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中文摘要 

本論文提出一種新的韻律輔助之中文語音辨識系統，它不同於以往較簡單的

作法，是利用較精細的四層中文韻律結構模式來幫助中文語音辨認，本論文利用

先前已開發的韻律標記與韻律模式演算法從大量未經人工標記的語料庫中自動

產生訓練出 12 種韻律模型，並以兩階段方式將其加入到自動語音辨認系統中，

對系統中第一個階段，也就是傳統隱藏式馬可夫模型(HMM)辨認器所產生的詞

圖(word lattice)作重新評分的動作，如此可以得到更正確的詞辨認序列；此外，

系統第二個階段同時解碼出多種資訊，包含詞性(POS)、標點符號(PM)以及用來

建構測試語料之階層式韻律架構的兩種韻律標記。本論文實驗語料使用 TCC300

語料庫中的朗讀式長句，同時實驗中引入一個因子式語言模型，它是一個描繪

詞、詞性及標點符號三者之間關係的模型，以此當作基準(baseline)辨認效能。本

研究在加入所有韻律資訊後之實驗結果對於詞(word)、字(character)、音節(syllable)

的錯誤率分別為 20.1%、13.6%及 9.4%，與 baseline比較則分別改善了 4.1%、4.0%

及 2.4%的絕對錯誤率(16.9%、22.6%及 20.6%的相對錯誤率)。由實驗結果分析，

發現本系統能成功修正許多辨認錯誤是來自於搶詞與聲調錯誤。 

在應用上，我們使用此辨認方法建立一種新的以模式為基礎的中文語音韻律

編碼系統，在編碼端，以此韻律輔助語音辨認系統由輸入語音產生語言參數及韻

律標記加以編碼；在解碼端，將這些語言參數及韻律標記資訊解碼，用以建構出

音節基頻軌跡、音節長度、音節能量位準及音節間的停頓長度，接著以 HMM語

音合成器結合語音的頻譜參數合成出語音訊號，由 TCC300 語料之實驗證實，合

成語音在低資料率 543 bits/sec下仍有高的聲音品質。
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Abstract 

This dissertation presents a new prosody-assisted automatic speech recognition 

(ASR) system for Mandarin speech. It differs from the conventional approach of using 

simple prosodic cues on employing a sophisticated prosody modeling approach based 

on a 4-layer prosody-hierarchy structure to automatically generate 12 prosodic models 

from a large unlabeled speech database by the joint prosody labeling and modeling 

(PLM) algorithm proposed previously. By incorporating these 12 prosodic models 

into a two-stage ASR system to rescore the word lattice generated in the first stage by 

the conventional Hidden Markov model (HMM) recognizer, we can obtain a better 

recognized word string. Besides, some other information can also be decoded, 

including part of speech (POS), punctuation mark (PM), and two types of prosodic 

tags which can be used to construct the prosody-hierarchy structure of the testing 

speech. Experimental results on the TCC300 database, which consists of long 

paragraphic utterances, showed that the proposed system significantly outperformed 

the baseline scheme using an HMM recognizer with a factored language model which 

models word, POS, and PM. Performances of 20.7%, 14.4%, and 9.6% in word, 

character, and base-syllable error rates were obtained. They corresponded to 3.7%, 

3.7%, and 2.4% absolute (or 15.2%, 20.4%, and 20% relative) error reductions. By an 

error analysis, we found that many word segmentation errors and tone recognition 

errors were corrected.  
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With the success of the prosody-assisted ASR system, we conduct an application to 

speech coding. A new model-based Mandarin-speech coding system is proposed. It 

employs the prosody-assisted ASR with the hierarchical prosodic model (HPM) to 

generate from the input speech enriched transcriptions, including linguistic features, 

prosodic tags and spectral parameters in the encoder. By sending these features to the 

decoder, we can first reconstruct the prosodic-acoustic features of syllable pitch 

contour, syllable duration, syllable energy level, and inter-syllable pause duration by 

HPM using the linguistic features and prosodic tags; and then combined with spectral 

parameters to reconstruct the input speech signal by an HMM-based speech synthesizer. 

Experimental results show that the reconstructed speech has good quality at a low data 

rate of 543 bits/s. 
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Chapter 1 Introduction 

1.1 Background 

The use of prosodic information in automatic speech recognition (ASR) is an 

attractive research topic in recent years. Prosody refers to the suprasegmental features 

of continuous speech, such as accentuation, prominence, tone, pause, intonation, and 

rhythm. Prosody is physically encoded in the variations of pitch contour, energy level, 

duration, and silence of spoken utterances. Prosody is known to closely correlate with 

the linguistic features of various levels, say from phone, syllable, word, phrase, to 

sentence or above. Owing to those correlations, prosody is potentially useful for ASR. 

Generally, the task of prosody-assisted ASR is to firstly exploit prosodic cues 

correlated to linguistic features, and to then model their relationships with linguistic 

features and prosodic-acoustic features, and to lastly incorporate these models into the 

ASR framework. 

In the past, many studies on using prosodic information to assist in ASR have 

been reported [1]-[7] for American English [1]-[4],[6],[7] and Spanish [5]. 

Ananthakrishnan et al. [1]-[3] proposed to incorporate a prosodic language model and 

a prosodic acoustic model into the conventional Hidden Markov model (HMM)-based 

ASR recognizer by rescoring the N-best word sequences or the word lattice. The 

prosodic acoustic model used Gaussian mixture model (GMM) or multilayer 

perceptrons (MLP) to model the relation of binary pitch accent label of word and the 

prosodic-acoustic features extracted from the F0 track, energy, and duration cues of 

context. The prosodic language model was a trigram language model (LM) with 

compound tokens of words and their binary pitch accent labels. Besides, an 

unsupervised adaptation approach to jointly refining the two categorical prosody 

models and bootstrapping prosodic labels was also proposed to assist in solving the 

problem of lacking large corpora annotated with relevant prosodic symbols [1]. 

Relative improvements of 1.2-3.1% in word error rate (WER) were obtained on the 

Boston University Radio News Corpus (BU-RNC). Chen et al. [4] used two prosodic 

events, intonational phrase boundary and pitch accent, in ASR to construct 

prosody-dependent word and phoneme models. A relative improvement of 6.9% in 
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WER was achieved on BU-RNC. Milone et al. [5] proposed a method to use the 

accentual information in ASR. The method first estimated a sequence of accentual 

structure of words from speech signal using F0 and energy by an HMM-based 

classifier or a neural tree networks classifier, and then incorporated it into the 

recognition process. An LM built to take into account the accentual structure of words 

in phrase was used. A relative improvement of 28.91% in WER was achieved on a 

medium-vocabulary Spanish continuous-speech recognition task. Vergyri et al. [6] 

proposed to integrate models of different prosodic knowledge sources into ASR. They 

included word duration model, pause language model, and prosodic model of hidden 

events (e.g. sentence boundaries and speech disfluencies). Relative improvements of 

2.6-3.1% in WER were achieved on the Switchboard database. Ostendorf et al. [7] 

presented a statistical modeling framework for incorporating prosody in the speech 

recognition process. Several issues were discussed, including prosodic feature 

extraction in different time scales and normalization, prosody modeling using an 

intermediate symbol representation in contrast to directly conditioning on acoustic 

correlates, the use of questions about prosodic structure in acoustic model clustering, 

dynamic pronunciation modeling conditioned on acoustic-prosodic features.  

Besides, some other studies on using prosodic information to assist in Mandarin 

ASR can also be found [8]-[13]. In [8], a recurrent neural network (RNN) was used to 

detect word-boundary information from the input prosodic features with base-syllable 

boundary being pre-determined by an HMM-based acoustic decoder. The word 

boundary information was then used to assist the linguistic decoder in solving 

word-boundary ambiguity as well as pruning unlikely paths. An absolute improvement 

of 1.1% in character error rate (CER) was achieved on a large-vocabulary 

speaker-dependent (SD) Mandarin continuous ASR task. Huang et al. [9],[10] utilized 

decision tree-based or GMM-based prosodic models of syllable- and word-level to 

generate the prosodic likelihood score for rescoring in a two-pass recognition process. 

Absolute CER improvements of 1.06% [9] and 1.45% [10] were reported on a 

large-vocabulary multi-speaker continuous ASR task. In [11], word-dependent tone 

modeling using prosodic features of syllable duration and three F0 values with two 

back-off schemes was proposed for Mandarin ASR. A minor improvement on CER 

was achieved on a Mandarin broadcast news corpus. Ni et al. [12] proposed an 

implicit tone model using F0 contour features and an explicit tone model using both 
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prosodic and lexical features for assisting in Mandarin ASR. An improvement of 

3.65% in CER was achieved on the Project-863 database. In [13], Ni et al 

incorporated a GMM-based prosody-dependent tonal syllable duration model and a 

maximum entropy (ME)-based syntactical prosody model into a prosody-dependent 

acoustic model recognizer by rescoring the syllable lattice. Only tonal syllable 

recognition rate was reported on the Project-863 database.  

Prosody modeling was also used in some other speech recognition tasks. Liu et al. 

[14] conducted enriching speech recognition to automatic detection of sentence 

boundaries and disfluencies on both conversational telephone speech and broadcast 

news tasks of NIST RT-04F evaluation using both prosodic and lexical features. 

Shriberg et al. [15] employed the decision tree method to model rhythmic and melodic 

features of speech for several applications including sentence segmentation and 

disfluency detection, topic segmentation in broadcast news, dialog act labeling and 

word recognition in conversational speech. Although prosody modeling was useful in 

those applications, only minor improvements on word recognition were achieved. 

It can be found from above discussions that prosody modeling is the main 

concern in all those previous studies. The methods of prosody modeling in those 

studies can be classified into two classes: 1) direct modeling of target classes 

[8],[10]-[12], and 2) prosody modeling via intermediate abstract phonological 

categories [1]-[6],[9],[13], such as TOBI [16] and INTSINT [17]. In direct modeling 

of target classes, the relationship between prosodic acoustic features and target classes 

(usually, linguistic feature, e.g., lexical tone, lexical word, etc.) is directly modeled by 

a pattern classifier, such as GMM, decision tree, RNN, ME, etc. This approach is 

advantageous on bypassing manual labeling of prosodic tags and hence can avoid the 

inter-annotator inconsistency. Nevertheless, the variability or space of both 

prosodic-acoustic and linguistic features (target) may be too large when considering 

more features of various level or wider time window. Therefore, only limited 

linguistic and prosodic-acoustic features are incorporated in this direct modeling 

approach [8],[10]-[12]. On the other hand, prosody modeling via intermediate abstract 

phonological categories [1]-[6],[9],[13] first explores important prosodic cues or 

events potentially useful for ASR and then builds prosodic models to describe the 

relations of these prosodic cues with linguistic features of various levels and 
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prosodic-acoustic features using a prosody-annotated speech database. Figure 1.1 

shows a conceptual block diagram of the prosody modeling using intermediate 

abstract phonological categories. Usually, prosody annotation is based on the ToBI 

labeling system [16] and is performed manually. The variability of prosodic-acoustic 

features can be reduced by introducing a finite discrete set of prosody tags so as to 

make the construction of prosody-syntax relationship easier. The main drawback of 

this approach lies in the need of a large well-annotated database with full prosodic 

cues being properly labeled. In the past, prosody labeling is usually done by human 

became of the lack of a good automatic labeling algorithm. But, preparing such a 

database by human is still difficult because the labeling work is highly 

time-consuming and it is not easy to maintain the consistency of fully labeling of all 

prosodic cues for the same annotators or between different annotators. So, most 

previous works of this class used databases annotated with only few obvious prosodic 

cues, such as pitch accent and intonational phrase boundary. This will highly limit the 

effectiveness of using prosodic information on improving the ASR performance. 

Although some studies [13],[18],[19] conducted automatic prosody labeling to enlarge 

the size of prosody-annotated corpus, the prosodic cues they used were still very 

limited. Besides, their prosodic models were still trained with manually annotated 

speech corpora so that their performances were subject to the quality of human 

prosody labeling. Table 1.1 summarizes the primary features of prosody modeling and 

experiment setting for those previous studies on prosody-assisted ASR for 

comparison. 
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Figure 1.1:  A conceptual block diagram of the prosody modeling class using 

intermediate abstract phonological categories. PD-AM and PD-LM denote 

prosody-dependent acoustic model and prosody-dependent language model. 

 

Table 1.1: Comparison Between Prosody-Assisted ASR Studies 

 Prosody modeling Experiment setting 
Literature PE PH PL PAF LF LNG STL VSZ SPK IMP (%) 

Ni [13] 2B+2S 1-L SS F0/d t M R TSR SI 9.82/24.4(tonal 

syllable) 

Huang [9] 2B 2-L R F0*/d*/e*/p t/WB M B 100K SD 1.06/5.5(character) 

Ana [1] 2A - UA F0*/d*/e* W E R - - 1/3.1 

Chen [4] 2B+2A 1-L* S F0/d ph/W/POS E R - SI 1.73/6.9 

Vergyri [6] 3P+5HE - - F0*/d*/p ph/W E C 8K SI 1.1, 0.7, 0.9/3.9, 2.6, 

3.1 

Milone [5] AS - - F0/e/d W S R <500 SI 2.18/28.91 

Huang [10] Dir - - F0*/d*/e*/p t/WB M B 100K SD 1.45/7.5(character) 

Ni [12] Dir - - F0/d/e/p t/WB M R 4818

8 

SI 3.65/21.5(character) 

Lei [11] Dir - - F0/d t/ts/W M B 49k SI 0.7, 1/6, 

5.2(character) 

Wang [8] Dir - - F0*/d/e*/p SJ M R 110K SD 1.1/4.2(character) 

proposed 7B+PS 4-L U F0*/d*/e/p/ed t/s/f/WL/WB/POS/PM M R 60K SI 9.82/24.4(tonal 

syllable) 

PE: prosodic event = {B: break type | PS: prosodic state | S: phrase stress | A: binary pitch accent | HE: 

hidden events | AS: accentual structure of words | Dir: direct prosody modeling}; PH: prosody 

hierarchy = {L: layer}; PL: prosody labeling = {U: unsupervised | SS: semi-supervised | S: 

supervised | BS: bootstrapping | R: taking lexical word as potential PW}; PAF: prosodic-acoustic 

feature = {F0: fundamental frequency | d: duration | e: energy | pd: pause duration | *: with differential}; 

LF: linguistic feature = {t: tone | ph: phone | s: base-syllable type | W: word | POS: part of speech | PM: 

punctuation mark}; LNG: language = {M: Mandarin | E: English | S: Spanish}; STL: style = {R: read | 

B: broadcasting | C: conversational}; VSZ: vocabulary size in word, TSR: tonal syllable recognition; 

SPK: speaker = {SI: speaker independent | SD: speaker dependent | MS: multi speaker}; IMP: 

improvement in absolute/relative accuracy. 
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1.2 Motivation 

In this dissertation, a new prosody-assisted ASR system is proposed for 

Mandarin speech. It differs from the conventional prosody-assisted ASR system with 

prosody modeling shown in Figure 1.1 mainly on adopting a systematic way to 

perform prosody modeling on a large unlabeled database for automatically exploiting 

full prosodic cues of speech based on a 4-layer prosody-hierarchy model to assist in 

ASR. The general goal of our prosody modeling is to explore a wide-range, mixed 

context information of speech and the associated text via building prosodic models to 

properly describe the relations of the parameters of the 4-layer prosody-hierarchy 

model with the prosodic-acoustic features, provided by the input speech, and the 

linguistic features of the target text to be recognized. Figure 1.2 shows a conceptual 

block diagram of the proposed approach of prosody modeling. It is an extension of our 

previous study on the joint prosody labeling and modeling using an unlabeled speech 

database [20]. The 4-layer model of prosody hierarchy of Mandarin speech defines 

two types of prosodic tags, break type and prosodic state, to specify its 4-layer 

structure and 4 types of constituents. Several prosodic models are then designed to 

describe various relationships of these two types of tags with both the linguistic 

features of texts and the prosodic-acoustic features of speech signals. Lastly, the joint 

prosody labeling and modeling (PLM) algorithm proposed previously [20] is used to 

train those prosodic models from a large unlabeled speech database. The new 

approach is advantageous on involving abundant prosodic cues in the prosody 

modeling for assisting in ASR. We can therefore expect that it performs better on 

improving the word recognition performance. Besides, more information other than 

the word string can be decoded. It includes prosodic tags which implicitly represent 

the prosody-hierarchy structure of the testing utterance, and some linguistic features 

such as part-of-speech (POS) and punctuation mark (PM). The enriching information 

has also contribution on an application of the proposed prosody-assisted ASR system,  

speech coding system, in the post-processing. It differs from the conventional speech 

coding system on using the prosody-assisted ASR in the encoder to extract high-level 

linguistic and prosodic features to assist in improving the coding efficiency. 
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Figure 1.2:  The prosody modeling approach in the proposed prosody-assisted ASR 

system. 

 

1.3 Organization of the Dissertation 

The rest of this dissertation is organized as follows. Chapter 2 presents the 

proposed prosody-assisted ASR system. It introduces the design of the hierarchical 

prosody model (HPM), the training of HPM, the two-stage prosody-assisted ASR 

system, and experimental results. In Chapter 3, we introduce an application of the 

proposed prosody-assisted ASR system to the coding of prosodic information for 

Mandarin speech. Some conclusions and future works are given in the last chapter. 
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Chapter 2 The Proposed Prosody-Assisted ASR 

System 

The proposed prosody-assisted Mandarin speech recognition system is discussed 

in detail in this chapter. The chapter is organized as follows. Section 2.1 presents the 

design of prosodic models for ASR. The training of the proposed prosodic models is 

discussed in Section 2.2. Section 2.3 describes the two-stage prosody-assisted ASR 

system. Section 2.4 discusses the experimental results. Some conclusions of this 

chapter are given in Section 2.5. 

2.1 The Design of Prosodic Models for ASR 

A most commonly agreed and used prosody-hierarchy structure consists of four 

layers including syllable layer, prosodic word layer, prosodic phrase layer (or 

intermediate phrase), and intonation phrase layer. Basically, the four-layer structure 

interprets the pitch and duration variations of syllable well for short sentential 

utterances. To interpret the contributions of higher-level discourse information to the 

wider-range and larger variations on the prosodic-acoustic features of long utterances 

beyond just sentential utterances, Tseng et al [21] proposed a hierarchical prosodic 

phrase grouping (HPG) model of Mandarin speech. The HPG model consists of five 

layers, listed in bottom-up order: syllable (SYL), prosodic word (PW), prosodic 

phrase (PPh), breath group (BG), and prosodic phrase group (PG). The first three 

layers in the hierarchy are the same as those of the four-layer prosodic structure 

mentioned above. The fourth BG layer is formed by combining a sequence of PPhs, 

and a sequence of BGs, in turn, constitutes the fifth PG layer. The above five prosodic 

constituents are delimited by six break types denoted as B0, B1, B2, B3, B4 and B5 

[21]. First, B0 and B1 represent respectively non-breaks of reduced syllable boundary 

(or tightly-coupling syllable juncture) and normal syllable boundary, within a PW, 

which have no identifiable pauses between SYLs. Second, PW boundary B2 is 

perceived as a minor-break boundary where a slight tone of voice change usually 

follows, while PPh boundary B3 is perceived as a clear pause. Thirdly, B4 and B5 are 

defined for BG and PG boundaries, respectively. B4 is a breathing pause and B5 is a 
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complete speech paragraph end characterized by final lengthening coupled with 

weakening of speech sounds.  

In this dissertation, we adopt a 4-layer hierarchy structure, which is a modified 

version of the HPG model, in the prosody modeling for assisting in ASR to consider 

the recognition of long Mandarin utterances of paragraphs. The motivation of using 

the 4-layer hierarchy model is owing to its suitability for describing the prosody of 

long paragraphic utterances of Mandarin. The model employs two types of prosodic 

tags to represent the four-layer prosody-hierarchy structure. One is the break tag used 

to separate two consecutive prosodic constituents. We modify the break type labeling 

scheme of the HPG model by dividing B2 into three types, B2-1, B2-2 and B2-3, and 

combining B4 and B5 into one denoted simply by B4. Here, B2-1, B2-2 and B2-3 

represent PW boundaries with F0 reset, short pause and pre-boundary syllable 

duration lengthening, respectively. The reason of refining B2 into three types is to 

consider the difference of their prosodic boundary correlates (i.e., prosodic-acoustic 

features) to be modeled. On the contrary, the combination of B4 and B5 is owing to 

the similarity of their prosodic-acoustic characteristics. Therefore, the break-type tag 

set used is {B0, B1, B2-1, B2-2, B2-3, B3, B4}. As shown in Figure 2.1, these seven 

break-type tags can be used to delimit an utterance into four types of prosodic units, 

namely SYL, PW, PPh, and BG/PG. 

B4B4 BG/PG

PPh PPh PPhB3 B3

PWPW

SYL SYL B1/B0 SYL SYL SYL SYLB1/B0

PW PW PW

SYL

B2-1/
B2-2/
B2-3

B2-1/
B2-2/
B2-3

PPh

PWPW

SYL SYL B1/B0

B2-1/
B2-2/
B2-3

                                                                                BG/PG

PPh

PW

SYL B1/B0 SYL

B2-1/
B2-2/
B2-3

       BG/PG

... ...

 

Figure 2.1:  The prosody-hierarchy model of Mandarin speech used in this study [20], 

[21]. 

 

Another type of prosodic tag is prosodic state which is conceptually defined as 

the state in a prosodic phrase to account for the prosodic-acoustic feature variations 

imposed on higher-level prosodic constituents (i.e. PW, PPh and BG/PG). The 

consecutive prosodic state sequence of a prosodic constituent hence forms a 

prosodic-acoustic feature pattern to characterize it. In practice, prosodic state serves as 

an intermediate discrete representation of the effects on the variation of a syllable’s 

prosodic-acoustic feature from linguistic features of word-level or above. In this study, 
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three types of prosodic states are used respectively for syllable pitch level, syllable 

duration, and syllable energy level. 

Based on the four-layer prosody-hierarchy model, several prosodic models are 

designed to describe the various relationships of the three types of features: the two 

types of prosodic tags, the linguistic features of various levels, and the 

prosodic-acoustic features. The prosodic model design is based on the following 

maximum-a-posterior (MAP) formulation to find the best linguistic transcriptions 

{ , , }l  W POS PM , prosodic tags { , }p  B P , and acoustic segmentation s  for 

the given input acoustic features { , }a a p  X X : 

, ,

, ,

, , arg max ( , , , , , | , )

                     arg max ( , , , , , , , )

l p s

l p s

l p s s a p

s a p

P

P

  

  

      

 

W POS PM B P X X

W POS PM B P X X

      (2.1) 

     

 

where  1

MwW  is a word sequence; 1{ }MposPOS  is a POS sequence 

associated with W; 1{ }MpmPM  is a PM sequence; M is the total number of words; 

1{ }NBB  is a break type sequence with Bn{B0, B1, B2-1, B2-2, B2-3, B3, B4}; N is 

the total number of syllables; { , , }P p q r  with 1{ },Npp 1 { },Nqq  and 1{ }Nrr  

representing prosodic state sequences for syllable pitch level, duration, and energy 

level, respectively; aX  is a frame-based spectral feature vector sequence (i.e., 

MFCCs and their first-order and second-order derivatives); and { , , }p X X Y Z  is a 

prosodic-acoustic feature sequence with X, Y, and Z representing sequences of 

syllable-based features, syllable-juncture features, and inter-syllable differential 

features, respectively. More detailed prosodic-acoustic features are given as: syllable 

pitch contour (sp), syllable energy level (se), and syllable duration (sd) for X; 

syllable-juncture pause duration (pd) and energy-dip level (ed) for Y; and normalized 

pitch-level jump (pj) and two normalized duration lengthening factors (dl and df) for 

Z. Notations of tags and features are summarized in Table 2.1.  
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To make Equation (2.1) mathematically tractable, we adopt the following 

assumptions: 1) Like the conventional acoustic model (AM), spectral feature sequence 

aX  depends only on word sequence W; 2) Prosodic-acoustic feature sequence pX  

depends on both prosodic tag sequence p  and linguistic feature sequence l ; 3) 

Syllable prosodic-acoustic feature sequence X is independent of syllable-juncture and 

inter-syllable differential prosodic-acoustic feature sequences, Y and Z; 4) Break tag 

sequence B depends mainly on contextual linguistic feature sequence l ; and 5) 

Prosodic state sequence P depends on B only. The reason is that P is used to 

characterize the prosodic constituents' patterns which are mainly determined by the 

prosody hierarchy specified by the break type sequence B. The relation between 

linguistic features and prosody hierarchy is built through the modeling of B. In other 

words, the linguistic feature l  can influence the prosodic state through B. We 

therefore ignore the direct dependency of P on l  for simplicity. Based on these 

assumptions, Equation (2.1) is rewritten as 

Table 2.1: Notations of Prosodic Tags, Prosodic-Acoustic Features and Linguistic Features 

p : prosodic tags B: break types 

P: prosodic states p: pitch prosodic states 

q: duration prosodic states 

r: energy prosodic states 

pX :prosodic-acoustic  

    features 

X: syllable 

prosodic-acoustic features 

sp: syllable pitch contours 

sd: syllable durations 

se: syllable energy levels 

Y: syllable-juncture 

prosodic-acoustic  

  features 

pd: pause durations 

ed: energy-dip levels 

Z: inter-syllable differential 

  prosodic-acoustic features 

pj: normalized pitch-level 

jumps 

dl: normalized duration 

lengthening factor 1 

df: normalized duration 

lengthening factor 2  

l : linguistic features W: words 

POS: part-of-speeches 

PM: punctuation marks 

t: tones 

s: base-syllable types 

f: final types 
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



, ,
, , arg max ( , | ) ( , , )

                       ( | ) ( | ) ( | , , ) ( , | , , )

l p s

l p s a s

l s p l s p l

P P

P P P P

  

      

       

X W W POS PM

B P B X Y Z

   (2.2) 

where ( , | )a sP X W  is an AM; ( , , )P W POS PM  is an LM which describes the 

relations among W, POS and PM; ( | )lP B  is the break-syntax model which 

describes how a syllable-juncture break is influenced by the contextual linguistic 

features of all levels; ( | )P P B  is the prosodic state model describing the variation of 

prosodic state conditioned on the neighboring break type; ( | , , )s p lP   X  is the 

syllable prosodic-acoustic model which describes the influences of the two types of 

prosodic tags and the contextual syllable-level linguistic features on the variations of 

syllable F0 contour, duration and energy level; and ( , | , , )s p lP   Y Z  is the 

syllable-juncture prosodic-acoustic model which describes how the prosodic-acoustic 

features at or across a syllable juncture are influenced by both the break type of the 

juncture and the contextual linguistic features. Figure 2.2 shows the relationships of 

features involved in the four prosodic models, LM, and AM. 

Break type B

*Syllable-juncture    

  prosodic-acoustic features Y

*Inter-syllable differential 

  prosodic features Z

Syllable prosodic- 

acoustic features X

Prosodic states P

Syllable prosodic-

acoustic model

Prosodic 

state model

Break-

syntax model

Syllable-juncture prosodic-

acoustic model

W POS PM

Spectral 

feature Xa

Base syllable type s Tone t Final type f

AM

LM: linguistic transcriptionl

: prosodic tagsp

: acoustic featuresa

( | , , )s p lP   X ( | )P P B ( | )lP B ( , | , , )s p lP   Y Z
 

Figure 2.2: The relationships of AM, LM, and four prosodic models with prosodic 

tags, linguistic features and prosodic-acoustic features. 

In implementation, we need to further elaborate these four prosodic models. 
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Firstly, the break-syntax model ( | )lP B  is approximated by 

1

,

1

( | )  ( | )
N

l n l n

n

P P B




  B                    (2.3) 

where ,( | )n l nP B   is the break type model for the juncture following syllable n, and 

,l n  is the contextual linguistic features surrounding syllable n. Since the space of 

linguistic features ,l n  is large, we partition it into several classes ,( )l nC   by the 

CART decision tree algorithm [22] using the maximum likelihood gain criterion. The 

question set used in the CART consists of 216 questions considering the following 

linguistic features around the juncture: 1) the initial type of the following syllable; 2) 

interword/intraword indicator; 3) lengths and 4) POSs of the words before and after 

the juncture if it is an interword; and 5) PM type for an interword juncture. 

Secondly, the prosodic state model ( | )P P B  is further divided into three 

sub-models and approximated as 

1 1 1 1 1 1 1 1 1

2

( | ) ( | ) ( | ) ( | )

              ( ) ( ) ( ) ( | , ) ( | , ) ( | , )
N

n n n n n n n n n

n

P P P P

P p P q P r P p p B P q q B P r r B     





 
  

 


P B p B q B r B

(2.4) 

where 1 1( | , )n n nP p p B  , 1 1( | , )n n nP q q B  , and 1 1( | , )n n nP r r B   are prosodic state 

transition models for syllable pitch level, duration and energy level, respectively. 

Notice that, in above formulation, the dependency on the break type of the preceding 

syllable juncture makes these models be able to properly model significant 

pitch/energy resets across major breaks and pre-boundary lengthening. We also note 

that the three prosodic states are independently modeled for simplicity.  

Thirdly, the syllable prosodic-acoustic model ( | , , )s p lP   X  is further divided 

into three sub-models and approximated as: 

1

1 1

1

( | , , )  ( | , , , ) ( | , , , , ) ( | , , , , )

                          ( | , , ) ( | , , ) ( | , , )

s p l s s s

N
n n

n n n n n n n n n n n n

n

P P P P

P sp p B t P sd q s t P se r f t

 



      

 

X sp B p t sd B q t s se B r t f

    (2.5) 
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where 1

1 1( | , , )n n

n n n nP sp B p t 

  , ( | , , )n n n nP sd q s t , and ( | , , )n n n nP se r f t are sub-models 

for the pitch contour, duration and energy level of syllable n, respectively; nt , 
ns  

and  nf  denote the tone, base-syllable type and final type of syllable n; 

-1 -1=( , )n

n n nB B B ; and 1

-1 -1 1( , , )n

n n n nt t t t

 . 1

1 1( | , , )n n

n n n nP sp B p t 

   is further elaborated to 

consider four major affecting factors. With an assumption that all affecting factors are 

combined additively, we have 

1
1 1, ,n n

n n n n n n

r f b

n n t p spB t B t
sp sp     

 

                    (2.6) 

where nsp  is a vector of four orthogonally-transformed parameters representing the 

observed log-F0 contour of syllable n [23]; r

nsp  is the modeling residue; 
nt

  and 

np  are the affecting patterns (APs) for nt  and np , respectively; 
1 1, n

n n

f

B t


 

 and 

1, n
n n

b

B t
   are the forward and backward coarticulation APs contributed from syllable 

1n  and syllable 1n , respectively; and sp  is the global mean of pitch vector. In 

this study, 
np  is set to have nonzero value only in its first dimension in order to 

restrict the influence of prosodic state merely on the log-F0 level of the current 

syllable. By assuming that r

nsp  is zero-mean and normally distributed, i.e., 

( ;0, )r

n spN sp R , we have  

1
1 1

1

-1 -1 , ,
( | , , ) ( ; , )n n

n n n n n n

n n f b

n n n n n t p sp spB t B t
P sp p B t N sp R    

 

          (2.7) 

It is noted that r

nsp  is a noise-like residual signal so that we model it by a normal 

distribution. 

Similar to the design of the syllable pitch contour model, the syllable duration 

model ( | , , )n n n nP sd q s t  and the syllable energy level model ( | , , )n n n nP se r f t  are 

formulated by  

( | , , ) ( ; , )
n n nn n n n n t s q sd sdP sd q s t N sd R       .        (2.8) 

( | , , ) ( ; , )
n n nn n n n n t f r se seP se r f t N se R       .        (2.9) 

where nsd  and nse  are the observed duration and energy level of syllable n, 

respectively; 's  and 's  represent APs for syllable duration and syllable energy 
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level; sd  and se  are their global means; and sdR  and seR  are variances of 

modeling residues. 

Lastly, the syllable-juncture prosodic-acoustic model is further divided into five 

sub-models and approximated as 


, , , ,

1

,

1

2

, , , , , ,

( , | , , )  ( , , , , | , , )

                              ( , , , , | , , )

                              ( ; , ) ( ; , )
n l n n l n n l n n l n

s p l s p l

N

n n n n n s n l n

n

n B B n ed B ed B

P P

P pd ed pj dl df B

g pd N ed   





   

      

  





Y Z pd ed pj dl df


, , , ,

, ,

1

1

2 2

, , , , , , , ,

2

, , , ,

                                       ( ; , ) ( ; , )

                                       ( ; , )

n l n n l n n l n n l n

n l n n l n

N

n

n pj B pj B n dl B dl B

n df B df B

N pj N dl

N df

   

 





   

 





         

 (2.10) 

where 
, ,, ,( ; , )

n l n n l nn B Bg pd     is a Gamma distribution for pause duration npd  of the 

juncture following syllable n (referred to as juncture n hereafter); ned  is the 

energy-dip level of juncture n and is modeled by a normal distribution;  

11( (1) (1)) ( (1) (1))
n nn n t n tpj sp sp 
                 (2.11) 

is the normalized pitch-level jump across juncture n; (1)nsp  is the first dimension of 

syllable pitch contour nsp  (i.e., syllable pitch level); (1)
nt

  is the first dimension of 

the tone AP; 

1 11( ) ( )
n n n nn n t s n t sdl sd sd   

                    (2.12) 

1 11( ) ( )
n n n nn n t s n t sdf sd sd   

                    (2.13) 

are two normalized duration lengthening factors before and across juncture n. Both 

ndl  and ndf  are modeled as normal distributions. Since the space of ,l n  is large, 

the CART algorithm with the node splitting criterion of maximum likelihood (ML) 

gain is adopted to concurrently classify the five features of npd , ned , npj , ndl  and 

ndf  for each break type according to the same question set used in the training of the 

break-syntax model. Each leaf node represents the product of the five sub-models. So, 

seven decision trees are constructed for the syllable-juncture prosodic-acoustic model. 

It is noted that normal distribution is used to model ned , npj , ndl  and ndf  because 
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of its simplicity and fit to the real data distribution. As for 
npd , normal distribution is 

not suitable because 
npd  is distributed unsymmetrically due to the restriction of 

nonnegative and the tendency of small value for some break types such as B0 and B1. 

Like the state duration of phone HMM model, Gamma distribution is suitable for this 

kind of data. 

2.2 Training of the Proposed Prosodic Models 

The joint prosody labeling and modeling (PLM) algorithm proposed previously 

[20] is adopted to train all these 12 models from an unlabeled speech database. The 

PLM algorithm is a sequential optimization procedure based on the ML criterion to 

jointly label the prosodic tags for all utterances of the training corpus and estimate the 

parameters of all 12 prosodic models. It is composed of two parts: initialization and 

iteration. The initialization part first determines initial prosodic tags of all utterances, 

and then estimates initial parameters of the prosodic models by a specially designed 

procedure. The iteration part first defines an objective likelihood function for each 

utterance by     
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    (2.14) 

It then performs a multi-step iterative procedure to re-label the prosodic tags of each 

utterance with the goal of maximizing Q and update the parameters of all prosodic 

models sequentially and iteratively. In the following, we describe the sequential 

optimization procedure in more detail. 

2.3.1 Initialization 

(a) Initial labeling of break indices  

The initial break index of each syllable juncture is determined by a decision tree 
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shown in Figure 2.3. The decision tree is designed based on the general knowledge of 

the break types obtained in our previous prosody labeling and modeling study on a 

single-speaker database [20]. First, a juncture is labeled as B4 if its pause duration is 

longer than a large threshold Th1. Then, it is assigned as B3 if its pause duration is 

longer than Th2. Then, all intrawords are labeled as B0/B1. We then mark interwords 

with medium pause duration (  Th3) as B2-2, with medium pitch jump (  Th4) as 

B2-1, and with medium pre- or post-syllable lengthening (  Th5 and  Th6) as B2-3. 

All remaining interwords are labeled as B0/B1. Lastly, B0/B1 are refined as B0 if the 

syllable juncture has continuous F0 trajectory, otherwise it is labeled as B1. All these 

six thresholds are determined in a systematic way by an algorithm to avoid 

determining them by trial-and-error. The algorithm is discussed in detail as follows. 

Interword?
B4

B3

Y N

1npd Th

B0/13npd Th

2npd Th

4npj Th

5 and 6n ndl Th df Th 
B2-2

B2-1

B2-3 B0/1
 

Figure 2.3: The decision tree for initial break type labeling. 

The algorithm is designed using both linguistic and acoustic cues to determine 

these six thresholds. First, we consider that PMs are usually associated with long 

breaks and assigned to B3 or B4. We hence collect the pause durations of all word 

junctures with PM and use scalar quantization to divide them into two clusters. Two 

gamma distributions are accordingly constructed to stand for pause duration 

distributions of B4 and B3, i.e. 3( )Bf pd  and 4 ( )Bf pd , respectively. The threshold 

Th1 is then set to be the equal probability intersection between the two distributions. 

Then, we construct a Gamma distribution 0/1( )Bf pd  for B0/B1 by using the pause 

durations of all intrawords. Another Gamma distribution 2-2( )Bf pd  for B2-2 is then 



 

 18 

constructed by using the pause durations of all non-PM interword junctures with 

apparent pause durations defined based on the criterion of 
3 0/1( ) ( )B Bf pd f pd . This 

can exclude non-PM interwords with pause duration similar to those of B0B1. The 

thresholds Th2 and Th3 are then set to be the equal probability intersections of 

2-2( )Bf pd /
3( )Bf pd  and 

2-2( )Bf pd /
0/1( )Bf pd . 

We then determine the three thresholds, Th4, Th5, and Th6, which are used to 

label initial B2-1 and B2-3. First, six Gaussian distributions of the normalized F0 

jump and the two duration lengthening factors, i.e., 
PM ( )f pj , 

intra ( )f pj , 
PM ( )f dl , 

intra ( )f dl , 
PM ( )f df  and

intra ( )f df , for both PM and intraword are constructed using data 

of interwords with PM and of intrawords, respectively. Then, a Gaussian distribution 

of pj for B2-1, i.e., 2-1( )Bf pj , is constructed using non-PM interwords with apparent 

pitch jump defined based on the criterion of PM intra( ) ( )f pj f pj . Similarly, two 

Gaussian distributions of dl and df for B2-3, i.e., 2-3( )Bf dl  and 2-3( )Bf df , are 

constructed using non-PM interwords with apparent duration lengthening defined 

based on the criteria of PM intra( ) ( )f dl f dl  and PM intra( ) ( )f df f df . Lastly, Th4, Th5 

and Th6 are set to be the equal probability intersections of intra ( )f pj / 2-1( )Bf pj , 

intra ( )f dl / 2-3( )Bf dl  and intra ( )f df / 2-3( )Bf df . 

(b) Initialization of 12 prosodic models 

The initializations of the break-syntax model and the syllable-juncture 

prosodic-acoustic model can be done independently with initial break indices of all 

syllable junctures being given. We realize them by the CART algorithm [22]. Then, 

the initializations of the three syllable prosodic-acoustic models are considered. Since 

they are multi-parametric representation models to superimpose several APs of major 

affecting factors to form the observed syllable prosodic-acoustic features, the 

estimation of an AP may be interfered by the existence of the APs of other types. It is 

therefore improper to estimate all initial parameters independently. We hence adopt a 

progressive estimation strategy to first determine the initial APs which can be 

estimated most reliably and then eliminate their effects from the surface 

prosodic-acoustic features for the estimations of the remaining APs. Based on this 

idea, we determine the order of initial AP estimation according to the availability of 

affecting factor and the size of AP. The resulting ordering is listed as follows: global 
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means sp / sd /
se , tone 

t /
t /

t , coarticulation ,

f

B t / ,

b

B t , base-syllable/final type 

s / f , and prosodic states p / q / r . It is noted that an improper ordering of initial 

AP estimation may result in poor AP estimates. For example, if we reverse the order 

of initial estimation of tone and base-syllable APs (i.e., 
t  and 

s ) of syllable 

duration, then the value of 
s  for base-syllable “de” will decrease significantly while 

the value of 
t  for Tone 5 will increase accordingly. This is due to the 

high-frequency character “的” which dominates both distributions of Tone 5 and 

base-syllable “de”. We also note that the initial pitch, duration and energy 

prosodic-state indices are assigned by applying vector quantization (VQ) to the 

residues of syllable F0 level, duration and energy level, respectively; and their APs are 

set to be the corresponding codewords. Lastly, the initializations of the three prosodic 

state transition models are done using the labeled prosodic-state indices and break 

indices. 

2.3.2 Iteration 

The iteration is a multi-step procedure listed below: 

Step 1: Update the APs of tones, t / t / t , with all other APs being fixed. 

Step 2: Update the APs of coarticulation, ,

f

B t / ,

b

B t , with all other APs being fixed. 

Step 3: Update the APs of base-syllable/final type, s / f , with all other APs being 

fixed. 

Step 4: Re-label the prosodic state sequence of each utterance by the Viterbi algorithm 

so as to maximize Q defined in Equation (2.14).  

Step 5: Update the APs of prosodic state, p / q / r , variances, spR / sdR / seR , and 

the prosodic state transition model. 

Step 6: Re-label the break type sequence of each utterance by the Viterbi algorithm so 

as to maximize Q defined in Equation (2.14). 

Step 7: Update the decision trees of the break-syntax model and of the  

syllable-juncture prosodic-acoustic model.  

Step 8: Repeat Steps 1 to 7 until a convergence is reached. 

 

2.3 The Two-Stage Prosody-Assisted ASR System 

Figure 2.4 displays a block diagram of the proposed two-stage prosody-assisted 
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ASR system. It first uses the conventional HMM-based word recognizer with a 

syllable-based AM and a word-bigram LM in the first stage to generate a word lattice. 

It then employs a factored LM (FLM) [24] and the 12 prosodic models discussed 

above in the second stage to rescore the word lattice and find the best recognition 

result. Here the FLM is an extension of the conventional word-based LM to jointly 

describe the relations of the word sequence W, the part-of-speech sequence POS, and 

the punctuation mark sequence PM. The FLM is composed of a word-trigram model, 

a factored POS model and a factored PM model, and is formulated as 

1

2 1 1 1 1

1
word-trigram LM factored POS model factored PM model

( , , ) ( | ) ( | , ) ( | , )
M

i i

i i i i i i i i

i

P P w w P pos pos w P pm pos w

    



  
   

 

W PM POS  (2.16) 

Here, the FLM approach used in [24] is applied to the modeling of the two 

factored models of POS and PM. The SRILM toolkit [25] with Witten-Bell smoothing 

is used to train these three models.  
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Figure 2.4:  A block diagram of the two-stage prosody-assisted ASR system. 

In the second-stage rescoring process, a product of sixteen probabilities from 

three types of models (i.e., AM, FLM, and prosodic models) is computed as we 

completely expand the speech decoding equation shown in Equation (2.2). For 

considering the relative importance of each individual model to ASR, a log-linear 
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combination scheme to integrate these sixteen probabilities is adopted in this study: 

 
16

1

( , ) log logj j

j

L S C p  


                (2.17) 

where  1 16S p p  is a 16-dimensional vector formed by these sixteen 

probabilities;  1 16     is a weighting vector; and  C   is a normalization 

factor. The discriminative model combination (DMC) method [26] is employed to 

find the optimal weighting vector for minimizing the word error rate on a 

development set. The DMC method uses the well-known Generalized Probabilistic 

Descent (GPD) algorithm [27] to iteratively minimize a smoothed empirical word 

error rate on the development set. 

 

2.4 Experimental Results 

2.4.1 Database and Experiment Setting 

The proposed ASR method was tested on a large Mandarin read speech database 

TCC300 [28]. The database consists of two sets: 103-speaker short sentential 

utterances (Set A) and 200-speaker long paragraphic utterances (Set B). The database 

was collected for Mandarin ASR. Set A was designed to consider the phonetic balance 

of Mandarin speech, while Set B was designed to additionally consider the usage for 

prosody study. The database was divided into a training set (about 90%, 274 speakers, 

23 hours) and a test set (about 10%, 29 speakers, 2.43 hours). A set of 411 8-state 

base-syllable HMM models was generated from the training set by HTK 3.4 [29] with 

the MMIE criterion [30]. The acoustic feature vector is composed of 12 MFCCs and 

their delta and delta-delta terms, 1 delta energy and 1 delta-delta energy. For testing 

the proposed prosody-assisted ASR system, the Set B part of the test set was used. 

The test subset contained 226 utterances of 19 speakers with length about 2 hours. 

The total number of words in the test subset is 14993. All testing data were long 

utterances with average length of 117.2 syllables. 

A text corpus was employed to train both the word-bigram LM and the FLM 
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which were used, respectively, in the first- and second-stage speech decodings. The 

corpus contained in total about 139 million words and was formed by combining the 

following three corpora: 1) Sinorama: a news magazine with 9.87 million words; 2) 

NTCIR: an information retrieval (IR) test bench consisting of several domains with 

124.4 million words; and 3) Sinica Corpus: a general text corpus comprising 4.8 

million words with manually POS tagging. The POS tags used in this study are the 

same as those used in the syntactic parsing of the Sinica Treebank [31]. There are in 

total 46 types of POS. A conditional random field (CRF)-based tagger was employed 

to segment all texts in the corpus into word-POS sequences. The tagger was trained on 

the Sinica Corpus. For simplicity, PMs were categorized into four classes: comma, 

period, major PM (including dot, exclamation mark, question mark, semicolon, and 

colon), and non-PM. A 60,000-word lexicon was also constructed based on word 

frequency. 

 

2.4.2 Prosody Modeling 

A training subset containing utterances of 164 speakers was used for prosody 

modeling. It was selected from the training set and consisted of long paragraphic 

utterances with prosody being properly pronounced. A subjective judgment based on 

the rhythm and melody of an utterance was applied to determine whether it was 

properly pronounced. Two major types of ill-pronounced utterances were found: 1) 

bad rhythm – read each character isolatedly to insert a pause after every character; and 

2) bad melody – read each character with almost the same pitch level to result in a flat 

intonation. The excluding of those ill-pronounced training utterances could avoid 

polluting the generated prosodic models so as to degrade their effectiveness on 

assisting in ASR. The total length of the training subset was about 8.3 hours. All 

speech signals were time-aligned using the 411 base-syllable HMM models 

mentioned above. Five prosodic-acoustic features were then extracted, including 

syllable pitch contour vector, syllable duration, syllable energy level, and 

syllable-juncture pause duration and energy-dip level. It is noted that syllable pitch 

contour vectors were extracted from the frame-based F0 values normalized by 

speaker-level mean and variance; while both syllable duration and syllable energy 
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level were normalized by their corresponding speaker-level means and variances. It is 

also noted that the three inter-syllable differential prosodic-acoustic features (i.e., 
npj , 

ndl  and 
ndf  defined in Equation (2.11)-(2.13)) were obtained automatically in the 

prosodic model training by the PLM algorithm [20]. The texts of the training subset 

were processed by the CRF-based tagger mentioned previously to extract all linguistic 

features needed in the prosody modeling. The PLM algorithm [20] was then applied to 

automatically generate the 12 prosodic models from the training subset. In realizing 

the PLM algorithm, the numbers of pitch, duration and energy prosodic states were all 

set to be 16. For avoiding over-fitting the decision trees of the break-syntax model and 

the syllable-juncture prosodic-acoustic model, the following two stop criteria were 

used: 1) The size of a leaf node must be larger than 700 syllables; and 2) The relative 

improvement of likelihood must be larger than 0.0065 in a node splitting. These two 

values were determined empirically. Finally, the total numbers of nodes (leaf nodes) 

obtained were 63(31) and 46(27) for these two models, respectively. 

A quantitative analysis of the prosody modeling result is given as follows. Table 

2.2 shows the APs of five tones. As shown in the table, Tone 1 and Tone 4 had high 

pitch mean, long duration and high energy level; while Tone 3 and Tone 5 had low 

pitch mean, short duration and low energy level. It is noted that a negative value of 

tone AP of syllable duration means the length of a syllable with this tone type is 

smaller than the average length of all syllables with the same base-syllable type 

regardless of their tone type. These agreed with the prior linguistic knowledge and 

generally matched with those of other previous studies [32], [33]. 

A training subset containing utterances of 164 speakers was used for prosody 

modeling. It was selected from the training set and consisted of long paragraphic 

utterances with prosody being properly pronounced. The excluding of ill-pronounced 

training utterances is to avoid polluting the generated prosodic models so as to 

degrade their effectiveness on assisting in ASR. The total length of the training subset 

was about 8.3 hours. All speech signals were time-aligned using the 411 base-syllable 

HMM models mentioned above. Five prosodic-acoustic features were then extracted, 

including syllable pitch contour vector, syllable duration, syllable energy level, and 

syllable-juncture pause duration and energy-dip level. It is noted that syllable pitch 

contour vectors were extracted from the frame-based F0 values normalized by 
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speaker-level mean and variance; while both syllable duration and syllable energy 

level were normalized by their corresponding speaker-level means and variances. It is 

also noted that the three inter-syllable differential prosodic-acoustic features (i.e., npj , 

ndl  and ndf  defined in Equation (2.11)-(2.13)) were obtained automatically in the 

prosodic model training by the PLM algorithm [20]. The texts of the training subset 

were processed by the CRF-based tagger mentioned previously to extract all linguistic 

features needed in the prosody modeling. The PLM algorithm [20] was then applied to 

automatically generate the 12 prosodic models from the training subset. In realizing 

the PLM algorithm, the numbers of pitch, duration and energy prosodic states were all 

set to be 16. For avoiding over-fitting the decision trees of the break-syntax model and 

the syllable-juncture prosodic-acoustic model, the following two stop criteria were 

used: 1) The size of a leaf node must be larger than 700 syllables; and 2) The relative 

improvement of likelihood must be larger than 0.0065 in a node splitting. Finally, the 

total numbers of nodes (leaf nodes) obtained were 63(31) and 46(27) for these two 

models, respectively. 

A quantitative analysis of the prosody modeling result is given as follows. Table 

2.2 shows the APs of five tones. As shown in the table, Tone 1 and Tone 4 had high 

pitch mean, long duration and high energy level; while Tone 3 and Tone 5 had low 

pitch mean, short duration and low energy level. These agreed with the prior linguistic 

knowledge and generally matched with those of other previous studies [32], [33]. 

Table 2.2: APs of Five Tones 

Tone 1 2 3 4 5 

Pitch mean (log-Hz) 0.097 -0.05 -0.11 0.065 -0.069 

Duration (ms) 9 5 -5 5 -54 

Energy level (dB) 0.874 -0.623 -0.785 0.840 -1.567 

 

Figure 2.5 displays the decision-tree analysis of the duration APs of all 411 

base-syllables. It can be found from the figure that the base-syllables with aspirated 

affricate (q, ch, c) or fricative (f, h, x, sh, s) initials were much longer in average than 

all other base-syllables. On the other hand, base-syllables with more vowel 

components (double/compound vowel), medial, or nasal ending in final were 

generally longer. These results were also confirmed in a previous study [33].  
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Figure 2.5: Decision tree analysis of duration APs of all 411 base-syllables. Numbers 

associated with each leaf node represents the average length (ms) of the APs and the 

sample count (in the bracket). Solid line indicates positive answer to the question and 

dashed line indicates negative answer. 
 

Figure 2.6 depicts the forward and backward coarticulation patterns for the three 

extreme cases of break types, i.e., B0 (tightly coupling), B1 (normal) and B4 (major 

break). Several characteristics of these APs can be found. Firstly, the forward 

coarticulations mainly affected the beginning parts of syllable pitch contours, while 

the backward coarticulations affected the ending parts. Secondly, we find from the 

dynamic ranges of these APs that the coarticulation effect was the most serious for B0 

junctures and the least for B4 junctures. Thirdly, for tightly coupling B0 junctures, 

most coarticulation APs demonstrated well the effect to compensate for tone 

concatenation mismatch of their pitch contours. For example, the upward bending at 

the beginning parts of { ,

f

B t | 1

n

nt  = (1,2), (1,3), (2,2), (2,3)} were due to H-L 

mismatches, while the downward bending at the beginning parts of  { ,

f

B t | 1

n

nt  = (3,1), 

(3,4)} corresponded to L-H mismatches. Figure 2.7(a) illustrates the effect of the 

forward coarticulation AP of Tone 1 in the 1-3 tone pair on raising the beginning part 

of the following Tone 3 pitch pattern in order to be better matched with the high 

ending level of the preceding Tone 1 pitch pattern. Fourthly, the well-known sandhi 

rule that Tone 3-Tone 3 will change to Tone 2-Tone 3 had been learned in the 

backward coarticulation AP of 3-3 tone pair. Figure 2.7(b) illustrates this effect. 

Lastly, the forward coarticulations were generally larger than the backward 

coarticulations. The above mentioned characteristics generally conformed well to the 

observation found by Xu [34].  
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Figure 2.6:  (a) Forward and (b) backward coarticulation patterns, 
1 1, n

n n

f

B t 

β  and 

1, n
n n

b

B t β , for B0 (point line), B1(solid line), and B4(dashed line). 

 

Figure 2.7: Two examples demonstrate the effects of coarticulation APs: (a) Tone 

1-Tone 3 and (b) the sandhi rule of Tone 3-Tone 3. Solid lines (left): basic tone pitch 

patterns; point lines: backward APs; dashed lines: forward APs; and solid lines (right): 

the resulting pitch patterns. 
 

Figure 2.8 displays the major part of the decision tree of the break-syntax model. 

As shown in the figure, the entropy of the break type distribution decreased as we 

traced down the decision tree with more linguistic features being involved. The most 

important linguistic features used in the decision tree were PM and 

interword/intraword. The two sub-trees corresponding to PM and intraword were 

relatively simpler with the entropy of the break type distribution decreasing fast, while 

the sub-tree of interword was very complicated with the entropy decreasing slowly. 

Besides, the break type distributions of the nodes in the PM sub-tree concentrated 

mainly on B3 and B4, while they were on B0 and B1 for nodes in the intraword 

sub-tree. Moreover, phonetic information was important for the intraword sub-tree to 

further discriminate between B0 and B1. For the PM sub-tree, the type of PM was 
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important. Fig. 2.9 displays a deeper part of the interword sub-tree. Major linguistic 

features used were: “stop” initial in the following syllable, content/function word, the 

word “DE”, and various types of POS. 

 

 

Figure 2.8: Decision tree for the break-syntax model. The bar plot associated with a 

node denotes the distribution of these seven break types (B0, B1, B2-1, B2-2, B2-3, B3, 

B4, from left to right) and the number is the total sample count of the node. H is the 

Shannon entropy to measure the uncertainty of break type distribution. 

 

 

Figure 2.9: The deeper part of the decision tree for the break-syntax model. It is the 

sub-tree starting from the shaded node shown in Figure 2.8. 
 

 
Fig. 9. The decision tree for the break-syntax model. The bar plot associated with a node denotes the distribution of these seven break 

types (B0, B1, B2-1, B2-2, B2-3, B3, B4, from left to right) and the number is the total sample count of the node. H is the Shannon 

entropy to measure the uncertainty of the probability of the breaks in the node. 
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Figure 2.10 shows the major parts of decision trees of the break-acoustic model for the 

7 break types. We can find from the statistics of root notes that the break types of higher level 

were generally associated with longer pause duration, lower energy-dip level, larger 

normalized pitch-level jump, and larger duration lengthening factors. Besides, B2-3 was 

similar to B1 and B2-1 in the distributions of pause duration, and energy-dip level. B2-1, B3, 

and B4 had positive normalized pitch jumps in average, while B0, B1, and B2-3 had negative 

ones. These results illustrated the declination and reset effects of log-F0 at intra-PW and 

inter-PW syllable boundaries, respectively. The two normalized duration lengthening factors 

for B2-2, B2-3, B3, and B4 were relatively larger than those of B0, B1, and B2-1. These 

distributions showed the lengthening effect for the last syllable of PW, PPh, and PG/BG. 

For each break type, the likelihood of the syllable-juncture prosodic-acoustic modeling 

increased as we traced down these decision trees with more linguistic features being involved. 

This means the use of linguistic features can improve the modeling of syllable-juncture 

prosodic-acoustic features. It is noted here that no tree-splitting occurred for B4 due to the 

relative uniformity on the prosodic-acoustic features of its data. The questions used to split 

trees of pause-related break types (i.e., B3 and B2-2) tended to be related to higher-level 

linguistic features, such as PM and POS. On the contrary, the questions of lower-level 

linguistic features, such as interword/intraword and phonetic features, were used to split trees 

of other non-pause break types (i.e., B0, B1, B2-1 and B2-3). 
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Figure 2.10: Decision trees of the break-acoustics model for 7 break types. Solid (dash) 

line indicates positive (negative) answer to the question. Numbers in a node are 

sample count and average likelihood per sample (in a bracket). The statistics for each 

node are shown in the bracket of the tables below the trees. Note that r’s represent root 

node of each break type. Numbers in the bracket, from left to right, denote average 

pause duration in ms, energy-dip level in dB, normalized pitch jump in log-Hz, and 

duration lengthening factors 1 and 2 in ms. 

 
 rB0 (1, 45, -0.039, -3, -7)   rB1 (9, 40, -0.039, -17, -26) 

 i1 (1, 46, -0.035, 59, 97)   i6  (1, 41, -0.048, -12, -34) 

 i2 (1, 44, 0.024, -6, -24)   i7  (1, 41, -0.035, -14, -19) 

 i3 (1, 45, -0.048, -18, -32)   i8  (1, 29, -0.061, -37, -56) 

 i4 (1, 45, -0.042, -9, -15)   i9  (1, 29, -0.030, -54, -57) 

 i5 (1, 45, -0.038, 5, 7)   i10 (8, 41, -0.042, -15, -19) 

    i11 (18, 41, -0.037, -12, -23) 

       
 rB2-1 (9, 42, 0.080, -2, 5)   rB2-2 (55, 36, 0.000, 4, 10) 
 i12 (1, 42, 0.081, 2, 6)   i15 (55, 29, -0.024, 12, 3) 

 i13 (2, 42, 0.076, 3, 9)   i16 (55, 37, 0.003, 3, 11) 
 i14 (20, 42, 0.083, -3, 2)    

   
 rB2-3 (7, 45, -0.039, 67, 79)    rB3 (339, 19, 0.160, 52, 77) 
 i17 (1, 45, -0.045, 70, 92)   i21 (360, 19, 0.178, 51, 78) 

 i18 (1, 45, -0.040, 64, 78)   i22 (279, 20, 0.099, 57, 73) 
 i19 (19, 44, -0.040, 62, 62)   i23 (279, 20, 0.123, 58, 76) 
 i20 (14, 44, -0.024, 70, 69)   rB4 (642, 17, 0.227, 46, 53) 
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Figure 2.11 illustrates the transitions of pitch prosodic state 
1 1( | , )n n nP p p B 

 for 

seven break types. For B0 and B1, the general high-to-low, nearby-state transitions 

showed that the syllable log-F0 level declined slowly within PWs. For B2-2, it had 

both high-to-low and low-to-high state transitions. For B2-1, B3, and B4, their 

low-to-high state transitions showed clearly the phenomena of syllable log-F0 level 

resets across PWs, PPhs, and BG/PGs. Comparing with these clear log-F0 level resets, 

the resets of B2-2 were insignificant. The transition of B2-3 is similar to those of B0 

and B1. This implies no apparent pitch reset exists at the duration-lengthening 

juncture of B2-3. These phenomena were similar to those found in our previous study 

on the database of a single female speaker [20]. Table 2.3 lists a summary of the 

parameter numbers (#para) used in these 12 prosodic models 

 

 

Figure 2.11: The most significant prosodic state transitions for (a) B0, B1, B2-2 and 

B2-3, and (b) B2-1, B3 and B4. Here, the number in each node represents the index of 

the prosodic state. Note that larger state index represents higher log-F0 value and 

darker lines represent more important state transitions. 

 

 



 

 31 

Table 2.3: Summary of Parameter Numbers of 12 Prosodic Models 

Model #para Description 

Break-syntax model 217 31 leaf nodes × 7 break probabilities 

Syllable-juncture 

prosodic-acoustic model 

270 27 leaf nodes × 2 parameters for 5 sub-models 

Prosodic state model 5424 (16×16×7+16 initial probabilities) × 3 

Syllable 

prosodic-acoustic model 

1597 APs: (5 tones+ 16 states) ×3, 1400 coarticulations, 82 
 

base-syllables, 40 final types, 12 means & variances
 

 

2.4.3 Recognition Performance Evaluation 
We then examined the recognition performance of the proposed prosody-assisted 

ASR system. We first performed the first-stage decoding by HTK using the 411 

base-syllable HMM models and the word-bigram LM to generate a word lattice. We 

note that the beam-width of the first-stage recognition was set to a large value to make 

the resulting word lattice have a high cover rate of the correct words. This was to let 

the study focus mainly on the performance comparison between the scheme with and 

without using the prosodic models in the second-stage recognition. The WER, CER, 

and base-syllable error rate (SER) of the first-stage decoding were 29.6%, 21.4%, and 

13.7%, respectively. Moreover, the oracle performance (i.e., the cover rate) of the 

word lattice, which corresponds to the best word string that can be decoded from the 

lattice, was 9.6%, 9.3%, and 7% for WER, CER, and SER, respectively. The oracle 

performance approached the upbound as we considered the high out-of-vocabulary 

(OOV) rate of 4.3% of the test data set. The use of the syllable-based HMM approach 

was justified by comparing its performance with those of 30.7%, 21.8%, and 13.7% in 

WER, CER, and SER achieved by the tri-phone HMM recognizer using similar size 

of total number of states. The syllable-based HMM recognizer we used was slightly 

better.  

We then performed the second-stage decoding. A baseline scheme was firstly 

tested using only the FLM in the second-stage rescoring process without involving 

any prosodic model. Here, we kept the AM scores and replaced the word-bigram LM 

scores with the FLM scores. In implementation, we needed to expand the first-stage 

word lattice to consider the applicability of the word-trigram LM, all possible POSs 

for every candidate word, and 4 types of PM for every interword location. Besides, the 
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log-linear combination of the scores of AM and the three FLM sub-models was 

considered. The DMC algorithm [26] was applied to find a set of four weights from a 

development set selected from the Set B part of the training set. The development set 

contained 18-minute speech of 33 speakers. For each utterance in the development set, 

a list of top-100 sequences was found and used in the DMC algorithm. Since the 

number of weights to be estimated is small, the data of the development set were 

sufficient. Table 2.4 shows the performance of the baseline scheme. The WER, CER, 

and SER were 24.4%, 18.1%, and 12%. This performance was much better than those 

of 29.6%, 21.4%, and 13.7% reached by the ASR using the word-bigram LM. 

Lastly, we evaluated the performance of adding prosodic models to the baseline 

scheme. We first categorized these 12 prosodic models into two classes: 

juncture-based and syllable-based. The former modeled acoustic cues or phenomena 

related to different types of juncture and hence was expected to be useful for 

distinguishing word boundary ambiguity. The latter modeled prosodic-acoustic feature 

patterns of different types of prosodic constituent so that it was expected to be useful 

for tone/word discrimination. We hence designed and tested two schemes of 

incorporating prosodic models. Scheme 1 incorporated the 6 juncture-based prosodic 

models, i.e., the break-syntax model and the 5 syllable-juncture prosodic-acoustic 

sub-models, into the baseline FLM scheme, while Scheme 2 added all 12 prosodic 

models. In implementation, all values of frame-based F0, syllable duration, and 

syllable energy level of the testing utterance were normalized by their corresponding 

utterance-level mean and variance. Here, the syllable segmentation corresponded to 

the best path of the first-stage decoding. Word lattice expansions were also realized to 

consider not only the applicability of the FLM like the case of realizing the baseline 

scheme, but also the incorporation of prosodic models. Two sets of 10 and 16 weights 

for model combination were respectively found for the two schemes by the DMC 

algorithm using the same development set. The recognition results are displayed in 

Table 2.4. As shown in the table, WER, CER, and SER of 21.3%, 15.0%, and 10.2% 

for Scheme 1, and of 20.7%, 14.4%, and 9.6% for Scheme 2 were obtained. They 

represented 3.1%, 3.1%, and 1.8% absolute (or 12.7%, 17.1%, and 15% relative) error 

reductions over the baseline FLM scheme for Scheme 1, and 3.7%, 3.7%, and 2.4% 

absolute (or 15.2%, 20.4%, and 20% relative) error reductions for Scheme 2. 

Obviously, Scheme 1 outperformed the baseline scheme significantly, and Scheme 2 
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was even better. This showed that the word recognition performance could be greatly 

improved via correcting word segmentation errors by properly using juncture-based 

break-related information. Moreover, the recognition performance could be further 

improved slightly via correcting tone errors by modeling tone patterns of prosodic 

constituents. We can therefore conclude that the prosodic information are useful in 

ASR. 

 

Table 2.4: Recognition Performances of The Baseline Scheme, Scheme 1, and 

Scheme 2 (%) 

 WER CER SER 

Baseline scheme 24.4 18.1 12.0 

Scheme 1 21.3 15.0 10.2 

Scheme 2 20.7 14.4 9.6 

 

Aside from generating the recognized word sequence, the system also produced 

some other linguistic and prosodic information of the testing utterance, including POS, 

PM, syllable prosodic state, and syllable-juncture break type. Table 2.5 shows the 

recognition results of POS. Precision, recall and F-measure were computed as metrics 

for performance evaluation. Here, precision is defined as the ratio of the number of 

correctly recognized words with correct POS, corretW,corretPOSN , to the total number of 

correctly recognized words; while recall is defined as the ratio of corretW,corretPOSN  to 

the total number of words. As shown in the table, the performances of precision, recall, 

and F-measure were 93.4%, 76.4%, and 84% for the baseline scheme, and were 

improved to 93.4%, 80% and 86.2% by Scheme 2. Since a correct decoding of POS 

was only meaningful when the word was correctly decoded, the recalls were bounded 

by the word correct rates which were 78.9% and 82.15% for the baseline scheme and 

Scheme 2, respectively. 

Table 2.5: Experimental Results of POS Decoding (%) 

 Precision Recall F-measure 

Baseline scheme 93.4 76.4 84.0 

Scheme 2 93.4 80.0 86.2 
 

Table 2.6 shows the recognition results of PM. As shown in the table, the 

performances of precision, recall, and F-measure were 55.2%, 37.8%, and 44.8% for 
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the baseline FLM scheme, and were improved to 61.2%, 53%, and 56.8%, 

respectively, by Scheme 2. Notice that the syllable-based alignment between the 

recognition result and the reference transcription was performed for the evaluation. By 

error analysis, we found that many major PMs were misrecognized as commas. Since 

this type of error was not serious, we therefore re-evaluated the performance of PM 

recognition by collapsing all PMs (i.e., comma, dot, and major PMs) into a single PM 

class. The resulting precision, recall, and F-measure were 76.1%, 65.9% and 70.6% 

for Scheme 2 verse 66.1%, 45.3%, and 53.8% for the baseline scheme. 

 

Table 2.6: Experimental Results of PM Decoding (%) 

 Precision Recall F-measure 

Baseline scheme 55.2 37.8 44.8 

Scheme 2 61.2 53.0 56.8 

 

Table 2.7 shows the results of tone recognition. The performances of precision, 

recall, and F-measure were 87.9%, 87.5%, and 87.7% for the baseline FLM scheme, 

and were improved to 91.9%, 91.6%, and 91.7% by Scheme 2. Obviously, the 

significant improvement of tone recognition mainly resulted from the proper use of 

tone information in the prosody modeling for syllable pitch contour and syllable 

duration.  

Table 2.7: Experimental Results of Tone Decoding (%) 

 Precision Recall F-Measure 

Baseline scheme 87.9 87.5 87.7 

Scheme 2 91.9 91.6 91.7 

 

An error analysis was conducted to examine the recognition results in more detail. 

Firstly, we found that the WER improvement of the proposed system mainly lay in the 

corrections of word segmentation errors and tone recognition errors. This conformed 

to our expectation because both syllable-juncture breaks and syllable tones were 

properly modeled in the prosody modeling. Figure 2.12 illustrates an example. As 

shown in the figure, there were four prosodic phrases (PPh’s) separated by B3. In the 

3rd PPh, the text “經(jing, by) 重型(zhong-xing, heavy) 砂石車(sha-sh-che, trunk) 

之(zhi, DE) 輾壓(nian-ya, rolling)” were recognized as “經(jing, by) 中心(zhong-xin, 
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center) 小時(xiao-shi, hour) 車子(che-zi, car) 輾壓(nian-ya,rolling)” by the baseline 

scheme. There were three word recognition errors (i.e., 中心(zhong-xin), 小時

(xiao-shi) and 車子(che-zi)) and one segmentation error (between 時“shi” and 車

“che”). The proposed system corrected two word recognition errors. One is the 

correction of “中心(zhong-xin)” to “重型(zhong-xing, heavy)”. Tone modeling is the 

key factor for this correction. Another is the correction of “小時(xiao-shi) 車子

(che-zi)” to “砂石車(sha-sh-che)”. This word recognition error correction is through 

the correction of the segmentation error via labeling a B2-1 break after the corrected 

word. 

 

Figure 2.12: An example of recognition results for a partial paragraph. Eight panels 

represent, respectively, waveform, prosodic state AP+global mean of syllable log-F0 

level, syllable duration, and syllable energy level, break type (B), reference 

transcription (R), result of baseline scheme (F) and proposed system (P). The 

utterance is “lian-ri lai(Day by day) gai-qiao(the bridge) zhi(DE) yin-dao(road), 

yin(because) zhi(only) pu(pave) yi-ceng(one layer) de(DE) bo-you(asphalt) 

lu-mian(surface), jing(by) zhong-xing(heavy-duty) sha-sh-che(trunk) zhi(DE) 

nian-ya(rolling), lu-main(surface) yi(already) sun-huai(broken). 
 

Secondly, we found that many segmentation error corrections did not lead to 

word recognition error corrections. The existence of OOV was one of the major 

factors to hamper the improvement. Figure 2.13 illustrates an example. As shown in 

(b), the two words “理事長(council chairman) 郭振興(Zhen-Xing Guo)” were 

erroneously recognized as “理事(council member) 張國政(Guo-Zheng Zhang) 新

(new)” by the baseline scheme. Both words were not correctly recognized and there 

existed two word segmentation errors. As shown in (c), the proposed system corrected 

the first word segmentation error and decoded its boundary as a B3 break. This led to 
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the correct recognition of the first word, but not the second word because it is an OOV. 

Moreover, the OOV caused one word substitution error and one word insertion error. 

Actually, the OOV rate of the test set was only 4.3%, but OOVs caused extra errors of 

word insertions and deletions to result in total about 8.1% word errors. 

 

(a) …牙醫師(dentist) 公會(association) 理事長(council chairman) 郭振興(Zhen-Xing Guo)… 

(b)…牙醫師(dentist) 公會(association) 理事(council member) 張國政(Guo-Zheng Zhang) 新

(new)… 

(c) …牙醫師(dentist) B2-2 公會(association) B0 理事長(council chairman) B3 或(or) B2-2 真

心(true heart) B3… 

Figure 2.13: An example of the negative effect of OOV on word error correction: (a) 

reference transcription, and the recognition results of (b) the baseline scheme and (c) 

the proposed Scheme 2 system. 
 

Thirdly, we also found that some syllable segmentation errors were corrected by 

the proposed system. The sum of syllable insertion and deletion error rates was 

reduced from 1.79% of the baseline FLM scheme to 1.2% of Scheme 2. One major 

factor to contribute to the improvement was the use of the syllable duration model 

( | , , )n n n nP sd q s t  shown in Equation (2.8). Actually, the use of the syllable duration 

model and break tags in the prosody modeling also contributed to the reduction of the 

sum of word insertion and deletion error rates from 6.1% of the baseline FLM scheme 

to 5.5% of Scheme 2. 

An additional advantage of the proposed system was the decoding of the two 

types of prosodic tags. As mentioned before, they were closely correlated with the 

4-layer prosody-hierarchy model. We could therefore use them to construct a 

hierarchical structure of prosody for the testing utterance. Taking the recognition 

results shown in Figure 2.12 as an example, we can describe the prosody structure of 

the utterance as follows. On the top level, there are four prosodic phrases (PPh’s) 

separated by three B3 breaks. From the first two panels of Figure 2.12, we find that all 

three B3 breaks were associated with long pauses and large pitch resets. So, these 

three B3 breaks were all labeled well. On the next level, there are 2, 5, 3 and 1 

prosodic words (PWs) in these four PPh’s, respectively. Within these four PPh’s, PWs 

were separated by (B2-2), (B2-2, B2-2, B2-1, B2-2), (B2-3, B2-1) and (-). As shown in 

the first three panels of Figure 2.12, all four B2-2 breaks were associated with short 
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pauses, the B2-3 break was associated with a pre-boundary lengthening, and the two 

B2-1 breaks were associated with medium pitch resets. So, they were all properly 

labeled. Lastly, the bottom level is composed of syllables separated by B0 or B1 

breaks. It is noted that B0 and B1 are not shown in the figure. From above discussions, 

we can conclude that the prosody hierarchical structure of the testing utterance 

constructed by the decoded break tags matched well with the cues provided by the 

prosodic-acoustic features. 

Lastly, we analyzed the complexity of the second-stage rescoring process. Table 

2.7 shows the average number of nodes in the expanded lattice (NEL), the average 

number of arcs in the expanded lattice (AEL), the density of the expanded lattice 

(DEL), and the real time factor (RTF) of the baseline scheme and the proposed 

Scheme 2. NEL and AEL are defined as the average numbers of nodes and arcs for a 

testing utterance. DEL is defined as the number of arcs in the expanded lattice divided 

by the number of words in the true transcription. RTF is defined as the ratio of the 

time spent on rescoring to the length of the testing utterance. As shown in Table 2.7, 

the proposed system is about 2 times larger in NEL, AEL, and DEL than the baseline 

scheme; while the RTF is about 2.5 times larger.  

 

Table 2.7: Complexity of The Expanded Lattice for Rescoring 

 NEL AEL DEL RTF 

Baseline scheme 584.6 21650 326.3 2.64 

Scheme 2 1192.7 43837 660.8 6.57 

 

2.5 Conclusions for Chapter 2 

In this chapter, we have discussed a new prosody-assisted ASR system in detail. 

The system employed a sophisticated prosody modeling method to generate 12 

prosodic models to assist in improving the recognition performance as well as 

decoding more information from the testing utterance. Experimental results confirmed 

the effectiveness of the proposed system. Several advantages of the proposed system 

can be found. First, these 12 prosodic models were trained using an unlabeled speech 

database. This not only saved the costly hand-labeling effort, but also avoided the 

defects of human labeling, including inaccuracy and inconsistency. The resulting 

prosodic tag labels matched well with the cues provided by linguistic features and/or 
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prosodic-acoustic features. Second, these 12 prosodic models described well the 

relationships of the two prosodic tags of the 4-layer prosody-hierarchy model, various 

linguistic features of texts, and the 8 prosodic-acoustic features of speech signals. 

Experimental results showed that parameters of these 12 well-trained prosodic models 

were all meaningful. Third, the recognition performance of the conventional HMM 

recognizer can be improved by the proposed system via correcting many word 

segmentation errors and tone recognition errors. Fourth, more information could be 

decoded from the testing utterance. Aside from the two linguistic features of POS and 

PM, the two decoded sequences of break type and prosodic state could be used to 

construct the prosody hierarchical structure of the testing utterance. 
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Chapter 3 An Application of Prosody-Assisted 

Mandarin ASR to Speech Coding 

 

Motivated by the success of the new prosody-assisted ASR system discussed in 

Chapter 2, we apply it to the coding of prosodic information. Section 3.1 presents the 

proposed speech coding system. Performance evaluation of the new speech coding 

system is discussed in Section 3.2. Lastly, some conclusions are given in Section 3.3. 

3.1 The Proposed Speech Coding System 

Figure 3.1 shows a schematic diagram of the proposed Mandarin-speech coding 

system. In the encoder, input speech signal is firstly recognized by the 

prosody-assisted Mandarin ASR system (PA-ASR) [35],[36] with an HMM-based 

acoustic model (AM), a factored language model (FLM) [24] and a hierarchical 

prosodic model (HPM) [20]. Three types of information are transcribed by the speech 

recognition. One is linguistic features including strings of base-syllable, tone, word, 

POS and PM. Another is prosodic features including tag sequences of syllable 

prosodic state and inter-syllable break type. It is worth to note that these two prosodic 

tag sequences can be used to form a hierarchical prosody structure of the input speech. 

The other is the segmentation information of various levels from HMM state to word. 
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Figure 3.1: A schematic diagram of the proposed speech coding system. 

 

By using some low-level linguistic features and prosodic tags (LP), we can 

reconstruct prosodic-acoustic features, including syllable pitch contour, syllable 

duration, syllable energy level, and inter-syllable pause duration with the help of HPM. 

So, we only need to encode those LP features for prosody reconstruction in the 

decoder. It is noted that prosodic features used in PA-ASR are pre-normalized by 

speaker-level (training phase) or utterance-level (test phase) mean and variance. 

Therefore, an additional utterance prosody normalization factor (UPNF) encoder is 

required for encoding these prosody normalization factors. By using the HMM-state 

segmentation information, we can extract state-based spectral features and encode 

them by vector quantization (VQ). 
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In the decoder, we first use the decoded LP features to reconstruct the four 

prosodic-acoustic features by HPM whose parameters are sent to the decoder in 

advance as side information. We then use base-syllable type and syllable duration to 

predict state durations by a state duration model. Lastly, by using the decoded state 

spectral features, the reconstructed prosodic-acoustic features, and the predicted state 

durations, an HMM-based speech synthesizer generates the output speech. 

In the following subsections, we discuss the encoder and the decoder in more 

detail. 

3.1.1 The Speech Encoder 

As shown in Figure 3.1, the speech encoder is composed of four parts including a 

PA-ASR [35],[36], an LP encoder, a UPNF encoder, and a spectrum encoder. The 

PA-ASR system is a sophisticated speech recognizer discussed in Chapter 2 [35],[36]. 

Figure 2.4 displays its functional block diagram. It is a two-stage system to firstly use 

an AM and a bigram LM to generate a word lattice in the first stage decoding, and to 

then use an FLM [24] and an HPM [20] to finely decode from the word lattice the best 

linguistic sequences (i.e. base-syllable, tone, word, POS and PM) and their 

corresponding segmentation information, as well as prosody tag sequences (i.e. 

prosodic states and break types) that represent a hierarchical prosody structure of the 

input utterance. The AM is a syllable-based HMM model. It models each of 411 

base-syllables as an 8-state left-to-right HMM. The FLM is an extension of the 

conventional trigram model to additionally consider POS and PM aside from word. 

The HPM consists of various prosodic sub-models to describe the relationship of 

prosodic tags, prosodic-acoustic features, and linguistic features. 

Four sub-models of the HPM are involved in the coding process. They include 

three syllable prosodic-acoustic models, which are used to describe the variations of 

syllable pitch contour, duration and energy level, and one prosodic-acoustic model 

which describes the variation of syllable-juncture pause duration influenced by some 

linguistic features. For syllable pitch contour, it is formulated as an additive model: 

1
1 1, ,n n

n n n n n n

r f b

n n t p spB t B t
sp sp     

 

              (3.1) 
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where nsp  is a vector of four orthogonally-transformed parameters representing the 

observed log-F0 contour of syllable n [23]; r

nsp  is the residual of modeling nsp ; 
nt

  

and 
np  are the affecting patterns (APs) for tone nt  and prosodic state tag np , 

respectively; 
1 1, n

n n

f

B t


 

 and 1, n
n n

b

B t
   are the forward and backward coarticulation APs 

contributed from syllable 1n  and syllable 1n , respectively; and sp  is the 

global mean of pitch vector. Here, nB  is the break tag after syllable n. Similarly, 

syllable duration and energy level are modeled as 

n n n

r

n n t s q sdsd sd                     (3.2) 

n n n

r

n n t f r sese se                  (3.3) 

where 
nt

 /
nt

 , 
ns , 

nf
  and 

nq /
nr

  are the APs of tone nt , base-syllable ns , 

final type nf , and prosodic state tags nq / nr ; and sd  and se  are global means. To 

reconstruct these three prosodic-acoustic features using the three sub-models in the 

decoder, we need to encode and transmit low-level linguistic features of tone, 

base-syllable and final types as well as prosodic features of break type and prosodic 

state tags. Besides, all affecting patterns are sent as side information. It is noted that 

we neglect the coding of the residuals because they all have small variances. 

The fourth sub-model describes the variation of inter-syllable pause duration by 

break-dependent decision trees (BDTs). For each break type, a decision tree is used to 

determine the pdf of pause duration according to linguistic features. For 

reconstructing the pause duration, we needs to send the information of the break tag 

and the residing leaf node of the associated decision tree for each inter-syllable 

juncture to the decoder. All pdfs of leaf nodes in these seven decision trees are also 

sent to the decoder as side information. 

Table 3.1 shows the bit assignment of the encodings of these low-level linguistic 

features of tone, base-syllable and final types, prosodic tags of prosodic state and 

break type, and leaf nodes of BDTs. Notice that the BDT is constructed for each break 

type, and each BDT has different number of leaf nodes. Therefore, the bit length is 

variable for each given known break type. 
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Table 3.1: Bit assignment for encoding linguistic features and prosody tags 

Symbol # of symbol bit 

Lexical tone tn 5 3 

Base-syllable type  sn 411 9 

Pitch prosodic state  pn  16 4 

Duration prosodic state qn  16 4 

Energy prosodic state rn 16 4 

Break type Bn  7 3 

BDT leaf node index Tn  for 
 

B0, B1, B2-1, B2-2, B2-3, B3, B4
 5/7/3/2/4/3/1 3/3/2/1/2/2/0 

Total bits per syllable (maximum) 30 

 

For avoiding taking care of the speaker/utterance variability of prosodic-acoustic 

features in HPM, they are pre-normalized. For syllable pitch contour, a scheme of 

frame-based F0 value normalized by speaker-level (training phase) or utterance-level 

(test phase) mean and variance is adopted; while for both syllable duration and 

syllable energy level, they are simply normalized by their corresponding 

speaker-/utterance-level means and variances. These normalization factors are needed 

to be encoded and sent to the decoder. In this study, they are scalar-quantized 

independently by the UPNF encoder. Their codebooks are also sent to the decoder as 

side information. 

Since we want to use the HMM-based speech synthesizer in the decoder to 

generate the output speech, we extract 25-dimensional mel-generalized cepstral (MGC) 

[37] vector including the zero-th coefficient for each 25ms frame with 5ms shift. 

Blackman window is used in the feature extraction. Besides, delta and delta-delta 

MGCs are also extracted. In the training phase, we calculate the pdf parameters (i.e., 

mean and variance) of each MGC coefficient for each HMM state using the training 

data with the time-aligned segmentation information provided by the PA-ASR system. 

In the test phase, we first calculate the mean vector of 25-dimentional MGC vectors 

for each state segment and then subtract the mean MGC vector of the corresponding 

state of the recognized base-syllable to obtain a residual vector. Lastly, we encode all 

state-based residual vectors by vector quantization (15 bit for each state). Both the pdf 
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parameters of all HMM states and the VQ codebooks are sent to the decoder as side 

information. It is noted that the energy coefficient in each state MGC vector is 

pre-normalized by the energy level of the associated syllable. Table 3.2 summarizes 

the side information of the coding system. 

 

Table 3.2: Side information of the proposed coding system 

Type  parameter # 

Lexical tone APs: t / t / t  5/5/5 

Coarticulation APs: ,

f

B t / ,

b

B t  180/180 

Prosodic state APs: p / q / r  16/16/16 

Global mean APs: sp / sd / se  1/1/1 

Base-syllable type and final type APs: s /
nf

  411/40 

BDT leaf node mean: 
n

pd

T  25 

Spectrum codebook 1056 

MGC pdfs of all HMM states 26304 

Normalization factor codebooks 384 

Total 28646 

 

3.1.2 The Speech Decoder 

The task of the speech decoder is to reconstruct speech signal by using the 

decoded linguistic, prosodic and spectral parameters. As shown in Figure 3.1, the 

speech decoder consists of five parts including the LP decoder, the UPNF decoder, the 

spectrum decoder, the prosodic-acoustic feature generator, and an HMM-based speech 

synthesizer [38]. The LP decoder generates low-level linguistic features and prosody 

tags by looking up tables. The spectrum decoder uses the spectrum codebook to 

generate the output spectral features of each state from the input codeword index. The 

prosodic feature generator reconstructs the three prosodic-acoustic features and pause 

duration by HPM using the decoded low-level linguistic features and prosody tags. 

These three prosodic-acoustic features are de-normalized by using the decoded 

utterance-level factors. After obtaining syllable duration, we then predict state 

durations. Lastly, the HMM-based speech synthesizer reconstructs the input speech 

signal by using the state spectral features, state duration and the associated 

prosodic-acoustic features. 
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In state duration prediction, we assume that the state duration is normally 

distributed and affected by base-syllable type 
ns , i.e 

, ,( | , ) ( ; , )n ns s

n c n n c c cP d s c N d        (3.4) 

where ,n cd  denotes the duration of the c-th state in the n-th syllable. Given the 

reconstructed syllable duration nsd , state durations of the syllable can be obtained by 

maximizing the summed log likelihood, i.e. 

,1 ,

* *

,1 , ,
...

1

... arg max log ( | , )
n n C

C

n n C n c n
d d

c

d d P d s c


         (3.5) 

under the constraint 

,

1

C

n n c

c

sd d


           (3.6) 

The resulting state duration can be obtained by 

2

, ( )n ns s

n c c cd              (3.7) 

where 

2

1 1

/ ( )n n

C C
s s

n c c

c c

sd  
 

   
    
   

          (3.8) 

 

3.2 Performance Evaluation 

The proposed model-based Mandarin-speech coding system was evaluated on a 

large Mandarin read speech database TCC300 [28] that mentioned in Section 2.4.1. 

Table 3.3 shows the performance of the PA-ASR system. Word, character, and 

base-syllable error rates of 20.7%, 14.4%, and 9.6% were achieved, respectively. This 

performance is very good as compared with most conventional HMM-based ASR 

methods. Since syllable insertion and deletion errors were expected to cause more 

serious degradation on the coding performance, we also list them in Table 3.3. As 

seen from the table, both of them are small. 
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Table 3.3: The performance of the PA-ASR (%) 

WER CER SER Syll-INS Syll-DEL Syll-SUB 

20.7 14.4 9.6 0.55 0.83 8.5 

 

We then examined the performance of the coding system. Two cases were 

examined. One was the inside test in which both the speech utterance and the 

associated text were given. In this case, we first segmented the speech by 

time-alignment using the AM, and then labeled the prosodic tags automatically by the 

HPM. We then performed the encoding and decoding operations to reconstruct the 

speech. The other case was the outside test in which only the speech utterance was 

given. This is the case of the proposed coding system discussed in Section 2. 

Table 3.4 shows the root-mean-square errors (RMSE) of the reconstructed four 

prosodic features. Here, all six utterance-level normalization factors were encoded 

using 6-bit scalar quantizers. Table 3.5 shows the RMSE of the reconstructed pause 

duration for different break types. Since major breaks like B3 and B4 are tolerant of 

larger errors, the performance was good. The average bit rates were 528 and 543 bits/s 

for the inside and outside tests, respectively. These data rates are low. Figure 3.2 

shows an example of the reconstructed prosodic features of an utterance of the outside 

test. As shown in the figure, most reconstructed prosodic features were close to their 

reference values. 

Table 3.4: The RMSE of the reconstructed prosodic features 

 F0 (Hz) Syllable duration 

(ms) 

Syllable energy 

level (dB) 

Pause duration 

(ms) 

Inside test  11.4 18.4 0.52 73.8 

Outside test 14.7 16.8 0.20 75.6 

 

Table 3.5: The RMSE (ms) performance of the reconstructed pause duration with 

respect to different break types 

 B0 B1 B2-1 B2-2 B2-3 B3 B4 

Inside 19.3 26.5 75.6 149.2 35.0 177.9 312.9 

Outside 12.4 17.1 88.3 178.4 39.6 176.9 292.7 
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Table 3.6: Bit rates for inside and outside tests 

 Average Max Min 

Inside    prosody 104.56 163.79 42.23 

spectral 423.73 661.90 178.07 

outside   prosody 107.55 147.20 78.00 

spectral 435.06 594.44 318.05 

 

 

 
Figure 3.2: An example of the reconstructed prosodic features of an utterance. From 

top to bottom: syllable pitch mean, syllable duration, syllable energy level, and pause 

duration. (open circle: reference, dot: recognition result, solid line: deletion, dash dot 

line: insertion). 

 

Lastly, an informal listening test was performed. Generally, all reconstructed 

speeches sounded good. The effects of recognition errors were not serious. Most 

substitution, deletion, and insertion errors were slightly perceptible. This mainly 

resulted from encoding and sending the spectral features to the decoder. 

 

3.3 Conclusions for Chapter 3 

In this chapter, a model-based Mandarin-speech coding system has been 

discussed. It differs from the conventional speech coding system on using a 

prosody-assisted ASR in the encoder to extract high-level linguistic and prosodic 

features to assist in improving the coding efficiency. Experimental results showed that 
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high-quality reconstructed speech can be obtained at a low data rate of 543 bits/s. 

Another advantage of the proposed coding system can be found. By properly 

adjusting the prosodic features, we may modify the prosody of the reconstructed 

speech, e.g. changing the speech rate. 

The proposed coding system can also operate on another two modes. One is the 

case of knowing both the speech signal and the associated text. This case has been 

examined as the inside test discussed in Section 3.2. An application of the mode is the 

speech coding of story readings in an electronic book. Prosody modification will be 

the most attractive feature of the application. The other mode is the case of low-rate 

speech coding without transmitting the spectral parameters. A text-to-speech system, 

such as the HTS [40] can be used to generate spectral parameters of a standard voice 

for their substitutions by using the recognized text sent from the encoder. In this case, 

we can keep the prosody of the input speech but losing the speaker identity. 
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Chapter 4 Conclusions and Future Works 

4.1 Conclusions 
 

In this dissertation, we present a study on involving abundant prosodic cues in 

the prosody modeling for assisting in ASR. Experimental results confirmed that the 

new prosody-assisted ASR system performs effectively on improving the 

syllable/character/word error rates. Several advantages of the proposed system can be 

found. First, these 12 prosodic models of the HPM were trained using an unlabeled 

speech database. This not only saved the costly hand-labeling effort, but also avoided 

the defects of human labeling, including inaccuracy and inconsistency. The resulting 

prosodic tag labels matched well with the cues provided by linguistic features and/or 

prosodic-acoustic features. Second, these 12 prosodic models described well the 

relationships of the two prosodic tags of the 4-layer prosody-hierarchy model, various 

linguistic features of texts, and the 8 prosodic-acoustic features of speech signals. 

Experimental results showed that parameters of these 12 well-trained prosodic models 

were all meaningful. Third, the recognition performance of the conventional HMM 

recognizer can be improved by the proposed system via correcting many word 

segmentation errors and tone recognition errors. Fourth, more information could be 

decoded from the testing utterance. Aside from the two linguistic features of POS and 

PM, the two decoded sequences of break type and prosodic state could be used to 

construct the prosody hierarchical structure of the testing utterance.  

We also present a study on applying the new prosody-assisted ASR to the coding 

of prosodic information. It demonstrates the feasibility of using a prosody-assisted 

ASR in the encoder to extract high-level linguistic and prosodic features to assist in 

improving the coding efficiency. Experimental results showed that high-quality 

reconstructed speech can be obtained at a low data rate of 543 bits/s. Aside from 

coding efficiency, another advantage of the proposed coding system can be found. By 

properly adjusting the parameters of the HPM, we may modify the prosody of the 

reconstructed speech, e.g. changing the speech rate. The proposed coding system can 

also operate on another two modes. One is the case of knowing both the speech signal 
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and the associated text. This case has been examined as the inside test discussed in 

Section 3.2. An application of the mode is the speech coding of story readings in an 

electronic book. Prosody modification will be the most attractive feature of the 

application. The other mode is the case of low-rate speech coding without transmitting 

the spectral parameters. A text-to-speech system, such as the HTS [40] can be used to 

generate spectral parameters of a standard voice for their substitutions by using the 

recognized text sent from the encoder. In this case, we can keep the prosody of the 

input speech but losing the speaker identity. 

 

4.2 Future Works 
 

Some further works are worth doing in the future. Firstly, we are interested in 

generalizing the proposed approach to spontaneous-speech ASR. To this end, we need 

to extend the three models of AM, LM and HPM to additionally consider the special 

characteristics, such as disfluency, of spontaneous speech. A preliminary study has 

been conducted to construct a hierarchical prosodic model for spontaneous Mandarin 

speech [35]. Secondly, it is also an interesting task to scale up the proposed approach 

to ASR for larger vocabulary comprising many compound words. The task can be 

attacked by modifying the first-stage recognition via firstly constructing an LM for a 

lexicon comprising both words and subwords, then generating a mixed-word/subword 

lattice using the new LM, and lastly forming compound words from subwords by 

applying some word-compounding rules. The second-stage recognition can be directly 

applied. Thirdly, modifying the proposed approach to reduce its computational 

complexity is needed for on-line system implementation. The task can be attacked by 

applying some prosodic models to reduce the size of the word lattice generated by the 

first-stage recognition. Specifically, we can incorporate the syllable-juncture 

prosodic-acoustic model into the first-stage recognition to detect B3 and B4 from long 

silences and generate a word lattice for each PPh-like segment instead of a large word 

lattice for the whole utterance. The stage-stage recognition can then be operated in a 

way of PPh-by-PPh decoding process. This can greatly speed up the second-stage 

Viterbi decoding process as well as reduce the decoding delay. Besides, the size of a 



 

 51 

PPh word lattice can be further reduced by verifying its constituent words using the 

syllable-juncture prosodic-acoustic model to exclude unqualified words with prosodic 

features mismatching the intraword prosodic cues. Fourthly, it is found from error 

analysis that the WER improvement of the proposed system is seriously hampered by 

OOVs. Since most OOVs are name entities, incorporating an LM for name entity 

should be helpful. Fifthly, some high-level linguistic features, such as word chunk, 

phrase, and syntax, are still not used in this study. Design new prosodic models to 

include them should be useful for further improving the recognition performance as 

well as for decoding the syntactic structure of the testing utterance. Lastly, applying 

the same technique to other languages, such as English, must be interested to the 

speech processing society. 
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