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Abstract

This dissertation presents a-new prosody-assisted automatic speech recognition
(ASR) system for Mandarin.speech. It differs from the conventional approach of using
simple prosodic cues on employing a sophisticated prosody modeling approach based
on a 4-layer prosody-=hierarchy structure to automatically generate.12 prosodic models
from a large unlabeled speech database by the joint prosody labeling and modeling
(PLM) algorithm propesed previously. By incorporating these 12 prosodic models
into a two-stage ASR system to rescore the word lattice generated in the first stage by
the conventional Hidden Markov model (HMM) recognizer, we can obtain a better
recognized word string. Besides, some other information can also be decoded,
including part of speech (POS), punctuation mark (PM), and two types of prosodic
tags which can be used to construct the prosody-hierarchy structure of the testing
speech. Experimental results on the TCC300 database, which consists of long
paragraphic utterances, showed that the proposed system significantly outperformed
the baseline scheme using an HMM recognizer with a factored language model which
models word, POS, and PM. Performances of 20.7%, 14.4%, and 9.6% in word,
character, and base-syllable error rates were obtained. They corresponded to 3.7%,
3.7%, and 2.4% absolute (or 15.2%, 20.4%, and 20% relative) error reductions. By an
error analysis, we found that many word segmentation errors and tone recognition

errors were corrected.



With the success of the prosody-assisted ASR system, we conduct an application to
speech coding. A new model-based Mandarin-speech coding system is proposed. It
employs the prosody-assisted ASR with the hierarchical prosodic model (HPM) to
generate from the input speech enriched transcriptions, including linguistic features,
prosodic tags and spectral parameters in the encoder. By sending these features to the
decoder, we can first reconstruct the prosodic-acoustic features of syllable pitch
contour, syllable duration, syllable energy level, and inter-syllable pause duration by
HPM using the linguistic features and prosodic tags; and then combined with spectral
parameters to reconstruct the input speech signal by an HMM-based speech synthesizer.
Experimental results show that the reconstructed speech has good quality at a low data
rate of 543 bits/s.
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Chapter 1 Introduction

1.1 Background

The use of prosodic information in automatic speech recognition (ASR) is an
attractive research topic in recent years. Prosody refers to the suprasegmental features
of continuous speech, such as accentuation, prominence, tone, pause, intonation, and
rhythm. Prosody is physically encoded in the variations of pitch contour, energy level,
duration, and silence of spoken utterances. Prosody is known to closely correlate with
the linguistic features of various levels, say from phone, syllable, word, phrase, to
sentence or above. Owing to those correlations, prosody is potentially useful for ASR.
Generally, the task of prosody-assisted ASR “is to firstly exploit prosodic cues
correlated to linguistic features, and to then model their relationships with linguistic
features and prosodic-<acoustic features, and to lastly incorporate these models into the
ASR framework.

In the past, many, studies on using prosodic information to-assist in ASR have
been reported [1]-[7] for American English [1]-[4],[6],[7] -and Spanish [5].
Ananthakrishnan et al. [1]-[3] propoesed to incorporate a prosodic language model and
a prosodic acoustic model into the conventional Hidden Markov model (HMM)-based
ASR recognizer by rescoring.the N-best word sequences or the word lattice. The
prosodic acoustic model used  Gaussian..mixture model (GMM) or multilayer
perceptrons (MLP) to model the relation of binary pitch accent label of word and the
prosodic-acoustic features extracted from the FO track, energy, and duration cues of
context. The prosodic language model was a trigram language model (LM) with
compound tokens of words and their binary pitch accent labels. Besides, an
unsupervised adaptation approach to jointly refining the two categorical prosody
models and bootstrapping prosodic labels was also proposed to assist in solving the
problem of lacking large corpora annotated with relevant prosodic symbols [1].
Relative improvements of 1.2-3.1% in word error rate (WER) were obtained on the
Boston University Radio News Corpus (BU-RNC). Chen et al. [4] used two prosodic
events, intonational phrase boundary and pitch accent, in ASR to construct

prosody-dependent word and phoneme models. A relative improvement of 6.9% in



WER was achieved on BU-RNC. Milone et al. [5] proposed a method to use the
accentual information in ASR. The method first estimated a sequence of accentual
structure of words from speech signal using FO and energy by an HMM-based
classifier or a neural tree networks classifier, and then incorporated it into the
recognition process. An LM built to take into account the accentual structure of words
in phrase was used. A relative improvement of 28.91% in WER was achieved on a
medium-vocabulary Spanish continuous-speech recognition task. Vergyri et al. [6]
proposed to integrate models of different prosodic knowledge sources into ASR. They
included word duration model, pause language model, and prosodic model of hidden
events (e.g. sentence boundaries and speech disfluencies). Relative improvements of
2.6-3.1% in WER were achieved on the Switchboard database. Ostendorf et al. [7]
presented a statistical modeling framework. for incorporating prosody in the speech
recognition process. Several “issues were discussed, dincluding prosodic feature
extraction in different time scales and normalization, prosody modeling using an
intermediate symbol representation-in contrast to directly conditioning on acoustic
correlates, the use of questions about prosodic structure in.acoustic model clustering,
dynamic pronunciation modeling conditioned on acoustic-prosodic features.

Besides, some-other studies on. using prosodic information to assist in Mandarin
ASR can also be found [8]-[13]. In{8], a recurrent neural network (RNN) was used to
detect word-boundary information from the input prosodic features with base-syllable
boundary being pre-determined by an HMM-based “acoustic decoder. The word
boundary information was then used to assist the linguistic decoder in solving
word-boundary ambiguity as well as pruning unlikely paths. An absolute improvement
of 1.1% in character error rate (CER) was achieved on a large-vocabulary
speaker-dependent (SD) Mandarin continuous ASR task. Huang et al. [9],[10] utilized
decision tree-based or GMM-based prosodic models of syllable- and word-level to
generate the prosodic likelihood score for rescoring in a two-pass recognition process.
Absolute CER improvements of 1.06% [9] and 1.45% [10] were reported on a
large-vocabulary multi-speaker continuous ASR task. In [11], word-dependent tone
modeling using prosodic features of syllable duration and three FO values with two
back-off schemes was proposed for Mandarin ASR. A minor improvement on CER
was achieved on a Mandarin broadcast news corpus. Ni et al. [12] proposed an

implicit tone model using FO contour features and an explicit tone model using both



prosodic and lexical features for assisting in Mandarin ASR. An improvement of
3.65% in CER was achieved on the Project-863 database. In [13], Ni et al
incorporated a GMM-based prosody-dependent tonal syllable duration model and a
maximum entropy (ME)-based syntactical prosody model into a prosody-dependent
acoustic model recognizer by rescoring the syllable lattice. Only tonal syllable
recognition rate was reported on the Project-863 database.

Prosody modeling was also used in some other speech recognition tasks. Liu et al.
[14] conducted enriching speech recognition to automatic detection of sentence
boundaries and disfluencies on both conversational telephone speech and broadcast
news tasks of NIST RT-04F evaluation using both prosodic and lexical features.
Shriberg et al. [15] employed the decision tree method to model rhythmic and melodic
features of speech for several vapplications .including sentence segmentation and
disfluency detection, topic segmentation in broadcast news, dialog act labeling and
word recognition in conversational speech. Although prosody modeling was useful in

those applications, only minor improvements on word recognition were achieved.

It can be found from above discussions that prosody modeling is the main
concern in all those previous studies. The methods of prosody modeling in those
studies can be classified into two classes: 1) direct modeling of target classes
[8],[10]-[12], and 2) prosody maodeling via -intermediate abstract phonological
categories [1]-[6],[9],[13], such as TOBI [16] and INTSINT [17]. In direct modeling
of target classes, the relationship-between prosodic acoustic features and target classes
(usually, linguistic feature, e.g., lexical tone, lexical word, etc.) is directly modeled by
a pattern classifier, such as GMM, decision tree, RNN, ME, etc. This approach is
advantageous on bypassing manual labeling of prosodic tags and hence can avoid the
inter-annotator inconsistency. Nevertheless, the variability or space of both
prosodic-acoustic and linguistic features (target) may be too large when considering
more features of various level or wider time window. Therefore, only limited
linguistic and prosodic-acoustic features are incorporated in this direct modeling
approach [8],[10]-[12]. On the other hand, prosody modeling via intermediate abstract
phonological categories [1]-[6],[9],[13] first explores important prosodic cues or
events potentially useful for ASR and then builds prosodic models to describe the

relations of these prosodic cues with linguistic features of various levels and



prosodic-acoustic features using a prosody-annotated speech database. Figure 1.1
shows a conceptual block diagram of the prosody modeling using intermediate
abstract phonological categories. Usually, prosody annotation is based on the ToBlI
labeling system [16] and is performed manually. The variability of prosodic-acoustic
features can be reduced by introducing a finite discrete set of prosody tags so as to
make the construction of prosody-syntax relationship easier. The main drawback of
this approach lies in the need of a large well-annotated database with full prosodic
cues being properly labeled. In the past, prosody labeling is usually done by human
became of the lack of a good automatic labeling algorithm. But, preparing such a
database by human s still difficult because the labeling work is highly
time-consuming and it is not easy to maintain the consistency of fully labeling of all
prosodic cues for the same annotators or. between different annotators. So, most
previous works of this class used databases annotated with only few obvious prosodic
cues, such as pitch accent-and intonational phrase boundary. This will highly limit the
effectiveness of using prosodic-information on improving the ASR performance.
Although some studies [13];[18],[19] conducted automatic prosody labeling to enlarge
the size of prosody-annotated corpus, the prosodic cues they used were still very
limited. Besides, their prosodic models were still trained with-manually annotated
speech corpora so that their performances were subject t0 the quality of human
prosody labeling. Table 1.1 summarizes the primary features of prosody modeling and
experiment setting for those ‘previous studies® on prosody-assisted ASR for

comparison.
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Figure 1.1: A conceptual. block diagram..of the prosody modeling class using
intermediate abstract phonological categories. “PD-AM and PD-LM denote
prosody-dependent acoustic model and prosody-dependent language model.

Table 1.1: Comparison Between Prosody-Assisted ASR Studies

Prosody modeling Experiment setting
Literature | PE | PH|PL PAF LF LNG|STL| VSZ |SPK IMP (%)
Ni [13] 2B+2S | 1-L'|SS Fo/d t M | R(| TSR [ SI 9.82/24 A(tonal
syllable)
Huang [9] 2B 2-L| R | FO*/d*/e*/p t/WB M | B |100K|SD | 1.06/5.5(character)
Ana[1] 2A - |UA[ FO*/d*/e* W E- R < - 1/3.1
Chen [4] 2B+2A |1-L*| § Fo/d ph/W/POS E | R - Sl 1.73/6.9
Vergyri [6] |3P+5HE| - | -<| FO*/d*/p ph/W E | C|/8K | SI | 1.1,0.7,0.9/3.9, 2.6,
3.1
Milone [5] AS - |- Fo/e/d w S |“R [<500]| SI 2.18/28.91
Huang [10]| Dir - | - | FO*/d*/e*lp t/WB M | B |100K| SD | 1.45/7.5(character)
Ni [12] Dir - - Fo/d/e/p t/WB M| R | 4818 | SI | 3.65/21.5(character)
8
Lei [11] Dir - - Fo/d t/ts/W M | B | 49 | SI 0.7, 1/6,
5.2(character)
Wang [8] Dir - | - | FO*/d/e*/p SJ M | R |110K| SD 1.1/4.2(character)
proposed 7B+PS | 4-L | U |FO*/d*/e/p/ed |t/s/flWL/WB/POS/PM| M | R | 60K | SI 9.82/24.4(tonal
syllable)

PE: prosodic event = {B: break type | PS: prosodic state | S: phrase stress | A: binary pitch accent | HE:
hidden events | AS: accentual structure of words | Dir: direct prosody modeling}; PH: prosody
hierarchy = {L: layer}; PL: prosody labeling = {U: unsupervised | SS: semi-supervised | S:
supervised | BS: bootstrapping | R: taking lexical word as potential PW}; PAF: prosodic-acoustic
feature = {F0: fundamental frequency | d: duration | e: energy | pd: pause duration | *: with differential};
LF: linguistic feature = {t: tone | ph: phone | s: base-syllable type | W: word | POS: part of speech | PM:
punctuation mark}; LNG: language = {M: Mandarin | E: English | S: Spanish}; STL: style = {R: read |
B: broadcasting | C: conversational}; VSZ: vocabulary size in word, TSR: tonal syllable recognition;
SPK: speaker = {SlI: speaker independent | SD: speaker dependent | MS: multi speaker}; IMP:
improvement in absolute/relative accuracy.




1.2 Motivation

In this dissertation, a new prosody-assisted ASR system is proposed for
Mandarin speech. It differs from the conventional prosody-assisted ASR system with
prosody modeling shown in Figure 1.1 mainly on adopting a systematic way to
perform prosody modeling on a large unlabeled database for automatically exploiting
full prosodic cues of speech based on a 4-layer prosody-hierarchy model to assist in
ASR. The general goal of our prosody modeling is to explore a wide-range, mixed
context information of speech and the associated text via building prosodic models to
properly describe the relations of the parameters of the 4-layer prosody-hierarchy
model with the prosodic-acoustic features, provided by the input speech, and the
linguistic features of the target text to be recognized. Figure 1.2 shows a conceptual
block diagram of the proposed approach of prosoedy modeling. It is an extension of our
previous study on the joint prosody labeling and medeling using an unlabeled speech
database [20]. The 4-layer model of prosody hierarchy of Mandarin speech defines
two types of prosodic tags, break type-and-prosodic state, to specify its 4-layer
structure and 4 types of constituents. Several prosodic models are then designed to
describe various relationships of these two types of tags with both the linguistic
features of texts and the prosodic-acoustic features-of.speech signals. Lastly, the joint
prosody labeling and modeling. (PLLM) algorithm-proposed previously [20] is used to
train those prosodic models from a large unlabeled speech database. The new
approach is advantageous on involving abundant prosodic cues in the prosody
modeling for assisting in ASR. We can therefore expect that it performs better on
improving the word recognition performance. Besides, more information other than
the word string can be decoded. It includes prosodic tags which implicitly represent
the prosody-hierarchy structure of the testing utterance, and some linguistic features
such as part-of-speech (POS) and punctuation mark (PM). The enriching information
has also contribution on an application of the proposed prosody-assisted ASR system,
speech coding system, in the post-processing. It differs from the conventional speech
coding system on using the prosody-assisted ASR in the encoder to extract high-level

linguistic and prosodic features to assist in improving the coding efficiency.
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Figure 1.2: The prosody modeling approach in the proposed prosody-assisted ASR
system.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents the
proposed prosody-assisted ASR system. It introduces the design of the hierarchical
prosody model (HPM), the training of HPM, the two-stage prosody-assisted ASR
system, and experimental results. In Chapter 3, we introduce an application of the
proposed prosody-assisted - ASR. system to the coding of prosodic information for

Mandarin speech. Some conclusions and future works are given in the last chapter.



Chapter 2 The Proposed Prosody-Assisted ASR
System

The proposed prosody-assisted Mandarin speech recognition system is discussed
in detail in this chapter. The chapter is organized as follows. Section 2.1 presents the
design of prosodic models for ASR. The training of the proposed prosodic models is
discussed in Section 2.2. Section 2.3 describes the two-stage prosody-assisted ASR
system. Section 2.4 discusses the experimental results. Some conclusions of this

chapter are given in Section 2.5.

2.1 The Design of Prosodic Models for ASR

A most commonly agreed.and. used prosody-hierarchy structure consists of four
layers including syllable layer, prosodic word layer, prosodic phrase layer (or
intermediate phrase), and intonation phrase layer. Basically, the four-layer structure
interprets the pitch and duration variationsof syllable well for short sentential
utterances. To interpret the contributions of higher-level discourse information to the
wider-range and larger variations on the prosodic-acoustic features of long utterances
beyond just sentential ‘utterances, Tseng et al [21] proposed a hierarchical prosodic
phrase grouping (HPG) model of Mandarin speech. The HPG model consists of five
layers, listed in bottom-up order: syllable (SYL), prosodic word (PW), prosodic
phrase (PPh), breath group (BG), and prosodic phrase group (PG). The first three
layers in the hierarchy are the same as those of the four-layer prosodic structure
mentioned above. The fourth BG layer is formed by combining a sequence of PPhs,
and a sequence of BGs, in turn, constitutes the fifth PG layer. The above five prosodic
constituents are delimited by six break types denoted as BO, B1, B2, B3, B4 and B5
[21]. First, BO and B1 represent respectively non-breaks of reduced syllable boundary
(or tightly-coupling syllable juncture) and normal syllable boundary, within a PW,
which have no identifiable pauses between SYLs. Second, PW boundary B2 is
perceived as a minor-break boundary where a slight tone of voice change usually
follows, while PPh boundary B3 is perceived as a clear pause. Thirdly, B4 and B5 are

defined for BG and PG boundaries, respectively. B4 is a breathing pause and B5 is a



complete speech paragraph end characterized by final lengthening coupled with

weakening of speech sounds.

In this dissertation, we adopt a 4-layer hierarchy structure, which is a modified
version of the HPG model, in the prosody modeling for assisting in ASR to consider
the recognition of long Mandarin utterances of paragraphs. The motivation of using
the 4-layer hierarchy model is owing to its suitability for describing the prosody of
long paragraphic utterances of Mandarin. The model employs two types of prosodic
tags to represent the four-layer prosody-hierarchy structure. One is the break tag used
to separate two consecutive prosodic constituents. We modify the break type labeling
scheme of the HPG model by dividing B2 into three types, B2-1, B2-2 and B2-3, and
combining B4 and B5 into one denoted simply by B4. Here, B2-1, B2-2 and B2-3
represent PW boundaries with FO-reset, short pause and pre-boundary syllable
duration lengthening, respectively. The reason of refining B2 into three types is to
consider the difference. of their-prosodic boundary correlates (i.e., prosodic-acoustic
features) to be modeled. On the-contrary, the.combination of B4:and B5 is owing to
the similarity of their prosodic-acoustic characteristics. Therefare, the break-type tag
set used is {BO, B1, B2-1, B2-2, B2-3, B3, B4}. As shown in Figure 2.1, these seven
break-type tags can be used to delimit-an utterance into four types of prosodic units,
namely SYL, PW, PPh, and BG/PG.

BG/PG \84 \ BG/PG \ B4 \ BG/PG

PPh | \ PPh \33\ PPh ‘B3‘ PPh \ \ PPh
‘ B2-1/

B2l B2-1/
v [BY e O RIEE ) [ ] B
[svi|BuBo[svL| [svL] [svL|BuBo[syL| [svi] Bl Bl/BO @

Figure 2.1: The prosody-hierarchy model of Mandarin speech used in this study [20],
[21].

Another type of prosodic tag is prosodic state which is conceptually defined as
the state in a prosodic phrase to account for the prosodic-acoustic feature variations
imposed on higher-level prosodic constituents (i.e. PW, PPh and BG/PG). The
consecutive prosodic state sequence of a prosodic constituent hence forms a
prosodic-acoustic feature pattern to characterize it. In practice, prosodic state serves as
an intermediate discrete representation of the effects on the variation of a syllable’s

prosodic-acoustic feature from linguistic features of word-level or above. In this study,



three types of prosodic states are used respectively for syllable pitch level, syllable

duration, and syllable energy level.

Based on the four-layer prosody-hierarchy model, several prosodic models are
designed to describe the various relationships of the three types of features: the two
types of prosodic tags, the linguistic features of various levels, and the
prosodic-acoustic features. The prosodic model design is based on the following
maximum-a-posterior (MAP) formulation to find the best linguistic transcriptions
A, ={W,PCOS,PM}, prosodic tags A, ={B,P}, and acoustic segmentation Y, for

the given input acoustic features A, ={X_, X }:

AI*'Ap*’Ys* =arg max P(W,POS,PM,B,P, Y| X,, X))

(2.1)
=arg max P(W,POS,PM;B,P, Y,, X,, X,)

Irprts

where W:{wlM} is’ a-word sequence; POS ={pos"} is a POS sequence

associated with W;_PM ={pm"} is a PM sequence; M is the total number of words;
B={B)'} is a breaktype sequence with B,c{B0, B1, B2-1, B2-2;B2-3, B3, B4}; N is
the total number of syllables; P ={p,q,r} with p={p'}, g={q'}, and r={r"}
representing prosodic state sequences for syllable pitch level, duration, and energy
level, respectively, X, is a frame-based spectral feature vector sequence (i.e.,
MFCCs and their first-order and second-order derivatives); and X, ={X,Y,Z} is a

prosodic-acoustic feature sequence with X, Y, and Z representing sequences of
syllable-based features, syllable-juncture features, and inter-syllable differential
features, respectively. More detailed prosodic-acoustic features are given as: syllable
pitch contour (sp), syllable energy level (se), and syllable duration (sd) for X;
syllable-juncture pause duration (pd) and energy-dip level (ed) for Y; and normalized
pitch-level jump (pj) and two normalized duration lengthening factors (dl and df) for

Z. Notations of tags and features are summarized in Table 2.1.
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Table 2.1: Notations of Prosodic Tags, Prosodic-Acoustic Features and Linguistic Features

A, prosodic tags B: break types
P: prosodic states p: pitch prosodic states
g: duration prosodic states
r: energy prosodic states
X, :prosodic-acoustic  X: syllable sp: syllable pitch contours
prosodic-acoustic features sd: syllable durations
se: syllable energy levels
Y: syllable-juncture pd: pause durations
prosodic-acoustic
features
Z: inter-syllable differential ~ pj: normalized pitch-level
prosodic-acoustic features  jumps
dl: normalized duration
lengthening factor 1
df: normalized duration
lengthening factor 2

features

ed: energy-dip levels

A, : linguistic features . W:'words
PQOS. part-of-speeches
PM:-punctuation marks
t: tones
s: base-syllable types
f: final types

To make Equation (2.1) mathematically tractable, we adopt the following
assumptions: 1) Like the conventional acoustic model (AM), spectral feature sequence

X, depends only on word sequence W; 2) Prosodic-acoustic feature sequence X,
depends on both prosodic tag sequence A ' and linguistic feature sequence A,; 3)

Syllable prosodic-acoustic feature sequence X is independent of syllable-juncture and
inter-syllable differential prosodic-acoustic feature sequences, Y and Z; 4) Break tag
sequence B depends mainly on contextual linguistic feature sequence A,; and 5)
Prosodic state sequence P depends on B only. The reason is that P is used to
characterize the prosodic constituents' patterns which are mainly determined by the
prosody hierarchy specified by the break type sequence B. The relation between
linguistic features and prosody hierarchy is built through the modeling of B. In other

words, the linguistic feature A, can influence the prosodic state through B. We
therefore ignore the direct dependency of P on A, for simplicity. Based on these

assumptions, Equation (2.1) is rewritten as
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AYAL Y ~arg max {P(X,, Y,]W)P(W, POS,PM)

(2.2)
-P(B| A)P(P|B)P(XY,, A, A)P(Y, ZIY, A, A

where P(X,,Y,|W) is an AM; P(W,POS,PM) is an LM which describes the
relations among W, POS and PM; P(B|A,) is the break-syntax model which
describes how a syllable-juncture break is influenced by the contextual linguistic
features of all levels; P(P|B) is the prosodic state model describing the variation of
prosodic state conditioned on the neighboring break type; P(X|Y ,A,A,) is the
syllable prosodic-acoustic model which describes the influences of the two types of
prosodic tags and the contextual syllable-level linguistic features on the variations of
syllable FO contour, duration and-energy level; and P(Y,Z|Y A ,A)) is the
syllable-juncture prosodic-acoustic model which describes-how the prosodic-acoustic
features at or across a syllable juncture are influenced by both the break type of the

juncture and the contextual linguistic features. Figure 2.2 shows the relationships of

features involved inithe four prosodic models, LM, and AM.

A,: linguistic transcription LM

‘ |

//Q,W PV e

(}\Base syllable type s || Tone t || Final type f \)

|
. |
: | '
E A, prosodic tags * |
AM E Prosodic states P ¢ -- — - - — BreaktypeB — +~ — — :
L]
» 1) I
; : |
. H » ;
A,: acoustic features L 4 4 *Syllable-juncture :
.| Spectral Syllable prosodic- prosodic-acoustic features Y «——_I
feature X, acoustic features X | |*Inter-syllable differential
prosodic features Z
------- > - — -
Syllable prosodic- Prosodic Break- Syllable-juncture prosodic-
acoustic model state model syntax model acoustic model
P(XIY,, A, A) P(P|B) P(B|A,)) P(Y,ZIY, A, A)

Figure 2.2: The relationships of AM, LM, and four prosodic models with prosodic
tags, linguistic features and prosodic-acoustic features.

In implementation, we need to further elaborate these four prosodic models.
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Firstly, the break-syntax model P(B|A,) is approximated by
N-1
n=1

where P(B,|A,,) is the break type model for the juncture following syllable n, and

A, is the contextual linguistic features surrounding syllable n. Since the space of

I,n

linguistic features A, is large, we partition it into several classes C(A,,) by the

CART decision tree algorithm [22] using the maximum likelihood gain criterion. The
question set used in the CART consists of 216 questions considering the following
linguistic features around the juncture: 1) the initial type of the following syllable; 2)
interword/intraword indicator; 3) lengths and 4) POSs of the words before and after

the juncture if it is an interword; and 5) PM type for an interword juncture.

Secondly, the prosodic state-model P(P|B) is further divided into three

sub-models and approximated as
P(P|B)~ P(p|B)P(q|B)P(rB)

- P(pl)P(ql)P(rl)m PPy [ By BP0y BB, I BM)} &4
where P(p,|p,., B, )5 P, a,,,B,,), and P(ry|r B, ,) are prosodic state
transition models for syllable pitch level; duration and energy level, respectively.
Notice that, in above formulation, the dependency on the break type of the preceding
syllable juncture makes these models be able to properly model significant
pitch/energy resets across major breaks and pre-boundary lengthening. We also note

that the three prosodic states are independently modeled for simplicity.
Thirdly, the syllable prosodic-acoustic model P(X|Y, A, A,) is further divided
into three sub-models and approximated as:

P(X|Y,, A, A)) = P(sp|Y,, B,p,t)P(sd|Y,B,q,t,5) P(se| Y, B,r, t,f)

N (2.5)
~ H P(Spnlpn’ B:—l't:ji)P(Sdn | qn’ Sn’tn)l:)(sen | rn’ fn’tn)
=1
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where P(sp, |B,, p,.t"), P(sd,|q,.s,.t), and P(se, |r t ) are sub-models

n’ n’

for the pitch contour, duration and energy level of syllable n, respectively; t , s

n

and f denote the tone, base-syllable type and final type of syllable n;

B',=(B,,,B,); and t'i'=(t ,,t.,t ). P(sp,|BI,.p,t1) is further elaborated to

consider four major affecting factors. With an assumption that all affecting factors are

combined additively, we have

f b
sp, =sp; + B +B, + oot [j’Bn oo g, (2.6)

where sp, is a vector of four orthogonally-transformed parameters representing the
observed log-FO contour of syllable n [23]; sp; is the modeling residue; B, and

B, are the affecting patterns<(APs). for't, and p,, respectively; ﬂ and

nl nl

,Bé’ s are the forward and backward coarticulation APs contributed from syllable

n—1 and syllable n+1,respectively; and uy is the global mean of pitch vector. In

this study, g is’set to-have nonzero value only in its first dimension in order to

Pn

restrict the influence of prosodic state merely on the log-FO level of the current

syllable. By assuming that «sp,is<zero-mean and normally distributed, i.e.,

N(sp,;0,R,,) , we have
P(Spnl pn’B:l’tn+1) N(SpnuBt +ﬁ -I-,BB (e \ B, t"+1 +Iusp'Rsp) (2-7)
It is noted that sp; is a noise-like residual signal so that we model it by a normal

distribution.

Similar to the design of the syllable pitch contour model, the syllable duration

model P(sd,|q,,s,,t,) and the syllable energy level model P(se,|r,, f,,t,) are
formulated by
P(sd, Gy, S,.t,) = N(sd,; 7 +7. 7, +as Ry) - (2.8)
P(se, 1, f.t,)=N(se ;o +o; +o, + 4., R,). (2.9

where sd, and se, are the observed duration and energy level of syllable n,

respectively; y's and w's represent APs for syllable duration and syllable energy
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level; u, and u, are their global means; and R, and R, are variances of
modeling residues.

Lastly, the syllable-juncture prosodic-acoustic model is further divided into five
sub-models and approximated as
P(Y,ZIY,, A, A) = P(pd,ed,pj,dl,df[Y,A ,A))

N-1

~ HP( pdn'edn’ pjn1d|n'dfn|Ys’ Bn’AI,n)
n=1
N-1

~ H{g( pdn;aBn,ALn , an,Alvn)N(edn;ued,Bn,Alvn , O-ezd,Bn,Alvn)

n=1

-N(pj,» Hpigoa Gij,Bn Arn IN(I; Hai oA, O-jl,Bn,Am)

‘N (dfn;ludf,Bn,Am ' Ggf,Bn,Am )}

(2.10)
where g(pd,;ag 4 ,an’Alvn) Is a Gamma-distribution for pause duration pd, of the

juncture following ‘syllable n-—(referred to ‘as juncture n hereafter); ed, 6 is the

energy-dip level of juncture n-and is modeled by a normal distribution;

Ply = (P2 @) =B @) = (sp, (D) - 4 (1) (2.11)

n+l

is the normalized pitch-level jump across juncture-n;-sp, (1) /is the first dimension of
syllable pitch contour” sp,,. (i.e., syllable pitch level);™ B (1) “is the first dimension of

the tone AP;

dl, =(sd, =% =7 )—(sd, s =7 -7 ) (2.12)

n-1

df, =(sd, -7 =7, )—(sd s =% —7..) (2.13)

n+1

are two normalized duration lengthening factors before and across juncture n. Both
dl, and df are modeled as normal distributions. Since the space of A, is large,
the CART algorithm with the node splitting criterion of maximum likelihood (ML)
gain is adopted to concurrently classify the five features of pd., ed., pj,, dl, and
df, for each break type according to the same question set used in the training of the
break-syntax model. Each leaf node represents the product of the five sub-models. So,
seven decision trees are constructed for the syllable-juncture prosodic-acoustic model.

It is noted that normal distribution is used to model ed,, pj,, dl. and df because

n

15



of its simplicity and fit to the real data distribution. As for pd,, normal distribution is
not suitable because pd, is distributed unsymmetrically due to the restriction of
nonnegative and the tendency of small value for some break types such as BO and B1.
Like the state duration of phone HMM model, Gamma distribution is suitable for this

kind of data.

2.2 Training of the Proposed Prosodic Models
The joint prosody labeling and modeling (PLM) algorithm proposed previously

[20] is adopted to train all these 12 models from an unlabeled speech database. The
PLM algorithm is a sequential optimization procedure based on the ML criterion to
jointly label the prosodic tags for all utterances of the training corpus and estimate the
parameters of all 12 prosodic models. It is composed of two parts: initialization and
iteration. The initialization part first determines_initial prosodic tags of all utterances,
and then estimates initial parameters of the prosodic models by a specially designed
procedure. The iteration part first-defines an-objective likelihood function for each

utterance by

Q = (]f[ P(Bn |Aln)j(P(pl)P(ql)P(n.) |:H P(pn | pn—l’ Bn—l)P(qn | qn—l’ Bn—l)P(rn | I’n—17 Bnl):D

n=1 n=2

N
(H P(sp,Ip,. Bl t")P(sd, |q,,s,.t,)P(se, |T., fn,tn)J

n=1
n-1g(pd,; U A, T8, A, )N (ed,; Heag) A, 1‘7e2d,Bn,ALn IN(pi,; My, O';J',Bn,/\,,n )
na N(dl; My B, A, G;I,Bn A IN(df 5 2ty By Udzf B, ,Am)

(2.14)

It then performs a multi-step iterative procedure to re-label the prosodic tags of each
utterance with the goal of maximizing Q and update the parameters of all prosodic
models sequentially and iteratively. In the following, we describe the sequential

optimization procedure in more detail.

2.3.1 Initialization

(@) Initial labeling of break indices

The initial break index of each syllable juncture is determined by a decision tree

16



shown in Figure 2.3. The decision tree is designed based on the general knowledge of
the break types obtained in our previous prosody labeling and modeling study on a
single-speaker database [20]. First, a juncture is labeled as B4 if its pause duration is
longer than a large threshold Thl. Then, it is assigned as B3 if its pause duration is
longer than Th2. Then, all intrawords are labeled as BO/B1. We then mark interwords
with medium pause duration (=Th3) as B2-2, with medium pitch jump (=Th4) as
B2-1, and with medium pre- or post-syllable lengthening (= Th5 and >Th6) as B2-3.
All remaining interwords are labeled as BO/B1. Lastly, BO/B1 are refined as BO if the
syllable juncture has continuous FO trajectory, otherwise it is labeled as B1. All these
six thresholds are determined in a systematic way by an algorithm to avoid

determining them by trial-and-error. The algorithm is discussed in detail as follows.

pd.>Thl

Y ~.N
B4
B3 s Interword?

pd,>Tha = BOA
A pi,2Tha
~wgdl, > Th5and df, > Thé

B2-1 /

B2-3 BO/1

B22

Figure 2.3: The decision tree for initial break type labeling.

The algorithm is designed using both linguistic and acoustic cues to determine
these six thresholds. First, we consider that PMs are usually associated with long
breaks and assigned to B3 or B4. We hence collect the pause durations of all word
junctures with PM and use scalar quantization to divide them into two clusters. Two
gamma distributions are accordingly constructed to stand for pause duration
distributions of B4 and B3, i.e. f,,(pd) and f,,(pd), respectively. The threshold
Th1l is then set to be the equal probability intersection between the two distributions.

Then, we construct a Gamma distribution f,,,(pd) for BO/B1 by using the pause

durations of all intrawords. Another Gamma distribution f,,,(pd) for B2-2 is then
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constructed by using the pause durations of all non-PM interword junctures with

apparent pause durations defined based on the criterion of f_,(pd)> f,,,(pd). This

can exclude non-PM interwords with pause duration similar to those of BO/B1. The
thresholds Th2 and Th3 are then set to be the equal probability intersections of
fo,,(pd)/ fo,(pd) and f,,,(pd)/ fao,(pd).

We then determine the three thresholds, Th4, Th5, and Th6, which are used to
label initial B2-1 and B2-3. First, six Gaussian distributions of the normalized FO
jump and the two duration lengthening factors, i.e., f.,(pi), f..(Pi), fou(dl),

foe (), fo,(df) and f. . (df), for both PM and intraword are constructed using data

intra

of interwords with PM and of intrawords, respectively. Then, a Gaussian distribution

of pj for B2-1, i.e., f,,,(pj), is constructed,using non-PM interwords with apparent
pitch jump defined based «on the ecriterion—of ., (pj) > f,..(pi) . Similarly, two
Gaussian distributions. of ‘dl and df for. B2-3, d.e., fy,.(dl) and f,,.(df), are

constructed using nen-PM interwords with apparent duration-lengthening defined

based on the criteria of _f., (db)>f. (dl) and fg,(df)> f . (df). Lastly, Th4, Th5

intra intra

and Th6 are set to be the equal probability intersections of f..(pj)/ fs,.(pi),

fiowa (A1) / fo,5(dl) and . (df ) /if,4(df)s

intra

(b) Initialization of 12 prosodic models

The initializations  of the break-syntax model and the syllable-juncture
prosodic-acoustic model can be /done independently with initial break indices of all
syllable junctures being given. We realize them by the CART algorithm [22]. Then,
the initializations of the three syllable prosodic-acoustic models are considered. Since
they are multi-parametric representation models to superimpose several APs of major
affecting factors to form the observed syllable prosodic-acoustic features, the
estimation of an AP may be interfered by the existence of the APs of other types. It is
therefore improper to estimate all initial parameters independently. We hence adopt a
progressive estimation strategy to first determine the initial APs which can be
estimated most reliably and then eliminate their effects from the surface
prosodic-acoustic features for the estimations of the remaining APs. Based on this
idea, we determine the order of initial AP estimation according to the availability of

affecting factor and the size of AP. The resulting ordering is listed as follows: global
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means .,/ py ! ug,, tone B 1y, e, coarticulation Bs.! By, base-syllable/final type
7/, and prosodic states 3, /y,/ o, . It is noted that an improper ordering of initial
AP estimation may result in poor AP estimates. For example, if we reverse the order
of initial estimation of tone and base-syllable APs (i.e., y, and y,) of syllable
duration, then the value of y, for base-syllable “de” will decrease significantly while
the value of », for Tone 5 will increase accordingly. This is due to the
high-frequency character “fyJ” which dominates both distributions of Tone 5 and
base-syllable “de”. We also note that the initial pitch, duration and energy
prosodic-state indices are assigned by applying vector quantization (VQ) to the
residues of syllable FO level, duration and energy level, respectively; and their APs are
set to be the corresponding codewords. Lastly, the initializations of the three prosodic

state transition models are done using the labeled:prosodic-state indices and break

indices.

2.3.2 Iteration

The iteration is a multi-step procedure listed below:

Step 1: Update the APs of tones, ' S, 17,/ @, with all other APs being fixed.
Step 2: Update the APs of coarticulation, g,/ /s, , with all.other APs being fixed.

Step 3: Update the APs of base-syllable/final type, y /e, with all other APs being
fixed.

Step 4: Re-label the prosodic state sequence of each utterance by the Viterbi algorithm

so as to maximize Q defined in Equation (2.14).
Step 5: Update the APs of prosodic state, B,/y,/®,, variances, R /R,/R,, and

the prosodic state transition model.

se !

Step 6: Re-label the break type sequence of each utterance by the Viterbi algorithm so
as to maximize Q defined in Equation (2.14).

Step 7: Update the decision trees of the break-syntax model and of the
syllable-juncture prosodic-acoustic model.

Step 8: Repeat Steps 1 to 7 until a convergence is reached.

2.3 The Two-Stage Prosody-Assisted ASR System

Figure 2.4 displays a block diagram of the proposed two-stage prosody-assisted
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ASR system. It first uses the conventional HMM-based word recognizer with a
syllable-based AM and a word-bigram LM in the first stage to generate a word lattice.
It then employs a factored LM (FLM) [24] and the 12 prosodic models discussed
above in the second stage to rescore the word lattice and find the best recognition
result. Here the FLM is an extension of the conventional word-based LM to jointly
describe the relations of the word sequence W, the part-of-speech sequence POS, and
the punctuation mark sequence PM. The FLM is composed of a word-trigram model,

a factored POS model and a factored PM model, and is formulated as

M
P(W,PM,POS) ~H P(w, | W) -P(pos; | pos;_;,w;)-P(pm,_, | DOS.il,W.l)} (2.16)

Vv Vv
=1 word-trigram LM factored POS model factored PM model

Here, the FLM approach used in [24] is applied.to the modeling of the two
factored models of POS and PM. The SRILM toolkit [25] with Witten-Bell smoothing

is used to train these three models:

Training = ==

phase for Unlabeled Prosody
prosodic database modeling
models

Syllable-
juncture
prosodic-
acoustic
model

Syllable
Prosodic-

Break-
syntax
model

Prosodic
state
model

Test
phase

acoustic
model

Acoustic

model bigram LM

PXIY,, Ay A ) | P(P|B) PBIA)P(Y.Z| Y, A, A)
Input
speech | Frame-based | Xa N .
Viterbi Word lattice .
—» featur(_es »  <earch ALAL T
extraction
Syllable XY, Z P(W,PM,POS)
Segmentation
information Prosodic-
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FO & energy sequences i features LM
: P extraction
]
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Figure 2.4: A block diagram of the two-stage prosody-assisted ASR system.

In the second-stage rescoring process, a product of sixteen probabilities from
three types of models (i.e., AM, FLM, and prosodic models) is computed as we
completely expand the speech decoding equation shown in Equation (2.2). For

considering the relative importance of each individual model to ASR, a log-linear
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combination scheme to integrate these sixteen probabilities is adopted in this study:
16
L(S,A,)=logC(A,)+D a;logp, (2.17)
j=1

where S=[p,---pg] is a 16-dimensional vector formed by these sixteen
probabilities; A, =[e;---ey] is a weighting vector; and C(A,) is a normalization

factor. The discriminative model combination (DMC) method [26] is employed to
find the optimal weighting vector for minimizing the word error rate on a
development set. The DMC method uses the well-known Generalized Probabilistic
Descent (GPD) algorithm [27] to iteratively minimize a smoothed empirical word

error rate on the development set.

2.4 Experimental Results

2.4.1 Database and Experiment Setting

The proposed ‘ASR method was tested on a large Mandarin read speech database
TCC300 [28]. The" database consists of two sets: 103-speaker short sentential
utterances (Set A) and 200-speaker long paragraphic utterances (Set B). The database
was collected for Mandarin ASR. Set-A was designed to consider the phonetic balance
of Mandarin speech, while Set B was designed to additionally consider the usage for
prosody study. The database was divided into a training set (about 90%, 274 speakers,
23 hours) and a test set (about 10%, 29 speakers, 2.43 hours). A set of 411 8-state
base-syllable HMM models was generated from the training set by HTK 3.4 [29] with
the MMIE criterion [30]. The acoustic feature vector is composed of 12 MFCCs and
their delta and delta-delta terms, 1 delta energy and 1 delta-delta energy. For testing
the proposed prosody-assisted ASR system, the Set B part of the test set was used.
The test subset contained 226 utterances of 19 speakers with length about 2 hours.
The total number of words in the test subset is 14993. All testing data were long

utterances with average length of 117.2 syllables.

A text corpus was employed to train both the word-bigram LM and the FLM
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which were used, respectively, in the first- and second-stage speech decodings. The
corpus contained in total about 139 million words and was formed by combining the
following three corpora: 1) Sinorama: a news magazine with 9.87 million words; 2)
NTCIR: an information retrieval (IR) test bench consisting of several domains with
124.4 million words; and 3) Sinica Corpus: a general text corpus comprising 4.8
million words with manually POS tagging. The POS tags used in this study are the
same as those used in the syntactic parsing of the Sinica Treebank [31]. There are in
total 46 types of POS. A conditional random field (CRF)-based tagger was employed
to segment all texts in the corpus into word-POS sequences. The tagger was trained on
the Sinica Corpus. For simplicity, PMs were categorized into four classes: comma,
period, major PM (including dot, exclamation mark, question mark, semicolon, and
colon), and non-PM. A 60,000-word lexicon was also constructed based on word

frequency.

2.4.2 Prosody Maodeling
A training subset containing utterances of 164 speakers was used for prosody

modeling. It was selected from the training set and consisted-of long paragraphic
utterances with prosody being properly pronounced.”A subjective judgment based on
the rhythm and melody.©of an_utterance was applied to determine whether it was
properly pronounced. Two major types-of-ill=pronounced utterances were found: 1)
bad rhythm — read each character isolatedly to insert a pause after every character; and
2) bad melody — read each character with almost the same pitch level to result in a flat
intonation. The excluding of those ill-pronounced training utterances could avoid
polluting the generated prosodic models so as to degrade their effectiveness on
assisting in ASR. The total length of the training subset was about 8.3 hours. All
speech signals were time-aligned using the 411 base-syllable HMM models
mentioned above. Five prosodic-acoustic features were then extracted, including
syllable pitch contour vector, syllable duration, syllable energy level, and
syllable-juncture pause duration and energy-dip level. It is noted that syllable pitch
contour vectors were extracted from the frame-based FO values normalized by

speaker-level mean and variance; while both syllable duration and syllable energy
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level were normalized by their corresponding speaker-level means and variances. It is

also noted that the three inter-syllable differential prosodic-acoustic features (i.e., pj,,

dl. and df, defined in Equation (2.11)-(2.13)) were obtained automatically in the

n

prosodic model training by the PLM algorithm [20]. The texts of the training subset
were processed by the CRF-based tagger mentioned previously to extract all linguistic
features needed in the prosody modeling. The PLM algorithm [20] was then applied to
automatically generate the 12 prosodic models from the training subset. In realizing
the PLM algorithm, the numbers of pitch, duration and energy prosodic states were all
set to be 16. For avoiding over-fitting the decision trees of the break-syntax model and
the syllable-juncture prosodic-acoustic model, the following two stop criteria were
used: 1) The size of a leaf node must be larger than 700 syllables; and 2) The relative
improvement of likelihood must be larger than 0.0065-in a node splitting. These two
values were determined empirically. Finally, the total.numbers of nodes (leaf nodes)
obtained were 63(31) and 46(27)-for-these two models, respectively.

A quantitative analysis of the-prosody modeling result is given as follows. Table
2.2 shows the APs of five tones. As shown in the table, Tone 1 and Tone 4 had high
pitch mean, long duration and high energy level; while Tone 3 and Tone 5 had low
pitch mean, short duration and low energy level. It is noted that a negative value of
tone AP of syllable"duration.means the length-of a syllable with this tone type is
smaller than the average length of all syllables with the same base-syllable type
regardless of their tone type. These-agreed with-the prior linguistic knowledge and
generally matched with those of other. previous studies [32], [33].

A training subset containing utterances of 164 speakers was used for prosody
modeling. It was selected from the training set and consisted of long paragraphic
utterances with prosody being properly pronounced. The excluding of ill-pronounced
training utterances is to avoid polluting the generated prosodic models so as to
degrade their effectiveness on assisting in ASR. The total length of the training subset
was about 8.3 hours. All speech signals were time-aligned using the 411 base-syllable
HMM models mentioned above. Five prosodic-acoustic features were then extracted,
including syllable pitch contour vector, syllable duration, syllable energy level, and
syllable-juncture pause duration and energy-dip level. It is noted that syllable pitch

contour vectors were extracted from the frame-based FO values normalized by
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speaker-level mean and variance; while both syllable duration and syllable energy
level were normalized by their corresponding speaker-level means and variances. It is

also noted that the three inter-syllable differential prosodic-acoustic features (i.e., pj,,

dl, and df defined in Equation (2.11)-(2.13)) were obtained automatically in the

prosodic model training by the PLM algorithm [20]. The texts of the training subset
were processed by the CRF-based tagger mentioned previously to extract all linguistic
features needed in the prosody modeling. The PLM algorithm [20] was then applied to
automatically generate the 12 prosodic models from the training subset. In realizing
the PLM algorithm, the numbers of pitch, duration and energy prosodic states were all
set to be 16. For avoiding over-fitting the decision trees of the break-syntax model and
the syllable-juncture prosodic-acoustic model, the following two stop criteria were
used: 1) The size of a leaf node must be larger than 700 syllables; and 2) The relative
improvement of likelihoad must be larger than 0.0065in anode splitting. Finally, the
total numbers of nodes (leaf nodes) obtained were 63(31) and 46(27) for these two
models, respectively.

A gquantitative-analysis of the prosody modeling result is given as follows. Table
2.2 shows the APs.of five tones. As shown in the table, Tone 1 and Tone 4 had high
pitch mean, long duration and high energy level; while Tone 3.and Tone 5 had low
pitch mean, short duration and low energy level. These agreed with the prior linguistic
knowledge and generally.matched with those of other previous studies [32], [33].

Table 2.2:*APs.of Five Tones

Tone 1 2 3 4 5
Pitch mean (log-Hz) 0.097 -0.05 -0.11 0.065 -0.069
Duration (ms) 9 5 -5 5 -54
Energy level (dB) 0.874 -0.623  -0.785 0.840 -1.567

Figure 2.5 displays the decision-tree analysis of the duration APs of all 411
base-syllables. It can be found from the figure that the base-syllables with aspirated
affricate (g, ch, c) or fricative (f, h, x, sh, s) initials were much longer in average than
all other base-syllables. On the other hand, base-syllables with more vowel
components (double/compound vowel), medial, or nasal ending in final were

generally longer. These results were also confirmed in a previous study [33].
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Figure 2.5: Decision tree analysis of duration APs of all 411 base-syllables. Numbers
associated with each leaf node represents the average length (ms) of the APs and the
sample count (in the bracket). Solid line indicates positive answer to the question and
dashed line indicates negative answer.

Figure 2.6 depicts the forwardand backward coarticulation patterns for the three
extreme cases of break types, i.e., BO (tightly-coupling), B1(normal) and B4 (major
break). Several characteristics of these-APs. can be found. Firstly, the forward
coarticulations mainly affected the beginning parts of syllable pitch contours, while
the backward coarticulations affected the ending parts. Secondly, we find from the
dynamic ranges of these APs that the coarticulation effect was the most serious for BO
junctures and the least for B4 junctures. Thirdly, for tightly ‘coupling BO junctures,
most coarticulation APs. demonstrated well the effect to. compensate for tone
concatenation mismatch of their.pitch contours. For-example, the upward bending at

the beginning parts of { A, |41, = (1,2),(1.3), (2,2), (2,3)} were due to H-L
mismatches, while the downward bending at the beginning parts of {3, |t ,=(3,1),

(3,4)} corresponded to L-H mismatches. Figure 2.7(a) illustrates the effect of the
forward coarticulation AP of Tone 1 in the 1-3 tone pair on raising the beginning part
of the following Tone 3 pitch pattern in order to be better matched with the high
ending level of the preceding Tone 1 pitch pattern. Fourthly, the well-known sandhi
rule that Tone 3-Tone 3 will change to Tone 2-Tone 3 had been learned in the
backward coarticulation AP of 3-3 tone pair. Figure 2.7(b) illustrates this effect.
Lastly, the forward coarticulations were generally larger than the backward
coarticulations. The above mentioned characteristics generally conformed well to the

observation found by Xu [34].
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Figure 2.6: (a) Forward and (b) backward coarticulation patterns, B and
ISB o for BO (point line), B1(solid line), and B4(dashed line).
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Figure 2.7: Two examples demonstrate the effects of coarticulation APs: (a) Tone
1-Tone 3 and (b) the sandhi rule of Tone 3-Tone 3. Solid lines (left): basic tone pitch
patterns; point lines: backward APs; dashed lines: forward APs; and solid lines (right):
the resulting pitch patterns.

Figure 2.8 displays the major part of the decision tree of the break-syntax model.
As shown in the figure, the entropy of the break type distribution decreased as we
traced down the decision tree with more linguistic features being involved. The most
important  linguistic features used in the decision tree were PM and
interword/intraword. The two sub-trees corresponding to PM and intraword were
relatively simpler with the entropy of the break type distribution decreasing fast, while
the sub-tree of interword was very complicated with the entropy decreasing slowly.
Besides, the break type distributions of the nodes in the PM sub-tree concentrated
mainly on B3 and B4, while they were on BO and B1 for nodes in the intraword
sub-tree. Moreover, phonetic information was important for the intraword sub-tree to

further discriminate between BO and B1l. For the PM sub-tree, the type of PM was
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important. Fig. 2.9 displays a deeper part of the interword sub-tree. Major linguistic

features used were: “stop” initial in the following syllable, content/function word, the

word “DE”, and various types of POS.
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Figure 2.8: Decision:tree for the-break-syntax. model. The bar plot associated with a
node denotes the distribution of these seven break types (BO, B1,B2-1, B2-2, B2-3, B3,
B4, from left to right) and the number is the total sample count of the node. H is the
Shannon entropy to measure the uncertainty of break type distribution.
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Figure 2.9: The deeper part of the decision tree for the break-syntax model. It is the
sub-tree starting from the shaded node shown in Figure 2.8.
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Figure 2.10 shows the major parts of decision trees of the break-acoustic model for the
7 break types. We can find from the statistics of root notes that the break types of higher level
were generally associated with longer pause duration, lower energy-dip level, larger
normalized pitch-level jump, and larger duration lengthening factors. Besides, B2-3 was
similar to B1 and B2-1 in the distributions of pause duration, and energy-dip level. B2-1, B3,
and B4 had positive normalized pitch jumps in average, while BO, B1, and B2-3 had negative
ones. These results illustrated the declination and reset effects of log-FO at intra-PW and
inter-PW syllable boundaries, respectively. The two normalized duration lengthening factors
for B2-2, B2-3, B3, and B4 were relatively larger than those of BO, B1, and B2-1. These
distributions showed the lengthening effect for the last syllable of PW, PPh, and PG/BG.

For each break type, the likelihood of the syllable-juncture prosodic-acoustic modeling
increased as we traced down these decision trees with more linguistic features being involved.
This means the use of linguistic features can. improve the modeling of syllable-juncture
prosodic-acoustic features. It.is noted here that no tree-splitting occurred for B4 due to the
relative uniformity on the prosodic-acoustic features of its data. The questions used to split
trees of pause-related break types-(i-e.; B3 and B2-2) tended to be-related to higher-level
linguistic features, such as PM and POS. On the contrary, the questions of lower-level
linguistic features, such as interword/intraword and phonetic features, were used to split trees
of other non-pause break types (i.e., BO, B1,B2-1and B2-3).
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Figure 2.10: Decision trees of the break-acoustics model for 7 break types. Solid (dash)
line indicates positive (negative) answer to the question. Numbers in a node are
sample count and average likelihood per sample (in a bracket). The statistics for each
node are shown in the bracket of the tables below the trees. Note that r’s represent root
node of each break type. Numbers in the bracket, from left to right, denote average
pause duration in ms, energy-dip level in dB, normalized pitch jump in log-Hz, and
duration lengthening factors 1 and 2 in ms.
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Figure 2.11 illustrates the transitions of pitch prosodic state P(p,|p,,.B,,) for

seven break types. For BO and B1, the general high-to-low, nearby-state transitions
showed that the syllable log-FO level declined slowly within PWs. For B2-2, it had
both high-to-low and low-to-high state transitions. For B2-1, B3, and B4, their
low-to-high state transitions showed clearly the phenomena of syllable log-FO level
resets across PWs, PPhs, and BG/PGs. Comparing with these clear log-FO level resets,
the resets of B2-2 were insignificant. The transition of B2-3 is similar to those of BO
and B1. This implies no apparent pitch reset exists at the duration-lengthening
juncture of B2-3. These phenomena were similar to those found in our previous study
on the database of a single female speaker [20]. Table 2.3 lists a summary of the

parameter numbers (#para) used in these 12 prosodic models

(b)

Figure 2.11: The most significant prosodic state transitions for (a) BO, B1, B2-2 and
B2-3, and (b) B2-1, B3 and B4. Here, the number in each node represents the index of
the prosodic state. Note that larger state index represents higher log-FO value and
darker lines represent more important state transitions.
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Table 2.3: Summary of Parameter Numbers of 12 Prosodic Models

Model #para Description
Break-syntax model 217 | 31 leaf nodes x 7 break probabilities
Syllable-juncture 270 | 27 leaf nodes x 2 parameters for 5 sub-models
prosodic-acoustic model
Prosodic state model 5424 | (16x16x7+16 initial probabilities) x 3
Syllable 1597 | APs: (5 tones+ 16 states) x3, 1400 coarticulations, 82
prosodic-acoustic model base-syllables, 40 final types, 12 means & variances

2.4.3 Recognition Performance Evaluation
We then examined the recognition performance of the proposed prosody-assisted

ASR system. We first performed the first-stage decoding by HTK using the 411
base-syllable HMM models and the word-bigram LM to generate a word lattice. We
note that the beam-width of the first-stage recognition was set to a large value to make
the resulting word lattice have a-high cover rate of the correct words. This was to let
the study focus mainly on the performance comparison between the scheme with and
without using the prasodic models in the second-stage recognition. The WER, CER,
and base-syllable error rate (SER) of the first-stage decoding were:29.6%, 21.4%, and
13.7%, respectively.-Moreover, the oracle performance (i.e.; the cover rate) of the
word lattice, which corresponds to the best word string that can be decoded from the
lattice, was 9.6%, 9.3%, and 7% for WER, CER,-and SER, respectively. The oracle
performance approached the upbound as we considered the high out-of-vocabulary
(OOV) rate of 4.3% of the test data set. The use of the syllable-based HMM approach
was justified by comparing its performance with those of 30.7%, 21.8%, and 13.7% in
WER, CER, and SER achieved by the tri-phone HMM recognizer using similar size
of total number of states. The syllable-based HMM recognizer we used was slightly
better.

We then performed the second-stage decoding. A baseline scheme was firstly
tested using only the FLM in the second-stage rescoring process without involving
any prosodic model. Here, we kept the AM scores and replaced the word-bigram LM
scores with the FLM scores. In implementation, we needed to expand the first-stage
word lattice to consider the applicability of the word-trigram LM, all possible POSs

for every candidate word, and 4 types of PM for every interword location. Besides, the
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log-linear combination of the scores of AM and the three FLM sub-models was
considered. The DMC algorithm [26] was applied to find a set of four weights from a
development set selected from the Set B part of the training set. The development set
contained 18-minute speech of 33 speakers. For each utterance in the development set,
a list of top-100 sequences was found and used in the DMC algorithm. Since the
number of weights to be estimated is small, the data of the development set were
sufficient. Table 2.4 shows the performance of the baseline scheme. The WER, CER,
and SER were 24.4%, 18.1%, and 12%. This performance was much better than those
of 29.6%, 21.4%, and 13.7% reached by the ASR using the word-bigram LM.

Lastly, we evaluated the performance of adding prosodic models to the baseline
scheme. We first categorized these 12 prosodic models into two classes:
juncture-based and syllable-based. The former modeled acoustic cues or phenomena
related to different types' of ‘juncture and hence-was expected to be useful for
distinguishing word boundary ambiguity. The latter modeled prosodic-acoustic feature
patterns of different types of prosodic constituent so that it was expected to be useful
for tone/word discrimination. We hence designed and..tested two schemes of
incorporating prosodic models. Scheme 1 incorporated the 6 juncture-based prosodic
models, i.e., the break-syntax. model and the 5 syllable-juncture prosodic-acoustic
sub-models, into the-baseline FLM scheme, while Scheme 2 added all 12 prosodic
models. In implementation,. all“values of frame-based' FO, syllable duration, and
syllable energy level of the testing.utterance were.-normalized by their corresponding
utterance-level mean and variance. Here, the syllable segmentation corresponded to
the best path of the first-stage decoding. Word lattice expansions were also realized to
consider not only the applicability of the FLM like the case of realizing the baseline
scheme, but also the incorporation of prosodic models. Two sets of 10 and 16 weights
for model combination were respectively found for the two schemes by the DMC
algorithm using the same development set. The recognition results are displayed in
Table 2.4. As shown in the table, WER, CER, and SER of 21.3%, 15.0%, and 10.2%
for Scheme 1, and of 20.7%, 14.4%, and 9.6% for Scheme 2 were obtained. They
represented 3.1%, 3.1%, and 1.8% absolute (or 12.7%, 17.1%, and 15% relative) error
reductions over the baseline FLM scheme for Scheme 1, and 3.7%, 3.7%, and 2.4%
absolute (or 15.2%, 20.4%, and 20% relative) error reductions for Scheme 2.

Obviously, Scheme 1 outperformed the baseline scheme significantly, and Scheme 2
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was even better. This showed that the word recognition performance could be greatly
improved via correcting word segmentation errors by properly using juncture-based
break-related information. Moreover, the recognition performance could be further
improved slightly via correcting tone errors by modeling tone patterns of prosodic
constituents. We can therefore conclude that the prosodic information are useful in
ASR.

Table 2.4: Recognition Performances of The Baseline Scheme, Scheme 1, and

Scheme 2 (%)
WER CER SER
Baseline scheme 24 .4 18.1 12.0
Scheme 1 21.3 15.0 10.2
Scheme 2 20.7 14.4 9.6

Aside from generating the recognized word sequence, the system also produced
some other linguistic.and prosodic-information of the testing utterance, including POS,
PM, syllable prosodic state, and-syllable-juncture break type. Table 2.5 shows the
recognition results of POS. Precision, recall and F-measure were computed as metrics
for performance evaluation. Here, precision is defined as the ratio of the number of

correctly recognized words with correct POS; N to the total number of

corret\W,corretPQS

correctly recognized words; while recall is defined as theratio of N to

corretW,corretPOS
the total number of words. As shown.in the table,the performances of precision, recall,
and F-measure were 93.4%, 76.4%, and 84% for the baseline scheme, and were
improved to 93.4%, 80% and 86.2% by Scheme 2. Since a correct decoding of POS
was only meaningful when the word was correctly decoded, the recalls were bounded
by the word correct rates which were 78.9% and 82.15% for the baseline scheme and

Scheme 2, respectively.

Table 2.5: Experimental Results of POS Decoding (%)

Precision | Recall | F-measure
Baseline scheme 93.4 76.4 84.0
Scheme 2 93.4 80.0 86.2

Table 2.6 shows the recognition results of PM. As shown in the table, the

performances of precision, recall, and F-measure were 55.2%, 37.8%, and 44.8% for
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the Dbaseline FLM scheme, and were improved to 61.2%, 53%, and 56.8%,
respectively, by Scheme 2. Notice that the syllable-based alignment between the
recognition result and the reference transcription was performed for the evaluation. By
error analysis, we found that many major PMs were misrecognized as commas. Since
this type of error was not serious, we therefore re-evaluated the performance of PM
recognition by collapsing all PMs (i.e., comma, dot, and major PMs) into a single PM
class. The resulting precision, recall, and F-measure were 76.1%, 65.9% and 70.6%
for Scheme 2 verse 66.1%, 45.3%, and 53.8% for the baseline scheme.

Table 2.6: Experimental Results of PM Decoding (%)

Precision | Recall | F-measure
Baseline scheme 55.2 37.8 44.8
Scheme 2 61.2 53.0 56.8

Table 2.7 shows'the results-of tone recognition. The performances of precision,
recall, and F-measure were 87.9%, 87.5%, and 87.7% for the baseline FLM scheme,
and were improved.to 91.9%, 91.6%, and 91.7% by Scheme 2. Obviously, the
significant improvement of tone recognition mainly resulted from the proper use of
tone information in.the prosody -modeling for syllable pitch contour and syllable

duration.

Table 2.7: Experimental Results of Tone Decoding (%)

Precision | Recall | F-Measure
Baseline scheme 87.9 875 87.7
Scheme 2 91.9 91.6 91.7

An error analysis was conducted to examine the recognition results in more detail.
Firstly, we found that the WER improvement of the proposed system mainly lay in the
corrections of word segmentation errors and tone recognition errors. This conformed
to our expectation because both syllable-juncture breaks and syllable tones were
properly modeled in the prosody modeling. Figure 2.12 illustrates an example. As
shown in the figure, there were four prosodic phrases (PPh’s) separated by B3. In the
3rd PPh, the text “X(jing, by) £ %](zhong-xing, heavy) #; % & (sha-sh-che, trunk)

2_(zhi, DE) #& & (nian-ya, rolling)” were recognized as “ % (jing, by) *# = (zhong-xin,
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center) -] B (xiao-shi, hour) # 3 (che-zi, car) #%/& (nian-ya,rolling)” by the baseline
scheme. There were three word recognition errors (i.e., ® = (zhong-xin), -] B
(xiao-shi) and 2 = (che-zi)) and one segmentation error (between F#“shi” and 2

“che”). The proposed system corrected two word recognition errors. One is the

correction of “*¥ . (zhong-xin)” to “ & %] (zhong-xing, heavy)”. Tone modeling is the
key factor for this correction. Another is the correction of “-]- F¥(xiao-shi) & +
(che-zi)” to “#) # & (sha-sh-che)”. This word recognition error correction is through

the correction of the segmentation error via labeling a B2-1 break after the corrected

word.
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Figure 2.12: An example of recognition results for a partial paragraph. Eight panels
represent, respectively, waveform, prosodic state AP+global mean of syllable log-FO
level, syllable duration, and. syllable energy level, ‘break type (B), reference
transcription (R), result of baseline..scheme (F) and proposed system (P). The
utterance is “lian-ri lai(Day by day) gai-giao(the bridge) zhi(DE) yin-dao(road),
yin(because) zhi(only) pu(pave) yi-ceng(one layer) de(DE) bo-you(asphalt)
lu-mian(surface), jing(by) zhong-xing(heavy-duty) sha-sh-che(trunk) zhi(DE)
nian-ya(rolling), lu-main(surface) yi(already) sun-huai(broken).

Secondly, we found that many segmentation error corrections did not lead to
word recognition error corrections. The existence of OOV was one of the major
factors to hamper the improvement. Figure 2.13 illustrates an example. As shown in
(b), the two words “¥2 E & (council chairman) 3% 3= 2 (Zhen-Xing Guo)” were
erroneously recognized as “3Z I (council member) 3 & rz(Guo-Zheng Zhang) #7
(new)” by the baseline scheme. Both words were not correctly recognized and there
existed two word segmentation errors. As shown in (c), the proposed system corrected

the first word segmentation error and decoded its boundary as a B3 break. This led to
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the correct recognition of the first word, but not the second word because it is an OOV.
Moreover, the OOV caused one word substitution error and one word insertion error.
Actually, the OOV rate of the test set was only 4.3%, but OOVs caused extra errors of

word insertions and deletions to result in total about 8.1% word errors.

@...7 5P§ £ (dentist) = ¢ (association) 12 3 & (council chairman) 3%4& £ (Zhen-Xing Guo)...
(b)...7 fPﬁéFF(dentist) 2 ¢ (association) 7 % (council member) 3 ®#c(Guo-Zheng Zhang) #7
(new)...

()...7 %Eﬁ(dentist) B2-2 = ¢ (association) BO 7 % £ (council chairman) B3 & (or) B2-2 £
« (true heart) B3...

Figure 2.13: An example of the negative effect of OOV on word error correction: (a)
reference transcription, and the recognition results of (b) the baseline scheme and (c)
the proposed Scheme 2 system.

Thirdly, we also found that some syllable segmentation errors were corrected by
the proposed system. The sum of syllable insertion and deletion error rates was
reduced from 1.79% of the baseline FLM scheme to 1.2% of Scheme 2. One major
factor to contribute to the improvement was the use of the syllable duration model

P(sd, |q,,s,,t,) shown in Equation (2.8).-/Actually, the use of the syllable duration

model and break tags in the prosody modeling also contributed to the reduction of the
sum of word insertion and deletion error rates from 6.1% of the baseline FLM scheme
to 5.5% of Scheme 2.

An additional advantage‘of the proposed system was the decoding of the two
types of prosodic tags. As mentioned before, they were closely correlated with the
4-layer prosody-hierarchy model. We could therefore use them to construct a
hierarchical structure of prosody for the testing utterance. Taking the recognition
results shown in Figure 2.12 as an example, we can describe the prosody structure of
the utterance as follows. On the top level, there are four prosodic phrases (PPh’s)
separated by three B3 breaks. From the first two panels of Figure 2.12, we find that all
three B3 breaks were associated with long pauses and large pitch resets. So, these
three B3 breaks were all labeled well. On the next level, there are 2, 5, 3 and 1
prosodic words (PWSs) in these four PPh’s, respectively. Within these four PPh’s, PWs
were separated by (B2-2), (B2-2, B2-2, B2-1, B2-2), (B2-3, B2-1) and (-). As shown in

the first three panels of Figure 2.12, all four B2-2 breaks were associated with short
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pauses, the B2-3 break was associated with a pre-boundary lengthening, and the two
B2-1 breaks were associated with medium pitch resets. So, they were all properly
labeled. Lastly, the bottom level is composed of syllables separated by BO or Bl
breaks. It is noted that BO and B1 are not shown in the figure. From above discussions,
we can conclude that the prosody hierarchical structure of the testing utterance
constructed by the decoded break tags matched well with the cues provided by the
prosodic-acoustic features.

Lastly, we analyzed the complexity of the second-stage rescoring process. Table
2.7 shows the average number of nodes in the expanded lattice (NEL), the average
number of arcs in the expanded lattice (AEL), the density of the expanded lattice
(DEL), and the real time factor (RTF) of the baseline scheme and the proposed
Scheme 2. NEL and AEL are defined as the average numbers of nodes and arcs for a
testing utterance. DEL is definedas the number of arcs in.the expanded lattice divided
by the number of words inthe true transcription. RTF is defined as the ratio of the
time spent on rescoring to the length of the testing utterance. As shown in Table 2.7,
the proposed system-is about 2 times largerin NEL, AEL, and DEL than the baseline

scheme; while the RTF is about 2.5 times larger:

Table 2.7: Complexity of The Expanded Lattice for Rescoring

NEL | AEL | DEL | RTF
Baseline scheme | 584.6 | 21650 |-326.3 | 2.64
Scheme 2 1192.7 | 43837 | 660.8 | 6.57

2.5 Conclusions for Chapter 2

In this chapter, we have discussed a new prosody-assisted ASR system in detail.
The system employed a sophisticated prosody modeling method to generate 12
prosodic models to assist in improving the recognition performance as well as
decoding more information from the testing utterance. Experimental results confirmed
the effectiveness of the proposed system. Several advantages of the proposed system
can be found. First, these 12 prosodic models were trained using an unlabeled speech
database. This not only saved the costly hand-labeling effort, but also avoided the
defects of human labeling, including inaccuracy and inconsistency. The resulting

prosodic tag labels matched well with the cues provided by linguistic features and/or
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prosodic-acoustic features. Second, these 12 prosodic models described well the
relationships of the two prosodic tags of the 4-layer prosody-hierarchy model, various
linguistic features of texts, and the 8 prosodic-acoustic features of speech signals.
Experimental results showed that parameters of these 12 well-trained prosodic models
were all meaningful. Third, the recognition performance of the conventional HMM
recognizer can be improved by the proposed system via correcting many word
segmentation errors and tone recognition errors. Fourth, more information could be
decoded from the testing utterance. Aside from the two linguistic features of POS and
PM, the two decoded sequences of break type and prosodic state could be used to

construct the prosody hierarchical structure of the testing utterance.
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Chapter 3 An Application of Prosody-Assisted
Mandarin ASR to Speech Coding

Motivated by the success of the new prosody-assisted ASR system discussed in
Chapter 2, we apply it to the coding of prosodic information. Section 3.1 presents the
proposed speech coding system. Performance evaluation of the new speech coding

system is discussed in Section 3.2. Lastly, some conclusions are given in Section 3.3.

3.1 The Proposed Speech Coding System

Figure 3.1 shows a.schematic diagram of the proposed-Mandarin-speech coding
system. In the encoder, input-—-speech signal is firstly. recognized by the
prosody-assisted Mandarin ASR-system«(PA-ASR) [35],[36] with an HMM-based
acoustic model (AM), a factored language model (FLM) [24] and a hierarchical
prosodic model (HPM) [20]. Three types of information are transcribed by the speech
recognition. One is linguistic features including strings of base-syllable, tone, word,
POS and PM. Anocther is prosodic features including tag sequences of syllable
prosodic state and inter-syllable break type. It is worth to note that these two prosodic
tag sequences can be used to form a hierarchical-prosody structure of the input speech.

The other is the segmentation information of various levels from HMM state to word.
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Figure 3.1: A schematic diagramof the proposed speech coding system.

By using some low-level linguistic features and prosodic tags (LP), we can
reconstruct prosodic-acoustic features, including syllable pitch contour, syllable
duration, syllable energy level, and inter-syllable pause duration with the help of HPM.
So, we only need to encode those LP features for prosody reconstruction in the
decoder. It is noted that prosodic features used in PA-ASR are pre-normalized by
speaker-level (training phase) or utterance-level (test phase) mean and variance.
Therefore, an additional utterance prosody normalization factor (UPNF) encoder is
required for encoding these prosody normalization factors. By using the HMM-state

segmentation information, we can extract state-based spectral features and encode

them by vector quantization (VQ).
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In the decoder, we first use the decoded LP features to reconstruct the four
prosodic-acoustic features by HPM whose parameters are sent to the decoder in
advance as side information. We then use base-syllable type and syllable duration to
predict state durations by a state duration model. Lastly, by using the decoded state
spectral features, the reconstructed prosodic-acoustic features, and the predicted state

durations, an HMM-based speech synthesizer generates the output speech.

In the following subsections, we discuss the encoder and the decoder in more
detail.

3.1.1 The Speech Encoder

As shown in Figure 3.1, the 'speech-encoder.is composed of four parts including a
PA-ASR [35],[36], an LP encoder, a UPNF encoder, and a spectrum encoder. The
PA-ASR system is a sophisticated speech recognizer discussed.in Chapter 2 [35],[36].
Figure 2.4 displays its functional-block diagram. It is a two-stage system to firstly use
an AM and a bigram LM'to generate a word lattice in the first stage decoding, and to
then use an FLM [24] and an HPM [20] to finely decode from the word lattice the best
linguistic sequences (i.e. base-syllable, tone, word, POS and PM) and their
corresponding segmentation .information, as: well :as prosody: tag sequences (i.e.
prosodic states and break types) that represent a hierarchical prosody structure of the
input utterance. The AM"is a syllable-based HMM madel. It models each of 411
base-syllables as an 8-state left-to-right HMM. The FLM is an extension of the
conventional trigram model to additionally consider POS and PM aside from word.
The HPM consists of various prosodic sub-models to describe the relationship of

prosodic tags, prosodic-acoustic features, and linguistic features.

Four sub-models of the HPM are involved in the coding process. They include
three syllable prosodic-acoustic models, which are used to describe the variations of
syllable pitch contour, duration and energy level, and one prosodic-acoustic model
which describes the variation of syllable-juncture pause duration influenced by some

linguistic features. For syllable pitch contour, it is formulated as an additive model:

sp, =Spy + B, + 3, + ’BBfn,l,tS,l + ,Bgn o T e (3.1)
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where sp, is a vector of four orthogonally-transformed parameters representing the
observed log-FO contour of syllable n [23]; sp; is the residual of modelingsp,; A,
and B, are the affecting patterns (APs) for tone t, and prosodic state tag p,,

respectively; f!

Bn—l ’thfl

and ,Bs na Qe the forward and backward coarticulation APs

contributed from syllable n-1 and syllable n+1, respectively; and s, is the
global mean of pitch vector. Here, B, is the break tag after syllable n. Similarly,

syllable duration and energy level are modeled as

sd,=sd;y +7, +7, TV T (3.2)
se, =Se, + @, +@; b, + 4, (3.3)

where y /o, , 7, , o and y, /o __are the APs of tone t,, base-syllable s,

final type f , and prosodic state-tags q,/r,;and gz, and u,are global means. To

reconstruct these three prosodic-acoustic features-using the three sub-models in the
decoder, we need.to encode and transmit low-level linguistic, features of tone,
base-syllable and final types as well as prosodic features of break type and prosodic
state tags. Besides, all affecting patterns are sent as side information. It is noted that

we neglect the coding of the residuals because they all have small variances.

The fourth sub-model describes the.variation of inter-syllable pause duration by
break-dependent decision trees (BDTS). Far each break type, a decision tree is used to
determine the pdf of pause duration according to linguistic features. For
reconstructing the pause duration, we needs to send the information of the break tag
and the residing leaf node of the associated decision tree for each inter-syllable
juncture to the decoder. All pdfs of leaf nodes in these seven decision trees are also

sent to the decoder as side information.

Table 3.1 shows the bit assignment of the encodings of these low-level linguistic
features of tone, base-syllable and final types, prosodic tags of prosodic state and
break type, and leaf nodes of BDTs. Notice that the BDT is constructed for each break
type, and each BDT has different number of leaf nodes. Therefore, the bit length is

variable for each given known break type.
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Table 3.1: Bit assignment for encoding linguistic features and prosody tags

Symbol # of symbol bit
Lexical tone t, 5 3
Base-syllable type s, 411 9
Pitch prosodic state p, 16 4
Duration prosodic state g, 16 4
Energy prosodic state r, 16 4
Break type B, 7 3

BDT leaf node index T,, for
BO, B1, B2-1, B2-2, B2-3, B3, B4

5/7/3/214/3/1  3/3/2/1/2/2/0

Total bits per syllable (maximum) 30

For avoiding taking care of the speaker/utterance variability of prosodic-acoustic
features in HPM, they are pre-normalized. (For syllable pitch contour, a scheme of
frame-based FO value-normalized by speaker-level (training phase) or utterance-level
(test phase) meantand variance is adopted; while for both syllable duration and
syllable energy level, they are simply normalized by their corresponding
speaker-/utterance-level means and variances. These normalization factors are needed
to be encoded and sent to the decoder. In this study, they are scalar-quantized
independently by the UPNF encoder. Their codebooks are also sent to the decoder as

side information.

Since we want to use the HMM-based speech synthesizer in the decoder to
generate the output speech, we extract 25-dimensional mel-generalized cepstral (MGC)
[37] vector including the zero-th coefficient for each 25ms frame with 5ms shift.
Blackman window is used in the feature extraction. Besides, delta and delta-delta
MGCs are also extracted. In the training phase, we calculate the pdf parameters (i.e.,
mean and variance) of each MGC coefficient for each HMM state using the training
data with the time-aligned segmentation information provided by the PA-ASR system.
In the test phase, we first calculate the mean vector of 25-dimentional MGC vectors
for each state segment and then subtract the mean MGC vector of the corresponding
state of the recognized base-syllable to obtain a residual vector. Lastly, we encode all

state-based residual vectors by vector quantization (15 bit for each state). Both the pdf
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parameters of all HMM states and the VQ codebooks are sent to the decoder as side
information. It is noted that the energy coefficient in each state MGC vector is
pre-normalized by the energy level of the associated syllable. Table 3.2 summarizes

the side information of the coding system.

Table 3.2: Side information of the proposed coding system

Type parameter #
Lexical tone APs: S,/ v,/ o, 5/5/5
Coarticulation APs: ;. / B, 180/180
Prosodic state APs: B, /y, /o, 16/16/16
Global mean APs: w1 [ pay | 1/1/1
Base-syllable type and final type APs: y,/ N 411/40
BDT leaf node mean: 4 25
Spectrum codebook 1056
MGC pdfs of all HMM states 26304
Normalization factor codebooks 384

Total 28646

3.1.2 The Speech-Decoder

The task of the speechdecoder is to reconstruct speech signal by using the
decoded linguistic, presodic.and spectral parameters. As‘shown in Figure 3.1, the
speech decoder consists of five parts.including the-LLP-decoder, the UPNF decoder, the
spectrum decoder, the prosodic-acoustic feature generator, and an HMM-based speech
synthesizer [38]. The LP decoder generates low-level linguistic features and prosody
tags by looking up tables. The spectrum decoder uses the spectrum codebook to
generate the output spectral features of each state from the input codeword index. The
prosodic feature generator reconstructs the three prosodic-acoustic features and pause
duration by HPM using the decoded low-level linguistic features and prosody tags.
These three prosodic-acoustic features are de-normalized by using the decoded
utterance-level factors. After obtaining syllable duration, we then predict state
durations. Lastly, the HMM-based speech synthesizer reconstructs the input speech
signal by using the state spectral features, state duration and the associated

prosodic-acoustic features.
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In state duration prediction, we assume that the state duration is normally

distributed and affected by base-syllable type s, i.e
P(d,.|s,.c) =N, ; ", 0) (3.4)

where d . denotes the duration of the c-th state in the n-th syllable. Given the

reconstructed syllable duration sd, , state durations of the syllable can be obtained by

maximizing the summed log likelihood, i.e.

C
d,.d .= arg_max > logP(d, [s,.c) (3.5)

nl=*n.C c=1

under the constraint
sd, = Zdn,c (3.6)

The resulting state duration can be obtained by
dyc =1+ p: (o)’ 3.7)

where

c=1

o (sdn —Czﬂsn]/[iwsnfj 39

3.2 Performance Evaluation

The proposed model-based Mandarin-speech coding system was evaluated on a
large Mandarin read speech database TCC300 [28] that mentioned in Section 2.4.1.
Table 3.3 shows the performance of the PA-ASR system. Word, character, and
base-syllable error rates of 20.7%, 14.4%, and 9.6% were achieved, respectively. This
performance is very good as compared with most conventional HMM-based ASR
methods. Since syllable insertion and deletion errors were expected to cause more
serious degradation on the coding performance, we also list them in Table 3.3. As

seen from the table, both of them are small.
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Table 3.3: The performance of the PA-ASR (%)
WER CER SER Syll-INS Syll-DEL Syll-SUB

20.7 14.4 9.6 0.55 0.83 8.5

We then examined the performance of the coding system. Two cases were
examined. One was the inside test in which both the speech utterance and the
associated text were given. In this case, we first segmented the speech by
time-alignment using the AM, and then labeled the prosodic tags automatically by the
HPM. We then performed the encoding and decoding operations to reconstruct the
speech. The other case was the outside test in which only the speech utterance was

given. This is the case of the proposed coding system discussed in Section 2.

Table 3.4 shows the root-mean-square errors (RMSE) of the reconstructed four
prosodic features. Here, all six-utterance-level normalization factors were encoded
using 6-bit scalar quantizers. Table-3.5 shows the RMSE of the reconstructed pause
duration for different break types. Since major breaks like B3 and B4 are tolerant of
larger errors, the performance was good. The average bit rates were 528 and 543 bits/s
for the inside and outside tests, respectively. These data rates are low. Figure 3.2
shows an example of the reconstructed prosodic features of an utterance of the outside
test. As shown in the figure, most reconstructed prosodic features were close to their

reference values.

Table 3.4: The RMSE of the reconstructed prosodic features

FO (Hz) Syllable duration Syllable energy Pause duration

(ms) level (dB) (ms)
Inside test 114 18.4 0.52 73.8
Qutside test 14.7 16.8 0.20 75.6

Table 3.5: The RMSE (ms) performance of the reconstructed pause duration with
respect to different break types

BO Bl B2-1 B2-2 B2-3 B3 B4
Inside 19.3 26.5 75.6 149.2 35.0 177.9 312.9
Outside 12.4 17.1 88.3 178.4 39.6 176.9 292.7
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Table 3.6: Bit rates for inside and outside tests

Average Max Min

Inside prosody 104.56 163.79 42.23
spectral 423.73 661.90 178.07
outside  prosody 107.55 147.20 78.00
spectral 435.06 594.44 318.05

syllable index
Figure 3.2: An example of the reconstructed prosodic features of an utterance. From
top to bottom: syllable pitch mean, syllable duration, syllable energy level, and pause
duration. (open circle: reference, dot: recognition_result, solid line: deletion, dash dot
line: insertion).

Lastly, an informal listening test was performed. Generally, all reconstructed
speeches sounded good. The effects of recognition errors were not serious. Most
substitution, deletion, and insertion errors were slightly perceptible. This mainly

resulted from encoding and sending the spectral features to the decoder.

3.3 Conclusions for Chapter 3

In this chapter, a model-based Mandarin-speech coding system has been
discussed. It differs from the conventional speech coding system on using a
prosody-assisted ASR in the encoder to extract high-level linguistic and prosodic

features to assist in improving the coding efficiency. Experimental results showed that
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high-quality reconstructed speech can be obtained at a low data rate of 543 bits/s.

Another advantage of the proposed coding system can be found. By properly
adjusting the prosodic features, we may modify the prosody of the reconstructed

speech, e.g. changing the speech rate.

The proposed coding system can also operate on another two modes. One is the
case of knowing both the speech signal and the associated text. This case has been
examined as the inside test discussed in Section 3.2. An application of the mode is the
speech coding of story readings in an electronic book. Prosody modification will be
the most attractive feature of the application. The other mode is the case of low-rate
speech coding without transmitting the spectral parameters. A text-to-speech system,
such as the HTS [40] can be used to generate spectral parameters of a standard voice
for their substitutions by using the recognized text sent from the encoder. In this case,

we can keep the prosody of the input speech but lesing the speaker identity.
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Chapter 4 Conclusions and Future Works

4.1 Conclusions

In this dissertation, we present a study on involving abundant prosodic cues in
the prosody modeling for assisting in ASR. Experimental results confirmed that the
new prosody-assisted ASR system performs effectively on improving the
syllable/character/word error rates. Several advantages of the proposed system can be
found. First, these 12 prosodic models of the HPM were trained using an unlabeled
speech database. This not only saved the costly hand-labeling effort, but also avoided
the defects of human labeling, including inaccuracy and inconsistency. The resulting
prosodic tag labels matched well with the cues provided by linguistic features and/or
prosodic-acoustic features. Second,-these 12 prosodic models described well the
relationships of the two prosodic-tags of the 4-layer prosody-hierarchy model, various
linguistic features of texts, and the 8 prosodic-acoustic features.of speech signals.
Experimental results showed that parameters of these 12 well-trained prosodic models
were all meaningful. Third, the recognition performance of the conventional HMM
recognizer can be improved by the proposed--system via' correcting many word
segmentation errors and tone.recognition errors. Fourth, more information could be
decoded from the testing utterance. Aside from.the two linguistic features of POS and
PM, the two decoded sequences of break type and prosodic state could be used to
construct the prosody hierarchical structure of the testing utterance.

We also present a study on applying the new prosody-assisted ASR to the coding
of prosodic information. It demonstrates the feasibility of using a prosody-assisted
ASR in the encoder to extract high-level linguistic and prosodic features to assist in
improving the coding efficiency. Experimental results showed that high-quality
reconstructed speech can be obtained at a low data rate of 543 bits/s. Aside from
coding efficiency, another advantage of the proposed coding system can be found. By
properly adjusting the parameters of the HPM, we may modify the prosody of the
reconstructed speech, e.g. changing the speech rate. The proposed coding system can

also operate on another two modes. One is the case of knowing both the speech signal
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and the associated text. This case has been examined as the inside test discussed in
Section 3.2. An application of the mode is the speech coding of story readings in an
electronic book. Prosody modification will be the most attractive feature of the
application. The other mode is the case of low-rate speech coding without transmitting
the spectral parameters. A text-to-speech system, such as the HTS [40] can be used to
generate spectral parameters of a standard voice for their substitutions by using the
recognized text sent from the encoder. In this case, we can keep the prosody of the

input speech but losing the speaker identity.

4.2 Future Works

Some further works are worth doing in the future. Firstly, we are interested in
generalizing the proposed approach-to spontaneous-speech ASR. To this end, we need
to extend the three models of AM,;-LM and HPM to additionally consider the special
characteristics, such-as disfluency, of spontaneous speech. A preliminary study has
been conducted to.construct a hierarchical prosodic model for spontaneous Mandarin
speech [35]. Secondly, it is also an interesting task to scale up the proposed approach
to ASR for larger vocabulary comprising many compound words. The task can be
attacked by modifying the first-stage recognition via firstly constructing an LM for a
lexicon comprising both words and subwords; then-generating a mixed-word/subword
lattice using the new LM, and lastly forming compound words from subwords by
applying some word-compounding rules. The second-stage recognition can be directly
applied. Thirdly, modifying the proposed approach to reduce its computational
complexity is needed for on-line system implementation. The task can be attacked by
applying some prosodic models to reduce the size of the word lattice generated by the
first-stage recognition. Specifically, we can incorporate the syllable-juncture
prosodic-acoustic model into the first-stage recognition to detect B3 and B4 from long
silences and generate a word lattice for each PPh-like segment instead of a large word
lattice for the whole utterance. The stage-stage recognition can then be operated in a
way of PPh-by-PPh decoding process. This can greatly speed up the second-stage

Viterbi decoding process as well as reduce the decoding delay. Besides, the size of a
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PPh word lattice can be further reduced by verifying its constituent words using the
syllable-juncture prosodic-acoustic model to exclude unqualified words with prosodic
features mismatching the intraword prosodic cues. Fourthly, it is found from error
analysis that the WER improvement of the proposed system is seriously hampered by
OOQOVs. Since most OOVs are name entities, incorporating an LM for name entity
should be helpful. Fifthly, some high-level linguistic features, such as word chunk,
phrase, and syntax, are still not used in this study. Design new prosodic models to
include them should be useful for further improving the recognition performance as
well as for decoding the syntactic structure of the testing utterance. Lastly, applying
the same technique to other languages, such as English, must be interested to the

speech processing society.
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