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內嵌粒子群優化學習演算法之類神經模糊

系統及其應用 

 

研究生：蘇閔財  指導教授：林進燈 博士 

 

國立交通大學電控工程研究所博士班 

 

摘  要 

本篇論文中所提出的進化式神經模糊系統乃是採用內嵌以粒子群為基礎的

學習演算法之函數鏈結類神經模糊網路 (Functional-Link-Based Neuro-Fuzzy 

Network, FLNFN)。此一類神經模糊網路採用函數鏈結類神經網路來做為模糊法

則的後件部。由於，後件部採用了非線性函數展開的方式，來形成任意複雜的決

策邊界。因此，在 FLNFN 模型中，後件部的這個局部特性，可以使輸入變量的

非線性組合結果，能夠更有效地近似目標輸出。本論文主要為三大部分。在第一

部份，我們提出了一個高效率的免疫粒子群優化（IPSO）的學習方法來解決膚

色檢測的問題。我們所提的免疫粒子群優化演算法主要是結合免疫演算法（IA）

和粒子群優化（PSO）來進行參數學習。在第二部分中，另一種被稱為細菌覓食

粒子群優化（BFPSO）的混合式參數學習演算法，將被介紹來解決分類的應用。

BFPSO 演算法主要是透過 BFO 的趨化運動來操作執行區域性的搜索，而在整個

搜索空間的全域搜索則是由 PSO 來完成。利用此一方式，便能在全域性的勘探

和區域性的開採間取得最好的平衡。在第三部分中，與先前採用混合方法不同，

我們引入了以距離為基礎的突變操作元，藉以用來增加粒子群的群體多樣性。此

演算法包含架構學習及參數學習兩部分。架構學習是藉由熵的量測來決定所需的
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模糊法則的數目。參數學習則是使用內嵌以距離為基礎的突變操作元之粒子群優

化演算法（DMPSO），來調整歸屬函數的形狀與後件部的相對應權重。最後，我

們將論文中所提出的以 PSO 為基礎之學習演算法應用到各種分類和控制問題。

本論文的實驗結果證明了所提出方法的有效性。 
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Neural Fuzzy System Embedded with 

Particle Swarm Optimizer and Its Applications 

 

Student：Miin-Tsair Su   Advisor：Dr. Chin-Teng Lin 

 

Institute of Electrical and Control Engineering 

National Chiao Tung University 

 

ABSTRACT 

This dissertation proposes the evolutionary neural fuzzy system, designed using 

functional-link-based neuro-fuzzy network (FLNFN) model embedded with 

PSO-based learning algorithms. The FLNFN model uses a functional link neural 

network to the consequent part of the fuzzy rules. The consequent part uses a 

nonlinear functional expansion to form arbitrarily complex decision boundaries. Thus, 

the local properties of the consequent part in the FLNFN model enable a nonlinear 

combination of input variables to be approximated more effectively. This dissertation 

consists of three major parts. In the first part, the efficient immune-based particle 

swarm optimization (IPSO) learning method is presented to solve the skin color 

detection problem. The proposed IPSO algorithm combines the immune algorithm 

(IA) and particle swarm optimization (PSO) to perform parameter learning. In the 

second part, another hybrid parameter learning algorithm, called bacterial foraging 

particle swarm optimization (BFPSO), is introduced for classification applications. 

The proposed BFPSO algorithm performs local search through the chemotactic 

movement operation of BFO whereas the global search over the entire search space is 



- iv - 

accomplished by a PSO operator. In this way it balances between exploration and 

exploitation enjoying best of both the worlds. In the third part, instead of using hybrid 

techniques, the distance-based mutation operator is introduced to improve the 

population diversity. The learning algorithm consists of structure learning and 

parameter learning. The structure learning depends on the entropy measure to 

determine the number of fuzzy rules. The parameter learning, based on distance-based 

mutation particle swarm optimization (DMPSO), can adjust the shape of the 

membership function and the corresponding weights of the consequent part. Finally, 

the proposed PSO-based learning algorithms are applied in various classification and 

control problems. Results of this dissertation demonstrate the effectiveness of the 

proposed methods. 
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Chapter 1 

Introduction 
 

 

1.1 Motivation 

Fuzzy systems and neural networks have attracted the growing interest of 

researchers in various scientific and engineering areas. The number and variety of 

applications of fuzzy systems and neural networks [1-6] have been increasing, ranging 

from consumer products and industrial process control to medical instrumentation, 

information systems, and decision analysis. 

Fuzzy systems are structured numerical estimators. They start from highly 

formalized insights about the structure of categories found in the real world and then 

articulate fuzzy IF-THEN rules as a kind of expert knowledge. Fuzzy systems 

combine fuzzy sets with fuzzy rules to produce overall complex nonlinear behavior. 

Neural networks, on the other hand, are trainable dynamical systems whose learning, 

noise-tolerance, and generalization abilities grow out of their connectionist structures, 

their dynamics, and their distributed data representation. Neural networks have a large 

number of highly interconnected processing elements (nodes) which demonstrate the 

ability to learn and generalize from training patterns or data; these simple processing 

elements also collectively produce complex nonlinear behavior. 

The performance of fuzzy systems critically depends on the input and output 

membership functions, the fuzzy rules, and the fuzzy inference mechanism. On the 

other hand, the performance of neural networks depends on the computational 

function of the neurons in the network, the structure and topology of the network, and 

the learning rule or the update rule of the connecting weights. The advantages and 
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disadvantages of fuzzy systems and neural networks are summarized as follows [7]: 

The advantages of the fuzzy systems are: 

• capacity to represent inherent uncertainties of the human knowledge with 
linguistic variables; 

• simple interaction of the expert of the domain with the engineer designer 
of the system; 

• easy interpretation of the results, because of the natural rules 
representation; 

• easy extension of the base of knowledge through the addition of new 
rules; 

• robustness in relation of the possible disturbances in the system. 

The disadvantages of the fuzzy systems are: 

• incapable to generalize, or either, it only answers to what is written in its 
rule base; 

• not robust in relation the topological changes of the system, such changes 
would demand alterations in the rule base; 

• depends on the existence of a expert to determine the inference logical 
rules; 

The advantages of the neural networks are: 

• learning capacity; 
• generalization capacity; 
• robustness in relation to disturbances. 

The disadvantages of the neural networks are: 

• impossible interpretation of the functionality; 
• difficulty in determining the number of layers and number of neurons. 

The hybrid neuro-fuzzy systems [8-34] possess the advantages of both neural 

networks (e.g. learning abilities, optimization abilities, and connectionist structures) 

and fuzzy systems (e.g. humanlike IF-THEN rules thinking and ease of incorporating 

expert knowledge). In this way, we can bring the low-level learning and 

computational power of neural networks into fuzzy systems and also high-level, 
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humanlike IF-THEN rule thinking and reasoning of fuzzy systems into neural 

networks. 

There are several different ways to develop hybrid neuro-fuzzy systems; 

therefore, being a recent research subject, each researcher has defined its own 

particular models. These models are similar in its essence, but they present basic 

differences. The most popular neuro-fuzzy architectures include: 1) Fuzzy Adaptive 

Learning Control Network [8][20][21][29][35]; 2) Adaptive-Network-Based Fuzzy 

Inference System [24]; 3) Self-Constructing Neural Fuzzy Inference Network [25]; 

and 4) Functional-Link-Based Neuro-Fuzzy Network [32][33]. The advantages of a 

combination of neural networks and fuzzy inference systems are obvious [8][34-36]. 

Fusion of artificial neural networks and fuzzy inference systems have attracted the 

growing interest of researchers in various scientific and engineering areas due to the 

growing need of adaptive intelligent systems to solve the real world problems 

[8][9][19][20][24][25][30][33-38]. 

No matter which neuro-fuzzy architecture is chosen, training of the parameters is 

the main problem in designing a neuro-fuzzy system. Backpropagation (BP) 

[20][24][25][32][35][38][39] training is commonly adopted to solve this problem. It is 

a powerful training technique that can be applied to networks with a forward structure. 

Since the steepest descent approach is used in BP training to minimize the error 

function, the algorithms may reach the local minima very quickly and never find the 

global solution. The aforementioned disadvantages lead to suboptimal performance, 

even for a favorable neuro-fuzzy system topology. Therefore, technologies that can be 

used to train the system parameters and find the global solution while optimizing the 

overall structure are required. 

Figure 1.1 sketches a rough taxonomy of global optimization methods [40]. 

Generally, optimization algorithms can be divided in two basic classes: deterministic 
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and probabilistic algorithms. Deterministic algorithms are most often used if a clear 

relation between the characteristics of the possible solutions and their utility for a 

given problem exists. Then, the search space can efficiently be explored using for 

example a divide and conquer scheme. If the relation between a solution candidate 

and its “fitness” are not so obvious or too complicated, or the dimensionality of the 

search space is very high, it becomes harder to solve a problem deterministically. 

Trying it would possible result in exhaustive enumeration of the search space, which 

is not feasible even for relatively small problems. Then, probabilistic algorithms come 

into play. 

An especially relevant family of probabilistic algorithms is the Monte 

Carlo-based approaches. They trade in guaranteed correctness of the solution for a 

shorter runtime. This does not mean that the results obtained using them are incorrect 

- they may just not be the global optima. An important class of probabilistic Monte 

Carlo metaheuristics is evolutionary computation (EC). It encompasses all algorithms 

that are based on a set of multiple solution candidates (called population) which are 

iteratively refined. This field of optimization is also a class of soft computing as well 

as a part of the artificial intelligence area. Some of its most important members are 

evolutionary algorithms (EAs) and swarm intelligence (SI). 

The particle swarm optimization (PSO) developed by Kennedy and Eberhart in 

1995 [41-43], is a relatively new technique. Although PSO shares many similarities 

with evolutionary computation techniques, the standard PSO does not use evolution 

operators such as crossover and mutation. PSO emulates the swarm behavior of 

insects, animals herding, birds flocking, and fish schooling where these swarms 

search for food in a collaborative manner. Each member in the swarm adapts its 

search patterns by learning from its own experience and other members’ experiences. 
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Figure 1.1: The taxonomy of global optimization algorithms. 

 

During the past several years, PSO has been successfully applied to a diverse set 

of optimization problems, such as multidimensional optimization problems [44], 

multi-objective optimization problems [45-47], classification problems [48][49], and 

feedforward neural network design [39][50-53]. Aggregation chart for applications of 

the PSO over different years is shown in Figure 1.2 [54]. 
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Figure 1.2: Aggregation chart for applications of the PSO over different years. 

 

In this dissertation, we proposed the novel learning algorithms embedded with 

particle swarm optimizer for the neural fuzzy system in both classification and 

nonlinear system control applications. 

 

 

1.2 Literature Survey 

The underlying motivation for the development of PSO algorithm is the social 

behavior of animals, such as bird flocking, fish schooling and swarm theory. To 

simulate social behavior, bird flocking searches for food in an area. Each bird flies 

according to self-cognition and social information. Self-cognition is the generalization 

produced by past experience. The social information is the message that is shared by 

the society. The strategy of the birds is to maintain the good experiences by referring 
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to the knowledge of the others. A PSO’s taxonomy is shown as Figure 1.3 [54]. 

 

 

Figure 1.3: Taxonomy of PSO. 
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In PSO, a member in the swarm, called a particle, represents a potential solution 

which is a point in the search space. The global optimum is regarded as the location of 

food. Each particle has a fitness value and a velocity to adjust its flying direction 

according to the best experiences of the swarm to search for the global optimum in the 

solution space [55]. 

In the original PSO algorithm, the particles are manipulated according to the 

following equations: 

1 1 1 1 1
1 1 2 2( ) ( )t t t t t t

id id id id gd idc r p x c r p x                (1.1)

1 1t t t
id id idx x v    (1.2)

Here t
idx  and t

idv  are the thd  dimensional component of the position and velocity 

of the thi  particle at time step t . t
idp  is the thd  component of the best (fitness) 

position the thi  particle has achieved by time step t , and t
gdp  is the thd  

component of the global best position achieved in the population by time step t . The 

constants 1c  and 2c  are known as the “cognition” and “social” factors, respectively, 

as they control the relative strengths of the individual behavior of each particle and 

collective behavior of all particles. Finally, 1r  and 2r  are two different random 

numbers in the range of 0 to 1 and are used to enhance the exploratory nature of the 

PSO. 

The two main models of the PSO algorithm, called gbest  (global best) and 

lbest  (local best), which differ in the way of they define particle neighborhood. 

Kennedy and Poli [43][56] showed that the gbest  model has a high convergence 

speed with a higher chance of getting stuck in local optima. On the contrary, the 

lbest  model is less likely become trapped in local optima but has a slower 

convergence speed than gbest . 
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Many researchers have worked on improving its performance in various ways, 

thereby deriving many interesting variants as shown in Figure 1.4 [54]. 
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Figure 1.4: The variations of PSO. 

 

One of the variants introduces a parameter called inertia weight ( w ) into the 

original PSO algorithms [56-58], and Eq. (1.1) can be rewritten as follows: 

1 1 1 1 1
1 1 2 2( ) ( )t t t t t t

id id id id gd idw c r p x c r p x                 (1.3)

The inertia weight is used to balance the global and local search abilities. A large 

inertia weight is more appropriate for global search, and a small inertia weight 

facilitates local search. A linearly decreasing inertia weight over the course of search 

was proposed by Shi and Eberhart [58]. Parameters in PSO are discussed in [59]. Shi 

and Eberhart designed fuzzy methods to nonlinearly change the inertia weight [60]. In 

[61], inertia weight is set at zero, except at the time of re-initialization. In addition to 
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the time-varying inertia weight, a linearly decreasing maxv  is introduced in [62]. By 

analyzing the convergence behavior of the PSO, a PSO variant with a constriction 

factor was introduced by Clerc and Kennedy [63]. Constriction factor guarantees the 

convergence and improves the convergence velocity. 

Improving PSO’s performance by designing different types of topologies has 

been an active research direction. Kennedy [64][65] claimed that PSO with a small 

neighborhood might perform better on complex problems, while PSO with a large 

neighborhood would perform better on simple problems. Suganthan [66] applied a 

dynamically adjusted neighborhood where the neighborhood of a particle gradually 

increases until it includes all particles. In [67], Hu and Eberhart also used a dynamic 

neighborhood where closest particles in the performance space are selected to be its 

new neighborhood in each generation. Parsopoulos and Vrahatis combined the global 

version and local version together to construct a unified particle swarm optimizer 

(UPSO) [68][69]. Mendes and Kennedy introduced a fully informed PSO in [70]. 

Instead of using the pbest  and gbest  positions in the standard algorithm, all the 

neighbors of the particle are used to update the velocity. The influence of each 

particle to its neighbors is weighted based on its fitness value and the neighborhood 

size. Veeramachaneni et al. developed the fitness-distance-ratio-based PSO 

(FDR-PSO) with near neighbor interactions [71]. When updating each velocity 

dimension, the FDR-PSO algorithm selects one other particle nbest , which has a 

higher fitness value and is nearer to the particle being updated. 

Some researchers investigated hybridization by combining PSO with other 

search techniques to improve the performance of the PSO. Evolutionary operators 

such as selection, crossover, and mutation have been introduced to the PSO to keep 

the best particles [72], to increase the diversity of the population, and to improve the 

ability to escape local optimum [73]. Mutation operators are also used to mutate 
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parameters such as the inertia weight [74]. Relocating the particles when they are too 

close to each other [75] or using some collision-avoiding mechanisms [76] to prevent 

particles from moving too close to each other in order to maintain the diversity and to 

escape from local optima has also been used. In [73], the swarm is divided into 

subpopulations, and a breeding operator is used within a subpopulation or between the 

subpopulations to increase the diversity of the population. Negative entropy is used to 

discourage premature convergence in [77]. In [78], deflection, stretching, and 

repulsion techniques are used to find as many minima as possible by preventing 

particles from moving to a previously discovered minimal region. Recently, a 

cooperative particle swarm optimizer (CPSO-H) [79] was proposed. Although 

CPSO-H uses one-dimensional (1-D) swarms to search each dimension separately, the 

results of these searches are integrated by a global swarm to significantly improve the 

performance of the original PSO on multimodal problems. 

From our review of the state-of-the-art, we noticed two tendencies: 1) PSO 

variants are mostly added with further operators (e.g. mutation operator) and 

mechanisms (e.g. “fly-back”, multi-swarms, co-evolution), and 2) PSO variants are 

merged into one in order to improve its performance. Therefore, in this dissertation, 

we present three novel PSO-based learning algorithms for the neuro-fuzzy systems 

according to these two tendencies. 

 

 

1.3 Organization of Dissertation 

The overall objective of this dissertation is to develop the novel learning 

algorithms embedded with particle swarm optimizer for the neuro-fuzzy systems. The 

proposed learning algorithms are suitable for any neuro-fuzzy architecture. In this 
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research, we take the functional-link-based neuro-fuzzy network (FLNFN) model for 

example to demonstrate the performance of the proposed learning algorithms. 

Organization and objectives of each chapter in this dissertation are as follows. 

In Chapter 2, we describe the structure of FLNFN model. The FLNFN model is 

based on our laboratory’s previous research [32]. Each fuzzy rule corresponds to a 

sub-FLNN [80-82] comprising a functional expansion of input variables. The 

functional link neural network (FLNN) is a single layer neural structure capable of 

forming arbitrarily complex decision regions by generating nonlinear decision 

boundaries with nonlinear functional expansion. Therefore, the consequent part of the 

FLNFN model is a nonlinear combination of input variables, which differs from the 

other existing models [20][24][25]. 

In Chapter 3, we propose an efficient immune-based particle swarm optimization 

(IPSO) algorithm for neuro-fuzzy classifiers to solve the skin color detection problem. 

The proposed IPSO algorithm combines the immune algorithm (IA) and PSO to 

perform parameter learning. The IA uses the clonal selection principle, such that 

antibodies between others of high similar degree are affected, and these antibodies, 

after the process, will have higher quality, accelerating the search and increasing the 

global search capacity. On the other hand, we employed the advantages of PSO to 

improve the mutation mechanism of IA. Simulations have conducted to show the 

performance and applicability of the proposed method. 

In Chapter 4, we present an evolutionary neural fuzzy classifier, designed using 

the neural fuzzy system (NFS) and a new evolutionary learning algorithm. This new 

evolutionary learning algorithm is based on a hybrid of bacterial foraging 

optimization (BFO) and PSO. It is thus called bacterial foraging particle swarm 

optimization (BFPSO). The proposed BFPSO method performs local search through 

the chemotactic movement operation of bacterial foraging whereas the global search 
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over the entire search space is accomplished by a particle swarm operator. The 

proposed NFS with BFPSO learning algorithm (NFS-BFPSO) is adopted in several 

classification applications. Experimental results have demonstrated that the proposed 

NFS-BFPSO method can outperform other methods. 

In Chapter 5, we present an evolutionary NFS for nonlinear system control. A 

supervised learning algorithm, which consists of structure learning and parameter 

learning, is presented. The structure learning depends on the entropy measure to 

determine the number of fuzzy rules. The parameter learning, based on the PSO 

algorithm, can adjust the shape of the membership function and the corresponding 

weighting of the FLNN. The distance-based mutation operator, which strongly 

encourages a global search giving the particles more chance of converging to the 

global optimum, is introduced. The simulation results have shown the proposed 

method can improve the searching ability and is very suitable for the nonlinear system 

control applications. 

In Chapter 6, we compare the performance of the proposed learning algorithms 

using skin color detection problem. In addition, a brief discussion of the proposed 

learning methods is also made. 

Finally, Chapter 7 draws conclusions and future works. 
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Chapter 2 

Structure of the Functional-Link-Based 

Neuro-Fuzzy Network 
 

 

In the field of artificial intelligence, neural networks are essentially low-level 

computational structures and algorithms that offer good performance when they deal 

with sensory data. However, it is difficult to understand the meaning of each neuron 

and each weight in the networks. Generally, fuzzy systems are easy to appreciate 

because they use linguistic terms and IF-THEN rules. However, they lack the learning 

capacity to fine-tune fuzzy rules and membership functions. Therefore, neuro-fuzzy 

networks combine the benefits of neural networks and fuzzy systems to solve many 

engineering problems.  

In [83], the definition of hybrid neuro-fuzzy system is as follows: “A hybrid 

neuro-fuzzy system is a fuzzy system that uses a learning algorithm based on 

gradients or inspired by the neural networks theory (heuristic learning strategies) to 

determine its parameters (fuzzy sets and fuzzy rules) through the patterns processing 

(input and output)”. In other words, neuro-fuzzy networks bring the low-level 

learning and computational power of neural networks into fuzzy systems and give the 

high-level human-like thinking and reasoning of fuzzy systems to neural networks. 

Recently, neuro-fuzzy networks have become popular topics of research. The 

advantages of a combination of neural networks and fuzzy inference systems are 

obvious [8][34-36]. They not only have attracted considerable attention due to their 

diverse applications in fields such as pattern recognition, image processing, prediction, 

and control, but they can also handle imprecise information through linguistic 
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expressions. The most popular neuro-fuzzy architectures include: 1) Fuzzy Adaptive 

Learning Control Network (FALCON) [8][20][21][29][35]; 2) 

Adaptive-Network-Based Fuzzy Inference System (ANFIS) [24]; 3) 

Self-Constructing Neural Fuzzy Inference Network (SONFIN) [25]; and 4) 

Functional-Link-Based Neuro-Fuzzy Network (FLNFN) [32][33]. 

In this dissertation, the selected NFS model is based on our laboratory’s previous 

research [32][33], called FLNFN. Figure 2.1 presents the structure of the FLNFN 

model, which combines a neuro-fuzzy network with a FLNN [80-82]. The FLNN 

[81][84] is a single layer neural structure capable of forming arbitrarily complex 

decision regions by generating nonlinear decision boundaries with nonlinear 

functional expansion. Moreover, the FLNN was conveniently used for function 

approximation and pattern classification with faster convergence rate and less 

computational loading than a multilayer neural network. In the selected FLNFN 

model, each fuzzy rule that corresponds to a FLNN consists of a functional expansion 

of input variables, which differs from the other existing models [20][24][25]. 

The FLNFN model realizes a fuzzy IF-THEN rule in the following form. 

Rule j : 

IF 1 1ˆ  is jx A  and 2 2ˆ  is jx A  … and ˆ is i ijx A  … and ˆ is N Njx A  

THEN 1 1 2 2
1

ˆ ...
M

j kj k j j Mj M
k

y w w w w   


      
(2.1)

where ix̂  and jŷ  are the input and local output variables, respectively; ijA  is the 

linguistic term of the precondition part with a Gaussian membership function; N  is 

the number of input variables; kjw  is the link weight of the local output; k  is the 

basis trigonometric function of input variables; M  is the number of basis functions, 

and Rule j  is the thj  fuzzy rule. 
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Figure 2.1: Structure of the selected neuro-fuzzy system model. 

 

The operation functions of the nodes in each layer of the FLNFN model are now 

described. In the following description, ( )lu  denotes the output of a node in the thl  

layer. 

Layer 1 (Input node): No computation is performed in this layer. Each node in 

this layer is an input node, which corresponds to one input variable, and only 

transmits input values to the next layer directly: 

ii xu ˆ)1(   (2.2)

Layer 2 (Membership function node): Nodes in this layer correspond to a single 
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linguistic label of input variables in layer 1. Therefore, the calculated membership 

value specifies the degree to which an input value belongs to a fuzzy set in layer 2. 

The implemented Gaussian membership function in layer 2 is 

(1) 2
(2)

2

[ ]
exp i ij

ij
ij

u m
u


 

   
 

 (2.3)

where ijm  and ij  are the mean and standard deviation of the Gaussian 

membership function, respectively, of the thj  term of the thi  input variable ix̂ . 

Layer 3 (Rule Node): Nodes in this layer represent the preconditioned part of a 

fuzzy logic rule. They receive one-dimensional membership degrees of the associated 

rule from the nodes of a set in layer 2. Here, the product operator described above is 

adopted to perform the IF-condition matching of the fuzzy rules. As a result, the 

output function of each inference node is 


i

ijj uu )2()3(  (2.4)

where the 
i

iju )2(  of a rule node represents the firing strength of its corresponding 

rule. 

Layer 4 (Consequent Node): Nodes in this layer are called consequent nodes. 

The input to a node in layer 4 is the output from layer 3, and the other inputs are 

nonlinear combinations of input variables from a FLNN, as shown in Figure 2.1. For 

such a node, 





M

k
kkjjj wuu

1

)3()4(   (2.5)

where kjw  is the corresponding link weight of the FLNN and k  is the functional 

expansion of input variables. Considering the computational efficiency, the functional 

expansion uses a trigonometric polynomial basis function, given by 
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   1 2 3 4 5 6 1 1 1 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,  ,  ,  , sin ( ), cos ( ), , sin ( ), cos ( )x x x x x x           for the 

two-dimensional input variables  1 2ˆ ˆ, x x . Therefore, M  is the number of basis 

functions, 3M N  , where N  is the number of input variables. Moreover, the 

output nodes of FLNN depend on the number of fuzzy rules of the FLNFN model. 

Layer 5 (Output Node): Each node in this layer corresponds to a single output 

variable. The node integrates all of the actions recommended by layers 3 and 4 and 

acts as a center of area (COA) defuzzifier with 
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where R  is the number of fuzzy rules, and y  is the output of the FLNFN model. 

As described above, the number of tuning parameters for the FLNFN model is 

known to be (2 3 )P N R   , where N , R , and P  denote the number of inputs, 

existing rules, and outputs, respectively. 
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Chapter 3 

Immune Algorithm Embedded with 

Particle Swarm Optimizer for 

Neuro-Fuzzy Classifier and Its 

Applications 
 

 

Skin color detection is the process of finding skin-colored pixels and regions in 

an image or a video. This process is typically used as a preprocessing step to find 

regions that potentially have human faces and limbs in images. Several computer 

vision approaches have been developed for skin color detection. A skin color detector 

typically transforms a given pixel into an appropriate color space and then use a skin 

color classifier to label the pixel whether it is a skin or a non-skin pixel. A skin color 

classifier defines a decision boundary of the skin color class in the color space based 

on a training database of skin-colored pixels. 

This chapter presents the efficient immune-based particle swarm optimization 

(IPSO) for neuro-fuzzy classifiers to solve the skin color detection problem. The 

proposed IPSO algorithm combines the immune algorithm (IA) and particle swarm 

optimization (PSO) to perform parameter learning. The IA uses the clonal selection 

principle to affect antibodies between others of high similar degree, and these 

antibodies, after the process, will be of higher quality, accelerating the search, and 

increasing the global search capacity. The PSO algorithm, proposed by Kennedy and 

Eberhart [41-43], has proved to be very effective for solving global optimization. It is 

not only a recently invented high-performance optimizer that is easy to understand 
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and implement, but it also requires little computational bookkeeping and generally 

only a few lines of code [85]. In order to avoid trapping in a local optimal solution 

and to ensure the search capability of a near global optimal solution, mutation plays 

an important role in IPSO. Therefore, we employ the advantages of PSO to improve 

mutation mechanism of IA. The proposed method can improve the searching ability 

and greatly increase the converging speed that we can observe in the simulations. 

 
 

3.1 Basic Concepts of the Artificial Immune System 

The biological immune system is successful at protecting living bodies from the 

invasion of various foreign substances, such as viruses, bacteria, and other parasites 

(called antigens), and eliminating debris and malfunctioning cells. Over the last few 

years, a growing number of computer scientists have carefully studied the success of 

this competent natural mechanism and proposed computer immune models, named 

artificial immune systems (AIS), for solving various problems [86-94]. AIS aim at 

using ideas gleaned from immunology in order to develop adaptive systems capable 

of performing a wide range of tasks in various areas of research. 

In this research, we review the clonal selection concept, together with the affinity 

maturation process, and demonstrate that these biological principles can lead to the 

development of powerful computational tools. The algorithm to be presented focuses 

on a systemic view of the immune system and does not take into account cell-cell 

interactions. It is not our concern to model exactly any phenomenon, but to show that 

some basic immune principles can help us not only to better understand the immune 

system itself, but also to solve complex engineering tasks. 
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3.2 Clonal Selection Theory 

Any molecule that can be recognized by the adaptive immune system is known 

as an antigen (Ag). When an animal is exposed to an Ag, some subpopulation of its 

bone-marrow-derived cells (B lymphocytes) responds by producing antibodies (Ab’s). 

Ab’s are molecules attached primarily to the surface of B cells whose aim is to 

recognize and bind to Ag’s. Each B cell secretes a single type of antibody (Ab), which 

is relatively specific for the Ag. By binding to these Ab’s (cell receptors) and with a 

second signal from accessory cells, such as the T-helper cell, the Ag stimulates the B 

cell to proliferate (divide) and mature into terminal (non-dividing) Ab secreting cells, 

called plasma cells. The process of cell division (mitosis) generates a clone, i.e., a cell 

or set of cells that are the progenies of a single cell. While plasma cells are the most 

active Ab secretors, large B lymphocytes, which divide rapidly, also secrete Ab’s, 

albeit at a lower rate. On the other hand, T cells play a central role in the regulation of 

the B cell response and are preeminent in cell mediated immune responses, but will 

not be explicitly accounted for the development of our model. 

Lymphocytes, in addition to proliferating and/or differentiating into plasma cells, 

can differentiate into long-lived B memory cells. Memory cells circulate through the 

blood, lymph and tissues, and when exposed to a second antigenic stimulus 

commence to differentiate into large lymphocytes capable of producing high affinity 

antibodies, pre-selected for the specific antigen that had stimulated the primary 

response [95]. In this study, we treat the long-lived B memory cells as the better 

antibodies by elitism selection. Figure 3.1 depicts the clonal selection principle [95]. 

The main features of the clonal selection theory [96][97] that will be explored in 

this study are: 

• Proliferation and differentiation on stimulation of cells with Ag’s; 
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• Generation of new random genetic changes, subsequently expressed as 

diverse Ab patterns, by a form of accelerated somatic mutation (a process 

called affinity maturation); 

• Elimination of newly differentiated lymphocytes carrying low affinity 

antigenic receptors. 

 

 
Figure 3.1: The clonal selection principle. 

 
 

3.3 The Efficient Immune-Based PSO Learning Algorithm 

This section describes the efficient immune-based PSO (IPSO) learning 

algorithm for use in the neuro-fuzzy classifier. Analogous to the biological immune 

system, the proposed algorithm has the capability of seeking feasible solutions while 

maintaining diversity. The proposed IPSO combines the immune algorithm (IA) and 

particle swarm optimization (PSO) to perform parameter learning. The IA uses the 
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clonal selection principle to accelerate the search and increase global search capacity. 

The PSO algorithm has proved to be very effective for solving global optimization. It 

is not only a recently invented high-performance optimizer that is very easy to 

understand and implement, but it also requires little computational bookkeeping and 

generally only a few lines of code. In order to avoid trapping in a local optimal 

solution and to ensure the search capability of a near global optimal solution, mutation 

plays an important role in IPSO. Moreover, the PSO adopted in evolution algorithm 

yields high diversity to increase the global search capacity, as well as the mutation 

scheme. Therefore, we employed the advantages of PSO to improve the mutation 

mechanism of IA. A detailed IPSO of the neuro-fuzzy classifier is presented in Figure 

3.2. The whole learning process is described step-by-step below. 

 

3.3.1 Code fuzzy rule into antibody 

The coding step is concerned with the membership functions and the 

corresponding parameters of the consequent part of a fuzzy rule that represent Ab’s 

suitable for IPSO. This step codes a rule of a neuro-fuzzy classifier into an Ab. Figure 

3.3 shows an example of a neuro-fuzzy classifier coded into an Ab (i.e. an Ab 

represents a rule set), where i  and j  represent the thi  dimension and the thj  rule, 

respectively. In this research, a Gaussian membership function is used with variables 

representing the mean and standard deviation of the membership function. Each fuzzy 

rule has the form in Figure 2.1, where ijm  and ij  represent a Gaussian 

membership function with mean and standard deviation of the thi  dimension and thj  

rule node and ijw  represents the corresponding parameters of consequent part. 
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Figure 3.2: Flowchart of the proposed IPSO algorithm. 
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Figure 3.3: Coding a neuro-fuzzy classifier into an antibody in the IPSO method. 

 
3.3.2 Determine the initial parameters by self-clustering algorithm 

Before the IPSO method is designed, the initial Ab’s in the populations are 

generated according to the initial parameters of the antecedent part and the consequent 

part. In this study, the initial parameters of a neuro-fuzzy classifier were computed by 

the self-clustering algorithm (SCA) method [52][98][99]. That is, we used SCA 

method to determine the initial mean and standard deviation of the antecedent part. 

On the other hand, the initial link weight of the consequent part is a random number 

in the range of 0 to 1. 

SCA is a distance-based connectionist clustering algorithm. In any cluster, the 

maximum distance between an example point and the cluster center is less than a 

threshold value. This clustering algorithm sets clustering parameters and affects the 

number of clusters to be estimated. In the clustering process, the data examples come 

from a data stream. The clustering process starts with an empty set of clusters. The 

clusters will be updated and changed depending on the position of the current 

example in the input space. 

 

3.3.3 Produce initial population 

In the immune system, the Ab’s are produced in order to cope with the Ag’s. In 

other words, the Ag’s are recognized by a few of high affinity Ab’s (i.e. the Ag’s are 

optimal solutions). The first initial Ab utilizing a real variable string is generated by 
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SCA, and the other Ab’s of population are generated based on the first initial Ab by 

adding some random value. 

 

3.3.4 Calculate affinity values 

For the large number of various Ag’s, the immune system has to recognize them 

for their posterior influence. In biological immune system, affinity refers to the 

binding strength between a single antigenic determinants and an individual 

antibody-combining site. The process of recognizing Ag’s is to search for Ab’s with 

the maximum affinity with Ag’s. Moreover, every Ab in the population is applied to 

problem solving, and the affinity value is a performance measure of an Ab which is 

obtained according to the error function. In this study, the affinity value is designed 

according to the follow formulation: 

 2

1

1
11

DN
d

k k
kD

Affinity value

y y
N 



 
 

(3.1)

where ky  represents the thk  model output, d
ky  represents the desired output, and 

DN  represents the number of the training data. In the problems, the higher affinity 

refers to the better Ab. 

 

3.3.5 Production of sub-antibodies 

In this step, we will generate several neighborhoods to maintain solution 

variation. This strategy can prevent the search process from becoming premature. We 

can generate several clones for each Ab on feasible space by Eqs. (3.2), (3.3) and (3.4). 

Each Ab regarded as parent while the clones regarded as children (sub-antibodies). In 

other words, children regarded as several neighborhoods of near parent. 

mean: _[ ] [ ]i c iclones children antibody parent    (3.2)
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deviation: _[ ] [ ]i c iclones children antibody parent    (3.3)

weight : _[ ] [ ]i c iclones children antibody parent    (3.4)

where iparent  represents the thi  Ab from the Ab population; _i cchildren  

represents clones number c  from the thi  Ab;   and   are parameters that 

control the distance between parent. In this scheme,   and   are important 

parameters. The large values lead to the speed of convergence slowly and the search 

of optimal solution difficulty, whereas the small values lead to fall in a local optimal 

solution easily. Therefore, the selection of the   and   will critically affect the 

learning results, and their values will be based on practical experimentation or on 

trial-and-error tests. 

 

3.3.6 Mutation of sub-antibodies based on PSO 

In order to avoid trapping in a local optimal solution and to ensure the search 

capability of near global optimal solution, mutation plays an important role in IPSO. 

Moreover, the PSO adopted in evolution algorithm yields high diversity to increase 

the global search capacity, as well as the mutation step. Hence, we employed the 

advantages of PSO to improve mutation mechanism. Through the mutation step, only 

one best child can survive to replace its parent and enter the next generation. 

PSO is a recently invented high-performance optimizer that is very easy to 

understand and implement. Each particle has a velocity vector iv  and a position 

vector ix  to represent a possible solution. In this research, the velocity for each 

particle is updated by Eq. (1.3). The parameter (0,  1]w  is the inertia of the particle, 

and controls the exploratory properties of the algorithm. The constants 1c  and 2c  

are known as the “cognition” and “social” factors, respectively. 1r  and 2r  are 

uniformly distributed random numbers in [0,  1]. The term iv  is limited to the range 
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maxv . If the velocity violates this limit, it will be set at its proper limit. Changing 

velocity enables every particle to search around its individual best position and global 

best position. Based on the updated velocities, each particle changes its position 

according to Eq. (1.2). 

When every particle is updated, the affinity value of each particle is calculated 

again. If the affinity value of the new particle is higher than those of local best, then 

the local best will be replaced with the new particle. Moreover, in the mutation step, 

each Ab (or particle) in the population must be mutated only one time by PSO in each 

generation. The mutation step flowchart is presented in Figure 3.4. 

 

{

{
{

{
}
}

}
}

 

Figure 3.4: The flowchart of the mutation step. 

 

3.3.7 Promotion and suppression of antibodies 

In order to affect Ag’s and keep diversity to a certain degree, we use information 

entropy theory to measure the diversity of Ab’s. If the affinity between two Ab’s is 

greater than the suppression threshold affTh , these two Ab’s are similar, and the Ab of 

lower affinity value is reduced a small amount of value  . Figure 3.5 shows the 
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immune algorithm composed of N  Ab’s having L  genes. 
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Figure 3.5: The coding of antibody population. 

 

From information entropy theory, we get 





N

i
ilill PPNIE

1

log)(  (3.5)

where ilP  is the probability that the thi  allele comes out at the thl  gene. The 

diversity of the genes is calculated using Eq. (3.5). The average entropy value ( )IE N  

of diversity can be also computed as follows: 





L

l
l NIE

L
NIE

1

)(1)(  (3.6)

where L  is the size of the gene in an Ab. Equation (3.6) yields the diversity of the 

Ab pool in terms of the entropy. There are two kinds of affinities in IPSO. One 

explains the relationship between an Ab and an Ag using Eq. (3.1). The other accounts 

for the degree of association between the thj  Ab and the thk  Ab and measures how 

similar these two Ab’s are. It can be calculated by using 

)2(1
1_
IE

AbAffinity jk 
  (3.7)
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where _ jkAffinity Ab  is the affinity between two Ab’s j  and k , and (2)IE  is the 

entropy of only the Ab’s j  and k . This affinity is constrained from zero to one. 

When (2)IE  is zero, the genes of the thj  Ab and the thk  Ab are the same. 

 

3.3.8 Elitism selection 

When a new generation is created, the risk of losing the best Ab is always 

existent. In this study, we adopt elitism selection to overcome the above-mentioned 

problem. Therefore, the Ab’s are ranked in ascending order of their affinity values. 

The best Ab is kept as the parent for the next generation. Moreover, the best Ab and 

Ab’s with high antigenic affinity are transformed into long-lived B memory cells. 

Elitism selection improves the efficient of IPSO considerably, as it prevents losing the 

best result. 

 

 

3.4 Skin Color Detection 

Detecting skin-colored pixels, although seems a straightforward easy task, has 

proven quite challenging for many reasons. The appearance of skin in an image 

depends on the illumination conditions where the image was captured. Therefore, an 

important challenge in skin detection is to represent the color in a way that is invariant 

or at least insensitive to changes in illumination. The choice of the color space affects 

greatly the performance of any skin detector and its sensitivity to change in 

illumination conditions. Another challenge comes from the fact that many objects in 

the real world might have skin-tone colors. This causes any skin detector to have 

much false detection in the background if the environment is not controlled. 

Figure 3.6 shows a flowchart of a skin color detection system. Skin detection 
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process has two phases: a training phase and a detection phase. Training a skin 

detector involves three basic steps: 

1. Collecting a database of skin patches from different images. Such a 

database typically contains skin-colored patches from a variety of people 

under different illumination conditions. 

2. Choosing a suitable color space. 

3. Learning the parameters of a skin classifier. 

Given a trained skin detector, identifying skin pixels in a given image or video 

frame involves: 

1. Converting the image into the same color space that was used in the training 

phase. 

2. Classifying each pixel using the skin classifier to either a skin or non-skin. 

3. Typically post processing is needed using morphology to impose spatial 

homogeneity on the detected regions. 

 

 
Figure 3.6: Flowchart of the skin color detection system. 
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In this research, we used the California Institute of Technology (CIT) facial 

database (on http://www.vision.caltech.edu/Image_Datasets/faces/.) The database has 

450 color images, the size of each being 320×240 pixels, and contains 27 different 

people and a variety of lighting, backgrounds, and facial expressions. 

Three input dimensions (Y, Cb and Cr) were used in this experiment. We chose 

6000 training data and 6000 testing data. We used the CIT database to produce both 

the training data and the testing data. We chose 3000 skin and 3000 non-skin pixels as 

the training data in the color images. Also, we chose other 3000 skin and 3000 

non-skin pixels as the testing set. We set four rules constituting a neuro-fuzzy 

classifier. 

The number of Ab’s for a swarm was set to 100. With the same initial condition, 

the accuracy rate with different generations for 50 runs is shown in Figure 3.7 and 

tabulated in Table 3.1. It seems a good choice to terminate the training phase after 

2000 generations process. 

 

 

Figure 3.7: The accuracy rate with different generations. 
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Table 3.1: The accuracy rate with different generations (%) 

Generations  
200 1000 2000 3000 4000 

Best accuracy rate (training) 95.57% 96.02% 96.58% 96.52% 96.53%
Worst accuracy rate (training) 78.72% 82.6% 85.9% 85.52% 85.93%
Average accuracy rate (training) 89.08% 92.33% 93.32% 93.23% 93.27%

 

 

Figure 3.8: The learning curves of the three methods using the CIT database. 

 

In this example, the performance of the IPSO method is compared with the IA 

method [94], and the PSO method [41]. First, the learning curves of IA, PSO and 

IPSO methods are shown in Figure 3.8. In Figure 3.8, we find that the performance of 

the proposed IPSO method is superior to the other methods. Furthermore, the 

comparison items include the training and testing accuracy rates are tabulated in Table 

3.2. 
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Table 3.2: Performance comparison with various existing models from the CIT 
database (Training data: 6000; Generations: 2000) 

Method IPSO IA [94] PSO [41] 
Best 96.58% 93.5% 83.72% 
Worst 85.9% 82.53% 73.25% Accuracy rate (Training data) 
Average 93.32% 88.1% 79.05% 

Best 95.43% 87.4% 79.77% 
Worst 82.1% 76.15% 67.3% Accuracy rate (Testing data) 
Average 90.18% 82.63% 74.32% 

 

The CIT facial database consists of complex backgrounds and diverse lighting. 

Hence, from the comparison data listed in Table 3.2, the average of the test accuracy 

rate is 74.32% for PSO, 82.63% for IA and 90.18% for the proposed IPSO. The 

proposed IPSO method still maintains a superior test accuracy rate. To demonstrate 

the skin color detection result, the color images from the CIT database are shown in 

Figure 3.9. A well-trained classifier can generate binary outputs (1/0 for skin/non-skin) 

to detect a facial region. Figure 3.10 shows that our approach accurately determines a 

facial region. 

 

 

3.5 Concluding Remarks 

In this chapter, the efficient immune-based particle swarm optimization (IPSO) is 

proposed to improve the searching ability and the converge speed. We proposed the 

IPSO for a neuro-fuzzy classifier to solve the skin color detection problem. The 

advantages of the proposed IPSO method are summarized as follows: 1) We 

employed the advantages of PSO to improve the mutation mechanism; 2) The 

experimental results show that our method is more efficient than IA and PSO in 

accuracy rate and convergence speed. 
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Figure 3.9: Original color images from CIT facial database. 
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Figure 3.10: Results of skin color detection with 3 dimension input (Y, Cb and Cr). 
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Chapter 4 

An Evolutionary Neural Fuzzy Classifier 

Using Bacterial Foraging Oriented by 

Particle Swarm Optimization Strategy 
 

Classification is one of the most important tasks for different application such as 

text categorization, tone recognition, image classification, micro-array gene 

expression, proteins structure predictions, data classification etc. There are many 

methods to construct classifiers, such as statistical models [100], neural networks 

[37][39][101], and fuzzy systems [6][16][17][102]. Most of the existing supervised 

classification methods are based on traditional statistics, which can provide ideal 

results when sample size is tending to infinity. However, only finite samples can be 

acquired in practice. 

In this chapter, an evolutionary neural fuzzy classifier, using bacterial foraging 

oriented by particle swarm optimization strategy (BFPSO), is applied on different data 

sets which have two or multi class. The proposed BFPSO is a hybrid method which 

combines bacterial foraging optimization (BFO) and particle swarm optimization 

(PSO). The proposed algorithm performs local search through the chemotactic 

movement operation of BFO whereas the global search over the entire search space is 

accomplished by a PSO operator. In this way it balances between exploration and 

exploitation enjoying best of both the worlds. 
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4.1 Basic Concepts of Bacterial Foraging Optimization 

Passino [103] proposed the BFO in 2002. The idea of the BFO is based on the 

fact that natural selection tends to eliminate animals with poor “foraging strategies” 

and favor the propagation of genes of those animals that have successful foraging 

strategies. After many generations, poor foraging strategies are either eliminated or 

shaped into good ones. Logically, such evolutionary principles have led scientists in 

the field of “foraging theory” to hypothesize that it is appropriate to model the activity 

of foraging as an optimization process. Take the E. coli bacteria (the ones that are 

living in our intestines) foraging strategy for instance, their foraging strategy is 

governed by four processes, namely, chemotaxis, swarming, reproduction, and 

elimination-and-dispersal. 

 

4.1.1 Chemotaxis 

Chemotaxis is achieved through swimming and tumbling. Depending upon the 

rotation of the flagella in each bacterium, it decides whether it should move in a 

predefined direction (swimming) or in an altogether different direction (tumbling), 

over the entire lifetime of the bacterium. 

Let S  denote the bacterial population size and cN  be the length of the lifetime 

of the bacteria as measured by the number of chemotactic steps they take during their 

life. Let ( ) 0,  1, 2, ,C i i S    denote a basic chemotactic step size that we will use 

to define the lengths of steps during runs. To represent a tumble, a unit-length random 

direction, say  j , is generated; this will be used to define the direction of 

movement after a tumble. In particular, we let 

       1, , , ,i ij k l j k l C i j      (4.1)

where  , ,i j k l  represents the location of the thi  bacterium at the thj  
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chemotactic step, thk  reproduction step, and thl  elimination-dispersal event.  C i  

is the size of the step taken in the random direction specified by the tumble. 

Then, the movement of the thi  bacterium at thj  chemotactic step, can be 

represented as 

       
   

1, , , ,i i

T

j
j k l j k l C i

j j
 


   

 
 (4.2)

where  j  is the direction vector of the thj  chemotactic step. 

With the activity of run or tumble taken at each step of the chemotaxis process, a 

step fitness, denoted as  , , ,J i j k l , will be evaluated. If at  1, ,i j k l   the cost 

 , 1, ,J i j k l  is better (lower) than at  , ,i j k l , then another step of size  C i  in 

this same direction will be taken, and again, if that step resulted in a position with a 

better cost value than at the previous step, another step is taken. This swim is 

continued as long as it continues to reduce the cost, but only up to a maximum 

number of steps, sN . This represents that the cell will tend to keep moving if it is 

headed in the direction of increasingly favorable environments. 

 

4.1.2 Swarming 

It is always desired for the bacterium that has searched out the optimum path of 

food should try to attract other bacteria, so that they reach the desired place more 

rapidly. Swarming makes the bacteria congregate into groups, and hence move as 

concentric patterns of groups with high bacterial density. Mathematically, swarming 

can be represented as 
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 (4.3)

where  , ( , , )ccJ P j k l  is the value of the cost function to be added to the actual cost 

function to minimize a time-varying cost function; S  is the total number of bacteria; 

p  is the number of parameters to be optimized that are present in each bacterium; 

and attractd , attract , repellanth  and repellant  are different coefficients that are to be 

judiciously chosen. 

 

4.1.3 Reproduction 

After cN  chemotactic steps, a reproduction step is taken. Let reN  be the 

number of reproduction steps to be taken. The health cost of each bacterium is 

calculated as the sum of the step fitness during its life, that is,  
1

1

, , ,
cN

i
health

j

J J i j k l




  , 

where cN  is the maximum step in a chemotaxis process. For convenience, we 

assume that 2 rS S   is a positive even integer. The population is sorted in order of 

ascending accumulated cost (higher accumulated cost represents that a bacterium did 

not get as many nutrients during its lifetime of foraging and hence is not as “healthy” 

and thus unlikely to reproduce); then the rS  least healthy bacteria die and the other 

rS  healthiest bacteria each split into two bacteria, which are placed at the same 

location. Thus, the population of bacteria keeps constant which is very convenient in 

coding the algorithm. 

 
4.1.4 Elimination-and-Dispersal 

Let edN  be the number of elimination-dispersal events. The chemotaxis 
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provides a basis for local search, and the reproduction process speeds up the 

convergence which has been simulated by the classical BFO. While to a large extent, 

only chemotaxis and reproduction are not enough for global optima searching. Since 

bacteria may get stuck around the initial positions or local optima, it is possible for the 

diversity of BFO to change either gradually or suddenly to eliminate the accidents of 

being trapped into the local optima. In BFO, the dispersion event happens after a 

certain number of reproduction processes. Then some bacteria are chosen, according 

to a preset probability edp , to be killed and moved to another position within the 

environment. 

 

 

4.2 Learning Algorithms for the NFS Model 

BFO is based on the foraging behavior of Escherichia Coli (E. Coli) bacteria 

present in the human intestine and already been in use to many engineering problems, 

such as optimal control [104][105], and machine learning [106]. However, bacteria 

foraging strategies with fixed step size suffers from two main problems. If the step 

size is very large, then the precision becomes low, although the bacterium quickly 

reaches the vicinity of the optimum point. It moves around the maximum for the 

remaining chemotactic steps. If the step size is very small, then it takes many 

chemotactic steps to reach the optimum point. The rate of convergence thus decreases 

[107]. 

In PSO, a particle represents a potential solution which is a point in the search 

space. Each particle has a fitness value and a velocity to adjust its flying direction 

according to the best experiences of the swarm to search for the global optimum in the 

solution space. In Eq. (1.3), the inertia weight is used to balance the global and local 
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search abilities. A large inertia weight is more appropriate for global search, and a 

small inertia weight facilitates local search. 

The proposed BFPSO algorithm, a new algorithm that combines BFO with PSO 

algorithm, is endowed with high convergence speed and commendable accuracy. This 

can be otherwise stated as the PSO performing a global search and providing a near 

optimal solution very quickly which is followed by a local search by BFO which 

fine-tunes the solution and gives an optimum solution of high accuracy. PSO has an 

inherent disability of trapping in the local optima but high convergence speed whereas 

BFO has the drawback of having a very poor convergence speed but the ability to not 

trap in the local optima. Figure 4.1 is the flowchart of proposed BFPSO algorithm. 

The brief pseudo code of the proposed BFPSO method has been provided below: 

 

Step 1: Initialization 

p  : Dimension of the search space. 

S  : The number of bacteria in the population. 

cN  : The number of chemotactic steps. 

sN  : The number of swimming steps. 

reN  : The number of reproduction steps. 

edN  : The number of elimination-dispersal events. 

edp  : The probability that each bacterium will be eliminated-dispersed. 

C  : The size of the step taken in the random direction specified by the tumble. 

1c  : The cognitive learning rates. 

2c  : The social learning rates. 

w  : The coefficient of the inertia term to control exploratory properties. 

Step 2: Elimination-dispersal loop: 1l l  . 

Step 3: Reproduction loop: 1k k  . 



- 43 - 

Step 4: Chemotaxis loop: 1j j  . 
[Step 4.1] For 1,2,...,i S , take a chemotactic step for bacterium i  as follows. 
[Step 4.2] Evaluate the cost function ( , , , )J i j k l , then let ( , , , )lastJ J i j k l . 
[Step 4.3] Tumble: let 

        
    

1 1

2 2

1 , , , ,

, , , ,

i i pbest i

gbest i

j w j c r j k l j k l

c r j k l j k l

   

 

      

   
 

[Step 4.4] Move: let      1, , , , ( )i i ij k l j k l C i j       

Compute fitness function: ( , 1, , )J i j k l , and then let 

    ( , 1, , ) ( , 1, , ) 1, , , 1, ,i
ccJ i j k l J i j k l J j k l P j k l       

[Step 4.5] Swim: Let 0m  ; 
while ( sm N ) 
• let 1m m  ; 

if ( , 1, , ) lastJ i j k l J  , let ( , 1, , )lastJ J i j k l   and let 

       1, , 1, ,i i ij k l j k l C i j      ; 

Compute fitness function: ( , 1, , )J i j k l . Let 

    ( , 1, , ) ( , 1, , ) 1, , , 1, ,i
ccJ i j k l J i j k l J j k l P j k l       

• else let ;sm N  
[Step 4.6] Go to next bacterium. 

Step 5: If ( cj N ), go to Step 4. Since the life of the bacteria is not over. 

Step 6: Reproduction: Compute the health of the bacterium i : 

 
1

1

, , ,
cN

i
health

j

J J i j k l




   

Sort bacteria and chemotactic parameters ( )C i  in order of ascending cost 

healthJ  (higher cost means lower health). The rS  bacteria with the highest 

healthJ  values die and the other rS  bacteria with the best values split (and the 

copies that are made are placed at the same location as their parent). 

Step 7: If ( rek N ), go to Step 3. 

Step 8: Elimination-dispersal: Eliminate and disperse bacteria with probability edp . 

Step 9: If ( edl N ), go to Step 2; otherwise end and output the results. 
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Figure 4.1: Flowchart of proposed BFPSO method. 

 

 

4.3 Illustrative Examples 

In this section, we evaluate the classification performance of the proposed 

NFS-BFPSO method using two better-known benchmark data sets and one skin color 
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detection problem. The first example uses the iris data and the second example uses 

the Wisconsin breast cancer data. The two benchmark data sets are available from the 

University of California, Irvine, via an anonymous ftp address 

ftp://ftp.ics.uci.edu/pub/machine-learning-databases. In the following simulations, the 

parameters and number of training epochs were based on the desired accuracy. In 

short, the trained NFS with BFPSO was stopped once its high learning efficiency was 

demonstrated. 

 

Example 1: Iris Data Classification 

The Fisher-Anderson iris data consists of four input measurements, sepal length 

(sl), sepal width (sw), petal length (pl), and petal width (pw), on 150 specimens of the 

iris plant. Three species of iris were involved, Iris Sestosa, Iris Versiolor and Iris 

Virginica, and each species contains 50 instances. The measurements are shown in 

Figure 4.2. 

In the iris data experiments, 25 instances with four features from each species 

were randomly selected as the training set (i.e., a total of 75 training patterns were 

used as the training data set) and the remaining instances were used as the testing set. 

Once the NFS was trained, all 150 test patterns of the iris data were presented to the 

trained NFS, and the re-substitution error was computed. In this example, three fuzzy 

rules are adopted. After 4000 generations, the final fitness value was 0.9278. 

Figure 4.3 (a)-(f) show the distribution of the training pattern and the final 

assignment of the fuzzy rules (i.e., distribution of input membership functions). Since 

the region covered by a Gaussian membership function is unbounded, in Figure 4.3 

(a)-(f), the boundary of each ellipse represent a rule with a firing strength of 0.5. We 

compared the testing accuracy of our proposed method with that of other methods – 

the neural fuzzy system with bacterial foraging optimization (NFS-BFO) and the 
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neural fuzzy system with particle swarm optimization (NFS-PSO). The experiments 

calculated the classification accuracy and the values of the average produced on the 

testing set using the NFS-BFO method, the NFS-PSO method, and the proposed 

NFS-BFPSO method. 
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Figure 4.2: Iris data: iris sestosa (), iris versiolor (), and iris virginica (). 

 

During the learning phase, the learning curves from the proposed NFS-BFPSO 

method, the NFS-BFO method, and the NFS-PSO method are shown in Figure 4.4. 

Table 4.1 shows that the experiments with the NFS-BFPSO method result in high 

accuracy, with an accuracy percentage ranging from 96% to 98.67%. The means of 

re-substitution accuracy was 97.6%. The average classification accuracy of the 
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NFS-BFPSO method was better than that of other methods. Table 4.2 shows the 

comparison of the classification results of the NFS-BFPSO method with other 

methods [28][102][108-110] on the iris data. The results show that the proposed 

NFS-BFPSO method is able to keep similar average substitution accuracy. 

 

(a) For the Sepal Length and Sepal Width dimensions. 

 

(b) For the Petal Length and Petal Width dimensions. 
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(c) For the Sepal Length and Petal Length dimensions. 

 

(d) For the Sepal Width and Petal Width dimensions. 
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(e) For the Sepal Width and Petal Length dimensions. 

 

(f) For the Sepal Length and Petal Width dimensions. 

 

Figure 4.3: The distribution of input training patterns and final assignment of three 
rules. 
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Figure 4.4: Learning curves of the NFS-BFPSO method, the NFS-BFO method, and 
the NFS-PSO method. 

 

Table 4.1: Classification accuracy using various methods for the iris data. 

Model 
Experiment # 

NFS-BFO NFS-PSO NFS-BFPSO

1 96 98.67 98.67 
2 92 93.33 96 
3 97.33 94.67 98.67 
4 97.33 98.67 97.33 
5 94.67 94.67 97.33 

Average (%) 95.47 96 97.6 
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Table 4.2: Average re-substitution accuracy comparison of various models for the iris 
data classification problem. 

Models Average re-substitution accuracy (%) 
FEBFC [102] 96.91 
SANFIS [28] 97.33 
FMMC [108] 97.3 

FUNLVQ+GFENCE [109] 96.3 
Wu-and-Chen’s [110] 96.21 

NFS-BFPSO 97.6 

 

Example 2: Wisconsin Breast Cancer Diagnostic Data Classification 

The Wisconsin breast cancer diagnostic data set contains 699 patterns distributed 

into two output classes, “benign” and “malignant.” Each pattern consists of nine input 

features: clump thickness, uniformity of cell size, uniformity of cell shape, marginal 

adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and 

mitoses. 458 patterns are in the benign class and the other 241 patterns are in the 

malignant class. Since there were 16 patterns containing missing values, we used 683 

patterns to evaluate the performance of the proposed NFS-BFPSO method. To 

compare the performance with other models, we used half of the 683 patterns as the 

training set and the remaining patterns as the testing set. 

Experimental conditions were the same as the previous experiment. The training 

patterns were randomly chosen, and the remaining patterns were used for testing. The 

experiments calculated the classification accuracy and the values of the average 

produced on the testing set by the NFS-BFO method, the NFS-PSO method, and the 

proposed NFS-BFPSO method. 

During the supervised learning phase, 4000 epochs of training were performed. 

Figure 4.5 shows the membership functions for each input feature. The learning 

curves from the proposed NFS-BFPSO method, the NFS-BFO method, and the 
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NFS-PSO method are shown in Figure 4.6. The performance of the NFS-BFPSO 

method is better than the performance of all other models. 

Table 4.3 shows that the experiments with the NFS-BFPSO method result in high 

accuracy, with an accuracy percentage ranging from 97.66% to 98.54%. The means of 

re-substitution accuracy was 97.95%. The average classification accuracy of the 

NFS-BFPSO method was better than that of other methods. We compared the testing 

accuracy of our model with that of other methods [26][28][101][102][111]. Table 4.4 

shows the comparison between the learned NFS-BFPSO method and other fuzzy, 

neural networks, and neural fuzzy systems. The average classification accuracy of the 

NFS-BFPSO method is better than that of other methods. 

 

 

Figure 4.5: Input membership functions for breast cancer classification. 
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Figure 4.6: Learning curves from the NFS-BFPSO method, the NFS-BFO method and 
the NFS-PSO method. 

 

Table 4.3: Classification accuracy for the Wisconsin breast cancer diagnostic data. 

Model 
Experiment # 

NFS-BFO NFS-PSO NFS-BFPSO

1 95.32 96.49 97.66 
2 95.61 97.08 98.54 
3 93.86 94.44 97.66 
4 94.74 97.37 97.95 
5 94.74 96.49 97.95 

Average (%) 94.85 96.37 97.95 
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Table 4.4: Average accuracy comparison of various models for Wisconsin breast 
cancer diagnostic data. 

Models Average re-substitution accuracy (%) 
NNFS [101] 94.15 
FEBFC [102] 95.14 
SANFIS [28] 96.3 

NEFCLASS [26] 92.7 
MSC [111] 94.9 

NFS-BFPSO 97.95 

 

Example 3: Skin Color Detection 

The description of the system is the same as Section 3.4. Unlike the previous 

chapter set four rules to constitute the neuro-fuzzy classifier, we set three fuzzy rules 

in this example. In addition, the parameter learning method is change to be BFPSO 

method. 

In this example, the performance of the NFS-BFPSO method is compared with 

the NFS-BFO method, and the NFS-PSO method. The learning curves are shown in 

Figure 4.7. In Figure 4.7, we find that the performance of the proposed NFS-BFPSO 

method is superior to the other methods. In addition, the comparison items include the 

training and testing accuracy rates with various existing models are tabulated in Table 

4.5. 

The CIT facial database consists of complex backgrounds and diverse lighting. 

Hence, from the comparison data listed in Table 4.5, the average of the test accuracy 

rate is 82.39% for the NFS-BFO method, 83.64% for the NFS-PSO method and 

85.82% for the proposed NFS-BFPSO method. This demonstrates that the CIT 

database is more complex and does not lead to a decrease in the accuracy rate. The 

proposed NFS-BFPSO method maintains a superior accuracy rate. The color images 

from the CIT database are shown in Figure 4.8. A well-trained network can generate 
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binary outputs (1/0 for skin/non-skin) to detect a facial region. Figure 4.9 shows that 

our model accurately determines a facial region. 

 

 
Figure 4.7: The learning curves of the three methods using the CIT database. 

 

Table 4.5: Performance comparison with various existing models from the CIT 
database. 

Method NFS-BFPSO NFS-PSO NFS-BFO 
Average training accuracy rate 97.63% 96.77% 96.5% 
Average testing accuracy rate 85.82% 83.64% 82.39% 
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Figure 4.8: Original face images from CIT database. 

 

  

  

Figure 4.9: Results of skin color detection with 3 dimension input (Y, Cb, Cr). 

 

 

4.4 Concluding Remarks 

This chapter proposes an efficient evolutionary learning method, using bacterial 



- 58 - 

foraging oriented by particle swarm optimization strategy (BFPSO), for the neural 

fuzzy system (NFS) in classification applications. The proposed BFPSO method 

attempts to make a judicious use of exploration and exploitation abilities of the search 

space and therefore likely to avoid false and premature convergence in many cases. 

The advantages of the proposed BFPSO method are summarized as follows: 1) 

BFPSO involves the elite-selection mechanism to gain a chance to reproduce near 

optimal solutions. 2) BFPSO records the best previous solution and the global best 

solution to evolve. 3) BFPSO can balance the exploration and exploitation abilities of 

the search space. Three examples showed that the proposed NFS-BFPSO method 

improves the system performance in terms of a fast learning convergence, and a high 

correct classification rate. 
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Chapter 5 

Nonlinear System Control Using 

Functional-Link-Based Neuro-Fuzzy 

Network Model Embedded with 

Modified Particle Swarm Optimizer 
 

Nonlinear system control is an important tool that is adopted to improve control 

performance and achieve robust fault-tolerant behavior. Among nonlinear control 

techniques, those based on artificial neural networks and fuzzy systems have become 

popular topics of research in recent years [112-114] because classical control theory 

usually requires a mathematical model to design the controller. However, the 

inaccuracy of the mathematical modeling of plants usually degrades the performance 

of the controller, especially for nonlinear and complex control problems [115]. On the 

contrary, both the fuzzy system controller and the artificial neural network controller 

provide key advantages over traditional adaptive control systems. Although traditional 

neural networks can learn from data and feedback, the meaning associated with each 

neuron and each weight in the network is not easily interpreted. Alternatively, the 

fuzzy logical models are easily appreciated, because they use linguistic terms and the 

structure of IF-THEN rules. However, fuzzy systems have a lack of an effective 

learning algorithm to refine the membership functions to minimize output errors. 

According to the literature review mentioned before, it can be said that, in contrast to 

pure neural or fuzzy methods, neural fuzzy networks (NFNs) systems [8-34] possess 

the advantages of both neural networks and fuzzy systems. NFNs bring the low-level 

learning and computational power of neural networks into fuzzy systems and give the 
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high-level human-like thinking and reasoning of fuzzy systems to neural networks. 

This chapter presents a PSO-based learning algorithm for the neural fuzzy 

system (NFS) in nonlinear system control applications. PSO is an efficient tool for 

optimization and search problems. However, it is easy to become trapped in local 

optima due to its information sharing mechanism. Many research works have shown 

that mutation operators can help PSO prevent premature convergence [116-118]. To 

prevent basic PSO from becoming trapped in local optima, we modified the basic 

PSO by adding a diversity scheme, called the distance-based mutation operator, which 

strongly encourages a global search giving the particles more chance of converging to 

the global optimum. Therefore, the proposed learning algorithm is so called 

distance-based mutation particle swarm optimization (DMPSO). 

The idea behind the proposed DMPSO learning algorithm is that there are only 

two kinds of convergence: 1) local optimum convergence and 2) global optimum 

convergence. If local optimum convergence occurred, meaning that the basic PSO is 

trapped in a local optimum, this is a good time to apply the mutation operator to help 

the PSO to escape from the local optimum. If global optimum convergence occurred, 

applying the mutation operator will cause the PSO to naturally converge again at the 

global optimum. 

 

 

5.1 Learning Scheme for the FLNFN Model 

This section presents the learning scheme for constructing the FLNFN model. 

The proposed learning scheme comprises a structure learning phase and a parameter 

learning phase. 
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Figure 5.1: Flowchart of the proposed learning scheme for the FLNFN model. 
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Figure 5.1 presents flowchart of the learning scheme for the FLNFN model. 

Structure learning is based on the entropy measure used to determine whether a new 

rule should be added to satisfy the fuzzy partitioning of input variables. Parameter 

learning is based on the proposed evolutionary learning algorithm, which minimizes a 

given cost function by adjusting the link weights in the consequent part and the 

parameters of the membership functions. Initially, there are no nodes in the network 

except the input–output nodes, i.e., there are no nodes in the FLNFN model. The 

nodes are created automatically as learning proceeds, upon the reception of incoming 

training data in the structure and parameter learning processes. In this research, once 

the learning process is completed, the trained-FLNFN can act as the nonlinear system 

controller. The following two sections detail the structure learning phase and the 

parameter learning phase. 

 

 

5.2 Structure Learning Phase 

The foremost step in structure learning is to determine whether a new rule should 

be extracted from the training data and to determine the number of fuzzy sets in the 

universe of discourse of each input variable, since one cluster in the input space 

corresponds to one potential fuzzy logic rule, in which ijm  and ij  represent the 

mean and standard deviation of that cluster, respectively. For each incoming pattern 

ix , the rule firing strength can be regarded as the degree to which the incoming 

pattern belongs to the corresponding cluster. The entropy measure between each data 

point and each membership function is calculated based on a similarity measure. A 

data point of closed mean will have lower entropy. Therefore, the entropy values 

between data points and current membership functions are calculated to determine 



- 63 - 

whether or not to add a new rule. For computational efficiency, the entropy measure 

can be calculated using the firing strength from (2)
iju  as 

2
1

log
N

j ij ij
i

EM D D


   (5.1)

where  (2)exp 1ij ijD u   and  0,  1jEM  . According to Eq. (5.1), the measure is 

used to generate a new fuzzy rule and new functional link bases for new incoming 

data are described as follows. The maximum entropy measure 

max 1 ( )
max j

j R t
EM EM

 
  (5.2)

is determined, where ( )R t  is the number of existing rules at time t . If 

maxEM EM , then a new rule is generated, where  0,  1EM   is a prespecified 

threshold that decays during the learning process. 

In the structure learning phase, the threshold parameter EM  is an important 

parameter. The threshold is set between zero and one. A low threshold leads to the 

learning of coarse clusters (i.e., fewer rules are generated), whereas a high threshold 

leads to the learning of fine clusters (i.e., more rules are generated). If the threshold 

value equals zero, then all the training data belong to the same cluster in the input 

space. Therefore, the selection of the threshold value EM  will critically affect the 

simulation results. As a result of our extensive experiments and by carefully 

examining the threshold value EM , which uses the range  0,  1 , we concluded that 

there was a relationship between threshold value EM  and the number of input 

variables ( N ). Accordingly, EM N , where   belongs to the range  0.26,  0.3 . 

Once a new rule has been generated, the next step is to assign the initial mean 

and standard deviation to the new membership function and the corresponding link 

weight for the consequent part. Since the goal is to minimize an objective function, 
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the mean, standard deviation, and weight are all adjustable later in the parameter 

learning phase. Hence, the mean, standard deviation, and weight for the new rule are 

set as 

 
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( ( 1)) 1,  1
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R t
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 (5.3)

where ix  is the current input data and init  is a prespecified constant. 

After the network structure has been adjusted according to the current training 

data, the network enters the parameter learning phase to adjust the parameters of the 

network optimally based on the same training data. 

 

 

5.3 Parameter Learning Phase 

Ratnaweera et al. [61] stated that the lack of population diversity in PSO 

algorithms is understood to be a factor in their convergence on local optima. 

Therefore, the addition of a mutation operator to PSO should enhance its global 

search capacity and thus improve its performance. There are mainly two types of 

mutation operators: one type is based on particle position [118] and the other type is 

based on particle velocity [117]. The former method is the most common technique, 

and the mutation operator we proposed in this research is also based on particle 

position. 

In [116], Li, Yang, and Korejo modified the PSO by adding a mutation operator; 

the mutation operator provides a chance to escape from local optima. They focused on 

determining which random generator of the mutation operator is good for improving 

the population. However, the timing of application of the mutation operator is the 

most important thing. If mutation operator is applied too early, when the particles are 
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not nearly convergent, the local search ability of PSO is destroyed. If the mutation 

operator is applied too late, the parameter learning algorithm will be very inefficient. 

Hence, it is an important issue to consider when to apply mutation operator. In our 

study, we used the distances between each particle as a measure to determine whether 

the mutation operator needed to be applied or not, and the modified PSO we used is 

the so called distance-based mutation particle swarm optimization (DMPSO). 

Comparing the basic PSO with DMPSO, a convergent detection unit used to detect 

the particle convergent status is introduced. If the particles are convergent, the 

mutation operator will be processed. Otherwise, the mutation operator will be 

skipped. 

The convergent detection unit computes the average distance from every particle 

to the particle that has global best value using Eq. (5.4) 

1( )

S
t t

i best
i

P G
t

S
 





 (5.4)

where t
iP  and t

bestG  indicate the thi  particle and the particle that has the global best 

value at the tht  iteration, respectively, and S  is the population size. 

After the average distance is computed, the threshold convTh  is used to 

determine whether the particles are close enough or not according to Eq. (5.5). If all 

particles are close enough, meaning that all particles are converging to the same 

position, the mutation operator will be applied. Otherwise, the mutation operator will 

be skipped. 

( ) convt Th   (5.5)

In this study, every particle has its own mutation probability. If the average 

distance is greater than convTh , implying that the majority of particles are not 

convergent, the mutation probability is set to zero, meaning that every particle does 
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not mutate and the behavior of every particle is like a generic PSO. If the average 

distance is less than convTh , meaning that all particles are converging to the same 

position, named t
bestG , the mutation probability ( MP ) of each particle is computed by 

Eq. (5.6). 
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where ( )F   denotes the fitness value of the particle. The value of ( )isuccess t  is set 

to 1 only when the thi  particle is successfully evolved at the tht  iteration, meaning 

that the local best fitness value is improved at the tht  iteration, and ( )progress t  is 

the number of successful evolution particles at time step t . 

The design of mutation probability is based on the ratio of improved population. 

If the ratio of the improved population is higher, the mutation probability becomes 

smaller. Most particles are moving toward to the best value that they have currently 

found. The lower probability guarantees the direction of the moving group will not be 

destroyed by the mutation operator. On the other hand, if most particles do not 

improve their fitness value, the population is in the stable status. There are two 

possibilities: the first possibility is that the particles have converged to the global 

optimum (or near global optimum). The application of the mutation operator at the 

moment will not destroy the moving group, because the particles still remember the 

global optimum, and the mutated particles will move toward the global optimum in 

the next iteration. The second possibility is that the particles have converged to the 

local optimum, or in other words, they have fallen into a trap. The mutation operator 

provides a chance to escape from the trap. If some particles mutate and the new 
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position the particle reaches has a better fitness value than the local optima, the other 

particles that are trapped will fly to the new position in the next iteration according to 

the PSO, meaning that the trapped particles can escape from the local optimum. 

 

 

5.4 Illustrative Examples 

In this section, we demonstrate the performance of the proposed FLNFN model 

using DMPSO algorithm (FLNFN-DMPSO) for nonlinear system control. The 

FLNFN-DMPSO is adopted to design controllers in three simulations of nonlinear 

system control problems: multi-input multi-output (MIMO) plant control [114], 

control of the truck backing system [119], and a water bath temperature control 

system [120]. 

 

Example 1: Multi-Input Multi-Output Plant Control 

In this example, the MIMO plants [114] to be controlled are described by the 

equations 
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The controlled outputs should follow the desired output 1ry  and 2ry , as 

specified by the following 250 pieces of data; 

1
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( ) cos( 45)
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y k k



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 (5.8)

The inputs of the FLNFN-DMPSO are 1( )py k , 2 ( )py k , 1( )ry k , and 2 ( )ry k , 

and the outputs are 1( )u k  and 2 ( )u k . 
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Figure 5.2 plots the learning curves of the best performance of the 

FLNFN-DMPSO model for the affinity/fitness value, the CNFC-ISEL [121], the 

SEFC [122], and the Mamdani-type fuzzy system using symbiotic evolution 

algorithm (MFS-SE) [123], after the learning process of 600 generations. To 

demonstrate the performance of the proposed controller, Figure 5.3 plots the control 

results of the desired output (solid line) and the model output (dotted line) after the 

learning process of 600 generations, and Figure 5.4 shows the errors of the proposed 

method. Table 5.1 presents the best and averaged affinity/fitness values after 600 

generations of training. The comparison indicates that the best and averaged 

affinity/fitness values of FLNFN-DMPSO are better than those of other methods. 

 

0 100 200 300 400 500 600
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation

A
ff

in
ity

/F
itn

es
s 

V
al

ue

 

 

FLNFN-DMPSO

CNFC-ISEL
SEFC

MFS-SE

 

Figure 5.2: Learning curves of best performance of the FLNFN-DMPSO, 
CNFC-ISEL, SEFC and MFS-SE in MIMO plant control. 
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Figure 5.3: Desired (solid line) and model (dotted line) output generated by 
FLNFN-DMPSO in MIMO plant control. 
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Figure 5.4: Errors of proposed FLNFN-DMPSO in MIMO plant control. 
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Table 5.1: Performance comparison of the FLNFN-DMPSO, FLNFN-PSO, 
CNFC-ISEL, SEFC and MFS-SE controllers for the MIMO plant. 

Method Affinity/Fitness Value (Best) Affinity/Fitness Value (Avg.)
FLNFN-DMPSO 0.9898 0.9856 

FLNFN-PSO 0.9506 0.9149 
CNFC-ISEL [121] 0.9786 0.9721 
SEFC [122] 0.9581 0.9553 
MFS-SE [123] 0.8560 0.8503 

 

Example 2: Control of Backing Up the Truck 

Backing a truck into a loading dock is difficult. It is a nonlinear control problem 

for which no traditional control method exists [119]. Figure 5.5 shows the simulated 

truck and loading zone. The truck’s position is exactly determined by three state 

variables  , x  and y , where   is the angle between the truck and the horizontal, 

and the coordinate pair ( , )x y  specifies the position of the center of the rear of the 

truck in the plane. The steering angle   of the truck is the controlled variable. 

Positive values of   represent clockwise rotations of the steering wheel and negative 

values represent counterclockwise rotations. The truck is placed at some initial 

position and is backed up while being steered by the controller. The objective of this 

control problem is to use backward only motion of the truck to make it arrive at the 

desired loading dock ( , )desired desiredx y  at a right angle ( 90 )desired   . The truck 

moves backward as the steering wheel moves through a fixed distance ( )fd  in each 

step. The loading region is limited to the plane [0 100] [0 100] . 
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Figure 5.5: Diagram of simulated truck and loading zone. 

 

The input and output variables of the FLNFN-DMPSO controller must be 

specified. The controller has two inputs: truck angle   and cross position x . When 

the clearance between the truck and the loading dock is assumed to be sufficient, the 

y  coordinate is not considered to be an input variable. The output of the controller is 

the steering angle  . The ranges of the variables x ,  , and   are as follows: 
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The equations of backward motion of the truck are 
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(5.10)

where l  is the length of the truck. Equation (5.10) yields the next state from the 

present state. 

Learning involves several attempts, each starting from an initial state and 

terminating when the desired state is reached; the FLNFN-DMPSO is thus trained. 

The training process continues for 2000 generations. The affinity/fitness value of the 
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FLNFN-DMPSO is approximately 0.9637, and the learning curve of FLNFN-DMPSO 

is compared with those obtained using various existing models [121-123], as shown in 

Figure 5.6. Figure 5.7 plots the trajectories of the moving truck controlled by the 

FLNFN-DMPSO, starting at initial positions ( , , ) (40,20, 30 )x y     , (10,20,150 ) , 

(70,20, 30 )   and (80,20,150 ) , after the training process has been terminated. The 

considered performance indices include the best affinity/fitness and the average 

affinity/fitness value. Table 5.2 compares the results. According to these results, the 

proposed FLNFN-DMPSO outperforms various existing models. 
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Figure 5.6: Learning curves of best performance of the FLNFN-DMPSO, 
CNFC-ISEL, SEFC and MFS-SE in control of backing up the truck. 
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(a) initial positions ( , , ) (40,20, 30 )x y      
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(b) initial positions ( , , ) (10,20,150 )x y     
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(c) initial positions ( , , ) (70,20, 30 )x y      
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(d) initial positions ( , , ) (80,20,150 )x y     

Figure 5.7: Trajectories of truck, starting at four initial positions under the control of 
the FLNFN-DMPSO after learning using training trajectories. 
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Table 5.2: Performance comparison of various controllers to control of backing up the 
truck. 

Method Affinity/Fitness Value (Best) Affinity/Fitness Value (Avg.)
FLNFN-DMPSO 0.9637 0.9502 

FLNFN-PSO 0.9423 0.9355 
CNFC-ISEL [121] 0.9558 0.9511 
SEFC [122] 0.9516 0.9451 
MFS-SE [123] 0.9398 0.9332 

 

Example 3: Control of Water Bath Temperature System 

The goal of this example is to elucidate the control of the temperature of a water 

bath system according to 

0 ( )( ) ( )

R

Y y tdy t u t

dt C T C


   (5.11)

where ( )y t  is the output temperature of the system in degrees Celsius ( C ); ( )u t  is 

the heat flowing into the system; 0Y  is the room temperature; C  is the equivalent 

thermal capacity of the system and RT  is the equivalent thermal resistance between 

the borders of the system and the surroundings. 

RT  and C  are assumed to be essentially constant, and the system in Eq. (5.11) 

is rewritten in discrete-time form to some reasonable approximation. The system 
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 


       
 (5.12)

is obtained, where   and   are some constant values of RT  and C . The system 

parameters used in this example are 41.00151 10   , 38.67973 10    and 

0 25.0y  ( C ), which were obtained from a real water bath plant considered 

elsewhere [120]. The plant input ( )u k  is limited between 0V and 5V where V 

represents the voltage unit. The sampling period is 30sT   second. 

Figure 5.8 presents a block diagram for the conventional training scheme. This 

block diagram has two phases – the training phase and the control phase. In the 
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training phase, the switches S1 and S2 are connected to nodes 1 and 2, respectively, to 

form a training loop. In this loop, training data with input vector 

( ) [ ( 1)   ( )]p pI k y k y k   and desired output ( )u k  can be defined, where the input 

vector of the FLNFN controller is the same as that used in the general inverse 

modeling [124] training scheme. In the control phase, the switches S1 and S2 are 

connected to nodes 3 and 4, respectively, forming a control loop. In this loop, the 

control signal ˆ( )u k  is generated according to the input vectors 

ref( ) [ ( 1)   ( )]pI k y k y k   , where py  is the plant output and refy  is the reference 

model output. 
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Figure 5.8: Conventional training scheme. 

 

A sequence of random input signals ( )rdu k  limited between 0V and 5V is 

injected directly into the simulated system described in Eq. (5.12), using the training 

scheme for the FLNFN-DMPSO controller. The 120 training patterns are selected 

based on the input–outputs characteristics to cover the entire reference output. The 

temperature of the water is initially 25 C , and rises progressively when random 

input signals are injected. 

This dissertation compares the FLNFN-DMPSO controller to the FLNFN 

controller [32], the proportional-integral-derivative (PID) controller [125], the 
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manually designed fuzzy controller [8], the FLNN [80], and the TSK-type 

neuro-fuzzy network (TSK-type NFN) [24]. Each of these controllers is applied to the 

water bath temperature control system. The performance measures include the set 

points regulation, the influence of impulse noise, large parameter variations in the 

system and the tracking capability of the controllers. 

The first task is to control the simulated system to follow three set points 

ref

35 , for 40
( ) 55 , for 40 80

75 , for 80 120

C k

y k C k

C k

 
   
   

 (5.13)

Figure 5.9 presents the regulation performance of the FLNFN-DMPSO controller. 

The regulation performance was also tested using the FLNFN controller, the PID 

controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller. 

To test their regulation performance, a performance index, the sum of absolute error 

(SAE), is defined by 

refSAE ( ) ( )
k

y k y k   (5.14)

where ref ( )y k  and ( )y k  are the reference output and the actual output of the 

simulated system, respectively. The SAE values of the FLNFN-DMPSO, the FLNFN 

controller, the PID controller, the fuzzy controller, the FLNN controller and the 

TKS-type NFN controller are 352.32, 352.84, 418.5, 401.5, 379.22 and 361.96, which 

values are given in the second column of Table 5.3. The proposed FLNFN-DMPSO 

controller has a much better SAE value of regulation performance than the other 

controllers. 

The second set of simulations is performed to elucidate the noise rejection ability 

of the six controllers when some unknown impulse noise is imposed on the process. 

One impulse noise value of C5  is added to the plant output at the 60th sampling 

instant. A set point of C50  is adopted in this set of simulations. For the 
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FLNFN-DMPSO controller, the same training scheme, training data and learning 

parameters were used as in the first set of simulations. Figure 5.10 presents the 

behaviors of the FLNFN-DMPSO controller under the influence of impulse noise. 

The SAE values of the FLNFN-DMPSO controller, the FLNFN controller, the PID 

controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller 

are 270.29, 270.41, 311.5, 275.8, 324.51 and 274.75, which values are shown in the 

third column of Table 5.3. The FLNFN-DMPSO controller performs quite well. It 

recovers very quickly and steadily after the occurrence of the impulse noise. 

One common characteristic of many industrial control processes is that their 

parameters tend to change in an unpredictable way. The value of 0.7 ( 2)u k   is 

added to the plant input after the 60th sample in the third set of simulations to test the 

robustness of the six controllers. A set point of C50  is adopted in this set of 

simulations. Figure 5.11 presents the behaviors of the FLNFN-DMPSO controller 

when the plant dynamics change. The SAE values of the FLNFN-DMPSO controller, 

the FLNFN controller, the PID controller, the fuzzy controller, the FLNN controller 

and the TSK-type NFN controller are 262.91, 263.35, 322.2, 273.5, 311.54 and 265.48, 

which values are shown in the fourth column of Table 5.3. The results present the 

favorable control and disturbance rejection capabilities of the trained 

FLNFN-DMPSO controller in the water bath system. 

In the final set of simulations, the tracking capability of the FLNFN-DMPSO 

controller with respect to ramp-reference signals is studied. Define 

ref
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 (5.15)

Figure 5.12 presents the tracking performance of the FLNFN-DMPSO controller. 
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The SAE values of the FLNFN-DMPSO controller, the FLNFN controller, the PID 

controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller 

are 42.45, 44.28, 100.6, 88.1, 98.43 and 54.28, which values are shown in the fifth 

column of Table 5.3. The results present the favorable control and tracking 

capabilities of the trained FLNFN-DMPSO controller in the water bath system. The 

aforementioned simulation results, presented in Table 5.3, demonstrate that the 

proposed FLNFN-DMPSO controller outperforms other controllers. 
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Figure 5.9: The regulation performance of the FLNFN-DMPSO controller for the 
water bath system. 
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Figure 5.10: The behavior of the FLNFN-DMPSO controller under impulse noise for 
the water bath system. 
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Figure 5.11: The behavior of the FLNFN-DMPSO controller when a change occurs in 
the water bath system dynamics. 
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Figure 5.12: The tracking performance of the FLNFN-DMPSO controller for the 
water bath system. 

 

Table 5.3: Performance comparison of various controllers for the water bath 
temperature control system. 

120

ref
1

( ) ( )
k

SAE y k y k


   Regulation 

Performance 

Influence of 

Impulse Noise

Effect of Change in 

Plant Dynamics 

Tracking 

Performance 

FLNFN-DMPSO 352.32 270.29 262.91 42.45 

FLNFN [32] 352.84 270.41 263.35 44.28 
PID [125] 418.5 311.5 322.2 100.6 
Fuzzy [8] 401.5 275.8 273.5 88.1 
FLNN [80] 379.22 324.51 311.54 98.43 
TSK-type NFN [24] 361.96 274.75 265.48 54.28 

 

 

5.5 Concluding Remarks 

This chapter proposes an evolutionary neural fuzzy system, designed using 
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FLNFN model embedded with DMPSO algorithm. The proposed learning scheme 

consists of structure learning and parameter learning for the FLNFN model. The 

structure learning depends on the entropy measure to determine the number of fuzzy 

rules. The proposed DMPSO parameter learning method can adjust the shape of fuzzy 

rule’s membership function and the corresponding weighting of FLNN. The 

simulation results have shown the proposed FLNFN-DMPSO method has more 

chance of converging to the global optimum and yields better performance than other 

existing models under some circumstances. 
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Chapter 6 

Comparisons and Discussions 
 

PSO is an efficient tool for optimization and search problems. However, it is 

easy to be trapped into local optima due to its information sharing mechanism. Many 

researchers have worked on improving its performance in various ways, thereby 

deriving many interesting variants. This dissertation develops three novel learning 

algorithms embedded with particle swarm optimizer, named IPSO, BFPSO and 

DMPSO for the neuro-fuzzy systems. 

 

 

6.1 Comparisons 

In this section, skin color detection problem is performed to evaluate the 

performance of the proposed IPSO, BFPSO and DMPSO methods. 

The skin color detection experimental results of the IPSO and BFPSO methods 

are given in Section 3.4 and Section 4.3, respectively. In the following subsection, the 

skin color detection problem is performed to assess the performance of the DMPSO 

approach in classification application. 

 

6.1.1 Skin Color Detection Using DMPSO 

The description of the system is the same as Section 3.4. We set three rules 

constituting a neuro-fuzzy classifier. In this example, the performance of the DMPSO 

method is compared with the PSO method [41]. First, the learning curves of DMPSO 

and PSO methods are shown in Figure 6.1. In Figure 6.1, we find that the 

performance of the proposed DMPSO method is superior to the PSO method. 
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Furthermore, the comparison items include the training and testing accuracy rates are 

tabulated in Table 6.1. 
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Figure 6.1: The learning curves of PSO and DMPSO methods using the CIT database. 

 

Table 6.1: Performance comparison with PSO and DMPSO methods from the CIT 
database (Training data: 6000; Generations: 2000) 

Method DMPSO PSO 
Average training accuracy rate 98.05% 96.77% 
Average testing accuracy rate 87.26% 83.64% 

 

The CIT facial database consists of complex backgrounds and diverse lighting. 

Hence, from the comparison data listed in Table 6.1, the average of the test accuracy 

rate is 83.64% for the PSO method and 87.26% for the proposed DMPSO method. 

This demonstrates that the CIT database is more complex and does not lead to a 

decrease in the accuracy rate. The proposed DMPSO method maintains a superior 

accuracy rate. The color images from the CIT facial database are shown in Figure 6.2. 
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The corresponding fitness maps generated by well-trained network using the proposed 

DMPSO method are shown in Figure 6.3. With proper selection of the threshold value, 

a well-trained network can generate binary outputs (1/0 for skin/non-skin) to detect a 

facial region. Figure 6.4 shows the masks generated by the proposed skin color 

classifier. Figure 6.5 shows that the proposed approach determines a facial region 

accurately. 

 

  

  

  

Figure 6.2: Original face images from CIT repository. 
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Figure 6.3: Fitness maps generated by a well-trained FLNFN-DMPSO 
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Figure 6.4: Masks generated by a well-trained skin color classifier. 
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Figure 6.5: Results of skin color detection with YCbCr color space 

 

6.1.2 Skin Color Detection Results Comparison with Different 

Approaches 

In this subsection, the skin color detection experimental results of neuro-fuzzy 

classifier embedded with different parameter learning algorithms demonstrated. In 

this research, we select the FLNFN model as our neuro-fuzzy architecture to develop 

the skin color classifier. The aim of the skin color detection is to distinguish between 

skin and non-skin pixels based on the Y, Cb and Cr information. Table 6.2 

summarized the average accuracy rates of testing and training data with different 

approaches. 

 

Table 6.2: Performance comparison with various existing models from the CIT 
database (Training data: 6000; Generations: 2000) 

Method No. of fuzzy rules
Average accuracy rate 

(training data) 
Average accuracy rate 

(testing data) 
IPSO 4 93.32% 90.18% 

IA [94] 4 88.1% 82.63% 
4 79.05% 74.32% 

PSO [41] 
3 96.77% 83.64% 

BFO 3 96.5% 82.39% 
BFPSO 3 97.63% 85.82% 
DMPSO 3 98.05% 87.26% 
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6.2 Discussions 

In the IPSO and BFPSO approaches, we investigated hybridization by combining 

PSO with IA and BFO, respectively. In IPSO method, the major parameter learning 

process is achieved by IA. In order to avoid trapping in a local optimal solution and 

ensure the search capability of near global optimal solution, we employ the 

advantages of the PSO to improve mutation mechanism of IA. In addition, the balance 

between exploration of the search space and exploitation of potentially good solutions 

is considered as a fundamental problem in nature-inspired systems. Too much stress 

on exploration results in a pure random search whereas too much exploitation results 

in a pure local search. Clearly, intelligent search must self-adaptively combine 

exploration of the new regions of the space with evaluation of potential solutions 

already identified. The BFPSO combines both algorithms BFO and PSO to balance 

the exploration and exploitation abilities of the search space. 

Unlike IPSO and BFPSO approaches that use PSO as the enhance mechanism to 

improve the performance of basic IA and BFO. In DMPSO approach, the parameter 

learning method is based on the PSO algorithm and the distance-based mutation 

operator is introduced to increase the population diversity, which strongly encourages 

a global search giving the particles more chance of escaping from local optimum and 

converging to the global optimum. 

It should be notice that due to the PSO plays different role between the proposed 

IPSO, BFPSO and DMPSO methods, the parameters of PSO are not totally the same 

for these three parameter learning algorithms. The functions of IA, BFO and PSO are 

summarized in Table 6.3. Furthermore, the predefined fuzzy rule number in IPSO 

method is set to be 4 which were different from others. 
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Table 6.3: The roles of IA, BFO and PSO in the proposed learning algorithm. 

Method IPSO BFPSO DMPSO 
Fuzzy Rule Numbers 4 3 3 

Basic/Main Algorithm IA BFO PSO 
Mechanism PSO PSO Mutation operator

Enhancement 
Function 

Increase 
population 
diversity 

Improve 
global search 

ability 

Increase 
population 
diversity 

 

Moreover, in order to obtain better simulation results, the proposed learning 

algorithms always require training data to be sufficient and proper. However, there is 

no procedure or rule suitable for all cases in choosing training data. One rule of thumb 

is that training data should cover the entire expected input space and then during the 

training process select training-vector pairs randomly from the set. 
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Chapter 7 

Conclusions and Future Works 
 

Fuzzy logic and artificial neural networks are complementary technologies in the 

design of intelligent systems. The combination of these two technologies into an 

integrated system appears to be a promising path toward the development of 

intelligent systems capable of capturing qualities characterizing the human brain. 

Both neural networks and fuzzy logic are powerful design techniques that have their 

strengths and weaknesses. The integrated neuro-fuzzy systems possess the advantages 

of both neural networks (e.g. learning abilities, optimization abilities and 

connectionist structures) and fuzzy systems (e.g. humanlike IF-THEN rules thinking 

and ease of incorporating expert knowledge). In this way, it is possible to bring the 

low-level learning and computational power of neural networks into fuzzy systems 

and also high-level humanlike IF-THEN thinking and reasoning of fuzzy systems into 

neural networks. 

A neuro-fuzzy system is a fuzzy system, whose parameters are learned by a 

learning algorithm. It has a neural network architecture constructed from fuzzy 

reasoning, and can always be interpreted as a system of fuzzy rules. Learning is used 

to adaptively adjust the rules in the rule base, and to produce or optimize the 

membership functions of a fuzzy system. Structured knowledge is codified as fuzzy 

rules. Modern neuro-fuzzy systems are usually represented as special multilayer 

feedforward neural networks. Hayashi et al. [126] showed that a feedforward neural 

network could approximate any fuzzy rule based system and any feedforward neural 

network may be approximated by a rule based fuzzy inference system. 

In this dissertation, the neuro-fuzzy architecture we used is called 
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functional-link-based neuro-fuzzy network (FLNFN) model. The FLNFN model uses 

a functional link neural network to the consequent part of the fuzzy rules. FLNFN is a 

multilayer feedforward network in which each node performs a particular function 

(node function) based on incoming signals and a set of parameters pertaining to this 

node. The FLNFN model can automatically be constructed and the FLNFN 

parameters can be adjusted by performing structure/parameter learning schemes. 

In Chapter 3, the proposed IPSO method combines the IA and PSO to perform 

parameter learning. The advantages of the proposed IPSO method are summarized as 

follows: 1) We employed the advantages of PSO to improve the mutation mechanism; 

2) The complicated problems can be better solved than IA and PSO; 3) There is more 

of a likelihood to get a global optimum compared to heuristic methods; 4) The 

experimental results have shown that our method obtains better results than other 

existing methods in accuracy rate and convergence speed. 

In Chapter 4, an innovative BFPSO algorithm is applied for the design of 

neuro-fuzzy classifier. Conventional BFO depends on random search directions which 

may lead to delay in reaching global solution while PSO is prone to be trapped in 

local optima. In order to get better optimization, the new algorithm combines 

advantages of both the algorithms i.e. PSO’s ability to exchange social information 

and BFO’s ability in finding new solutions by elimination and dispersal. The BFPSO 

algorithm combines PSO-based mutation operator with bacterial chemotaxis in order 

to make judicious use of exploration and exploitation abilities of search space and to 

avoid false and premature convergence. The simulation results showed that the overall 

performance of the hybrid algorithm outperforms conventional BFO and PSO. 

Unlike IPSO and BFPSO approaches that use PSO as the enhance mechanism to 

improve the performance of basic IA and BFO. In chapter 5, the PSO-based learning 

algorithm, called DMPSO, for the neural fuzzy system is presented. In DMPSO 
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approach, the parameter learning method is based on the PSO algorithm and the 

distance-based mutation operator is introduced to increase the population diversity, 

which strongly encourages a global search giving the particles more chance of 

escaping from local optimum and converging to the global optimum. The simulation 

results have shown the proposed DMPSO method yields better performance than 

other existing models under some circumstances in the nonlinear system control 

application fields. 

In Chapter 6, the well-known skin color detection problem is used as the 

benchmark to demonstrate the performance and efficiency of the proposed IPSO, 

BFPSO and DMPSO method. The aim of the skin color detection is to distinguish 

between skin and non-skin pixels based on the Y, Cb and Cr information. The average 

accuracy rates of testing and training data with different approaches were depicted in 

Table 6.2. Since the predefined rule number is not identical, we cannot make the 

comparison fairly. From the simulation results, we can only conclude that DMPSO 

outperforms BFPSO and IPSO seems to be over-trained. 

Although the proposed algorithms yield better performance in the classification 

and nonlinear system control applications, but there still some advanced topics should 

be addressed in future research. 

In general, synthesizing a neuro-fuzzy system, two major types of learning are 

required: structure learning algorithms to find appropriate fuzzy logic rules; and 

parameter learning algorithms to fine-tune the membership functions and other 

parameters. There are several ways that structure learning and parameter learning can 

be combined in a neuro-fuzzy system. They can be performed sequentially: structure 

learning is used first to find the appropriate structure of a neuro-fuzzy system; and 

parameter learning is then used to fine-tune the parameters. In some situations, only 

parameter learning or structure learning is necessary when structure (fuzzy rules) or 
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parameters (membership functions) are provided by experts, and the structure in some 

neuro-fuzzy systems is fixed. Identification of fuzzy rules has been one of the most 

important aspects in the design of neuro-fuzzy sysyem. Identified rules and concise 

rules can provide an initial structure of networks so that learning processes can be fast, 

reliable and highly intuitive. To overcome the limitations of using expert knowledge 

in defining the fuzzy rules, data driven methods to create fuzzy systems are needed. 

Therefore, the first advanced research topic is to generate fuzzy rules from numerical 

data more efficiently. 

The choice of the model’s structure is very important, as it determines the 

flexibility of the model in the approximation of (unknown) systems. Despite of the 

research that has already been done in the area of neuro-fuzzy systems the recurrent 

variants of this architecture are still rarely studied. In contrast to pure feed-forward 

architectures, that have a static input-output behavior, recurrent models are able to 

store information of the past (e.g. prior system states) and are thus more appropriate 

for the analysis of dynamic systems. The second advanced research topic is to apply 

the proposed IPSO, BFPSO and DMPSO into the recurrent neural network to learn 

and optimize a hierarchical fuzzy rule base with feedback connections. 

In this dissertation, a systematic method was not used to determine the initial 

parameters. The initial parameters are determined by practical experimentation or by 

trial-and-error. In future works, we will try to develop a well-defined method to 

automatically determine the initial parameters, and thus inexperienced users could 

design a neuro-fuzzy system with ease. 
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