

國 立 交 通 大 學

電控工程研究所

博 士 論 文

內嵌粒子群優化學習演算法之類神經模糊系統

及其應用

Neural Fuzzy System Embedded with Particle Swarm Optimizer
and Its Applications

研 究 生：蘇閔財

指導教授：林進燈 教授

中 華 民 國 一 ○ 一 年 二 月

內嵌粒子群優化學習演算法之類神經模糊系統及其應用

Neural Fuzzy System Embedded with Particle Swarm Optimizer
and Its Applications

研 究 生：蘇閔財 Student：Miin-Tsair Su

指導教授：林進燈 Advisor：Chin-Teng Lin

國 立 交 通 大 學
電 控 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Institute of Electrical and Control Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical and Control Engineering

February 2012

Hsinchu, Taiwan, Republic of China

中 華 民 國 一 ○ 一 年 二 月

- i -

內嵌粒子群優化學習演算法之類神經模糊

系統及其應用

研究生：蘇閔財 指導教授：林進燈 博士

國立交通大學電控工程研究所博士班

摘 要

本篇論文中所提出的進化式神經模糊系統乃是採用內嵌以粒子群為基礎的

學習演算法之函數鏈結類神經模糊網路 (Functional-Link-Based Neuro-Fuzzy

Network, FLNFN)。此一類神經模糊網路採用函數鏈結類神經網路來做為模糊法

則的後件部。由於，後件部採用了非線性函數展開的方式，來形成任意複雜的決

策邊界。因此，在 FLNFN 模型中，後件部的這個局部特性，可以使輸入變量的

非線性組合結果，能夠更有效地近似目標輸出。本論文主要為三大部分。在第一

部份，我們提出了一個高效率的免疫粒子群優化（IPSO）的學習方法來解決膚

色檢測的問題。我們所提的免疫粒子群優化演算法主要是結合免疫演算法（IA）

和粒子群優化（PSO）來進行參數學習。在第二部分中，另一種被稱為細菌覓食

粒子群優化（BFPSO）的混合式參數學習演算法，將被介紹來解決分類的應用。

BFPSO 演算法主要是透過 BFO 的趨化運動來操作執行區域性的搜索，而在整個

搜索空間的全域搜索則是由 PSO 來完成。利用此一方式，便能在全域性的勘探

和區域性的開採間取得最好的平衡。在第三部分中，與先前採用混合方法不同，

我們引入了以距離為基礎的突變操作元，藉以用來增加粒子群的群體多樣性。此

演算法包含架構學習及參數學習兩部分。架構學習是藉由熵的量測來決定所需的

- ii -

模糊法則的數目。參數學習則是使用內嵌以距離為基礎的突變操作元之粒子群優

化演算法（DMPSO），來調整歸屬函數的形狀與後件部的相對應權重。最後，我

們將論文中所提出的以 PSO 為基礎之學習演算法應用到各種分類和控制問題。

本論文的實驗結果證明了所提出方法的有效性。

- iii -

Neural Fuzzy System Embedded with

Particle Swarm Optimizer and Its Applications

Student：Miin-Tsair Su Advisor：Dr. Chin-Teng Lin

Institute of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

This dissertation proposes the evolutionary neural fuzzy system, designed using

functional-link-based neuro-fuzzy network (FLNFN) model embedded with

PSO-based learning algorithms. The FLNFN model uses a functional link neural

network to the consequent part of the fuzzy rules. The consequent part uses a

nonlinear functional expansion to form arbitrarily complex decision boundaries. Thus,

the local properties of the consequent part in the FLNFN model enable a nonlinear

combination of input variables to be approximated more effectively. This dissertation

consists of three major parts. In the first part, the efficient immune-based particle

swarm optimization (IPSO) learning method is presented to solve the skin color

detection problem. The proposed IPSO algorithm combines the immune algorithm

(IA) and particle swarm optimization (PSO) to perform parameter learning. In the

second part, another hybrid parameter learning algorithm, called bacterial foraging

particle swarm optimization (BFPSO), is introduced for classification applications.

The proposed BFPSO algorithm performs local search through the chemotactic

movement operation of BFO whereas the global search over the entire search space is

- iv -

accomplished by a PSO operator. In this way it balances between exploration and

exploitation enjoying best of both the worlds. In the third part, instead of using hybrid

techniques, the distance-based mutation operator is introduced to improve the

population diversity. The learning algorithm consists of structure learning and

parameter learning. The structure learning depends on the entropy measure to

determine the number of fuzzy rules. The parameter learning, based on distance-based

mutation particle swarm optimization (DMPSO), can adjust the shape of the

membership function and the corresponding weights of the consequent part. Finally,

the proposed PSO-based learning algorithms are applied in various classification and

control problems. Results of this dissertation demonstrate the effectiveness of the

proposed methods.

- v -

誌 謝

修習博士學位這一路走來，我需要感謝的人太多!特別是我的博士論文指導

教授 林進燈博士。感謝老師在學術研究上給予學生的啟發、鼓勵與陪伴。在老

師豐富的學識、殷勤的教導及嚴謹的督促下，使我學習到許多的寶貴知識以及在

面對事情時應有的處理態度。在此，學生要由衷的向老師表示謝意和敬意。

感謝口試審查委員 陳文良教授、楊谷洋教授、張志永教授、林正堅教授以

及陳金聖副教授，在百忙之中，願意撥冗參與口試，並給予論文寶貴的建議與指

正，使得本篇論文更加完整。

博士的求學過程，真是一個漫長且艱辛的路程，有時看不到希望，甚至必須

在絕望中持續奮鬥，不知何時光明會出現，尤其是投稿論文被拒絕，畢業遙遙無

期的時候。雖然，未來前途也充滿了挑戰，希望透過如此一個真實的經驗，讓我

體察到，即使未來處在困境中，仍要持續奮鬥，因為奮鬥才有希望。

在研究過程中，也要特別感謝已畢業的博士班同學 陳政宏助理教授的一路

陪伴。特別是在研究上的討論與建議，常常可以給我新的啟發與觀念的成長。

同時，要感謝交大資訊媒體實驗室的所有夥伴，尤其是肇廷、東霖、勝智、

鎮宇、哲銓、耿維、…，在研究的過程中，藉由不斷的相互砥礪及針對研究內容

與方法的深入探討，讓我在博士的研究路上走得更順遂，特別是您們的勤奮和努

力，更是我學習的指標。

學生也要感謝碩士班的指導教授 陳文良博士與已故的葉 莒教授的悉心

指導，使我在研究及做人處世上獲益匪淺。另外，老師為人處世的言教與身教，

也深深地影響著學生。

感謝我就讀博士班期間所任職的東捷科技股份有限公司以及帆宣系統科技

股份有限公司，提供了一個良好的工作環境，讓我能夠同時兼顧工作與學業，進

而順利完成我的博士學業。在此，我也要感謝徐氏數學的徐清朗老師與徐陳雪美

師母，在我就讀大學與研究所的寒、暑假期間，提供我一個優良的打工環境，讓

- vi -

我能在學校上課期間專注於課業上，進而順利完成我的學士與碩士學業。

感謝父親與已故母親，從小到大對我們兄弟的栽培，讓我們能得到良好的教

育。我也要感謝岳父與岳母對我在職進修博士學位一事，抱持著正面與肯定的態

度，進而給我支持與鼓勵，讓我能夠專心於研究的工作並順利完成博士學位。

多年來，太太 怡君在我就讀博士班期間，星期假日常陪伴我到圖書館唸

書、查資料、寫文章，並協助分擔家中許多事務，讓我得以心無旁騖地專心致力

於論文研究工作，更是讓我無以為報。

因篇幅有限，還有許多曾經關心我的家人親友、教導我的師長、幫助我的同

仁、鼓勵我的朋友，無法一一致意，謹在此表達由衷的感謝，謝謝您們。

最後，謹將此論文獻給我已亡故的母親 蘇黃惠美女士，以慰她在天之靈。

閔財 於交大資訊媒體實驗室

中華民國一○一年七月十日

- vii -

Table of Contents

Chinese Abstract ... i
English Abstract .. iii
Acknowledgement ..v
Table of Contents ... vii
List of Tables... ix
List of Figures ...x
Chapter 1 Introduction ..1

1.1 Motivation..1
1.2 Literature Survey ...6
1.3 Organization of Dissertation ..11

Chapter 2 Structure of the Functional-Link-Based Neuro-Fuzzy Network
...14
Chapter 3 Immune Algorithm Embedded with Particle Swarm Optimizer
for Neuro-Fuzzy Classifier and Its Applications19

3.1 Basic Concepts of the Artificial Immune System..20
3.2 Clonal Selection Theory ..21
3.3 The Efficient Immune-Based PSO Learning Algorithm................................22

3.3.1 Code fuzzy rule into antibody...23
3.3.2 Determine the initial parameters by self-clustering algorithm25
3.3.3 Produce initial population ...25
3.3.4 Calculate affinity values ...26
3.3.5 Production of sub-antibodies ..26
3.3.6 Mutation of sub-antibodies based on PSO..27
3.3.7 Promotion and suppression of antibodies ...28
3.3.8 Elitism selection..30

3.4 Skin Color Detection..30
3.5 Concluding Remarks..34

Chapter 4 An Evolutionary Neural Fuzzy Classifier Using Bacterial
Foraging Oriented by Particle Swarm Optimization Strategy..................37

4.1 Basic Concepts of Bacterial Foraging Optimization38
4.1.1 Chemotaxis ...38
4.1.2 Swarming ..39
4.1.3 Reproduction...40
4.1.4 Elimination-and-Dispersal ..40

4.2 Learning Algorithms for the NFS Model...41

- viii -

4.3 Illustrative Examples ...44
Example 1: Iris Data Classification ...45
Example 2: Wisconsin Breast Cancer Diagnostic Data Classification52
Example 3: Skin Color Detection ..55

4.4 Concluding Remarks..57
Chapter 5 Nonlinear System Control Using Functional-Link-Based
Neuro-Fuzzy Network Model Embedded with Modified Particle Swarm
Optimizer ..59

5.1 Learning Scheme for the FLNFN Model...60
5.2 Structure Learning Phase ...62
5.3 Parameter Learning Phase..64
5.4 Illustrative Examples ...67

Example 1: Multi-Input Multi-Output Plant Control...................................67
Example 2: Control of Backing Up the Truck ...70
Example 3: Control of Water Bath Temperature System.............................75

5.5 Concluding Remarks..81
Chapter 6 Comparisons and Discussions..83

6.1 Comparisons ..83
6.1.1 Skin Color Detection Using DMPSO ...83
6.1.2 Skin Color Detection Results Comparison with Different Approaches
..88

6.2 Discussions ..89
Chapter 7 Conclusions and Future Works ..91
Bibliography ...95
Publication List ...110

- ix -

List of Tables

Table 3.1: The accuracy rate with different generations (%)33
Table 3.2: Performance comparison with various existing models from the CIT
database (Training data: 6000; Generations: 2000) ...34
Table 4.1: Classification accuracy using various methods for the iris data.51
Table 4.2: Average re-substitution accuracy comparison of various models for the iris
data classification problem. ...52
Table 4.3: Classification accuracy for the Wisconsin breast cancer diagnostic data. ..54
Table 4.4: Average accuracy comparison of various models for Wisconsin breast
cancer diagnostic data. ...55
Table 4.5: Performance comparison with various existing models from the CIT
database..56
Table 5.1: Performance comparison of the FLNFN-DMPSO, FLNFN-PSO,
CNFC-ISEL, SEFC and MFS-SE controllers for the MIMO plant.70
Table 5.2: Performance comparison of various controllers to control of backing up the
truck. ..75
Table 5.3: Performance comparison of various controllers for the water bath
temperature control system. ...81
Table 6.1: Performance comparison with PSO and DMPSO methods from the CIT
database (Training data: 6000; Generations: 2000) ...84
Table 6.2: Performance comparison with various existing models from the CIT
database (Training data: 6000; Generations: 2000) ...88
Table 6.3: The roles of IA, BFO and PSO in the proposed learning algorithm...........90

- x -

List of Figures

Figure 1.1: The taxonomy of global optimization algorithms.5
Figure 1.2: Aggregation chart for applications of the PSO over different years.6
Figure 1.3: Taxonomy of PSO. ..7
Figure 1.4: The variations of PSO. ..9
Figure 2.1: Structure of the selected neuro-fuzzy system model.................................16
Figure 3.1: The clonal selection principle..22
Figure 3.2: Flowchart of the proposed IPSO algorithm...24
Figure 3.3: Coding a neuro-fuzzy classifier into an antibody in the IPSO method.25
Figure 3.4: The flowchart of the mutation step..28
Figure 3.5: The coding of antibody population..29
Figure 3.6: Flowchart of the skin color detection system..31
Figure 3.7: The accuracy rate with different generations. ...32
Figure 3.8: The learning curves of the three methods using the CIT database............33
Figure 3.9: Original color images from CIT facial database.35
Figure 3.10: Results of skin color detection with 3 dimension input (Y, Cb and Cr)..36
Figure 4.1: Flowchart of proposed BFPSO method...44
Figure 4.2: Iris data: iris sestosa (), iris versiolor (), and iris virginica ().47
Figure 4.3: The distribution of input training patterns and final assignment of three
rules..50
Figure 4.4: Learning curves of the NFS-BFPSO method, the NFS-BFO method, and
the NFS-PSO method...51
Figure 4.5: Input membership functions for breast cancer classification.53
Figure 4.6: Learning curves from the NFS-BFPSO method, the NFS-BFO method and
the NFS-PSO method...54
Figure 4.7: The learning curves of the three methods using the CIT database............56
Figure 4.8: Original face images from CIT database...57
Figure 4.9: Results of skin color detection with 3 dimension input (Y, Cb, Cr)..........57
Figure 5.1: Flowchart of the proposed learning scheme for the FLNFN model..........61
Figure 5.2: Learning curves of best performance of the FLNFN-DMPSO,
CNFC-ISEL, SEFC and MFS-SE in MIMO plant control. ...68
Figure 5.3: Desired (solid line) and model (dotted line) output generated by
FLNFN-DMPSO in MIMO plant control. ...69
Figure 5.4: Errors of proposed FLNFN-DMPSO in MIMO plant control.69
Figure 5.5: Diagram of simulated truck and loading zone...71
Figure 5.6: Learning curves of best performance of the FLNFN-DMPSO,

- xi -

CNFC-ISEL, SEFC and MFS-SE in control of backing up the truck.72
Figure 5.7: Trajectories of truck, starting at four initial positions under the control of
the FLNFN-DMPSO after learning using training trajectories....................................74
Figure 5.8: Conventional training scheme. ..76
Figure 5.9: The regulation performance of the FLNFN-DMPSO controller for the
water bath system...79
Figure 5.10: The behavior of the FLNFN-DMPSO controller under impulse noise for
the water bath system...80
Figure 5.11: The behavior of the FLNFN-DMPSO controller when a change occurs in
the water bath system dynamics. ...80
Figure 5.12: The tracking performance of the FLNFN-DMPSO controller for the
water bath system...81
Figure 6.1: The learning curves of PSO and DMPSO methods using the CIT database.
..84
Figure 6.2: Original face images from CIT repository...85
Figure 6.3: Fitness maps generated by a well-trained FLNFN-DMPSO.....................86
Figure 6.4: Masks generated by a well-trained skin color classifier............................87
Figure 6.5: Results of skin color detection with YCbCr color space...........................88

- 1 -

Chapter 1

Introduction

1.1 Motivation

Fuzzy systems and neural networks have attracted the growing interest of

researchers in various scientific and engineering areas. The number and variety of

applications of fuzzy systems and neural networks [1-6] have been increasing, ranging

from consumer products and industrial process control to medical instrumentation,

information systems, and decision analysis.

Fuzzy systems are structured numerical estimators. They start from highly

formalized insights about the structure of categories found in the real world and then

articulate fuzzy IF-THEN rules as a kind of expert knowledge. Fuzzy systems

combine fuzzy sets with fuzzy rules to produce overall complex nonlinear behavior.

Neural networks, on the other hand, are trainable dynamical systems whose learning,

noise-tolerance, and generalization abilities grow out of their connectionist structures,

their dynamics, and their distributed data representation. Neural networks have a large

number of highly interconnected processing elements (nodes) which demonstrate the

ability to learn and generalize from training patterns or data; these simple processing

elements also collectively produce complex nonlinear behavior.

The performance of fuzzy systems critically depends on the input and output

membership functions, the fuzzy rules, and the fuzzy inference mechanism. On the

other hand, the performance of neural networks depends on the computational

function of the neurons in the network, the structure and topology of the network, and

the learning rule or the update rule of the connecting weights. The advantages and

- 2 -

disadvantages of fuzzy systems and neural networks are summarized as follows [7]:

The advantages of the fuzzy systems are:

• capacity to represent inherent uncertainties of the human knowledge with
linguistic variables;

• simple interaction of the expert of the domain with the engineer designer
of the system;

• easy interpretation of the results, because of the natural rules
representation;

• easy extension of the base of knowledge through the addition of new
rules;

• robustness in relation of the possible disturbances in the system.

The disadvantages of the fuzzy systems are:

• incapable to generalize, or either, it only answers to what is written in its
rule base;

• not robust in relation the topological changes of the system, such changes
would demand alterations in the rule base;

• depends on the existence of a expert to determine the inference logical
rules;

The advantages of the neural networks are:

• learning capacity;
• generalization capacity;
• robustness in relation to disturbances.

The disadvantages of the neural networks are:

• impossible interpretation of the functionality;
• difficulty in determining the number of layers and number of neurons.

The hybrid neuro-fuzzy systems [8-34] possess the advantages of both neural

networks (e.g. learning abilities, optimization abilities, and connectionist structures)

and fuzzy systems (e.g. humanlike IF-THEN rules thinking and ease of incorporating

expert knowledge). In this way, we can bring the low-level learning and

computational power of neural networks into fuzzy systems and also high-level,

- 3 -

humanlike IF-THEN rule thinking and reasoning of fuzzy systems into neural

networks.

There are several different ways to develop hybrid neuro-fuzzy systems;

therefore, being a recent research subject, each researcher has defined its own

particular models. These models are similar in its essence, but they present basic

differences. The most popular neuro-fuzzy architectures include: 1) Fuzzy Adaptive

Learning Control Network [8][20][21][29][35]; 2) Adaptive-Network-Based Fuzzy

Inference System [24]; 3) Self-Constructing Neural Fuzzy Inference Network [25];

and 4) Functional-Link-Based Neuro-Fuzzy Network [32][33]. The advantages of a

combination of neural networks and fuzzy inference systems are obvious [8][34-36].

Fusion of artificial neural networks and fuzzy inference systems have attracted the

growing interest of researchers in various scientific and engineering areas due to the

growing need of adaptive intelligent systems to solve the real world problems

[8][9][19][20][24][25][30][33-38].

No matter which neuro-fuzzy architecture is chosen, training of the parameters is

the main problem in designing a neuro-fuzzy system. Backpropagation (BP)

[20][24][25][32][35][38][39] training is commonly adopted to solve this problem. It is

a powerful training technique that can be applied to networks with a forward structure.

Since the steepest descent approach is used in BP training to minimize the error

function, the algorithms may reach the local minima very quickly and never find the

global solution. The aforementioned disadvantages lead to suboptimal performance,

even for a favorable neuro-fuzzy system topology. Therefore, technologies that can be

used to train the system parameters and find the global solution while optimizing the

overall structure are required.

Figure 1.1 sketches a rough taxonomy of global optimization methods [40].

Generally, optimization algorithms can be divided in two basic classes: deterministic

- 4 -

and probabilistic algorithms. Deterministic algorithms are most often used if a clear

relation between the characteristics of the possible solutions and their utility for a

given problem exists. Then, the search space can efficiently be explored using for

example a divide and conquer scheme. If the relation between a solution candidate

and its “fitness” are not so obvious or too complicated, or the dimensionality of the

search space is very high, it becomes harder to solve a problem deterministically.

Trying it would possible result in exhaustive enumeration of the search space, which

is not feasible even for relatively small problems. Then, probabilistic algorithms come

into play.

An especially relevant family of probabilistic algorithms is the Monte

Carlo-based approaches. They trade in guaranteed correctness of the solution for a

shorter runtime. This does not mean that the results obtained using them are incorrect

- they may just not be the global optima. An important class of probabilistic Monte

Carlo metaheuristics is evolutionary computation (EC). It encompasses all algorithms

that are based on a set of multiple solution candidates (called population) which are

iteratively refined. This field of optimization is also a class of soft computing as well

as a part of the artificial intelligence area. Some of its most important members are

evolutionary algorithms (EAs) and swarm intelligence (SI).

The particle swarm optimization (PSO) developed by Kennedy and Eberhart in

1995 [41-43], is a relatively new technique. Although PSO shares many similarities

with evolutionary computation techniques, the standard PSO does not use evolution

operators such as crossover and mutation. PSO emulates the swarm behavior of

insects, animals herding, birds flocking, and fish schooling where these swarms

search for food in a collaborative manner. Each member in the swarm adapts its

search patterns by learning from its own experience and other members’ experiences.

- 5 -

State Space
Search

Branch and
Bound

Algebraic
Geometry

(Stochastic)
Hill Climbing

Random
Optimization

Simulated
Annealing (SA)

Tabu Search
(TS)

Parallel
Tempering

Stochastic
Tunneling

Direct Monte
Carlo Sampling

Evolutionary
Algorithms (EA)

Genetic Algorithms
(GA)

Learning Classifier
System (LCS)

Evolutionary
Programming

Evolutionary
Strategy (ES)

Genetic
Programming (GP)

Differential
Evolution (DE)

Standard Genetic
Programming

Linear Genetic
Programming

Grammar Guide
Genetic Prog.

Swarm
Intelligence (SI)

Ant Colony
Optimization (ACO)

Particle Swarm
Optimization (PSO)

Memetic
Algorithms

Harmonic
Search (HS)

Evolutionary
Computation (EC)

Monte Carlo
Algorithms

Soft Computing

Artificial
Intelligence (AI)

Computational
Intelligence (CI)

Deterministic

Probabilistic

Figure 1.1: The taxonomy of global optimization algorithms.

During the past several years, PSO has been successfully applied to a diverse set

of optimization problems, such as multidimensional optimization problems [44],

multi-objective optimization problems [45-47], classification problems [48][49], and

feedforward neural network design [39][50-53]. Aggregation chart for applications of

the PSO over different years is shown in Figure 1.2 [54].

- 6 -

Figure 1.2: Aggregation chart for applications of the PSO over different years.

In this dissertation, we proposed the novel learning algorithms embedded with

particle swarm optimizer for the neural fuzzy system in both classification and

nonlinear system control applications.

1.2 Literature Survey

The underlying motivation for the development of PSO algorithm is the social

behavior of animals, such as bird flocking, fish schooling and swarm theory. To

simulate social behavior, bird flocking searches for food in an area. Each bird flies

according to self-cognition and social information. Self-cognition is the generalization

produced by past experience. The social information is the message that is shared by

the society. The strategy of the birds is to maintain the good experiences by referring

- 7 -

to the knowledge of the others. A PSO’s taxonomy is shown as Figure 1.3 [54].

Figure 1.3: Taxonomy of PSO.

- 8 -

In PSO, a member in the swarm, called a particle, represents a potential solution

which is a point in the search space. The global optimum is regarded as the location of

food. Each particle has a fitness value and a velocity to adjust its flying direction

according to the best experiences of the swarm to search for the global optimum in the

solution space [55].

In the original PSO algorithm, the particles are manipulated according to the

following equations:

1 1 1 1 1
1 1 2 2() ()t t t t t t

id id id id gd idc r p x c r p x               (1.1)

1 1t t t
id id idx x v   (1.2)

Here t
idx and t

idv are the thd dimensional component of the position and velocity

of the thi particle at time step t . t
idp is the thd component of the best (fitness)

position the thi particle has achieved by time step t , and t
gdp is the thd

component of the global best position achieved in the population by time step t . The

constants 1c and 2c are known as the “cognition” and “social” factors, respectively,

as they control the relative strengths of the individual behavior of each particle and

collective behavior of all particles. Finally, 1r and 2r are two different random

numbers in the range of 0 to 1 and are used to enhance the exploratory nature of the

PSO.

The two main models of the PSO algorithm, called gbest (global best) and

lbest (local best), which differ in the way of they define particle neighborhood.

Kennedy and Poli [43][56] showed that the gbest model has a high convergence

speed with a higher chance of getting stuck in local optima. On the contrary, the

lbest model is less likely become trapped in local optima but has a slower

convergence speed than gbest .

- 9 -

Many researchers have worked on improving its performance in various ways,

thereby deriving many interesting variants as shown in Figure 1.4 [54].

A Parallel
Vector-Based

PSO
(2005)

Active target
PSO

(2008)

Adaptive
Dissipative PSO

(2007)

Adaptive
Mutation PSO

(2008)

Adaptive PSO
(2002)

Adaptive PSO
Guided by

acceleration
information

(2006)

Angle
Modulated PSO

(2005)

Area Extension
PSO

(2007)

Attractive-
Repulsive PSO

(2002)

Basic PSO
(1995)

Behavior of
distance PSO

(2007)

Best rotation
PSO

(2007)

Binary PSO
(1997)

Chaos PSO
(2006)

Combinatorial
PSO

(2007)

Comprehensive
Learning PSO

(2006)

Constrained
Optimization

Via PSO
(2007) C

Cooperative Co-
evolutionary

PSO
(2008)

Cultural Based
PSO

(2005)

Discrete PSO
(1997)

Dissipative PSO
(2002)

Divided Range
PSO

(2004)

Double-
structure

coding Binary
PSO

(2007)

Dual Layered
PSO

(2007)

Dynamic &
Adjustable PSO

(2007)

Dynamic
Double PSO

(2004)

Dynamic
Neighborhood

PSO
(2003)

Estimation of
Distribution

PSO
(2007)

Evolutionary
Iteration PSO

(2007)

Evolutionary
Programming

PSO
(2007)

Evolutionary
PSO

(2002)

Exploring
Extended PSO

(2005)

Extended PSO
(2005)

Fast PSO
(2007)

Fully informed
PSO

(2004)

Fuzzy PSO
(2001)

Genetic Binary
PSO

(2006)

Genetic PSO
(2006)

Geometric PSO
(2008)

Greedy PSO
(2007)

Gregarious PSO
(2006)

Heuristic PSO
(2007)

Hierarchical
Recursive-
based PSO

(2005)

Hybrid Discrete
PSO

(2006)

Hybrid Gradient
PSO

(2004)

Hybrid Taguchi
PSO

(2006)

Immune PSO
(2008)

Improved PSO
(2006)

Interactive PSO
(2005)

Map-Reduce
PSO

(2007)

Modified Binary
PSO

(2007)

Modified GPSO
(2008)

Nbest PSO
(2002)

Neural PSO
(2005)

New PSO
(2006)

Niche PSO
(2002)

Novel Hybrid
PSO

(2007)

Novel PSO
(2008)

Optimized PSO
(2006)

Orthogonal
PSO

(2008)

Parallel
Asynchronous

PSO
(2006)

Perturbation
PSO

(2005)

Predator Prey
PSO

(2007)

PSO with
Craziness and
Hill Climbing

(2006)

PSO with
Passive

Congregation
(2004)

Pursuit-Escape
PSO

(2008)

Quadratic
Interpolation

PSO
(2007)

Quantum Delta
PSO

(2004)

Quantum PSO
(2004)

Quantum-
Inspired PSO

(2004)

Restricted
Velocity PSO

(2006)

Self-adaptive
velocity PSO

(2008)

Simulated
Annealing PSO

(2004)

Spatial
Extension PSO

(2002)

Special
Extension PSO

(2006)

Species Based
PSO

(2004)

Sub-Swarms
PSO

(2007)

Trained PSO
(2007)

Two-
dimensional

Otsu PSO
(2007)

Two-Swarm
PSO

(2006)

Unconstrained
PSO

(2006)

Variable
Neighborhood

PSO
(2006)

Vector Limited
PSO

(2008)

Velocity Limited
PSO

(2006)

Velocity
Mutation PSO

(2008)

Vertical PSO
(2007) ... Continuous Binary Discrete

Augmented
Lagrangian

PSO
(2006)

Cooperative
Multiple PSO

(2007)

Escape Velocity
PSO

(2006)

Gaussian PSO
(2003)

Hybrid
Recursive PSO

(2007)

New PSO
(2005)

Principal
Component

PSO
(2005)

Self-
Organization

PSO
(2006)

Unified PSO
(2004)

Figure 1.4: The variations of PSO.

One of the variants introduces a parameter called inertia weight (w) into the

original PSO algorithms [56-58], and Eq. (1.1) can be rewritten as follows:

1 1 1 1 1
1 1 2 2() ()t t t t t t

id id id id gd idw c r p x c r p x                (1.3)

The inertia weight is used to balance the global and local search abilities. A large

inertia weight is more appropriate for global search, and a small inertia weight

facilitates local search. A linearly decreasing inertia weight over the course of search

was proposed by Shi and Eberhart [58]. Parameters in PSO are discussed in [59]. Shi

and Eberhart designed fuzzy methods to nonlinearly change the inertia weight [60]. In

[61], inertia weight is set at zero, except at the time of re-initialization. In addition to

- 10 -

the time-varying inertia weight, a linearly decreasing maxv is introduced in [62]. By

analyzing the convergence behavior of the PSO, a PSO variant with a constriction

factor was introduced by Clerc and Kennedy [63]. Constriction factor guarantees the

convergence and improves the convergence velocity.

Improving PSO’s performance by designing different types of topologies has

been an active research direction. Kennedy [64][65] claimed that PSO with a small

neighborhood might perform better on complex problems, while PSO with a large

neighborhood would perform better on simple problems. Suganthan [66] applied a

dynamically adjusted neighborhood where the neighborhood of a particle gradually

increases until it includes all particles. In [67], Hu and Eberhart also used a dynamic

neighborhood where closest particles in the performance space are selected to be its

new neighborhood in each generation. Parsopoulos and Vrahatis combined the global

version and local version together to construct a unified particle swarm optimizer

(UPSO) [68][69]. Mendes and Kennedy introduced a fully informed PSO in [70].

Instead of using the pbest and gbest positions in the standard algorithm, all the

neighbors of the particle are used to update the velocity. The influence of each

particle to its neighbors is weighted based on its fitness value and the neighborhood

size. Veeramachaneni et al. developed the fitness-distance-ratio-based PSO

(FDR-PSO) with near neighbor interactions [71]. When updating each velocity

dimension, the FDR-PSO algorithm selects one other particle nbest , which has a

higher fitness value and is nearer to the particle being updated.

Some researchers investigated hybridization by combining PSO with other

search techniques to improve the performance of the PSO. Evolutionary operators

such as selection, crossover, and mutation have been introduced to the PSO to keep

the best particles [72], to increase the diversity of the population, and to improve the

ability to escape local optimum [73]. Mutation operators are also used to mutate

- 11 -

parameters such as the inertia weight [74]. Relocating the particles when they are too

close to each other [75] or using some collision-avoiding mechanisms [76] to prevent

particles from moving too close to each other in order to maintain the diversity and to

escape from local optima has also been used. In [73], the swarm is divided into

subpopulations, and a breeding operator is used within a subpopulation or between the

subpopulations to increase the diversity of the population. Negative entropy is used to

discourage premature convergence in [77]. In [78], deflection, stretching, and

repulsion techniques are used to find as many minima as possible by preventing

particles from moving to a previously discovered minimal region. Recently, a

cooperative particle swarm optimizer (CPSO-H) [79] was proposed. Although

CPSO-H uses one-dimensional (1-D) swarms to search each dimension separately, the

results of these searches are integrated by a global swarm to significantly improve the

performance of the original PSO on multimodal problems.

From our review of the state-of-the-art, we noticed two tendencies: 1) PSO

variants are mostly added with further operators (e.g. mutation operator) and

mechanisms (e.g. “fly-back”, multi-swarms, co-evolution), and 2) PSO variants are

merged into one in order to improve its performance. Therefore, in this dissertation,

we present three novel PSO-based learning algorithms for the neuro-fuzzy systems

according to these two tendencies.

1.3 Organization of Dissertation

The overall objective of this dissertation is to develop the novel learning

algorithms embedded with particle swarm optimizer for the neuro-fuzzy systems. The

proposed learning algorithms are suitable for any neuro-fuzzy architecture. In this

- 12 -

research, we take the functional-link-based neuro-fuzzy network (FLNFN) model for

example to demonstrate the performance of the proposed learning algorithms.

Organization and objectives of each chapter in this dissertation are as follows.

In Chapter 2, we describe the structure of FLNFN model. The FLNFN model is

based on our laboratory’s previous research [32]. Each fuzzy rule corresponds to a

sub-FLNN [80-82] comprising a functional expansion of input variables. The

functional link neural network (FLNN) is a single layer neural structure capable of

forming arbitrarily complex decision regions by generating nonlinear decision

boundaries with nonlinear functional expansion. Therefore, the consequent part of the

FLNFN model is a nonlinear combination of input variables, which differs from the

other existing models [20][24][25].

In Chapter 3, we propose an efficient immune-based particle swarm optimization

(IPSO) algorithm for neuro-fuzzy classifiers to solve the skin color detection problem.

The proposed IPSO algorithm combines the immune algorithm (IA) and PSO to

perform parameter learning. The IA uses the clonal selection principle, such that

antibodies between others of high similar degree are affected, and these antibodies,

after the process, will have higher quality, accelerating the search and increasing the

global search capacity. On the other hand, we employed the advantages of PSO to

improve the mutation mechanism of IA. Simulations have conducted to show the

performance and applicability of the proposed method.

In Chapter 4, we present an evolutionary neural fuzzy classifier, designed using

the neural fuzzy system (NFS) and a new evolutionary learning algorithm. This new

evolutionary learning algorithm is based on a hybrid of bacterial foraging

optimization (BFO) and PSO. It is thus called bacterial foraging particle swarm

optimization (BFPSO). The proposed BFPSO method performs local search through

the chemotactic movement operation of bacterial foraging whereas the global search

- 13 -

over the entire search space is accomplished by a particle swarm operator. The

proposed NFS with BFPSO learning algorithm (NFS-BFPSO) is adopted in several

classification applications. Experimental results have demonstrated that the proposed

NFS-BFPSO method can outperform other methods.

In Chapter 5, we present an evolutionary NFS for nonlinear system control. A

supervised learning algorithm, which consists of structure learning and parameter

learning, is presented. The structure learning depends on the entropy measure to

determine the number of fuzzy rules. The parameter learning, based on the PSO

algorithm, can adjust the shape of the membership function and the corresponding

weighting of the FLNN. The distance-based mutation operator, which strongly

encourages a global search giving the particles more chance of converging to the

global optimum, is introduced. The simulation results have shown the proposed

method can improve the searching ability and is very suitable for the nonlinear system

control applications.

In Chapter 6, we compare the performance of the proposed learning algorithms

using skin color detection problem. In addition, a brief discussion of the proposed

learning methods is also made.

Finally, Chapter 7 draws conclusions and future works.

- 14 -

Chapter 2

Structure of the Functional-Link-Based

Neuro-Fuzzy Network

In the field of artificial intelligence, neural networks are essentially low-level

computational structures and algorithms that offer good performance when they deal

with sensory data. However, it is difficult to understand the meaning of each neuron

and each weight in the networks. Generally, fuzzy systems are easy to appreciate

because they use linguistic terms and IF-THEN rules. However, they lack the learning

capacity to fine-tune fuzzy rules and membership functions. Therefore, neuro-fuzzy

networks combine the benefits of neural networks and fuzzy systems to solve many

engineering problems.

In [83], the definition of hybrid neuro-fuzzy system is as follows: “A hybrid

neuro-fuzzy system is a fuzzy system that uses a learning algorithm based on

gradients or inspired by the neural networks theory (heuristic learning strategies) to

determine its parameters (fuzzy sets and fuzzy rules) through the patterns processing

(input and output)”. In other words, neuro-fuzzy networks bring the low-level

learning and computational power of neural networks into fuzzy systems and give the

high-level human-like thinking and reasoning of fuzzy systems to neural networks.

Recently, neuro-fuzzy networks have become popular topics of research. The

advantages of a combination of neural networks and fuzzy inference systems are

obvious [8][34-36]. They not only have attracted considerable attention due to their

diverse applications in fields such as pattern recognition, image processing, prediction,

and control, but they can also handle imprecise information through linguistic

- 15 -

expressions. The most popular neuro-fuzzy architectures include: 1) Fuzzy Adaptive

Learning Control Network (FALCON) [8][20][21][29][35]; 2)

Adaptive-Network-Based Fuzzy Inference System (ANFIS) [24]; 3)

Self-Constructing Neural Fuzzy Inference Network (SONFIN) [25]; and 4)

Functional-Link-Based Neuro-Fuzzy Network (FLNFN) [32][33].

In this dissertation, the selected NFS model is based on our laboratory’s previous

research [32][33], called FLNFN. Figure 2.1 presents the structure of the FLNFN

model, which combines a neuro-fuzzy network with a FLNN [80-82]. The FLNN

[81][84] is a single layer neural structure capable of forming arbitrarily complex

decision regions by generating nonlinear decision boundaries with nonlinear

functional expansion. Moreover, the FLNN was conveniently used for function

approximation and pattern classification with faster convergence rate and less

computational loading than a multilayer neural network. In the selected FLNFN

model, each fuzzy rule that corresponds to a FLNN consists of a functional expansion

of input variables, which differs from the other existing models [20][24][25].

The FLNFN model realizes a fuzzy IF-THEN rule in the following form.

Rule j :

IF 1 1ˆ is jx A and 2 2ˆ is jx A … and ˆ is i ijx A … and ˆ is N Njx A

THEN 1 1 2 2
1

ˆ ...
M

j kj k j j Mj M
k

y w w w w   


    
(2.1)

where ix̂ and jŷ are the input and local output variables, respectively; ijA is the

linguistic term of the precondition part with a Gaussian membership function; N is

the number of input variables; kjw is the link weight of the local output; k is the

basis trigonometric function of input variables; M is the number of basis functions,

and Rule j is the thj fuzzy rule.

- 16 -

1x̂ 2x̂

3ŷ2ŷ1ŷ

1x̂ 2x̂

Figure 2.1: Structure of the selected neuro-fuzzy system model.

The operation functions of the nodes in each layer of the FLNFN model are now

described. In the following description, ()lu denotes the output of a node in the thl

layer.

Layer 1 (Input node): No computation is performed in this layer. Each node in

this layer is an input node, which corresponds to one input variable, and only

transmits input values to the next layer directly:

ii xu ˆ)1( (2.2)

Layer 2 (Membership function node): Nodes in this layer correspond to a single

- 17 -

linguistic label of input variables in layer 1. Therefore, the calculated membership

value specifies the degree to which an input value belongs to a fuzzy set in layer 2.

The implemented Gaussian membership function in layer 2 is

(1) 2
(2)

2

[]
exp i ij

ij
ij

u m
u


 

   
 

 (2.3)

where ijm and ij are the mean and standard deviation of the Gaussian

membership function, respectively, of the thj term of the thi input variable ix̂ .

Layer 3 (Rule Node): Nodes in this layer represent the preconditioned part of a

fuzzy logic rule. They receive one-dimensional membership degrees of the associated

rule from the nodes of a set in layer 2. Here, the product operator described above is

adopted to perform the IF-condition matching of the fuzzy rules. As a result, the

output function of each inference node is


i

ijj uu)2()3((2.4)

where the 
i

iju)2(of a rule node represents the firing strength of its corresponding

rule.

Layer 4 (Consequent Node): Nodes in this layer are called consequent nodes.

The input to a node in layer 4 is the output from layer 3, and the other inputs are

nonlinear combinations of input variables from a FLNN, as shown in Figure 2.1. For

such a node,





M

k
kkjjj wuu

1

)3()4( (2.5)

where kjw is the corresponding link weight of the FLNN and k is the functional

expansion of input variables. Considering the computational efficiency, the functional

expansion uses a trigonometric polynomial basis function, given by

- 18 -

   1 2 3 4 5 6 1 1 1 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , sin (), cos (), , sin (), cos ()x x x x x x          for the

two-dimensional input variables  1 2ˆ ˆ, x x . Therefore, M is the number of basis

functions, 3M N  , where N is the number of input variables. Moreover, the

output nodes of FLNN depend on the number of fuzzy rules of the FLNFN model.

Layer 5 (Output Node): Each node in this layer corresponds to a single output

variable. The node integrates all of the actions recommended by layers 3 and 4 and

acts as a center of area (COA) defuzzifier with







 











 



 









 R

j

)(
j

R

j
j

)(
j

R

j

)(
j

R

j

M

k
kkj

)(
j

R

j

)(
j

R

j

)(
j

)(

u

ŷu

u

wu

u

u

uy

1

3

1

3

1

3

1 1

3

1

3

1

4

5


 (2.6)

where R is the number of fuzzy rules, and y is the output of the FLNFN model.

As described above, the number of tuning parameters for the FLNFN model is

known to be (2 3)P N R   , where N , R , and P denote the number of inputs,

existing rules, and outputs, respectively.

- 19 -

Chapter 3

Immune Algorithm Embedded with

Particle Swarm Optimizer for

Neuro-Fuzzy Classifier and Its

Applications

Skin color detection is the process of finding skin-colored pixels and regions in

an image or a video. This process is typically used as a preprocessing step to find

regions that potentially have human faces and limbs in images. Several computer

vision approaches have been developed for skin color detection. A skin color detector

typically transforms a given pixel into an appropriate color space and then use a skin

color classifier to label the pixel whether it is a skin or a non-skin pixel. A skin color

classifier defines a decision boundary of the skin color class in the color space based

on a training database of skin-colored pixels.

This chapter presents the efficient immune-based particle swarm optimization

(IPSO) for neuro-fuzzy classifiers to solve the skin color detection problem. The

proposed IPSO algorithm combines the immune algorithm (IA) and particle swarm

optimization (PSO) to perform parameter learning. The IA uses the clonal selection

principle to affect antibodies between others of high similar degree, and these

antibodies, after the process, will be of higher quality, accelerating the search, and

increasing the global search capacity. The PSO algorithm, proposed by Kennedy and

Eberhart [41-43], has proved to be very effective for solving global optimization. It is

not only a recently invented high-performance optimizer that is easy to understand

- 20 -

and implement, but it also requires little computational bookkeeping and generally

only a few lines of code [85]. In order to avoid trapping in a local optimal solution

and to ensure the search capability of a near global optimal solution, mutation plays

an important role in IPSO. Therefore, we employ the advantages of PSO to improve

mutation mechanism of IA. The proposed method can improve the searching ability

and greatly increase the converging speed that we can observe in the simulations.

3.1 Basic Concepts of the Artificial Immune System

The biological immune system is successful at protecting living bodies from the

invasion of various foreign substances, such as viruses, bacteria, and other parasites

(called antigens), and eliminating debris and malfunctioning cells. Over the last few

years, a growing number of computer scientists have carefully studied the success of

this competent natural mechanism and proposed computer immune models, named

artificial immune systems (AIS), for solving various problems [86-94]. AIS aim at

using ideas gleaned from immunology in order to develop adaptive systems capable

of performing a wide range of tasks in various areas of research.

In this research, we review the clonal selection concept, together with the affinity

maturation process, and demonstrate that these biological principles can lead to the

development of powerful computational tools. The algorithm to be presented focuses

on a systemic view of the immune system and does not take into account cell-cell

interactions. It is not our concern to model exactly any phenomenon, but to show that

some basic immune principles can help us not only to better understand the immune

system itself, but also to solve complex engineering tasks.

- 21 -

3.2 Clonal Selection Theory

Any molecule that can be recognized by the adaptive immune system is known

as an antigen (Ag). When an animal is exposed to an Ag, some subpopulation of its

bone-marrow-derived cells (B lymphocytes) responds by producing antibodies (Ab’s).

Ab’s are molecules attached primarily to the surface of B cells whose aim is to

recognize and bind to Ag’s. Each B cell secretes a single type of antibody (Ab), which

is relatively specific for the Ag. By binding to these Ab’s (cell receptors) and with a

second signal from accessory cells, such as the T-helper cell, the Ag stimulates the B

cell to proliferate (divide) and mature into terminal (non-dividing) Ab secreting cells,

called plasma cells. The process of cell division (mitosis) generates a clone, i.e., a cell

or set of cells that are the progenies of a single cell. While plasma cells are the most

active Ab secretors, large B lymphocytes, which divide rapidly, also secrete Ab’s,

albeit at a lower rate. On the other hand, T cells play a central role in the regulation of

the B cell response and are preeminent in cell mediated immune responses, but will

not be explicitly accounted for the development of our model.

Lymphocytes, in addition to proliferating and/or differentiating into plasma cells,

can differentiate into long-lived B memory cells. Memory cells circulate through the

blood, lymph and tissues, and when exposed to a second antigenic stimulus

commence to differentiate into large lymphocytes capable of producing high affinity

antibodies, pre-selected for the specific antigen that had stimulated the primary

response [95]. In this study, we treat the long-lived B memory cells as the better

antibodies by elitism selection. Figure 3.1 depicts the clonal selection principle [95].

The main features of the clonal selection theory [96][97] that will be explored in

this study are:

• Proliferation and differentiation on stimulation of cells with Ag’s;

- 22 -

• Generation of new random genetic changes, subsequently expressed as

diverse Ab patterns, by a form of accelerated somatic mutation (a process

called affinity maturation);

• Elimination of newly differentiated lymphocytes carrying low affinity

antigenic receptors.

Figure 3.1: The clonal selection principle.

3.3 The Efficient Immune-Based PSO Learning Algorithm

This section describes the efficient immune-based PSO (IPSO) learning

algorithm for use in the neuro-fuzzy classifier. Analogous to the biological immune

system, the proposed algorithm has the capability of seeking feasible solutions while

maintaining diversity. The proposed IPSO combines the immune algorithm (IA) and

particle swarm optimization (PSO) to perform parameter learning. The IA uses the

- 23 -

clonal selection principle to accelerate the search and increase global search capacity.

The PSO algorithm has proved to be very effective for solving global optimization. It

is not only a recently invented high-performance optimizer that is very easy to

understand and implement, but it also requires little computational bookkeeping and

generally only a few lines of code. In order to avoid trapping in a local optimal

solution and to ensure the search capability of a near global optimal solution, mutation

plays an important role in IPSO. Moreover, the PSO adopted in evolution algorithm

yields high diversity to increase the global search capacity, as well as the mutation

scheme. Therefore, we employed the advantages of PSO to improve the mutation

mechanism of IA. A detailed IPSO of the neuro-fuzzy classifier is presented in Figure

3.2. The whole learning process is described step-by-step below.

3.3.1 Code fuzzy rule into antibody

The coding step is concerned with the membership functions and the

corresponding parameters of the consequent part of a fuzzy rule that represent Ab’s

suitable for IPSO. This step codes a rule of a neuro-fuzzy classifier into an Ab. Figure

3.3 shows an example of a neuro-fuzzy classifier coded into an Ab (i.e. an Ab

represents a rule set), where i and j represent the thi dimension and the thj rule,

respectively. In this research, a Gaussian membership function is used with variables

representing the mean and standard deviation of the membership function. Each fuzzy

rule has the form in Figure 2.1, where ijm and ij represent a Gaussian

membership function with mean and standard deviation of the thi dimension and thj

rule node and ijw represents the corresponding parameters of consequent part.

- 24 -

Figure 3.2: Flowchart of the proposed IPSO algorithm.

- 25 -

Figure 3.3: Coding a neuro-fuzzy classifier into an antibody in the IPSO method.

3.3.2 Determine the initial parameters by self-clustering algorithm

Before the IPSO method is designed, the initial Ab’s in the populations are

generated according to the initial parameters of the antecedent part and the consequent

part. In this study, the initial parameters of a neuro-fuzzy classifier were computed by

the self-clustering algorithm (SCA) method [52][98][99]. That is, we used SCA

method to determine the initial mean and standard deviation of the antecedent part.

On the other hand, the initial link weight of the consequent part is a random number

in the range of 0 to 1.

SCA is a distance-based connectionist clustering algorithm. In any cluster, the

maximum distance between an example point and the cluster center is less than a

threshold value. This clustering algorithm sets clustering parameters and affects the

number of clusters to be estimated. In the clustering process, the data examples come

from a data stream. The clustering process starts with an empty set of clusters. The

clusters will be updated and changed depending on the position of the current

example in the input space.

3.3.3 Produce initial population

In the immune system, the Ab’s are produced in order to cope with the Ag’s. In

other words, the Ag’s are recognized by a few of high affinity Ab’s (i.e. the Ag’s are

optimal solutions). The first initial Ab utilizing a real variable string is generated by

- 26 -

SCA, and the other Ab’s of population are generated based on the first initial Ab by

adding some random value.

3.3.4 Calculate affinity values

For the large number of various Ag’s, the immune system has to recognize them

for their posterior influence. In biological immune system, affinity refers to the

binding strength between a single antigenic determinants and an individual

antibody-combining site. The process of recognizing Ag’s is to search for Ab’s with

the maximum affinity with Ag’s. Moreover, every Ab in the population is applied to

problem solving, and the affinity value is a performance measure of an Ab which is

obtained according to the error function. In this study, the affinity value is designed

according to the follow formulation:

 2

1

1
11

DN
d

k k
kD

Affinity value

y y
N 



 

(3.1)

where ky represents the thk model output, d
ky represents the desired output, and

DN represents the number of the training data. In the problems, the higher affinity

refers to the better Ab.

3.3.5 Production of sub-antibodies

In this step, we will generate several neighborhoods to maintain solution

variation. This strategy can prevent the search process from becoming premature. We

can generate several clones for each Ab on feasible space by Eqs. (3.2), (3.3) and (3.4).

Each Ab regarded as parent while the clones regarded as children (sub-antibodies). In

other words, children regarded as several neighborhoods of near parent.

mean: _[] []i c iclones children antibody parent   (3.2)

- 27 -

deviation: _[] []i c iclones children antibody parent   (3.3)

weight : _[] []i c iclones children antibody parent   (3.4)

where iparent represents the thi Ab from the Ab population; _i cchildren

represents clones number c from the thi Ab;  and  are parameters that

control the distance between parent. In this scheme,  and  are important

parameters. The large values lead to the speed of convergence slowly and the search

of optimal solution difficulty, whereas the small values lead to fall in a local optimal

solution easily. Therefore, the selection of the  and  will critically affect the

learning results, and their values will be based on practical experimentation or on

trial-and-error tests.

3.3.6 Mutation of sub-antibodies based on PSO

In order to avoid trapping in a local optimal solution and to ensure the search

capability of near global optimal solution, mutation plays an important role in IPSO.

Moreover, the PSO adopted in evolution algorithm yields high diversity to increase

the global search capacity, as well as the mutation step. Hence, we employed the

advantages of PSO to improve mutation mechanism. Through the mutation step, only

one best child can survive to replace its parent and enter the next generation.

PSO is a recently invented high-performance optimizer that is very easy to

understand and implement. Each particle has a velocity vector iv and a position

vector ix to represent a possible solution. In this research, the velocity for each

particle is updated by Eq. (1.3). The parameter (0, 1]w is the inertia of the particle,

and controls the exploratory properties of the algorithm. The constants 1c and 2c

are known as the “cognition” and “social” factors, respectively. 1r and 2r are

uniformly distributed random numbers in [0, 1]. The term iv is limited to the range

- 28 -

maxv . If the velocity violates this limit, it will be set at its proper limit. Changing

velocity enables every particle to search around its individual best position and global

best position. Based on the updated velocities, each particle changes its position

according to Eq. (1.2).

When every particle is updated, the affinity value of each particle is calculated

again. If the affinity value of the new particle is higher than those of local best, then

the local best will be replaced with the new particle. Moreover, in the mutation step,

each Ab (or particle) in the population must be mutated only one time by PSO in each

generation. The mutation step flowchart is presented in Figure 3.4.

{

{
{

{
}
}

}
}

Figure 3.4: The flowchart of the mutation step.

3.3.7 Promotion and suppression of antibodies

In order to affect Ag’s and keep diversity to a certain degree, we use information

entropy theory to measure the diversity of Ab’s. If the affinity between two Ab’s is

greater than the suppression threshold affTh , these two Ab’s are similar, and the Ab of

lower affinity value is reduced a small amount of value  . Figure 3.5 shows the

- 29 -

immune algorithm composed of N Ab’s having L genes.

….. …..Antibody 1
.....

Antibody k

Antibody N

.....

….. …..

….. …..

1 2 ….. l ….. L-1 L

G1,l

Gk,l

GN,l

Gene

Figure 3.5: The coding of antibody population.

From information entropy theory, we get





N

i
ilill PPNIE

1

log)((3.5)

where ilP is the probability that the thi allele comes out at the thl gene. The

diversity of the genes is calculated using Eq. (3.5). The average entropy value ()IE N

of diversity can be also computed as follows:





L

l
l NIE

L
NIE

1

)(1)((3.6)

where L is the size of the gene in an Ab. Equation (3.6) yields the diversity of the

Ab pool in terms of the entropy. There are two kinds of affinities in IPSO. One

explains the relationship between an Ab and an Ag using Eq. (3.1). The other accounts

for the degree of association between the thj Ab and the thk Ab and measures how

similar these two Ab’s are. It can be calculated by using

)2(1
1_
IE

AbAffinity jk 
 (3.7)

- 30 -

where _ jkAffinity Ab is the affinity between two Ab’s j and k , and (2)IE is the

entropy of only the Ab’s j and k . This affinity is constrained from zero to one.

When (2)IE is zero, the genes of the thj Ab and the thk Ab are the same.

3.3.8 Elitism selection

When a new generation is created, the risk of losing the best Ab is always

existent. In this study, we adopt elitism selection to overcome the above-mentioned

problem. Therefore, the Ab’s are ranked in ascending order of their affinity values.

The best Ab is kept as the parent for the next generation. Moreover, the best Ab and

Ab’s with high antigenic affinity are transformed into long-lived B memory cells.

Elitism selection improves the efficient of IPSO considerably, as it prevents losing the

best result.

3.4 Skin Color Detection

Detecting skin-colored pixels, although seems a straightforward easy task, has

proven quite challenging for many reasons. The appearance of skin in an image

depends on the illumination conditions where the image was captured. Therefore, an

important challenge in skin detection is to represent the color in a way that is invariant

or at least insensitive to changes in illumination. The choice of the color space affects

greatly the performance of any skin detector and its sensitivity to change in

illumination conditions. Another challenge comes from the fact that many objects in

the real world might have skin-tone colors. This causes any skin detector to have

much false detection in the background if the environment is not controlled.

Figure 3.6 shows a flowchart of a skin color detection system. Skin detection

- 31 -

process has two phases: a training phase and a detection phase. Training a skin

detector involves three basic steps:

1. Collecting a database of skin patches from different images. Such a

database typically contains skin-colored patches from a variety of people

under different illumination conditions.

2. Choosing a suitable color space.

3. Learning the parameters of a skin classifier.

Given a trained skin detector, identifying skin pixels in a given image or video

frame involves:

1. Converting the image into the same color space that was used in the training

phase.

2. Classifying each pixel using the skin classifier to either a skin or non-skin.

3. Typically post processing is needed using morphology to impose spatial

homogeneity on the detected regions.

Figure 3.6: Flowchart of the skin color detection system.

- 32 -

In this research, we used the California Institute of Technology (CIT) facial

database (on http://www.vision.caltech.edu/Image_Datasets/faces/.) The database has

450 color images, the size of each being 320×240 pixels, and contains 27 different

people and a variety of lighting, backgrounds, and facial expressions.

Three input dimensions (Y, Cb and Cr) were used in this experiment. We chose

6000 training data and 6000 testing data. We used the CIT database to produce both

the training data and the testing data. We chose 3000 skin and 3000 non-skin pixels as

the training data in the color images. Also, we chose other 3000 skin and 3000

non-skin pixels as the testing set. We set four rules constituting a neuro-fuzzy

classifier.

The number of Ab’s for a swarm was set to 100. With the same initial condition,

the accuracy rate with different generations for 50 runs is shown in Figure 3.7 and

tabulated in Table 3.1. It seems a good choice to terminate the training phase after

2000 generations process.

Figure 3.7: The accuracy rate with different generations.

- 33 -

Table 3.1: The accuracy rate with different generations (%)

Generations
200 1000 2000 3000 4000

Best accuracy rate (training) 95.57% 96.02% 96.58% 96.52% 96.53%
Worst accuracy rate (training) 78.72% 82.6% 85.9% 85.52% 85.93%
Average accuracy rate (training) 89.08% 92.33% 93.32% 93.23% 93.27%

Figure 3.8: The learning curves of the three methods using the CIT database.

In this example, the performance of the IPSO method is compared with the IA

method [94], and the PSO method [41]. First, the learning curves of IA, PSO and

IPSO methods are shown in Figure 3.8. In Figure 3.8, we find that the performance of

the proposed IPSO method is superior to the other methods. Furthermore, the

comparison items include the training and testing accuracy rates are tabulated in Table

3.2.

- 34 -

Table 3.2: Performance comparison with various existing models from the CIT
database (Training data: 6000; Generations: 2000)

Method IPSO IA [94] PSO [41]
Best 96.58% 93.5% 83.72%
Worst 85.9% 82.53% 73.25% Accuracy rate (Training data)
Average 93.32% 88.1% 79.05%

Best 95.43% 87.4% 79.77%
Worst 82.1% 76.15% 67.3% Accuracy rate (Testing data)
Average 90.18% 82.63% 74.32%

The CIT facial database consists of complex backgrounds and diverse lighting.

Hence, from the comparison data listed in Table 3.2, the average of the test accuracy

rate is 74.32% for PSO, 82.63% for IA and 90.18% for the proposed IPSO. The

proposed IPSO method still maintains a superior test accuracy rate. To demonstrate

the skin color detection result, the color images from the CIT database are shown in

Figure 3.9. A well-trained classifier can generate binary outputs (1/0 for skin/non-skin)

to detect a facial region. Figure 3.10 shows that our approach accurately determines a

facial region.

3.5 Concluding Remarks

In this chapter, the efficient immune-based particle swarm optimization (IPSO) is

proposed to improve the searching ability and the converge speed. We proposed the

IPSO for a neuro-fuzzy classifier to solve the skin color detection problem. The

advantages of the proposed IPSO method are summarized as follows: 1) We

employed the advantages of PSO to improve the mutation mechanism; 2) The

experimental results show that our method is more efficient than IA and PSO in

accuracy rate and convergence speed.

- 35 -

Figure 3.9: Original color images from CIT facial database.

- 36 -

Figure 3.10: Results of skin color detection with 3 dimension input (Y, Cb and Cr).

- 37 -

Chapter 4

An Evolutionary Neural Fuzzy Classifier

Using Bacterial Foraging Oriented by

Particle Swarm Optimization Strategy

Classification is one of the most important tasks for different application such as

text categorization, tone recognition, image classification, micro-array gene

expression, proteins structure predictions, data classification etc. There are many

methods to construct classifiers, such as statistical models [100], neural networks

[37][39][101], and fuzzy systems [6][16][17][102]. Most of the existing supervised

classification methods are based on traditional statistics, which can provide ideal

results when sample size is tending to infinity. However, only finite samples can be

acquired in practice.

In this chapter, an evolutionary neural fuzzy classifier, using bacterial foraging

oriented by particle swarm optimization strategy (BFPSO), is applied on different data

sets which have two or multi class. The proposed BFPSO is a hybrid method which

combines bacterial foraging optimization (BFO) and particle swarm optimization

(PSO). The proposed algorithm performs local search through the chemotactic

movement operation of BFO whereas the global search over the entire search space is

accomplished by a PSO operator. In this way it balances between exploration and

exploitation enjoying best of both the worlds.

- 38 -

4.1 Basic Concepts of Bacterial Foraging Optimization

Passino [103] proposed the BFO in 2002. The idea of the BFO is based on the

fact that natural selection tends to eliminate animals with poor “foraging strategies”

and favor the propagation of genes of those animals that have successful foraging

strategies. After many generations, poor foraging strategies are either eliminated or

shaped into good ones. Logically, such evolutionary principles have led scientists in

the field of “foraging theory” to hypothesize that it is appropriate to model the activity

of foraging as an optimization process. Take the E. coli bacteria (the ones that are

living in our intestines) foraging strategy for instance, their foraging strategy is

governed by four processes, namely, chemotaxis, swarming, reproduction, and

elimination-and-dispersal.

4.1.1 Chemotaxis

Chemotaxis is achieved through swimming and tumbling. Depending upon the

rotation of the flagella in each bacterium, it decides whether it should move in a

predefined direction (swimming) or in an altogether different direction (tumbling),

over the entire lifetime of the bacterium.

Let S denote the bacterial population size and cN be the length of the lifetime

of the bacteria as measured by the number of chemotactic steps they take during their

life. Let () 0, 1, 2, ,C i i S   denote a basic chemotactic step size that we will use

to define the lengths of steps during runs. To represent a tumble, a unit-length random

direction, say  j , is generated; this will be used to define the direction of

movement after a tumble. In particular, we let

       1, , , ,i ij k l j k l C i j     (4.1)

where  , ,i j k l represents the location of the thi bacterium at the thj

- 39 -

chemotactic step, thk reproduction step, and thl elimination-dispersal event.  C i

is the size of the step taken in the random direction specified by the tumble.

Then, the movement of the thi bacterium at thj chemotactic step, can be

represented as

       
   

1, , , ,i i

T

j
j k l j k l C i

j j
 


   

 
 (4.2)

where  j is the direction vector of the thj chemotactic step.

With the activity of run or tumble taken at each step of the chemotaxis process, a

step fitness, denoted as  , , ,J i j k l , will be evaluated. If at  1, ,i j k l  the cost

 , 1, ,J i j k l is better (lower) than at  , ,i j k l , then another step of size  C i in

this same direction will be taken, and again, if that step resulted in a position with a

better cost value than at the previous step, another step is taken. This swim is

continued as long as it continues to reduce the cost, but only up to a maximum

number of steps, sN . This represents that the cell will tend to keep moving if it is

headed in the direction of increasingly favorable environments.

4.1.2 Swarming

It is always desired for the bacterium that has searched out the optimum path of

food should try to attract other bacteria, so that they reach the desired place more

rapidly. Swarming makes the bacteria congregate into groups, and hence move as

concentric patterns of groups with high bacterial density. Mathematically, swarming

can be represented as

- 40 -

   

 

 

1

2

1 1

2

1 1

, (, ,) , , ,

exp

exp

S
i i

cc cc
i

pS
i

attract attract m m
i m

pS
i

repellant repellant m m
i m

J P j k l J j k l

d

h

  

  

  



 

 

   

  
     

  
  

    
  



 

 

 (4.3)

where  , (, ,)ccJ P j k l is the value of the cost function to be added to the actual cost

function to minimize a time-varying cost function; S is the total number of bacteria;

p is the number of parameters to be optimized that are present in each bacterium;

and attractd , attract , repellanth and repellant are different coefficients that are to be

judiciously chosen.

4.1.3 Reproduction

After cN chemotactic steps, a reproduction step is taken. Let reN be the

number of reproduction steps to be taken. The health cost of each bacterium is

calculated as the sum of the step fitness during its life, that is,  
1

1

, , ,
cN

i
health

j

J J i j k l




  ,

where cN is the maximum step in a chemotaxis process. For convenience, we

assume that 2 rS S  is a positive even integer. The population is sorted in order of

ascending accumulated cost (higher accumulated cost represents that a bacterium did

not get as many nutrients during its lifetime of foraging and hence is not as “healthy”

and thus unlikely to reproduce); then the rS least healthy bacteria die and the other

rS healthiest bacteria each split into two bacteria, which are placed at the same

location. Thus, the population of bacteria keeps constant which is very convenient in

coding the algorithm.

4.1.4 Elimination-and-Dispersal

Let edN be the number of elimination-dispersal events. The chemotaxis

- 41 -

provides a basis for local search, and the reproduction process speeds up the

convergence which has been simulated by the classical BFO. While to a large extent,

only chemotaxis and reproduction are not enough for global optima searching. Since

bacteria may get stuck around the initial positions or local optima, it is possible for the

diversity of BFO to change either gradually or suddenly to eliminate the accidents of

being trapped into the local optima. In BFO, the dispersion event happens after a

certain number of reproduction processes. Then some bacteria are chosen, according

to a preset probability edp , to be killed and moved to another position within the

environment.

4.2 Learning Algorithms for the NFS Model

BFO is based on the foraging behavior of Escherichia Coli (E. Coli) bacteria

present in the human intestine and already been in use to many engineering problems,

such as optimal control [104][105], and machine learning [106]. However, bacteria

foraging strategies with fixed step size suffers from two main problems. If the step

size is very large, then the precision becomes low, although the bacterium quickly

reaches the vicinity of the optimum point. It moves around the maximum for the

remaining chemotactic steps. If the step size is very small, then it takes many

chemotactic steps to reach the optimum point. The rate of convergence thus decreases

[107].

In PSO, a particle represents a potential solution which is a point in the search

space. Each particle has a fitness value and a velocity to adjust its flying direction

according to the best experiences of the swarm to search for the global optimum in the

solution space. In Eq. (1.3), the inertia weight is used to balance the global and local

- 42 -

search abilities. A large inertia weight is more appropriate for global search, and a

small inertia weight facilitates local search.

The proposed BFPSO algorithm, a new algorithm that combines BFO with PSO

algorithm, is endowed with high convergence speed and commendable accuracy. This

can be otherwise stated as the PSO performing a global search and providing a near

optimal solution very quickly which is followed by a local search by BFO which

fine-tunes the solution and gives an optimum solution of high accuracy. PSO has an

inherent disability of trapping in the local optima but high convergence speed whereas

BFO has the drawback of having a very poor convergence speed but the ability to not

trap in the local optima. Figure 4.1 is the flowchart of proposed BFPSO algorithm.

The brief pseudo code of the proposed BFPSO method has been provided below:

Step 1: Initialization

p : Dimension of the search space.

S : The number of bacteria in the population.

cN : The number of chemotactic steps.

sN : The number of swimming steps.

reN : The number of reproduction steps.

edN : The number of elimination-dispersal events.

edp : The probability that each bacterium will be eliminated-dispersed.

C : The size of the step taken in the random direction specified by the tumble.

1c : The cognitive learning rates.

2c : The social learning rates.

w : The coefficient of the inertia term to control exploratory properties.

Step 2: Elimination-dispersal loop: 1l l  .

Step 3: Reproduction loop: 1k k  .

- 43 -

Step 4: Chemotaxis loop: 1j j  .
[Step 4.1] For 1,2,...,i S , take a chemotactic step for bacterium i as follows.
[Step 4.2] Evaluate the cost function (, , ,)J i j k l , then let (, , ,)lastJ J i j k l .
[Step 4.3] Tumble: let

        
    

1 1

2 2

1 , , , ,

, , , ,

i i pbest i

gbest i

j w j c r j k l j k l

c r j k l j k l

   

 

      

   

[Step 4.4] Move: let      1, , , , ()i i ij k l j k l C i j     

Compute fitness function: (, 1, ,)J i j k l , and then let

    (, 1, ,) (, 1, ,) 1, , , 1, ,i
ccJ i j k l J i j k l J j k l P j k l     

[Step 4.5] Swim: Let 0m  ;
while (sm N)
• let 1m m  ;

if (, 1, ,) lastJ i j k l J  , let (, 1, ,)lastJ J i j k l  and let

       1, , 1, ,i i ij k l j k l C i j      ;

Compute fitness function: (, 1, ,)J i j k l . Let

    (, 1, ,) (, 1, ,) 1, , , 1, ,i
ccJ i j k l J i j k l J j k l P j k l     

• else let ;sm N
[Step 4.6] Go to next bacterium.

Step 5: If (cj N), go to Step 4. Since the life of the bacteria is not over.

Step 6: Reproduction: Compute the health of the bacterium i :

 
1

1

, , ,
cN

i
health

j

J J i j k l




 

Sort bacteria and chemotactic parameters ()C i in order of ascending cost

healthJ (higher cost means lower health). The rS bacteria with the highest

healthJ values die and the other rS bacteria with the best values split (and the

copies that are made are placed at the same location as their parent).

Step 7: If (rek N), go to Step 3.

Step 8: Elimination-dispersal: Eliminate and disperse bacteria with probability edp .

Step 9: If (edl N), go to Step 2; otherwise end and output the results.

- 44 -

Figure 4.1: Flowchart of proposed BFPSO method.

4.3 Illustrative Examples

In this section, we evaluate the classification performance of the proposed

NFS-BFPSO method using two better-known benchmark data sets and one skin color

- 45 -

detection problem. The first example uses the iris data and the second example uses

the Wisconsin breast cancer data. The two benchmark data sets are available from the

University of California, Irvine, via an anonymous ftp address

ftp://ftp.ics.uci.edu/pub/machine-learning-databases. In the following simulations, the

parameters and number of training epochs were based on the desired accuracy. In

short, the trained NFS with BFPSO was stopped once its high learning efficiency was

demonstrated.

Example 1: Iris Data Classification

The Fisher-Anderson iris data consists of four input measurements, sepal length

(sl), sepal width (sw), petal length (pl), and petal width (pw), on 150 specimens of the

iris plant. Three species of iris were involved, Iris Sestosa, Iris Versiolor and Iris

Virginica, and each species contains 50 instances. The measurements are shown in

Figure 4.2.

In the iris data experiments, 25 instances with four features from each species

were randomly selected as the training set (i.e., a total of 75 training patterns were

used as the training data set) and the remaining instances were used as the testing set.

Once the NFS was trained, all 150 test patterns of the iris data were presented to the

trained NFS, and the re-substitution error was computed. In this example, three fuzzy

rules are adopted. After 4000 generations, the final fitness value was 0.9278.

Figure 4.3 (a)-(f) show the distribution of the training pattern and the final

assignment of the fuzzy rules (i.e., distribution of input membership functions). Since

the region covered by a Gaussian membership function is unbounded, in Figure 4.3

(a)-(f), the boundary of each ellipse represent a rule with a firing strength of 0.5. We

compared the testing accuracy of our proposed method with that of other methods –

the neural fuzzy system with bacterial foraging optimization (NFS-BFO) and the

- 46 -

neural fuzzy system with particle swarm optimization (NFS-PSO). The experiments

calculated the classification accuracy and the values of the average produced on the

testing set using the NFS-BFO method, the NFS-PSO method, and the proposed

NFS-BFPSO method.

- 47 -

Figure 4.2: Iris data: iris sestosa (), iris versiolor (), and iris virginica ().

During the learning phase, the learning curves from the proposed NFS-BFPSO

method, the NFS-BFO method, and the NFS-PSO method are shown in Figure 4.4.

Table 4.1 shows that the experiments with the NFS-BFPSO method result in high

accuracy, with an accuracy percentage ranging from 96% to 98.67%. The means of

re-substitution accuracy was 97.6%. The average classification accuracy of the

- 48 -

NFS-BFPSO method was better than that of other methods. Table 4.2 shows the

comparison of the classification results of the NFS-BFPSO method with other

methods [28][102][108-110] on the iris data. The results show that the proposed

NFS-BFPSO method is able to keep similar average substitution accuracy.

(a) For the Sepal Length and Sepal Width dimensions.

(b) For the Petal Length and Petal Width dimensions.

- 49 -

(c) For the Sepal Length and Petal Length dimensions.

(d) For the Sepal Width and Petal Width dimensions.

- 50 -

(e) For the Sepal Width and Petal Length dimensions.

(f) For the Sepal Length and Petal Width dimensions.

Figure 4.3: The distribution of input training patterns and final assignment of three
rules.

- 51 -

Figure 4.4: Learning curves of the NFS-BFPSO method, the NFS-BFO method, and
the NFS-PSO method.

Table 4.1: Classification accuracy using various methods for the iris data.

Model
Experiment #

NFS-BFO NFS-PSO NFS-BFPSO

1 96 98.67 98.67
2 92 93.33 96
3 97.33 94.67 98.67
4 97.33 98.67 97.33
5 94.67 94.67 97.33

Average (%) 95.47 96 97.6

- 52 -

Table 4.2: Average re-substitution accuracy comparison of various models for the iris
data classification problem.

Models Average re-substitution accuracy (%)
FEBFC [102] 96.91
SANFIS [28] 97.33
FMMC [108] 97.3

FUNLVQ+GFENCE [109] 96.3
Wu-and-Chen’s [110] 96.21

NFS-BFPSO 97.6

Example 2: Wisconsin Breast Cancer Diagnostic Data Classification

The Wisconsin breast cancer diagnostic data set contains 699 patterns distributed

into two output classes, “benign” and “malignant.” Each pattern consists of nine input

features: clump thickness, uniformity of cell size, uniformity of cell shape, marginal

adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and

mitoses. 458 patterns are in the benign class and the other 241 patterns are in the

malignant class. Since there were 16 patterns containing missing values, we used 683

patterns to evaluate the performance of the proposed NFS-BFPSO method. To

compare the performance with other models, we used half of the 683 patterns as the

training set and the remaining patterns as the testing set.

Experimental conditions were the same as the previous experiment. The training

patterns were randomly chosen, and the remaining patterns were used for testing. The

experiments calculated the classification accuracy and the values of the average

produced on the testing set by the NFS-BFO method, the NFS-PSO method, and the

proposed NFS-BFPSO method.

During the supervised learning phase, 4000 epochs of training were performed.

Figure 4.5 shows the membership functions for each input feature. The learning

curves from the proposed NFS-BFPSO method, the NFS-BFO method, and the

- 53 -

NFS-PSO method are shown in Figure 4.6. The performance of the NFS-BFPSO

method is better than the performance of all other models.

Table 4.3 shows that the experiments with the NFS-BFPSO method result in high

accuracy, with an accuracy percentage ranging from 97.66% to 98.54%. The means of

re-substitution accuracy was 97.95%. The average classification accuracy of the

NFS-BFPSO method was better than that of other methods. We compared the testing

accuracy of our model with that of other methods [26][28][101][102][111]. Table 4.4

shows the comparison between the learned NFS-BFPSO method and other fuzzy,

neural networks, and neural fuzzy systems. The average classification accuracy of the

NFS-BFPSO method is better than that of other methods.

Figure 4.5: Input membership functions for breast cancer classification.

- 54 -

Figure 4.6: Learning curves from the NFS-BFPSO method, the NFS-BFO method and
the NFS-PSO method.

Table 4.3: Classification accuracy for the Wisconsin breast cancer diagnostic data.

Model
Experiment #

NFS-BFO NFS-PSO NFS-BFPSO

1 95.32 96.49 97.66
2 95.61 97.08 98.54
3 93.86 94.44 97.66
4 94.74 97.37 97.95
5 94.74 96.49 97.95

Average (%) 94.85 96.37 97.95

- 55 -

Table 4.4: Average accuracy comparison of various models for Wisconsin breast
cancer diagnostic data.

Models Average re-substitution accuracy (%)
NNFS [101] 94.15
FEBFC [102] 95.14
SANFIS [28] 96.3

NEFCLASS [26] 92.7
MSC [111] 94.9

NFS-BFPSO 97.95

Example 3: Skin Color Detection

The description of the system is the same as Section 3.4. Unlike the previous

chapter set four rules to constitute the neuro-fuzzy classifier, we set three fuzzy rules

in this example. In addition, the parameter learning method is change to be BFPSO

method.

In this example, the performance of the NFS-BFPSO method is compared with

the NFS-BFO method, and the NFS-PSO method. The learning curves are shown in

Figure 4.7. In Figure 4.7, we find that the performance of the proposed NFS-BFPSO

method is superior to the other methods. In addition, the comparison items include the

training and testing accuracy rates with various existing models are tabulated in Table

4.5.

The CIT facial database consists of complex backgrounds and diverse lighting.

Hence, from the comparison data listed in Table 4.5, the average of the test accuracy

rate is 82.39% for the NFS-BFO method, 83.64% for the NFS-PSO method and

85.82% for the proposed NFS-BFPSO method. This demonstrates that the CIT

database is more complex and does not lead to a decrease in the accuracy rate. The

proposed NFS-BFPSO method maintains a superior accuracy rate. The color images

from the CIT database are shown in Figure 4.8. A well-trained network can generate

- 56 -

binary outputs (1/0 for skin/non-skin) to detect a facial region. Figure 4.9 shows that

our model accurately determines a facial region.

Figure 4.7: The learning curves of the three methods using the CIT database.

Table 4.5: Performance comparison with various existing models from the CIT
database.

Method NFS-BFPSO NFS-PSO NFS-BFO
Average training accuracy rate 97.63% 96.77% 96.5%
Average testing accuracy rate 85.82% 83.64% 82.39%

- 57 -

Figure 4.8: Original face images from CIT database.

Figure 4.9: Results of skin color detection with 3 dimension input (Y, Cb, Cr).

4.4 Concluding Remarks

This chapter proposes an efficient evolutionary learning method, using bacterial

- 58 -

foraging oriented by particle swarm optimization strategy (BFPSO), for the neural

fuzzy system (NFS) in classification applications. The proposed BFPSO method

attempts to make a judicious use of exploration and exploitation abilities of the search

space and therefore likely to avoid false and premature convergence in many cases.

The advantages of the proposed BFPSO method are summarized as follows: 1)

BFPSO involves the elite-selection mechanism to gain a chance to reproduce near

optimal solutions. 2) BFPSO records the best previous solution and the global best

solution to evolve. 3) BFPSO can balance the exploration and exploitation abilities of

the search space. Three examples showed that the proposed NFS-BFPSO method

improves the system performance in terms of a fast learning convergence, and a high

correct classification rate.

- 59 -

Chapter 5

Nonlinear System Control Using

Functional-Link-Based Neuro-Fuzzy

Network Model Embedded with

Modified Particle Swarm Optimizer

Nonlinear system control is an important tool that is adopted to improve control

performance and achieve robust fault-tolerant behavior. Among nonlinear control

techniques, those based on artificial neural networks and fuzzy systems have become

popular topics of research in recent years [112-114] because classical control theory

usually requires a mathematical model to design the controller. However, the

inaccuracy of the mathematical modeling of plants usually degrades the performance

of the controller, especially for nonlinear and complex control problems [115]. On the

contrary, both the fuzzy system controller and the artificial neural network controller

provide key advantages over traditional adaptive control systems. Although traditional

neural networks can learn from data and feedback, the meaning associated with each

neuron and each weight in the network is not easily interpreted. Alternatively, the

fuzzy logical models are easily appreciated, because they use linguistic terms and the

structure of IF-THEN rules. However, fuzzy systems have a lack of an effective

learning algorithm to refine the membership functions to minimize output errors.

According to the literature review mentioned before, it can be said that, in contrast to

pure neural or fuzzy methods, neural fuzzy networks (NFNs) systems [8-34] possess

the advantages of both neural networks and fuzzy systems. NFNs bring the low-level

learning and computational power of neural networks into fuzzy systems and give the

- 60 -

high-level human-like thinking and reasoning of fuzzy systems to neural networks.

This chapter presents a PSO-based learning algorithm for the neural fuzzy

system (NFS) in nonlinear system control applications. PSO is an efficient tool for

optimization and search problems. However, it is easy to become trapped in local

optima due to its information sharing mechanism. Many research works have shown

that mutation operators can help PSO prevent premature convergence [116-118]. To

prevent basic PSO from becoming trapped in local optima, we modified the basic

PSO by adding a diversity scheme, called the distance-based mutation operator, which

strongly encourages a global search giving the particles more chance of converging to

the global optimum. Therefore, the proposed learning algorithm is so called

distance-based mutation particle swarm optimization (DMPSO).

The idea behind the proposed DMPSO learning algorithm is that there are only

two kinds of convergence: 1) local optimum convergence and 2) global optimum

convergence. If local optimum convergence occurred, meaning that the basic PSO is

trapped in a local optimum, this is a good time to apply the mutation operator to help

the PSO to escape from the local optimum. If global optimum convergence occurred,

applying the mutation operator will cause the PSO to naturally converge again at the

global optimum.

5.1 Learning Scheme for the FLNFN Model

This section presents the learning scheme for constructing the FLNFN model.

The proposed learning scheme comprises a structure learning phase and a parameter

learning phase.

- 61 -

Figure 5.1: Flowchart of the proposed learning scheme for the FLNFN model.

- 62 -

Figure 5.1 presents flowchart of the learning scheme for the FLNFN model.

Structure learning is based on the entropy measure used to determine whether a new

rule should be added to satisfy the fuzzy partitioning of input variables. Parameter

learning is based on the proposed evolutionary learning algorithm, which minimizes a

given cost function by adjusting the link weights in the consequent part and the

parameters of the membership functions. Initially, there are no nodes in the network

except the input–output nodes, i.e., there are no nodes in the FLNFN model. The

nodes are created automatically as learning proceeds, upon the reception of incoming

training data in the structure and parameter learning processes. In this research, once

the learning process is completed, the trained-FLNFN can act as the nonlinear system

controller. The following two sections detail the structure learning phase and the

parameter learning phase.

5.2 Structure Learning Phase

The foremost step in structure learning is to determine whether a new rule should

be extracted from the training data and to determine the number of fuzzy sets in the

universe of discourse of each input variable, since one cluster in the input space

corresponds to one potential fuzzy logic rule, in which ijm and ij represent the

mean and standard deviation of that cluster, respectively. For each incoming pattern

ix , the rule firing strength can be regarded as the degree to which the incoming

pattern belongs to the corresponding cluster. The entropy measure between each data

point and each membership function is calculated based on a similarity measure. A

data point of closed mean will have lower entropy. Therefore, the entropy values

between data points and current membership functions are calculated to determine

- 63 -

whether or not to add a new rule. For computational efficiency, the entropy measure

can be calculated using the firing strength from (2)
iju as

2
1

log
N

j ij ij
i

EM D D


  (5.1)

where  (2)exp 1ij ijD u  and  0, 1jEM  . According to Eq. (5.1), the measure is

used to generate a new fuzzy rule and new functional link bases for new incoming

data are described as follows. The maximum entropy measure

max 1 ()
max j

j R t
EM EM

 
 (5.2)

is determined, where ()R t is the number of existing rules at time t . If

maxEM EM , then a new rule is generated, where  0, 1EM  is a prespecified

threshold that decays during the learning process.

In the structure learning phase, the threshold parameter EM is an important

parameter. The threshold is set between zero and one. A low threshold leads to the

learning of coarse clusters (i.e., fewer rules are generated), whereas a high threshold

leads to the learning of fine clusters (i.e., more rules are generated). If the threshold

value equals zero, then all the training data belong to the same cluster in the input

space. Therefore, the selection of the threshold value EM will critically affect the

simulation results. As a result of our extensive experiments and by carefully

examining the threshold value EM , which uses the range  0, 1 , we concluded that

there was a relationship between threshold value EM and the number of input

variables (N). Accordingly, EM N , where  belongs to the range  0.26, 0.3 .

Once a new rule has been generated, the next step is to assign the initial mean

and standard deviation to the new membership function and the corresponding link

weight for the consequent part. Since the goal is to minimize an objective function,

- 64 -

the mean, standard deviation, and weight are all adjustable later in the parameter

learning phase. Hence, the mean, standard deviation, and weight for the new rule are

set as

 

((1))

((1))

((1)) 1, 1

R t
ij i

R t
ij init

R t
kj

m x

w random

 











 

 (5.3)

where ix is the current input data and init is a prespecified constant.

After the network structure has been adjusted according to the current training

data, the network enters the parameter learning phase to adjust the parameters of the

network optimally based on the same training data.

5.3 Parameter Learning Phase

Ratnaweera et al. [61] stated that the lack of population diversity in PSO

algorithms is understood to be a factor in their convergence on local optima.

Therefore, the addition of a mutation operator to PSO should enhance its global

search capacity and thus improve its performance. There are mainly two types of

mutation operators: one type is based on particle position [118] and the other type is

based on particle velocity [117]. The former method is the most common technique,

and the mutation operator we proposed in this research is also based on particle

position.

In [116], Li, Yang, and Korejo modified the PSO by adding a mutation operator;

the mutation operator provides a chance to escape from local optima. They focused on

determining which random generator of the mutation operator is good for improving

the population. However, the timing of application of the mutation operator is the

most important thing. If mutation operator is applied too early, when the particles are

- 65 -

not nearly convergent, the local search ability of PSO is destroyed. If the mutation

operator is applied too late, the parameter learning algorithm will be very inefficient.

Hence, it is an important issue to consider when to apply mutation operator. In our

study, we used the distances between each particle as a measure to determine whether

the mutation operator needed to be applied or not, and the modified PSO we used is

the so called distance-based mutation particle swarm optimization (DMPSO).

Comparing the basic PSO with DMPSO, a convergent detection unit used to detect

the particle convergent status is introduced. If the particles are convergent, the

mutation operator will be processed. Otherwise, the mutation operator will be

skipped.

The convergent detection unit computes the average distance from every particle

to the particle that has global best value using Eq. (5.4)

1()

S
t t

i best
i

P G
t

S
 





 (5.4)

where t
iP and t

bestG indicate the thi particle and the particle that has the global best

value at the tht iteration, respectively, and S is the population size.

After the average distance is computed, the threshold convTh is used to

determine whether the particles are close enough or not according to Eq. (5.5). If all

particles are close enough, meaning that all particles are converging to the same

position, the mutation operator will be applied. Otherwise, the mutation operator will

be skipped.

() convt Th  (5.5)

In this study, every particle has its own mutation probability. If the average

distance is greater than convTh , implying that the majority of particles are not

convergent, the mutation probability is set to zero, meaning that every particle does

- 66 -

not mutate and the behavior of every particle is like a generic PSO. If the average

distance is less than convTh , meaning that all particles are converging to the same

position, named t
bestG , the mutation probability (MP) of each particle is computed by

Eq. (5.6).

 

1

1

1, if () ()
()

0, otherwise

() ()

()exp

t t
i best

i

S

i
i

F P F P
success t

progress t success t

progress tMP S





 
 




   
 

 (5.6)

where ()F  denotes the fitness value of the particle. The value of ()isuccess t is set

to 1 only when the thi particle is successfully evolved at the tht iteration, meaning

that the local best fitness value is improved at the tht iteration, and ()progress t is

the number of successful evolution particles at time step t .

The design of mutation probability is based on the ratio of improved population.

If the ratio of the improved population is higher, the mutation probability becomes

smaller. Most particles are moving toward to the best value that they have currently

found. The lower probability guarantees the direction of the moving group will not be

destroyed by the mutation operator. On the other hand, if most particles do not

improve their fitness value, the population is in the stable status. There are two

possibilities: the first possibility is that the particles have converged to the global

optimum (or near global optimum). The application of the mutation operator at the

moment will not destroy the moving group, because the particles still remember the

global optimum, and the mutated particles will move toward the global optimum in

the next iteration. The second possibility is that the particles have converged to the

local optimum, or in other words, they have fallen into a trap. The mutation operator

provides a chance to escape from the trap. If some particles mutate and the new

- 67 -

position the particle reaches has a better fitness value than the local optima, the other

particles that are trapped will fly to the new position in the next iteration according to

the PSO, meaning that the trapped particles can escape from the local optimum.

5.4 Illustrative Examples

In this section, we demonstrate the performance of the proposed FLNFN model

using DMPSO algorithm (FLNFN-DMPSO) for nonlinear system control. The

FLNFN-DMPSO is adopted to design controllers in three simulations of nonlinear

system control problems: multi-input multi-output (MIMO) plant control [114],

control of the truck backing system [119], and a water bath temperature control

system [120].

Example 1: Multi-Input Multi-Output Plant Control

In this example, the MIMO plants [114] to be controlled are described by the

equations

1
2

21 1

2 21 2
2

2

()
0.5

1 ()(1) ()
(1) ()() ()

0.5
1 ()

p

pp

p p p

p

y k

y ky k u k

y k u ky k y k

y k

 
               

  

 (5.7)

The controlled outputs should follow the desired output 1ry and 2ry , as

specified by the following 250 pieces of data;

1

2

() sin(45)
() cos(45)

r

r

y k k

y k k




   
   
  

 (5.8)

The inputs of the FLNFN-DMPSO are 1()py k , 2 ()py k , 1()ry k , and 2 ()ry k ,

and the outputs are 1()u k and 2 ()u k .

- 68 -

Figure 5.2 plots the learning curves of the best performance of the

FLNFN-DMPSO model for the affinity/fitness value, the CNFC-ISEL [121], the

SEFC [122], and the Mamdani-type fuzzy system using symbiotic evolution

algorithm (MFS-SE) [123], after the learning process of 600 generations. To

demonstrate the performance of the proposed controller, Figure 5.3 plots the control

results of the desired output (solid line) and the model output (dotted line) after the

learning process of 600 generations, and Figure 5.4 shows the errors of the proposed

method. Table 5.1 presents the best and averaged affinity/fitness values after 600

generations of training. The comparison indicates that the best and averaged

affinity/fitness values of FLNFN-DMPSO are better than those of other methods.

0 100 200 300 400 500 600
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation

A
ff

in
ity

/F
itn

es
s

V
al

ue

FLNFN-DMPSO

CNFC-ISEL
SEFC

MFS-SE

Figure 5.2: Learning curves of best performance of the FLNFN-DMPSO,
CNFC-ISEL, SEFC and MFS-SE in MIMO plant control.

- 69 -

0 50 100 150 200 250

0

0.5

1

Sampling Instant

O
ut

pu
t1

0 50 100 150 200 250

0

0.5

1

Sampling Instant

O
ut

pu
t2

Figure 5.3: Desired (solid line) and model (dotted line) output generated by
FLNFN-DMPSO in MIMO plant control.

0 50 100 150 200 250
-0.1

-0.05

0

0.05

0.1

Sampling Instant

E
rr

or
1

0 50 100 150 200 250
-0.1

-0.05

0

0.05

0.1

Sampling Instant

E
rr

or
2

Figure 5.4: Errors of proposed FLNFN-DMPSO in MIMO plant control.

- 70 -

Table 5.1: Performance comparison of the FLNFN-DMPSO, FLNFN-PSO,
CNFC-ISEL, SEFC and MFS-SE controllers for the MIMO plant.

Method Affinity/Fitness Value (Best) Affinity/Fitness Value (Avg.)
FLNFN-DMPSO 0.9898 0.9856

FLNFN-PSO 0.9506 0.9149
CNFC-ISEL [121] 0.9786 0.9721
SEFC [122] 0.9581 0.9553
MFS-SE [123] 0.8560 0.8503

Example 2: Control of Backing Up the Truck

Backing a truck into a loading dock is difficult. It is a nonlinear control problem

for which no traditional control method exists [119]. Figure 5.5 shows the simulated

truck and loading zone. The truck’s position is exactly determined by three state

variables  , x and y , where  is the angle between the truck and the horizontal,

and the coordinate pair (,)x y specifies the position of the center of the rear of the

truck in the plane. The steering angle  of the truck is the controlled variable.

Positive values of  represent clockwise rotations of the steering wheel and negative

values represent counterclockwise rotations. The truck is placed at some initial

position and is backed up while being steered by the controller. The objective of this

control problem is to use backward only motion of the truck to make it arrive at the

desired loading dock (,)desired desiredx y at a right angle (90)desired   . The truck

moves backward as the steering wheel moves through a fixed distance ()fd in each

step. The loading region is limited to the plane [0 100] [0 100] .

- 71 -

Figure 5.5: Diagram of simulated truck and loading zone.

The input and output variables of the FLNFN-DMPSO controller must be

specified. The controller has two inputs: truck angle  and cross position x . When

the clearance between the truck and the loading dock is assumed to be sufficient, the

y coordinate is not considered to be an input variable. The output of the controller is

the steering angle  . The ranges of the variables x ,  , and  are as follows:

0 100
90 270
30 30

x




 
    
    

 (5.9)

The equations of backward motion of the truck are

1

(1) () cos () cos ()

(1) () cos () sin ()

sin () cos ()sin ()
(1) tan

cos () sin ()sin ()

f

f

f

f

x k x k d k k

y k y k d k k

l k d k k
k

l k d k k

 

 

  


  


   

   

 
   

  

(5.10)

where l is the length of the truck. Equation (5.10) yields the next state from the

present state.

Learning involves several attempts, each starting from an initial state and

terminating when the desired state is reached; the FLNFN-DMPSO is thus trained.

The training process continues for 2000 generations. The affinity/fitness value of the

- 72 -

FLNFN-DMPSO is approximately 0.9637, and the learning curve of FLNFN-DMPSO

is compared with those obtained using various existing models [121-123], as shown in

Figure 5.6. Figure 5.7 plots the trajectories of the moving truck controlled by the

FLNFN-DMPSO, starting at initial positions (, ,) (40,20, 30)x y     , (10,20,150) ,

(70,20, 30)  and (80,20,150) , after the training process has been terminated. The

considered performance indices include the best affinity/fitness and the average

affinity/fitness value. Table 5.2 compares the results. According to these results, the

proposed FLNFN-DMPSO outperforms various existing models.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.75

0.8

0.85

0.9

0.95

1

Generation

A
ff

in
ity

/F
itn

es
s

V
al

ue

FLNFN-DMPSO
CNFC-ISEL
SEFC
MFS-SE

Figure 5.6: Learning curves of best performance of the FLNFN-DMPSO,
CNFC-ISEL, SEFC and MFS-SE in control of backing up the truck.

- 73 -

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

X

Y

x=40 phi=-30

(a) initial positions (, ,) (40,20, 30)x y    

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

X

Y

x=10 phi=150

(b) initial positions (, ,) (10,20,150)x y   

- 74 -

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

X

Y

x=70 phi=-30

(c) initial positions (, ,) (70,20, 30)x y    

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

X

Y

x=80 phi=150

(d) initial positions (, ,) (80,20,150)x y   

Figure 5.7: Trajectories of truck, starting at four initial positions under the control of
the FLNFN-DMPSO after learning using training trajectories.

- 75 -

Table 5.2: Performance comparison of various controllers to control of backing up the
truck.

Method Affinity/Fitness Value (Best) Affinity/Fitness Value (Avg.)
FLNFN-DMPSO 0.9637 0.9502

FLNFN-PSO 0.9423 0.9355
CNFC-ISEL [121] 0.9558 0.9511
SEFC [122] 0.9516 0.9451
MFS-SE [123] 0.9398 0.9332

Example 3: Control of Water Bath Temperature System

The goal of this example is to elucidate the control of the temperature of a water

bath system according to

0 ()() ()

R

Y y tdy t u t

dt C T C


  (5.11)

where ()y t is the output temperature of the system in degrees Celsius (C); ()u t is

the heat flowing into the system; 0Y is the room temperature; C is the equivalent

thermal capacity of the system and RT is the equivalent thermal resistance between

the borders of the system and the surroundings.

RT and C are assumed to be essentially constant, and the system in Eq. (5.11)

is rewritten in discrete-time form to some reasonable approximation. The system

00.5 () 40

(1)(1) () () 1
1

s

s s

T
T T

y k

e
y k e y k u k e y

e


   

 


       
 (5.12)

is obtained, where  and  are some constant values of RT and C . The system

parameters used in this example are 41.00151 10   , 38.67973 10   and

0 25.0y  (C), which were obtained from a real water bath plant considered

elsewhere [120]. The plant input ()u k is limited between 0V and 5V where V

represents the voltage unit. The sampling period is 30sT  second.

Figure 5.8 presents a block diagram for the conventional training scheme. This

block diagram has two phases – the training phase and the control phase. In the

- 76 -

training phase, the switches S1 and S2 are connected to nodes 1 and 2, respectively, to

form a training loop. In this loop, training data with input vector

() [(1) ()]p pI k y k y k  and desired output ()u k can be defined, where the input

vector of the FLNFN controller is the same as that used in the general inverse

modeling [124] training scheme. In the control phase, the switches S1 and S2 are

connected to nodes 3 and 4, respectively, forming a control loop. In this loop, the

control signal ˆ()u k is generated according to the input vectors

ref() [(1) ()]pI k y k y k   , where py is the plant output and refy is the reference

model output.

1

3

2

4
Z-1

Z-1

FLNFN
Controller Plant

yp(k+1)

yref(k+1)

u(k)

yp(k+1)
û(k)

S2

S1
+

−

Figure 5.8: Conventional training scheme.

A sequence of random input signals ()rdu k limited between 0V and 5V is

injected directly into the simulated system described in Eq. (5.12), using the training

scheme for the FLNFN-DMPSO controller. The 120 training patterns are selected

based on the input–outputs characteristics to cover the entire reference output. The

temperature of the water is initially 25 C , and rises progressively when random

input signals are injected.

This dissertation compares the FLNFN-DMPSO controller to the FLNFN

controller [32], the proportional-integral-derivative (PID) controller [125], the

- 77 -

manually designed fuzzy controller [8], the FLNN [80], and the TSK-type

neuro-fuzzy network (TSK-type NFN) [24]. Each of these controllers is applied to the

water bath temperature control system. The performance measures include the set

points regulation, the influence of impulse noise, large parameter variations in the

system and the tracking capability of the controllers.

The first task is to control the simulated system to follow three set points

ref

35 , for 40
() 55 , for 40 80

75 , for 80 120

C k

y k C k

C k

 
   
   

 (5.13)

Figure 5.9 presents the regulation performance of the FLNFN-DMPSO controller.

The regulation performance was also tested using the FLNFN controller, the PID

controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller.

To test their regulation performance, a performance index, the sum of absolute error

(SAE), is defined by

refSAE () ()
k

y k y k  (5.14)

where ref ()y k and ()y k are the reference output and the actual output of the

simulated system, respectively. The SAE values of the FLNFN-DMPSO, the FLNFN

controller, the PID controller, the fuzzy controller, the FLNN controller and the

TKS-type NFN controller are 352.32, 352.84, 418.5, 401.5, 379.22 and 361.96, which

values are given in the second column of Table 5.3. The proposed FLNFN-DMPSO

controller has a much better SAE value of regulation performance than the other

controllers.

The second set of simulations is performed to elucidate the noise rejection ability

of the six controllers when some unknown impulse noise is imposed on the process.

One impulse noise value of C5 is added to the plant output at the 60th sampling

instant. A set point of C50 is adopted in this set of simulations. For the

- 78 -

FLNFN-DMPSO controller, the same training scheme, training data and learning

parameters were used as in the first set of simulations. Figure 5.10 presents the

behaviors of the FLNFN-DMPSO controller under the influence of impulse noise.

The SAE values of the FLNFN-DMPSO controller, the FLNFN controller, the PID

controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller

are 270.29, 270.41, 311.5, 275.8, 324.51 and 274.75, which values are shown in the

third column of Table 5.3. The FLNFN-DMPSO controller performs quite well. It

recovers very quickly and steadily after the occurrence of the impulse noise.

One common characteristic of many industrial control processes is that their

parameters tend to change in an unpredictable way. The value of 0.7 (2)u k  is

added to the plant input after the 60th sample in the third set of simulations to test the

robustness of the six controllers. A set point of C50 is adopted in this set of

simulations. Figure 5.11 presents the behaviors of the FLNFN-DMPSO controller

when the plant dynamics change. The SAE values of the FLNFN-DMPSO controller,

the FLNFN controller, the PID controller, the fuzzy controller, the FLNN controller

and the TSK-type NFN controller are 262.91, 263.35, 322.2, 273.5, 311.54 and 265.48,

which values are shown in the fourth column of Table 5.3. The results present the

favorable control and disturbance rejection capabilities of the trained

FLNFN-DMPSO controller in the water bath system.

In the final set of simulations, the tracking capability of the FLNFN-DMPSO

controller with respect to ramp-reference signals is studied. Define

ref

34 , for 30
(34 0.5(30)) , for 30 50

() (44 0.8(50)) , for 50 70
(60 0.5(70)) , for 70 90
70 , for 90 120

C k

k C k

y k k C k

k C k

C k

 
          
     

  

 (5.15)

Figure 5.12 presents the tracking performance of the FLNFN-DMPSO controller.

- 79 -

The SAE values of the FLNFN-DMPSO controller, the FLNFN controller, the PID

controller, the fuzzy controller, the FLNN controller and the TSK-type NFN controller

are 42.45, 44.28, 100.6, 88.1, 98.43 and 54.28, which values are shown in the fifth

column of Table 5.3. The results present the favorable control and tracking

capabilities of the trained FLNFN-DMPSO controller in the water bath system. The

aforementioned simulation results, presented in Table 5.3, demonstrate that the

proposed FLNFN-DMPSO controller outperforms other controllers.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

→ 5V
Control Input

Sampling Instant

T
em

pe
ra

tu
re

(D
eg

re
e

C
)

Water Bath Temperature Control (case 1)

Reference Signal

Actual Signal

Figure 5.9: The regulation performance of the FLNFN-DMPSO controller for the
water bath system.

- 80 -

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

→ 5V
Control Input

Sampling Instant

T
em

pe
ra

tu
re

(D
eg

re
e

C
)

Water Bath Temperature Control (case 2)

Reference Signal

Actual Signal

Figure 5.10: The behavior of the FLNFN-DMPSO controller under impulse noise for
the water bath system.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

→ 5V
Control Input

Sampling Instant

T
em

pe
ra

tu
re

(D
eg

re
e

C
)

Water Bath Temperature Control (case 3)

Reference Signal

Actual Signal

Figure 5.11: The behavior of the FLNFN-DMPSO controller when a change occurs in
the water bath system dynamics.

- 81 -

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

→ 5V
Control Input

Sampling Instant

T
em

pe
ra

tu
re

(D
eg

re
e

C
)

Water Bath Temperature Control (case 4)

Reference Signal

Actual Signal

Figure 5.12: The tracking performance of the FLNFN-DMPSO controller for the
water bath system.

Table 5.3: Performance comparison of various controllers for the water bath
temperature control system.

120

ref
1

() ()
k

SAE y k y k


  Regulation

Performance

Influence of

Impulse Noise

Effect of Change in

Plant Dynamics

Tracking

Performance

FLNFN-DMPSO 352.32 270.29 262.91 42.45

FLNFN [32] 352.84 270.41 263.35 44.28
PID [125] 418.5 311.5 322.2 100.6
Fuzzy [8] 401.5 275.8 273.5 88.1
FLNN [80] 379.22 324.51 311.54 98.43
TSK-type NFN [24] 361.96 274.75 265.48 54.28

5.5 Concluding Remarks

This chapter proposes an evolutionary neural fuzzy system, designed using

- 82 -

FLNFN model embedded with DMPSO algorithm. The proposed learning scheme

consists of structure learning and parameter learning for the FLNFN model. The

structure learning depends on the entropy measure to determine the number of fuzzy

rules. The proposed DMPSO parameter learning method can adjust the shape of fuzzy

rule’s membership function and the corresponding weighting of FLNN. The

simulation results have shown the proposed FLNFN-DMPSO method has more

chance of converging to the global optimum and yields better performance than other

existing models under some circumstances.

- 83 -

Chapter 6

Comparisons and Discussions

PSO is an efficient tool for optimization and search problems. However, it is

easy to be trapped into local optima due to its information sharing mechanism. Many

researchers have worked on improving its performance in various ways, thereby

deriving many interesting variants. This dissertation develops three novel learning

algorithms embedded with particle swarm optimizer, named IPSO, BFPSO and

DMPSO for the neuro-fuzzy systems.

6.1 Comparisons

In this section, skin color detection problem is performed to evaluate the

performance of the proposed IPSO, BFPSO and DMPSO methods.

The skin color detection experimental results of the IPSO and BFPSO methods

are given in Section 3.4 and Section 4.3, respectively. In the following subsection, the

skin color detection problem is performed to assess the performance of the DMPSO

approach in classification application.

6.1.1 Skin Color Detection Using DMPSO

The description of the system is the same as Section 3.4. We set three rules

constituting a neuro-fuzzy classifier. In this example, the performance of the DMPSO

method is compared with the PSO method [41]. First, the learning curves of DMPSO

and PSO methods are shown in Figure 6.1. In Figure 6.1, we find that the

performance of the proposed DMPSO method is superior to the PSO method.

- 84 -

Furthermore, the comparison items include the training and testing accuracy rates are

tabulated in Table 6.1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Generation

A
ffi

n
ity

/F
itn

e
ss

 V
a

lu
e

DMPSO
PSO

Figure 6.1: The learning curves of PSO and DMPSO methods using the CIT database.

Table 6.1: Performance comparison with PSO and DMPSO methods from the CIT
database (Training data: 6000; Generations: 2000)

Method DMPSO PSO
Average training accuracy rate 98.05% 96.77%
Average testing accuracy rate 87.26% 83.64%

The CIT facial database consists of complex backgrounds and diverse lighting.

Hence, from the comparison data listed in Table 6.1, the average of the test accuracy

rate is 83.64% for the PSO method and 87.26% for the proposed DMPSO method.

This demonstrates that the CIT database is more complex and does not lead to a

decrease in the accuracy rate. The proposed DMPSO method maintains a superior

accuracy rate. The color images from the CIT facial database are shown in Figure 6.2.

- 85 -

The corresponding fitness maps generated by well-trained network using the proposed

DMPSO method are shown in Figure 6.3. With proper selection of the threshold value,

a well-trained network can generate binary outputs (1/0 for skin/non-skin) to detect a

facial region. Figure 6.4 shows the masks generated by the proposed skin color

classifier. Figure 6.5 shows that the proposed approach determines a facial region

accurately.

Figure 6.2: Original face images from CIT repository.

- 86 -

Figure 6.3: Fitness maps generated by a well-trained FLNFN-DMPSO

- 87 -

Figure 6.4: Masks generated by a well-trained skin color classifier.

- 88 -

Figure 6.5: Results of skin color detection with YCbCr color space

6.1.2 Skin Color Detection Results Comparison with Different

Approaches

In this subsection, the skin color detection experimental results of neuro-fuzzy

classifier embedded with different parameter learning algorithms demonstrated. In

this research, we select the FLNFN model as our neuro-fuzzy architecture to develop

the skin color classifier. The aim of the skin color detection is to distinguish between

skin and non-skin pixels based on the Y, Cb and Cr information. Table 6.2

summarized the average accuracy rates of testing and training data with different

approaches.

Table 6.2: Performance comparison with various existing models from the CIT
database (Training data: 6000; Generations: 2000)

Method No. of fuzzy rules
Average accuracy rate

(training data)
Average accuracy rate

(testing data)
IPSO 4 93.32% 90.18%

IA [94] 4 88.1% 82.63%
4 79.05% 74.32%

PSO [41]
3 96.77% 83.64%

BFO 3 96.5% 82.39%
BFPSO 3 97.63% 85.82%
DMPSO 3 98.05% 87.26%

- 89 -

6.2 Discussions

In the IPSO and BFPSO approaches, we investigated hybridization by combining

PSO with IA and BFO, respectively. In IPSO method, the major parameter learning

process is achieved by IA. In order to avoid trapping in a local optimal solution and

ensure the search capability of near global optimal solution, we employ the

advantages of the PSO to improve mutation mechanism of IA. In addition, the balance

between exploration of the search space and exploitation of potentially good solutions

is considered as a fundamental problem in nature-inspired systems. Too much stress

on exploration results in a pure random search whereas too much exploitation results

in a pure local search. Clearly, intelligent search must self-adaptively combine

exploration of the new regions of the space with evaluation of potential solutions

already identified. The BFPSO combines both algorithms BFO and PSO to balance

the exploration and exploitation abilities of the search space.

Unlike IPSO and BFPSO approaches that use PSO as the enhance mechanism to

improve the performance of basic IA and BFO. In DMPSO approach, the parameter

learning method is based on the PSO algorithm and the distance-based mutation

operator is introduced to increase the population diversity, which strongly encourages

a global search giving the particles more chance of escaping from local optimum and

converging to the global optimum.

It should be notice that due to the PSO plays different role between the proposed

IPSO, BFPSO and DMPSO methods, the parameters of PSO are not totally the same

for these three parameter learning algorithms. The functions of IA, BFO and PSO are

summarized in Table 6.3. Furthermore, the predefined fuzzy rule number in IPSO

method is set to be 4 which were different from others.

- 90 -

Table 6.3: The roles of IA, BFO and PSO in the proposed learning algorithm.

Method IPSO BFPSO DMPSO
Fuzzy Rule Numbers 4 3 3

Basic/Main Algorithm IA BFO PSO
Mechanism PSO PSO Mutation operator

Enhancement
Function

Increase
population
diversity

Improve
global search

ability

Increase
population
diversity

Moreover, in order to obtain better simulation results, the proposed learning

algorithms always require training data to be sufficient and proper. However, there is

no procedure or rule suitable for all cases in choosing training data. One rule of thumb

is that training data should cover the entire expected input space and then during the

training process select training-vector pairs randomly from the set.

- 91 -

Chapter 7

Conclusions and Future Works

Fuzzy logic and artificial neural networks are complementary technologies in the

design of intelligent systems. The combination of these two technologies into an

integrated system appears to be a promising path toward the development of

intelligent systems capable of capturing qualities characterizing the human brain.

Both neural networks and fuzzy logic are powerful design techniques that have their

strengths and weaknesses. The integrated neuro-fuzzy systems possess the advantages

of both neural networks (e.g. learning abilities, optimization abilities and

connectionist structures) and fuzzy systems (e.g. humanlike IF-THEN rules thinking

and ease of incorporating expert knowledge). In this way, it is possible to bring the

low-level learning and computational power of neural networks into fuzzy systems

and also high-level humanlike IF-THEN thinking and reasoning of fuzzy systems into

neural networks.

A neuro-fuzzy system is a fuzzy system, whose parameters are learned by a

learning algorithm. It has a neural network architecture constructed from fuzzy

reasoning, and can always be interpreted as a system of fuzzy rules. Learning is used

to adaptively adjust the rules in the rule base, and to produce or optimize the

membership functions of a fuzzy system. Structured knowledge is codified as fuzzy

rules. Modern neuro-fuzzy systems are usually represented as special multilayer

feedforward neural networks. Hayashi et al. [126] showed that a feedforward neural

network could approximate any fuzzy rule based system and any feedforward neural

network may be approximated by a rule based fuzzy inference system.

In this dissertation, the neuro-fuzzy architecture we used is called

- 92 -

functional-link-based neuro-fuzzy network (FLNFN) model. The FLNFN model uses

a functional link neural network to the consequent part of the fuzzy rules. FLNFN is a

multilayer feedforward network in which each node performs a particular function

(node function) based on incoming signals and a set of parameters pertaining to this

node. The FLNFN model can automatically be constructed and the FLNFN

parameters can be adjusted by performing structure/parameter learning schemes.

In Chapter 3, the proposed IPSO method combines the IA and PSO to perform

parameter learning. The advantages of the proposed IPSO method are summarized as

follows: 1) We employed the advantages of PSO to improve the mutation mechanism;

2) The complicated problems can be better solved than IA and PSO; 3) There is more

of a likelihood to get a global optimum compared to heuristic methods; 4) The

experimental results have shown that our method obtains better results than other

existing methods in accuracy rate and convergence speed.

In Chapter 4, an innovative BFPSO algorithm is applied for the design of

neuro-fuzzy classifier. Conventional BFO depends on random search directions which

may lead to delay in reaching global solution while PSO is prone to be trapped in

local optima. In order to get better optimization, the new algorithm combines

advantages of both the algorithms i.e. PSO’s ability to exchange social information

and BFO’s ability in finding new solutions by elimination and dispersal. The BFPSO

algorithm combines PSO-based mutation operator with bacterial chemotaxis in order

to make judicious use of exploration and exploitation abilities of search space and to

avoid false and premature convergence. The simulation results showed that the overall

performance of the hybrid algorithm outperforms conventional BFO and PSO.

Unlike IPSO and BFPSO approaches that use PSO as the enhance mechanism to

improve the performance of basic IA and BFO. In chapter 5, the PSO-based learning

algorithm, called DMPSO, for the neural fuzzy system is presented. In DMPSO

- 93 -

approach, the parameter learning method is based on the PSO algorithm and the

distance-based mutation operator is introduced to increase the population diversity,

which strongly encourages a global search giving the particles more chance of

escaping from local optimum and converging to the global optimum. The simulation

results have shown the proposed DMPSO method yields better performance than

other existing models under some circumstances in the nonlinear system control

application fields.

In Chapter 6, the well-known skin color detection problem is used as the

benchmark to demonstrate the performance and efficiency of the proposed IPSO,

BFPSO and DMPSO method. The aim of the skin color detection is to distinguish

between skin and non-skin pixels based on the Y, Cb and Cr information. The average

accuracy rates of testing and training data with different approaches were depicted in

Table 6.2. Since the predefined rule number is not identical, we cannot make the

comparison fairly. From the simulation results, we can only conclude that DMPSO

outperforms BFPSO and IPSO seems to be over-trained.

Although the proposed algorithms yield better performance in the classification

and nonlinear system control applications, but there still some advanced topics should

be addressed in future research.

In general, synthesizing a neuro-fuzzy system, two major types of learning are

required: structure learning algorithms to find appropriate fuzzy logic rules; and

parameter learning algorithms to fine-tune the membership functions and other

parameters. There are several ways that structure learning and parameter learning can

be combined in a neuro-fuzzy system. They can be performed sequentially: structure

learning is used first to find the appropriate structure of a neuro-fuzzy system; and

parameter learning is then used to fine-tune the parameters. In some situations, only

parameter learning or structure learning is necessary when structure (fuzzy rules) or

- 94 -

parameters (membership functions) are provided by experts, and the structure in some

neuro-fuzzy systems is fixed. Identification of fuzzy rules has been one of the most

important aspects in the design of neuro-fuzzy sysyem. Identified rules and concise

rules can provide an initial structure of networks so that learning processes can be fast,

reliable and highly intuitive. To overcome the limitations of using expert knowledge

in defining the fuzzy rules, data driven methods to create fuzzy systems are needed.

Therefore, the first advanced research topic is to generate fuzzy rules from numerical

data more efficiently.

The choice of the model’s structure is very important, as it determines the

flexibility of the model in the approximation of (unknown) systems. Despite of the

research that has already been done in the area of neuro-fuzzy systems the recurrent

variants of this architecture are still rarely studied. In contrast to pure feed-forward

architectures, that have a static input-output behavior, recurrent models are able to

store information of the past (e.g. prior system states) and are thus more appropriate

for the analysis of dynamic systems. The second advanced research topic is to apply

the proposed IPSO, BFPSO and DMPSO into the recurrent neural network to learn

and optimize a hierarchical fuzzy rule base with feedback connections.

In this dissertation, a systematic method was not used to determine the initial

parameters. The initial parameters are determined by practical experimentation or by

trial-and-error. In future works, we will try to develop a well-defined method to

automatically determine the initial parameters, and thus inexperienced users could

design a neuro-fuzzy system with ease.

- 95 -

Bibliography

1. H. Takagi, N. Suzuki, T. Koda and Y. Kojima, “Neural Networks Designed on

Approximate Reasoning Architecture and Their Applications,” IEEE

Transactions on Neural Networks, vol. 3, no. 5, pp. 752-760, 1992.

2. E. Sanchez, T. Shibata and L. A. Zadeh, Genetic Algorithms and Fuzzy Logic

Systems: Soft Computing Perspectives. World Scientific, 1997.

3. O. Cordon, F. Gomide, F. Herrera, F. Hoffmann and L. Magdalena, “Ten Years of

Genetic Fuzzy Systems: Current Framework and New Trends,” Fuzzy Sets and

Systems, vol. 141, no. 1, pp. 5-31, 2004.

4. A. Homaifar and E. McCormick, “Simultaneous Design of Membership

Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms,” IEEE

Transactions on Fuzzy Systems, vol. 3, no. 2, pp. 129-139, 1995.

5. J. R. Velasco, “Genetic-Based On-Line Learning for Fuzzy Process Control,”

International Journal of Intelligent Systems, vol. 13, no. 10-11, pp. 891-903,

1998.

6. H. Ishibuchi, T. Nakashima and T. Murata, “Performance Evaluation of Fuzzy

Classifier Systems for Multidimensional Pattern Classification Problems,” IEEE

Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 29,

no. 5, pp. 601-618, 1999.

7. J. Vieira, F. M. Dias, A. Mota, “Neuro-Fuzzy Systems: A Survey,” WSEAS

Transactions on Systems, vol. 3, no. 2, pp. 414-419, 2004.

8. C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to

Intelligent Systems. Prentice-Hall, 1996.

9. S. Mitra and Y. Hayashi, “Neuro-Fuzzy Rule Generation: Survey in Soft

- 96 -

Computing Framework,” IEEE Transactions on Neural Networks, vol. 11, no. 3,

pp. 748-768, 2000.

10. A. V. Nandedkar and P. K. Biswas, “A Granular Reflex Fuzzy Min-Max Neural

Network for Classification,” IEEE Transactions on Neural Networks, vol. 20, no.

7, pp. 1117-1134, 2009.

11. G.-D. Wu and P.-H. Huang, “A Maximizing-Discriminability-Based

Self-Organizing Fuzzy Network for Classification Problems,” IEEE Transactions

on Fuzzy Systems, vol. 18, no. 2, pp. 362-373, 2010.

12. O. Cordon, F. Herrera, F. Hoffmann and L. Magdalena, Genetic Fuzzy Systems:

Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific,

2001.

13. P. P. Angelov, Evolving Rule-Based Models: A Tool for Design of Flexible

Adaptive Systems. Physica-Verlag, 2002.

14. A. Gonzalez and R. Perez, “SLAVE: A Genetic Learning System Based on an

Iterative Approach,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp.

176-191, 1999.

15. M. Russo, “FuGeNeSys – A Fuzzy Genetic Neural System for Fuzzy Modeling,”

IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 373-388, 1998.

16. H. Ishibuchi, K. Nozaki, N. Yamamoto and H. Tanaka, “Selecting Fuzzy If-Then

Rules for Classification Problems Using Genetic Algorithms,” IEEE

Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 260-270, 1995.

17. H. Ishibuchi, T. Murata and I. B. Turksen, “Single-Objective and Two-Objective

Genetic Algorithms for Selecting Linguistic Rules for Pattern Classification

Problems,” Fuzzy Sets and Systems, vol. 89, no. 2, pp. 135-150, 1997.

18. H. Ishibuchi and Y. Nojima, “Analysis of Interpretability-Accuracy Tradeoff of

Fuzzy Systems by Multiobjective Fuzzy Genetics-Based Machine Learning,”

- 97 -

International Journal of Approximate Reasoning, vol. 44, no. 1, pp. 4-31, 2007.

19. L.-X. Wang and J. M. Mendel, “Generating Fuzzy Rules by Learning from

Examples,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6,

pp. 1414-1427, 1992.

20. C.-J. Lin and C.-T. Lin, “An ART-Based Fuzzy Adaptive Learning Control

Network,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp. 477-496,

1997.

21. C.-T. Lin, C.-J. Lin and C. S. G. Lee, “Fuzzy Adaptive Learning Control

Network with On-Line Neural Learning,” Fuzzy Sets and Systems, vol. 71, no. 1,

pp. 25-45, 1995.

22. W.-S. Lin, C.-H. Tsai and J.-S. Liu, “Robust Neuro-Fuzzy Control of

Multivariable Systems by Tuning Consequent Membership Functions,” Fuzzy

Sets and Systems, vol. 124, no. 2, pp. 181-195, 2001.

23. T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications

to Modeling and Control,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. SMC-15, no. 1, pp. 116-132, 1985.

24. J.-S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp.

665-685, 1993.

25. C.-F. Juang and C.-T. Lin, “An On-Line Self-Constructing Neural Fuzzy

Inference Network and Its Applications,” IEEE Transactions on Fuzzy Systems,

vol. 6, no.1, pp. 12-32, 1998.

26. D. Nauck and R. Kruse, “A Neuro-Fuzzy Method to Learn Fuzzy Classification

Rules from Data,” Fuzzy Sets and Systems, vol. 89, no.3, pp. 277-288, 1997.

27. S. Paul and S. Kumar, “Subsethood-Product Fuzzy Neural Inference System

(SuPFuNIS),” IEEE Transactions on Neural Networks, vol. 13, no. 3, pp.

- 98 -

578-599, 2002.

28. J.-S. Wang and C. S. G. Lee, “Self-Adaptive Neuro-Fuzzy Inference Systems for

Classification Applications,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6,

pp. 790-802, 2002.

29. C.-J. Lin and C.-T. Lin, “Reinforcement Learning for an ART-Based Fuzzy

Adaptive Learning Control Network,” IEEE Transactions on Neural Networks,

vol. 7, no. 3, pp. 709-731, 1996.

30. F.-J. Lin, C.-H. Lin and P.-H. Shen, “Self-Constructing Fuzzy Neural Network

Speed Controller for Permanent-Magnet Synchronous Motor Drive,” IEEE

Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 751-759, 2001.

31. C.-J. Lin and C.-H. Chen, “Identification and Prediction Using Recurrent

Compensatory Neuro-Fuzzy Systems,” Fuzzy Sets and Systems, vol. 150, no. 2,

pp. 307-330, 2005.

32. C.-H. Chen, C.-J. Lin and C.-T. Lin, “A Functional-Link-Based Neurofuzzy

Network for Nonlinear System Control,” IEEE Transactions on Fuzzy Systems,

vol. 16, no. 5, pp. 1362-1378, 2008.

33. M.-T. Su, C.-H. Chen, C.-J. Lin and C.-T. Lin, “A Rule-Based Symbiotic

Modified Differential Evolution for Self-Organizing Neuro-Fuzzy Systems,”

Applied Soft Computing, vol. 11, no. 8, pp. 4847-4858, 2011.

34. R. Fuller, Introduction to Neuro-Fuzzy Systems, Studies in Fuzziness and Soft

Computing. Physica-Verlag, 2000.

35. C.-T. Lin and C. S. G. Lee, “Neural-Network-Based Fuzzy Logic Control and

Decision System,” IEEE Transactions on Computers, vol. 40, no. 12, pp.

1320-1336, 1991.

36. H. Bunke and A. Kandel, Neuro-Fuzzy Pattern Recognition. World Scientific,

2000.

- 99 -

37. S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition: Methods in Soft

Computing. John Wiley & Sons, 1999.

38. L. Chen, D. H. Cooley and J. Zhang, “Possibility-Based Fuzzy Neural Networks

and Their Application to Image Processing,” IEEE Transactions on Systems,

Man, and Cybernetics – Part B: Cybernetics, vol. 29, no. 1, pp. 119-126, 1999.

39. S.-W. Lin, S.-C. Chen, W.-J. Wu and C.-H. Chen, “Parameter Determination and

Feature Selection for Back-Propagation Network by Particle Swarm

Optimization,” Knowledge and Information Systems, vol. 21, no. 2, pp. 249-266,

2009.

40. T. Weise, Global Optimization Algorithms–Theory and Application. it-weise.de

(self-published), 2009. (http://www.it-weise.de/projects/book.pdf)

41. J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of

the 1995 IEEE International Conference on Neural Networks, vol. 4, pp.

1942-1948, 1995.

42. R. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,”

in Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, pp. 39-43, 1995.

43. J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence. Morgan Kaufmann,

2001.

44. M. P. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada and A. S. Elmaghraby,

“An Approach to Multimodal Biomedical Image Registration Utilizing Particle

Swarm Optimization,” IEEE Transactions on Evolutionary Computation, vol. 8,

no. 3, pp. 289-301, 2004.

45. W.-F. Leong and G. G. Yen, “PSO-Based Multiobjective Optimization with

Dynamic Population Size and Adaptive Local Archives,” IEEE Transactions on

Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 38, no. 5, pp.

- 100 -

1270-1293, 2008.

46. E. Mezura-Montes and C. A. C. Coello, “A Simple Multimembered Evolution

Strategy to Solve Constrained Optimization Problems,” IEEE Transactions on

Evolutionary Computation, vol. 9, no. 1, pp. 1-17, 2005.

47. C. A. C. Coello, G. T. Pulido and M. S. Lechuga, “Handling Multiple Objectives

with Particle Swarm Optimization,” IEEE Transactions on Evolutionary

Computation, vol. 8, no. 3, pp. 256-279, 2004.

48. R. Xu, G. C. Anagnostopoulos and D. C. Wunsch II, “Multiclass Cancer

Classification Using Semisupervised Ellipsoid ARTMAP and Particle Swarm

Optimization with Gene Expression Data,” IEEE/ACM Transactions on

Computational Biology and Bioinformatics, vol. 4, no. 1, pp. 65-77, 2007.

49. F. Melgani and Y. Bazi, “Classification of Electrocardiogram Signals with

Support Vector Machines and Particle Swarm Optimization,” IEEE Transactions

on Information Technology in Biomedicine, vol. 12, no. 5, pp. 667-677, 2008.

50. M. Sugisaka and X. Fan, “An Effective Search Method for Neural Network

Based Face Detection Using Particle Swarm Optimization,” IEICE Transactions

on Information and Systems, vol. E88-D, no. 2, pp. 214-222, 2005.

51. C.-F. Juang, “A Hybrid of Genetic Algorithm and Particle Swarm Optimization

for Recurrent Network Design,” IEEE Transactions on Systems, Man, and

Cybernetics – Part B: Cybernetics, vol. 34, no. 2, pp. 997-1006, 2004.

52. C.-T. Lin, C.-T. Yang and M.-T. Su, “A Hybridization of Immune Algorithm with

Particle Swarm Optimization for Neuro-Fuzzy Classifiers,” International

Journal of Fuzzy Systems, vol. 10, no. 3, pp. 139-149, 2008.

53. M.-T. Su and C.-T. Lin, “Nonlinear System Control Using

Functional-Link-Based Neuro-Fuzzy Network Model Embedded with Modified

Particle Swarm Optimizer,” in Proceedings of the 19th National Conference on

- 101 -

Fuzzy Theory and Its Application, 2011.

54. D. Sedighizadeh and E. Masehian, “Particle Swarm Optimization Methods,

Taxonomy and Applications,” International Journal of Computer Theory and

Engineering, vol. 1, no. 5, pp. 486-502, 2009.

55. J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive Learning

Particle Swarm Optimizer for Global Optimization of Multimodal Functions,”

IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 281-295,

2006.

56. R. Poli, J. Kennedy and T. Blackwell, “Particle Swarm Optimization: An

Overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33-57, 2007.

57. A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence. John

Wiley & Sons, 2006.

58. Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer,” in Proceedings

of the 1998 IEEE International Conference on Evolutionary Computation, pp.

69-73, 1998.

59. Y. Shi and R. C. Eberhart, “Parameter Selection in Particle Swarm

Optimization,” in Proceedings of the 7th International Conference on

Evolutionary Programming VII, vol. 160, no. 4, pp. 591-600, 1998.

60. Y. Shi and R. Eberhart, "Particle Swarm Optimization with Fuzzy Adaptive

Inertia Weight," in Proceedings of the Workshop on Particle Swarm

Optimization, pp. 101-106, 2001.

61. A. Ratnaweera, S. K. Halgamuge and H. C. Watson, “Self-Organizing

Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration

Coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.

240-255, 2004.

62. H.-Y. Fan and Y. Shi, “Study on Vmax of Particle Swarm Optimization,” in

- 102 -

Proceedings of the Workshop on Particle Swarm Optimization, 2001.

63. M. Clerc and J. Kennedy, “The Particle Swarm-Explosion, Stability, and

Convergence in a Multidimensional Complex Space,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.

64. J. Kennedy, “Small Worlds and Mega-Minds: Effects of Neighborhood

Topology on Particle Swarm Performance,” in Proceedings of the 1999

Congress on Evolutionary Computation, vol. 3, pp. 1931-1938, 1999.

65. J. Kennedy and R. Mendes, “Population Structure and Particle Swarm

Performance,” in Proceedings of the 2002 Congress on Evolutionary

Computation, vol. 2, pp. 1671-1676, 2002.

66. P. N. Suganthan, “Particle Swarm Optimizer with Neighborhood Operator,” in

Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, pp.

1958-1962, 1999.

67. X. Hu and R. Eberhart, “Multiobjective Optimization Using Dynamic

Neighborhood Particle Swarm Optimization,” in Proceedings of the 2002

Congress on Evolutionary Computation, vol. 2, pp. 1677-1681, 2002.

68. K. E. Parsopoulos and M. N. Vrahatis, “UPSO: A Unified Particle Swarm

Optimization Scheme,” in Lecture Series on Computer and Computational

Sciences, vol. 1, pp. 868-873, 2004.

69. K. E. Parsopoulos and M. N. Vrahatis, “Unified Particle Swarm Optimization for

Solving Constrained Engineering Optimization Problems,” in Lecture Notes in

Computer Science, vol. 3612, pp. 582-591, 2005.

70. R. Mendes, J. Kennedy and J. Neves, “The Fully Informed Particle Swarm:

Simpler, Maybe Better,” IEEE Transactions on Evolutionary Computation, vol.

8, no. 3, pp. 204-210, 2004.

71. T. Peram, K. Veeramachaneni and C. K. Mohan, “Fitness-Distance-Ratio Based

- 103 -

Particle Swarm Optimization,” in Proceedings of the 2003 IEEE Swarm

Intelligence Symposium, pp. 174-181, 2003.

72. P. J. Angeline, “Using Selection to Improve Particle Swarm Optimization,” in

Proceedings of the 1998 IEEE Congress on Evolutionary Computation, pp.

84-89, 1998.

73. M. Lovbjerg, T. K. Rasmussen and T. Krink, “Hybrid Particle Swarm Optimizer

with Breeding and Subpopulations,” in Proceedings of the Third Genetic and

Evolutionary Computation Conference, vol. 1, pp. 469-476, 2001.

74. V. Miranda and N. Fonseca, “New Evolutionary Particle Swarm Algorithm

(EPSO) Applied to Voltage/VAR Control,” in Proceedings of the 14th Power

Systems Computation Conference, 2002.

75. M. Lovbjerg and T. Krink, “Extending Particle Swarm Optimizers with

Self-Organized Criticality,” in Proceedings of the 2002 Congress on

Evolutionary Computation, vol. 2, pp. 1588-1593, 2002.

76. T. M. Blackwell and P. Bentley, “Don’t Push Me! Collision-Avoiding Swarms,”

in Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp.

1691-1696, 2002.

77. X.-F. Xie, W.-J. Zhang and Z.-L. Yang, “A Dissipative Particle Swarm

Optimization,” in Proceedings of the 2002 Congress on Evolutionary

Computation, vol. 2, pp. 1456-1461, 2002.

78. K. E. Parsopoulos and M. N. Vrahatis, “On the Computation of All Global

Minimizers Through Particle Swarm Optimization,” IEEE Transactions on

Evolutionary Computation, vol. 8, no. 3, pp. 211-224, 2004.

79. F. van den Bergh and A. P. Engelbrecht, “A Cooperative Approach to Particle

Swarm Optimization,” IEEE Transactions on Evolutionary Computation, vol. 8,

no. 3, pp. 225-239, 2004.

- 104 -

80. J. C. Patra, R. N. Pal, B. N. Chatterji and G. Panda, “Identification of Nonlinear

Dynamic Systems Using Functional Link Artificial Neural Networks,” IEEE

Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 29,

no. 2, pp. 254-262, 1999.

81. Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks. Addison-Wesley,

1989.

82. J. C. Patra and R. N. Pal, “A Functional Link Artificial Neural Network for

Adaptive Channel Equalization,” Signal Processing, vol. 43, no. 2, pp. 181-195,

1995.

83. D. Nauck, F. Klawonn and R. Kruse, Foundations of Neuro-Fuzzy Systems. John

Wiley & Sons, 1997.

84. Y.-H. Pao, S. M. Phillips and D. J. Sobajic, “Neural-Net Computing and

Intelligent Control Systems,” International Journal of Control, vol. 56, no. 2, pp.

263-289, 1992.

85. D. W. Boeringer and D. H. Werner, “Particle Swarm Optimization versus Genetic

Algorithms for Phased Array Synthesis,” IEEE Transactions on Antennas and

Propagation, vol. 52, no. 3, pp. 771-779, 2004.

86. L. N. de Castro and J. Timmis, Artificial Immune Systems: A New Computational

Intelligence Approach. Springer-Verlag, 1996.

87. J. E. Hunt and D. E. Cooke, “Learning Using an Artificial Immune System,”

Journal of Network and Computer Applications, vol. 19, no. 2, pp. 189–212,

1996.

88. D. Dasgupta, Artificial Immune Systems and Their Applications. Springer-Verlag,

1999.

89. S. A. Hofmeyr and S. Forrest, “Immunity by Design: An Artificial Immune

System,” in Proceedings of the Genetic and Evolutionary Computation

- 105 -

Conference, vol. 2, pp. 1289-1296, 1999.

90. L. N. de Castro and F. J. Von Zuben, “Artificial Immune Systems: Part I - Basic

Theory and Applications,” Technical Report – TR-DCA 01/99, School of

Electrical and Computing Engineering, State University of Campinas, Brazil,

1999. (ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tr_dca/trdca0199.pdf)

91. L. N. de Castro and F. J. Von Zuben, “Artificial Immune Systems: Part II - A

Survey of Applications,” Technical Report DCA-RT 02/00, School of Electrical

and Computing Engineering, State University of Campinas, Brazil, 2000.

(ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tr_dca/trdca0200.pdf)

92. A. Kalinli and N. Karaboga, “Artificial Immune Algorithm for IIR Filter

Design,” Engineering Applications of Artificial Intelligence, vol. 18, no. 8, pp.

919-929, 2005.

93. X. Wen and A. Song, “An Immune Evolutionary Algorithm for Sphericity Error

Evaluation,” International Journal of Machine Tools & Manufacture, vol. 44, no.

10, pp. 1077-1084, 2004.

94. J.-S. Chun, M.-K. Kim and H.-K. Jung, “Shape Optimization of Electromagnetic

Devices Using Immune Algorithm,” IEEE Transactions on Magnetics, vol. 33,

no. 2, pp. 1876-1879, 1997.

95. L. N. de Castro and F. J. Von Zuben, “Learning and Optimization Using the

Clonal Selection Principle,” IEEE Transactions on Evolutionary Computation,

vol. 6, no. 3, pp. 239-251, 2002.

96. F. M. Burnet, “Clonal Selection and After,” in Theoretical Immunology, G. I. Bell,

A. S. Perelson, and G. H. Pimbley Jr., Eds., pp. 63-85, Marcel Dekker, 1978.

97. F. M. Burnet, The Clonal Selection Theory of Acquired Immunity, Cambridge

University Press, 1959.

98. C.-J. Lin, I-F. Chung and C.-H. Chen, “An Entropy-Based Quantum

- 106 -

Neuro-Fuzzy Inference System for Classification Applications,” Neurocomputing,

vol. 70, no. 13-15, pp. 2502-2516, 2007.

99. C.-H. Chen, C.-J. Lin and C.-T. Lin, “An Efficient Quantum Neuro-Fuzzy

Classifier Based on Fuzzy Entropy and Compensatory Operation,” Soft

Computing, vol. 12, no. 6, pp. 567-583, 2008.

100. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. John

Wiley & Sons, 1973.

101. R. Setiono and H. Liu, “Neural-Network Feature Selector,” IEEE Transactions

on Neural Networks, vol. 8, no. 3, pp. 654-662, 1997.

102. H.-M. Lee, C.-M. Chen, J.-M. Chen and Y.-L. Jou, “An Efficient Fuzzy

Classifier with Feature Selection Based on Fuzzy Entropy,” IEEE Transactions

on Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 31, no. 3, pp.

426-432, 2001.

103. K. M. Passino, “Biomimicry of Bacterial Foraging for Distributed Optimization

and Control,” IEEE Control Systems Magazine, vol. 22, no. 3, pp. 52-67, 2002.

104. S. D. Muller, J. Marchetto, S. Airaghi and P. Koumoutsakos, “Optimization

Based on Bacterial Chemotaxis,” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 1, pp. 16-29, 2002.

105. D. H. Kim and J. H. Cho, “Adaptive Tuning of PID Controller for Multivariable

System Using Bacterial Foraging Based Optimization,” in Proceedings of the

Third International Atlantic Web Intelligence Conference, vol. 3528 of Lecture

Notes in Computer Science, pp. 231-235, 2005.

106. D. H. Kim and C. H. Cho, “Bacterial Foraging Based Neural Network Fuzzy

Learning,” in Proceedings of the Indian International Conference on Artificial

Intelligence, pp. 2030-2036, 2005.

107. T. Datta and I. S. Misra, “A Comparative Study of Optimization Techniques in

- 107 -

Adaptive Antenna Array Processing: The Bacteria-Foraging Algorithm and

Particle-Swarm Optimization,” IEEE Antennas and Propagation Magazine, vol.

51, no. 6, pp. 69-81, 2009.

108. P. K. Simpson, “Fuzzy Min-Max Neural Networks – Part 1: Classification,”

IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 776-786, 1992.

109. H.-M. Lee, K.-H. Chen and I-F. Jiang, “A Neural Network Classifier with

Disjunctive Fuzzy Information,” Neural Networks, vol. 11, no. 6, pp. 1113-1125,

1998.

110. T.-P. Wu and S.-M. Chen, “A New Method for Constructing Membership

Functions and Fuzzy Rules from Training Examples,” IEEE Transactions on

Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 29, no. 1, pp. 25-40,

1999.

111. B. C. Lovell and A. P. Bradley, “The Multiscale Classifier,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 18, no. 2, pp. 124-137, 1996.

112. C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part I,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp.

404-418, 1990.

113. C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part II,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp.

419-435, 1990.

114. K. S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical

Systems Using Neural Networks,” IEEE Transactions on Neural Networks, vol.

1, no. 1, pp. 4-27, 1990.

115. K. J. Astrom and B. Wittenmark, Adaptive Control. Addison-Wesley, 1989.

116. C. Li, S. Yang and I. Korejo, “An Adaptive Mutation Operator for Particle

Swarm Optimization,” in Proceedings of the 2008 UK Workshop on

- 108 -

Computational Intelligence, pp. 165-170, 2008.

117. K. V. Deligkaris, Z. D. Zaharis, D. G. Kampitaki, S. K. Goudos, I. T. Rekanos

and M. N. Spasos, “Thinned Planar Array Design Using Boolean PSO with

Velocity Mutation,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp.

1490-1493, 2009.

118. S. H. Ling, H. H. C. Iu, K. Y. Chan, H. K. Lam, B. C. W. Yeung and F. H. Leung,

“Hybrid Particle Swarm Optimization with Wavelet Mutation and Its Industrial

Applications,” IEEE Transactions on Systems, Man, and Cybernetics – Part B:

Cybernetics, vol. 38, no. 3, pp. 743-763, 2008.

119. D. Nguyen and B. Widrow, “The Truck Backer-Upper: An Example of

Self-Learning in Neural Networks,” in Proceedings of the International Joint

Conference on Neural Networks, vol. 2, pp. 357-363, 1989.

120. J. Tanomaru and S. Omatu, “Process Control by On-Line Trained Neural

Controllers,” IEEE Transactions on Industrial Electronics, vol. 39, no. 6, pp.

511-521, 1992.

121. C.-H. Chen, C.-J. Lin and C.-T. Lin, “Using an Efficient Immune Symbiotic

Evolution Learning for Compensatory Neuro-Fuzzy Controller,” IEEE

Transactions on Fuzzy Systems, vol. 17, no. 3, pp. 668-682, 2009.

122. C.-F. Juang, J.-Y. Lin and C.-T. Lin, “Genetic Reinforcement Learning through

Symbiotic Evolution for Fuzzy Controller Design,” IEEE Transactions on

Systems, Man, and Cybernetic – Part B: Cybernetics, vol. 30, no. 2, pp. 290-302,

2000.

123. M. Jamei, M. Mahfouf and D. A. Linkens, “Elicitation and Fine-Tuning of Fuzzy

Control Rules Using Symbiotic Evolution,” Fuzzy Sets and Systems, vol. 147, no.

1, pp. 57-74, 2004.

124. D. Psaltis, A. Sideris and A. A. Yamamura, “A Multilayered Neural Network

- 109 -

Controller,” IEEE Control Systems Magazine, vol. 8, no. 2, pp. 17-21, 1988.

125. C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3rd

Edition. Prentice-Hall, 1995.

126. Y. Hayashi and J.J. Buckley, “Approximations Between Fuzzy Expert Systems

and Neural Networks,” International Journal of Approximate Reasoning, vol. 10,

pp. 63-73, 1994.

- 110 -

Publication List

Journal：

[1] Chin-Teng Lin, Chien-Ting Yang and Miin-Tsair Su, “A Hybridization of
Immune Algorithm with Particle Swarm Optimization for Neuro-Fuzzy
Classifiers,” International Journal of Fuzzy Systems, vol. 10, no. 3, pp. 139-149,
2008. (Full paper, 1.0 點)

[2] Miin-Tsair Su, Cheng-Hung Chen, Cheng-Jian Lin and Chin-Teng Lin, “A
Rule-based Symbiotic Modified Differential Evolution for Self-Organizing
Neuro-Fuzzy Systems,” Applied Soft Computing, vol. 11, no. 8, pp. 4847-4858,
2011. (Full paper, 1.2 點)

[3] Miin-Tsair Su, Chin-Teng Lin and Keng-Wei Hsu, “A Novel Method for
Locating Solder Joints based on Modified Binary Potential Function,”
International Journal of Innovative Computing, Information and Control, vol. 8,
no. 1(B), pp. 911–932, 2012. (Full paper, 1.4 點)

[4] Chen-Yu Lee, Chin-Teng Lin, Chao-Ting Hong and Miin-Tsair Su, “Smoke
Detection Using Spatial and Temporal Analyses,” International Journal of
Innovative Computing, Information and Control, vol. 8, no. 7(A), pp. 4749–4770,
2012. (Full paper, 0.6 點).

[5] Miin-Tsair Su, Chin-Teng Lin, Sheng-Chih Hsu, Dong-Lin Li, Cheng-Jian Lin
and Cheng-Hung Chen, “Nonlinear System Control Using
Functional-Link-Based Neuro-Fuzzy Network Model Embedded with Modified
Particle Swarm Optimizer,” International Journal of Fuzzy Systems, vol. 14, no.
1, pp. 97-109, 2012. (Full paper, 1.2 點)

Conference：

[1] Miin-Tsair Su, Keng-Wei Hsu and Chin-Teng Lin, “A New Method for Locating
Solder Joints Based on Potential Function,” The 22th IPPR Conference on
Computer Vision, Graphics and Image Processing, Nantou, Taiwan, R.O.C., Aug.
23-25, 2009.

[2] Miin-Tsair Su and Chin-Teng Lin, “Nonlinear System Control Using
Functional-Link-Based Neuro-Fuzzy Network Model Embedded with Modified
Particle Swarm Optimizer,” The 19th National Conference on Fuzzy Theory and
Its Application, Yunlin, Taiwan, R.O.C., Nov. 18-19, 2011.

