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球形螺旋齒輪之特性研究 

學生：趙立碁 指導教授：徐瑞坤博士 

 共同指導教授：蔡忠杓博士 

國立交通大學機械工程學系 

摘要 

球形齒輪(Spherical gear)是由日本三留謙一教授所提出的一種新型的齒輪。

由其幾何外形來區分，球形齒輪可分為凸狀球形齒輪(Convex spherical gear)與凹

狀球形齒輪(Concave spherical gear)。由球形齒輪所組成之齒輪組共有三種配對型

式：凸狀球形齒輪配凸狀球形齒輪、凸狀球形齒輪配凹狀球形齒輪及凸狀球形齒

輪配正(螺旋)齒輪。與一般常用之正齒輪組不同的是，球形齒輪組(Spherical gear 

set)具有可容許軸交角變動與軸裝配誤差且不發生齒形干涉之傳動特性。 

基於球形齒輪在組裝上的優點，本論文提出一種結合球形齒輪及螺旋齒輪特

性的球形螺旋齒輪(Spherical helical gear)。球形螺旋齒輪除了具有球形齒輪所有

的幾何特色及傳動特性外，亦可透過球形螺旋齒輪之齒輪螺旋角(Helix angle)的

設計，以交錯軸的組裝型式(Crossed axes mounting mode)進行傳動。因此，若能

建立出球形螺旋齒輪的數學模式，則可利用此數學模式來進行球形螺旋齒輪之相

關分析，以提供產業界更進一步了解球形螺旋齒輪之特性及應用上的限制。 

由於滾齒加工方法具有切削效率高與成本低的加工特性，因此，本論文選用

滾齒加工方法來模擬創成凸狀及凹狀球形螺旋齒輪，進一步分析並探討由滾齒加

工所創成之球形螺旋齒輪所組成之齒輪組的接觸特性。首先，本論文建立一把

ZN 型蝸桿滾齒刀之齒面數學模式，接著依據滾齒加工之創成機構與齒輪原理推

導出由此 ZN 型蝸桿滾齒刀所創成之凸狀及凹狀球形螺旋齒輪之齒面數學模式，

並利用所建立之凸狀與凹狀球形螺旋齒輪之齒面數學模式進行後續的電腦模
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擬，包括球形齒輪之齒形過切分析(Tooth undercutting analysis)、齒形尖點分析

(Tooth pointing analysis)、齒面接觸分析(Tooth contact analysis)及接觸橢圓(Contact 

ellipses)分析，最後再利用本論文所發展的球形螺旋齒輪有限元素網格產生軟

體，自動產生一組於接觸狀態的球形螺旋齒輪組之有限元素接觸模型，接著再使

用有限元素商用分析軟體 ABAQUS/Standard 進行球形螺旋齒輪組之應力分析

(Stress analysis)。 

齒形過切分析探討在何種齒輪設計參數及滾齒加工參數下，凸狀球形螺旋齒

輪會發生齒形過切的現象及其齒形過切之發生位置，而齒形尖點分析則探討當凹

狀球形齒輪發生齒形尖點時，其所對應的齒輪設計參數及滾齒加工參數，以提供

適合的球形齒輪設計參數及加工參數。齒面接觸分析則探討三種配對型式的球形

螺旋齒輪組，分別在平行軸及交錯軸組裝，且在具有裝配誤差及理想組裝狀況時

之運動誤差、接觸點位置與接觸比。接觸橢圓分析則利用齒面外形法(Surface 

separation topology method)來探討三種配對型式的球形齒輪組在不同組裝條件下

之接觸橢圓的位置、大小與平均長短軸比。此外，應力分析則模擬球形螺旋齒輪

組在實際受負載情況時，其可能產生之齒面接觸應力及齒根彎曲應力。 
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ABSTRACT 

The spherical gear is a new type of gears proposed by Mitome. Geometrically, 

the spherical gears have two types of gear teeth－convex tooth and concave tooth. 

The spherical gear sets have three types of mating combinations: convex tooth with 

concave tooth, convex tooth with convex tooth and convex tooth with spur gear tooth. 

Different from that of the conventional spur gear set, the spherical gear set is in point 

contact and allows variable transmission shaft angles and larger axial misalignments 

without gear interference during the gear drive meshing. 

Based on the advantages of the spherical gear, this study proposes a gear by 

considering the assembly and transmission characteristics of the spherical gear and 

helical gear, called spherical helical gear. The spherical helical gear has all geometry 

and transmission characteristics of the spherical gear, while the gear set can also be 

assembled in crossed axes mounting mode. Therefore, to develop a complete 

mathematical model of the spherical helical gears with convex and concave teeth can 

provide further investigation on the manufacturing conditions, transmission 

characteristics and application limits of the spherical helical gear for industry. 

In this study, hobbing method is considered for generation of spherical helical 

gears with convex and concave teeth due to its high cutting efficiency and low 
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manufacturing cost. Based on the hobbing generation mechanism and theory of 

gearing, mathematical models of the spherical helical gears with convex and concave 

teeth can be developed. Firstly, the surface equation of a ZN-type worm-type hob 

cutter is derived, and then surface equations of the spherical helical gears with convex 

tooth and concave teeth cut by the hob cutter can be obtained. Sequentially, the tooth 

undercutting and tooth pointing condition equations for the convex and concave 

spherical helical gears are derived by utilizing the developed tooth surface equations 

of the gears, respectively. Therefore, the limit curves of the tooth non-undercutting of 

the convex spherical helical gear under different design parameters are investigated, 

while the Z cross-sections of tooth pointing beginning of the concave spherical helical 

gear are determined. Moreover, the tooth contact analysis (TCA) method is applied to 

determine the contact characteristics, such as kinematic errors, contact ratios and 

contact positions, of the spherical helical gear set with the three mating combinations 

(convex pinion mating with convex gear, convex pinion mating with concave gear and 

convex pinion mating with helical gear) and two assembly modes (parallel axes and 

crossing axes modes). Surface separation topology method is adopted to find the 

contact ellipses and bearing contacts of the spherical helical gear set, and the average 

ratio a/b of the major and minor axes of contact ellipses of the spherical helical gear 

set can also be obtained. Finally, an automatic mesh-generation program of the 

spherical helical gear sets is developed to investigate the stress analysis of the gear 

sets by utilizing the commercial FEA package, ABAQUS/Standard. Therefore, the 

contact and bending stress contours of the spherical helical gear sets under two axes 

mounting modes and three mating combinations can be determined. 
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CHAPTER 1 

Introduction 

 

1.1. Features of spherical gears and spherical helical gears 

The spherical gear is a new type of gear proposed by Mitome et al. [1,2]. 

Geometrically, spherical gears have straight tooth trace and two types of gear teeth－

convex teeth and concave teeth. The spherical gear with convex teeth is similar to a 

part of ball, while the spherical gear with concave teeth looks like a worm gear. 

Moreover, the spherical gear set has three types of mating combinations: convex teeth 

with concave teeth, convex teeth with convex teeth and convex teeth with spur gear 

teeth. The conventional spur gear sets with parallel axes are in line contact [3-5], and 

thus their kinematic errors are sensitive to the gear axial misalignments. When these 

gear sets have axial misalignments, tooth edge contact will occur and this results in 

serious stress concentration, noise and vibration. However, the spherical gear set is in 

point contact and allows variable shaft angles and larger axial misalignments without 

gear interference during the gear drive meshing. Therefore, it is a good application by 

applying the spherical gear set to replace the gear-type coupling [6]. Besides, the 

spherical gear set also can substitute some application occasions of the conical gear 

set. Figure 1.1 illustrates three types of mating combinations for the spherical gear 

sets with axial misalignments. The spherical helical gear is a gear considering the 

assembly and transmission characteristics of the spherical gear and helical gear. The 

spherical helical gear has all geometry and transmission characteristics of the 

spherical gear, and the spherical helical gear set can be assembled in crossing axes 

mode the same as that of the helical gear set. Therefore, the spherical helical gears 

also have two types of gear teeth－convex and concave teeth, while the spherical  
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Fig. 1.1 Mating statuses of spherical gear sets with axial misalignments 
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helical gear set also has three types of mating combinations: convex teeth with 

concave teeth, convex teeth with convex teeth and convex teeth with helical gear 

teeth. 

Figures 1.2(a)-(e) shows five schematic illustrations for the changes of straight 

pitch traces in the axial section of different gear types. The axial section of a 

conventional external gear, i.e. spur (helical) gears, is shown in Fig. 1.2(a), and the 

pitch trace and gear axis are parallel to each other. When the pitch trace of the gear 

intersects the gear rotation axis with a cone angle c, then this type of gear is called 

the conical gear, as shown in Fig. 1.2(b). When the pitch trace and the gear rotation 

axis are perpendicular to each other, then the type of gear is called the face gear, as 

shown in Fig 1.2(c). If the cone angle c of an internal gear is equal to 180°, the pitch 

trace and gear rotation axis are parallel to each other, as shown in Fig. 1.2(d), and this 

type of gear is called the internal spur (helical) gear. While the cone angle c of an 

internal gear is more than 90° and less than 180°, this type of gear is called the 

internal conical gear, as shown in Fig. 1.2(e). 

Figures 1.2 shows the gear with linear pitch traces (i.e. straight lines), however, 

Fig. 1.3 shows the gear with quadratic pitch traces (e.g. arcs). Gears with quadratic 

pitch traces and convex outward are shown in Figs. 1.3(a) and (b), while gears with 

quadratic pitch traces and concave outward are illustrated in Figs. 1.3(c) and (d). 

When the pitch traces of a gear have a quadratic convex outward and form as a circle, 

this type of gear is called the convex spherical gear, as shown in Fig. 1.3(a). Figure 

1.3(b) shows the gear with crowning tooth, and this gear also has a convex outward 

pitch trace with quadratic form. Whereas, the concave spherical gear has the quadratic 

pitch trace with concave outward, as shown in Fig. 1.3(c). As shown in Fig. 1.3(d), the 

worm wheel has the quadratic pitch trace with concave outward, and the radius of the 

pitch trace is equal to the pitch radius of the worm-type hob cutter. 
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(a)External gear (Spur gear) 

 

(b)Conical gear 

 

(c)Face gear 

 

(d)Internal gear 

 

(e) Internal conical gear 

Fig. 1.2 The changes of straight pitch traces in axial section for different types of 

gears 
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(a)Convex spherical gear 

 

(b)Crowning gear 

 

(c)Concave spherical gear 

 

(d)Worm wheel 

Fig. 1.3 The changes of quadratic pitch traces in axial section for different types of 

gears 
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1.2. Literatures review 

Although the manufacturing method of the spherical gears have been proposed 

by Mitome [1,2], however, only a few of researches on the spherical gears were 

performed up to now. Yang [7,8] and Yang et al. [9] proposed a ring-involute-teeth 

spherical gear with double degrees of freedom. Yang [10] applied the spherical gear 

with double degrees of freedom to the elbow mechanism. Tsai and Jehng [11] applied 

a rapid prototyping to manufacture a spherical gear with skew axes. Chao and Tsay 

[12,13] studied the contact characteristics of the spherical gear set generated by the 

imaginary rack cutters. Chao and Tsay [14] developed an automatic mesh-generation 

program to generate the contact model of the spherical gear set cut by two imaginary 

rack cutters, and investigated the contact and bending stresses of the gear pair by the 

FEA package ABAQUS/Standard. However, both spherical gears proposed by Yang 

[7-10] and Tsai [11] are quite different from that proposed in this study neither in 

generated mechanism, teeth profiles, kinematic characteristics nor meshing model of 

gear set. 

In the past, many studies have been made for spur gears, helical gears, conical 

gears, noncircular gears, curvilinear cylindrical gears and worm gears, including their 

respective mathematical models, tooth undercuttings, bearing contacts, stress analyses, 

manufactures or experiments. Wang and Fong [15] proposed a dual face-hobbing 

method for the cycloidal spur gears with crowning teeth. Mao [16] simulated the 

contact situation of a helical gear set, and investigated the reduction of fatigue wear of 

a spur gear set. Wang and Howard [17] studied the errors analysis of the spur gear 

drive between the 2-D and 3-D finite element approaches. Moreover, Chen and Tsai 

[18], and Ganesan and Vijayarangan [19] utilized the finite element method to 

investigate the involute spur gear by considering the frictional effects. The spur gear 

is a special case of helical gears with zero degree of helix angle. Tsay [20] 
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investigated the geometry, computer simulation, tooth contact analysis and stress 

analysis of the involute helical gear. Litvin et al. [21] simulated the meshing, contact 

stress and bending stress of the Novikov-Wildhaber helical gears. Chen and Tsay [22] 

investigated the tooth contact analysis and kinematic optimization of the helical gear 

pair with an involute pinion and a modified gear. Chen and Tsay [23] also discussed 

the stress analysis of a helical gear set with localized bearing contacts. Brauer [24] 

proposed a method to create a general finite element (FE) model for involute helical 

gears. Colbourne [25] studied the contact stress of the Novikov gear. Moreover, Liu 

and Tsay [26,27] studied the contact characteristic and tooth undercutting of beveloid 

gears. Tsai and Chin [28] discussed the surface geometry of bevel gears. Litvin et al. 

[29] investigated the bevel gears with low-noise and high-endurance by design, 

manufacture, stress analysis and experimental tests. Litvin et al. [30] applied FEM to 

investigate the loaded tooth contact analysis (LTCA) of the spiral bevel gear derive. 

Chang and Tsay [31] studied the tooth profile and undercutting of noncircular gears. 

Tseng and Tsay [32,33] studied the contact characteristics and tooth undercutting of 

the cylindrical curvilinear gear generated by two imaginary cutters. Tseng and Tsay 

[34,35] utilized the ZN-type hob cutter to cut the cylindrical curvilinear gear and 

enveloped to a two-parameter family of surface by computer simulation. They also 

investigated the surface deviations and tooth undercutting of the cylindrical 

curvilinear gear. Besides, Simon [36] discussed the influences of gear hobbing on 

worm gear characteristics. Janninck [37] proposed the surface separation topology 

method to simulate contact ellipses for the worm gear drive. Litvin [38] proposed a 

new geometry of face worm gear drives with conical and cylindrical worms, and 

investigated their generations, meshings and stress analyses. Fang and Tsay [39] 

utilized an oversize hob cutter to cut the ZN-type worm gear by computer simulations, 

and studied the bearing contacts of the ZN-type worm gear drive. Maki and Sakai [40] 
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proposed a new type of hourglass worm gearing with developable tooth surfaces. 

Chen and Tsay [41] studied the worm wheel working surfaces of the ZN-type 

hourglass worm gear set. Simon [42] studied the stress analysis of the double 

enveloping worm gears by the finite element method. Sun and Hung [43] applied the 

FE model of simplified gear pair with local refined meshes to investigate 2-D surface 

contact problem of two deformable bodies. Tsai and Hung [44] applied the finite 

element model with local refined meshes to investigate 3-D surface contact analysis 

of two elastically deformable bodies. 

 

1.3. Motivation 

The spherical gear is a new type of gear. Based on the advances of the spherical 

gear, this study proposes a gear by considering the assembly and transmission 

characteristics of the spherical gear and helical gear, called the spherical helical gear. 

The spherical helical gear has all geometry and transmission characteristics of the 

spherical gear, and the spherical helical gear set can be assembled in crossing axes 

mode which is the same as that of the helical gear set. Moreover, the hobbing method 

is considered for the generation of spherical helical gears due to its high cutting 

efficiency and low manufacturing cost. However, the cutting mechanism of a 5-axis 

CNC hobbing machine with multiple degrees of freedom may result in complex tooth 

surfaces because of the envelope surfaces of two-parameter family [45]. In this study, 

a complete mathematical model of the spherical helical gear with envelope surfaces of 

two-parameter family cut by the ZN-type worm-type hob cutter is developed firstly. 

Then the tooth undercutting and tooth pointing of the spherical helical gear and the 

contact situations of the spherical helical gear set under two assembly modes (parallel 

axes and crossing axes modes) and three mating combinations (convex tooth with 

convex tooth, convex tooth with concave tooth and convex tooth with helical gear 
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tooth) are also investigated. These contact situations, including kinematic errors, 

contact ratio, contact locus, dimension and orientation of contact ellipses, and contact 

and bending stress contours, are also investigated. 

 

1.4. Overviews 

This study totally includes six chapters. Chapter 1 is the introduction to the 

contents that contains the feature of the spherical helical gears, literatures reviews and 

motivation of this study. 

In Chapter 2, the mathematical model for the ZN-type worm-type hob cutter 

surfaces have been developed. According to the theory of gearing and generating 

mechanism of the CNC hobbing machine, the motions between the hob cutter and 

work piece, and the mathematical models for the convex and concave spherical 

helical gears can be obtained. Moreover, a 3-D computer graph of the spherical helical 

gear set with convex pinion and concave gear has been plotted by using the computer 

aided drawing technique. 

In Chapter 3, the condition equations of tooth undercutting and tooth pointing of 

the spherical helical gears are derived by utilizing the developed surface equations of 

the gears. Therefore, the limit curves of the tooth non-undercutting and tooth 

non-pointing of the spherical helical gears under different design parameters can be 

determined. 

In Chapter 4, the tooth contact analysis (TCA) method is applied to develop the 

tooth surface meshing model of the spherical helical gear set. The tooth surface 

meshing model includes assembly errors of the horizontal axial misalignment, vertical 

axial misalignment, axial shift along on the face width and the center distance error. 

Based on the developed tooth meshing model, the contact characteristics of the 

spherical helical gear set, under two axes (parallel and crossed axes) mounting modes 
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and three mating combinations (convex teeth with convex teeth, convex teeth with 

concave teeth and convex tooth with helical gear teeth), such as kinematic errors 

(KEs), contact ratios and contact loci can be obtained. The contact ellipses of the 

spherical helical gear sets can be obtained by using the TCA results and the surface 

separation topology method. Moreover, several numerical examples are presented to 

discuss the influences of the assembly errors on kinematic errors, contact ratios and 

contact ellipses of the spherical helical gear sets under two axes mounting modes and 

three mating combinations. 

In Chapter 5, the contact and bending stress contours of the proposed spherical 

helical gear sets are investigated by using the commercial FEA package, 

ABAQUS/Standard. Firstly, an automatic mesh-generation program is developed to 

generate the finite element contact model of the spherical helical gear sets by 

considering the developed surface equations of the gear sets. Therefore, an input file 

for ABAQUS/Standard computation is generated automatically by the developed 

mesh-generation program. Some numerical examples are presented to demonstrate the 

tooth stress with different gear design parameters. 

Chapter 6 concludes the proposal by summarizing the accomplished works in 

Chapters 2 and 3, and the future works for the advanced study. 
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CHAPTER 2 

Mathematical Model of Spherical Helical Gears 

 

2.1 Introduction 

Hobbing is an economical method for gear manufacturing due to its versatility 

and high cutting efficiency. Hobbing method can be employed to generate various 

types of gears such as spur, helical, conical and worm gears. A hob cutter with 

straight-edged normal section can be used to generate the involute spur and helical 

gears. Different tooth profiles can be generated on the same CNC hobbing machine by 

changing the profile of hob cutters. However, the hobbing method is complicated 

since the gear generating motion is a multi-degree of freedom. Therefore, the method 

of two-parameter family envelope surfaces can be used to simulate hobbing process. 

Since the spherical helical gear is hobbed by a ZN-type worm-type hob cutter in 

this study, the convex and concave spherical helical gears can be considered as 

hobbing a helical gear with its hobbing path of positive or negative continuous hob 

shiftings in a quadric form, shifting from both sides of the tooth face width to its 

middle section, respectively [12,13]. Figure 2.1 shows two hobbing loci for hobbing 

the convex (Fig. 2.1(a)) and concave (Fig. 2.1(b)) spherical helical gears. Where the 

direction of positive profile shifting is defined as the direction outward the generated 

gear, whereas the direction of negative profile shifting is defined as the direction 

inward the generated gear. Moreover, compared with the standard tooth profile of a 

helical gear, the tooth profiles of the convex spherical helical gear at both ends of 

tooth face width have negative profile shifting, whereas the concave spherical helical 

gear has positive profile shifting at its both ends of tooth face width. Again, the 

hobbing path of a spherical helical gear is generated by hobbing a cylinder with a  
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Fig. 2.1 Hobbing locus for spherical helical gear with (a)convex teeth and (b)concave 

teeth 
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quadric form of continuous profile shifting (i.e. an arc) along the gear rotation axis 

instead of a straight line for the generation of the conventional helical gear. 

In this chapter, the mathematical model of the ZN-type worm-type hob cutter is 

derived firstly. Then the tooth surface equations of the convex and concave spherical 

helical gears are developed based on the generating mechanism of the CNC hobbing 

machine, the ZN-type worm-type hob cutter, and the theory of gearing. 

 

2.2 Mathematical model of the ZN-type worm-type hob cutter 

The normal profile of the ZN-type worm-type hob cutter is widely used for the 

gear manufacturing, and it is much more easier to manufacture a hob cutter with its 

normal section profile as a straight-lined shape. Therefore, a right-handed ZN-type 

worm-type hob cutter is used to simulate the manufacture of spherical helical gears in 

this study. 

The tooth surfaces of the hob cutter can be generated by a blade with the 

straight-lined shape, performing a screw motion with respect to the rotational axis of 

hob cutter. The cutting blade is installed on the normal section to the groove of the 

ZN-type worm, as shown in Fig. 2.2(a). The design parameter w is the lead angle of 

the worm. Figure 2.2(b) illustrates the normal section of a cutting blade that is rigidly 

connected to the coordinate system ),,( bbbb ZYXS , and the cutting blade is formed by 

two straight lines. The blade’s half apex angle n  is formed by the straight-lined of 

the blade and Xb-axis, as shown in Fig. 2.2(b). Moreover, the distance bl  measured 

from the initial point M0, moving along the straight line 1oMM , to any point M1 is 

also a design parameter of the cutting blade. Therefore, the equation of the 

straight-line cutting blade can be represented in coordinate system bS  as follows: 
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(a) (b) 

(c) (d) 

Fig. 2.2 Geometric relationships of the straight-edged cutting blade and the ZN-type 

worm-type hob cutter 
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where the upper “±” sign represents the left-side cutting blade, while the lower sign 

indicates the right-side cutting blade. 

Figure 2.2(c) shows the relationship between the cutting blade and the ZN-type 

worm-type hob cutter represented in the normal section of hob cutter’s rotation axis. 

Symbols ro, rf and rw express the outside radius, root radius and pitch radius of the 

ZN-type worm-type hob cutter, respectively. The cutting blade width bn equals the 

normal groove width of the hob cutter, and the design parameter rt can be obtained 

from the geometric relationship, as shown in Figs. 2.2(c) and (d) as follows: 

n

n
w

n
wt

bb
rr




tan2
sin

4
22  . (2.2) 

Figure 2.3 shows the relations among coordinate systems ),,( bbbb ZYXS , 

),,( pppp ZYXS  and ),,( wwww ZYXS , where coordinate system bS  is the blade 

coordinate system, coordinate system wS  is rigidly connected to the hob cutter, and 

coordinate system pS  is the auxiliary reference coordinate system. Axes Zb and Zp 

form an angle w that is equal to the lead angle on the worm pitch cylinder, as shown 

in Fig. 2.3(a). Figure 2.3(b) shows that the movable coordinate system wS  performs 

a screw motion with respect to the auxiliary reference coordinate system pS  along 

the rotational axis of the hob cutter rotating through an angle w . Therefore, the locus 

equation of the cutting blade can be represented in coordinate system wS  by 

applying the following homogeneous coordinate transformation matrix equation, 

transforming from coordinate system Sb to Sw: 
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(a)Relationship between coordinate systems Sb and Sp 

 
(b)Relationship between coordinate systems Sp and Sw 

Fig. 2.3 Coordinate systems between the cutting blade and ZN-type worm-type hob 

cutter 
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where, symbol pw represents the screw parameter of the ZN-type worm-type hob 

cutter. In Eq. (2.3), symbols bl  and w  are surface parameters of the hob cutter, and 

the upper “±” sign represents the left-side surface of the hob cutter, while the lower 

sign indicates the right-side surface of the hob cutter. Since the working interval of the 

ZN-type worm-type hob cutter must be limited between the outside radius ro and root 

radius rf of the worm, the upper and lower bounds of the design parameter lb can be 

limited by 

 
nwn

ntnownto
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l
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and 
 
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ntnfwntf
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222

222222
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


 , (2.5) 

respectively. 

The surface normal vector wN  of the hob cutter can be obtained and expressed 
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in coordinate system wS  as follows: 
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Again, the upper “±” sign in Eq. (2.6) represents the left-side surface of the hob cutter, 

while the lower sign indicates the right-side surface of the hob cutter. 

 

2.3 Tooth generation of the convex spherical helical gear 

2.3.1  Generating relationship between hob cutter and convex spherical helical 

gear 

Figure 2.4 depicts the generating relationship between hob cutter and work piece 

of the convex spherical helical gear. Axes Zw and Zg are the rotation axis of the hob 

cutter and the work piece with angular velocities w and g, respectively, and these 

two axes form an angle  called the crossing angle. The crossing angle is synthesized 

by the lead angles of the hob cutter w and the convex spherical helical gear g,vex (i.e. 

=w+g,vex). Moreover, point Ow denotes the rotational center of the hob cutter’s 

swivel, and point Og is the center of the work piece. In Fig. 2.4(a), the common the 

hob cutter and the work piece are in tangency at point P. During the hobbing process, 

the center of hob cutter is moving along the hobbing locus with the linear axial and 

radial feeding velocities xV  and zV , as shown in Fig. 2.4. Moreover, the 
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(a)Top view 

 

(b)Side view 

Fig. 2.4 Generating relationship between hob cutter and convex spherical helical gear 
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tangent to both hob cutter and work piece is t-t, and the operating pitch cylinders of 

axial and radial feeding displacements of the hob cutter are designed as vexzl ,  and 

vexxl , , respectively, and they are related by the following equations: 

vexsvexcvexz Rl ,,, sin , (2.7) 

and )cos(1 ,,, vexsvexcvexx Rl  , (2.8) 

where symbol Rc,vex denotes the cutting radius, and symbol s,vex indicates the 

spherical angle for the convex spherical helical gear. According to Fig. 2.4(b), the 

cutting radius Rc,vex can be synthesized by the spherical radius Rs,vex and the pitch 

radius rw of the hob cutter for the convex spherical helical gear generation as follows: 

wvexsvexc rRR  ,, . (2.9) 

According to Fig. 2.4(a), the rotation angles of the hob cutter and the work piece 

can be related as follows: 

vexgvexwgvexg m ,,,   , (2.10) 

where symbol 
vexg

w
vexwg T

T
m

,
,  , while symbols Tw and Tg,vex denote the number of 

threads of the hob cutter and number of teeth of the convex spherical helical gear, 

respectively. Symbols g,vex and  indicate the rotational angles of the work piece and 

the spindle of the hob cutter, respectively. Symbol g,vex expresses the additional 

angle of the work piece (convex spherical helical gear) due to the generated gear with 

a helix angle. According to Fig. 2.4(a), the ratio of axial feeding displacement vexzl ,  

to the lead Hg,vex of the generated convex spherical helical gear is equal to that of the 

additional angle g,vex to a rotation cycle (i.e. 2) of the gear. Therefore, the 



 21

additional angle g,vex for the convex spherical helical gear can be expressed by 

vexg

vexz
vexg p

l

,

,
,  , (2.11) 

where symbol πHp vexgvexg 2/,,   represents the screw parameter of the convex 

spherical helical gear. 

 

2.3.2  Equation of meshing for convex spherical helical gears 

Figure 2.5 illustrates the schematic relationships among coordinate systems 

),,( wwww ZYXS , ),,( cccc ZYXS , ),,( qqqq ZYXS  and ),,( gggg ZYXS  for the 

generation mechanism of the convex spherical helical gear. Coordinate systems Sw 

and Sg are attached to the hob cutter and convex spherical helical gear, respectively. 

Coordinate system Sc is an auxiliary coordinate system to describe the hob cutter’s 

rotational motion with a rotational angle , which coordinate system Sq is an auxiliary 

fixed coordinate system attached to the housing of a CNC hobbing machine. 

Moreover, symbol g,vex is the rotational angle of the generated gear (i.e. convex 

spherical helical gear). According to Fig. 2.5, the homogenous coordinate 

transformation matrices Mcw, Mqc and Mgq can be expressed as follows: 
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and 
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Fig. 2.5 Coordinate systems between the hob cutter and convex spherical helical gear 
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where symbol wcvexa OOl ,  is the axial displacement of the hob cutter, while 

symbol QOl qvexc ,  is the distance between points Oq and Q. Moreover, the feeding 

displacements vexzl ,  and vexxl ,  of the hob cutter are expressed in Eqs. (2.7) and (2.8), 

respectively. 

In Fig. 2.5, point P denotes an instantaneous common point to the hob cutter and 

work piece (convex spherical helical gear) during a hobbing process. Therefore, 

surface coordinates ),( vexg
qR  of the work piece can be determined by transforming the 

hob’s surface from coordinate system Sw into the fixed coordinate system Sq as 

follows: 

T),( ]1[ qqqwcwqc
vexg

q zyx RMMR , (2.15) 

where symbols xq, yq and zq are the X, Y and Z components of the hob cutter’s surface 

),( vexg
qR  repressed in coordinate system Sq, respectively. Therefore, the velocity 

),( vexg
qV  at point P of the work piece can be obtained by 

T
,,

),(),(),( ]0[ vexgqvexgq
vexg

q
vexg

q
vexg

q xy  RωV , (2.16) 

where qvexg
vexg

q kω ,
),(   denotes the angular velocity of the work piece expressed in 

the fixed coordinate system Sq. Differentiating Eq. (2.10) with respect to time, the 

relationship among angular velocities g,vex, w and s,vex can be obtained as follows: 

vexs
vexg

vexsvexc
wvexwg

vexg
vexg p

R
m

dt

d
,

,

,,
,

,
,

cos






  , (2.17) 
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where symbol 
dt

d
w

   indicates the angular velocity of the hob cutter, while 

symbol 
dt

d s
vexs

 ,  denotes the angular velocity of hob cutter’s generating motion 

along the hobbing locus (see Fig. 2.4(b)). Equation (2.17) indicates the rotation angle 

vexg ,  of work piece (convex spherical helical gear) in terms of two independent 

variables w  and vexs, . 

Similarly, the velocity at point P that attached to the hob cutter, )(w
qV , can be 

obtained as follows: 

zx
w

q
w

q
w

q VVRωV  )()()( , (2.18) 

where xV  and zV  express the linear velocity of axial and radial feeding motion, 

and )(w
qω  indicates the angular velocity of the hob cutter expressed in the fixed 

coordinate system Sq, as follows: 

T)()( ]cossin0[  ww
w

cqc
w

q  ωLω , (2.19) 

where the matrix qcL  can be expressed as: 










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
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


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
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


cossin0

sincos0

001

qcL . 

The surface coordinate of the hob cutter )(w
qR  can be obtained by 

dRR  ),()( vexg
q

w
q , (2.20) 

where symbol d  denotes the shortest vector measured from the center of the work 

piece to that of the hob cutter, and it can be expressed by 
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T]0[ z,vexx,vexc,vex lll d . (2.21) 

Substituting Eqs. (2.15) and (2.21) into Eq. (2.20), the surface coordinates of point P 

of the hob cutter can be determined as follows: 

T)( ][ z,vexqqx,vexc,vexq
w

q lzyllx R . (2.22) 

Differentiating Eqs. (2.7) and (2.8) with respect to time, the linear velocities of 

axial and radial feeding motion Vz and Vx can be expressed as follows: 

qvexsvexcvexsq
vexz

z R
dt

ld
kkV ,,,

, cos , (2.23) 

and qvexsvexcvexsq
vexx

x R
dt

ld
iiV ,,,

, sin , (2.24) 

where 
dt

d vexs
vexs

,
,


  . Substituting Eqs. (2.19) and (2.22)~(2.24) into Eq. (2.18), the 

velocity of the hob cutter expressed in coordinate system Sg, 
)(w

qV , can be obtained as 

follows: 
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Therefore, the relative velocity )(wg
qV  of the hob cutter and work piece at their 

common contact point P can be represented in the fixed coordinate system Sq as 

follows: 
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According to the theory of gearing [3-5], the common surface normal Nq of the 

tool surface and the work piece is perpendicular to their of relative velocity )(wg
qV  at 

the instantaneous common contact point. Therefore, the equation of meshing between 

the hob cutter surface and the convex spherical helical gear surface can be obtained by 

0)(  wg
qq VN  (2.27) 

where the surface normal Nq can be obtained by using the following homogenous 

coordinate transformation matrix equation: 

wcwqcq NLLN  , (2.28) 

where the matrix cwL  can be expressed as: 
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cwL . 

Substituting Eqs. (2.6), (2.26) and (2.28) into Eq. (2.27) yields: 

0,})cos(]sin){[(

})/cos(]cos){[(

})]/cos(sin[)](cossin){[(

,,,,,

,,,,,,,

,,,,,,,







qzvexsvexsvexcwvexxvexcq

qyvexsvexgvexsvexcqwvexwgqvexxvexcq

qxvexsvexgvexsqvexsvexcwvexwgqpvexz

NRllx

NpRxmxllx

NpyRmyzl







 (2.29) 

where symbols Nqx, Nqy and Nqz are the X, Y and Z components of the surface normal 

vector Nq, respectively. Rearranging Eq. (2.29) in terms of the independent of 

variables, w and s,vex, yields the following equation: 
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 (2.30) 

Since w and s,vex are independent variables, two equations of meshing that relate the 
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hob cutter’s surface parameters and the cutting motion parameters can be obtained as 

follows: 

,0]sin)[(

]cos)[(
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 (2.31) 

and 

.)cos()/cos(

)/cos(sin),,,(

,,,,,

,,,,,

0NRNpRx

NpyRlf

qzvexsvexcqyvexgvexsvexcq

qxvexgvexsqvexsvexcvexswb2








 (2.32) 

2.3.3  Mathematical model of the convex spherical helical gear 

According to Fig. 2.5, surface locus of the hob cutter, expressed in coordinate 

system Sg, can be obtained by applying the following homogenous coordinate 

transformation matrix equation: 

wcwqcgqg RMMMR  . (2.33) 

where the homogenous coordinate transformation matrices Mcw, Mqc and Mgq are 

expressed in Eqs. (2.12)~(2.14), respectively. 

Based on the theory of gearing [3-5], the mathematical model of the generated 

gear is the combination of equation of meshing and the surface locus of hob cutter. 

Therefore, the mathematical model of the convex spherical helical gear can be 

obtained by considering Eqs. (2.31)~(2.33), simultaneously. 

 

2.4 Tooth generation of the concave spherical helical gear 

2.4.1  Relationship between hob cutter and concave spherical helical gear 

Figure 2.6 illustrates the generating relationship between the hob cutter and work 
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piece of the concave spherical helical gear. The rotational axes Zw and Zg of the hob 

cutter and work piece have the angular velocities w and g, respectively. The 

crossing angle  is the included angle between axes Zw and Zg. Moreover, points Ow 

and Og denote the rotational center of hob’s swivel and the center of work piece, 

respectively. The hob’s moves along the hobbing locus, as shown in Fig. 2.6, during 

the gear generation process. In Fig. 2.6(a), the operating pitch cylinders of hob cutter 

and work piece are in tangency at point P on the common tangent t-t. Similarly to that 

of section 2.3.1, the axial and radial feeding displacements of hob cutter for the 

generating of concave spherical helical gear are also designed as cavezl ,  and cavexl , : 

cavescaveccavez Rl ,,, sin , (2.34) 

and  cavescaveccavex 1Rl ,,, cos , (2.35) 

where symbols Rc,cave and s,cave indicate the cutting radius and spherical angle of the 

concave spherical helical gear, respectively. According to Fig. 2.6(b), the cutting 

radius Rc,cave can be determined by 

wcavescavec rRR  ,, , (2.36) 

where symbols cavesR ,  and wr  denote the spherical radius of the concave spherical 

helical and pitch radius of the hob cutter, respectively. 

Similar to the deriving process of the convex spherical helical gear (see 

subsection 2.3.1) and according to Fig. 2.6, the relationship between the concave 

spherical helical and hob cutter rotation angles, and the additional angle caveg ,  for 

the concave spherical helical gear can be expressed by: 

cavegcavewgcaveg m ,,,   , (2.37) 
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(a)Top view 

 

(b)Side view 

Fig. 2.6 Generating relationship between hob cutter and concave spherical helical gear 
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and 
caveg

cavez
caveg p

l

,

,
,  , (2.38) 

where symbol 
caveg

w
cavewg T

T
m

,
,   of Eq. (2.37) is the gear ratio, while symbol 

πHp cavegcaveg 2/,,   of Eq. (2.38) indicates the screw parameter of the generated gear. 

Again, the additional angle caveg ,  indicates the work piece (concave spherical 

helical gear) due to the generated gear with a helix angle. 

 

2.4.2  Equation of meshing for concave spherical helical gears 

Figure 2.7 shows a schematic relationship of coordinate systems ),,( wwww ZYXS , 

),,( cccc ZYXS , ),,( qqqq ZYXS  and ),,( gggg ZYXS  for the generation mechanism of 

concave spherical helical gears. Coordinate systems Sw and Sg are attached to the hob 

cutter and concave spherical helical gear, respectively. The rotation motion of the hob 

cutter is expressed by considering an auxiliary coordinate system Sc with a rotational 

angle . Coordinate system Sq is the fixed coordinate system attached to the machine 

housing. Moreover, symbol g,cave is the rotational angle of the generated gear (e.g. 

concave spherical helical gear). Therefore, the homogenous coordinate transformation 

matrices Mcw, Mqc and Mgq can be expressed as follows: 
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and 
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Fig. 2.7 Coordinate systems between the hob cutter and concave spherical helical gear 
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where symbol wccavea OOl ,  is the axial displacement of the hob cutter, while 

symbol QOl qcavec ,  is the distance between points Oq and Q. Moreover, the feeding 

displacements cavezl ,  and cavexl ,  of the hob cutter are expressed in Eqs. (2.34) and 

(2.35), respectively. 

In Fig. 2.7, point P is a common contact point of the hob cutter and work piece. 

Therefore, the surface coordinates ),( caveg
qR  of the work piece can be determined by 

transforming the hob’s surface from coordinate system Sw into the fixed coordinate 

system Sq as follows: 

T),( ]1[ qqqwcwqc
caveg

q zyx RMMR . (2.42) 

The velocity at point P of the work piece can be obtained by: 

T
,,

),(),(),( ]0[ cavegqcavegq
caveg

q
caveg

q
caveg

q xy  RωV , (2.43) 

where qcaveg
caveg

q kω ,
),(   denotes the angular velocity of the work piece (concave 

spherical helical gear) expressed in the fixed coordinate system Sq. Differentiating Eq. 

(2.37) with respect to time, the relationship among angular velocities g,cave, w and 

s,cave can be obtained as follows: 
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where symbols 
dt

d
w

   and 
dt

d caves
s

,
   indicate the angular velocities of hob 
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cutter and hob cutter’s generating motion along the hobbing locus (see Fig. 2.6), 

respectively. Equation (2.44) indicates the rotation angle caveg ,  of work piece 

(concave spherical helical gear) in terms of angular velocities w  and caves, . 

Similarly, the velocity at point P that attached to the hob cutter can be obtained 

as follows: 

zx
w

q
w

q
w

q VVRωV  )()()( , (2.45) 

where xV  and zV  express the linear velocities of axial and radial feeding motion, 

and )(w
qω  indicates the angular velocity of the hob cutter expressed in the fixed 

coordinate system Sq, as follows: 

T)()( ]cossin0[  ww
w

cqc
w

q  ωLω , (2.46) 

where the matrix qcL  can be expressed as: 
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The surface coordinate of the hob cutter )(w
qR  can be obtained by 

dRR  ),()( caveg
q

w
q , (2.47) 

where symbol d  denote the shortest vector measured from the center of the work 

piece to that of the hob cutter, and it can be expressed by 

T
,z,x,c ]0[ cavecavecave lll d . (2.48) 

Substituting Eqs. (2.42) and (2.48) into Eq. (2.47), the surface coordinates of the hob 
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cutter can be determined as follows: 

T
,,,

)( ]zy[ cavezqqcavexcavecq
w

q lllx R . (2.49) 

Differentiating Eqs. (2.34) and (2.35) with respect to time, the linear velocities of 

axial and radial feeding motions Vz and Vx can be determined by parameters of 

spherical angle caves, , cutting radius cavecR ,  and angular velocity caves ,  as follows: 
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z R
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cavex

x R
dt

ld
iiV ,,,

, sin . (2.51) 

Substituting Eqs. (2.46) and (2.49)~(2.51) into Eq. (2.45), the velocity )(w
qV  can be 

determined and simplified as follows: 
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Therefore, the relative velocity )(wg
qV  of the hob cutter and work piece at their 

common contact point P can be represented in the fixed coordinate system Sq as 

follows: 
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 (2.53) 

The equation of meshing of hob cutter and convex spherical helical gear can be 
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obtained by 

0)(  wg
qq VN , (2.54) 

where the surface normal Nq can be obtained by using the following homogenous 

coordinate transformation matrix equation: 

wcwqcq NLLN  , (2.55) 

where the matrix cwL  can be expressed as: 
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Substituting Eqs. (2.6), (2.55) and (2.53) into Eq. (2.54) yields: 
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where symbols Nqx, Nqy and Nqz are the X, Y and Z components of the surface normal 

vector Nq, respectively. Rearranging Eq. (2.56) in terms of the independent of 

variables, w and s,cave, yields the following equation: 
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Since w and s,cave are independent variables, two equations of meshing that relative 

the hob cutter’s surface parameters and the cutting motion parameters can be obtained 

as follows: 
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and 
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 (2.59) 

2.4.3  Mathematical model of the concave spherical helical gear 

According to Fig. 2.7, the surface locus of the hob cutter, expressed in the 

generated concave spherical helical gear’s coordinate system Sg, can be obtained by 

applying the homogenous coordinate transformation matrix equation: 

wcwqcgqg RMMMR  . (2.60) 

where the homogenous coordinate transformation matrices Mcw, Mqc and Mgq are 

expressed in Eqs. (2.39)-(2.41), respectively. 

Therefore, the mathematical model of the generated gear is the combination of 

equation of meshing and the surface locus of hob cutter. Therefore, the mathematical 

model of the concave spherical helical gear can be obtained by considering Eqs. 

(2.58)~(2.60), simultaneously. 

 

2.5 Computer graphs of convex and concave spherical helical gears 

The mathematical model of the convex spherical helical gear is expressed in Eqs. 

(2.31)~(2.33), while the mathematical model for the concave spherical helical gear is 

represented in Eqs. (2.58)~(2.60). Table 2.1 summarizes some major design 

parameters of the hob cutter, convex pinion and concave gear. According to the 

developed mathematical models of the convex and concave spherical helical gears, 
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the tooth surfaces of the generated spherical helical gear can be plotted by using the 

developed computer programs. Therefore, a 3-D computer graph of the spherical 

helical gear set with convex pinion and concave gear can be plotted as shown in Fig. 

2.8. 

Table 2.1 Major design parameters of the hob cutter, convex spherical helical pinion 

and concave spherical helical gear 

 Hob cutter Convex pinion Concave gear

Normal module, nm (mm/tooth) 4 4 4 

Number of teeth, Tg 1 33 47 

Normal pressure angle, n (deg.) 20 20 20 
Lead angle w , g (deg.) 3.823 RH 75 RH 75 LH 

Face width, W (mm) - 20 20 

Pitch radius, rg (mm) 30 68.328 97.316 

Spherical radius, Rs (mm) - 68.328 97.316 

Cutting radius, Rc (mm) - 98.328 67.316 

 

 

Fig. 2.8 Computer graph of the spherical helical gear set with convex pinion and 

concave gear 
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2.6 Transverse pitch chord thicknesses of convex, concave and conventional 

helical gears 

Since the convex and concave spherical helical gears are considered as hobbing a 

conventional helical gears with continuous positive and negative profile shiftings 

from both end sides of face width of the gears to their middle sections, respectively, 

the working pitch circles of the gears are different under every Z-axis cross-section of 

face width of the gears. Thus the pitch chord thicknesses of the convex and concave 

spherical helical gears are different at every Z-axis cross-section of face width of the 

gears. According to the gears’ design parameters of Table 2.2, Fig. 2.9 illustrates the 

transverse pitch chord thicknesses of the convex, concave and conventional helical 

gears under different Z-axis cross-sections of face width of the gears. It is found that 

the transverse pitch chord thickness of both ends of face width of the convex spherical 

helical gear is smaller than its central Z-axis cross-section of face width. Whereas, the 

inverse situation exists for that of the concave spherical helical gear. Moreover, the 

transverse pitch chord thicknesses of face width of the convex, concave and 

conventional helical gears under their central Z-axis cross-section are the same. 

Table 2.2 Major design parameters of the hob cutter, convex, concave and 

conventional helical gears 

Gear type 
Hob 

cutter 
Convex Concave 

Conventional
helical 

Normal module, nm (mm/tooth) 4 4 4 4 

Number of teeth, Tg 1 33 33 33 

Normal pressure angle, n (deg.) 20 20 20 20 
Lead angle w , g (deg.) 3.823 RH 75 RH 75 RH 75RH 

Face width, W (mm) - 20 20 20 

Pitch radius, rg (mm) 30 68.328 68.328 68.328 

Spherical radius, Rs (mm) - 68.328 68.328 - 

Cutting radius, Rc (mm) - 98.328 98.328 - 
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Fig. 2.9 Transverse pitch chord thicknesses of the convex, concave and conventional 

helical gears 

 

2.7 Remarks 

The mathematical models of spherical helical gears with convex and concave 

teeth have been developed on the basis of the CNC hobbing machine and the theory 

of gearing. The mathematical models can be derived as function of design parameters 

and motion parameters of a ZN-type hob cutter. Therefore, the design and motion 

parameters can provide us an efficient way to design and manufacture spherical 

helical gears. Moreover, the developed mathematical models of spherical helical gears 

with convex and concave teeth also help us to explore the possibility for further 

studies, such as sensitivity, kinematic errors, contact ratios and contact ellipses. 
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CHAPTER 3 

Tooth Undercutting and Tooth Pointing Analyses 

 

3.1. Introduction 

Tooth undercutting is an important issue for gear design and manufacturing. 

When tooth undercutting occurs, the tooth thickness near the gear fillets will be 

decreased as shown in Fig. 3.1. It is well known that gears with tooth undercutting 

may result in a lower load capacity of a mating gear pair. Mathematically, the 

phenomenon of tooth undercutting is the appearance of singular points on an active 

tooth surface. Therefore, the concept for checking of the tooth undercutting of the 

active tooth surface is to verify the appearance of singular points on the generated 

tooth surface. If the active tooth surface is a regular surface, it means that there is no 

tooth undercutting on the active tooth surface. Moreover, the tooth undercutting 

usually occurs near the tooth root. 

Different from the location of tooth undercutting occurrence, the tooth pointing 

of a gear occurs near the tooth top as shown in Fig. 3.2. If the phenomenon of tooth 

pointing occurs, the tooth thickness of the gear on tooth topland becomes zero. When 

the contact location of a mating gear pair with tooth pointing locates near the tooth 

top, the load capacity of the mating gear pair is weak in the contact period. Therefore, 

the tooth pointing is also an important issue for gear design and manufacturing. 

Since the spherical helical gear is hobbed by a hob cutter, the convex and 

concave spherical helical gears can be considered as hobbing a helical gear with its 

hobbing path of continuous positive-direction or negative-direction profile-shiftings in 

a quadric form, beginning from both sides of the tooth face width to its middle section, 

respectively. Therefore, the occurrence of tooth undercuttings on both ends of face 

width is easier than that at the middle section for a convex spherical helical gear, 
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Fig. 3.1 The phenomenon of tooth undercutting 

 

 

 

 

Fig. 3.2 The phenomenon of tooth pointing 
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whereas the inverse situation exists for the concave spherical helical gear tooth 

surfaces. Moreover, the occurrence of tooth pointings on both ends of face width is 

easier than that at the middle section for a concave spherical helical gear. 

Based on the developed mathematical model and theory of gearing, the tooth 

undercutting of the convex spherical helical gear and the tooth pointing of the 

concave spherical helical gear are investigated and demonstrated by seven numerical 

examples in this chapter. Moreover, the limit curves and the beginning points of tooth 

undercutting of the convex spherical helical gear and the occurrence of tooth pointing 

of the concave spherical helical gear at the Z cross-section are also studied. 

 

3.2. Tooth undercutting of convex spherical helical gear 

A method proposed by Litvin [3-5], which considers the relative velocity and 

equation of meshing between the generating tool and generated gear, is applied in this 

section to determine the limit curve of tooth undercutting of the convex and concave 

spherical helical gears. Singularities of the generated surface occur when the relative 

velocity )( g
rV  of the contact point over the generated surface equals zero. The motion 

of the hob cutter surface that generates the envelope surface is considered as the 

two-parameter motion of a rigid body. In the case of two-parameter enveloping, the 

condition for the appearance of a singular point on the generated tooth surface can be 

described as follows [3-5]: 

0VV
RR







 ),(),(

)()(
swgwgw

w

w
b

b

w

dt

d

dt

dl

l



. (3.1) 

where symbol )(wR  represents the surface equation of the hob cutter, while symbols 

bl  and w  indicate the surface parameters of the hob cutter (see Eq. (2.3) of section 

2.2). Superscripts w and g of Eq. (3.1) denote the generating tool and generated gear. 

Symbol ),( wgV  considers that the rotational motion parameter of the hob cutter   
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is a varied parameter and the moving motion parameter of spherical angle s  is fixed. 

Consequently, symbol ),( swg V  has to be interpreted. 

Differentiating Eqs. (2.29) and (2.30), two equations of meshing for the hob 

cutter and gear tooth surfaces, with respect to time yield that: 
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Equations (3.1)-(3.3) represent a system of five equations in four unknowns:
dt

dlb , 
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d w , 
dt

d
 and 

dt

d s .  The system of equations exists and provides a nontrivial 

solution if and only if the rank of the coefficient matrix for these five equations is 

three. Therefore, five determinants of order four for the coefficient matrix are equal to 

zero simultaneously. It can be proven that two of five determinants are equal to zero 

simultaneously, and the additional requirement is 
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To avoid the occurrence of tooth undercutting of the generated gear tooth 

surfaces, the generating hob cutter surface must be limited with the curve SL. 

Considering Eqs. (3.4)-(3.6) and two equations of meshing, simultaneously, one can 

solve the limited curve SL on the hob cutter surface that generates the singular points 

on the generated tooth surfaces. The limited curve SL on the hob cutter surface can be 

determined by applying the following expressions: 
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and 0),,,( swb2 lf  . (3.9) 

Equations (3.7)-(3.9) form a system of three equations with four unknowns, bl , 

w ,   and s , one of these unknowns may be considered as an input variable, then 

solving three independent equations with three unknowns. Moreover, the 

differentiated equations of meshing, Eqs. (3.2) and (3.3), for the convex spherical 

helical gear can be rewritten respectively by 
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where the subscript q denotes the fixed coordinate system Sq (see section 2.3). 
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In order to derive the differentiated equations of meshing (3.10) and (3.11), let’s 

consider a coordinate relationship between the hob cutter and the generated gear as 

shown in Fig. 3.3. Axis gZ  represents the rotational axis of the generated gear. The 

motion of the hob cutter can be represented by two parameters, rotational angle   

and spherical angle s . Axis cZ  is the rotational axis of the hob cutter, and symbol 

cO  is the initial position of the hob cutter center. The point P is a common point to 

both rotating bodies. Moreover, )(wR  is the position vector drawn from point cO  to 

point P, while )( gR  represents a position vector drawn from an arbitrary point on the 

axis gZ , e.g. gO , to point P. Symbol d is the relative-position vector drawn from 

point gO  to point cO .  The locations of original points cO  and gO  are specified 

by the position vectors )(wρ  and )( gρ , which are measured from the fixed coordinate 

system qS . 

According to Fig. 3.3, the velocity of point P attached to the body i  ( gwi , ) 

can be obtained by: 
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where symbol ),( jiV  indicates the velocity of point P attached to the body i  

( gwi , ) when parameter j (or s ) is varied and another parameter s (or  ) 

is fixed. ),( jOiV  is the velocity of point iO  ( gwi , ) when parameter j (or s ) 

is varied and parameter s  (or  ) is fixed. Similarly, ),( jiω  depicts the angular 

velocity of body i  when parameter j (or s ) is varied and parameter s (or  ) 

is fixed. Therefore, the relative velocity of point P between the hob cutter (i=w) and 

generated gear (i=g) can be rewritten as 
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Fig. 3.3 Simulation of a generation mechanism with two-parameter motion 
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where )()( wg RdR  (see Fig. 3.3). 

The differentiation of Eq. (3.13) gives: 
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Differentiating the relative-position vector d  and )(wR  with respect to time yields: 
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The absolute velocity of contact point P can be represented as: 
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Substituting Eqs. (3.15), (3.16) and (3.17) into Eq. (3.14), the differentiated relative 

velocity of point P can be represented in the coordinate system Sq as follows: 
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Similarly, the differentiation of normal vector at point P can be obtained as follows: 
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Substituting Eqs. (3.18) and (3.19) into Eqs. (3.10) and (3.11), the differentiated 

equations of meshing of the spherical helical gear can be rewritten as follows: 
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It is noted that the schematic mechanism of a CNC hobbing machine for the 

spherical helical gear generation can be referred to Fig. 2.5. Coordinate system 

),,( wwww ZYXS  is attached to the hob cutter while coordinate system ),,( gggg ZYXS  

is attached to the gear blank. Coordinate system ),,( hhhh ZYXS  is the reference 

coordinate system and coordinate system ),,( qqqq ZYXS  is the fixed coordinate 

system attached to the machine housing. Symbols   and g  are rotational angles 

of the hob cutter and gear blank, respectively. s  indicates the spherical angle. By 

compared Fig. 2.5 with Fig. 3.3, the schematic gear generation mechanism, the 

following position vectors can be found as: 

T
zxc

)( ]0[ lllw  dρ , (3.22) 

0ρ )(w , (3.23) 

and T
zxc

)()( ])([ lzyllx qqq
gw  dRR , (3.24) 

where the position vector T)( ][ qqq
g zyxR , while symbols  scx Rl cos1 , 



 49

scz Rl sin  and gw rrl c .  

The velocity of the points wO  and gO  can be obtained as 
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q

g  , (3.26) 

respectively. 

Differentiate Eq. (3.25) with respect to time by considering that 
dt

d s  and 
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constants. It yields: 
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Similarly, the differentiated form of Eq. (3.26) with respect to time can be represented 

by 
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where 0V ),( gO
q
  and 0V ),( sgO

q
 . 

According to the hobbing mechanism of the spherical helical gear, mentioned in 

section 2.4, the angular velocity of the hob cutter )(wω  and the generated gear )(gω  

can be represented as follows: 
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Similarly, by considering 
dt

d
 and 

dt

d
 as constants, the differentiation of angular 

velocity of the hob cutter )(w
qω  and generated gear )( g

qω  can be obtained by: 
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According to the hobbing mechanism of the spherical helical gear, the relative 

velocity ),( wg
qV  and ),( swg

q
V  can be obtained by 
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3.3. Tooth pointing of concave spherical helical gear 

Tooth pointing of a gear means that the tooth thickness of the tooth topland 

becomes zero. In other words, the tooth pointing can also be considered as the 

left-side and right-side tooth profiles of a gear intersect as a point at its tooth topland 

in a cross-section of face width. Since the concave spherical helical gear can be 
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considered as hobbing a helical gear with its hobbing path of continuous 

negative-direction profile-shiftings in a quadric form, beginning from both sides of 

the tooth face width to its middle section. Therefore, the occurrence of tooth pointing 

on both ends of face width is easier than that at the middle section for a concave 

spherical helical gear. Figure 3.4 illustrates the tooth pointing occurs on the tooth 

topland of a concave spherical helical gear. Symbol dt of Fig. 3.4 denotes the tooth 

thickness of the tooth topland at any Zg cross-section of face width of the concave 

spherical helical gear. According to the concept of tooth pointing, the condition 

equations of tooth pointing at the Zg cross-section of face width of the concave 

spherical helical gear can be considered as follows: 

rightgleftg ,, RR  , (3.35) 

tlrightgrightgleftgleftg rYXYX  2
,

2
,

2
,

2
, , (3.36) 

0),,,( ,,,, leftsleftleftwleftbleft1 lf  , (3.37) 

0),,,( ,,,,2 leftsleftleftwleftbleft lf  , (3.38) 

0),,,( ,,,, rightsrightrightwrightbright1 lf  , (3.39) 

and 0),,,( ,,,,2 rightsrightrightwrightbright lf  , (3.40) 

where, subscripts “left” and “right” of Eqs. (3.35)-(3.40) denote the left-side and 

right-side tooth profiles of the concave spherical helical gear, respectively, while 

symbol rtl indicates the radius of the tooth top circle. Symbols gX  and gY  denote 

the X and Y components of position vector gR , respectively. Equation (3.35) explains 

that the left-side and right-side tooth flank profiles of the concave spherical helical  
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Fig. 3.4 Tooth pointing of concave spherical helical gear 
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gear intersected as a point at the Zg cross-section of the gear fact width. Equation 

(3.36) denotes the crossing point formed by the left-side and right-side tooth profiles 

of the concave spherical helical gear locates on the tooth topland. Moreover, 

Eqs.(3.37) and (3.38) are the equations of meshing of left-side tooth profile of the 

concave spherical helical gear, while Eqs.(3.39) and (3.40) are the equations of 

meshing of right-side tooth profile of the gear. Since Eq. (3.35) includes three 

independent nonlinear equations, Eqs. (3.35)-(3.40) yields a system of eight 

independent equations with eight variables ,,leftbl  ,,leftw  ,left  ,,lefts  ,,rightbl  ,,rightw  

right  and rights, . 

 

3.4. Numerical examples 

According to the developed tooth undercutting condition equations of the convex 

spherical helical gear (Eqs. (3.7)-(3.9)), the tooth undercutting analysis of the 

proposed convex spherical helical gear is investigated. Moreover, the tooth pointing 

analysis of the concave spherical helical gear is also discussed based on the 

development tooth pointing condition equations (Eqs. (3.35)-(3.40)) of the gear. All 

analysis results of the tooth undercutting and tooth pointing are illustrated by the 

following numerical examples. Furthermore, some major design parameters of the 

proposed convex and concave spherical helical gears for the numerical examples are 

given in Table 3.1. 

Example 3.1: Tooth profiles of the convex spherical helical gear with tooth 

undercutting under different Zg cross-sections. 

This example investigates the tooth profiles of the convex spherical helical gear 

with tooth undercutting under different Zg cross-sections. Where the Zg cross-section 

denotes the cross-section along the rotation axis (Zg-axis) of the convex spherical 
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Table 3.1 Major design parameters of the hob cutter, convex spherical helical gear 

 Hob cutter Convex tooth Concave tooth

Normal module, nm (mm/tooth) 4 4 4 

Number of teeth, T 1 22 22 

Normal pressure angle, n (deg.) 20 20 20 

Lead angle (deg.) 3.823 RH 75 RH 75 RH 

Face width, W (mm) - 20 20 

Pitch radius, rj (mm) 30 45.552 45.552 

Spherical radius, Rs (mm) - 45.552 45.552 

Cutting radius, Rc (mm) - 75.552 15.552 

 

helical gear. The analysis results are obtained based on the convex spherical helical 

gear data given in Table 3.1. 

Figure 3.5 illustrates the tooth profiles of the convex spherical helical gear with 

tooth undercutting under different Zg cross-sections of the gear. It can be found that 

the convex spherical helical gear have tooth undercuttings on the left-side tooth 

profiles of Zg= 10mm and Zg= 5mm of the face width and on the right-side tooth 

profiles of Zg=  10mm and Zg=  5mm of the face width. Therefore, the tooth 

undercutting curves on the left- and right-side tooth surfaces of the convex spherical 

gear are not symmetric. Table 3.2 lists the coordinate positions of the left- and 

right-side tooth profiles of the convex spherical helical gear at Zg=0mm cross-section 

of face width of the gear, while each coordinate position of the tooth profiles of the 

gear can be generated by the corresponding hob cutter’s parameter lb under its 

working interval b,maxbb,min lll  . According to Table 3.2, the left- and right-side 

tooth profiles of the convex spherical helical gear are geometrical symmetry at central 

cross-section (Zg=0mm) of face width of the gear. 

 

Example 3.2: Limit curves of tooth undercutting of convex spherical helical gears 

under different number of gear teeth 
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Table 3.2 The coordinates of left- and right-side tooth profiles of the convex spherical 

helical gear at Zg=0mm cross-section 

(unit: mm)

lb 
Left-side Right-side 

Xg Yg Zg Xg Yg Zg 

5.758   49.530 1.470 

0.0 

49.530  1.470 

0.0 

7.294   47.514 2.482 47.514  2.482 

8.831   45.787 3.141 45.787  3.141 

10.368   44.410 3.512 44.410  3.512 

11.905   43.442 3.669 43.442  3.669 

13.441   42.938 3.699 42.938  3.699 

 
 
 

 

 

Fig. 3.5 Tooth profile of the convex spherical helical gear with tooth undercutting 

under different Zg cross-sections 
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This example shows the positions of singular points appeared along the Zg-axis 

of the convex spherical helical gears under different number of gear teeth Tg (Tg=22, 

24, 26, 28 and 30 teeth). A set of singular points appeared on the generated gear tooth 

flank which corresponds to a set of points located on hob cutter working surface is 

called the limit curve of tooth undercutting. The analysis results are obtained based on 

the convex spherical helical gear data given in Table 3.1. 

Figure 3.6 shows the locations of limit curves of tooth undercutting appeared on 

the left-side tooth flank along the Zg-axis of the convex spherical helical gear in terms 

of hob cutter’s surface parameter bl  under different number of gear teeth Tg. 

Symbols b,maxl  and b,minl  denote the maximum and minimum working intervals of 

the hob cutter’s surface parameter bl , respectively (see Fig. 2.2(b)). If the limit curve 

of tooth undercutting locates inside the working interval of hob cutter’s surface 

parameter bl , it means that the tooth undercutting occurs on the tooth flank of the 

 

 

Fig. 3.6 Locations of limit curves of the convex spherical helical gear under different 

number of teeth Tg 
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convex spherical helical gear. When the number of teeth of the convex spherical 

helical gear is 22 teeth, there is a more severe tooth undercutting at its end section 

(Zg= 10mm) of tooth face width. Moreover, it can be obtained that the locations of 

the limit curves of tooth undercutting of the convex spherical helical gear are moving 

away from the working interval ( b,maxbb,min lll  ) of hob cutter’s surface parameter 

bl  by increasing the number of gear teeth. It means that the tooth undercutting 

phenomenon of the convex spherical helical gear can also be improved by increasing 

the number of gear teeth. 

 

Example 3.3: Limit curves of tooth undercutting of convex spherical helical gears 

under different gear’s lead angles 

This example discusses the positions of singular points appeared along the 

Zg-axis of the convex spherical helical gears under different gear’s lead angle g 

(g=75°, 80°, 85° and 90°). The analysis results are obtained based on the convex 

spherical helical gear data given in Table 3.1. 

Figure 3.7 illustrates the locations of limit curves of tooth undercutting appeared 

on the left-side tooth flank along the Zg-axis of the convex spherical helical gear in 

terms of hob cutter’s surface parameter bl  under different gear’s lead angle g. It can 

be obtained that the lead angle of the convex spherical helical gear affects the trend of 

limit curve of gear’s tooth undercutting. When the lead angle of the convex spherical 

helical gear is equal to 90° (helix angle becomes 0°), the limit curve of tooth 

undercutting of the gear becomes symmetry in the central section of face width of the 

gear (Zg=0mm). 

 

 



 58

 

Fig. 3.7 Locations of limit curves of the convex spherical helical gear under different 

gear's lead angle g 

 

Example 3.4: Limit curves of tooth undercutting of convex spherical helical gears 

under different hob cutter’s pitch radii 

This example discusses the positions of singular points appeared along the 

Zg-axis of the convex spherical helical gears under different hob cutter’s pitch radius 

rw (rw=30mm, 45mm and 60mm). The analysis results are obtained based on the 

convex spherical helical gear data given in Table 3.1. 

Figure 3.8 illustrates the locations of limit curves of tooth undercutting appeared 

on the left-side tooth flank along the Zg-axis of the convex spherical helical gear in 

terms of hob cutter’s surface parameter bl  under different hob cutter’s pitch radius rw. 

It is formed that decreasing the hob cutter’s pitch radius can improve the tooth 

undercutting of the convex spherical helical gear at the end of gear’s face width. 

However, the size of hob cutter’s pitch radius depends on the strength and the shaft 

size of the hob cutter. 
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Fig. 3.8 Locations of limit curves of the convex spherical helical gear under different 

hob cutter's pitch radius rw 

 

Example 3.5: Limit curves of tooth undercutting of convex spherical helical gears 

under different gear’s normal pressure angles 

This example discusses the positions of singular points appeared along the 

Zg-axis of the convex spherical helical gears under different gear’s normal pressure 

angle n (n=14.5°, 20° and 25°). The analysis results are obtained based on the 

convex spherical helical gear data given in Table 3.1. 

Figure 3.9 illustrates the locations of limit curves of tooth undercutting appeared 

on the left-side tooth flank along the Zg-axis of the convex spherical helical gear in 

terms of hob cutter’s surface parameter lb under different gear’s normal pressure 

anglen. The red, black and blue curves of Fig. 3.9 indicate the limit curves of tooth 

undercutting of the convex spherical helical gear under the gear’s normal pressure 

angles 14.5°, 20° and 25°, respectively. Since different normal pressure angles of the 

convex spherical helical gear result in different working intervals of hob cutter’s 

surface parameter bl , the red, black and blue limit curves of Fig. 3.9 correspond to  
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Fig. 3.9 Locations of limit curves of the convex spherical helical gear under different 

normal pressure angle n 

 

the red, black and blue hidden lines of the working intervals ( b,maxbb,min lll  ), 

respectively. According to Fig. 3.9, increasing the normal pressure angle of the 

convex spherical helical gear can improve the gear’s tooth undercutting.  

 

Example 3.6: Investigation on tooth pointing of concave spherical helical gears 

by checking along Zg cross-sections under different hob cutter’s pitch radii and 

number of gear teeth 

Based on the developed condition equations (Eqs. (3.35)-(3.40)) of tooth 

pointing of the proposed concave spherical helical gear, this example discusses the Zg 

cross-section of tooth pointing beginning of the concave spherical helical gear under 

different hob cutter’s pitch radius rw (rw=30mm, 45mm and 60mm) and different 

number of teeth Tg (Tg =15~35 teeth). Where the Zg cross-section denotes the 

cross-section along the rotation axis (Zg-axis) of the concave spherical helical gear. 

The analysis results are obtained based on the concave spherical helical gear data 
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given in Table 3.1. 

Figure 3.10 illustrates the beginning tooth pointing at ±Zg cross-sections of the 

concave spherical helical gear under different hob cutter’s pitch radii and different 

number of teeth. The purple hidden curves of Fig. 3.10 indicate the ±Zg cross-sections 

of tooth pointing beginning of the concave spherical helical gear generated by the hob 

cutter’s pitch radius rw=30mm under different number of teeth, while the blue and red 

ones denote those of the hob cutter’s pitch radii rw=45mm and 60mm, respectively. 

Since the spherical radius Rs of the concave spherical helical gear is limited by the 

hob cutter’s pitch radius rw (see Fig. 2.6) and the spherical radius Rs depends on the 

number of the gear teeth (Rs=rg), the initial number of teeth of the gear for the tooth 

pointing beginning at Zg cross-section is limited by the hob cutter’s pitch radius. For 

the gear design parameters given in Table 3.1 and hob cutter’s pitch radii rw=30mm, 

45mm and 60mm, the initial number of teeth of the concave spherical helical gear are  

 

 

Fig. 3.10 The Zg cross-sections of tooth pointing beginning of the concave spherical 

helical gear 
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15, 22 and 29 teeth, respectively. According to Fig. 3.10, the size of the hob cutter’s 

pitch radius only has a small effect on the tooth pointing beginning at Zg cross-section 

of the concave spherical helical gear. Moreover, it can also be found that the ±Zg 

cross-sections of tooth pointing beginning of the concave spherical helical gear 

depend on the number of the gear teeth. Therefore, the suitable face width of the 

concave spherical helical gear with tooth non-pointing can be designed by 

W | Zg| |Zg|. 

 

Example 3.7: Tooth pointing of concave spherical helical gears under different 

normal pressure angles and different gear’s lead angles by checking along Zg 

cross-sections 

This example investigates the Zg cross-section of tooth pointing beginning of the 

concave spherical helical gear under different normal pressure angle n (n=14.5°, 

20° and 25°) and different gear’s lead angle g (g =75°, 80°, 85° and 90°). Again, the 

Zg cross-section denotes the cross-section along the rotation axis (Zg-axis) of the 

concave spherical helical gear. The analysis results are obtained based on the concave 

spherical helical gear data given in Table 3.1. 

Tables 3.3 and 3.4 list the ±Zg cross-sections of tooth pointing beginning of the 

concave spherical helical gear under different normal pressure angles and gear's lead 

angles, respectively. It is found that the concave spherical helical gear with a larger 

normal pressure angel and gear lead angle allows a smaller value of face width of the 

gear. However, the effects of increasing the normal pressure and the gear lead angle 

on the value of face width of the concave spherical helical gear are small. 

 

3.5. Remarks 

Since the tooth surfaces of the proposed convex spherical helical gear are the  
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Table 3.3 The Zg cross-section of tooth pointing beginning of the concave spherical 

helical gear under different normal pressure angle n 

Basic gear parameters: g=75°, Tg=22 teeth, rw=30mm 

Normal pressure angle n (deg.) 14.5 20 25 

Zg cross-sections (mm) ±22.29 ±22.25 ±21.48 

Suitable face width W (mm) <44.58 <44.50 <42.96 

 

Table 3.4 The Zg cross-section of tooth pointing beginning of the concave spherical 

helical gear under different gear’s lead angle g 

Basic gear parameters: n=20°, Tg=22 teeth, rw=30mm 

Gear lead angle g (deg.) 75 80 85 90 

Zg cross-sections (mm) ±22.25 ±21.57 ±21.16 ±21 

Suitable face width W (mm) <44.50 <43.14 <42.32 <42 

 

envelope to the two-parameter family of surfaces, the kinematic method to find the 

differentiated equations of meshing (Eqs. (3.20) and (3.21)) has been developed for 

investigating tooth undercutting of the proposed convex spherical helical gear. The 

characteristics and limit curves of tooth undercuttings of the convex spherical helical 

gear under different design parameters were also studied and verified by five 

numerical examples (Examples 3.1~3.5). The tooth undercutting of the convex 

spherical helical gear can be avoided by design a gear set with a larger number of 

teeth or a larger pressure angle. Moreover, the condition equations of tooth pointing of 

the concave spherical helical gear had been developed. Based on the development 

condition equations of tooth pointing of the concave spherical helical gear, the Zg 

cross-section of tooth pointing beginning of the gear under different design 

parameters were also investigated and verified by two numerical examples (Examples 

3.6 and 3.7). Furthermore, the value of suitable face width of the concave spherical 

helical gear with tooth non-pointing had been also determined. 
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CHAPTER 4 

Tooth Contact Analysis 

 

4.1. Introduction 

Gear sets are important machine elements used for power transmissions. The 

profile and assembly errors are two major factors that effect the gear kinematic errors. 

The profile errors include the errors of pressure angle, lead angle, tooth profile, etc. 

These errors relate to the manufacture of gears. Therefore, improving the precision of 

manufacture is an important issue to increase the gear transmission performance. 

Another important factor that effects the kinematic errors of the gear set is assembly 

errors. Assembly errors include the errors of center distance, axial shifted error along 

the tooth face width, vertical axial misalignment and horizontal axial misalignment. 

The tooth contact analysis (TCA) method was proposed by Litvin [3,4] and Litvin and 

Fuentes [5], and it had been applied to simulate the meshing situations of a gear set. 

The TCA results can provide useful information on the tooth contact loci, contact 

ratios and kinematic errors (KEs) of gear sets. 

Due to the elasticity of gear tooth surfaces, the tooth surface contact point is 

spread over an elliptical area. It is known that the instantaneous contact point of the 

mating gear pair can be determined from the TCA results. When gear drives transmit a 

power or motion, a set of contact ellipses forms the bearing contacts on the tooth 

surfaces. Simulation methods for the analysis of contact ellipses can be classified into 

the elastic body method and the rigid body method. The finite element method 

belongs to the elastic body method for analyzing the contact area with consideration 

of elastic deformation of tooth surfaces due to the contact stress, thermal stress, and so 

on. On the other hand, the rigid body method for contact ellipse analysis includes the 

curvature analysis method [3-5] and the surface separation topology method [37]. 
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In this chapter, based on the mathematical models of the spherical helical gear 

developed in Chapter 2, the influences of assembly errors of the spherical helical gear 

sets under parallel and crossed axes mounting modes and three mating combinations 

on kinematics errors are investigated. Moreover, the contact ellipses of the gear sets 

with assembly errors under two axes mounting modes and three mating combinations 

are obtained by using the surface separation topology method [37]. 

 

4.2. Meshing model for spherical helical gear set 

Figure 4.1 shows the schematic diagram that the spherical helical pinion and gear 

are meshed with assembly errors. The crossed axes mounting mode of the spherical 

helical gear set can be considered by the relationship of coordinate systems 

),,( oooo ZYXS  and ),,( ffff ZYXS . Moreover, the assembly errors can be 

simulated by changing the settings and orientations of the reference coordinate 

systems ),,( hhhh ZYXS  and ),,( vvvv ZYXS  with respect to the coordinate system 

),,( oooo ZYXS .  Coordinate systems ),,( 1111 ZYXS  and ),,( 2222 ZYXS  are 

attached to the spherical helical pinion and gear, respectively. When the spherical 

helical pinion and gear tooth surfaces are meshed with each other, 1  and 2  are 

the actual rotation angles of the spherical helical pinion and gear on the rotational 

axes Z1 and Z2, respectively. The spherical helical pinion and gear are mounted as 

crossed axes mode with an angle o  called the crossing angle. The crossing angle 

o  is formed by pinion’s and gear’s rotation axes 1Z  and 2Z . When the crossing 

angle o  of the spherical helical gear set equals zero degree, the gear set becomes 

mating under a parallel axes mounting mode. Moreover, to simulate the horizontal 

axial misalignment of pinion, it can be performed by rotating the coordinate system Sh 

about axis Xh through a misaligned angle h  with respect to coordinate system Sf.  
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Fig. 4.1 Simulation of meshing for spherical helical gear set with assembly errors 
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Similarly, simulation of the vertical axial misalignment of pinion can be achieved by 

rotating the coordinate system Sv about axis Xv through a misaligned angle v . 

Moreover, the center distance error of the spherical helical set can be performed by 

moving the coordinate system S2 along axis Xf through a distance C . Symbol Z  

denotes the axial shifted error of the face width between the spherical helical pinion 

and gear tooth surfaces measured from point 2O  to O2 along the gear’s rotation axis 

Z2. Where symbols h , v , C  and Z  represent the horizontal axial 

misaligned angle, vertical axial misaligned angle, center distance error and axial 

shifted error of the tooth face width of the gear set, respectively. 

According to the TCA method [3-5], the position vectors and unit surface normal 

vectors of both pinion and gear should be represented in the same coordinate system, 

say Sf. Therefore, the instantaneous common contact point on the pinion and gear 

tooth surfaces is the same point in the fixed coordinate system Sf, as shown in Fig. 4.2. 

Moreover, the unit surface normal vectors of the pinion and gear must be collinear to 

each other. Therefore, the following equations must be observed at the point of 

tangency of the mating gear pair represented in the same fixed coordinate system: 

0RR  )()( 2
f

1
f , (4.1) 

and 0nn  )()( 2
f

1
f , (4.2) 

where symbol )( j
fR  (j=1 and 2) denotes the position vector, while symbol )( j

fn  (j=1 

and 2) indicates the unit surface normal vector of the spherical helical pinion and gear 

represented in coordinate system Sf. The position vector and unit surface normal 

vector of the spherical helical pinion represented in coordinate system Sg can be 

transformed to the fixed coordinate system fS  by applying the following 

homogeneous coordinate transformation matrix equations: 
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Fig. 4.2 Relationship among two contact teeth and their common tangent plane 
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Similarly, the position vector and unit surface normal vector of the spherical 

helical gear represented in coordinate system S2 can be transformed to the fixed 

coordinate system Sf by applying the following homogeneous coordinate 

transformation matrix equations: 
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where symbol C  denotes the operational center distance of the spherical helical 

gear set with center distance error C  (i.e. CrrC 2
g

1
g  )()( ). 

Equations (4.1) and (4.2) give a general form of meshing model of the gear set 

with assembly errors under the parallel and crossed axes mounting modes. The 

mounting spherical helical pinion and gear may have their helices either with the 

same or the opposite direction, as shown in Fig. 4.3. Where symbols )(1
g  and )(1

g  
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denoted in Fig. 4.3 indicate the helix and lead angle of the spherical helical pinion, 

while symbols )(2
g  and )(2

g  denote the helix and lead angle of the spherical helical 

gear. Symbol o  of Fig. 4.3 denotes the crossing angle of the spherical helical gear 

set under crossed axes mounting mode. Moreover, the helix angles )(1
g  and )(2

g , if 

they are in opposite directions, are not equal as in the case of spherical helical gears 

with parallel axes mounting mode. The helix angles )(1
g  and )(2

g  and the crossing 

angle o  are related as [3-5] 

)()( 2
g

1
go   , (4.17) 

where the upper and lower “ ” signs of Eq. (4.17) denote the spherical helical pinion 

and gear with the same and opposite helix directions, respectively. 

 

4.3. Kinematic errors 

Considering two equations of meshing for the spherical helical pinion tooth surfaces, 

two equations of meshing for the spherical helical gear tooth surfaces, and Eqs. (4.1) 

and (4.2), these equations yield a system of nine independent equations with ten 

variables )1(
bl , )2(

bl , )1(
w , )2(

w , )(1 , )(2 , )1(
s , )2(

s , 1  and 2 , since 

1)()(  2
f

1
f nn . Superscripts 1 and 2 of the variables indicate the spherical helical 

pinion and gear, respectively. If the pinion’s input rotation angle 1  is given, another 

nine variables can be solved by using a nonlinear solver. By substituting the solved 

independent nine variables and the given spherical pinion’s input rotation angle 1  

into Eqs. (4.3) and (4.5), the contact points on the spherical helical pinion and gear 

tooth surfaces can be obtained, respectively. 

The kinematic error (KE) of the spherical helical gear set with assembly errors  



 72

 

 

(a)The same helix direction 

 

 

(b)The opposite helix direction 

Fig. 4.3 Mounting relationships of the spherical helical gear set under the crossed axes 

mounting mode 
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can be calculated by applying the following equation: 

12
g

1
g

1212 T

T
 

)(

)(

)()( , (4.18) 

where )( j
gT  denotes the number of teeth of the spherical helical pinion (j=1) and gear 

(j=2), respectively. 

 

4.4. Contact ratio 

The contact ratio (CR) of a gear set can be defined by the gear’s rotation angle, 

measured from the starting contact point to the end contact point, to be divided by the 

angle formed by two adjacent teeth. Therefore, the contact ratio cm  of the spherical 

helical gear set can be expressed by the following equation [3-5]: 

1

S1E1
c

T

m
360
 

 , (4.19) 

where symbol S1  denotes the rotational angle of the spherical helical pinion that 

corresponds to the starting contact point of the spherical helical gear set during 

meshing, while symbol E1  indicates the rotational angle at the end of contact point 

for the same pinion tooth profile. The rotational angles S1  and E1  can be obtained 

by TCA simulations discussed in section 4.3. 

 

4.5. Contact ellipses 

According to the surface separation topology method [37], the tooth surfaces of 

the spherical helical pinion and gear must be transformed from the fixed coordinate 

system Sf of meshing model to the coordinate system )Z,,( tttt YXS . Herein, the 

coordinate system St is attached to the common tangent plane of the two contact tooth 
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surfaces at every contact instant. Figure 4.4 shows the relationship between the fixed 

coordinate system Sf and the common tangent plane coordinate system St. The 

coordinate system )Z,,( mmmm YXS  and )Z,,( nnnn YXS  are two auxiliary coordinate 

systems that are rotated about the axes Xm and Yn through angles  and , respectively. 

Therefore, the position vectors of the spherical helical pinion and gear tooth surfaces, 

represented in coordinate system St, can be obtained by the following homogenous 

coordinate transformation matrix equation: 

)()( j
fmfnmtn

j
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Where superscript j appeared in Eq. (4.20) denotes the spherical helical pinion (j=1) 

and gear (j=2). Symbols px, py and pz are three coordinate components of the 

instantaneous contact point of the two mating tooth surfaces expressed in the fixed 

coordinate system Sf. Moreover, the angle  is formed by axes Zm and Zn, while the 

angle  is formed by axes Zn and Zt. Therefore, the angles  and  can be obtained by: 











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j
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Fig. 4.4 Coordinate system relationship of the contact point and tangent plane 
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and 
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where )( j
fxn , )( j

fyn  and )( j
fzn  symbolize the three components of the unit tooth surface 

normal vector (j)
fn  of the spherical helical pinion (j=1) and gear (j=2) at their 

instantaneous common contact point expressed in the fixed coordinate system Sf. 

Figure 4.5 shows the contact tooth surfaces of pinion 1 and gear 2 which 

tangent to each other at their instantaneous contact point Ot. It is noted that the 

instantaneous contact point Ot can be determined by the TCA computation. In Fig. 4.5, 

symbol n represents the unit surface normal vector of the pinion 1 represented in 

coordinate system St and coincides with the Zt axis. The calculation of the contact 

ellipses is based on the TCA results and polar coordinates concept. The geometric 

center of a contact ellipse is the instantaneous contact point of two mating tooth 

surfaces, determined by the TCA simulations. The geometric center is considered as 

the origin of the polar coordinate system. To determine a family of contour points of 

the contact ellipse, one should search a pair of polar coordinates (r, t), as shown in 

Fig. 4.5(a), beginning from axis Xt with an increment angle for t, e.g. 2 degrees. The 

symbol r represents the position (polar coordinate) of the contact ellipse at the 

corresponding polar coordinate t, expressed in the coordinate system St, and is 

located on the common tangent plane. The value of every position point r of the 

contact ellipse must satisfy the separation distance (d1+d2)=0.00632mm. Since the 

coating paint on the pinion tooth surfaces for bearing contact test will be scraped 

away and printed on the gear tooth surfaces when the distance, measured along Zt axis, 

of two mating tooth surfaces (1 and 2) is less than the paint’s diameter, as shown in 

Fig. 4.5(b). Since the diameter of coating paint for bearing contact test is 0.00632mm, 

the separation distance is set to equal the diameter of the coating paint for simplicity. 



 77

 

 

 

 

 

 

(a)Common tangent plane and polar coordinates 

 

 

(b)Separation distances between pinion and gear surfaces 

Fig. 4.5 Schematic diagram for surface topology measurement 
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Herein, the symbol d1 is the distance, measured along Zt direction, of 1 and common 

tangent plane T, whereas the symbol d2 is the distance between 2 and common 

tangent plane T. Therefore, the contact ellipses of the spherical helical gear set can be 

determined by applying the following equations: 

   
t

2
t

1
t rXX cos  π)π(  tθ , (4.26) 

   
t

2
t

1
t rYY sin  π)π(  tθ , (4.27) 

and     mm0.00632 2
t

1
t ZZ . (4.28) 

Thus, the position and size of contact ellipses of the spherical helical gear set can be 

determined by using Eqs. (4.26)~(4.28). 

 

4.6. Numerical examples for gear meshing simulations 

In this section, the contact situations (KEs, CRs, contact loci and bearing 

contacts) of the spherical helical gear sets under two axes mounting modes and three 

mating combinations have been discussed by the following numerical examples. 

Figures 4.6(a) and 4.6(b) show two axes modes of gear mounting for spherical helical 

gear sets with parallel and crossed axes mounting modes, respectively. Moreover, the 

effects of gear assembly errors ( h , v , C  and Z ) on the contact situations 

of the spherical helical gear sets are also studied by the numerical examples. The gear 

meshing simulations for the spherical helical gear sets under two axes mounting 

modes are discussed in subsections 4.6.1 and 4.6.2, respectively. 

 

4.6.1  Spherical helical gear sets under parallel axes mounting mode 

In this subsection, the KEs, contact ratios (CRs), contact loci and bearing 

contacts of the spherical helical gear sets under parallel axes mounting mode and  
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(a)Parallel axes (b)Crossed axes 

Fig. 4.6 Two axes mounting modes of the spherical helical gear sets 

three mating combinations are studied by five numerical examples (Examples 

4.1~4.5). 

 

Example 4.1: KEs and contact ellipses of a spherical helical gear set with convex 

pinion and convex gear meshing under parallel axes mounting mode and 

different assembly conditions 

The major design parameters of the hob cutter, convex pinion and convex gear 

are given in Table 4.1. In addition, the spherical helical gear set under parallel axes 

mounting mode is assembled with four conditions as follows: 

Case 1: 0 hv   and mm0 ZC   (ideal assembly condition) 

Case 2: 0 hv  , mm0Z  and mm0.5C  (0.3% of center distance 

variation) 

Case 3: 0 hv  , mm0C  and mm0.5Z (2.5% of axial shifting 

variation) 

Case 4: 2v , 0.5h , mm0C  and mm0Z  

Case 1 is an ideal assembly condition, it means that there are no assembly errors 

for the spherical helical gear set with convex pinion and convex gear. Case 2 indicates 
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Table 4.1 Major design parameters of hob cutter, pinion and gear for spherical helical 

gear sets under parallel axes mounting mode 

Types of gear Hob 
Pinion Gear  

Convex Convex Concave Helical

Normal module nm (mm/tooth) 4 4 4 4 4 

Number of teeth Tj 1 33 47 47 47 

Normal pressure angle n (deg.) 20 20 20 20 20 

Lead angle g (deg.) 3.823 RH 75 RH 75 LH 75 LH 75 LH

Face width W (mm) - 20 20 20 20 

Pitch radius rj (mm) 30 68.328 97.316 97.316 97.316

Spherical radius Rs (mm) - 68.328 97.316 97.316 - 

Cutting radius Rc (mm) - 98.328 127.316 67.316 - 

Center distance C (mm) - - 165.644 165.644 165.644

 

that the spherical helical gear set has center distance assembly error. Case 3 denotes 

the axial shifting of the face width between the pinion and gear tooth surfaces. Case 4 

indicates that the gear set has both vertical and horizontal axial misalignments. Figure 

4.7 illustrates the KEs of the spherical helical gear set with convex pinion and convex 

gear under above-mentioned four assembly conditions (i.e. Cases 1~4). Meanwhile, 

Fig. 4.8 reveals a set of contact ellipses and loci on the pinion (Fig. 4.8(a)) and gear 

(Fig. 4.8(b)) tooth surfaces of the spherical helical gear set called the bearing contacts. 

It is found that the spherical helical gear set with convex pinion and convex gear 

has a lower level of KEs under the ideal assembly condition (Case 1), and the bearing 

contacts are located on the middle region of the pinion’s and gear's face width. The 

contact loci are all near to the central section of the pinion’s and gear's face width. If 

the spherical helical gear set is assembled with a center distance variation (Case 2), 

there is also a lower level of KEs in meshing. By comparing Case 2 with Case 1, the 

bearing contact and the contact locus of the spherical helical gear set of Case 2 have a 

small shift to the top land of pinion. However, the bearing contact of the spherical 

helical gear set shown in Case 2 is still located on the middle region of the face width. 
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Fig. 4.7 KEs of the spherical helical gear set with convex pinion and convex gear 

under parallel axes mounting mode and different assembly conditions 

 
(a)Convex pinion 

 
(b)Convex gear 

Fig. 4.8 Contact ellipses and contact loci on tooth surfaces of the spherical helical 

gear set under parallel axes mounting mode and different assembly 

conditions 
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According to the simulation results shown in Fig. 4.7, the assembly condition of Case 

3 also results in a lower level KEs, while the bearing contacts and the contact loci are 

all shifted a small distance away from the middle region, as shown in Fig. 4.8. Case 4 

has a little higher level of KEs and a larger among of shifting of the bearing contact 

than other three assembly conditions (Cases 1~3). However, the bearing contacts of 

Case 4 are still located near by the middle region of the face width. Moreover, the 

positions of contact loci and bearing contacts of the spherical helical gear set of Cases 

1, 2 and 3 are almost the same. 

 

Example 4.2: KEs and contact ellipses of a spherical helical gear set with convex 

pinion and concave gear under parallel axes mounting mode and different 

assembly conditions 

The major design parameters of the hob cutter, convex pinion and concave gear 

are also given in Table 4.1. Moreover, the spherical helical gear set is assembled with 

four conditions as follows: 

Case 5: 0 hv   and mm0 ZC   (ideal assembly condition) 

Case 6: 0 hv  , mm0Z  and mm0.5C (0.3% of center distance 

variation) 

Case 7: 0 hv  , mm0C  and mm0.5Z  (2.5% of axial shifting 

variation) 

Case 8: 2v , 0.5h , mm0C  and mm0Z  

Case 5 is the ideal assembly condition, and it means that there are no assembly 

errors for the spherical helical gear set with convex pinion and concave gear. Case 6 

indicates that the spherical helical gear set has a center distance assembly error. Case 

7 denotes an axial shifting of the face width between the pinion and gear tooth 
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surfaces. Case 8 indicates that the gear set has both vertical and horizontal axial 

misalignments. Figure 4.9 illustrates the KEs of the spherical helical gear set with 

convex pinion and concave gear meshing under four assembly conditions (i.e. Cases 

5~8), while Fig. 4.10 shows a set of contact ellipses and loci on the pinion tooth 

surface of the spherical helical gear set. 

Observing Case 5 of Figs. 4.9 and 4.10, there is a lower level of KEs (ideal 

assembly condition), and the bearing contacts are located near by the middle region of 

the face width. Cases 6 and 7 also reveal a lower level of KEs, and the bearing 

contacts of the mating gear sets (Cases 6 and 7) are still located near by the middle 

region of the face width. However, when compared with that of Case 5, the bearing 

contact of Case 7 has a larger shifting than that of Case 6. Moreover, Case 8 has the 

largest position shifting of bearing contact in this example. The KEs of Case 8 are 

almost the same as those of other three assembly conditions in this example. 

 

Example 4.3: KEs and contact ellipses of a gear set with convex spherical helical 

pinion and conventional helical gear under parallel axes mounting mode and 

different assembly conditions 

The major design parameters of the hob cutter, convex spherical helical pinion 

and helical gear are also given in Table 4.1. In addition, the gear set is assembled with 

four conditions as follows: 

Case 9: 0 hv   and mm0 ZC   (ideal assembly condition) 

Case 10: 0 hv  , mm0Z  and mm0.5C  (0.3% of center distance 

variation) 

Case 11: 0 hv  , mm0C  and mm0.5Z  (2.5% of axial shifting 

variation) 
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Fig. 4.9 KEs of the spherical helical gear set with convex pinion and concave gear 

under parallel axes mounting mode and different assembly conditions 

 
(a)Convex pinion 

 
(b)Concave gear 

Fig. 4.10 Contact ellipses and contact loci on tooth surfaces of the spherical helical 

gear set under parallel axes mounting mode and different assembly 

conditions 
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Case 12: 2v , 0.5h , mm0C  and mm0Z  

Case 9 is the ideal assembly condition, and it means that there are no assembly 

errors for the gear set with convex spherical helical pinion and conventional helical 

gear. Case 10 indicates that the gear set has a center distance assembly error. Case 11 

denotes an axial shifting of the face width between the pinion and gear tooth surfaces. 

Case 12 indicates that the gear set has both axial vertical and horizontal 

misalignments. Figure 4.11 illustrates the KEs of the gear set with convex spherical 

helical pinion and conventional helical gear meshing under four assembly conditions 

(i.e. Cases 9~12), while Fig. 4.12 shows a set of contact ellipses on the pinion tooth 

surface. 

It is found that Case 9 has a lower level of KEs, and the bearing contacts of Case 

9 are located near by the middle region of the face width. Comparing with that of 

Case 9, the KEs shown in Cases 10-12 are almost the same. The bearing contacts of 

Cases 10 and 11 are similar to that of Case 9, but the bearing contacts of Case 12 are 

shifted a small distance from the middle region of the face width on pinion’s tooth 

surface. 

Comparing the KEs of Example 4.3 with those of Examples 4.1 and 4.2, all of 

the assembly conditions of the spherical helical gear set with convex pinion and 

concave gear (Example 4.2) have a lower level KEs than other corresponding 

assembly conditions in Examples 4.1 and 4.3. For example, in the ideal assembly 

conditions (Cases 1, 5 and 9), Case 5 has a lower level of KEs than other ideal 

assembly conditions. Moreover, all the assembly conditions discussed in Example 4.2 

have a larger size of contact ellipse than other assembly conditions of Examples 4.1 

and 4.3, since the mating tooth surfaces of pinion and gear of Example 4.2 are convex 

tooth surface mating with concave tooth surface. 
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Fig. 4.11 KEs of the gear set with convex pinion and conventional helical gear under 

parallel axes mounting mode and different assembly conditions 

 
(a)Convex pinion 

 
(b)Helical gear 

Fig. 4.12 Contact ellipses and contact loci on tooth surfaces of the gear set under 

parallel axes mounting mode and different assembly conditions 
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Example 4.4: Contact ratios of the spherical helical gear set under parallel axes 

mounting mode and three mating combinations 

Some major design parameters of the hob cutter and three mating combinations 

of spherical helical gear sets are summarized in Table 4.1. Moreover, three mating 

combinations of the spherical helical gear sets are all assembled under ideal condition 

and axial misalignments 2v  and 0.5h . 

Table 4.2 summarizes the contact ratios (CRs) and the rotation angles ( S1  and 

E1 ) of starting contact and end contact of the pinion tooth surface during the meshing 

of the spherical helical gear sets. The CRs of the spherical helical gear sets under 

three mating combinations with the ideal assembly condition and axial misalignments 

2v  and 0.5h  are about 1.7. Comparing with the ideal assembly 

condition, the spherical helical gear set with vertical and horizontal axial 

misalignments ( 2v  and 0.5h ) has only a slightly influence on their CRs. 

 

Example 4.5: Average ratio a/b of the major and minor axes of the contact 

ellipses of spherical helical gear sets under parallel axes mounting mode and 

different assembly conditions 

In this example, the averages of a set of ratio a/b of the major and minor axes of 

the contact ellipses of the spherical helical gear sets during the pinion’s tooth meshing 

cycle from S1  to E1  (see section 4.4) are determined. Where the ratio a/b 

indicates the ratio of major and minor axes of a contact ellipse of a spherical helical 

gear set at its meshing instant. The major design parameters of the hob cutter and 

three mating combinations of the spherical helical gear set are chosen the same as 

those shown in Table 4.1. Moreover, two assembly conditions, ideal assembly 

condition and axial misalignments ( 2v  and 0.5h ), are assembled under  
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Table 4.2 Contact ratios and rotation angles of the spherical helical gear sets under 

parallel axes mounting mode and two different assembly conditions 

Mating combinations 
Ideal 

assembly condition 

Axial 

misalignments 

Convex pinion with Convex gear 1.75 (-12.4°~6.7°) 1.73 (-11.8°~7.1°) 

Convex pinion with Concave gear 1.71 (-12.3°~6.4°) 1.71 (-12.5°~6.2°) 

Convex pinion with Helical gear 1.76 (-12.5°~6.7°) 1.74 (-12°~7°) 

 

Table 4.3 Average ratio a/b and rotation angles of major and minor axes of contact 

ellipses of the spherical helical gear sets under parallel axes mounting 

mode and two different assembly conditions 

Mating combinations 
Ideal 

assembly condition 

Axial 

misalignments 

Convex pinion with Convex gear 2.88 2.90 

Convex pinion with Concave gear 5.09 4.82 

Convex pinion with Helical gear 3.7 3.69 

 

three mating combinations for spherical helical gear sets. 

Table 4.3 lists the average ratio a/b of the major and minor axes of the contact 

ellipse a/b for three mating combinations of spherical helical gear sets with different 

assembly conditions when the pinion’s rotation angles are  5~101  with an 

increment angle, e.g. 0.1 degree. The gear set of having convex pinion mating with 

concave gear has a larger average ratio a/b than other two mating combinations. 

Moreover, the condition of convex pinion mating with convex gear has a smaller level 

of average ratio a/b than other two mating combinations. Comparing with the ideal 

assembly condition, the average ratio a/b is not sensitive to axial misalignments for 

the mating combinations of convex pinion with convex gear and convex pinion with 

conventional helical gear. However, the spherical helical gear set of convex pinion 

mating with concave gear has a larger variation of the a/b ratio than other two mating 
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combinations under the ideal assembly condition and axial misalignments. 

 

4.6.2  Spherical helical gear sets under crossed axes mounting mode 

In this subsection, the KEs, CRs, contact loci and bearing contacts of the 

spherical helical gear sets with crossed axes mounting mode under three mating 

combinations are investigated by five numerical examples (Examples 4.6~4.10). 

According to Eq. (4.17) and the pinion’s and gear's design parameters (see Table 4.4) 

of the spherical helical gear sets, the crossing angle o  of the gear set for Examples 

4.6~4.10 is defined as 30 degrees (i.e. 30)()(  2
g

1
go  ). 

 

Example 4.6: KEs and contact ellipses of a spherical helical gear set with convex 

pinion and convex gear meshing under crossed axes mounting mode and 

different assembly conditions 

 The major design parameters of the hob cutter, convex pinion and convex gear 

are given in Table 4.4. The assembly conditions of the spherical helical gear set with 

convex pinion and convex gear under crossed axes mounting mode (i.e. 30o ) are 

chosen the same as those of given in Example 4.1 and listed as follows: 

Case 13: 0 hv   and mm0 ZC   (ideal assembly condition) 

Case 14: 0 hv  , mm0Z  and mm0.5C  (0.3% of center distance 

variation) 

Case 15: 0 hv  , mm0C  and mm0.5Z (2.5% of axial shifting 

variation) 

Case 16: 2v , 0.5h , mm0C  and mm0Z  
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Table 4.4 Major design parameters of hob cutter, pinion and gears for spherical helical 

gear sets under crossed axes mounting mode 

Types of gear Hob 
Pinion Gear  

Convex Convex Concave Helical

Normal module nm (mm/tooth) 4 4 4 4 4 

Number of teeth Tj 1 33 47 47 47 

Normal pressure angle n (deg.) 20 20 20 20 20 

Lead angle g (deg.) 3.823 RH 75 RH 75 RH 75 RH 75 RH

Helix angle )( j
g (deg.) - 15 RH 15 RH 15 RH 15 RH

Face width W (mm) - 20 20 20 20 

Pitch radius rj (mm) 30 68.328 97.316 97.316 97.316

Spherical radius Rs (mm) - 68.328 97.316 97.316 - 

Cutting radius Rc (mm) - 98.328 127.316 67.316 - 

Center distance C (mm) - - 165.644 165.644 165.644

 

Figure 4.13 illustrates the KEs of the spherical helical gear set with convex 

pinion and convex gear under crossed axes mounting mode 30o  and 

above-mentioned four assembly conditions (i.e. Cases 13~16). Meanwhile, Fig. 4.14 

reveals a set of contact ellipses and their loci on the convex pinion (Fig. 4.14(a)) and 

convex gear (Fig. 4.14(b)) tooth surfaces of the spherical helical gear set. 

It is found that the spherical helical gear set (with convex pinion and convex gear) 

with crossed axes has a lower level of KEs under the ideal assembly condition (Case 

13), and the bearing contacts are located on the middle region of the pinion’s and 

gear's face widths. If the spherical helical gear set with crossed axes is assembled with 

a center distance variation (Case 14), there has also a lower level of KEs in meshing. 

By comparing Case 14 with Case 13, the bearing contact and the contact locus of the 

spherical helical gear set of Case 14 have a small shift to the top land of pinion. 

However, the bearing contact of the spherical helical gear set in Case 14 is still 

located on the middle region of the face width. According to the simulation results  
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Fig. 4.13 KEs of the spherical helical gear set with convex pinion and convex gear 

under crossed axes mounting mode and different assembly conditions 

 
(a)Convex pinion 

 
(b)Convex gear 

Fig. 4.14 Contact ellipses and contact loci on tooth surfaces of the spherical helical 

gear set under crossed axes mounting mode and different assembly 

conditions 
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shown in Fig. 4.13, the assembly condition of Case 15 also results in a lower level of 

KEs, while the bearing contacts and the contact loci are all shifted a small distance 

away from the middle region, as shown in Fig. 4.14. Case 16 has a little higher level 

of KEs than other three assembly conditions. There is a larger among of shifting of 

the bearing contact and the contact locus of the spherical helical gear set than other 

three assembly conditions for the Case 16. However, the bearing contacts are still 

located near by the middle region of the face width. Moreover, the positions of 

contact locus and bearing contacts of the spherical helical gear set of Cases 13, 14 and 

15 are almost the same. 

 

Example 4.7: KEs and contact ellipses of a spherical helical gear set with convex 

pinion and concave gear under crossed axes mounting mode and different 

assembly conditions 

The major design parameters of the hob cutter, convex pinion and concave gear 

are also given in Table 4.4. The assembly conditions of the spherical helical gear set 

with convex pinion and concave gear under crossed axes mounting mode (i.e. 

30o ) are chosen the same as those of given in Example 4.2 and listed as follows: 

Case 17: 0 hv   and mm0 ZC   (ideal assembly condition) 

Case 18: 0 hv  , mm0Z  and mm0.5C (0.3% of center distance 

variation) 

Case 19: 0 hv  , mm0C  and mm0.5Z  (2.5% of axial shifting 

variation) 

Case 20: 2v , 0.5h , mm0C  and mm0Z  

Figure 4.15 illustrates the KEs of the spherical helical gear set with convex  
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Fig. 4.15 KEs of the spherical helical gear set with convex pinion and concave gear 

under crossed axes mounting mode and different assembly conditions 

 
(a)Pinion 

 
(b)Gear 

Fig. 4.16 Contact ellipses and contact loci on tooth surfaces of the spherical helical 

gear set under crossed axes mounting mode and different assembly 

conditions 
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pinion and concave gear under crossed axes mounting mode and four assembly 

conditions (Cases 17~20), while Fig. 4.16 shows a set of contact ellipses on the pinion 

(Fig. 4.16(a)) and gear (Fig. 4.16(b)) tooth surfaces of the spherical helical gear set. 

 Observing Case 17 of Figs. 4.15 and 4.16, there is a lower level of KEs (ideal 

assembly condition), and the bearing contacts are located near by the middle region of 

the face width. Cases 18 and 19 also reveal a lower level of KEs, and the bearing 

contacts of the mating gear sets are still located near by the middle region of the face 

width. However, when compared with that of Case 17, the bearing contact of Case 19 

has a larger shifting than that of Cases 17 and 18. Moreover, Case 20 has the largest 

position shifting of bearing contact in this example. However, the KEs of Case 20 are 

almost the same as those of other three conditions in this example. 

 

Example 4.8: A gear set with convex spherical helical pinion and conventional 

helical gear under crossed axes mounting and different assembly conditions 

The major design parameters of the hob cutter, convex spherical helical pinion 

and helical gear are also given in Table 4.1. In addition, the gear set is assembled with 

four conditions as follows: 

Case 21: 0 hv   and mm0 ZC   (ideal assembly condition) 

Case 22: 0 hv  , mm0Z  and mm0.5C  (0.3% of center distance 

variation) 

Case 23: 0 hv  , mm0C  and mm0.5Z  (2.5% of axial shifting 

variation) 

Case 24: 2v , 0.5h , mm0C  and mm0Z  

Figure 4.17 illustrates the KEs of the gear set (with convex spherical helical 

pinion and conventional helical gear) with crossed axes mounting mode (i.e. 
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30o ) under four assembly conditions (Cases 21~24), while Fig. 4.18 shows a set 

of contact ellipses on the pinion and gear tooth surfaces. 

It is found that Case 21 has a lower level of KEs, and the bearing contacts of 

Case 21 are located near by the middle region of the face width. Comparing with that 

of Case 21, the KEs shown in Cases 22-24 are almost the same. The bearing contacts 

of Cases 23 and 24 are similar to that of Case 21, but the bearing contacts of Case 24 

are shifted a small distance from the middle region of the face width on pinion’s tooth 

surface. 

Comparing the KE of Example 4.8 with those of Examples 4.6 and 4.7, all of the 

assembly conditions of the spherical helical gear set with convex pinion and concave 

gear (Example 4.7) have lower level of KEs than other corresponding assembly 

conditions in Examples 4.6 and 4.8. For example, for the ideal assembly conditions 

(Cases 13, 17 and 21), Case 17 has a lower level of KEs than other ideal assembly 

conditions. Moreover, all the assembly conditions discussed in Example 4.7 have a 

larger size of contact ellipse than other assembly conditions of Examples 4.6 and 4.8, 

since the mating tooth surfaces of pinion and gear of Example 4.7 are convex tooth 

surface mating with concave tooth surface. 

 

Example 4.9: Contact ratios of the spherical helical gear set with crossed axes 

meshing under three mating combinations 

Some major design parameters of the hob cutter and three mating combinations 

of the spherical helical gear sets with crossed axes mounting mode (i.e. 30o ) are 

summarized in Table 4.4. Moreover, three mating combinations of the spherical 

helical gear sets with crossed axes are all assembled under ideal condition and axial 

misalignments v =2° and  h =0.5°. 
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Fig. 4.17 KEs of the gear set with convex pinion and conventional helical gear under 

crossed axes mounting mode and different assembly conditions 

 
(a)Convex pinion 

 

(b)Conventional helical gear 

Fig. 4.18 Contact ellipses and contact loci on tooth surfaces of the gear set under 

crossed axes mounting mode and different assembly conditions 
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Table 4.5 summarizes the contact ratios (CRs) and the rotation angles ( S1  and 

E1 ) of starting contact and end contact of the pinion tooth surface during the meshing 

of the spherical helical gear sets. The CRs of the spherical helical gear sets under 

three mating combinations with the ideal assembly condition and axial misalignments 

2v  and 0.5h  are about 1.7. Comparing with the ideal assembly 

condition, the spherical helical gear set with vertical and horizontal axial 

misalignments ( 2v  and 0.5h ) has only a slightly influence on their CRs. 

 

Example 4.10: Average ratio a/b of the major and minor axes of the contact 

ellipse of the spherical helical gear set with crossed axes meshing under different 

assembly conditions 

The major design parameters of the hob cutter and three mating combinations of 

the spherical helical gear sets with crossed axes are chosen the same as those shown 

in Table 4.4. Two assembly conditions, ideal assembly condition and axial 

misalignments ( 2v  and 0.5h ), are assembled under three mating 

combinations for the spherical helical gear sets with crossed axes. 

Table 4.6 lists the average ratio of the major and minor axes of the contact ellipse 

a/b for three mating combinations of spherical helical gear sets with different 

assembly conditions when the pinion’s rotation angles are  5~101  with an 

increment angle, e.g. 0.1 degree. The gear set of having convex pinion mating with 

concave gear has a larger average ratio a/b than other two mating combinations. In the 

inverse situation, the convex pinion mating with convex gear has a smaller level of 

average ratio a/b than other two mating combinations. Comparing with the ideal 

assembly condition, the average ratio a/b is not sensitive to axial misalignments for 

the mating combinations of convex pinion with convex gear and convex pinion with 
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Table 4.5 Contact ratios of the spherical helical gear sets with crossed axes under 

different assembly conditions 

Mating combinations 
Ideal 

assembly condition 

Axial 

misalignments 

Convex pinion with Convex gear 1.72 (-12.3°~6.5°) 1.72 (-11.8°~7°) 

Convex pinion with Concave gear 1.65 (-11.7°~6.3°) 1.7 (-10.9°~7.4°) 

Convex pinion with Helical gear 1.72 (-12.3°~6.5°) 1.72 (-11.8°~7°) 

 

Table 4.6 Average ratio a/b of major and minor axes of contact ellipses of spherical 

helical gear sets with crossed axes meshing under different assembly 

conditions 

Mating combinations 
Ideal 

assembly condition 

Axial 

misalignments 

Convex pinion with Convex gear 2.94 2.95 

Convex pinion with Concave gear 5.33 5.02 

Convex pinion with Helical gear 3.69 3.69 

 

conventional helical gear. However, the spherical helical gear set of convex pinion 

mating with concave gear has a larger variation of the a/b ratio than other two mating 

combinations under the ideal assembly condition and the misalignments. 

 

4.7. Remarks 

According to the mathematical models of the spherical helical gears with convex 

and concave teeth developed in Chapter 2, the meshing model of the spherical helical 

gear sets with assembly errors under two axes mounting and three mating 

combinations are derived by using the TCA method (Eqs. (4.1) and (4.2)). Based on 

the developed meshing model of the gear set, the contact loci, KEs (Eq. (4.18)) and 

contact ratios (Eq. (4.19)) for three mating combinations of the spherical helical gear 

set with different assembly conditions under two axes mounting modes can be 

investigated. Moreover, the bearing contacts and average ratios a/b of major and 
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minor axes of contact ellipses for the three mating combinations of the spherical 

helical gear sets with different assembly conditions under two axes mounting modes 

are estimated by utilizing the TCA method and surface separation topology method 

(Eqs. (4.26)~(4.28)). According to the TCA simulation results, the following remarks 

can be drawn: 

(1) The KEs of spherical helical gear sets under the proposed two axes mounting 

modes and three mating combinations will be induced under the ideal assembly 

condition, the center distance error and the axial shifting error of the face width. 

However, the levels of KEs of the spherical helical gear sets under the proposed 

two axes mounting modes and three mating combinations are small. Moreover, 

the bearing contacts of the spherical helical gear sets under the two axes 

mounting modes and three mating combinations are localized in the middle 

region of the face width. Comparing with the ideal assembly condition, the 

bearing contact of the spherical helical gear set with convex pinion and concave 

gear under the parallel axes mounting mode and an axial shifting error of the face 

width has a larger shifting displacement (see Fig. 4.10) than other two mating 

combinations. This phenomenon is quite similar to that of the spherical helical 

gear set with convex pinion and concave gear under crossed axes mounting mode 

has the same situation (see Fig. 4.16). 

(2) The KEs of the spherical helical gear sets under the three mating combinations 

are not sensitive to the misalignments ( 2v  and 0.5h ) because the 

contact type of the proposed spherical helical gear set is in point contacts. 

Bearing contacts of the spherical helical gear set are localized near by the middle 

region of the face width. The spherical helical gear set with axial misalignments 

has a larger level of bearing contact shifting than other assembly error conditions. 
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However, the bearing contacts of the spherical helical gear set with a large axial 

misalignment are still located near by the middle region of the face width. 

(3) Regardless of the axes mounting modes (parallel or crossed axes mounting 

mode), the CRs of the spherical helical gear set for the three mating 

combinations under ideal assembly condition and the large axial misalignments 

( 2v  and 0.5h ) are about 1.7 (see Tables 4.2 and 4.5). Comparing 

with the ideal assembly condition, the CRs of the spherical helical gear sets 

under the two axes mounting modes and three mating combinations are not 

sensitive to the axial misalignments (see Tables 4.2 and 4.5). 

(4) Regardless of the assembly combinations and the axes mounting modes, the 

spherical helical gear set with convex pinion and concave gear has a larger 

average ratio of the major and minor axes, a/b, of the contact ellipses than other 

two mating combinations. The spherical helical gear sets with convex pinion and 

convex gear under two axes mounting modes have smaller a/b ratios (see Tables 

4.3 and 4.6). Moreover, the average ratios a/b are not sensitive to the assembly 

condition of axial misalignments ( 2v  and 0.5h ) for the spherical 

helical gear set under parallel and crossed axes mounting modes  (see Tables 

4.3 and 4.6). 

(5) If the axial misalignments of the spherical helical gear set under parallel and 

crossed axes mounting modes are modified as 2 v  and 0.5 h , the 

KE’s amplitude, contact ratio and average a/b ratio of the gear set will have no 

apparent change, while the KE’s phase of the gear set will change from phase 

lead (or lag) to phase lag (or lead). 
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CHAPTER 5 

Finite Element Stress Analysis 

 

5.1 Introduction 

Due to the progress of computer technology and the computational techniques, 

finite element method (FEM) [46] becomes a popular tool to determine the formation 

of bearing contact and stress distribution of a gear drive, especially with a complex 

tooth geometry. For the conventional and standard gears, the contact and bending 

stresses can be calculated by employing the stress formulae given in the handbook 

[47]. However, the stress of gears with a special and complex tooth profile can’t be 

accurate predicted by using the stress formula of the conventional and standard gears. 

Therefore, FEM is adopted to perform the stress analysis of the proposed spherical 

helical gear set for complex contact situations. 

In this chapter, an automatic mesh-generation program for the contact models of 

the spherical helical gear set with three types of mating combinations, convex with 

convex teeth, convex with concave teeth and convex with helical teeth, under two 

axes mounting modes (parallel axes and crossing axes) was performed by employing 

the C++ program language. The design parameters and boundary conditions are also 

imposed on the contact model of the spherical helical gear sets. Furthermore, several 

illustrative numerical examples are presented to demonstrate the finite element (FE) 

stress analyses of the spherical helical gear sets with three types of mating 

combinations under two axes mounting modes by utilizing the commercial finite 

element analysis (FEA) package, ABAQUS/Standard [48]. Besides, all analyzed FE 

contact models of the spherical helical gear sets are adopted after meshes convergence 

test. Therefore, the results of the FEA in this chapter and the results of contact ellipse 

simulations in previous chapter (Chapter 4) can prove mutually, and can also verify 
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the superiority of the proposed spherical helical gear sets. 

 

5.2 Finite element contact models of spherical helical gear sets 

5.2.1  Processes of establishing FE contact model 

The automatic mesh-generation program is developed by utilizing the C++ 

program language. The processes of establishing the FE contact model of a spherical 

helical gear set are summarized as follows: 

(1) Determine the surface coordinates, including the tooth profiles and fillets of the 

spherical helical pinion and gear in meshing, by utilizing the developed 

mathematical model (Chapter 2) and TCA meshing model (Chapter 4) of the 

mating spherical helical pinion and gear. A 3-D tooth solid model of the 

spherical helical gear can be illustrated as shown in Fig. 5.1(a). 

(2) As shown in Fig. 5.1(b), set up some auxiliary points (red points of Fig. 5.1(b)) 

to partition the 3-D tooth solid model of the spherical helical gear into six parts 

for easy to generate the hexahedron solid element. 

(3) Calculate and generate the nodes on the tooth surfaces and in the tooth body of 

the spherical helical pinion and gear, and assign those nodes in a sequential 

number, as shown in Fig. 5.1(c). 

(4) As shown in Fig. 5.1(d), establish the hexahedron solid elements that include a 

serial regular nodal numbers by referring the ordering rule of hexahedron solid 

elements [48], and assign those elements in a sequential number, too. 

(5) Set up the material properties, loadings, boundary conditions and interactions 

between two surfaces in meshing to the mating spherical helical pinion and gear. 

The hexahedron solid element type, C3D8I, has been chosen to improve the 

bending behavior [48]. The steel material, AISI 1045, is chosen for all FE contact 

models of the investigated spherical helical gear sets. The basic material properties are  
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(a)3-D solid model (b)Partition into six parts 

  

(c)Seed nodes (d)Generate elements 

Fig. 5.1 Processes of establishing the FE contact model of a spherical helical gear 

 

Young’s modulus E=2.05×105 MPa, Poisson’s ratio ν=0.29 and density ρ=7.85×10-6 

Kg/mm3. Besides, the material is considered as isotropic, and the heat generation and 

thermal stress are ignored. However, the actual contact situation of a gear set is 

complex since the friction on the interface of contact surfaces is hard to know. 

Therefore, the lubrication condition on the interface of contact surfaces of the 

spherical helical gear set is assumed as good lubrication that means the frictionless 

condition is applied to the interface of the contact surfaces. In the software 

ABAQUS/Standard, the contact pair must be defined as a master surface and a slave 

surface [48] before the contact stress analysis. According to the rule of the software 

ABAQUS/Standard, the master and slave surfaces are identified as the large and small 
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curvature surfaces, respectively. Therefore, all pinion’s and gear’s tooth surfaces of 

the proposed spherical helical gear sets are defined as the master and slave surfaces, 

respectively. 

By using the developed automatic mesh-generation program and the gear’s 

design parameters of Table 5.1, a FE contact model of whole spherical helical gear set 

with convex pinion and concave gear under parallel axes mounting mode can be 

established as shown Fig. 5.2. Consequently, another FE contact model of whole 

spherical helical gear set with convex pinion and concave gear under crossed axes 

mounting mode can also be established by utilizing the same developed automatic 

mesh-generation program and the gear’s design parameters of Table 5.1 as shown in 

Fig. 5.3. 

 

5.2.2  Simplified meshing model of a gear set 

However, the FE contact models shown in Figs. 5.2 and 5.3 are not good models 

for stress analyses of the gear sets because of those coarse meshes. According to the 

 

Table 5.1 Major design parameters of spherical helical gear set with convex pinion 

and concave gear under parallel and crossed axes mounting modes 

Types of gear Hob 

Parallel axes Crossed axes 

Convex

pinion 

Concave

gear 

Convex 

pinion 

Concave

gear 

Normal module nm (mm/tooth) 4 4 4 4 4 

Number of teeth Tj 1 33 47 33 47 

Normal pressure angle n (deg.) 20 20 20 20 20 

Lead angle g (deg.) 3.823 RH 75 RH 75 LH 75 RH 75 RH 

Face width W (mm) - 20 20 20 20 

Pitch radius rj (mm) 30 68.328 97.316 68.328 97.316 

Spherical radius Rs (mm) - 68.328 97.316 68.328 97.316 

Cutting radius Rc (mm) - 98.328 127.316 98.328 127.316

Center distance C (mm) - - 165.644 - 165.644
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Fig. 5.2 Finite element contact model of a spherical helical gear set with convex 

pinion and concave gear under parallel axes mounting mode 

 

 

Fig. 5.3 Finite element contact model of a spherical helical gear set with convex 

pinion and concave gear under crossed axes mounting mode 
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investigated results of TCA, the contact ratios of the proposed spherical helical gear 

sets under parallel and crossed axes mounting mode are about 1.7 (see Examples 4.4 

and 4.9). It means that at most of contact instants the maximum numbers of teeth in 

contact is 2. Therefore, a simplified contact model for a gear set with four teeth can be 

considered as shown in Fig. 5.4. The middle two teeth of the simplified gear set with 

four teeth are defined as the teeth in contact, whereas, other two teeth are set as the 

teeth in non-contact. Moreover, the bottom surface and both-side surfaces of the 

simplified pinion are considered as rigid surfaces to simulate the constraint effect of 

rotation shaft and the effect that acted by other teeth [43], respectively. A roller 

boundary condition is applied on both-side surfaces and bottom surface of the 

simplified gear. The roller boundary condition on both-side surfaces of gear has a free 

degree-of-freedom (DOF) along the radius direction of gear, while the other DOFs are 

fixed. The roller boundary condition on bottom surface of gear has a free DOF along 

the tangent direction of that surface, while the other DOFs are also fixed. Besides, 

symbols rshaft,j (j=1 and 2) denote the shaft-hole radii of pinion and gear, respectively. 

Symbol O1 indicates the reference node for the rigid surfaces of pinion, while symbol 

 

Fig. 5.4 Simplified contact model of a gear set with boundary conditions 
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O2 denotes the center point of gear. For all FE contact models of the spherical gear 

sets appear in this study, a toque, T=200 N-m, is applied to the pinion’s rotation axis. 

 

5.2.3  Meshes convergence test and local refined FE model 

In general, a more refined mesh model may obtain a more accurate simulation 

result but it takes much more time in analysis. Therefore, it is important to adopt a 

properly refined mesh to ensure the simulation result is acceptable. In this study, the 

sufficiently refined meshes of the spherical helical gear set have been performed by 

applying the meshes convergence test [46] and employing the developed automatic 

mesh-generation program. Major design parameters of the spherical helical gear set 

with convex pinion and concave gear under parallel axes mounting mode for the 

meshes convergence test are given in Table 5.1. Table 5.2 gives five different mesh 

densities for the spherical helical convex pinion and concave gear, while Fig. 5.5 

reveals different cases of mesh densities for the convex spherical helical pinion. If the 

spherical helical gear set is subjected to a torque 200N-m, Fig. 5.6 shows the nodal 

displacements and bending stresses of those cases (Cases 1~5) for the convex pinion 

(Fig. 5.6(a)) at position coordinates of X1=65.195mm, Y1=3.961mm and Z1=0mm, 

and for the concave gear (Fig. 5.6(b)) at position coordinates of X2=72.396mm, 

Y2=10.487mm and Z2=0mm. It is found that the nodal displacements are converged to 

a stable level (variation is less than 2%) in the cases of refined (Case 3) and high 

refined meshes (Case 4). However, the FE analysis for the high refined case (Case 4) 

is time consumptive. Therefore, the local refined mesh case (Case 5) can be adopted 

for the FE analysis [44]. The information and analysis results of the local refined case 

(Case 5) are also shown in Table 5.2 and Fig. 5.6, respectively. According to Fig. 5.6, 

the local refined mesh case (Case 5) is also convergent and similar to that of the high 

refined mesh case (Case 4), but the numbers of elements and nodes of the local 
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refined case are substantially less than those of the high refined case (reduction about 

30%). Therefore, the local refined mesh model (Cases 5) is adopted thereafter in this 

study for stress analysis of the spherical helical gear sets under parallel and crossed 

axes mounting modes. The local refined mesh zone of the spherical helical gear set is 

controlled with 42 elements along the face width direction. Figures 5.7 and 5.8 

illustrate the spherical helical gear sets with local refined mesh models under parallel 

 

Table 5.2 Mesh densities of the spherical convex pinion and concave gear 

Cases 
Mesh 

densities 

Convex pinion Concave gear 

Total nodes Total elements Total nodes Total elements

1 Coarse 14,076 11,198 12,788 10,142 

2 Normal 26,004 21,152 23,232 18,848 

3 Refined 40,248 33,138 36,636 30,114 

4 High refined 66,528 55,366 61,236 50,902 

5 Local refined 45,408 37,506 41,796 34,482 

 

 
(a)Coarse meshes (b)Normal meshes 

 
(c)Refined meshes (d)High refined meshes 

Fig. 5.5 Finite element model of the convex spherical helical pinion with different 

mesh densities 
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(a)Convex pinion 

 

 

(b)Convex gear 

Fig. 5.6 Convergence test of nodal displacements and bending stresses for the mating   

of spherical convex pinion and concave gear with four teeth subjected to a 

torque of 200N-m 
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Fig. 5.7 Finite element contact model of the spherical helical gear set with local 

refined meshes under parallel axes mounting mode 

 

 

Fig. 5.8 Finite element contact model of the spherical helical gear set with local 

refined meshes under crossed axes mounting mode 
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and crossed axes mounting modes, respectively. Moreover, the local refined mesh 

method is also applied in the elements along the tooth thickness directions of the 

pinion and gear (see Appendix A). The refined elements along the tooth thickness 

directions of the pinion and gear are concentrated near the tooth surface. 

 

5.3 Numerical examples 

Based on the developed mathematical model and the automatic mesh-generation 

program of the proposed spherical helical gear sets, the stress analysis of the gear sets 

can be investigated by using the commercial FEM package, ABAQUS/Standard. In 

this section, six numerical examples are demonstrated for analyses on the contact and 

bending stresses of the spherical helical gear sets under different axes mounting 

modes, mating combinations and assembly conditions. Again, the FE models of Figs. 

5.7 and 5.8 with local refined meshes for the spherical helical gear sets under two 

axes mounting modes are adopted for following numerical examples, respectively. 

Moreover, some major design parameters of the spherical helical gear sets for all 

following numerical examples are given in Table 5.3. 

 

Table 5.3 Major design parameters of the spherical helical gear sets under parallel 

axes mounting mode 

Types of gear Hob 
Pinion Gear  

Convex Convex Concave Helical

Normal module nM (mm/tooth) 4 4 4 4 4 

Number of teeth Tj 1 33 47 47 47 

Normal pressure angle n (deg.) 20 20 20 20 20 

Lead angle g (deg.) 3.823 RH 75 RH 75 LH 75 LH 75 LH

Face width W (mm) - 20 20 20 20 

Pitch radius rj (mm) 30 68.328 97.316 97.316 97.316

Spherical radius Rs (mm) - 68.328 97.316 97.316 - 

Cutting radius Rc (mm) - 98.328 127.316 67.316 - 

Center distance C (mm) - - 165.644 165.644 165.644
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Example 5.1 Stress distributions of spherical helical gear sets with three types of 

mating combinations under parallel axes mounting mode and ideal assembly 

condition 

The contact and bending von-Mises stresses on tooth surfaces of spherical helical 

gear sets with three types of mating combinations under parallel axes mounting mode 

are performed and summarized in Table 5.4. Moreover, the spherical helical gear sets 

are meshing at pinion’s beginning rotation angle (i.e. 01 ). Figures 5.9, 5.10 and 

5.11 reveals the von-Mises stress distributions on tooth surfaces of the spherical 

helical gear sets with convex pinion (Fig. 5.9(a)) and convex gear (Fig. 5.9(b)), 

convex pinion (Fig. 5.10(a)) and concave gear (Fig. 5.10(b)), and convex pinion (Fig. 

5.11(a)) and conventional helical gear (Fig. 5.11(b)), respectively. It is found that 

contact regions of the spherical helical gear sets are located near by the middle region 

of the tooth face width under the ideal assembly condition. Moreover, the convex 

pinion mating with concave gear has the largest size of contact region (Fig. 5.10), 

while the convex pinion mating with convex gear has the smallest size of contact 

region (Fig. 5.9). This verified that the convex pinion mating with concave gear has 

the smallest von-Mises stress because it has the largest contact region, whereas, the 

inverse situation exists for the convex pinion mating with convex gear. It is worth 

 

Table 5.4 Contact and bending von-Mises stresses of the spherical helical gear set 

with three types of mating combinations under parallel axes mounting 

mode at the pinion’s beginning rotation angle 

Mating types 

Convex pinion  

vs. convex gear 

Convex pinion 

vs. concave gear

Convex pinion 

vs. helical gear

Pinion Gear Pinion Gear Pinion Gear 

Contact stress (MPa) 1135 1114 912.4 812.3 978.4 947.4

Bending stress (MPa) 75.37 66.13 62.26 83.56 76.36 65.16
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(a)Convex pinion 

 

 

(b)Convex gear 

Fig. 5.9 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and convex gear under the parallel axes mounting 

mode and ideal assembly condition 

Bending stress: 75.37Mpa 

Contact stress: 1135Mpa 

Bending stress: 66.13Mpa 

Contact stress: 1114Mpa 
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(a)Convex pinion 

 

 

(b)Concave gear 

Fig. 5.10 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and concave gear under the parallel axes mounting 

mode and ideal assembly condition 

Bending stress: 62.26Mpa 

Contact stress: 912.4Mpa 

Bending stress: 83.56Mpa 

Contact stress: 812.3Mpa 
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(a)Convex pinion 

 

 

(b)Conventional helical gear 

Fig. 5.11 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and conventional helical gear under the parallel axes 

mounting mode and ideal assembly condition 

Bending stress: 76.36Mpa 

Contact stress: 978.4Mpa 

Bending stress: 64.16Mpa 

Contact stress: 947.4Mpa 
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mentioned that contact regions analyzed by the FEM are similar to those of using the 

surface topology method [37] (see Figs. 4.10, 4.11 and 4.12). 

 

Example 5.2 Stress distribution of the spherical helical gear set with convex pinion 

and concave gear under parallel axes mounting mode and axial misalignments 

Figure 5.12 illustrates the von-Mises stress distributions of the spherical helical 

gear set under parallel axes mounting mode and axial assembly misalignments 

0.2 v  and 5.0 h  at the pinion’s beginning rotation angle (i.e. 01 ). 

Moreover, the spherical helical gear set is composed of a convex pinion and a concave 

gear. Compared with Fig. 5.10, the contact regions of the spherical helical gear set are 

shifted a distance from the middle section of face width due to axial misalignments of 

0.2 v  and 5.0 h . However, there is still no edge contact occurred for the 

spherical helical gear set even under axial assembly misalignments. The contact 

stresses of the convex pinion and concave gear at the pinion’s beginning rotation 

angle are 1000.5MPa and 910.9MPa, respectively, whereas the bending stresses are 

63.79MPa and 130.19MPa, respectively.  

 

Example 5.3 Stress analysis of the spherical helical convex pinion mating with 

concave gear with large modified spherical radii Rj (j=1 and 2) under parallel axes 

mounting mode 

In this example, a large modified spherical radius Rj (j=1 and 2; refer to Figs. 2.4 

and 2.6) has been applied to the spherical helical gear set under parallel axes 

mounting mode. The convex pinion with a modified spherical radius of R1=1000mm 

is given to mesh with the concave gear with a modified spherical radius of 

R2=1200mm. Moreover, the design parameters of the spherical helical gear set are 

also given in Table 5.3, while the gear set is assembled under the ideal condition. 
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(a)Convex pinion 

 

 

(b)Concave gear 

Fig. 5.12 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and concave gear under the parallel axes mounting 

mode and axial misalignments 

Bending stress: 63.79Mpa 

Contact stress: 1000Mpa 

Bending stress: 130.19Mpa 

Contact stress: 910.9Mpa 
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The tooth shapes of spherical helical pinion and gear with large modified 

spherical radii are quite similar to those of helical gears, and thus they result in 

slender contact regions along the longitudinal direction of face width as shown in Fig. 

5.13. The contact stresses of convex pinion and concave gear at the pinion’s 

beginning rotation angle are 554.2MPa and 550.8MPa, respectively, whereas the 

bending stresses are 74.21MPa and 57.30MPa, respectively. Therefore, the contact 

stresses of spherical helical gear set at the pinion’s beginning rotation angle are 

substantially decreased compared with those of Example 5.1. 

 

Example 5.4 Stress distributions of spherical helical gear sets with three types of 

mating combinations under crossed axes mounting mode and ideal assembly 

condition 

Some major design parameters of the spherical helical gear sets under crossed 

axes mounting mode are given in Table 5.5. The contact and bending von-Mises 

stresses on tooth surfaces of spherical helical gear sets with three types of mating 

combinations under crossed axes mounting mode are performed and summarized in 

Table 5.6. Figures 5.14, 5.15 and 5.16 reveals the von-Mises stress distributions on 

tooth surfaces of the spherical helical gear sets with convex pinion (Fig. 5.14(a)) and 

convex gear (Fig. 5.14(b)), convex pinion (Fig. 5.15(a)) and concave gear (Fig. 

5.15(b)), and convex pinion (Fig. 5.16(a)) and conventional helical gear (Fig. 5.16(b)). 

The spherical helical gear set with convex pinion and concave gear under crossed 

axes mounting mode also has the smallest von-Mises stress because it has the largest 

contact region, whereas, the inverse situation exists for the convex pinion mating with 

convex gear. It is worth mentioned that contact regions analyzed by the FEM are 

similar to those of using the surface topology method (see Figs. 4.14, 4.16 and 4.18). 

Again, the spherical helical gear sets with ideal assembly condition under crossed  
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(a)Convex pinion 

 

 

(b)Concave gear 

Fig. 5.13 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with large modified spherical radii under the parallel axes mounting 

mode and ideal assembly condition 

Bending stress: 74.21Mpa 

Contact stress: 554.2Mpa 

Bending stress: 57.30Mpa 

Contact stress: 550.8Mpa 
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Table 5.5 Major design parameters of the spherical helical gear sets under crossed 

axes mounting mode 

Types of gear Hob 
Pinion Gear  

Convex Convex Concave Helical

Normal module nM (mm/tooth) 4 4 4 4 4 

Number of teeth Tj 1 33 47 47 47 

Normal pressure angle n (deg.) 20 20 20 20 20 

Lead angle g (deg.) 3.823 RH 75 RH 75 RH 75 RH 75 RH

Face width W (mm) - 20 20 20 20 

Pitch radius rj (mm) 30 68.328 97.316 97.316 97.316

Spherical radius Rs (mm) - 68.328 97.316 97.316 - 

Cutting radius Rc (mm) - 98.328 127.316 67.316 - 

Center distance C (mm) - - 165.644 165.644 165.644

 

Table 5.6 Contact and bending von-Mises stresses of the spherical helical gear set 

with three types of mating combinations under crossed axes mounting 

mode at the pinion’s beginning rotation angle 

Mating types 

Convex pinion  

vs. convex gear 

Convex pinion 

vs. concave gear

Convex pinion 

vs. helical gear

Pinion Gear Pinion Gear Pinion Gear 

Contact stress (MPa) 1125 1102 884.5 795.2 1020 854.7

Bending stress (MPa) 75.44 65.84 63.06 81.33 76.55 62.65
 

axes mounting mode are meshing at the pinion’s beginning rotation angle (i.e. 01 ). 

 

Example 5.5 Stress distribution of the spherical helical gear set with convex pinion 

and concave gear under crossed axes mounting mode and axial misalignments 

Figure 5.17 illustrates the von-Mises stress distributions of the spherical helical 

gear set with convex pinion and concave gear under crossed axes mounting mode and 

axial assembly misalignments 0.2 v  and 5.0 h  at the pinion’s beginning 

rotation angle (i.e. 01 ). Compared with Fig. 5.15, the contact regions of the 

spherical helical gear set are shifted a small distance due to the axial assembly  



 121

 

 

(a)Convex pinion 

 

 

(b)Convex gear 

Fig. 5.14 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and convex gear under crossed axes mounting mode 

and ideal assembly condition 

Bending stress: 75.44Mpa 

Contact stress: 1125Mpa 

Bending stress: 65.84Mpa 

Contact stress: 1102Mpa 
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(a)Convex pinion 

 

 

(b)Concave gear 

Fig. 5.15 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and concave gear under crossed axes mounting 

mode and ideal assembly condition 

Bending stress: 63.06Mpa 

Contact stress: 884.5Mpa 

Bending stress: 81.33Mpa 

Contact stress: 795.2Mpa 
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(a)Convex pinion 

 

 

(b)Conventional helical gear 

Fig. 5.16 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and conventional helical gear under crossed axes 

mounting mode and ideal assembly condition 

Bending stress: 76.55Mpa 

Contact stress: 1020Mpa 

Bending stress: 62.65Mpa 

Contact stress: 854.7Mpa 
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(a)Convex pinion 

 

 

(b)Concave gear 

Fig. 5.17 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and concave gear under crossed axes mounting 

mode and ideal assembly condition 

Bending stress: 59.47Mpa 

Contact stress: 931.3Mpa 

Bending stress: 79.63Mpa 

Contact stress: 879.5Mpa 
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misalignments. The contact stresses of the convex pinion and concave gear at the 

pinion’s beginning rotation angle are 931.3MPa and 879.5MPa, respectively, whereas 

the bending stresses are 59.47MPa and 79.63MPa, respectively. However, there is still 

no edge contact occurred for the spherical helical gear set even under the crossed axes 

mounting mode and axial assembly misalignments. 

 

Example 5.6 Stress analysis of the spherical helical convex pinion mating with 

concave gear with large modified spherical radii Rj (j=1 and 2) under crossed axes 

mounting mode 

In this example, a large modified spherical radius Rj (j=1 and 2; refer to Figs. 2.4 

and 2.6) also has been applied to the spherical helical gear set under crossed axes 

mounting mode. The convex pinion with a modified spherical radius of R1=1000mm 

is given to mesh with the concave gear with a modified spherical radius of 

R2=1200mm. Moreover, the design parameters of the spherical helical gear set are 

also given in Table 5.5, while the gear set is assembled under the ideal condition. 

A conventional helical gear set is in point contact during its meshing. The tooth 

shapes of spherical helical pinion and gear with large modified spherical radii are 

quite similar to those of conventional helical gears. Therefore, the contact region of 

the spherical helical gear set only has a slightly increasing by adopting the large 

modified spherical radii for convex pinion and concave gear as shown in Fig. 5.18. 

The contact stresses of convex pinion and concave gear at the pinion’s beginning 

rotation angle are 832.9MPa and 567.4MPa, respectively, while the bending stresses 

are 74.20MPa and 56.15MPa, respectively. Therefore, the contact stresses of the 

spherical helical gear set at the pinion’s beginning rotation angle are substantially 

decreased compared with those of Example 5.4. 
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(a)Convex pinion 

 

 

(b)Concave gear 

Fig. 5.18 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with large modified spherical radii under the parallel axes mounting 

mode and ideal assembly condition 

Bending stress: 74.20Mpa 

Contact stress:832.9 Mpa 

Bending stress: 56.15Mpa 

Contact stress: 567.4Mpa 
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5.4 Remarks 

According to the developed mathematical model (Chapter 2) and TCA 

simulation (chapter 4) of the spherical helical gear set, the FE meshing model of the 

gear set with local refined meshes for stress analyses have been performed by the 

developed automatic mesh-generation program of the gear set. Investigations on the 

contact and bending stresses of the spherical helical gear set with assembly conditions 

under two axes mounting modes and three types of mating combinations have been 

performed by employing the commercial FEA package, ABAQUS/Standard. The 

analysis results lead to the following conclusions: 

(1) Among three types of mating combinations of spherical helical gear sets with 

ideal assembly condition, the spherical helical gear sets composed of convex 

pinion and concave gear under parallel (Example 5.1) and crossed (Example 5.4) 

axes mounting modes have the smallest contact and bending stresses, whereas the 

spherical helical gear set composed of convex pinion and convex gear has the 

largest contact and bending stresses. 

(2) For the spherical helical gear set composed of convex pinion and concave gear 

with large axial misaligned angles 0.2 v  and 5.0 h  under parallel 

axes mounting mode (Example 5.2), the contact zone of the gear set has a small 

shift along the longitudinal direction of face width of the gear set, and the contact 

stress only has a slightly change when compared with the spherical helical gear 

set with convex pinion and concave gear under the ideal assembly condition 

(Example 5.1). Moreover, the contact zone of the spherical helical gear set with 

large axial misaligned angles 0.2 v  and 5.0 h  under crossed axes 

mounting mode (Example 5.5) also has a small shift along the longitudinal 

direction of face width of the gear set. The contact stress only has a slightly 
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change when compared with the spherical helical gear set with convex pinion and 

concave gear under the ideal assembly condition (Example 5.4). 

(3) The contact area of the spherical helical gear set with convex pinion and concave 

gear under parallel axes mounting mode (Example 5.3) can be increased by 

adopting a large modified spherical radius. Therefore, the increase of contact 

region results in the decrease of contact stress. If the spherical radii of the gear set 

with spherical helical pinion and gear under crossed axes mounting mode are 

modified and approach to infinite, the gear set composed of spherical helical 

pinion and gear will become a conventional helical gear set under crossed axes 

mounting mode. However, a conventional helical gear set is in point contact 

during its meshing [3-5]. Therefore, the contact area of the spherical helical gear 

set with convex pinion and concave gear under crossed axes mounting mode 

(Example 5.6) only has a slightly increasing by adopting the large modified 

spherical radii for convex pinion and concave gear. 
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CHAPTER 6 

Conclusions and Future works 

 

6.1 Conclusions 

In this study, the mathematical models of the convex (Eqs. (2.31)~(2.33)) and 

concave (Eqs. (2.58)~(2.60)) spherical helical gears are developed in chapter 2. Then, 

based on the developed mathematical models of the spherical helical gears, the 

condition equations of the tooth undercutting (Eqs. (3.7)~(3.9)) and tooth pointing 

(Eqs. (3.35)~(3.40)) for the convex and concave spherical helical gears are derived in 

chapter 3, respectively. The limit curve of tooth undercutting and Zg cross-section of 

tooth pointing beginning for the convex and concave spherical helical gears under 

different design parameters are also investigated, respectively. In chapter 4, a general 

form of meshing model of the spherical helical set with assembly errors under two 

axes mounting modes is developed (Eqs. (4.1) and (4.2)). According to the meshing 

model of the spherical helical gear set, the equations of the contact ellipses (Eqs. 

(4.13)~(4.15)) of the gear set is developed by utilizing the surface separation topology 

method [37]. Therefore, the KEs, contact ratios, contact loci and contact ellipses of 

the spherical helical gears sets with assembly errors under two axes mounting modes 

and three mating combinations are investigated. Moreover, an automatic 

mesh-generation program for the contact models of the spherical helical gear sets 

under two axes mounting modes and three types of mating combinations is developed. 

Therefore, the stress distributions on tooth surfaces of the spherical helical gear set 

under two axes mounting modes and three mating combinations are determined by 

using the software ABAQUS/Standard. Based on the analysis results obtained in the 

previous chapters, the following conclusions are drawn: 
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(1) The mathematical model of convex and concave spherical helical gears generated 

by a ZN-type worm-type hob cutter has been developed based on the cutting 

mechanism of a 5-axes CNC hobbing machine. The tooth profiles obtained by the 

mathematical model can be considered as a standard profile for the convex and 

concave spherical helical gears.  

(2) The kinematic method to find the differentiated equations of meshing is developed 

for analyzing tooth undercutting of the convex spherical helical gear. According to 

the tooth undercutting analysis results, the occurrence of tooth undercutting at the 

both-end sections of face width of the convex spherical helical gear is much easier 

than other sections. The tooth undercutting of the convex spherical helical gear 

can be avoided with a large number of teeth or pressure angle, and the tooth 

undercutting may lessen by decreasing the pitch radius of hob cutter. 

(3) The tooth pointing of the concave spherical helical gear is investigated by utilizing 

the derived condition equations of tooth pointing of the concave spherical helical 

gear. According to the tooth pointing analysis results, the concave spherical helical 

gear can be avoided with a large number of teeth or small pressure angle. The 

tooth pointing of the concave spherical helical has a slight effect by changing pitch 

radius of the hob cutter. 

(4) The spherical helical gear set under two axes mounting modes and three mating 

combinations generated by a ZN-type worm-type hob cutter induces KEs when the 

gear set is meshing under ideal assembly condition and center distance error. 

However, the level of KEs of the gear set is small. Moreover, the KEs of the gear 

set are not sensitive to axial shifting of face width and axial misalignments 

because the contact type of the proposed spherical helical gear set is in point 

contacts.  

(5) The spherical helical gear set under two axes mounting modes and three mating 
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combinations with axial misalignments has a larger level of bearing contact 

shifting than other assembly error conditions. However, the bearing contacts of the 

spherical helical gear set with a large axial misalignment are still located near by 

the middle region of the face width. It means that there is no edge contact on the 

pinion and gear tooth surfaces of the spherical helical gear set. 

(6) The CRs of the spherical helical gear set under the two axes mounting modes and 

three mating combinations with ideal assembly condition and the large axial 

misalignments ( 2v  and 0.5h ) are about 1.7. Moreover, the CRs of 

the spherical helical gear sets under the two axes mounting modes and three 

mating combinations are not sensitive to the large axial misalignments. 

(7) An automatic mesh-generation program for generating the FE contact model of the 

spherical helical gear sets under two axes mounting modes and three mating 

combinations is developed. Moreover, the FE meshes, the definition of contacting 

surfaces, material properties and boundary conditions of the gear sets are also 

automatically generated by using the developed computer program. The stress 

analysis of the spherical helical gear set is performed by utilizing the software 

ABAQUS/Standard. The analysis results show that the spherical helical gear set 

with convex pinion and concave gear has the smallest contact and bending stresses 

due to the largest contact region, whereas the gear set with convex pinion and 

convex gear has the largest contact and bending stresses due to the smallest 

contact region. 

(8) Due to the conventional helical gear set is in line contact, the helical gear set with 

small axial misalignments under parallel axes mounting mode has edge contact 

and tooth interference (see Appendix B). However, the spherical helical gear set 

with larger axial misalignments ( 2v  and 0.5h ) under parallel axes 
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mounting mode has no edge contact and no tooth interference. 

(9) The large modified spherical radius can decrease the contact and bending stresses 

of the spherical helical gear set with convex pinion and concave gear under 

parallel and crossed axes mounting modes. Since the spherical helical gear set 

with a large modified spherical radius under crossed axes mounting mode is 

similar to that of a conventional helical gear set under crossed axes mounting 

mode, the contact and bending stresses of the gear set with convex pinion and 

concave gear under parallel axes mounting mode have larger decreasing margin 

than that of the gear set under crossed axes mounting mode by the same increasing 

margin of the spherical radius.  

 

6.2 Future works 

The tooth surfaces of the convex and concave spherical helical gears generated 

by a ZN-type hob cutter are indeed new types of gear surfaces. Advanced studies of 

these kinds of gear for industrial applications are important and necessary. In the 

future, the following research topics can be extended: 

(1) The illustrated approach in Chapter 2 can be further extended to derive the 

mathematical model for noncircular hobbing locus of the gears, e.g. parabolic or 

elliptical curved hobbing locii. 

(2) The sensitivity analysis can be used to study the surface deviation of the spherical 

helical gear with respect to hob cutter settings in the manufacturing process. 

(3) The curvature analysis of the proposed convex and concave spherical helical gears 

should be developed for the determination of principal curvatures and directions of 

the surfaces of convex and concave spherical helical gears. 

(4) Real contact ratio, load sharing between the meshing teeth, and transmission error 

under the given load may be implemented by considering multi-tooth finite 
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element models. Moreover, the effect of friction force may be investigated by 

defining the tooth surfaces interaction with friction. 

(5) In order to save the preprocess time of the finite element model of other types of 

gear sets, the developed automatic mesh-generation program of chapter 5 can be 

further extended to include other types of gear sets, e.g. curvilinear-tooth gear set, 

bevel gear set, conical gear set, gear set of worm and worm wheel, etc. Moreover, 

the developed automatic mesh-generation program can be packaged as a plug-in 

for the software ABAQUS/Standard. 

(6) The single flank test and the measurement of noise and vibrations could be 

performed with the proposed convex and concave spherical helical gear sets. 
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Appendix A 

Stress distributions of A Spherical Helical Gear Set with Uniform 

Element Size along Tooth Thickness Direction 

 

Example A.1 Stress distributions of spherical helical gear sets with convex pinion 

and convex gear under parallel axes mounting mode and ideal assembly condition 

The stress analysis result of the spherical helical gear set with convex pinion and 

convex gear are illustrated in Fig. A.1. The design parameters of the gear set are the 

same as those of Table 5.3. Noteworthy, the element sizes along the tooth thickness 

direction of the convex pinion and convex gear of the gear set are uniform (see Fig. 

A.1), moreover, the other settings of element size of the convex pinion and convex 

gear are the same as those of the spherical helical gear set with convex pinion and 

convex gear of Example 5.1. The contact stresses of the convex pinion and convex 

gear at the pinion’s beginning rotation angle are 1225MPa and 1034MPa, respectively, 

whereas the bending stresses are 76.92MPa and 66MPa, respectively. By comparing 

the analysis results (Fig. A.1) of Example A.1 with those of Example 5.1 (Fig. 5.9), 

the contact and bending stresses only have a slight change between the two examples. 

However, the analysis time cost of Example A.1 is expensive due to the total elements 

and nodes are 297228 and 325080, respectively. Therefore, the local refined mesh 

along the tooth thickness direction of the pinion and gear is also adopted in this study 

for stress analysis of the spherical helical gear sets under parallel and crossed axes 

mounting modes. 
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(a)Convex pinion 

 

 

(b)Convex gear 

Fig. A.1 von-Mises stress distributions on tooth surfaces of the spherical helical gear 

set with convex pinion and convex gear under the parallel axes mounting 

mode and ideal assembly condition 

Bending stress: 76.92Mpa 

Contact stress: 1225Mpa 

Bending stress: 66Mpa 

Contact stress: 1034Mpa 
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Appendix B 

Stress Distributions of A Conventional Helical Gear Set with Axial 

Misalignments under Parallel Axes Mounting Mode 

 

Example B.1 Stress distributions of conventional helical gear set with axial 

misalignment 15.0 v  under parallel axes mounting mode 

Figure B.1 illustrates stress distributions of the conventional helical gear set with 

33 teeth helical pinion and 47 teeth helical gear under parallel axes mounting mode. 

The normal module and normal pressure angle of the helical pinion and gear are 4 

mm/tooth and 20 degrees, respectively. Moreover, the gear set is assembled with axial 

misalignment 15.0 v . It can be found that the conventional helical gear set has 

edge contacts on tooth flanks of the helical pinion and gear. Therefore, the 

conventional helical gear set can’t be applied to the assembly condition with a large 

axial misalignment v . 

 

Example B.2 Stress distributions of conventional helical gear set with axial 

misalignment 1.0 h  under parallel axes mounting mode 

The design parameters of the conventional helical gear set of this example are 

given the same as those of Example B.2. The gear set is assembled with axial 

misalignment 1.0 h  under parallel axes mounting mode. Figure B.2 illustrates 

stress distributions of the helical pinion and gear set. It can be found that the gear set 

also has edge contact on the tooth flanks of the helical pinion and gear. Therefore, the 

conventional helical gear set can’t be applied to the assembly condition with a large 

axial misalignment h . 
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(a)Conventional helical pinion 

 

 

(b)Conventional helical gear 

Fig. B.1 von-Mises stress distributions on tooth surfaces of the conventional helical 

gear set with axial misalignment 15.0 v  under the parallel axes 

mounting mode 

Edge contact 

Edge contact 
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(a)Conventional helical pinion 

 

 

(b)Conventional helical gear 

Fig. B.2 von-Mises stress distributions on tooth surfaces of the conventional helical 

gear set with axial misalignment 1.0 h  under the parallel axes 

mounting mode 

Edge contact 

Edge contact 

Edge contact 




