs

L— Visible Best

— Restricted-Velocity

— Unrestricted-Velocity

—

Velocity Type

— Vertical-Velocity

— Velocity Limited

— Escape Velocity

— Self-adaptive Velocity

Sign of Trajectory
of Particles

Positive

Negative

Recursively

Recursive

Sideway

Hierarchy

Hierarchical

Unhierarchical

Restriction

Constrained

Unconstrained

Synchronicity

Synchronous

Asynchronous

Combinatoriality

Combinatotial

Singular

Cooperation

Cooperative

Un-Cooperative

Objective

Single

T A A A n AT

Multiple

Figure 1.3: Taxonomy of PSO.

In PSO, a member in the swarm, called a particle, represents a potential solution
which is a point in the search space. The global optimum is regarded as the location of
food. Each particle has a fitness value and a velocity to adjust its flying direction
according to the best experiences of the swarm to search for the global optimum in the
solution space [55].

In the original PSO algorithm, the particles are manipulated according to the

following equations:

Vie =Vig +C -6 (Pg’ = Xig) +C, 1, - (Pgg — Xig) (1.1)

Xig = Xg +Vig" (1.2)
Here x, and vi, are the d" dimensional component of the position and velocity

of the i" particle at time step 't ;—py is the d" component of the best (fitness
id

th

position the i" particle has achieved by timeistep t, and p, is the d”

component of the global best position-achieved in the population by time step t. The
constants ¢, and c, are known as the *“cognition” and “social” factors, respectively,
as they control the relative strengths of the individual behavior of each particle and
collective behavior of all particles. Finally, r, and r, are two different random
numbers in the range of 0 to 1 and are used to enhance the exploratory nature of the
PSO.

The two main models of the PSO algorithm, called gbest (global best) and
Ibest (local best), which differ in the way of they define particle neighborhood.
Kennedy and Poli [43][56] showed that the gbest model has a high convergence
speed with a higher chance of getting stuck in local optima. On the contrary, the
Ibest model is less likely become trapped in local optima but has a slower

convergence speed than gbest.

Many researchers have worked on improving its performance in various ways,

thereby deriving many interesting variants as shown in Figure 1.4 [54].

A Parallel . . . Adaptlve 50 . Augmented
e Active target Adaptive Adaptive Adaptive PSO Guided by Angle Area Extension Attractive- e m—
PSO PSO Dissipative PSO | Mutation PSO FZOOZ) acceleration Modulated PSO PSO Repulsive PSO gps(?
(2008) (2007) (2008) information (2005) (2007) (2002)
(2005) (20086)
(2006)
" . . " . Constrained Cooperative Co- a
Basic PSO dBehawor of Best rotation Binary PSO Chaos PSO Combinatorial | Comprehensive Optimization evolutionary Colo_pTranve
(1995) istance PSO o~ (1997) (2006) s LRIy Pele Via PSO PSO HHBEASIAED
() () () () (2007) C (2008) (2007)
Poublcs Dynamic
Cultural Based . P Divided Range structure Dual Layered Dynamic & Dynamic h Escape Velocity
PSO D'“égg';so D'ss'fzagg’;) = PSO coding Binary PSO Adjustable PSO | Double pso [Neighborhood PSO
(2005) (2004) PSO (2007) (2007) (2004) (2006)
(2003)
(2007)
D G Evolutionar EElEes Evolutionar Explorin Fully informed
Distribution N Y Programming y P 9 Extended PSO Fast PSO Y Fuzzy PSO Gaussian PSO
Iteration PSO PSO Extended PSO PSO
PSO (2007) PSO (2002) (2005) (2005) (2007) (2004) (2001) (2003)
(2007) (2007)

: Hierarchical A = q . .
Geneg;glnary Genetic PSO Geometric PSO Greedy PSO Gregarious PSO | Heuristic PSO Recursive- gverdibiscretel[RrdiCiadient Reclﬂ);?\jledPSO
(2006) (2006) (2008) (2007) (2006) (2007) based PSO (2006) (2004) (2007)

(2005)
Hyb”‘éSng”Ch' Immune PSO | Improved PSO | Interactive PSO Map'i_,RSeguce Modified Binary |, ified GPSO | Nbest PSO Neural PSO New PSO
(2006) (2008) (2006) (2005) (2007) (2007) (2008) (2002) (2005) (2005)
Novel Hybrid Orthogonal (Rt Perturbation Predator Pre, RG]
New PSO Niche PSO Y Novel PSO Optimized PSO 9 Asynchronous Y Component
(2006) (2002) RS0 (2008) (2006) 2S0) PSO PSO PSO 0
(2007) (2008) (2006) (2005) (2007) (2008)
PSO with PSO with . Quadratic . Self-
Craziness and Passive Pursuit-Escape Interpolation Quantum Delta Quantum PSO Quantum- Restricted Self-adaptive Organization
PSO PSO Inspired PSO Velocity PSO velocity PSO
Hill Climbing Congregation (2008) PSO (2004) (2004) (2004) (2006) (2008)
(2006) (2004) (2007) (2006)
q 5 A Two- 3
Simulated Spatial Special Species Based Sub-Swarms . " 9 Two-Swarm Unconstrained .
Annealing PSO | Extension PSO | Extension PSO PSO PSO Traggg;)’so dg::gspl;noal PSO PSO Um&%’fmﬁso
(2004) (2002) (2006) (2004) (2007) (2007) (2006) (2006)
Variable P q " -
. Vector Limited | Velocity Limited Velocity .
Neighborhood Vertical PSO : : .
B PSO PSO Mutation PSO er(lzcoﬁ:m Continuous | Binary | | Discrete |
(2006) (2008) (2006) (2008)

Figure 1:4: The.variations of PSO.

One of the variants introduces a parameter called inertia weight (w) into the

original PSO algorithms [56-58], and Eq. (1.1) can be rewritten as follows:
Vig =Wevig +C1 (Pig” =X) G - (P = %ig") (1.3)
The inertia weight is used to balance the global and local search abilities. A large
inertia weight is more appropriate for global search, and a small inertia weight
facilitates local search. A linearly decreasing inertia weight over the course of search
was proposed by Shi and Eberhart [58]. Parameters in PSO are discussed in [59]. Shi
and Eberhart designed fuzzy methods to nonlinearly change the inertia weight [60]. In

[61], inertia weight is set at zero, except at the time of re-initialization. In addition to

-9-

the time-varying inertia weight, a linearly decreasing v_ is introduced in [62]. By
analyzing the convergence behavior of the PSO, a PSO variant with a constriction
factor was introduced by Clerc and Kennedy [63]. Constriction factor guarantees the
convergence and improves the convergence velocity.

Improving PSO’s performance by designing different types of topologies has
been an active research direction. Kennedy [64][65] claimed that PSO with a small
neighborhood might perform better on complex problems, while PSO with a large
neighborhood would perform better on simple problems. Suganthan [66] applied a
dynamically adjusted neighborhood where the neighborhood of a particle gradually
increases until it includes all particles. In [67], Hu and Eberhart also used a dynamic
neighborhood where closest particles in the performance space are selected to be its
new neighborhood in each generation. Parsopoulos and Vrahatis combined the global
version and local version together to construct a unified particle swarm optimizer
(UPSO) [68][69]. Mendes and Kennedy introduced a fully informed PSO in [70].
Instead of using the pbest and gbest positions in the standard algorithm, all the
neighbors of the particle are used to update the velocity. The influence of each
particle to its neighbors is weighted based on its fitness value and the neighborhood
size. Veeramachaneni et al. developed the fitness-distance-ratio-based PSO
(FDR-PSO) with near neighbor interactions [71]. When updating each velocity
dimension, the FDR-PSO algorithm selects one other particle nbest, which has a
higher fitness value and is nearer to the particle being updated.

Some researchers investigated hybridization by combining PSO with other
search techniques to improve the performance of the PSO. Evolutionary operators
such as selection, crossover, and mutation have been introduced to the PSO to keep
the best particles [72], to increase the diversity of the population, and to improve the

ability to escape local optimum [73]. Mutation operators are also used to mutate

-10 -

parameters such as the inertia weight [74]. Relocating the particles when they are too
close to each other [75] or using some collision-avoiding mechanisms [76] to prevent
particles from moving too close to each other in order to maintain the diversity and to
escape from local optima has also been used. In [73], the swarm is divided into
subpopulations, and a breeding operator is used within a subpopulation or between the
subpopulations to increase the diversity of the population. Negative entropy is used to
discourage premature convergence in [77]. In [78], deflection, stretching, and
repulsion techniques are used to find as many minima as possible by preventing
particles from moving to a previously discovered minimal region. Recently, a
cooperative particle swarm optimizer (CPSO-H) [79] was proposed. Although
CPSO-H uses one-dimensional (1-D).swarms to search each dimension separately, the
results of these searches are integrated by a global swarm to significantly improve the
performance of the original PSO"on multimodal problems.

From our review of the state-of-the-art, we noticed two tendencies: 1) PSO
variants are mostly added with further operators- (e.g. mutation operator) and
mechanisms (e.g. “fly-back”, multi-swarms, co-evolution), and 2) PSO variants are
merged into one in order to improve its performance. Therefore, in this dissertation,
we present three novel PSO-based learning algorithms for the neuro-fuzzy systems

according to these two tendencies.

1.3 Organization of Dissertation

The overall objective of this dissertation is to develop the novel learning
algorithms embedded with particle swarm optimizer for the neuro-fuzzy systems. The

proposed learning algorithms are suitable for any neuro-fuzzy architecture. In this

-11 -

research, we take the functional-link-based neuro-fuzzy network (FLNFN) model for
example to demonstrate the performance of the proposed learning algorithms.
Organization and objectives of each chapter in this dissertation are as follows.

In Chapter 2, we describe the structure of FLNFN model. The FLNFN model is
based on our laboratory’s previous research [32]. Each fuzzy rule corresponds to a
sub-FLNN [80-82] comprising a functional expansion of input variables. The
functional link neural network (FLNN) is a single layer neural structure capable of
forming arbitrarily complex decision regions by generating nonlinear decision
boundaries with nonlinear functional expansion. Therefore, the consequent part of the
FLNFN model is a nonlinear combination of input variables, which differs from the
other existing models [20][24][25].

In Chapter 3, we propose.an efficient immune-based particle swarm optimization
(IPSO) algorithm for neuro-fuzzy classifiers to solve the skin color detection problem.
The proposed IPSO algorithm combines the immune.algorithm (1A) and PSO to
perform parameter learning. The 1A uses the clonal selection principle, such that
antibodies between others of high similar degree are affected, and these antibodies,
after the process, will have higher quality, accelerating the search and increasing the
global search capacity. On the other hand, we employed the advantages of PSO to
improve the mutation mechanism of IA. Simulations have conducted to show the
performance and applicability of the proposed method.

In Chapter 4, we present an evolutionary neural fuzzy classifier, designed using
the neural fuzzy system (NFS) and a new evolutionary learning algorithm. This new
evolutionary learning algorithm is based on a hybrid of bacterial foraging
optimization (BFO) and PSO. It is thus called bacterial foraging particle swarm
optimization (BFPSO). The proposed BFPSO method performs local search through

the chemotactic movement operation of bacterial foraging whereas the global search

-12 -

over the entire search space is accomplished by a particle swarm operator. The
proposed NFS with BFPSO learning algorithm (NFS-BFPSO) is adopted in several
classification applications. Experimental results have demonstrated that the proposed
NFS-BFPSO method can outperform other methods.

In Chapter 5, we present an evolutionary NFS for nonlinear system control. A
supervised learning algorithm, which consists of structure learning and parameter
learning, is presented. The structure learning depends on the entropy measure to
determine the number of fuzzy rules. The parameter learning, based on the PSO
algorithm, can adjust the shape of the membership function and the corresponding
weighting of the FLNN. The distance-based mutation operator, which strongly
encourages a global search giving. the particles .more chance of converging to the
global optimum, is introduced. The simulation results have shown the proposed
method can improve the searching ability and is very suitable for the nonlinear system
control applications.

In Chapter 6, we compare the.performance of the proposed learning algorithms
using skin color detection problem. In addition, a brief discussion of the proposed
learning methods is also made.

Finally, Chapter 7 draws conclusions and future works.

-13 -

Chapter 2
Structure of the Functional-Link-Based

Neuro-Fuzzy Network

In the field of artificial intelligence, neural networks are essentially low-level
computational structures and algorithms that offer good performance when they deal
with sensory data. However, it is difficult to understand the meaning of each neuron
and each weight in the networks. Generally, fuzzy systems are easy to appreciate
because they use linguistic terms and IF-THEN rules. However, they lack the learning
capacity to fine-tune fuzzy rules.and membership functions. Therefore, neuro-fuzzy
networks combine the benefits of neural networks and-fuzzy systems to solve many
engineering problems.

In [83], the definition of hybrid neuro-fuzzy system is as follows: “A hybrid
neuro-fuzzy system is a fuzzy® system. that-uses a learning algorithm based on
gradients or inspired by the neural networks theory (heuristic learning strategies) to
determine its parameters (fuzzy sets and fuzzy rules) through the patterns processing
(input and output)”. In other words, neuro-fuzzy networks bring the low-level
learning and computational power of neural networks into fuzzy systems and give the
high-level human-like thinking and reasoning of fuzzy systems to neural networks.

Recently, neuro-fuzzy networks have become popular topics of research. The
advantages of a combination of neural networks and fuzzy inference systems are
obvious [8][34-36]. They not only have attracted considerable attention due to their
diverse applications in fields such as pattern recognition, image processing, prediction,

and control, but they can also handle imprecise information through linguistic

-14 -

expressions. The most popular neuro-fuzzy architectures include: 1) Fuzzy Adaptive
Learning Control Network (FALCON) [8][20][21][29][35]; 2)
Adaptive-Network-Based Fuzzy Inference System (ANFIS) [24]; 3)
Self-Constructing Neural Fuzzy Inference Network (SONFIN) [25]; and 4)
Functional-Link-Based Neuro-Fuzzy Network (FLNFN) [32][33].

In this dissertation, the selected NFS model is based on our laboratory’s previous
research [32][33], called FLNFN. Figure 2.1 presents the structure of the FLNFN
model, which combines a neuro-fuzzy network with a FLNN [80-82]. The FLNN
[81][84] is a single layer neural structure capable of forming arbitrarily complex
decision regions by generating nonlinear decision boundaries with nonlinear
functional expansion. Moreover, thet FLNN ‘was conveniently used for function
approximation and pattern classification ‘with faster convergence rate and less
computational loading than.a multilayer neural network. In the selected FLNFN
model, each fuzzy rule that corresponds to a FLNN consists of a functional expansion
of input variables, which differsfrom the other existing models [20][24][25].

The FLNFN model realizes a fuzzy IF-THEN rule in the following form.

Rulej:

IF X isA; and X, isA,; ...and X isA; ...and X, is A

)

o (2.1)

THEN §, =D Wyd =W, d +W, 6, +...+ Wy, i,
k=1

where X, and 9j are the input and local output variables, respectively; A; is the

linguistic term of the precondition part with a Gaussian membership function; N is

the number of input variables; w,; is the link weight of the local output; ¢, is the

basis trigonometric function of input variables; M is the number of basis functions,

and Rulej isthe j™ fuzzy rule.

- 15 -

LayerS
Layer4
Layer3
Functional *| Layer2
Expansion
X X
! 2 Layerl

Figure 2.1: Structure of the selected neuro-fuzzy system model.

The operation functions of the nodes in each layer of the FLNFN model are now
described. In the following description, u® denotes the output of a node in the "
layer.

Layer 1 (Input node): No computation is performed in this layer. Each node in

this layer is an input node, which corresponds to one input variable, and only

transmits input values to the next layer directly:
u® =%, (2.2)
Layer 2 (Membership function node): Nodes in this layer correspond to a single

-16 -

linguistic label of input variables in layer 1. Therefore, the calculated membership
value specifies the degree to which an input value belongs to a fuzzy set in layer 2.

The implemented Gaussian membership function in layer 2 is

[ui(l) B mi']2
us? = exp(——zJ (2.3)

o
where m; and oy are the mean and standard deviation of the Gaussian

membership function, respectively, of the j" term of the i" input variable X,.

Layer 3 (Rule Node): Nodes in this layer represent the preconditioned part of a
fuzzy logic rule. They receive one-dimensional membership degrees of the associated
rule from the nodes of a set in layer 2. Here, the product operator described above is
adopted to perform the IF-condition matching. of the fuzzy rules. As a result, the

output function of each inference node-is

(3 _ (2)
ul® =T Jus (2.4)

where the Huf) of a rule node represents the firing strength of its corresponding
rule.

Layer 4 (Consequent Node): Nodes in this layer are called consequent nodes.
The input to a node in layer 4 is the output from layer 3, and the other inputs are

nonlinear combinations of input variables from a FLNN, as shown in Figure 2.1. For

such a node,
4 3 -
ui? =ul® > Wy, (2.9)
k=1
where w,; is the corresponding link weight of the FLNN and ¢, is the functional

expansion of input variables. Considering the computational efficiency, the functional

expansion uses a trigonometric polynomial basis function, given by

-17 -

[¢1! b1 P51 Pur s, ¢6]:[)A(1’ sin (%), €os(7%,), X,, sin(7X,), COS(/Z)A(Z)] for the
two-dimensional input variables[X,,X,]. Therefore, M is the number of basis

functions, M =3-N, where N is the number of input variables. Moreover, the

output nodes of FLNN depend on the number of fuzzy rules of the FLNFN model.
Layer 5 (Output Node): Each node in this layer corresponds to a single output

variable. The node integrates all of the actions recommended by layers 3 and 4 and

acts as a center of area (COA) defuzzifier with

ZR:“(14) iuﬁ”(iwﬂ.qﬁkj ZR:ug‘”S/j
= e k=1 R

se Rw
j=1 j=1

where R is the number of fuzzy. rules, andy-is the output of the FLNFN model.

y=u(5) =

(2.6)

)
Uj
-1

j

As described above, thesnumber-of tuning parameters for the FLNFN model is

known to be (2+3P)-N-R, where N, R, and P denote the number of inputs,

existing rules, and outputs, respectively.

-18 -

Chapter 3
Immune Algorithm Embedded with
Particle Swarm Optimizer for
Neuro-Fuzzy Classifier and Its

Applications

Skin color detection is the process of finding skin-colored pixels and regions in
an image or a video. This process is typically used as a preprocessing step to find
regions that potentially have human faces and limbs in images. Several computer
vision approaches have been ‘developed for skin color detection. A skin color detector
typically transforms a given pixel into an appropriate color space and then use a skin
color classifier to label the pixel whether it is'a skin or-a non-skin pixel. A skin color
classifier defines a decision boundary of the skin color class in the color space based
on a training database of skin-colored pixels.

This chapter presents the efficient immune-based particle swarm optimization
(IPSO) for neuro-fuzzy classifiers to solve the skin color detection problem. The
proposed IPSO algorithm combines the immune algorithm (IA) and particle swarm
optimization (PSO) to perform parameter learning. The 1A uses the clonal selection
principle to affect antibodies between others of high similar degree, and these
antibodies, after the process, will be of higher quality, accelerating the search, and
increasing the global search capacity. The PSO algorithm, proposed by Kennedy and
Eberhart [41-43], has proved to be very effective for solving global optimization. It is

not only a recently invented high-performance optimizer that is easy to understand

-19 -

and implement, but it also requires little computational bookkeeping and generally
only a few lines of code [85]. In order to avoid trapping in a local optimal solution
and to ensure the search capability of a near global optimal solution, mutation plays
an important role in IPSO. Therefore, we employ the advantages of PSO to improve
mutation mechanism of 1A. The proposed method can improve the searching ability

and greatly increase the converging speed that we can observe in the simulations.

3.1 Basic Concepts of the Artificial Immune System

The biological immune system is successful at protecting living bodies from the
invasion of various foreign substances, such as viruses, bacteria, and other parasites
(called antigens), and eliminating debris and malfunctioning cells. Over the last few
years, a growing number of computer scientists have carefully studied the success of
this competent natural mechanism and proposed computer immune models, named
artificial immune systems (AIS),. for solving various. problems [86-94]. AIS aim at
using ideas gleaned from immunology In-order to develop adaptive systems capable

of performing a wide range of tasks in various areas of research.

In this research, we review the clonal selection concept, together with the affinity
maturation process, and demonstrate that these biological principles can lead to the
development of powerful computational tools. The algorithm to be presented focuses
on a systemic view of the immune system and does not take into account cell-cell
interactions. It is not our concern to model exactly any phenomenon, but to show that
some basic immune principles can help us not only to better understand the immune

system itself, but also to solve complex engineering tasks.

-20 -

3.2 Clonal Selection Theory

Any molecule that can be recognized by the adaptive immune system is known
as an antigen (Ag). When an animal is exposed to an Ag, some subpopulation of its
bone-marrow-derived cells (B lymphocytes) responds by producing antibodies (Ab’s).
Ab’s are molecules attached primarily to the surface of B cells whose aim is to
recognize and bind to Ag’s. Each B cell secretes a single type of antibody (Ab), which
is relatively specific for the Ag. By binding to these Ab’s (cell receptors) and with a
second signal from accessory cells, such as the T-helper cell, the Ag stimulates the B
cell to proliferate (divide) and mature into terminal (non-dividing) Ab secreting cells,
called plasma cells. The process of cell division (mitosis) generates a clone, i.e., a cell
or set of cells that are the progenies of a single cell. While plasma cells are the most
active Ab secretors, large B«lymphocytes, which. divide rapidly, also secrete Ab’s,
albeit at a lower rate. On the-other hand, T cells play a central role in the regulation of
the B cell response and are preeminent in cell mediated immune responses, but will

not be explicitly accounted for the development of our model.

Lymphocytes, in addition to proliferating and/or differentiating into plasma cells,
can differentiate into long-lived B memory cells. Memory cells circulate through the
blood, lymph and tissues, and when exposed to a second antigenic stimulus
commence to differentiate into large lymphocytes capable of producing high affinity
antibodies, pre-selected for the specific antigen that had stimulated the primary
response [95]. In this study, we treat the long-lived B memory cells as the better

antibodies by elitism selection. Figure 3.1 depicts the clonal selection principle [95].

The main features of the clonal selection theory [96][97] that will be explored in

this study are:

« Proliferation and differentiation on stimulation of cells with Ag’s;

-21 -

* Generation of new random genetic changes, subsequently expressed as
diverse Ab patterns, by a form of accelerated somatic mutation (a process
called affinity maturation);

e Elimination of newly differentiated lymphocytes carrying low affinity

antigenic receptors.

B cell
0 Col {:; t Antlgens o B cells encounter and

Q ‘I " bind to antigen.
/ h e B cell ¢ responds to

antigen by proliferating.

Clone of
B cells

e Some B cells differentiate
into long-lived memory
cells.

©) Other B cells differentiate
into plasma cells.

Plasma cells J

L5,

©) Piasma cells secrete
antibodies into
circulation.

Cardiovascular system Antibodies

Copyright £ 2004 Paareen Education, Ine., publishing a& Beramin Cummings

Figure 3.1: The clonal selection principle.

3.3 The Efficient Immune-Based PSO Learning Algorithm

This section describes the efficient immune-based PSO (IPSO) learning
algorithm for use in the neuro-fuzzy classifier. Analogous to the biological immune
system, the proposed algorithm has the capability of seeking feasible solutions while
maintaining diversity. The proposed IPSO combines the immune algorithm (1A) and

particle swarm optimization (PSO) to perform parameter learning. The IA uses the

-22 -

clonal selection principle to accelerate the search and increase global search capacity.
The PSO algorithm has proved to be very effective for solving global optimization. It
is not only a recently invented high-performance optimizer that is very easy to
understand and implement, but it also requires little computational bookkeeping and
generally only a few lines of code. In order to avoid trapping in a local optimal
solution and to ensure the search capability of a near global optimal solution, mutation
plays an important role in IPSO. Moreover, the PSO adopted in evolution algorithm
yields high diversity to increase the global search capacity, as well as the mutation
scheme. Therefore, we employed the advantages of PSO to improve the mutation
mechanism of IA. A detailed IPSO of the neuro-fuzzy classifier is presented in Figure

3.2. The whole learning process is described step-by-step below.

3.3.1 Code fuzzy rule into.antibody

The coding step is ‘concerned with the membership functions and the
corresponding parameters of the consequent part of a fuzzy rule that represent Ab’s
suitable for IPSO. This step codes a rule of a neuro-fuzzy classifier into an Ab. Figure
3.3 shows an example of a neuro-fuzzy classifier coded into an Ab (i.e. an Ab
represents a rule set), where i and j representthe i" dimension andthe j" rule,
respectively. In this research, a Gaussian membership function is used with variables

representing the mean and standard deviation of the membership function. Each fuzzy

rule has the form in Figure 2.1, where m; and o represent a Gaussian

membership function with mean and standard deviation of the i" dimension and "

rule node and w; represents the corresponding parameters of consequent part.

-23 -

(Begin)

Y

Code fuzzy rule into antibody

Y

Determine initial parameters by
self-clustering algorithm

Y

Production of initial antibody
population

Memory cell

Y

Y

Calculate affinity values

A\ 4

Production of
sub-antibodies (children)

Y

Mutation of sub-antibodies
(children) based on PSO to
replace their parents

Y.

Promotion and suppression of
antibodies

Y

Clone next generation antibody

A

Elitism
Selection

A\ 4

Update groups

No L
Termination ?

Memory cell
differentiation

Figure 3.2: Flowchart of the proposed IPSO algorithm.

=24 -

Rule; Rule, | ... Rule; | ... Ruley

my; Oy | my; G | - mi; Gijj | - Wij Wa | - Wii | -

Figure 3.3: Coding a neuro-fuzzy classifier into an antibody in the IPSO method.

3.3.2 Determine the initial parameters by self-clustering algorithm

Before the IPSO method is designed, the initial Ab’s in the populations are
generated according to the initial parameters of the antecedent part and the consequent
part. In this study, the initial parameters of a neuro-fuzzy classifier were computed by
the self-clustering algorithm (SCA) method [52][98][99]. That is, we used SCA
method to determine the initial mean and standard-deviation of the antecedent part.
On the other hand, the initial link weight of the consequent part is a random number
in the range of 0 to 1.

SCA is a distance-based_connectionist -clustering. algorithm. In any cluster, the
maximum distance between an example-point-and the cluster center is less than a
threshold value. This clustering algorithm sets clustering parameters and affects the
number of clusters to be estimated. In the clustering process, the data examples come
from a data stream. The clustering process starts with an empty set of clusters. The
clusters will be updated and changed depending on the position of the current

example in the input space.

3.3.3 Produce initial population

In the immune system, the Ab’s are produced in order to cope with the Ag’s. In
other words, the Ag’s are recognized by a few of high affinity Ab’s (i.e. the Ag’s are

optimal solutions). The first initial Ab utilizing a real variable string is generated by

-25 -

SCA, and the other Ab’s of population are generated based on the first initial Ab by

adding some random value.

3.3.4 Calculate affinity values

For the large number of various Ag’s, the immune system has to recognize them
for their posterior influence. In biological immune system, affinity refers to the
binding strength between a single antigenic determinants and an individual
antibody-combining site. The process of recognizing Ag’s is to search for Ab’s with
the maximum affinity with Ag’s. Moreover, every Ab in the population is applied to
problem solving, and the affinity value is a performance measure of an Ab which is
obtained according to the error function. In this study, the affinity value is designed

according to the follow formulation:
1

1+\/N12D(yk—y§’) 1)

D k=1

Affinity value =

where Y, represents the k™ model output, y¢ represents the desired output, and

N, represents the number of the training data. In the problems, the higher affinity

refers to the better Ab.

3.3.5 Production of sub-antibodies

In this step, we will generate several neighborhoods to maintain solution
variation. This strategy can prevent the search process from becoming premature. We
can generate several clones for each Ab on feasible space by Egs. (3.2), (3.3) and (3.4).
Each Ab regarded as parent while the clones regarded as children (sub-antibodies). In

other words, children regarded as several neighborhoods of near parent.

mean: clones[children, .]= antibody[parent;]+« (3.2)

- 26 -

deviation: clones[children;]= antibody[parent;J+ « (3.3)

weight : clones[children; .]= antibody[parent,]+ g (3.4)

where parent, represents the i" Ab from the Ab population; children,

represents clones number ¢ from the i" Ab; « and £ are parameters that
control the distance between parent. In this scheme, o« and g are important
parameters. The large values lead to the speed of convergence slowly and the search
of optimal solution difficulty, whereas the small values lead to fall in a local optimal
solution easily. Therefore, the selection of the « and g will critically affect the
learning results, and their values will be based on practical experimentation or on

trial-and-error tests.

3.3.6 Mutation of sub-antibodies based on PSO

In order to avoid trapping in a local optimal solution and to ensure the search
capability of near global optimal solution, mutation plays an important role in IPSO.
Moreover, the PSO adopted in evolution algorithm yields high diversity to increase
the global search capacity, as well as the mutation step. Hence, we employed the
advantages of PSO to improve mutation mechanism. Through the mutation step, only
one best child can survive to replace its parent and enter the next generation.

PSO is a recently invented high-performance optimizer that is very easy to
understand and implement. Each particle has a velocity vector v, and a position
vector x; to represent a possible solution. In this research, the velocity for each
particle is updated by Eq. (1.3). The parameter we (0, 1] is the inertia of the particle,
and controls the exploratory properties of the algorithm. The constants ¢, and c,
are known as the “cognition” and “social” factors, respectively. r, and r, are

uniformly distributed random numbers in [0, 1]. The term v, is limited to the range

-27 -

tv

- 'max *

If the velocity violates this limit, it will be set at its proper limit. Changing
velocity enables every particle to search around its individual best position and global
best position. Based on the updated velocities, each particle changes its position
according to Eq. (1.2).

When every particle is updated, the affinity value of each particle is calculated
again. If the affinity value of the new particle is higher than those of local best, then
the local best will be replaced with the new particle. Moreover, in the mutation step,

each Ab (or particle) in the population must be mutated only one time by PSO in each

generation. The mutation step flowchart is presented in Figure 3.4.

Original Population

Generation P

New Population

Antibody Clones Antibody
REnE Population Mutation based on One best child can | RaNK Population
_ d survive to replace
| Pgo its parentiSort

1 Antibody 1 i —_— > i 1 Antibody 1
2 Antibody 2 { : _ : }—> 2 Antibody 2
N-1 | Antibody N-1 { : _— ; }—> N-1 | Antibody N-1
N Antibody N { i _— i }—> N Antibody N

Generation P+1

Figure 3.4: The flowchart of the mutation step.

3.3.7 Promotion and suppression of antibodies

In order to affect Ag’s and keep diversity to a certain degree, we use information

entropy theory to measure the diversity of Ab’s. If the affinity between two ADb’s is
greater than the suppression threshold Th, , these two Ab’s are similar, and the Ab of
lower affinity value is reduced a small amount of value A. Figure 3.5 shows the

-28 -

immune algorithm composed of N Ab’s having L genes.

Gene/s” \\
1 e/ Cenees L-1 L
Antibody 1I./ Gy | \....
. l \
. | :
Antibody k1 | |..| Gk,| A
. I ;
\ |
L T f
Antlbody N e} GN1| fo...
\ f
\ /
~ 7

Figure 3.5: The coding of-antibody population.

From information entropy theory, we get
IE.(N)=_§1‘,—F’“ log P, (3.5)
where P, is the probability that the i" ‘allele comes out at the I" gene. The
diversity of the genes is calculated using Eqg. (3.5). The average entropy value 1E(N)

of diversity can be also computed as follows:
1 L
IE(N) =22 1B (N) (3.6)
1=1

where L is the size of the gene in an Ab. Equation (3.6) yields the diversity of the
Ab pool in terms of the entropy. There are two kinds of affinities in IPSO. One
explains the relationship between an Ab and an Ag using Eq. (3.1). The other accounts
for the degree of association between the j" Ab and the k™ Ab and measures how

similar these two Ab’s are. It can be calculated by using

1

Affinity _ Ab,, = 1+ IE(2)

3.7)

-29 -

where Affinity _ Ab, is the affinity between two Ab’s j and k,and IE(2) is the

entropy of only the Ab’s j and k. This affinity is constrained from zero to one.

When 1E(2) is zero, the genes of the j™ Abandthe k™ Ab are the same.

3.3.8 Elitism selection

When a new generation is created, the risk of losing the best Ab is always
existent. In this study, we adopt elitism selection to overcome the above-mentioned
problem. Therefore, the Ab’s are ranked in ascending order of their affinity values.
The best Ab is kept as the parent for the next generation. Moreover, the best Ab and
Ab’s with high antigenic affinity are transformed into long-lived B memory cells.
Elitism selection improves the efficient of IPSO considerably, as it prevents losing the

best result.

3.4 SKkin Color Detection

Detecting skin-colored pixels, although seems a straightforward easy task, has
proven quite challenging for many reasons. The appearance of skin in an image
depends on the illumination conditions where the image was captured. Therefore, an
important challenge in skin detection is to represent the color in a way that is invariant
or at least insensitive to changes in illumination. The choice of the color space affects
greatly the performance of any skin detector and its sensitivity to change in
illumination conditions. Another challenge comes from the fact that many objects in
the real world might have skin-tone colors. This causes any skin detector to have
much false detection in the background if the environment is not controlled.

Figure 3.6 shows a flowchart of a skin color detection system. Skin detection

-30 -

process has two phases: a training phase and a detection phase. Training a skin
detector involves three basic steps:

1. Collecting a database of skin patches from different images. Such a
database typically contains skin-colored patches from a variety of people
under different illumination conditions.

2. Choosing a suitable color space.

3. Learning the parameters of a skin classifier.

Given a trained skin detector, identifying skin pixels in a given image or video

frame involves:

1. Converting the image into the same color space that was used in the training
phase.

2. Classifying each pixel using the skin classifier to either a skin or non-skin.

3. Typically post processing is needed using morphology to impose spatial

homogeneity on the detected regions.

Image

- =

Lighting Compensation - Reference White

- =

Color Segment - RGB to YCbCr

- =

Skin Tone Detection - Cbh,Crand Y

-~ L

Neuro-Fuzzy Classifier |:> IPSO
-~ L

Detected Skin Color

Figure 3.6: Flowchart of the skin color detection system.

-31-

In this research, we used the California Institute of Technology (CIT) facial
database (on http://www.vision.caltech.edu/Image_Datasets/faces/.) The database has
450 color images, the size of each being 320x240 pixels, and contains 27 different
people and a variety of lighting, backgrounds, and facial expressions.

Three input dimensions (Y, Cb and Cr) were used in this experiment. We chose
6000 training data and 6000 testing data. We used the CIT database to produce both
the training data and the testing data. We chose 3000 skin and 3000 non-skin pixels as
the training data in the color images. Also, we chose other 3000 skin and 3000
non-skin pixels as the testing set. We set four rules constituting a neuro-fuzzy
classifier.

The number of Ab’s for a swarm was set to-100. With the same initial condition,
the accuracy rate with different generations for 50 runs is shown in Figure 3.7 and
tabulated in Table 3.1. It seems a good choice to terminate the training phase after

2000 generations process.

100
_) 96.58) [96.52] [96.53
95.57 S
45 93.32] 93.23 93.27|
92.33 = = =
=
8 90- 89.08|
[+
= B
> 85.9 85.93 est
- 85:52 - == Average
':'; 854 & ~l~ Worst
3 82.6
<
80 78.72
75 t T 1 r
200 1000 2000 3000 4000

Generations

Figure 3.7: The accuracy rate with different generations.

-32 -

Table 3.1: The accuracy rate with different generations (%)

Generations

200 1000 2000 3000 4000

Best accuracy rate (training) 95.57% | 96.02% | 96.58% | 96.52% | 96.53%

Worst accuracy rate (training) 78.72% | 82.6% | 85.9% | 85.52% | 85.93%

Average accuracy rate (training) | 89.08% | 92.33% | 93.32% | 93.23% | 93.27%

1.2 T T T ; ;

——NFC-IPSO

----- NFC-I1A
s NFC-PSO
o 038 -
=
©
>
w 0.6 |
[72]
®
[
=
L o4 ’ i
Jl'l
0.2} s
0 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generation

Figure 3.8: The learning curves of the three methods using the CIT database.

In this example, the performance of the IPSO method is compared with the 1A
method [94], and the PSO method [41]. First, the learning curves of 1A, PSO and
IPSO methods are shown in Figure 3.8. In Figure 3.8, we find that the performance of
the proposed IPSO method is superior to the other methods. Furthermore, the
comparison items include the training and testing accuracy rates are tabulated in Table

3.2.

-33-

Table 3.2: Performance comparison with various existing models from the CIT
database (Training data: 6000; Generations: 2000)

Method IPSO 1A [94] PSO [41]

Best 96.58% 93.5% 83.72%

Accuracy rate (Training data) | Worst 85.9% 82.53% 73.25%
Average 93.32% 88.1% 79.05%

Best 95.43% 87.4% 79.77%

Accuracy rate (Testing data) Worst 82.1% 76.15% 67.3%
Average 90.18% 82.63% 74.32%

The CIT facial database consists of complex backgrounds and diverse lighting.
Hence, from the comparison data listed in Table 3.2, the average of the test accuracy
rate is 74.32% for PSO, 82.63% for IA and 90.18% for the proposed IPSO. The
proposed IPSO method still maintains a superior test accuracy rate. To demonstrate
the skin color detection result; the color images from the CIT database are shown in
Figure 3.9. A well-trained classifier can generate binary outputs (1/0 for skin/non-skin)
to detect a facial region. Figure 3.10 shows that our approach accurately determines a

facial region.

3.5 Concluding Remarks

In this chapter, the efficient immune-based particle swarm optimization (IPSO) is
proposed to improve the searching ability and the converge speed. We proposed the
IPSO for a neuro-fuzzy classifier to solve the skin color detection problem. The
advantages of the proposed IPSO method are summarized as follows: 1) We
employed the advantages of PSO to improve the mutation mechanism; 2) The
experimental results show that our method is more efficient than 1A and PSO in

accuracy rate and convergence speed.

-34 -

Figure 3.9: Original color images from CIT facial database.

-35 -

Figure 3.10: Results of skin color detection with 3 dimension input (Y, Cb and Cr).

-36 -

Chapter 4
An Evolutionary Neural Fuzzy Classifier
Using Bacterial Foraging Oriented by

Particle Swarm Optimization Strategy

Classification is one of the most important tasks for different application such as
text categorization, tone recognition, image classification, micro-array gene
expression, proteins structure predictions, data classification etc. There are many
methods to construct classifiers, such as statistical models [100], neural networks
[37][39][101], and fuzzy systems [6][16][17][102].. Most of the existing supervised
classification methods are based on-traditional statistics, which can provide ideal
results when sample size is tending to infinity. However, only finite samples can be
acquired in practice.

In this chapter, an evolutionary neural fuzzy classifier, using bacterial foraging
oriented by particle swarm optimization strategy (BFPSO), is applied on different data
sets which have two or multi class. The proposed BFPSO is a hybrid method which
combines bacterial foraging optimization (BFO) and particle swarm optimization
(PSO). The proposed algorithm performs local search through the chemotactic
movement operation of BFO whereas the global search over the entire search space is
accomplished by a PSO operator. In this way it balances between exploration and

exploitation enjoying best of both the worlds.

-37 -

4.1 Basic Concepts of Bacterial Foraging Optimization

Passino [103] proposed the BFO in 2002. The idea of the BFO is based on the
fact that natural selection tends to eliminate animals with poor “foraging strategies”
and favor the propagation of genes of those animals that have successful foraging
strategies. After many generations, poor foraging strategies are either eliminated or
shaped into good ones. Logically, such evolutionary principles have led scientists in
the field of “foraging theory” to hypothesize that it is appropriate to model the activity
of foraging as an optimization process. Take the E. coli bacteria (the ones that are
living in our intestines) foraging strategy for instance, their foraging strategy is
governed by four processes, namely, chemotaxis, swarming, reproduction, and

elimination-and-dispersal.

4.1.1 Chemotaxis

Chemotaxis is achieved.through swimming and tumbling. Depending upon the
rotation of the flagella in each-bacterium, it decides whether it should move in a
predefined direction (swimming) or in an altogether different direction (tumbling),
over the entire lifetime of the bacterium.

Let S denote the bacterial population size and N_ be the length of the lifetime
of the bacteria as measured by the number of chemotactic steps they take during their
life. Let C(i)>0, i=12,...,S denote a basic chemotactic step size that we will use

to define the lengths of steps during runs. To represent a tumble, a unit-length random

direction, say ¢(j), is generated; this will be used to define the direction of

movement after a tumble. In particular, we let
& (j+Lk1)=0"(jk1)+C(i)g()) (4.1)

th th

where &'(jk,I) represents the location of the i" bacterium at the j

-38-

Ith

chemotactic step, k™ reproduction step, and elimination-dispersal event. C(i)

is the size of the step taken in the random direction specified by the tumble.
Then, the movement of the i™ bacterium at j" chemotactic step, can be

represented as

& (i+1k1) =6 (jk1)+C(i)—e2d) 42)

AT(1)-A())
where A(j) is the direction vector of the j" chemotactic step.

With the activity of run or tumble taken at each step of the chemotaxis process, a

step fitness, denoted as J (i, j,k,1), will be evaluated. If at &'(j+1k,I) the cost

J(i, j+1,k,1) is better (lower) than at-8"(j,k,1), then another step of size C(i) in

this same direction will be taken, and-again,-if that step resulted in a position with a
better cost value than at the previous step, another step is taken. This swim is
continued as long as it continues to<reduce the cost,-but only up to a maximum

number of steps, N,. This represents.that the-cell will tend to keep moving if it is

headed in the direction of increasingly favorable environments.

4.1.2 Swarming

It is always desired for the bacterium that has searched out the optimum path of
food should try to attract other bacteria, so that they reach the desired place more
rapidly. Swarming makes the bacteria congregate into groups, and hence move as
concentric patterns of groups with high bacterial density. Mathematically, swarming

can be represented as

-39 -

S

[6,P(i.k D] =ZJC[6’ ' (j.k, |)]

i=1
p .
{ dattract exp|: Wstiract Z(Hm - erln)2 :|} (43)

m=1

w

i=1

S p N2
+Z{ repellant exp{ repellantZ(Hm - Hr:w) :|}

i=1 m=1
where J_.[6,P(j.k,1)] is the value of the cost function to be added to the actual cost

function to minimize a time-varying cost function; S is the total number of bacteria;

p is the number of parameters to be optimized that are present in each bacterium;

and d w h and o are different coefficients that are to be

attract ? attract ? repellant repellant

judiciously chosen.

4.1.3 Reproduction
After N_ chemotactic “steps, a reproduction step is taken. Let N, be the

number of reproduction steps to be taken. The health cost of each bacterium is

N.+1

calculated as the sum of the step fitness duringits life, that is, J,..,, = > J (i, j.k.I),

where N, is the maximum step in a chemotaxis process. For convenience, we
assume that S=2-S_ is a positive even integer. The population is sorted in order of
ascending accumulated cost (higher accumulated cost represents that a bacterium did
not get as many nutrients during its lifetime of foraging and hence is not as “healthy”
and thus unlikely to reproduce); then the S, least healthy bacteria die and the other
S, healthiest bacteria each split into two bacteria, which are placed at the same
location. Thus, the population of bacteria keeps constant which is very convenient in

coding the algorithm.

4.1.4 Elimination-and-Dispersal
Let N, be the number of elimination-dispersal events. The chemotaxis

-40 -

provides a basis for local search, and the reproduction process speeds up the
convergence which has been simulated by the classical BFO. While to a large extent,
only chemotaxis and reproduction are not enough for global optima searching. Since
bacteria may get stuck around the initial positions or local optima, it is possible for the
diversity of BFO to change either gradually or suddenly to eliminate the accidents of
being trapped into the local optima. In BFO, the dispersion event happens after a
certain number of reproduction processes. Then some bacteria are chosen, according

to a preset probability p,,, to be killed and moved to another position within the

environment.

4.2 Learning Algorithms for the NES Model

BFO is based on the foraging behavior of Escherichia Coli (E. Coli) bacteria
present in the human intestine-and already been in use to many engineering problems,
such as optimal control [104][105], and machine learning [106]. However, bacteria
foraging strategies with fixed step size suffers from two main problems. If the step
size is very large, then the precision becomes low, although the bacterium quickly
reaches the vicinity of the optimum point. It moves around the maximum for the
remaining chemotactic steps. If the step size is very small, then it takes many
chemotactic steps to reach the optimum point. The rate of convergence thus decreases
[107].

In PSO, a particle represents a potential solution which is a point in the search
space. Each particle has a fitness value and a velocity to adjust its flying direction
according to the best experiences of the swarm to search for the global optimum in the

solution space. In Eq. (1.3), the inertia weight is used to balance the global and local

-4] -

search abilities. A large inertia weight is more appropriate for global search, and a
small inertia weight facilitates local search.

The proposed BFPSO algorithm, a new algorithm that combines BFO with PSO
algorithm, is endowed with high convergence speed and commendable accuracy. This
can be otherwise stated as the PSO performing a global search and providing a near
optimal solution very quickly which is followed by a local search by BFO which
fine-tunes the solution and gives an optimum solution of high accuracy. PSO has an
inherent disability of trapping in the local optima but high convergence speed whereas
BFO has the drawback of having a very poor convergence speed but the ability to not
trap in the local optima. Figure 4.1 is the flowchart of proposed BFPSO algorithm.

The brief pseudo code of the proposed BFPSQO method has been provided below:

Step 1: Initialization
Y : Dimension of the Search space.
S : The number of bacteria in the population.
N, : The number of chemotactic steps.
N, : The number of swimming steps.
N, :The number of reproduction steps.
N, : The number of elimination-dispersal events.
Pes - The probability that each bacterium will be eliminated-dispersed.
C : The size of the step taken in the random direction specified by the tumble.
C, : The cognitive learning rates.
C, :Thesocial learning rates.
W : The coefficient of the inertia term to control exploratory properties.

Step 2: Elimination-dispersal loop: |=1+1.

Step 3: Reproduction loop: k =k +1.

-42 -

Step 4: Chemotaxis loop: j=j+1.
[Step 4.1] For i=1,2,...,S, take a chemotactic step for bacterium i as follows.
[Step 4.2] Evaluate the cost function J(i, j,k,I), thenlet J_. =J(, j,k,I).
[Step 4.3] Tumble: let

¢ (j+1)=w-¢' (j)+c-5-(607(j.k,1)-0"(j.k.1I))
¢, 1,07 (. k)= 6' (j.k.1))

last

[Step 4.4] Move: let ¢'(j+1k,1)=0"(j.k1)+C(i)-¢'(j)
Compute fitness function: J(i, j+1,k,1), and then let
J(@, j+Lk,D=J(,j +1,k,|)+JCC(6?i(j+1,k,I), P(j+1,k,|))

[Step 4.5] Swim: Let m=0;
while (m < N,)
e let m=m+1;

if 3@, j+Lk 1) <J.. et Jug =J(i, j+Lk 1) and let

last.? last

& (j+Lk 1) =0"(j+Lk H)+C(i)#'(j);
Compute fitness function: J(1, j+1,k,I) .-Let
J(@, j+1k, =3, j+1,k,|)+Jcc(¢9i(j+1,k,|),P(j+1,k,I))

e elselet m=Ng;
[Step 4.6] Go to next bacterium.
Step 5: If (j <N.), go to Step 4. Since the life of the bacteria is not over.

Step 6: Reproduction: Compute the health of the bacterium i:

Nc+1

I = ,Zi‘ J(i, k1)
Sort bacteria and chemotactic parameters C(i) in order of ascending cost
Jiearn (Nigher cost means lower health). The S, bacteria with the highest
Joan Values die and the other S, bacteria with the best values split (and the

copies that are made are placed at the same location as their parent).
Step 7: If (k <N,,), go to Step 3.

Step 8: Elimination-dispersal: Eliminate and disperse bacteria with probability p,, .

Step 9: If (1 <N,), go to Step 2; otherwise end and output the results.

-43 -

For Each Elimination and
Dispersal Step No

}

Next Step

Last Elimination
and Dispersal?

Initialize Bacteria Location

Last Reproductive?
¢ No
. Sort and Update Particle Swarm
For Each Reproductive Step |«-f— Locatic?n S

}

For Each Chemotactic Step |«4—— Next Chemotactic

}

For Each Bacterium |-}——— Next Bacterium

}

Gather Information and
Move to Next Location

: + +

Keep to Previous Choose New
Direction Direction

Last Chemotactic?

Last Bacterium?

Update Next Direction

Evaluate Fitness

Fitness(next) > Fitness(previous)?

Figure 4.1: Flowchart of proposed BFPSO method.

4.3 Illustrative Examples

In this section, we evaluate the classification performance of the proposed

NFS-BFPSO method using two better-known benchmark data sets and one skin color

-44 -

detection problem. The first example uses the iris data and the second example uses
the Wisconsin breast cancer data. The two benchmark data sets are available from the
University of California, Irvine, via an anonymous ftp address
ftp://ftp.ics.uci.edu/pub/machine-learning-databases. In the following simulations, the
parameters and number of training epochs were based on the desired accuracy. In
short, the trained NFS with BFPSO was stopped once its high learning efficiency was

demonstrated.

Example 1: Iris Data Classification

The Fisher-Anderson iris data consists of four input measurements, sepal length
(sl), sepal width (sw), petal length (pl), and petal width (pw), on 150 specimens of the
iris plant. Three species of iris.were involved, fris'Sestosa, Iris Versiolor and Iris
Virginica, and each species contains 50 instances. The measurements are shown in
Figure 4.2.

In the iris data experiments,. 25 instances with four features from each species
were randomly selected as the training set (i.e., a total of 75 training patterns were
used as the training data set) and the remaining instances were used as the testing set.
Once the NFS was trained, all 150 test patterns of the iris data were presented to the
trained NFS, and the re-substitution error was computed. In this example, three fuzzy
rules are adopted. After 4000 generations, the final fitness value was 0.9278.

Figure 4.3 (a)-(f) show the distribution of the training pattern and the final
assignment of the fuzzy rules (i.e., distribution of input membership functions). Since
the region covered by a Gaussian membership function is unbounded, in Figure 4.3
(a)-(f), the boundary of each ellipse represent a rule with a firing strength of 0.5. We
compared the testing accuracy of our proposed method with that of other methods —

the neural fuzzy system with bacterial foraging optimization (NFS-BFO) and the

=45 -

neural fuzzy system with particle swarm optimization (NFS-PSO). The experiments
calculated the classification accuracy and the values of the average produced on the
testing set using the NFS-BFO method, the NFS-PSO method, and the proposed

NFS-BFPSO method.

=]
m O]
u]
7.5F 1
u]
m]
m] oo
u]
r o .
a] od
o]
o] a o o u] O m
a o]
6.5F a o o o i,
c o o) 0o oo o
B [+) [+) a oo u] oo o
c o o u] =
@ o] fels} o) o o
= BF [*) [s3ele] u] u] -
o o [
o A ol o o m]] u]
o FN o u]
e ac o o o u]
55k Al o] @ @ -
A A A A A o
o
o o]
N FV.V.VN A AA o
5fF ana ACAN A o a b
a0 A AN o]
28 AA A
A A
B4 A A
4 5F & b
A aa
o
4 L L
0 50 100 150
Sample
45 T T
A
A
&
4F fas b
A A
S A8 m] u]
A ~ o
A A m]
- 35 & & NN
5 Fi- PV FiS o} [} m
2 A AD o u] u]
Tcu:. A AA A AD s} o ooao ul
o NN Ao a o o [mlain]
RCEEY ¥ A A a4 oo o0 ¢ 00O 0D OO0 oo oo oo
A a @ o} @ 00
@ 0o O a 0 [Ooom
o o @ o O u] u] u]
a [sls} u] u]
25F [oR+] a o] oo o 0=
o) @
A o o o
o o u]
2 '] ']
0 50 100 150
Sample

-46 -

Petal width

7 T v O
o o
O
o u]
P oy u] g oo o
oo u]
u] DDDDD%DD
oo
oo m] g
og
sb o © u] oL g u] m B
@ % o oo A O
o 00 o} o
= B ° po 0 wooo o
2 o o
@ ° g o] Q
= 4p o L0 L0 o Lo -
© o)
] o >
o o] [}
o e}
3k o -
] 8 n ~ o
iy VN
AL
M%m&%“}%?m -y
1 fl '] ']
0 50 100 150
Sample
25 T e f—
u} OO
ood 0O ooog
u} u] u}
oo O OO u]
2k oo m [} ™
u] u] O oo
o] O m 0O oo m 1]
e} o
o oo o
15k o 0 oo o o ou [} [} -
o] o 00 a o] O
ooo o oo @m0
o} o o0 0
o o o
1k coo O [ole) o] -
iy
0.5F fay b
iy K005 A A oy
A 28, N
boeits, S A AR AN 2 A0
A YN
D '] ']
0 50 100 150
Sample

Figure 4.2: Iris data: iris sestosa (»), iris versiolor (o), and iris virginica (o).

During the learning phase, the learning curves from the proposed NFS-BFPSO
method, the NFS-BFO method, and the NFS-PSO method are shown in Figure 4.4
Table 4.1 shows that the experiments with the NFS-BFPSO method result in high
accuracy, with an accuracy percentage ranging from 96% to 98.67%. The means of

re-substitution accuracy was 97.6%. The average classification accuracy of the

-47 -

NFS-BFPSO method was better than that of other methods. Table 4.2 shows the
comparison of the classification results of the NFS-BFPSO method with other
methods [28][102][108-110] on the iris data. The results show that the proposed

NFS-BFPSO method is able to keep similar average substitution accuracy.

6_
5_
4_
£
=
=
g 3h
1]
w
2-
1 -
%
Sepal Length
(@) For the Sepal Length and Sepal Width dimensions.
3 T T T T T T T T T
2 54 -
2t)
1.5H 4
&
=
=]
©
1]
o
0.5H -
of]
0-5 /\ ‘M\ d
_1 1 1 1 1 L L 1 1 1 1

Petal Length

(b) For the Petal Length and Petal Width dimensions.
-48 -

Petal Length

Petal Width

2.5

1.5

Sepal Length

(c) For the Sepal Length and Petal Length dimensions.

Sepal Width

(d) For the Sepal Width and Petal Width dimensions.

-49 -

Petal Length

Sepal Width

(e) For the Sepal Width and Petal Length dimensions.

‘ +

1.54 R o

2.5F

Petal Width

0.5

'12 3 4 5 6 7 8 9 10

Sepal Length

(F) For the Sepal Length and Petal Width dimensions.

Figure 4.3: The distribution of input training patterns and final assignment of three
rules.

-50 -

1 T T T T T T
—BFPSO
----- BFO
.......... PSO
0.95}
Q
3
s |
> o085k
@ 0.85 -
Q
S
i
0.8} -
0.75} -
07 1 1 1 1 1 1 1
0 500 1000 1500 _ 2000 2500 3000 3500 4000

Generation

Figure 4.4: Learning curves.of the NFS-BFPSO method, the NFS-BFO method, and
the NFS-PSO method.

Table 4.1: Classification accuracy using various methods for the iris data.

Model
Experiment # NFS-BFO NFS-PSO NFS-BFPSO
1 96 98.67 98.67
2 92 93.33 96
3 97.33 94.67 98.67
4 97.33 98.67 97.33
5 94.67 94.67 97.33
Average (%) 95.47 96 97.6

-51 -

Table 4.2: Average re-substitution accuracy comparison of various models for the iris
data classification problem.

Models Average re-substitution accuracy (%)
FEBFC [102] 96.91
SANFIS [28] 97.33
FMMC [108] 97.3
FUNLVQ+GFENCE [109] 96.3
Wu-and-Chen’s [110] 96.21
NFS-BFPSO 97.6

Example 2: Wisconsin Breast Cancer Diagnostic Data Classification

The Wisconsin breast cancer diagnostic data set contains 699 patterns distributed
into two output classes, “benign” and “malignant.” Each pattern consists of nine input
features: clump thickness, uniformity of cell size, uniformity of cell shape, marginal
adhesion, single epithelial cell-size, bare nuclei, bland chromatin, normal nucleoli, and
mitoses. 458 patterns are in-the benign class and the other 241 patterns are in the
malignant class. Since there were 16 patterns containing missing values, we used 683
patterns to evaluate the performance..of the proposed NFS-BFPSO method. To
compare the performance with other models, we used half of the 683 patterns as the
training set and the remaining patterns as the testing set.

Experimental conditions were the same as the previous experiment. The training
patterns were randomly chosen, and the remaining patterns were used for testing. The
experiments calculated the classification accuracy and the values of the average
produced on the testing set by the NFS-BFO method, the NFS-PSO method, and the
proposed NFS-BFPSO method.

During the supervised learning phase, 4000 epochs of training were performed.
Figure 4.5 shows the membership functions for each input feature. The learning

curves from the proposed NFS-BFPSO method, the NFS-BFO method, and the

-52 -

NFS-PSO method are shown in Figure 4.6. The performance of the NFS-BFPSO
method is better than the performance of all other models.

Table 4.3 shows that the experiments with the NFS-BFPSO method result in high
accuracy, with an accuracy percentage ranging from 97.66% to 98.54%. The means of
re-substitution accuracy was 97.95%. The average classification accuracy of the
NFS-BFPSO method was better than that of other methods. We compared the testing
accuracy of our model with that of other methods [26][28][101][102][111]. Table 4.4
shows the comparison between the learned NFS-BFPSO method and other fuzzy,
neural networks, and neural fuzzy systems. The average classification accuracy of the

NFS-BFPSO method is better than that of other methods.

05 05
0 -16 0 .1‘0 20 0 -10 0 10 -20 0 -10 0‘ '10 20
Clump Thick. UC size UC shape
1 1
05 05
=00 10 20 %o 0 0 10 20
Marginal Ad. SECS Bare Nuclei
1 1
05 05
0o 20 Yo 0 020 Yo 00 2o
Bland Chrom. Normal Nucleoli Mitoses

Figure 4.5: Input membership functions for breast cancer classification.

-B3 -

1 . : . | | ,
—BFPSO
""" BFO
.......... PSO
0.9}
,_,,r-*‘"
0.8 ’ |
@ 0.7¢ |
Q
£
T
0.6 |
0.5} |
04 I I . L]]]
0 500 1000 1500 2000 2500 3000 3500 4000
Generation

Figure 4.6: Learning curves from the NES-BFPSO method, the NFS-BFO method and

the NFS-PSO method.

Table 4.3: Classification accuracy for the Wisconsin breast cancer diagnostic data.

Model
Experiment # NFS-BFO NFS-PSO NFS-BFPSO
1 95.32 96.49 97.66
2 95.61 97.08 98.54
3 93.86 94.44 97.66
4 94.74 97.37 97.95
5 94.74 96.49 97.95
Average (%) 94.85 96.37 97.95

-54 -

Table 4.4: Average accuracy comparison of various models for Wisconsin breast
cancer diagnostic data.

Models Average re-substitution accuracy (%)
NNFS [101] 94.15
FEBFC [102] 95.14
SANFIS [28] 96.3
NEFCLASS [26] 92.7
MSC [111] 94.9
NFS-BFPSO 97.95

Example 3: Skin Color Detection

The description of the system is the same as Section 3.4. Unlike the previous
chapter set four rules to constitute the neuro-fuzzy classifier, we set three fuzzy rules
in this example. In addition, the_parameter learning method is change to be BFPSO
method.

In this example, the performance of the NFS-BFPSO method is compared with
the NFS-BFO method, and the NFS-PSO method. The-learning curves are shown in
Figure 4.7. In Figure 4.7, we find that-the performance of the proposed NFS-BFPSO
method is superior to the other methods. In addition, the comparison items include the
training and testing accuracy rates with various existing models are tabulated in Table
4.5.

The CIT facial database consists of complex backgrounds and diverse lighting.
Hence, from the comparison data listed in Table 4.5, the average of the test accuracy
rate is 82.39% for the NFS-BFO method, 83.64% for the NFS-PSO method and
85.82% for the proposed NFS-BFPSO method. This demonstrates that the CIT
database is more complex and does not lead to a decrease in the accuracy rate. The
proposed NFS-BFPSO method maintains a superior accuracy rate. The color images

from the CIT database are shown in Figure 4.8. A well-trained network can generate

-B5 -

binary outputs (1/0 for skin/non-skin) to detect a facial region. Figure 4.9 shows that

our model accurately determines a facial region.

Q85 s PSO

0.75

Fitness Value
o
-~
I

0.65

0.55f

1 1 1 | 1
0'50 500 1000 1500 2000 2500 3000
Generation

Figure 4.7: The learning curves of the three methods using the CIT database.

Table 4.5: Performance comparison with-various existing models from the CIT

database.
Method NFS-BFPSO | NFS-PSO NFS-BFO
Average training accuracy rate 97.63% 96.77% 96.5%
Average testing accuracy rate 85.82% 83.64% 82.39%

- 56 -

N!IIIIJIH"
1l T

|}

b} |
L - N o

TR R PR TN | 1)

ALLLLETELIEE P Y

Figure 4.8: Original face images from CIT database.

Figure 4.9: Results of skin color detection with 3 dimension input (Y, Cb, Cr).

4.4 Concluding Remarks

This chapter proposes an efficient evolutionary learning method, using bacterial

- 57 -

foraging oriented by particle swarm optimization strategy (BFPSO), for the neural
fuzzy system (NFS) in classification applications. The proposed BFPSO method
attempts to make a judicious use of exploration and exploitation abilities of the search
space and therefore likely to avoid false and premature convergence in many cases.
The advantages of the proposed BFPSO method are summarized as follows: 1)
BFPSO involves the elite-selection mechanism to gain a chance to reproduce near
optimal solutions. 2) BFPSO records the best previous solution and the global best
solution to evolve. 3) BFPSO can balance the exploration and exploitation abilities of
the search space. Three examples showed that the proposed NFS-BFPSO method
improves the system performance in terms of a fast learning convergence, and a high

correct classification rate.

-58 -

Chapter 5
Nonlinear System Control Using
Functional-Link-Based Neuro-Fuzzy
Network Model Embedded with

Modified Particle Swarm Optimizer

Nonlinear system control is an important tool that is adopted to improve control
performance and achieve robust fault-tolerant behavior. Among nonlinear control
techniques, those based on artificial neural networks and fuzzy systems have become
popular topics of research in recent years [112-114]because classical control theory
usually requires a mathematical model to design the controller. However, the
inaccuracy of the mathematical modeling of plants usually degrades the performance
of the controller, especially for nonlinear and complex control problems [115]. On the
contrary, both the fuzzy system controller and the artificial neural network controller
provide key advantages over traditional adaptive control systems. Although traditional
neural networks can learn from data and feedback, the meaning associated with each
neuron and each weight in the network is not easily interpreted. Alternatively, the
fuzzy logical models are easily appreciated, because they use linguistic terms and the
structure of IF-THEN rules. However, fuzzy systems have a lack of an effective
learning algorithm to refine the membership functions to minimize output errors.
According to the literature review mentioned before, it can be said that, in contrast to
pure neural or fuzzy methods, neural fuzzy networks (NFNSs) systems [8-34] possess
the advantages of both neural networks and fuzzy systems. NFNs bring the low-level

learning and computational power of neural networks into fuzzy systems and give the

-59-

high-level human-like thinking and reasoning of fuzzy systems to neural networks.

This chapter presents a PSO-based learning algorithm for the neural fuzzy
system (NFS) in nonlinear system control applications. PSO is an efficient tool for
optimization and search problems. However, it is easy to become trapped in local
optima due to its information sharing mechanism. Many research works have shown
that mutation operators can help PSO prevent premature convergence [116-118]. To
prevent basic PSO from becoming trapped in local optima, we modified the basic
PSO by adding a diversity scheme, called the distance-based mutation operator, which
strongly encourages a global search giving the particles more chance of converging to
the global optimum. Therefore, the proposed learning algorithm is so called
distance-based mutation particle swarm optimization (DMPSO).

The idea behind the proposed. DMPSQ learning algorithm is that there are only
two kinds of convergence: 1) local optimum convergence and 2) global optimum
convergence. If local optimum convergence occurred, meaning that the basic PSO is
trapped in a local optimum, this‘is a good time to-apply the mutation operator to help
the PSO to escape from the local optimum. If global optimum convergence occurred,
applying the mutation operator will cause the PSO to naturally converge again at the

global optimum.

5.1 Learning Scheme for the FLNFN Model

This section presents the learning scheme for constructing the FLNFN model.
The proposed learning scheme comprises a structure learning phase and a parameter

learning phase.

-60 -

(Begin)

h J

Initialization

Mo

Is the first
input data?

EM,ox<EM ?

Generate the first rule Generate a new rule
according to the according to the
| oY

No Are all training data
finished in the first
generation?

| |
| |
| |
| |
| |
| |
| |
| current input data current input data |
| |
| |
| |
| |
| |
| |
| |

Structure Learning

Parameter Learning Generate the initial location of

particles according to the
structure learning result

h 4

Evaluate Fitness

L 4

Y

|

|

|

|

|

|

|

|

Find Local Best and |
Global Best |
|

I

|

|

|

|

|

|

|

Operator

Y

Update Position and
Yes WVelocity

Yes

e — — — — — — — — — — — — — — — — — —

|
|
|
|
|
|
|
|
|
| Mutation
|
|
|
|
|
|
|
|
|

End

Figure 5.1: Flowchart of the proposed learning scheme for the FLNFN model.

-61 -

Figure 5.1 presents flowchart of the learning scheme for the FLNFN model.
Structure learning is based on the entropy measure used to determine whether a new
rule should be added to satisfy the fuzzy partitioning of input variables. Parameter
learning is based on the proposed evolutionary learning algorithm, which minimizes a
given cost function by adjusting the link weights in the consequent part and the
parameters of the membership functions. Initially, there are no nodes in the network
except the input—output nodes, i.e., there are no nodes in the FLNFN model. The
nodes are created automatically as learning proceeds, upon the reception of incoming
training data in the structure and parameter learning processes. In this research, once
the learning process is completed, the trained-FLNFN can act as the nonlinear system
controller. The following two sections detail the structure learning phase and the

parameter learning phase.

5.2 Structure Learning Phase

The foremost step in structure learning is to determine whether a new rule should
be extracted from the training data and to determine the number of fuzzy sets in the

universe of discourse of each input variable, since one cluster in the input space

corresponds to one potential fuzzy logic rule, in which m; and o represent the

mean and standard deviation of that cluster, respectively. For each incoming pattern
X,, the rule firing strength can be regarded as the degree to which the incoming
pattern belongs to the corresponding cluster. The entropy measure between each data
point and each membership function is calculated based on a similarity measure. A
data point of closed mean will have lower entropy. Therefore, the entropy values

between data points and current membership functions are calculated to determine

-62 -

whether or not to add a new rule. For computational efficiency, the entropy measure

can be calculated using the firing strength from u? as
N
EM, =-> D, log, D, (5.1)
i=1

where D; =exp(-1/uf”) and EM; e[0, 1]. According to Eq. (5.1), the measure is
used to generate a new fuzzy rule and new functional link bases for new incoming
data are described as follows. The maximum entropy measure

EM . = max EM; (5.2)

1< j<R(t)

is determined, where R(t) is the number of existing rules at time t. If

EM,.. <EM, then a new rule is generated, where EM €[0, 1] is a prespecified

threshold that decays during thedearning process.

In the structure learning phase, the threshold parameter EM s an important
parameter. The threshold is'set between zero and one. A low threshold leads to the
learning of coarse clusters (i.e., fewer rules are generated), whereas a high threshold
leads to the learning of fine clusters'(i.e:; more rules are generated). If the threshold
value equals zero, then all the training data belong to the same cluster in the input
space. Therefore, the selection of the threshold value EM will critically affect the

simulation results. As a result of our extensive experiments and by carefully

examining the threshold value EM , which uses the range [0, 1], we concluded that

there was a relationship between threshold value EM and the number of input

variables (N). Accordingly, EM =zN, where 7 belongs to the range [0.26, 0.3].

Once a new rule has been generated, the next step is to assign the initial mean
and standard deviation to the new membership function and the corresponding link

weight for the consequent part. Since the goal is to minimize an objective function,

-63 -

the mean, standard deviation, and weight are all adjustable later in the parameter
learning phase. Hence, the mean, standard deviation, and weight for the new rule are

setas
(R(t+D) _
m; =X
(R(t+D))

ij = Ol (5.3)
w) = random[-1, 1]

O

where x. isthe current input data and o, is a prespecified constant.

init
After the network structure has been adjusted according to the current training
data, the network enters the parameter learning phase to adjust the parameters of the

network optimally based on the same training data.

5.3 Parameter Learning Phase

Ratnaweera et al. [61] stated that the lack of population diversity in PSO
algorithms is understood to be a. factor in their convergence on local optima.
Therefore, the addition of a mutation operator to PSO should enhance its global
search capacity and thus improve its performance. There are mainly two types of
mutation operators: one type is based on particle position [118] and the other type is
based on particle velocity [117]. The former method is the most common technique,
and the mutation operator we proposed in this research is also based on particle
position.

In [116], Li, Yang, and Korejo modified the PSO by adding a mutation operator;
the mutation operator provides a chance to escape from local optima. They focused on
determining which random generator of the mutation operator is good for improving
the population. However, the timing of application of the mutation operator is the

most important thing. If mutation operator is applied too early, when the particles are

-64 -

not nearly convergent, the local search ability of PSO is destroyed. If the mutation
operator is applied too late, the parameter learning algorithm will be very inefficient.
Hence, it is an important issue to consider when to apply mutation operator. In our
study, we used the distances between each particle as a measure to determine whether
the mutation operator needed to be applied or not, and the modified PSO we used is
the so called distance-based mutation particle swarm optimization (DMPSO).
Comparing the basic PSO with DMPSO, a convergent detection unit used to detect
the particle convergent status is introduced. If the particles are convergent, the
mutation operator will be processed. Otherwise, the mutation operator will be
skipped.

The convergent detection unit computes the average distance from every particle
to the particle that has global best value using Eg. (5.4)

i”l:)lt _Gl;est

o(t) =2 S

(5.4)

where P' and G indicate the i particle andthe particle that has the global best

value at the t" iteration, respectively, and S is the population size.

After the average distance is computed, the threshold Th is used to

conv

determine whether the particles are close enough or not according to Eq. (5.5). If all
particles are close enough, meaning that all particles are converging to the same
position, the mutation operator will be applied. Otherwise, the mutation operator will
be skipped.
o) <Th,, (5.5)
In this study, every particle has its own mutation probability. If the average

distance is greater than Th implying that the majority of particles are not

conv !

convergent, the mutation probability is set to zero, meaning that every particle does

- 65 -

not mutate and the behavior of every particle is like a generic PSO. If the average

distance is less than Th meaning that all particles are converging to the same

conv !

position, named G|, , the mutation probability (MP) of each particle is computed by

Eq. (5.6).

1! If F(P|t) > F(Pbte_s%
0, otherwise

success, (t) = {

progress(t) = ZS: success, (t) (5.6)

i=1

MP — exp(—(progress('%))

where F(-) denotes the fitness value of the particle. The value of success, (t) is set
to 1 only when the i" particle is successfully evolved at the t" iteration, meaning
that the local best fitness value is«improved at the t" iteration, and progress(t) is
the number of successful evolution particles at time step- t.

The design of mutation-probability is based on the ratio of improved population.
If the ratio of the improved population is higher, the mutation probability becomes
smaller. Most particles are moving toward to-the best value that they have currently
found. The lower probability guarantees the direction of the moving group will not be
destroyed by the mutation operator. On the other hand, if most particles do not
improve their fitness value, the population is in the stable status. There are two
possibilities: the first possibility is that the particles have converged to the global
optimum (or near global optimum). The application of the mutation operator at the
moment will not destroy the moving group, because the particles still remember the
global optimum, and the mutated particles will move toward the global optimum in
the next iteration. The second possibility is that the particles have converged to the
local optimum, or in other words, they have fallen into a trap. The mutation operator

provides a chance to escape from the trap. If some particles mutate and the new

- 66 -

position the particle reaches has a better fitness value than the local optima, the other
particles that are trapped will fly to the new position in the next iteration according to

the PSO, meaning that the trapped particles can escape from the local optimum.

5.4 Tllustrative Examples

In this section, we demonstrate the performance of the proposed FLNFN model
using DMPSO algorithm (FLNFN-DMPSO) for nonlinear system control. The
FLNFN-DMPSO is adopted to design controllers in three simulations of nonlinear
system control problems: multi-input multi-output (MIMO) plant control [114],
control of the truck backing system-[119], and a water bath temperature control

system [120].

Example 1: Multi-Input Multi-Output Plant Control
In this example, the MIMO: plants [114] to-be controlled are described by the

equations
05 ypl(k)
e At :
Yor(k+1) | 0500 () | [:(K) (5.7)
T Ly |

The controlled outputs should follow the desired output y, and vy, as

specified by the following 250 pieces of data;

[yrl(k)} _ {sin(kn/45)}

Y,o(K) | | cos(kz/45) (5.8)

The inputs of the FLNFN-DMPSO are vy, (k), y,,(k), y.(k), and y,,(k),

and the outputs are u,(k) and u,(k).

-67 -

Figure 5.2 plots the learning curves of the best performance of the
FLNFN-DMPSO model for the affinity/fitness value, the CNFC-ISEL [121], the
SEFC [122], and the Mamdani-type fuzzy system using symbiotic evolution
algorithm (MFS-SE) [123], after the learning process of 600 generations. To
demonstrate the performance of the proposed controller, Figure 5.3 plots the control
results of the desired output (solid line) and the model output (dotted line) after the
learning process of 600 generations, and Figure 5.4 shows the errors of the proposed
method. Table 5.1 presents the best and averaged affinity/fitness values after 600
generations of training. The comparison indicates that the best and averaged

affinity/fitness values of FLNFN-DMPSO are better than those of other methods.

095 o e .
O -
J FLNFN-DMPSO
© 0.85 —— —CNFCISEL |-
s b SEFC
2 08 — - —MFS-SE]
(0]
S
i
S 075) .
£
< 07} i
0.651 .
0.6/ .
055 | | | | |
0 100 200 300 400 500 600

Generation

Figure 5.2: Learning curves of best performance of the FLNFN-DMPSO,
CNFC-ISEL, SEFC and MFS-SE in MIMO plant control.

- 68 -

Output1

1 1 L
0 50 100 150 200 250
Sampling Instant

Output2

| | L
0 50 100 150 200
Sampling Instant

250

Figure 5.3: Desired (solid.line) and model (dotted line) output generated by
FLNFN-DMPSO in-MIMO: plant-control.

0.1

0.05

Error1
o
?

-0.05+ -
01 | | | |
50 100 150 200 250
Sampling Instant
0.1
0.05 -
|2 W/\W
o 0r -
w
-0.05+
01 |

1 1 1
50 100 150 200 250
Sampling Instant

Figure 5.4: Errors of proposed FLNFN-DMPSO in MIMO plant control.

-69 -

Table 5.1: Performance comparison of the FLNFN-DMPSO, FLNFN-PSO,
CNFC-ISEL, SEFC and MFS-SE controllers for the MIMO plant.

Method Affinity/Fitness Value (Best) | Affinity/Fitness Value (Avg.)
FLNFN-DMPSO 0.9898 0.9856
FLNFN-PSO 0.9506 0.9149
CNFC-ISEL [121] 0.9786 0.9721
SEFC [122] 0.9581 0.9553
MFS-SE [123] 0.8560 0.8503

Example 2: Control of Backing Up the Truck

Backing a truck into a loading dock is difficult. It is a nonlinear control problem
for which no traditional control method exists [119]. Figure 5.5 shows the simulated
truck and loading zone. The truck’s position is exactly determined by three state
variables ¢, x and y, where «4 isthe angle between the truck and the horizontal,
and the coordinate pair (X, Y) specifies the position of the center of the rear of the
truck in the plane. The steering angle & of the truck is the controlled variable.
Positive values of @ represent clockwise rotations of the steering wheel and negative
values represent counterclockwise rotations. The truck is placed at some initial
position and is backed up while being steered by the controller. The objective of this

control problem is to use backward only motion of the truck to make it arrive at the

desired loading dock (Xyireqs Yaesied) @t @ right angle (@i =90°) . The truck

moves backward as the steering wheel moves through a fixed distance (d,) in each

step. The loading region is limited to the plane [0 100]x[0 100].

-70 -

lOading dock I(xdesireda Y desired)

rear
5)
‘4
‘4 2] /]

front

Figure 5.5: Diagram of simulated truck and loading zone.

The input and output variables of the FLNFN-DMPSO controller must be

specified. The controller has two inputs: truck angle ¢ and cross position x. When

the clearance between the truck and the loading dock.is assumed to be sufficient, the
y coordinate is not considered to be an input variable. The output of the controller is

the steering angle &. The ranges of the variables x, ¢,and & are as follows:

0<x<100
—90° < ¢ < 270° (5.9)
-30°<0<30°

The equations of backward motion of the truck are
X(k +1) = x(k)+d, cos@(k) +cos ¢(k)
y(k+1) = y(k)+d, cos@(k)+sin g(k)

.| Ising(k) +d, cosg(k)sin (k)
I cosg(k)—d, sing(k)sin &(k)

(5.10)

gp(k+1)=tan”

where | is the length of the truck. Equation (5.10) yields the next state from the
present state.

Learning involves several attempts, each starting from an initial state and
terminating when the desired state is reached; the FLNFN-DMPSO is thus trained.

The training process continues for 2000 generations. The affinity/fitness value of the

-71-

FLNFN-DMPSO is approximately 0.9637, and the learning curve of FLNFN-DMPSO
is compared with those obtained using various existing models [121-123], as shown in
Figure 5.6. Figure 5.7 plots the trajectories of the moving truck controlled by the
FLNFN-DMPSO, starting at initial positions (x,Y,¢) =(40,20,-30°), (10,20,150°),
(70,20,-30°) and (80,20,150°), after the training process has been terminated. The
considered performance indices include the best affinity/fitness and the average
affinity/fitness value. Table 5.2 compares the results. According to these results, the

proposed FLNFN-DMPSO outperforms various existing models.

o9+ -~ —T g
. —— FLNFN-DMPSO
E ~— ~ CNFC-ISEL
> 090 SEFC 1
8 — - —MFS-SE
E
£ 085) |
Z

0.8+ _
0.75

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Generation

Figure 5.6: Learning curves of best performance of the FLNFN-DMPSO,
CNFC-ISEL, SEFC and MFS-SE in control of backing up the truck.

-72-

100

x=40 phi=-30 |

80+

[T T

60

[T

40|

20

0 20 40 60 80 100

(@) initial positions (x,y,¢#) = (40,20,-30°)

100

x=10 phi=150 ||

80+

N

1

60 R

40|

20

10 1

0 20 40 60 80 100

(b) initial positions (X, Y, #) = (10,20,150°)

-73-

100

80+
70+
60

> 50r

30+

10 1

0 20 40 60 80 100

(c) initial pesitions (x, Y, ¢) =(70,20,-30°)

100 : : : :
90 x=80 phi=150 ||

80+
70+

60

40}

30+

20

X
(d) initial positions (X, Y, #) =(80,20,150°)

Figure 5.7: Trajectories of truck, starting at four initial positions under the control of
the FLNFN-DMPSO after learning using training trajectories.

-74 -

Table 5.2: Performance comparison of various controllers to control of backing up the

truck.

Method Affinity/Fitness Value (Best) | Affinity/Fitness Value (Avg.)
FLNFN-DMPSO 0.9637 0.9502
FLNFN-PSO 0.9423 0.9355
CNFC-ISEL [121] 0.9558 0.9511
SEFC [122] 0.9516 0.9451
MFS-SE [123] 0.9398 0.9332

Example 3: Control of Water Bath Temperature System

The goal of this example is to elucidate the control of the temperature of a water

bath system according to

dy(® _u(®) , Yo—y®
dt C TC

(5.11)

where y(t) is the output temperature of the system in degrees Celsius (°C); u(t) is
the heat flowing into the system; Y, is the room temperature; C is the equivalent
thermal capacity of the system and T, is the equivalent thermal resistance between
the borders of the system and the surroundings.

T, and C are assumed to be essentially constant, and the system in Eq. (5.11)

is rewritten in discrete-time form to some reasonable approximation. The system

_a S/a(l—e .
yk+l)=e Tsy(k)+Wu(k)+[l—e " 1Y (5.12)

is obtained, where o and o are some constant values of T, and C. The system
parameters used in this example are «=1.00151x10", &§=8.67973x10° and
Y, =25.0 (°C), which were obtained from a real water bath plant considered
elsewhere [120]. The plant input u(k) is limited between OV and 5V where V
represents the voltage unit. The sampling period is T, =30 second.

Figure 5.8 presents a block diagram for the conventional training scheme. This

block diagram has two phases — the training phase and the control phase. In the

-75-

training phase, the switches S1 and S2 are connected to nodes 1 and 2, respectively, to

form a training loop. In this loop, training data with input vector

I(k)=[y,(k+1) y,(k)] and desired output u(k) can be defined, where the input

vector of the FLNFN controller is the same as that used in the general inverse
modeling [124] training scheme. In the control phase, the switches S1 and S2 are
connected to nodes 3 and 4, respectively, forming a control loop. In this loop, the

control signal G(k) is generated according to the input vectors

1'(k) = [V, (k+1) y,(k)], where y_ is the plant output and vy, is the reference

model output.

—

Yp(k+1)
___——>C)<:;___> / L
/st FLNEN \/g - 2 +
M Controller S2 yp(k+1L
z' }f«) Plant

i 7'
, [

Figure 5.8: Conventional training scheme.

A sequence of random input signals u, (k) limited between OV and 5V is
injected directly into the simulated system described in Eq. (5.12), using the training
scheme for the FLNFN-DMPSO controller. The 120 training patterns are selected
based on the input—outputs characteristics to cover the entire reference output. The
temperature of the water is initially 25 °C, and rises progressively when random
input signals are injected.

This dissertation compares the FLNFN-DMPSO controller to the FLNFN

controller [32], the proportional-integral-derivative (PID) controller [125], the

-76 -

manually designed fuzzy controller [8], the FLNN [80], and the TSK-type
neuro-fuzzy network (TSK-type NFN) [24]. Each of these controllers is applied to the
water bath temperature control system. The performance measures include the set
points regulation, the influence of impulse noise, large parameter variations in the
system and the tracking capability of the controllers.

The first task is to control the simulated system to follow three set points

35°C, fork <40
Y, (K)=455°C, for 40<k <80 (5.13)
75°C, for80<k <120

Figure 5.9 presents the regulation performance of the FLNFN-DMPSO controller.
The regulation performance was also tested using the FLNFN controller, the PID
controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller.
To test their regulation performance, a performance index, the sum of absolute error

(SAE), is defined by

SAE = | Ve (k) — y(K)| (5.14)

where y,. (k) and y(k) are the reference output and the actual output of the
simulated system, respectively. The SAE values of the FLNFN-DMPSO, the FLNFN
controller, the PID controller, the fuzzy controller, the FLNN controller and the
TKS-type NFN controller are 352.32, 352.84, 418.5, 401.5, 379.22 and 361.96, which
values are given in the second column of Table 5.3. The proposed FLNFN-DMPSO
controller has a much better SAE value of regulation performance than the other
controllers.

The second set of simulations is performed to elucidate the noise rejection ability
of the six controllers when some unknown impulse noise is imposed on the process.
One impulse noise value of —5°C is added to the plant output at the 60™ sampling

instant. A set point of 50°C is adopted in this set of simulations. For the

-77 -

FLNFN-DMPSO controller, the same training scheme, training data and learning
parameters were used as in the first set of simulations. Figure 5.10 presents the
behaviors of the FLNFN-DMPSO controller under the influence of impulse noise.
The SAE values of the FLNFN-DMPSO controller, the FLNFN controller, the PID
controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller
are 270.29, 270.41, 311.5, 275.8, 324.51 and 274.75, which values are shown in the
third column of Table 5.3. The FLNFN-DMPSO controller performs quite well. It
recovers very quickly and steadily after the occurrence of the impulse noise.

One common characteristic of many industrial control processes is that their
parameters tend to change in an unpredictable way. The value of 0.7u(k—2) is
added to the plant input after the 60" sample in the third set of simulations to test the
robustness of the six controllers. A set point of 50°C is adopted in this set of
simulations. Figure 5.11 presents the behaviors of the. FLNFN-DMPSO controller
when the plant dynamics change. The SAE values of the FLNFN-DMPSO controller,
the FLNFN controller, the PID-controller, the fuzzy controller, the FLNN controller
and the TSK-type NFN controller are 262.91, 263.35, 322.2, 273.5, 311.54 and 265.48,
which values are shown in the fourth column of Table 5.3. The results present the
favorable control and disturbance rejection capabilities of the trained
FLNFN-DMPSO controller in the water bath system.

In the final set of simulations, the tracking capability of the FLNFN-DMPSO

controller with respect to ramp-reference signals is studied. Define

34°C, for k <30
(34+0.5(k —30))°C, for30<k <50
Y, (K) =4(44+0.8(k—50))°C, for50<k <70 (5.15)
(60+0.5(k —70))°C, for70<k <90
70°C, for 90 <k <120

Figure 5.12 presents the tracking performance of the FLNFN-DMPSO controller.
-78 -

The SAE values of the FLNFN-DMPSO controller, the FLNFN controller, the PID
controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller
are 42.45, 44.28, 100.6, 88.1, 98.43 and 54.28, which values are shown in the fifth
column of Table 5.3. The results present the favorable control and tracking
capabilities of the trained FLNFN-DMPSO controller in the water bath system. The
aforementioned simulation results, presented in Table 5.3, demonstrate that the

proposed FLNFN-DMPSO controller outperforms other controllers.

Water Bath Temperature Control (case 1)
80 T T T T

Reference Signal
70 - Actual Signal

—
/
’
50 - , i
s
/

40+ 8

30F ,

Temperature(Degree C)

20+ -

10r Control Input |

— 5V
0 \ | | S /\—\\—'7
0 20 40 60 80 100 120
Sampling Instant

Figure 5.9: The regulation performance of the FLNFN-DMPSO controller for the
water bath system.

-79-

Water Bath Temperature Control (case 2)
80 T T T T

Reference Signal
70) S Actual Signal

50

40} / .

30- .

Temperature(Degree C)

20+ -

10r Control Input |

0%‘—wv | n

0 20 40 60 80 100 120
Sampling Instant

Figure 5.10: The behavior of the FENFN-DMPSO controller under impulse noise for
the water bath system.

Water Bath Temperature Control (case 3)
80 T T T T

Reference Signal
o | Actual Signal

50

300 .

Temperature(Degree C)
N
o
|

20 -

10r Control Input |

— 5V
0 | : - L
0 20 40 60 80 100 120
Sampling Instant

Figure 5.11: The behavior of the FLNFN-DMPSO controller when a change occurs in
the water bath system dynamics.

-80 -

80

Water Bath Temperature Control (case 4)

70+

Reference Signal

- Actual Signal

60 -
50 -
40}

30F

Temperature(Degree C)

20+

10

5V
o ‘

Control Input

0

20 40

60
Sampling Instant

80 100

120

Figure 5.12: The tracking performance of the FLNFN-DMPSO controller for the

water bath system.

Table 5.3: Performance comparison of various controllers for the water bath
temperature control-system.

120 Regulation Influence of | Effect of Change in Tracking
SAE =D |V (K) — y(K)| _ _

k=L Performance Impulse Noise Plant Dynamics Performance
FLNFN-DMPSO 352.32 270.29 262.91 42.45
FLNFN [32] 352.84 270.41 263.35 44.28
PID [125] 418.5 3115 322.2 100.6
Fuzzy [8] 401.5 275.8 273.5 88.1
FLNN [80] 379.22 324.51 311.54 98.43
TSK-type NFN [24] 361.96 274.75 265.48 54.28

5.5 Concluding Remarks

This chapter proposes an evolutionary neural

-81-

fuzzy system, designed using

FLNFN model embedded with DMPSO algorithm. The proposed learning scheme
consists of structure learning and parameter learning for the FLNFN model. The
structure learning depends on the entropy measure to determine the number of fuzzy
rules. The proposed DMPSO parameter learning method can adjust the shape of fuzzy
rule’s membership function and the corresponding weighting of FLNN. The
simulation results have shown the proposed FLNFN-DMPSO method has more
chance of converging to the global optimum and yields better performance than other

existing models under some circumstances.

-82 -

Chapter 6

Comparisons and Discussions

PSO is an efficient tool for optimization and search problems. However, it is
easy to be trapped into local optima due to its information sharing mechanism. Many
researchers have worked on improving its performance in various ways, thereby
deriving many interesting variants. This dissertation develops three novel learning
algorithms embedded with particle swarm optimizer, named IPSO, BFPSO and

DMPSO for the neuro-fuzzy systems.

6.1 Comparisons

In this section, skin color detection problem is performed to evaluate the
performance of the proposed IPSO, BFPSO and DMPSO methods.

The skin color detection experimental results of the IPSO and BFPSO methods
are given in Section 3.4 and Section 4.3, respectively. In the following subsection, the
skin color detection problem is performed to assess the performance of the DMPSO

approach in classification application.

6.1.1 Skin Color Detection Using DMPSO

The description of the system is the same as Section 3.4. We set three rules
constituting a neuro-fuzzy classifier. In this example, the performance of the DMPSO
method is compared with the PSO method [41]. First, the learning curves of DMPSO
and PSO methods are shown in Figure 6.1. In Figure 6.1, we find that the

performance of the proposed DMPSO method is superior to the PSO method.
-83 -

Furthermore, the comparison items include the training and testing accuracy rates are

tabulated in Table 6.1.

0.9

0.85

©
™

Affinity/Fitness Value
o o
> °© N
[6)] ~ [6)]
| | |

o
)
T
I

0.55+ *

05

| | | | | | | | |
0 200 400 600 800 1000 . 1200 1400 1600 1800 2000
Generation

Figure 6.1: The learning curves of PSO and DMPSO methods using the CIT database.

Table 6.1: Performance comparison with-PSO and DMPSO methods from the CIT
database (Training data: 6000; Generations: 2000)

Method DMPSO PSO
Average training accuracy rate 98.05% 96.77%
Average testing accuracy rate 87.26% 83.64%

The CIT facial database consists of complex backgrounds and diverse lighting.
Hence, from the comparison data listed in Table 6.1, the average of the test accuracy
rate is 83.64% for the PSO method and 87.26% for the proposed DMPSO method.
This demonstrates that the CIT database is more complex and does not lead to a
decrease in the accuracy rate. The proposed DMPSO method maintains a superior

accuracy rate. The color images from the CIT facial database are shown in Figure 6.2.

-84 -

The corresponding fitness maps generated by well-trained network using the proposed
DMPSO method are shown in Figure 6.3. With proper selection of the threshold value,
a well-trained network can generate binary outputs (1/0 for skin/non-skin) to detect a
facial region. Figure 6.4 shows the masks generated by the proposed skin color
classifier. Figure 6.5 shows that the proposed approach determines a facial region

accurately.

Figure 6.2: Original face images from CIT repository.

-85 -

Figure 6.3: Fitness maps generated by a well-trained FLNFN-DMPSO

- 86 -

Figure 6.4: Masks generated by a well-trained skin color classifier.

-87-

Figure 6.5: Results of skin color detection with YCbCr color space

6.1.2 Skin Color Detection Results Comparison with Different
Approaches

In this subsection, the skin color detection experimental results of neuro-fuzzy
classifier embedded with different parameter learning algorithms demonstrated. In
this research, we select the FLNFN model as our neuro-fuzzy architecture to develop
the skin color classifier. The aim of the skin color detection is to distinguish between
skin and non-skin pixels based ron the Y, Cb and Cr information. Table 6.2
summarized the average accuracy.rates-of-testing and training data with different

approaches.

Table 6.2: Performance comparison with various existing models from the CIT
database (Training data: 6000; Generations: 2000)

Average accuracy rate | Average accuracy rate
Method No. of fuzzy rules .]
(training data) (testing data)
IPSO 4 93.32% 90.18%
1A [94] 4 88.1% 82.63%
4 79.05% 74.32%
PSO [41]

3 96.77% 83.64%
BFO 3 96.5% 82.39%
BFPSO 3 97.63% 85.82%
DMPSO 3 98.05% 87.26%

- 88 -

6.2 Discussions

In the IPSO and BFPSO approaches, we investigated hybridization by combining
PSO with 1A and BFO, respectively. In IPSO method, the major parameter learning
process is achieved by IA. In order to avoid trapping in a local optimal solution and
ensure the search capability of near global optimal solution, we employ the
advantages of the PSO to improve mutation mechanism of IA. In addition, the balance
between exploration of the search space and exploitation of potentially good solutions
is considered as a fundamental problem in nature-inspired systems. Too much stress
on exploration results in a pure random search whereas too much exploitation results
in a pure local search. Clearly," intelligent search must self-adaptively combine
exploration of the new regions of the space with evaluation of potential solutions
already identified. The BFPSQO combines both algorithms BFO and PSO to balance
the exploration and exploitation abilities of the search space.

Unlike IPSO and BFPSO approaches that-use PSO as the enhance mechanism to
improve the performance of basic IA and BFO. In DMPSO approach, the parameter
learning method is based on the PSO algorithm and the distance-based mutation
operator is introduced to increase the population diversity, which strongly encourages
a global search giving the particles more chance of escaping from local optimum and
converging to the global optimum.

It should be notice that due to the PSO plays different role between the proposed
IPSO, BFPSO and DMPSO methods, the parameters of PSO are not totally the same
for these three parameter learning algorithms. The functions of 1A, BFO and PSO are
summarized in Table 6.3. Furthermore, the predefined fuzzy rule number in IPSO

method is set to be 4 which were different from others.

-89 -

Table 6.3: The roles of 1A, BFO and PSO in the proposed learning algorithm.

Method IPSO BFPSO DMPSO
Fuzzy Rule Numbers 4 3 3
Basic/Main Algorithm 1A BFO PSO
Mechanism PSO PSO Mutation operator
Increase Improve Increase
Enhancement . . .
Function population global search population
diversity ability diversity

Moreover, in order to obtain better simulation results, the proposed learning
algorithms always require training data to be sufficient and proper. However, there is
no procedure or rule suitable for all cases in choosing training data. One rule of thumb
is that training data should cover the entire expected input space and then during the

training process select training-vector pairs randomly from the set.

-90 -

Chapter 7

Conclusions and Future Works

Fuzzy logic and artificial neural networks are complementary technologies in the
design of intelligent systems. The combination of these two technologies into an
integrated system appears to be a promising path toward the development of
intelligent systems capable of capturing qualities characterizing the human brain.
Both neural networks and fuzzy logic are powerful design techniques that have their
strengths and weaknesses. The integrated neuro-fuzzy systems possess the advantages
of both neural networks (e.g. learning abilities, optimization abilities and
connectionist structures) and fuzzy systems (e.g.-humanlike IF-THEN rules thinking
and ease of incorporating expert knowledge). In this way, it is possible to bring the
low-level learning and computational power of neural networks into fuzzy systems
and also high-level humanlikelF-THEN thinking and reasoning of fuzzy systems into
neural networks.

A neuro-fuzzy system is a fuzzy system, whose parameters are learned by a
learning algorithm. It has a neural network architecture constructed from fuzzy
reasoning, and can always be interpreted as a system of fuzzy rules. Learning is used
to adaptively adjust the rules in the rule base, and to produce or optimize the
membership functions of a fuzzy system. Structured knowledge is codified as fuzzy
rules. Modern neuro-fuzzy systems are usually represented as special multilayer
feedforward neural networks. Hayashi et al. [126] showed that a feedforward neural
network could approximate any fuzzy rule based system and any feedforward neural
network may be approximated by a rule based fuzzy inference system.

In this dissertation, the neuro-fuzzy architecture we used is called

-91 -

functional-link-based neuro-fuzzy network (FLNFN) model. The FLNFN model uses
a functional link neural network to the consequent part of the fuzzy rules. FLNFN is a
multilayer feedforward network in which each node performs a particular function
(node function) based on incoming signals and a set of parameters pertaining to this
node. The FLNFN model can automatically be constructed and the FLNFN
parameters can be adjusted by performing structure/parameter learning schemes.

In Chapter 3, the proposed IPSO method combines the 1A and PSO to perform
parameter learning. The advantages of the proposed IPSO method are summarized as
follows: 1) We employed the advantages of PSO to improve the mutation mechanism;
2) The complicated problems can be better solved than 1A and PSO; 3) There is more
of a likelihood to get a global optimum.compared to heuristic methods; 4) The
experimental results have shownthat our method obtains better results than other
existing methods in accuracy rate and convergence speed.

In Chapter 4, an innovative ‘BFPSO algorithm is applied for the design of
neuro-fuzzy classifier. Conventional. BFO depends‘onrandom search directions which
may lead to delay in reaching global solution while PSO is prone to be trapped in
local optima. In order to get better optimization, the new algorithm combines
advantages of both the algorithms i.e. PSO’s ability to exchange social information
and BFO’s ability in finding new solutions by elimination and dispersal. The BFPSO
algorithm combines PSO-based mutation operator with bacterial chemotaxis in order
to make judicious use of exploration and exploitation abilities of search space and to
avoid false and premature convergence. The simulation results showed that the overall
performance of the hybrid algorithm outperforms conventional BFO and PSO.

Unlike IPSO and BFPSO approaches that use PSO as the enhance mechanism to
improve the performance of basic 1A and BFO. In chapter 5, the PSO-based learning

algorithm, called DMPSO, for the neural fuzzy system is presented. In DMPSO
-02-

approach, the parameter learning method is based on the PSO algorithm and the
distance-based mutation operator is introduced to increase the population diversity,
which strongly encourages a global search giving the particles more chance of
escaping from local optimum and converging to the global optimum. The simulation
results have shown the proposed DMPSO method yields better performance than
other existing models under some circumstances in the nonlinear system control
application fields.

In Chapter 6, the well-known skin color detection problem is used as the
benchmark to demonstrate the performance and efficiency of the proposed IPSO,
BFPSO and DMPSO method. The aim of the skin color detection is to distinguish
between skin and non-skin pixels based on the %Y; Cb and Cr information. The average
accuracy rates of testing and training data with different approaches were depicted in
Table 6.2. Since the predefined rule number is not identical, we cannot make the
comparison fairly. From the simulation results, we can.only conclude that DMPSO
outperforms BFPSO and IPSO seems to be over-trained.

Although the proposed algorithms yield better performance in the classification
and nonlinear system control applications, but there still some advanced topics should
be addressed in future research.

In general, synthesizing a neuro-fuzzy system, two major types of learning are
required: structure learning algorithms to find appropriate fuzzy logic rules; and
parameter learning algorithms to fine-tune the membership functions and other
parameters. There are several ways that structure learning and parameter learning can
be combined in a neuro-fuzzy system. They can be performed sequentially: structure
learning is used first to find the appropriate structure of a neuro-fuzzy system; and
parameter learning is then used to fine-tune the parameters. In some situations, only

parameter learning or structure learning is necessary when structure (fuzzy rules) or

-93-

parameters (membership functions) are provided by experts, and the structure in some
neuro-fuzzy systems is fixed. Identification of fuzzy rules has been one of the most
important aspects in the design of neuro-fuzzy sysyem. Identified rules and concise
rules can provide an initial structure of networks so that learning processes can be fast,
reliable and highly intuitive. To overcome the limitations of using expert knowledge
in defining the fuzzy rules, data driven methods to create fuzzy systems are needed.
Therefore, the first advanced research topic is to generate fuzzy rules from numerical
data more efficiently.

The choice of the model’s structure is very important, as it determines the
flexibility of the model in the approximation of (unknown) systems. Despite of the
research that has already been done in the area of neuro-fuzzy systems the recurrent
variants of this architecture are still rarely studied. In.contrast to pure feed-forward
architectures, that have a static input-output behavior, recurrent models are able to
store information of the past.(e.g. prior system states) and are thus more appropriate
for the analysis of dynamic systems. The second.advanced research topic is to apply
the proposed IPSO, BFPSO and DMPSO into the recurrent neural network to learn
and optimize a hierarchical fuzzy rule base with feedback connections.

In this dissertation, a systematic method was not used to determine the initial
parameters. The initial parameters are determined by practical experimentation or by
trial-and-error. In future works, we will try to develop a well-defined method to
automatically determine the initial parameters, and thus inexperienced users could

design a neuro-fuzzy system with ease.

-94 -

Bibliography

1. H. Takagi, N. Suzuki, T. Koda and Y. Kojima, “Neural Networks Designed on
Approximate Reasoning Architecture and Their Applications,” IEEE
Transactions on Neural Networks, vol. 3, no. 5, pp. 752-760, 1992.

2. E. Sanchez, T. Shibata and L. A. Zadeh, Genetic Algorithms and Fuzzy Logic
Systems: Soft Computing Perspectives. World Scientific, 1997.

3. 0. Cordon, F. Gomide, F. Herrera, F. Hoffmann and L. Magdalena, “Ten Years of
Genetic Fuzzy Systems: Current Framework and New Trends,” Fuzzy Sets and
Systems, vol. 141, no. 1, pp. 5-31, 2004.

4. A. Homaifar and E. McCormick, “Simultaneous Design of Membership
Functions and Rule Setsfor Fuzzy Controllers Using Genetic Algorithms,” IEEE
Transactions on Fuzzy Systems, vol. 3, no. 2, pp. 129-139, 1995.

5. J. R. Velasco, “Genetic-Based On-Line Learning-for Fuzzy Process Control,”
International Journal of Intelligent Systems, wvol. 13, no. 10-11, pp. 891-903,
1998.

6. H. Ishibuchi, T. Nakashima and T. Murata, “Performance Evaluation of Fuzzy
Classifier Systems for Multidimensional Pattern Classification Problems,” IEEE
Transactions on Systems, Man, and Cybernetics — Part B: Cybernetics, vol. 29,
no. 5, pp. 601-618, 1999.

7. J. Vieira, F. M. Dias, A. Mota, “Neuro-Fuzzy Systems: A Survey,” WSEAS
Transactions on Systems, vol. 3, no. 2, pp. 414-419, 2004.

8. C.-T. Linand C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent Systems. Prentice-Hall, 1996.

9. S. Mitra and Y. Hayashi, “Neuro-Fuzzy Rule Generation: Survey in Soft

-05 -

10.

11.

12.

13.

14.

15.

16.

17.

18.

Computing Framework,” IEEE Transactions on Neural Networks, vol. 11, no. 3,
pp. 748-768, 2000.

A. V. Nandedkar and P. K. Biswas, “A Granular Reflex Fuzzy Min-Max Neural
Network for Classification,” IEEE Transactions on Neural Networks, vol. 20, no.
7, pp. 1117-1134, 20009.

G-D. Wu and P.-H. Huang, “A Maximizing-Discriminability-Based
Self-Organizing Fuzzy Network for Classification Problems,” IEEE Transactions
on Fuzzy Systems, vol. 18, no. 2, pp. 362-373, 2010.

O. Cordon, F. Herrera, F. Hoffmann and L. Magdalena, Genetic Fuzzy Systems:
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific,
2001.

P. P. Angelov, Evolving. Rule-Based Maodels: A. Tool for Design of Flexible
Adaptive Systems. Physica-Verlag, 2002.

A. Gonzalez and R. Perez, “SLAVE: A Genetic Learning System Based on an
Iterative Approach,” IEEE Transactions on-Fuzzy Systems, vol. 7, no. 2, pp.
176-191, 1999.

M. Russo, “FuGeNeSys — A Fuzzy Genetic Neural System for Fuzzy Modeling,”
IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 373-388, 1998.

H. Ishibuchi, K. Nozaki, N. Yamamoto and H. Tanaka, “Selecting Fuzzy If-Then
Rules for Classification Problems Using Genetic Algorithms,” IEEE
Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 260-270, 1995.

H. Ishibuchi, T. Murata and I. B. Turksen, “Single-Objective and Two-Objective
Genetic Algorithms for Selecting Linguistic Rules for Pattern Classification
Problems,” Fuzzy Sets and Systems, vol. 89, no. 2, pp. 135-150, 1997.

H. Ishibuchi and Y. Nojima, “Analysis of Interpretability-Accuracy Tradeoff of

Fuzzy Systems by Multiobjective Fuzzy Genetics-Based Machine Learning,”

- 906 -

19.

20.

21.

22,

23.

24,

25.

26.

27,

International Journal of Approximate Reasoning, vol. 44, no. 1, pp. 4-31, 2007.
L.-X. Wang and J. M. Mendel, “Generating Fuzzy Rules by Learning from
Examples,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6,
pp. 1414-1427, 1992,

C.-J. Lin and C.-T. Lin, “An ART-Based Fuzzy Adaptive Learning Control
Network,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp. 477-496,
1997.

C.-T. Lin, C.-J. Lin and C. S. G. Lee, “Fuzzy Adaptive Learning Control
Network with On-Line Neural Learning,” Fuzzy Sets and Systems, vol. 71, no. 1,
pp. 25-45, 1995,

W.-S. Lin, C.-H. Tsai and.dJ:=S. Liu;»“Robust Neuro-Fuzzy Control of
Multivariable Systems by Tuning Consequent Membership Functions,” Fuzzy
Sets and Systems, vol. 124, no. 2, pp. 181-195, 2001.

T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications
to Modeling and Control,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. SMC-15, no. 1, pp. 116-132, 1985.

J.-S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp.
665-685, 1993.

C.-F. Juang and C.-T. Lin, “An On-Line Self-Constructing Neural Fuzzy
Inference Network and Its Applications,” IEEE Transactions on Fuzzy Systems,
vol. 6, no.1, pp. 12-32, 1998.

D. Nauck and R. Kruse, “A Neuro-Fuzzy Method to Learn Fuzzy Classification
Rules from Data,” Fuzzy Sets and Systems, vol. 89, no.3, pp. 277-288, 1997.

S. Paul and S. Kumar, “Subsethood-Product Fuzzy Neural Inference System

(SUPFuNIS),” IEEE Transactions on Neural Networks, vol. 13, no. 3, pp.
-97 -

28.

29.

30.

31.

32.

33.

34.

35.

36.

578-599, 2002.

J.-S. Wang and C. S. G. Lee, “Self-Adaptive Neuro-Fuzzy Inference Systems for
Classification Applications,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6,
pp. 790-802, 2002.

C.-J. Lin and C.-T. Lin, “Reinforcement Learning for an ART-Based Fuzzy
Adaptive Learning Control Network,” IEEE Transactions on Neural Networks,
vol. 7, no. 3, pp. 709-731, 1996.

F.-J. Lin, C.-H. Lin and P.-H. Shen, “Self-Constructing Fuzzy Neural Network
Speed Controller for Permanent-Magnet Synchronous Motor Drive,” IEEE
Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 751-759, 2001.

C.-J. Lin and C.-H. Chen, “Identification and Prediction Using Recurrent
Compensatory Neuro-Fuzzy Systems,” Fuzzy Sets and Systems, vol. 150, no. 2,
pp. 307-330, 2005.

C.-H. Chen, C.-J. Lin"and C.-T. Lin, “A Functional-Link-Based Neurofuzzy
Network for Nonlinear System Control,” IEEE Transactions on Fuzzy Systems,
vol. 16, no. 5, pp. 1362-1378, 2008.

M.-T. Su, C.-H. Chen, C.-J. Lin and C.-T. Lin, “A Rule-Based Symbiotic
Modified Differential Evolution for Self-Organizing Neuro-Fuzzy Systems,”
Applied Soft Computing, vol. 11, no. 8, pp. 4847-4858, 2011.

R. Fuller, Introduction to Neuro-Fuzzy Systems, Studies in Fuzziness and Soft
Computing. Physica-Verlag, 2000.

C.-T. Lin and C. S. G. Lee, “Neural-Network-Based Fuzzy Logic Control and
Decision System,” IEEE Transactions on Computers, vol. 40, no. 12, pp.
1320-1336, 1991.

H. Bunke and A. Kandel, Neuro-Fuzzy Pattern Recognition. World Scientific,

2000.
-08 -

37.

38.

39.

40.

41.

42.

43.

44,

45.

S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition: Methods in Soft
Computing. John Wiley & Sons, 1999.

L. Chen, D. H. Cooley and J. Zhang, “Possibility-Based Fuzzy Neural Networks
and Their Application to Image Processing,” IEEE Transactions on Systems,
Man, and Cybernetics — Part B: Cybernetics, vol. 29, no. 1, pp. 119-126, 1999.
S.-W. Lin, S.-C. Chen, W.-J. Wu and C.-H. Chen, “Parameter Determination and
Feature Selection for Back-Propagation Network by Particle Swarm
Optimization,” Knowledge and Information Systems, vol. 21, no. 2, pp. 249-266,
20009.

T. Weise, Global Optimization Algorithms - Theory and Application. it-weise.de

(self-published), 2009. (http://www.it-weise.de/projects/book.pdf)

J. Kennedy and R. Eberhart, “‘Particle Swarm Optimization,” in Proceedings of
the 1995 IEEE International Conference on-Neural Networks, vol. 4, pp.
1942-1948, 1995.

R. Eberhart and J. Kennedy, “A New Optimizer-Using Particle Swarm Theory,”
in Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, pp. 39-43, 1995.

J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence. Morgan Kaufmann,
2001.

M. P. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada and A. S. ElImaghraby,
“An Approach to Multimodal Biomedical Image Registration Utilizing Particle
Swarm Optimization,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 3, pp. 289-301, 2004.

W.-F. Leong and G. G. Yen, “PSO-Based Multiobjective Optimization with
Dynamic Population Size and Adaptive Local Archives,” IEEE Transactions on

Systems, Man, and Cybernetics — Part B: Cybernetics, vol. 38, no. 5, pp.
-99 -

46.

47.

48.

49.

50.

51.

52.

53.

1270-1293, 2008.

E. Mezura-Montes and C. A. C. Coello, “A Simple Multimembered Evolution
Strategy to Solve Constrained Optimization Problems,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 1, pp. 1-17, 2005.

C. A. C. Coello, G. T. Pulido and M. S. Lechuga, “Handling Multiple Objectives
with Particle Swarm Optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 256-279, 2004.

R. Xu, G C. Anagnostopoulos and D. C. Wunsch Il, “Multiclass Cancer
Classification Using Semisupervised Ellipsoid ARTMAP and Particle Swarm
Optimization with Gene Expression Data,” IEEE/ACM Transactions on
Computational Biology and Bioinfarmatics, vol. 4, no. 1, pp. 65-77, 2007.

F. Melgani and Y. Bazi, *“Classification of"Electrocardiogram Signals with
Support Vector Machines and Particle Swarm Optimization,” IEEE Transactions
on Information Technolagy. in Biomedicine, vol. 12,.no. 5, pp. 667-677, 2008.

M. Sugisaka and X. Fan,~“An Effective Search Method for Neural Network
Based Face Detection Using Particle Swarm Optimization,” IEICE Transactions
on Information and Systems, vol. E88-D, no. 2, pp. 214-222, 2005.

C.-F. Juang, “A Hybrid of Genetic Algorithm and Particle Swarm Optimization
for Recurrent Network Design,” IEEE Transactions on Systems, Man, and
Cybernetics — Part B: Cybernetics, vol. 34, no. 2, pp. 997-1006, 2004.

C.-T. Lin, C.-T. Yang and M.-T. Su, “A Hybridization of Immune Algorithm with
Particle Swarm Optimization for Neuro-Fuzzy Classifiers,” International
Journal of Fuzzy Systems, vol. 10, no. 3, pp. 139-149, 2008.

M.-T. Su and C.-T. Lin, “Nonlinear System Control Using
Functional-Link-Based Neuro-Fuzzy Network Model Embedded with Modified

Particle Swarm Optimizer,” in Proceedings of the 19th National Conference on

- 100 -

54,

55.

56.

57.

58.

59.

60.

61.

62.

Fuzzy Theory and Its Application, 2011.

D. Sedighizadeh and E. Masehian, “Particle Swarm Optimization Methods,
Taxonomy and Applications,” International Journal of Computer Theory and
Engineering, vol. 1, no. 5, pp. 486-502, 20009.

J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive Learning
Particle Swarm Optimizer for Global Optimization of Multimodal Functions,”
IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 281-295,
2006.

R. Poli, J. Kennedy and T. Blackwell, “Particle Swarm Optimization: An
Overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33-57, 2007.

A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence. John
Wiley & Sons, 2006.

Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer,” in Proceedings
of the 1998 IEEE International Conference on Evolutionary Computation, pp.
69-73, 1998.

Y. Shi and R. C. Eberhart, “Parameter Selection in Particle Swarm
Optimization,” in Proceedings of the 7th International Conference on
Evolutionary Programming VI, vol. 160, no. 4, pp. 591-600, 1998.

Y. Shi and R. Eberhart, "Particle Swarm Optimization with Fuzzy Adaptive
Inertia Weight," in Proceedings of the Workshop on Particle Swarm
Optimization, pp. 101-106, 2001.

A. Ratnaweera, S. K. Halgamuge and H. C. Watson, “Self-Organizing
Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration
Coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.
240-255, 2004.

H.-Y. Fan and Y. Shi, “Study on Vmax of Particle Swarm Optimization,” in

-101 -

63.

64.

65.

66.

67.

68.

69.

70.

71.

Proceedings of the Workshop on Particle Swarm Optimization, 2001.

M. Clerc and J. Kennedy, “The Particle Swarm-Explosion, Stability, and
Convergence in a Multidimensional Complex Space,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.

J. Kennedy, “Small Worlds and Mega-Minds: Effects of Neighborhood
Topology on Particle Swarm Performance,” in Proceedings of the 1999
Congress on Evolutionary Computation, vol. 3, pp. 1931-1938, 1999.

J. Kennedy and R. Mendes, “Population Structure and Particle Swarm
Performance,” in Proceedings of the 2002 Congress on Evolutionary
Computation, vol. 2, pp. 1671-1676, 2002.

P. N. Suganthan, “Particle Swarm Optimizer with Neighborhood Operator,” in
Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, pp.
1958-1962, 1999.

X. Hu and R. Eberhart, “Multiobjective Optimization Using Dynamic
Neighborhood Particle Swarm Optimization,™ in Proceedings of the 2002
Congress on Evolutionary Computation, vol. 2, pp. 1677-1681, 2002.

K. E. Parsopoulos and M. N. Vrahatis, “UPSO: A Unified Particle Swarm
Optimization Scheme,” in Lecture Series on Computer and Computational
Sciences, vol. 1, pp. 868-873, 2004.

K. E. Parsopoulos and M. N. Vrahatis, “Unified Particle Swarm Optimization for
Solving Constrained Engineering Optimization Problems,” in Lecture Notes in
Computer Science, vol. 3612, pp. 582-591, 2005.

R. Mendes, J. Kennedy and J. Neves, “The Fully Informed Particle Swarm:
Simpler, Maybe Better,” IEEE Transactions on Evolutionary Computation, vol.
8, no. 3, pp. 204-210, 2004.

T. Peram, K. Veeramachaneni and C. K. Mohan, “Fitness-Distance-Ratio Based

-102 -

72,

73.

74.

75.

76.

77.

78.

79.

Particle Swarm Optimization,” in Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, pp. 174-181, 2003.

P. J. Angeline, “Using Selection to Improve Particle Swarm Optimization,” in
Proceedings of the 1998 IEEE Congress on Evolutionary Computation, pp.
84-89, 1998.

M. Lovbjerg, T. K. Rasmussen and T. Krink, “Hybrid Particle Swarm Optimizer
with Breeding and Subpopulations,” in Proceedings of the Third Genetic and
Evolutionary Computation Conference, vol. 1, pp. 469-476, 2001.

V. Miranda and N. Fonseca, “New Evolutionary Particle Swarm Algorithm
(EPSO) Applied to Voltage/VAR Control,” in Proceedings of the 14th Power
Systems Computation Conference, 2002.

M. Lovbjerg and T. Krink, “Extending. Particle Swarm Optimizers with
Self-Organized Criticality,” in Proceedings- of the 2002 Congress on
Evolutionary Computation, vol. 2, pp. 1588-1593, 2002.

T. M. Blackwell and P. Bentley, “Don’t Push Me! Collision-Avoiding Swarms,”
in Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp.
1691-1696, 2002.

X.-F. Xie, W.-J. Zhang and Z.-L. Yang, “A Dissipative Particle Swarm
Optimization,” in Proceedings of the 2002 Congress on Evolutionary
Computation, vol. 2, pp. 1456-1461, 2002.

K. E. Parsopoulos and M. N. Vrahatis, “On the Computation of All Global
Minimizers Through Particle Swarm Optimization,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, pp. 211-224, 2004.

F. van den Bergh and A. P. Engelbrecht, “A Cooperative Approach to Particle
Swarm Optimization,” IEEE Transactions on Evolutionary Computation, vol. 8,

no. 3, pp. 225-239, 2004.
-103 -

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

J. C. Patra, R. N. Pal, B. N. Chatterji and G. Panda, “ldentification of Nonlinear
Dynamic Systems Using Functional Link Artificial Neural Networks,” IEEE
Transactions on Systems, Man, and Cybernetics — Part B: Cybernetics, vol. 29,
no. 2, pp. 254-262, 1999.

Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks. Addison-Wesley,
1989.

J. C. Patra and R. N. Pal, “A Functional Link Artificial Neural Network for
Adaptive Channel Equalization,” Signal Processing, vol. 43, no. 2, pp. 181-195,
1995.

D. Nauck, F. Klawonn and R. Kruse, Foundations of Neuro-Fuzzy Systems. John
Wiley & Sons, 1997.

Y.-H. Pao, S. M. Phillips ‘and-D. J. Sobajic, . “Neural-Net Computing and
Intelligent Control Systems;” International Journal.of Control, vol. 56, no. 2, pp.
263-289, 1992.

D. W. Boeringer and D. H. Werner, “Particle. Swarm Optimization versus Genetic
Algorithms for Phased Array Synthesis,” IEEE Transactions on Antennas and
Propagation, vol. 52, no. 3, pp. 771-779, 2004.

L. N. de Castro and J. Timmis, Artificial Immune Systems: A New Computational
Intelligence Approach. Springer-Verlag, 1996.

J. E. Hunt and D. E. Cooke, “Learning Using an Artificial Immune System,”
Journal of Network and Computer Applications, vol. 19, no. 2, pp. 189-212,
1996.

D. Dasgupta, Artificial Immune Systems and Their Applications. Springer-Verlag,
1999.

S. A. Hofmeyr and S. Forrest, “Immunity by Design: An Artificial Immune

System,” in Proceedings of the Genetic and Evolutionary Computation

-104 -

90.

91.

92.

93.

94,

95.

96.

97.

98.

Conference, vol. 2, pp. 1289-1296, 1999.

L. N. de Castro and F. J. Von Zuben, “Artificial Immune Systems: Part | - Basic
Theory and Applications,” Technical Report — TR-DCA 01/99, School of
Electrical and Computing Engineering, State University of Campinas, Brazil,

1999. (ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tr dca/trdca0199.pdf)

L. N. de Castro and F. J. Von Zuben, “Artificial Immune Systems: Part 1l - A
Survey of Applications,” Technical Report DCA-RT 02/00, School of Electrical
and Computing Engineering, State University of Campinas, Brazil, 2000.

(ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tr dca/trdca0200.pdf)

A. Kalinli and N. Karaboga, “Artificial Immune Algorithm for IIR Filter
Design,” Engineering Applications of Artificial Intelligence, vol. 18, no. 8, pp.
919-929, 2005.

X. Wen and A. Song, “An Immune Evolutionary Algorithm for Sphericity Error
Evaluation,” International Journal of Machine Tools & Manufacture, vol. 44, no.
10, pp. 1077-1084, 2004.

J.-S. Chun, M.-K. Kim and H.-K. Jung, “Shape Optimization of Electromagnetic
Devices Using Immune Algorithm,” IEEE Transactions on Magnetics, vol. 33,
no. 2, pp. 1876-1879, 1997.

L. N. de Castro and F. J. Von Zuben, “Learning and Optimization Using the
Clonal Selection Principle,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 3, pp. 239-251, 2002.

F. M. Burnet, “Clonal Selection and After,” in Theoretical Immunology, G. I. Bell,
A. S. Perelson, and G. H. Pimbley Jr., Eds., pp. 63-85, Marcel Dekker, 1978.

F. M. Burnet, The Clonal Selection Theory of Acquired Immunity, Cambridge
University Press, 1959.

C.-J. Lin, I-F. Chung and C.-H. Chen, “An Entropy-Based Quantum
- 105 -

99.

100.

101.

102.

103.

104.

105.

106.

107.

Neuro-Fuzzy Inference System for Classification Applications,” Neurocomputing,
vol. 70, no. 13-15, pp. 2502-2516, 2007.

C.-H. Chen, C.-J. Lin and C.-T. Lin, “An Efficient Quantum Neuro-Fuzzy
Classifier Based on Fuzzy Entropy and Compensatory Operation,” Soft
Computing, vol. 12, no. 6, pp. 567-583, 2008.

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. John
Wiley & Sons, 1973.

R. Setiono and H. Liu, “Neural-Network Feature Selector,” IEEE Transactions
on Neural Networks, vol. 8, no. 3, pp. 654-662, 1997.

H.-M. Lee, C.-M. Chen, J.-M. Chen and Y.-L. Jou, “An Efficient Fuzzy
Classifier with Feature Selection'Based on Fuzzy Entropy,” IEEE Transactions
on Systems, Man, and Cybernetics — Part B: Cybernetics, vol. 31, no. 3, pp.
426-432, 2001.

K. M. Passino, “Biomimicry of Bacterial Foraging for Distributed Optimization
and Control,” IEEE Control Systems Magazine, vol. 22, no. 3, pp. 52-67, 2002.
S. D. Muller, J. Marchetto, S. Airaghi and P. Koumoutsakos, “Optimization
Based on Bacterial Chemotaxis,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 1, pp. 16-29, 2002.

D. H. Kim and J. H. Cho, “Adaptive Tuning of PID Controller for Multivariable
System Using Bacterial Foraging Based Optimization,” in Proceedings of the
Third International Atlantic Web Intelligence Conference, vol. 3528 of Lecture
Notes in Computer Science, pp. 231-235, 2005.

D. H. Kim and C. H. Cho, “Bacterial Foraging Based Neural Network Fuzzy
Learning,” in Proceedings of the Indian International Conference on Artificial
Intelligence, pp. 2030-2036, 2005.

T. Datta and I. S. Misra, “A Comparative Study of Optimization Techniques in
- 106 -

108.

109.

110.

111.

112.

113.

114.

115.

116.

Adaptive Antenna Array Processing: The Bacteria-Foraging Algorithm and
Particle-Swarm Optimization,” IEEE Antennas and Propagation Magazine, vol.
51, no. 6, pp. 69-81, 2009.

P. K. Simpson, “Fuzzy Min-Max Neural Networks — Part 1: Classification,”
IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 776-786, 1992.

H.-M. Lee, K.-H. Chen and I-F. Jiang, “A Neural Network Classifier with
Disjunctive Fuzzy Information,” Neural Networks, vol. 11, no. 6, pp. 1113-1125,
1998.

T-P. Wu and S.-M. Chen, “A New Method for Constructing Membership
Functions and Fuzzy Rules from Training Examples,” IEEE Transactions on
Systems, Man, and Cybernetics = Part Bz 'Cybernetics, vol. 29, no. 1, pp. 25-40,
1999.

B. C. Lovell and A. P. Bradley, “The Multiscale Classifier,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. .18, no. 2, pp. 124-137, 1996.

C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller — Part 1,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp.
404-418, 1990.

C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller — Part I1,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp.
419-435, 1990.

K. S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical
Systems Using Neural Networks,” IEEE Transactions on Neural Networks, vol.
1, no. 1, pp. 4-27, 1990.

K. J. Astrom and B. Wittenmark, Adaptive Control. Addison-Wesley, 1989.

C. Li, S. Yang and I. Korejo, “An Adaptive Mutation Operator for Particle

Swarm Optimization,” in Proceedings of the 2008 UK Workshop on
- 107 -

117.

118.

119.

120.

121.

122.

123.

124.

Computational Intelligence, pp. 165-170, 2008.

K. V. Deligkaris, Z. D. Zaharis, D. G. Kampitaki, S. K. Goudos, I. T. Rekanos
and M. N. Spasos, “Thinned Planar Array Design Using Boolean PSO with
Velocity Mutation,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp.
1490-1493, 20009.

S. H. Ling, H. H. C. lu, K. Y. Chan, H. K. Lam, B. C. W. Yeung and F. H. Leung,
“Hybrid Particle Swarm Optimization with Wavelet Mutation and Its Industrial
Applications,” IEEE Transactions on Systems, Man, and Cybernetics — Part B:
Cybernetics, vol. 38, no. 3, pp. 743-763, 2008.

D. Nguyen and B. Widrow, “The Truck Backer-Upper. An Example of
Self-Learning in Neural Networks,” in Proceedings of the International Joint
Conference on Neural Networks, vol. 2, pp. 357-363, 1989.

J. Tanomaru and S. Omatu, “Process Control by On-Line Trained Neural
Controllers,” IEEE Transactions on Industrial Electronics, vol. 39, no. 6, pp.
511-521, 1992.

C.-H. Chen, C.-J. Lin and C.-T. Lin, “Using an Efficient Immune Symbiotic
Evolution Learning for Compensatory Neuro-Fuzzy Controller,” IEEE
Transactions on Fuzzy Systems, vol. 17, no. 3, pp. 668-682, 2009.

C.-F. Juang, J.-Y. Lin and C.-T. Lin, “Genetic Reinforcement Learning through
Symbiotic Evolution for Fuzzy Controller Design,” IEEE Transactions on
Systems, Man, and Cybernetic — Part B: Cybernetics, vol. 30, no. 2, pp. 290-302,
2000.

M. Jamei, M. Mahfouf and D. A. Linkens, “Elicitation and Fine-Tuning of Fuzzy
Control Rules Using Symbiotic Evolution,” Fuzzy Sets and Systems, vol. 147, no.
1, pp. 57-74, 2004.

D. Psaltis, A. Sideris and A. A. Yamamura, “A Multilayered Neural Network
- 108 -

Controller,” IEEE Control Systems Magazine, vol. 8, no. 2, pp. 17-21, 1988.

125. C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3rd
Edition. Prentice-Hall, 1995.

126. Y. Hayashi and J.J. Buckley, “Approximations Between Fuzzy Expert Systems
and Neural Networks,” International Journal of Approximate Reasoning, vol. 10,

pp. 63-73, 1994

- 109 -

Publication List

Journal :

[1]

[2]

3]

[4]

[5]

Chin-Teng Lin, Chien-Ting Yang and Miin-Tsair Su, “A Hybridization of
Immune Algorithm with Particle Swarm Optimization for Neuro-Fuzzy
Classifiers,” International Journal of Fuzzy Systems, vol. 10, no. 3, pp. 139-149,
2008. (Full paper, 1.0 2t)

Miin-Tsair_Su, Cheng-Hung Chen, Cheng-Jian Lin and Chin-Teng Lin, “A
Rule-based Symbiotic Modified Differential Evolution for Self-Organizing
Neuro-Fuzzy Systems,” Applied Soft Computing, vol. 11, no. 8, pp. 4847-4858,
2011. (Full paper, 1.2 2t)

Miin-Tsair _Su, Chin-Teng Lin and Keng-Wei Hsu, “A Novel Method for
Locating Solder Joints based on Modified Binary Potential Function,”
International Journal of Innovative Computing, Information and Control, vol. 8,
no. 1(B), pp. 911-932, 2012. (Full paper, 1.4 2t)

Chen-Yu Lee, Chin-Teng Lin, Chao-Ting Hong and Miin-Tsair Su, “Smoke
Detection Using Spatial \and Temporal Analyses,” International Journal of
Innovative Computing, Information and Control, vol. 8, no. 7(A), pp. 4749-4770,
2012. (Full paper, 0.6 2k).

Miin-Tsair Su, Chin-Teng Lin, Sheng-Chih Hsu, Dong-Lin Li, Cheng-Jian Lin
and Cheng-Hung Chen, “Nonlinear System Control Using
Functional-Link-Based Neuro-Fuzzy Network Model Embedded with Modified

Particle Swarm Optimizer,” International Journal of Fuzzy Systems, vol. 14, no.
1, pp. 97-109, 2012. (Full paper, 1.2 2t)

Conference :

[1]

[2]

Miin-Tsair Su, Keng-Wei Hsu and Chin-Teng Lin, “A New Method for Locating

Solder Joints Based on Potential Function,” The 22th IPPR Conference on
Computer Vision, Graphics and Image Processing, Nantou, Taiwan, R.O.C., Aug.
23-25, 2009.

Miin-Tsair _Su and Chin-Teng Lin, “Nonlinear System Control Using

Functional-Link-Based Neuro-Fuzzy Network Model Embedded with Modified
Particle Swarm Optimizer,” The 19th National Conference on Fuzzy Theory and
Its Application, Yunlin, Taiwan, R.O.C., Nov. 18-19, 2011.

- 110 -

