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Characteristic Study of Spherical Helical Gears

Student: Li-Chi Chao Advisor: Dr. Ray-Quan Hsu
Co-Adpvisor: Dr. Chung-Biau Tsay
Department of Mechanical Engineering

National Chiao Tung University

ABSTRACT

The spherical gear is a new type of gears proposed by Mitome. Geometrically,
the spherical gears have two types of gear teeth— convex tooth and concave tooth.
The spherical gear sets have three types of mating combinations: convex tooth with
concave tooth, convex tooth with convex tooth and convex tooth with spur gear tooth.
Different from that of the conventional spur gear set, the spherical gear set is in point
contact and allows variable transmission shaft angles and larger axial misalignments
without gear interference during the gear drive meshing.

Based on the advantages of the spherical gear, this study proposes a gear by
considering the assembly and transmission characteristics of the spherical gear and
helical gear, called spherical helical gear. The spherical helical gear has all geometry
and transmission characteristics of the spherical gear, while the gear set can also be
assembled in crossed axes mounting mode. Therefore, to develop a complete
mathematical model of the spherical helical gears with convex and concave teeth can
provide further investigation on the manufacturing conditions, transmission
characteristics and application limits of the spherical helical gear for industry.

In this study, hobbing method is considered for generation of spherical helical

gears with convex and concave teeth due to its high cutting efficiency and low
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manufacturing cost. Based on the hobbing generation mechanism and theory of
gearing, mathematical models of the spherical helical gears with convex and concave
teeth can be developed. Firstly, the surface equation of a ZN-type worm-type hob
cutter is derived, and then surface equations of the spherical helical gears with convex
tooth and concave teeth cut by the hob cutter can be obtained. Sequentially, the tooth
undercutting and tooth pointing condition equations for the convex and concave
spherical helical gears are derived by utilizing the developed tooth surface equations
of the gears, respectively. Therefore, the limit curves of the tooth non-undercutting of
the convex spherical helical gear under different design parameters are investigated,
while the Z cross-sections of tooth pointing beginning of the concave spherical helical
gear are determined. Moreover, the tooth contact analysis (TCA) method is applied to
determine the contact characteristics, such as kinematic errors, contact ratios and
contact positions, of the spherical helical gear set with the three mating combinations
(convex pinion mating with convex gear, convex pinion mating with concave gear and
convex pinion mating with helical gear) and two assembly modes (parallel axes and
crossing axes modes). Surface separation topology method is adopted to find the
contact ellipses and bearing contacts of the spherical helical gear set, and the average
ratio a/b of the major and minor axes of contact ellipses of the spherical helical gear
set can also be obtained. Finally, an automatic mesh-generation program of the
spherical helical gear sets is developed to investigate the stress analysis of the gear
sets by utilizing the commercial FEA package, ABAQUS/Standard. Therefore, the
contact and bending stress contours of the spherical helical gear sets under two axes

mounting modes and three mating combinations can be determined.
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alb

c,j

b,max

b,min

Xx,j

NOMENCLATURE

Ratio of major and minor axes of contact ellipses

Cutting blade width or normal groove width of the ZN-type worm-type
hob cutter, as shown in Figs. 2.2(¢) and (d)

Separation distance measured from common tangent plane to pinion
surface (j=1) or gear surface (j=2), as shown in Fig. 4.5(b)

Tooth thickness of a tooth topland, as shown in Fig. 3.4

Equations of meshing of the convex spherical gear (j=1, 2)

Equations of meshing of the concave spherical gear (j=1, 2)

Shift distance of the ZN-type worm-type hob cutter along its spindle
axis, as shown in Figs. 2.5 and 2.7

Surface parameter of the ZN-type worm-type hob cutter, as shown in
Fig. 2.2 (b)

Shortest distance between hob cutter rotation axis and convex (j=vex)
and concave (j=cave) spherical helical gear rotation axes, as shown in
Figs. 2.5 and 2.7

Upper bounds of the working interval of the ZN-type worm-type hob
cutter

Lower bounds of the working interval of the ZN-type worm-type hob
cutter

Radial feed displacement of the ZN-type worm-type hob cutter for
cutting convex (j=vex) and concave (j=cave) spherical helical gears, as

shown in Figs. 2.4(b) and 2.6(b)
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z,J

Py

Axial feed displacement of the ZN-type worm-type hob cutter for
cutting convex (j=vex) and concave (j=cave) spherical helical gears, as
shown in Figs. 2.4(b) and 2.6(b)

Contact ratio of the spherical helical gear set

Normal module of the spherical helical gear

Gear ratio between number of thread of hob cutter and number of teeth
of convex (j=vex) and concave (j=cave) spherical helical gears

Screw parameter of the ZN-type worm-type hob cutter, as shown in Fig.
2.3

Screw parameter of the generated convex (j=vex) and concave (j=cave)
spherical helical gears

Polar coordinates for contact ellipse measurement, as shown in Fig.
4.5(a)

Root radius of the ZN-type worm-type hob cutter, as shown in Fig.
2.2(c)

Pitch radius of the convex (j=vex) and concave (j=cave) spherical
helical gears, as shown in Figs. 2.4(b) and 2.6(b)

Outside radius of the ZN-type worm-type hob cutter, as shown in Fig.
2.2(c)

Distance measured from cutting blade tip to the original point O, of
coordinate system S, of the hob rotation axis, as shown in Fig. 2.2(b)
Radius of tooth top circle, as shown in Fig. 3.4

Pitch radius of the ZN-type worm-type hob cutter, as shown in Fig.
2.2(c)

Shortest vector measured from the center of the work piece to that of
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o

C!

the hob cutter, as shown in Figs. 2.5 and 2.7

Unit surface normal vector of pinion (j=1) or gear (j=2) expressed in
fixed coordinate system Sy, as shown in Fig. 4.2

Operational center distance of spherical helical gear set with center
distance error, as shown in Fig. 4.1

Lead of the generated convex (j=vex) and concave (j=cave) spherical
helical gears, as shown in Figs. 2.4(a) and 2.6(a)

Radius of hobbing locus for convex (j=vex) and concave (j=cave)
spherical helical gear generations, as shown in Figs. 2.4(b) and 2.6(b)
Spherical radius of convex (j=vex) and concave (j=cave) spherical

helical gears, as shown in Figs. 2.4(b) and 2.6(b)

Coordinate systems S 7 G=b, ¢, f, g, h,m;n,p,q,t,v,w, 1, 2)

Number of teeth of the convex (j=vex) and concave (j=cave) spherical
helical gear
Number of teeth of pinion (j=1) and gear (j=2)

Thread of the ZN-type worm-type hob cutter
Tooth face width of generated gear

3x3  homogenous coordinate transformation matrix for vectors

transforming from coordinate system S, to S,
4x4 homogenous coordinate transformation matrix for position vectors

transforming from coordinate system S, to S,

Surface normal vector expressed in coordinate system S; (j=w, q)

Position vector of the straight-line cutting blade expressed in its

coordinate system Sj,

XVi



)
Rf

(g.J)
Rq

R(W)

R(j)

w

(g./)
Vq

(w)
Vq

(wg)
Vq

Position vectors of pinion (j=/) and gear (j=2) expressed in fixed
coordinate system Sy, as shown in Fig. 4.2

Position vectors of convex (j=vex) and concave (j=cave) spherical
helical gears, as shown in Figs. 2.5 and 2.7

Position vectors of hob cutter express in coordinate system S, , as shown
in Figs. 2.5 and 2.7

Position vectors of pinion (j=/) and gear (j=2), expressed in common
tangent plane coordinate system S;

Position vector of the ZN-type worm-type hob cutter expressed in
coordinate system S,

Velocity of generated convex (j=vex) and concave (j=cave) spherical
helical gears expressed in coordinate system S,

Velocity of the ZN-type worm-type hob cutter expressed in coordinate
system S,

Relative velocity ‘between the ZN-type worm-type hob cutter and
generated gear expressed in coordinate system S,

Linear velocity of radial feed motion of the ZN-type worm-type hob
cutter, as shown in Figs. 2.4(b) and 2.6(b)

Linear velocity of axial feed motion of the ZN-type worm-type hob
cutter, as shown in Figs. 2.4(a) and 2.6(a)

Half-apex blade angle or normal pressure angle of generated gear, as

shown in Fig. 2.2(b)
Helix angle of pinion (j=/) and gear (j=2), as shown in Fig. 4.3

Angle measured from axis Z, to axis Z,, as shown in Fig. 4.4

Cone angle of conical gear, as shown in Fig. 1.2(b)
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()
/lg

Yo

)

g,J

Angle measured from axis Z, to axis Z,, as shown in Fig. 4.4

Actual rotation angle of pinion, as shown in Fig. 4.1

Pinion’s rotation angle of spherical helical gear set at the starting
contact point during meshing

Actual rotation angle of gear, as shown in Fig. 4.1

Gear’s rotation angle of spherical helical gear set at the ending contact
point during meshing

Rotational angle of the generated convex (j=vex) and concave (j=cave)
spherical helical gear, as shown in Figs. 2.5 and 2.7

Surface parameter of the ZN-type worm-type hob cutter, as shown Fig.
2.3(b)

Lead angle of the generated convex (j=vex) and concave (j=cave)
spherical helical gears, as shown in Figs. 2.4(a) and 2.6(a)

Lead angle of pinion (j=1) and gear (j=2), as shown in Fig. 4.3

Lead angle of the ZN-type worm-type hob cutter, as shown in Figs.
2.2(a), 2.4(a) and 2.6(a)

Spindle rotation angle of the ZN-type worm-type hob cutter, as shown
in Figs. 2.5 and 2.7

Cross angle between the ZN-type worm-type hob cutter and work piece
rotation axes, as shown in Figs. 2.4(a) and 2.6(a)

Cross angle formed by pinion’ and gear’s rotation axes, as shown in

Figs. 4.1 and 4.3

Position vector measured from original point O, of coordinate system

S, to center of hob cutter (j/=w) or work piece (j=g), as shown in Fig. 3.3
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Spherical angle of convex (j=vex) and concave (j=cave) spherical
helical gears, as shown Figs. 2.4(b) and 2.6(b)

Angular velocity of the generated convex (j=vex) and concave (j=cave)
spherical helical gears, as shown in Figs. 2.4 and 2.6

Angular velocity from hobbing locus of convex (j=vex) and concave
(j=cave) spherical helical gears

Angular velocity rate of the ZN-type worm-type hob cutter, as shown in
Figs. 2.1, 2.4(a) and 2.6(a)

Angular velocity of pinion (j=/) and gear (j=2), as shown in Fig. 4.3
Angular velocity of the ZN-type worm-type hob cutter express in
coordinate system Sy (k = ¢, q)

Angular velocity. of the generated convex (j=vex) and concave (j=cave)
spherical helical gears expressed in coordinate system S,

Center distance error of the spherical helical gear set, as shown in Fig.
4.1

Axial shifted amount of the face width of the spherical helical gear set,
as shown in Fig. 4.1

Kinematic error of spherical helical gear set

Additional angle of the generated convex (j=vex) and concave (j=cave)
spherical helical gears rotation due to the hob’s feed motion, as shown
in Figs. 2.4(a) and 2.6(a)

Horizontal axial misaligned angle of the spherical helical gear set, as
shown in Fig. 4.1

Vertical axial misaligned angle of the spherical helical gear set, as

shown in Fig. 4.1
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Contact tooth surfaces of pinion (j=/) and gear (j=2), as shown in Figs.

4.2 and 4.5
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CHAPTER 1

Introduction

1.1. Features of spherical gears and spherical helical gears

The spherical gear is a new type of gear proposed by Mitome et al. [1,2].
Geometrically, spherical gears have straight tooth trace and two types of gear teeth—
convex teeth and concave teeth. The spherical gear with convex teeth is similar to a
part of ball, while the spherical gear with concave teeth looks like a worm gear.
Moreover, the spherical gear set has three types of mating combinations: convex teeth
with concave teeth, convex teeth with convex teeth and convex teeth with spur gear
teeth. The conventional spur gear sets with parallel axes are in line contact [3-5], and
thus their kinematic errors are sensitive to the gear axial misalignments. When these
gear sets have axial misalignments, tooth edge contact will occur and this results in
serious stress concentration, noise and vibration. However, the spherical gear set is in
point contact and allows variable shaft angles and larger axial misalignments without
gear interference during the gear drive meshing. Therefore, it is a good application by
applying the spherical gear set to replace the gear-type coupling [6]. Besides, the
spherical gear set also can substitute some application occasions of the conical gear
set. Figure 1.1 illustrates three types of mating combinations for the spherical gear
sets with axial misalignments. The spherical helical gear is a gear considering the
assembly and transmission characteristics of the spherical gear and helical gear. The
spherical helical gear has all geometry and transmission characteristics of the
spherical gear, and the spherical helical gear set can be assembled in crossing axes
mode the same as that of the helical gear set. Therefore, the spherical helical gears

also have two types of gear teeth—convex and concave teeth, while the spherical
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helical gear set also has three types of mating combinations: convex teeth with
concave teeth, convex teeth with convex teeth and convex teeth with helical gear
teeth.

Figures 1.2(a)-(e) shows five schematic illustrations for the changes of straight
pitch traces in the axial section of different gear types. The axial section of a
conventional external gear, i.e. spur (helical) gears, is shown in Fig. 1.2(a), and the
pitch trace and gear axis are parallel to each other. When the pitch trace of the gear
intersects the gear rotation axis with a cone angle o, then this type of gear is called
the conical gear, as shown in Fig. 1.2(b). When the pitch trace and the gear rotation
axis are perpendicular to each other, then the type of gear is called the face gear, as
shown in Fig 1.2(c). If the cone angle ¢, of an internal gear is equal to 180°, the pitch
trace and gear rotation axis are parallel to each other, as shown in Fig. 1.2(d), and this
type of gear is called the internal spur (helical) gear. While the cone angle ¢, of an
internal gear is more than 90° and less than 180°, this type of gear is called the
internal conical gear, as shown in Fig. 1.2(e).

Figures 1.2 shows the gear with linear pitch traces (i.e. straight lines), however,
Fig. 1.3 shows the gear with quadratic pitch traces (e.g. arcs). Gears with quadratic
pitch traces and convex outward are shown in Figs. 1.3(a) and (b), while gears with
quadratic pitch traces and concave outward are illustrated in Figs. 1.3(c) and (d).
When the pitch traces of a gear have a quadratic convex outward and form as a circle,
this type of gear is called the convex spherical gear, as shown in Fig. 1.3(a). Figure
1.3(b) shows the gear with crowning tooth, and this gear also has a convex outward
pitch trace with quadratic form. Whereas, the concave spherical gear has the quadratic
pitch trace with concave outward, as shown in Fig. 1.3(c). As shown in Fig. 1.3(d), the
worm wheel has the quadratic pitch trace with concave outward, and the radius of the

pitch trace is equal to the pitch radius of the worm-type hob cutter.
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1.2. Literatures review

Although the manufacturing method of the spherical gears have been proposed
by Mitome [1,2], however, only a few of researches on the spherical gears were
performed up to now. Yang [7,8] and Yang et al. [9] proposed a ring-involute-teeth
spherical gear with double degrees of freedom. Yang [10] applied the spherical gear
with double degrees of freedom to the elbow mechanism. Tsai and Jehng [11] applied
a rapid prototyping to manufacture a spherical gear with skew axes. Chao and Tsay
[12,13] studied the contact characteristics of the spherical gear set generated by the
imaginary rack cutters. Chao and Tsay [14] developed an automatic mesh-generation
program to generate the contact model of the spherical gear set cut by two imaginary
rack cutters, and investigated the contact and bending stresses of the gear pair by the
FEA package ABAQUS/Standard. However, both spherical gears proposed by Yang
[7-10] and Tsai [11] are quite different from that proposed in this study neither in
generated mechanism, teeth profiles, kinematic characteristics nor meshing model of
gear set.

In the past, many studies have been made for spur gears, helical gears, conical
gears, noncircular gears, curvilinear cylindrical gears and worm gears, including their
respective mathematical models, tooth undercuttings, bearing contacts, stress analyses,
manufactures or experiments. Wang and Fong [15] proposed a dual face-hobbing
method for the cycloidal spur gears with crowning teeth. Mao [16] simulated the
contact situation of a helical gear set, and investigated the reduction of fatigue wear of
a spur gear set. Wang and Howard [17] studied the errors analysis of the spur gear
drive between the 2-D and 3-D finite element approaches. Moreover, Chen and Tsai
[18], and Ganesan and Vijayarangan [19] utilized the finite element method to
investigate the involute spur gear by considering the frictional effects. The spur gear

is a special case of helical gears with zero degree of helix angle. Tsay [20]
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investigated the geometry, computer simulation, tooth contact analysis and stress
analysis of the involute helical gear. Litvin et al. [21] simulated the meshing, contact
stress and bending stress of the Novikov-Wildhaber helical gears. Chen and Tsay [22]
investigated the tooth contact analysis and kinematic optimization of the helical gear
pair with an involute pinion and a modified gear. Chen and Tsay [23] also discussed
the stress analysis of a helical gear set with localized bearing contacts. Brauer [24]
proposed a method to create a general finite element (FE) model for involute helical
gears. Colbourne [25] studied the contact stress of the Novikov gear. Moreover, Liu
and Tsay [26,27] studied the contact characteristic and tooth undercutting of beveloid
gears. Tsai and Chin [28] discussed the surface geometry of bevel gears. Litvin et al.
[29] investigated the bevel gears with low-noise and high-endurance by design,
manufacture, stress analysis and experimental tests. Litvin et al. [30] applied FEM to
investigate the loaded tooth contact analysis (LTCA) of the spiral bevel gear derive.
Chang and Tsay [31] studied the tooth profile and undercutting of noncircular gears.
Tseng and Tsay [32,33] studied the contact characteristics and tooth undercutting of
the cylindrical curvilinear gear generated by two imaginary cutters. Tseng and Tsay
[34,35] utilized the ZN-type hob cutter to cut the cylindrical curvilinear gear and
enveloped to a two-parameter family of surface by computer simulation. They also
investigated the surface deviations and tooth undercutting of the cylindrical
curvilinear gear. Besides, Simon [36] discussed the influences of gear hobbing on
worm gear characteristics. Janninck [37] proposed the surface separation topology
method to simulate contact ellipses for the worm gear drive. Litvin [38] proposed a
new geometry of face worm gear drives with conical and cylindrical worms, and
investigated their generations, meshings and stress analyses. Fang and Tsay [39]
utilized an oversize hob cutter to cut the ZN-type worm gear by computer simulations,

and studied the bearing contacts of the ZN-type worm gear drive. Maki and Sakai [40]
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proposed a new type of hourglass worm gearing with developable tooth surfaces.
Chen and Tsay [41] studied the worm wheel working surfaces of the ZN-type
hourglass worm gear set. Simon [42] studied the stress analysis of the double
enveloping worm gears by the finite element method. Sun and Hung [43] applied the
FE model of simplified gear pair with local refined meshes to investigate 2-D surface
contact problem of two deformable bodies. Tsai and Hung [44] applied the finite
element model with local refined meshes to investigate 3-D surface contact analysis

of two elastically deformable bodies.

1.3. Motivation

The spherical gear is a new type of gear. Based on the advances of the spherical
gear, this study proposes a .gear by considering the assembly and transmission
characteristics of the spherical gear and helical gear, called the spherical helical gear.
The spherical helical gear has all geometry and transmission characteristics of the
spherical gear, and the spherical helical gear set can be assembled in crossing axes
mode which is the same as that of the helical gear set. Moreover, the hobbing method
is considered for the generation of spherical helical gears due to its high cutting
efficiency and low manufacturing cost. However, the cutting mechanism of a 5-axis
CNC hobbing machine with multiple degrees of freedom may result in complex tooth
surfaces because of the envelope surfaces of two-parameter family [45]. In this study,
a complete mathematical model of the spherical helical gear with envelope surfaces of
two-parameter family cut by the ZN-type worm-type hob cutter is developed firstly.
Then the tooth undercutting and tooth pointing of the spherical helical gear and the
contact situations of the spherical helical gear set under two assembly modes (parallel
axes and crossing axes modes) and three mating combinations (convex tooth with

convex tooth, convex tooth with concave tooth and convex tooth with helical gear
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tooth) are also investigated. These contact situations, including kinematic errors,
contact ratio, contact locus, dimension and orientation of contact ellipses, and contact

and bending stress contours, are also investigated.

1.4. Overviews

This study totally includes six chapters. Chapter 1 is the introduction to the
contents that contains the feature of the spherical helical gears, literatures reviews and
motivation of this study.

In Chapter 2, the mathematical model for the ZN-type worm-type hob cutter
surfaces have been developed. According to the theory of gearing and generating
mechanism of the CNC hobbing machine, the motions between the hob cutter and
work piece, and the mathematical models for the convex and concave spherical
helical gears can be obtained. Moreover, a 3-D computer graph of the spherical helical
gear set with convex pinion and concave gear has been plotted by using the computer
aided drawing technique.

In Chapter 3, the condition equations of tooth undercutting and tooth pointing of
the spherical helical gears are derived by utilizing the developed surface equations of
the gears. Therefore, the limit curves of the tooth non-undercutting and tooth
non-pointing of the spherical helical gears under different design parameters can be
determined.

In Chapter 4, the tooth contact analysis (TCA) method is applied to develop the
tooth surface meshing model of the spherical helical gear set. The tooth surface
meshing model includes assembly errors of the horizontal axial misalignment, vertical
axial misalignment, axial shift along on the face width and the center distance error.
Based on the developed tooth meshing model, the contact characteristics of the

spherical helical gear set, under two axes (parallel and crossed axes) mounting modes
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and three mating combinations (convex teeth with convex teeth, convex teeth with
concave teeth and convex tooth with helical gear teeth), such as kinematic errors
(KEs), contact ratios and contact loci can be obtained. The contact ellipses of the
spherical helical gear sets can be obtained by using the TCA results and the surface
separation topology method. Moreover, several numerical examples are presented to
discuss the influences of the assembly errors on kinematic errors, contact ratios and
contact ellipses of the spherical helical gear sets under two axes mounting modes and
three mating combinations.

In Chapter 5, the contact and bending stress contours of the proposed spherical
helical gear sets are investigated by using the commercial FEA package,
ABAQUS/Standard. Firstly, an automatic mesh-generation program is developed to
generate the finite element contact model of the spherical helical gear sets by
considering the developed surface equations of the gear sets. Therefore, an input file
for ABAQUS/Standard computation is generated automatically by the developed
mesh-generation program. Some numerical examples are presented to demonstrate the
tooth stress with different gear design parameters.

Chapter 6 concludes the proposal by summarizing the accomplished works in

Chapters 2 and 3, and the future works for the advanced study.
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CHAPTER 2

Mathematical Model of Spherical Helical Gears

2.1 Introduction

Hobbing is an economical method for gear manufacturing due to its versatility
and high cutting efficiency. Hobbing method can be employed to generate various
types of gears such as spur, helical, conical and worm gears. A hob cutter with
straight-edged normal section can be used to generate the involute spur and helical
gears. Different tooth profiles can be generated on the same CNC hobbing machine by
changing the profile of hob cutters. However, the hobbing method is complicated
since the gear generating motion is a multi-degree of freedom. Therefore, the method
of two-parameter family envelope surfaces can be used to simulate hobbing process.

Since the spherical helical gear is hobbed by a ZN-type worm-type hob cutter in
this study, the convex and concave spherical helical gears can be considered as
hobbing a helical gear with its hobbing path of positive or negative continuous hob
shiftings in a quadric form, shifting from both sides of the tooth face width to its
middle section, respectively [12,13]. Figure 2.1 shows two hobbing loci for hobbing
the convex (Fig. 2.1(a)) and concave (Fig. 2.1(b)) spherical helical gears. Where the
direction of positive profile shifting is defined as the direction outward the generated
gear, whereas the direction of negative profile shifting is defined as the direction
inward the generated gear. Moreover, compared with the standard tooth profile of a
helical gear, the tooth profiles of the convex spherical helical gear at both ends of
tooth face width have negative profile shifting, whereas the concave spherical helical
gear has positive profile shifting at its both ends of tooth face width. Again, the

hobbing path of a spherical helical gear is generated by hobbing a cylinder with a
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quadric form of continuous profile shifting (i.e. an arc) along the gear rotation axis
instead of a straight line for the generation of the conventional helical gear.

In this chapter, the mathematical model of the ZN-type worm-type hob cutter is
derived firstly. Then the tooth surface equations of the convex and concave spherical
helical gears are developed based on the generating mechanism of the CNC hobbing

machine, the ZN-type worm-type hob cutter, and the theory of gearing.

2.2 Mathematical model of the ZN-type worm-type hob cutter

The normal profile of the ZN-type worm-type hob cutter is widely used for the
gear manufacturing, and it is much more easier to manufacture a hob cutter with its
normal section profile as a straight-lined shape. Therefore, a right-handed ZN-type
worm-type hob cutter is used to simulate the manufacture of spherical helical gears in
this study:.

The tooth surfaces of the hob cutter can be generated by a blade with the
straight-lined shape, performing a screw motion with respect to the rotational axis of
hob cutter. The cutting blade is installed on the normal section to the groove of the
ZN-type worm, as shown in Fig. 2.2(a). The design parameter A, is the lead angle of
the worm. Figure 2.2(b) illustrates the normal section of a cutting blade that is rigidly
connected to the coordinate system S,(X,.Y,,Z,), and the cutting blade is formed by
two straight lines. The blade’s half apex angle «, is formed by the straight-lined of

the blade and X;-axis, as shown in Fig. 2.2(b). Moreover, the distance /, measured
from the initial point M), moving along the straight line M M, , to any point M; is

also a design parameter of the cutting blade. Therefore, the equation of the

straight-line cutting blade can be represented in coordinate system S, as follows:

13



X

M,

lbleOMll -~
Z, r
O,
(a) (b)
X,
/‘\
—— bz" cosA,,
b A \_
2tana, v ”_ IZ, Sitf A,
A
Z, "y r
OW
() (d)

Fig. 2.2 Geometric relationships of the straight-edged cutting blade and the ZN-type

worm-type hob cutter

14



v+, cosa,

0

R, = , 2.1
’ *+/, sina, @1

1

where the upper “+” sign represents the left-side cutting blade, while the lower sign
indicates the right-side cutting blade.

Figure 2.2(c) shows the relationship between the cutting blade and the ZN-type
worm-type hob cutter represented in the normal section of hob cutter’s rotation axis.
Symbols r,, rr and r,, express the outside radius, root radius and pitch radius of the
ZN-type worm-type hob cutter, respectively. The cutting blade width b, equals the
normal groove width of the hob cutter, and the design parameter »; can be obtained

from the geometric relationship, as shown in Figs. 2.2(¢c) and (d) as follows:

=1 —b—”sin2 A, — b, : (2.2)
2tana,

Figure 2.3 shows the relations among coordinate systems S,(X,.Y,.Z,),

S, (X,.Y,,Z,) and S, (XY, ,Z,), where coordinate system S, is the blade

coordinate system, coordinate system S, is rigidly connected to the hob cutter, and

coordinate system S, is the auxiliary reference coordinate system. Axes Z, and Z,

form an angle A, that is equal to the lead angle on the worm pitch cylinder, as shown
in Fig. 2.3(a). Figure 2.3(b) shows that the movable coordinate system S, performs
a screw motion with respect to the auxiliary reference coordinate system S, along

the rotational axis of the hob cutter rotating through an angle ¢, . Therefore, the locus

equation of the cutting blade can be represented in coordinate system S, by
applying the following homogeneous coordinate transformation matrix equation,

transforming from coordinate system S to S,
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(r.+1, cosa, )cos @, T, sina, sing, sin A,

—(r,+1,cosa, )sing, F1,sina, cosg, sin A,
R,(,,4,)=M M R, = , (2.3)

*+l, sina,cosA, —p. @,

1
where
1 0 0 0
0 cosd, —sind, O
M b . ,
P10 sind, cosd, O
0 0 0 1
and
cosg, sing, 0 0
—sing, cosg, O 0
M wp — »
’ 0 0 1 —p.g;
0 0 0 1

where, symbol p,, represents the screw parameter of the ZN-type worm-type hob
cutter. In Eq. (2.3), symbols -/, and ¢, are surface parameters of the hob cutter, and
the upper “+” sign represents the left-side surface of the hob cutter, while the lower
sign indicates the right-side surface of the hob cutter. Since the working interval of the
ZN-type worm-type hob cutter must be limited between the outside radius 7, and root
radius 7, of the worm, the upper and lower bounds of the design parameter /;, can be

limited by

2 2 \ain2 : .2 2 2
;- \/(ro -7, )sm a,sin” B +r, cos” o, —r,cosa, 54
b,max — -2 22 + 2 4 ( ) )
sin“a, sin” B, +cos” «,

\/(rf. —r’ )sin2 a,sin’ B, +r} cos’ a, —r,cosa,
and /,,. =

b,min —

— 2.5)
sin® @, sin® B, +cos’ a, ’

respectively.

The surface normal vector N of the hob cutter can be obtained and expressed
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in coordinate system S, as follows:

_OR, y R, (2.6)
w b .
alb a¢w
where
[ cosa, cosg, Fsina, sing, sin A,
R, S .
py ®=|—-cosa,sing, Fsina, cosg, sin4, |,
b i tsina, cosAd,
[ (r, +1, cosa, )sin ¢, ¥, sina, cosg, sin A
R . . .
and 5 = - (r, +1, cosa, )cos ¢, sina, sing sinA, |.
¢h
L ~ Py

Again, the upper “+” sign in Eq. (2.6) represents the left-side surface of the hob cutter,

while the lower sign indicates the right-side surface of the hob cutter.

2.3 Tooth generation of the convex spherical helical gear

2.3.1 Generating relationship between hob cutter and convex spherical helical
gear

Figure 2.4 depicts the generating relationship between hob cutter and work piece
of the convex spherical helical gear. Axes Z, and Z, are the rotation axis of the hob
cutter and the work piece with angular velocities ®,, and ®,, respectively, and these
two axes form an angle y called the crossing angle. The crossing angle is synthesized
by the lead angles of the hob cutter A,, and the convex spherical helical gear Agex (i.€.
y=AwtAgvex). Moreover, point O,, denotes the rotational center of the hob cutter’s
swivel, and point Oy is the center of the work piece. In Fig. 2.4(a), the common the
hob cutter and the work piece are in tangency at point P. During the hobbing process,

the center of hob cutter is moving along the hobbing locus with the linear axial and
radial feeding velocities V_ and V_, as shown in Fig. 2.4. Moreover, the
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tangent to both hob cutter and work piece is #-¢, and the operating pitch cylinders of

axial and radial feeding displacements of the hob cutter are designed as / and

z,vex

[

x,vex %

respectively, and they are related by the following equations:

[....=R. _ sing (2.7)

z,vex c,vex s,vex 2

and /. =R (l—cosé,

x,vex c,vex s,vex) >

(2.8)

where symbol R.,.. denotes the cutting radius, and symbol 6 ,. indicates the
spherical angle for the convex spherical helical gear. According to Fig. 2.4(b), the
cutting radius R, ., can be synthesized by the spherical radius R;,., and the pitch

radius r,, of the hob cutter for the convex spherical helical gear generation as follows:

R =R +r. . (2.9)

According to Fig. 2.4(a), the rotation angles of the hob cutter and the work piece

can be related as follows:

Pyvex = Myg oV + AP, o (2.10)

T )
where symbol m,, . =—"—, while symbols 7, and T, denote the number of

wg,vex
g,vex

threads of the hob cutter and number of teeth of the convex spherical helical gear,
respectively. Symbols @, ... and y indicate the rotational angles of the work piece and
the spindle of the hob cutter, respectively. Symbol Ad, ... expresses the additional

angle of the work piece (convex spherical helical gear) due to the generated gear with

a helix angle. According to Fig. 2.4(a), the ratio of axial feeding displacement [/

z,vex

to the lead H, .. of the generated convex spherical helical gear is equal to that of the

additional angle Ad,..c to a rotation cycle (i.e. 27) of the gear. Therefore, the
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additional angle Ad, ., for the convex spherical helical gear can be expressed by

[
APy e =, (2.11)

pg,vex

where symbol p, . =H,, /2% represents the screw parameter of the convex

g.vex

spherical helical gear.

2.3.2 Equation of meshing for convex spherical helical gears

Figure 2.5 illustrates the schematic relationships among coordinate systems

S, (X,.Y..Z,) , S(X.Y.Z) , S/(X,Y.Z) and S, (X,.Y,.Z,) for the

generation mechanism of the convex spherical helical gear. Coordinate systems S,
and S, are attached to the hob cutter and convex spherical helical gear, respectively.
Coordinate system S, is an auxiliary coordinate system to describe the hob cutter’s
rotational motion with a rotational angle y; which coordinate system S, is an auxiliary
fixed coordinate system attached to the housing of a CNC hobbing machine.
Moreover, symbol ¢,,.. is the rotational angle of the generated gear (i.e. convex
spherical helical gear). According to Fig. 2.5, the homogenous coordinate

transformation matrices M., M, and Mg, can be expressed as follows:

[cosyy —siny 0 0
sin cos 0 O
M =[SV , 2.12)
0 0 | .
.0 0 0 1
_1 0 0 lC,VBX - X,vex
0 —cosy —sin 0
M = > 4 , (2.13)
! 0 -—siny cosy L e
0 0 0 1

and
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cosg, . sing,,. 0 0
M - -sing, . cosg, .. 0 0 (2.14)
“ 0 0 1ol
0 0 0 1

where symbol [/ =

a,vex

OCOW‘ is the axial displacement of the hob cutter, while
symbol [, . = ‘OqQ‘ is the distance between points O, and Q. Moreover, the feeding

displacements / and / of the hob cutter are expressed in Egs. (2.7) and (2.8),

z,vex Xx,vex

respectively.
In Fig. 2.5, point P denotes an instantaneous common point to the hob cutter and

work piece (convex spherical helical gear) during a hobbing process. Therefore,

surface coordinates R(qg *) of the work piece can be determined by transforming the

hob’s surface from coordinate system S, into the fixed coordinate system S, as

follows:

R =M _M_R =[x, vy, 'z, 11, (2.15)

q

where symbols x,, y, and z, are the X, Y and Z components of the hob cutter’s surface

Rff’”") repressed in coordinate system S,, respectively. Therefore, the velocity

ViE) at point P of the work piece can be obtained by

(g.vex) _ . (g,vex) (g.vex) __ T
v, =0 xR =[-y 0, .. X0, 0], (2.16)

where @'’ =, K  denotes the angular velocity of the work piece expressed in

the fixed coordinate system S,. Differentiating Eq. (2.10) with respect to time, the

relationship among angular velocities @gyex, @y and @; ,.x can be obtained as follows:

d R, cosd.
— ¢g,vex — m a) + c,vex s,vex a) (2. 1 7)

g.,vex d 1 wg,vex - w s,vex ?

pg,vex
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where symbol @, =cil—l/t/ indicates the angular velocity of the hob cutter, while

S

symbol o, =

s, vex

denotes the angular velocity of hob cutter’s generating motion
along the hobbing locus (see Fig. 2.4(b)). Equation (2.17) indicates the rotation angle
0] of work piece (convex spherical helical gear) in terms of two independent

g,vex

variables @, and o,

Similarly, the velocity at point P that attached to the hob cutter, V;w) , can be

obtained as follows:

W) — (w)
VO =0 xR +V, +V,, (2.18)

where V_ and V, express the linear velocity of axial and radial feeding motion,

(w)

and o,

indicates the angular velocity of the hob cutter expressed in the fixed

coordinate system S, as follows:

W) _ W) _ - T
0" =L, 0"=[0 -o,sny @,cosr], (2.19)

where the matrix L can be expressed as:

-1 0 0
L_=|0 -—cosy -siny]|.

0 -—siny cosy
The surface coordinate of the hob cutter R{" can be obtained by
(w) _ 1 (g,vex)
R =RE"™) —d, (2.20)

where symbol d denotes the shortest vector measured from the center of the work

piece to that of the hob cutter, and it can be expressed by
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d=[L,.~l,.. 0 LI (2.21)

c,vex X, vex

Substituting Egs. (2.15) and (2.21) into Eq. (2.20), the surface coordinates of point P

of the hob cutter can be determined as follows:
R(W) [x - Zc vex lx vex yq Zq - lz,vex ]T * (222)

Differentiating Eqs. (2.7) and (2.8) with respect to time, the linear velocities of

axial and radial feeding motion V; and V, can be expressed as follows:

dl
Vz = _%kq - _a)s ve'cRc vex Cos 05 vexkq ’ (223)
dal_ .. .
and V,=——=i =0o,,R , sind , (2.24)
X dl’ §,vex c,vex S, VBX q

§,vex

_do
where @, = aitm Substituting Egs. (2.19) and (2.22)~(2.24) into Eq. (2.18), the

velocity of the hob cutter expressed in coordinate system S, V;W) , can be obtained as

follows:

(L, yox = 2,)0, 5Ny — yqa) cosy+w, R . sinf

s,vex— c,vex S§,vex

Vi = (xq —1 Yo, cos y . (2.25)

c,vex ‘C vex

)o,siny —w, R cos6

(xq c ,vex X vex s,vex™ c,vex s,vex

Therefore, the relative velocity Vq(wg) of the hob cutter and work piece at their

common contact point P can be represented in the fixed coordinate system S, as

follows:

wg) _ ww) (g,vex)
V, 5=V, -V,

q

(lz,vex —Z )Sln V- yq (COS V— mwg,vex) c vex (SIH es vex + yq Cos 93 vex /pg,vex)
= (‘xq - lc,vex X vex) COSy — X wg,vex a)w + - quc vex Cos 0\ vex /pg,vex a)s,vex'
(xq lc,vex + lx,vex) Sll'l e - Rc,vex Cos 0? vex
(2.26)
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According to the theory of gearing [3-5], the common surface normal N, of the

tool surface and the work piece is perpendicular to their of relative velocity V"' at

the instantaneous common contact point. Therefore, the equation of meshing between

the hob cutter surface and the convex spherical helical gear surface can be obtained by
(wg) _
N, -V, =0 (2.27)

where the surface normal N, can be obtained by using the following homogenous

coordinate transformation matrix equation:

N,=L,L,N,, (2.28)

qc ™ ew

where the matrix L_, can be expressed as:

cosy —siny 0
L, =|siny cosy 0f.
0 0 1

Substituting Egs. (2.6), (2.26) and (2.28) into Eq. (2.27) yields:

{[(ZZ,V())C - Zp ) Sln 7/ - yq (COS }/ - mwg,vex )]a)w + [RC,VC‘X (Sin 95,\/‘6.’( + yq COS HX,VG,’X / pg,V@X )]a)S,VL’X }Nq’C
+ {[(‘xq - lc,vex + lx,vex) €os 7 - xqmwg,vex ]a)w - (quc,vex €os es,vex / pg,vex )a)s,vex }qu
+ {[(xq e 1) sinylo, — (R, cosO, o }qu =0,

s,vex s,vex

(2.29)

where symbols Ny, N, and N,. are the X, ¥ and Z components of the surface normal
vector N,, respectively. Rearranging Eq. (2.29) in terms of the independent of

variables, @, and ., yields the following equation:

{[(lz,vex - Zq ) Sin }/ - yq (COS 7/ - mwg,vex)]qu + [(xq - Zc,vex + lx,vex) cos }/ - xqmwg,vex ]qu
+[(x, =L +1.,0)Sin 7IN @, +[R.,..(sin6, .. + v, 080, ../ ... )N, (2.30)

c,vex s,vex

- (xR, €080, ../ Pyr)N, — (R, c0sO, N, lo,, =0.

q c,vex s,vex §,vex §,vex

c,vex

Since @, and ;.. are independent variables, two equations of meshing that relate the

26



hob cutter’s surface parameters and the cutting motion parameters can be obtained as

follows:

and

fl(lb’¢w’l/j’9s,vex) :[(lz,vex _Zq)Sinj/_yq (cosy_mwg,vex)]qu
H[(x, =1 ex H 1,10 )COSY =X, m N

c,vex X, vex wg,vex ] qy

+[(xq ~ Lo Ty )SIN y]qu =0,

c,vex

f2 (lb > ¢w’ l//’ es,vex) = Rc,vex (Sin gs,vex + yq COos es,vex /pg,vex)qu
—(x R, €080, ../ Py )N, — (R, cO8O, )N, =0.

q~ “c,vex c,vex s,vex

2.3.3 Mathematical model of the convex spherical helical gear

2.31)

(2.32)

According to Fig. 2.5, surface locus of the hob cutter, expressed in coordinate

system S,, can be obtained by applying the following homogenous coordinate

transformation matrix equation:

R, =M, M _M_R, .

(2.33)

where the homogenous coordinate transformation matrices M, My and My, are

expressed in Egs. (2.12)~(2.14), respectively.

Based on the theory of gearing [3-5], the mathematical model of the generated

gear is the combination of equation of meshing and the surface locus of hob cutter.

Therefore, the mathematical model of the convex spherical helical gear can be

obtained by considering Egs. (2.31)~(2.33), simultaneously.

2.4

Tooth generation of the concave spherical helical gear

2.4.1 Relationship between hob cutter and concave spherical helical gear

Figure 2.6 illustrates the generating relationship between the hob cutter and work
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piece of the concave spherical helical gear. The rotational axes Z,, and Z, of the hob
cutter and work piece have the angular velocities ®,, and w,, respectively. The
crossing angle y is the included angle between axes Z,, and Z,. Moreover, points O,,
and O, denote the rotational center of hob’s swivel and the center of work piece,
respectively. The hob’s moves along the hobbing locus, as shown in Fig. 2.6, during
the gear generation process. In Fig. 2.6(a), the operating pitch cylinders of hob cutter
and work piece are in tangency at point P on the common tangent ¢-¢. Similarly to that

of section 2.3.1, the axial and radial feeding displacements of hob cutter for the

generating of concave spherical helical gear are also designedas /., and [ . :
z,cave = Rc,cave Sin es,cave > (234)
and lx,cave = Rc,cave (1 —COS e.v,cave ) > (235)

where symbols R, ... and & «ave indicate the cutting radius and spherical angle of the
concave spherical helical gear, respectively. According to Fig. 2.6(b), the cutting

radius R. ... can be determined by

“R  _y (2.36)

c,cave s, cave w2

where symbols R,

s,cave

and r, denote the spherical radius of the concave spherical

helical and pitch radius of the hob cutter, respectively.
Similar to the deriving process of the convex spherical helical gear (see

subsection 2.3.1) and according to Fig. 2.6, the relationship between the concave

spherical helical and hob cutter rotation angles, and the additional angle A¢ for

g,cave

the concave spherical helical gear can be expressed by:

¢g,cave = mwg,cavel// + A¢g,cave 2 (237)
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[,
and A === (2.38)

g.cave
g.cave

where symbol m L of Eq. (2.37) is the gear ratio, while symbol

wg,cave
g,cave

=H /27 of Eq. (2.38) indicates the screw parameter of the generated gear.

pg,cave g.cave

Again, the additional angle A4¢ indicates the work piece (concave spherical

g,cave

helical gear) due to the generated gear with a helix angle.

2.4.2 Equation of meshing for concave spherical helical gears

Figure 2.7 shows a schematic relationship of coordinate systems S, (X,.Y, .Z,),

S.(X

c

Y., Z), S,(X,,Y,Z,) and S (X,.Y,,Z,) for the generation mechanism of

9’79’ g’ g’

concave spherical helical gears. Coordinate systems S,, and S, are attached to the hob
cutter and concave spherical helical gear, respectively. The rotation motion of the hob
cutter is expressed by considering an auxiliary coordinate system S, with a rotational
angle y. Coordinate system S, is the fixed coordinate system attached to the machine
housing. Moreover, symbol ¢, ... 1s the rotational angle of the generated gear (e.g.
concave spherical helical gear). Therefore, the homogenous coordinate transformation

matrices M, My and M, can be expressed as follows:

[cosyy —siny 0 0
sin cos 0 0
m_ =Y 4 , (2.39)
O O 1 la,cave
0 0 0 1
__ 1 0 0 c,cave x,cave
0 —cos —sin 0
M = 087 4 , (2.40)
E 0 -—siny cosy L. cave
| 0 0 0 1

and
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la,cave = |0c Ow|
lc,cave = |0qQ

Fig. 2.7 Coordinate systems between the hob cutter and concave spherical helical gear
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co8®, e SNP, 0, 0 0
M - —-sing, ..., €08¢, .. 0 0 (2.41)
“ 0 0 1ol
0 0 0 1

where symbol / . =10.0,

a,cave

is the axial displacement of the hob cutter, while
symbol [ . = ‘OqQ‘ is the distance between points O, and Q. Moreover, the feeding

displacements / and / of the hob cutter are expressed in Egs. (2.34) and

z,cave x,cave

(2.35), respectively.

In Fig. 2.7, point P is a common contact point of the hob cutter and work piece.
Therefore, the surface coordinates R;g <) of the work piece can be determined by
transforming the hob’s surface from coordinate system S, into the fixed coordinate

system S, as follows:

Rgg,cave) — chMcwa — [xq yq z l]T X (242)

q

The velocity at point P of the work piece can be obtained by:

(g.cave) __ . (g.cave) (g.cave) __ T
v, =0, xR, =[-2,9 core. ¥, O, (2.43)
where @ =@, Kk _ denotes the angular velocity of the work piece (concave

spherical helical gear) expressed in the fixed coordinate system S,. Differentiating Eq.
(2.37) with respect to time, the relationship among angular velocities @y cave, @, and

s, cave €an be obtained as follows:

de, .. R cosé. .
g.cave = ¢g’ = ng cavea)w + = = a)S cave (2'44)
, dt ’ pg,cave ,
dw §,cave b b T4
where symbols o, = and o, =d—’ indicate the angular velocities of hob
t ‘ t
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cutter and hob cutter’s generating motion along the hobbing locus (see Fig. 2.6),

respectively. Equation (2.44) indicates the rotation angle @,

g,cave

of work piece

(concave spherical helical gear) in terms of angular velocities @, and o,

s,cave *

Similarly, the velocity at point P that attached to the hob cutter can be obtained

as follows:
V=" xR +V +V,_, (2.45)

where V_ and V_ express the linear velocities of axial and radial feeding motion,

(w)

and o,

indicates the angular velocity of the hob cutter expressed in the fixed

coordinate system S, as follows:

) _ " _
o =L o"=

[0 —w,siny o, cosy]", (2.46)

where the matrix L . can be expressed as:

-1 0 0
L_=|0 -—cosy -siny]|.

qc
0 —siny cosy

The surface coordinate of the hob cutter REIW) can be obtained by

(w) _ (g,cave)
R =RE g, (2.47)

q

where symbol d denote the shortest vector measured from the center of the work

piece to that of the hob cutter, and it can be expressed by

d=[l  +I 0 !

]T
c,cave x,cave z,caved *

(2.48)

Substituting Egs. (2.42) and (2.48) into Eq. (2.47), the surface coordinates of the hob
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cutter can be determined as follows:

R =[x, —1 z (2.49)

T
c,cave Xx,cave Yq q lz,cave ] .

Differentiating Eqs. (2.34) and (2.35) with respect to time, the linear velocities of

axial and radial feeding motions V. and V, can be determined by parameters of

spherical angle ., cutting radius R, and angular velocity w, . as follows:
dlz,cave
Vz = _71(11 = _a)s,caveRc,cave Cos ev Cave q° (250)
dlx,cave O
and Vx == dt lq = _a)s,caveRc,cave Sln 63 cave q° (251)

Substituting Eqs. (2.46) and (2.49)~(2.51) into Eq. (2.45), the velocity V" can be

determined and simplified as follows:

(L. cave = 2,)@, SINY = Y, 0,,C08Y =@, ., , R, s, SIN O

s,cave” ‘¢c,cave s,cave
(w) _
Vq - ('xq > lc cave — “x cave)a) COS}/ . (252)
(x c cave X, cave)a) Sln V- S, caveRc cave cos 09 cave

Therefore, the relative velocity V;Wg) of the hob cutter and work piece at their

common contact point P can be represented in the fixed coordinate system S, as

follows:

(wg) _ ww) _ y(g.cave)
Vq - Vq Vq

(Zz,cave - Zq ) Sin ?/ - yq (COS ]/ - mwg,cuve) c cave(SIH Hs cave COS e.s cave /pg,cuve)
= (’xq - lc - lx) Cos 7 - xqmwg,cave a)w - quc cave cos e.s cave /pg,cuve
('xq - lc,cave - lx,cave) sin 7 Rc,cave cos Hs cave
(2.53)

The equation of meshing of hob cutter and convex spherical helical gear can be
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obtained by
(wg) _
N, V,” =0, (2.54)

where the surface normal N, can be obtained by using the following homogenous

coordinate transformation matrix equation:

N,=L,L,N, (2.55)

qc ™ ew

where the matrix L_, can be expressed as:

cosy —siny O
L, =|siny cosy Of.
0 0 1

Substituting Egs. (2.6), (2.55)and (2.53) into Eq. (2.54) yields:

{[(ZZ cave —Zz ) Sin }/ - y (COS }/ B mMg cave)]w C cave (Sln 95 ,cave yq COS 98‘ cave / pg,(,‘(lV(f )a)s,cave}qu
+ {[(x C ,cave ‘( cave ) COS 7/ x ng cave ]a) » (quL cave COS 9\ ,cave / pg cave )a)S,CllVC'}qu

+ {[(xq - c,cave - x,cave) Sln }/ w N\ (RC,C[IVG COS 93‘ CllV(’) s cave}N -

(2.56)

where symbols Ny, N, and N,. are the X, ¥ and Z components of the surface normal
vector Ny, respectively. Rearranging Eq. (2.56) in terms of the independent of

variables, @, and @; 4, yields the following equation:

{[(lz,cuve - Zq ) Sin 7/ - yq (COS 7/ - mw& cave )]N + [(‘x - lc cave ~ tx, wn)cos 7/ xqmwg cave ]qu
+ [(x - lC ,cave - l)C CIIVC') Sln y]N }a) + [ RL cave (Sln 9\ ccave - y[)RL cave COS HA ,cave / pg,cave)qu
— (X, R, e €08, o/ Py are) N,y — €080, )N, 10, ., = 0.

q- c,cave §,cave ( c,cave s,cave s,cave

(2.57)

Since w,, and @y qqve are independent variables, two equations of meshing that relative
the hob cutter’s surface parameters and the cutting motion parameters can be obtained

as follows:
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g] (lb ’ ¢w’ l//’ es,cave) = [(lz,cave - Zq ) Sin ?/ - yq (COS 7 - mwg,cave)]qu

+ [(xq - lc,cave - lx,cave)cosy - xqug’C“V" ]N‘I—V (258)
+ [(xq o lc,cave - lx,cave)Sin 7/]qu = 0’

and
&> (Zb 5 ¢w7 v, es,cave) = _Rc,cave(Sin Hs,cave - yq cos es,cave / pg,cave)NqX (259)

= (X, R e €080, 1o/ Py cave) Ny — (R, e €086, . )N, =0.

q” “ecave s,cave s,cave

2.4.3 Mathematical model of the concave spherical helical gear
According to Fig. 2.7, the surface locus of the hob cutter, expressed in the
generated concave spherical helical gear’s coordinate system S,, can be obtained by

applying the homogenous coordinate transformation matrix equation:

R, =M, M M_R,. (2.60)

where the homogenous coordinate transformation matrices M.,, M, and Mg, are
expressed in Egs. (2.39)-(2.41), respectively.

Therefore, the mathematical model of the generated gear is the combination of
equation of meshing and the surface locus of hob cutter. Therefore, the mathematical
model of the concave spherical helical gear can be obtained by considering Egs.

(2.58)~(2.60), simultaneously.

2.5 Computer graphs of convex and concave spherical helical gears

The mathematical model of the convex spherical helical gear is expressed in Egs.
(2.31)~(2.33), while the mathematical model for the concave spherical helical gear is
represented in Eqgs. (2.58)~(2.60). Table 2.1 summarizes some major design
parameters of the hob cutter, convex pinion and concave gear. According to the

developed mathematical models of the convex and concave spherical helical gears,
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the tooth surfaces of the generated spherical helical gear can be plotted by using the
developed computer programs. Therefore, a 3-D computer graph of the spherical

helical gear set with convex pinion and concave gear can be plotted as shown in Fig.

2.8.

Table 2.1 Major design parameters of the hob cutter, convex spherical helical pinion

and concave spherical helical gear

Hob cutter Convex pinion Concave gear

Normal module, m, (mm/tooth) 4 4 4
Number of teeth, T, 1 33 47
Normal pressure angle, «, (deg.) 20 20 20
Lead angle 4,, 4,(deg.) 3.823 RH 75 RH 75 LH
Face width, W (mm) - 20 20
Pitch radius, 7, (mm) 30 68.328 97.316
Spherical radius, R, (mm) - 68.328 97.316
Cutting radius, R, (mm) - 98.328 67.316
Z,

Fig. 2.8 Computer graph of the spherical helical gear set with convex pinion and

concave gear
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2.6 Transverse pitch chord thicknesses of convex, concave and conventional

helical gears

Since the convex and concave spherical helical gears are considered as hobbing a
conventional helical gears with continuous positive and negative profile shiftings
from both end sides of face width of the gears to their middle sections, respectively,
the working pitch circles of the gears are different under every Z-axis cross-section of
face width of the gears. Thus the pitch chord thicknesses of the convex and concave
spherical helical gears are different at every Z-axis cross-section of face width of the
gears. According to the gears’ design parameters of Table 2.2, Fig. 2.9 illustrates the
transverse pitch chord thicknesses of the convex, concave and conventional helical
gears under different Z-axis cross-sections of face width of the gears. It is found that
the transverse pitch chord thickness of both ends of face width of the convex spherical
helical gear is smaller than its central Z-axis cross-section of face width. Whereas, the
inverse situation exists for that of the concave spherical helical gear. Moreover, the
transverse pitch chord thicknesses of face width of the convex, concave and

conventional helical gears under their central Z-axis cross-section are the same.

Table 2.2 Major design parameters of the hob cutter, convex, concave and

conventional helical gears

Gear type cljt(ite)r Convex Concave Corlll\;inct;(l)nal

Normal module, m, (mm/tooth) 4 4 4 4
Number of teeth, 7, 1 33 33 33
Normal pressure angle, «,(deg.) 20 20 20 20
Lead angle 4,, 4,(deg.) 3.823RH  75RH 75 RH 75RH
Face width, W (mm) - 20 20 20
Pitch radius, r, (mm) 30 68.328 68.328 68.328
Spherical radius, R, (mm) - 68.328 68.328 -
Cutting radius, R, (mm) - 08.328 98.328 -
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(mm)

E—H81 Conventional helical gear

&—< Convex spherical helical gear

G—>© Concave spherical helical gear
6.552 -
6.502
6.452 -
6.402 -
6.352 |-

| | (mm)
-10 -5 0 5 10 Ze

Fig. 2.9 Transverse pitch chord thicknesses of the convex, concave and conventional

helical gears

2.7 Remarks

The mathematical models of spherical helical gears with convex and concave
teeth have been developed on the basis of the CNC hobbing machine and the theory
of gearing. The mathematical models can be derived as function of design parameters
and motion parameters of a ZN-type hob cutter. Therefore, the design and motion
parameters can provide us an efficient way to design and manufacture spherical
helical gears. Moreover, the developed mathematical models of spherical helical gears
with convex and concave teeth also help us to explore the possibility for further

studies, such as sensitivity, kinematic errors, contact ratios and contact ellipses.
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CHAPTER 33

Tooth Undercutting and Tooth Pointing Analyses

3.1. Introduction

Tooth undercutting is an important issue for gear design and manufacturing.
When tooth undercutting occurs, the tooth thickness near the gear fillets will be
decreased as shown in Fig. 3.1. It is well known that gears with tooth undercutting
may result in a lower load capacity of a mating gear pair. Mathematically, the
phenomenon of tooth undercutting is the appearance of singular points on an active
tooth surface. Therefore, the concept for checking of the tooth undercutting of the
active tooth surface is to verify the appearance of singular points on the generated
tooth surface. If the active tooth surface is a regular surface, it means that there is no
tooth undercutting on the active tooth surface. Moreover, the tooth undercutting
usually occurs near the tooth root.

Different from the location of tooth undercutting occurrence, the tooth pointing
of a gear occurs near the tooth top as shown in Fig. 3.2. If the phenomenon of tooth
pointing occurs, the tooth thickness of the gear on tooth topland becomes zero. When
the contact location of a mating gear pair with tooth pointing locates near the tooth
top, the load capacity of the mating gear pair is weak in the contact period. Therefore,
the tooth pointing is also an important issue for gear design and manufacturing.

Since the spherical helical gear is hobbed by a hob cutter, the convex and
concave spherical helical gears can be considered as hobbing a helical gear with its
hobbing path of continuous positive-direction or negative-direction profile-shiftings in
a quadric form, beginning from both sides of the tooth face width to its middle section,
respectively. Therefore, the occurrence of tooth undercuttings on both ends of face

width is easier than that at the middle section for a convex spherical helical gear,
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Tooth undercutting

Fig. 3.1 The phenomenon of tooth undercutting

—~Tooth pointting

Fig. 3.2 The phenomenon of tooth pointing
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whereas the inverse situation exists for the concave spherical helical gear tooth
surfaces. Moreover, the occurrence of tooth pointings on both ends of face width is
easier than that at the middle section for a concave spherical helical gear.

Based on the developed mathematical model and theory of gearing, the tooth
undercutting of the convex spherical helical gear and the tooth pointing of the
concave spherical helical gear are investigated and demonstrated by seven numerical
examples in this chapter. Moreover, the limit curves and the beginning points of tooth
undercutting of the convex spherical helical gear and the occurrence of tooth pointing

of the concave spherical helical gear at the Z cross-section are also studied.

3.2. Tooth undercutting of convex spherical helical gear

A method proposed by Litvin [3-5], which considers the relative velocity and
equation of meshing between the generating tool and generated gear, is applied in this
section to determine the limit curve of tooth undercutting of the convex and concave
spherical helical gears. Singularities of the generated surface occur when the relative
velocity V'® of the contact point over the generated surface equals zero. The motion
of the hob cutter surface that generates the envelope surface is considered as the
two-parameter motion of a rigid body. In the case of two-parameter enveloping, the
condition for the appearance of a singular point on the generated tooth surface can be

described as follows [3-5]:

OR™ dl,  OR"™ dg,

+V(wg,z//) +V(Wg:6’5) =0. (31)
o, di 04, di

where symbol R™ represents the surface equation of the hob cutter, while symbols

[, and ¢, indicate the surface parameters of the hob cutter (see Eq. (2.3) of section

2.2). Superscripts w and g of Eq. (3.1) denote the generating tool and generated gear.
Symbol V®#*) considers that the rotational motion parameter of the hob cutter
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is a varied parameter and the moving motion parameter of spherical angle 6, 1is fixed.
Consequently, symbol V"*% has to be interpreted.

Differentiating Egs. (2.29) and (2.30), two equations of meshing for the hob

cutter and gear tooth surfaces, with respect to time yield that:

df o b,0.0) _ O, dl, | O, dg, O, dy of, dO, _

0, (3.2)
dt ol, dt  o¢, dt Oy dt 00, dt

df‘Z(lba¢w7l//705) =%%+ afz d¢w + afz dW + a.fZ des =0. (33)
di oL, dt o4, di oy di 00, di

and

Equations (3.1)-(3.3) represent a system of five equations in four unknowns: % ,

d
% 71': and % The system of equations exists and provides a nontrivial

solution if and only if the rank of the coefficient matrix for these five equations is
three. Therefore, five determinants of order four for the coefficient matrix are equal to
zero simultaneously. It can be proven that two of five determinants are equal to zero

simultaneously, and the additional requirement is

(w) (w)
ox ox (wg.,y) V(W‘o’sg.v)
alb 8¢w
(w) (w)
oy oy plw) (e,
y y
AI _ alb a¢w — 0 , (34)

9 9 9 9,
o, o¢, oy 00,
9% 9, 9 9%,
o, o¢, oy 00

(w) (w)
Ox Ox V(Wgﬂ//) V(Wgﬂs)
alb a¢w ' '
oz oz™

V(Wg,vl) V(Wgﬂs)
A, =| 0, 04, : : -0, (3.5)
o 9 9, 9,
o, 0¢, Oy 00,
9 9 9%, 9,
o, o¢, Oy ol

N
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(w) (w)
8y ny V(wg,'//) V(wgﬂs)
alb a¢w . .

&z oz
(wg,y) (wg,05)
V; V.

and A, =| % 09, =0. (3.6)
a9 9 9, 9,
o, o4, oy 08,
o o O, o,

o, o4, ow 06,

To avoid the occurrence of tooth undercutting of the generated gear tooth
surfaces, the generating hob cutter surface must be limited with the curve Sj.
Considering Egs. (3.4)-(3.6) and two equations of meshing, simultaneously, one can
solve the limited curve S, on the hob cutter surface that generates the singular points
on the generated tooth surfaces. The limited curve S; on the hob cutter surface can be

determined by applying the following expressions:

Fl,.$,.p.0)=A +&, +A; =0, (3.7)
f1,,8,.v.6,)=0, (3.8)
and f,(/,,4,.v.,6,)=0. (3.9)

Equations (3.7)-(3.9) form a system of three equations with four unknowns, /,,
#,, v and @, one of these unknowns may be considered as an input variable, then
solving three independent equations with three unknowns. Moreover, the
differentiated equations of meshing, Eqs. (3.2) and (3.3), for the convex spherical

helical gear can be rewritten respectively by

% _ %(N(qw) .V‘;wg,w)) _ N(qw) _Vq(wg,n//) + N;W) .V;wg,l//) =0, (3.10)
and Lo LNV NV NV 2, G.11)

where the subscript ¢ denotes the fixed coordinate system S, (see section 2.3).
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In order to derive the differentiated equations of meshing (3.10) and (3.11), let’s

consider a coordinate relationship between the hob cutter and the generated gear as
shown in Fig. 3.3. Axis Z, represents the rotational axis of the generated gear. The
motion of the hob cutter can be represented by two parameters, rotational angle

and spherical angle 6,. Axis Z_ is the rotational axis of the hob cutter, and symbol

O. is the initial position of the hob cutter center. The point P is a common point to

c

both rotating bodies. Moreover, R™ is the position vector drawn from point O, to

point P, while R'® represents a position vector drawn from an arbitrary point on the

axis Z,, e.g. O, to point P. Symbol d is the relative-position vector drawn from

point O, to point O,. The locations of original points O, and O, are specified

by the position vectors p" and p'®’, which are measured from the fixed coordinate
system S, .

According to Fig. 3.3, the velocity of point P attached to the body i (i=w, g)

can be obtained by:

aP(i) d] _a(P(i)'FR(i))dj

V@) = —
o dt o dt

— VO L ) xRD, (3.12)

where symbol V%’ indicates the velocity of point P attached to the body i
(i =w, g) when parameter j = (or 6,) is varied and another parameter 6, (or y )

is fixed. V' is the velocity of point O, (i=w, g) when parameter j =y (or 6,)

is varied and parameter 6, (or ) is fixed. Similarly, ®"” depicts the angular

velocity of body i when parameter j=y (or 6,)is varied and parameter 6, (or v )
is fixed. Therefore, the relative velocity of point P between the hob cutter (i=w) and

generated gear (i=g) can be rewritten as
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Fig. 3.3 Simulation of a generation mechanism with two-parameter motion

46



Vq(wgJ) — Vq(w,.m _ V;g,j) — (Vq(ow,f) + m;w,j) xR™) - (Vq(og’” + m;g,n x R®))
(3.13)
. . . . 0.
_ (m;w,«/) _ mf]g,«/)) xR™ — mﬁlgd) xd+ VC;OW,J) _ V; A -1)’

where R® =d + R" (see Fig. 3.3).

The differentiation of Eq. (3.13) gives:

A \jom) o _ ©") — @) x R™ + (0" — @) x R™
q q q q q q
dt (3.14)

_ (&) RPN - ) B 7(0,.)) _ 17 (Ogs))
o xd-0/" xd+V, v,
Differentiating the relative-position vector d and R"’ with respect to time yields:

. d d . o
d="d="(p™ —p®)=V©® _y%) 315
Ul dt(p pe)=V, . (3.15)

and R™ =P™ —p™ =v™ LV V) = y4 o xR™. (3.16)
The absolute velocity of contact point P can be represented as:

PO = VO S YO Ly 0Ly (D 500 05 RO
r tr r

abs
SV 4 VO 4 0 xR, (3.17)
aR(W)%J’-aR(W) d¢w

where V) = :
ol di | o4, di

Substituting Egs. (3.15), (3.16) and (3.17) into Eq. (3.14), the differentiated relative

velocity of point P can be represented in the coordinate system S, as follows:

V;Wg’j) _ ((bflw,j) _ d)f]g,j)) «R™ + ((,)E]WJ) — (o;g’j)) X (V}’(W) + w(qW) X R(w)) G18)

— @D o d — &) ©0.) _ vy 4 X0y _ X7
o/ xd-0/ x(V, V,*)+V, vV, e

Similarly, the differentiation of normal vector at point P can be obtained as follows:

: d : : :
) _ ) _ N () _ (w) (w)
NQY == N =N N =N, o <N, (3.19)

ON,” di, | N,” d,

where N = :
o, di o4, di
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Substituting Eqgs. (3.18) and (3.19) into Egs. (3.10) and (3.11), the differentiated

equations of meshing of the spherical helical gear can be rewritten as follows:

fI — N§~W) _V;Wg,w) + (mEIW) XNE{W))_vq(wg,W) +N;W) ,[(o')flw,l//) _d);g,l//))xd(W)]
+N;W) ,[(m;w,r//) —(y);g"//))x (V:W) _}_m;w) Xd(W) )]_N;W) ,(0');&'//) Xd) (3.20)

_ N;W) .[mfig,l//) % (V;OW) _V;Og))] + NEIW) . (V;OWI//) _Vq(OgM)) — 0,
and

fz — NE-W) . V(;Wgﬂ;) + ((’)f]w) x N(qW)) . V{;Wgﬂ;) + NE]W) . [((’:)SIW’H:) _ d)égﬁ:)) > d(W)]
+NY - [(@" —0 ) x (VI + 0! xd")] =N - (@ xd)  (3.21)

0, 0,) (0,) y "7 (0,0, 7 (0g.0,)\ _
—N" [ x (VO =V )]+ N (VO —y 550 =0,

It is noted that the schematic mechanism of a CNC hobbing machine for the

spherical helical gear generation can be referred to Fig. 2.5. Coordinate system
S, (X,,Y,,Z,) is attached to the hob cutter while coordinate system S, (X,,Y,,Z,)
is attached to the gear blank. Coordinate system" S,(X,,Y,,Z,) is the reference

coordinate system and coordinate system S (X, ,Y,,Z ) is the fixed coordinate

system attached to the machine housing. Symbols y and ¢, are rotational angles

of the hob cutter and gear blank, respectively. & indicates the spherical angle. By
compared Fig. 2.5 with Fig. 3.3, the schematic gear generation mechanism, the

following position vectors can be found as:

p" =d=[l, -l 0 L], (3.22)

(w) _

p™ =0, (3.23)
and R™ =R¥ -d=[x (. -1) y, z,-LI", (3.24)

where the position vector R =[x, y, z,]", while symbols /, =R, (1-cos6,),
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[,=R sm0 and [ =r, +r,.
The velocity of the points O, and O, can be obtained as

VIO p0 Zd=[-R sin0, 0 R cosd," dd‘is , (3.25)

and V% =p® =0, (3.26)

respectively.

Differentiate Eq. (3.25) with respect to time by considering that a9, and v are

dt dt
constants. It yields:
0,) (0,) (Oy)
W T e e i, 6.27)
4 s

where Vi) =0 and V& SR cosf, 0 = Risind, ] (72
t
Similarly, the differentiated form of Eq. (3.26) with respect to time can be represented

by

0,) 0,) 0,,)
voo oWV N 0y (VT 06, _yom  yona (3.28)
! dt oy ot 06, o ‘! !

where Vq(og’”') =0 and Vq(og’gf) =0.
According to the hobbing mechanism of the spherical helical gear, mentioned in

section 2.4, the angular velocity of the hob cutter ®™ and the generated gear ®'¢’

can be represented as follows:

v y . d
0" =L ol =[0 —siny cos;/]le/t/, (3.29)
R
and ©* =[0 0 wg]Td—‘/’jL[o o Recosliyrdld (3.30)
dt D, dt
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Similarly, by considering d—f and d—l/t/ as constants, the differentiation of angular

(&)

. can be obtained by:

. - (w) .
velocity of the hob cutter @, and generated gear @

(w) (w) (w)
o = do,” 00, oy - 00,” 90, _ o) + 6" (3.31)
‘ dt oy ot 00, o ¢ ¢ '

(&) (&) (&)
and d)f]g) — d(:;:g _ a(;’)qg 881/; . 8;)6; 886:3 — (b;g,l//) _|_0')£]g,5’s) , (3.32)
4 s

—R sin@ do
SRy

Pe dt

where @ =0, @ =0, ®@*"' =0 and @ =[0 0

According to the hobbing mechanism of the spherical helical gear, the relative

velocity V¥’ and V"* can be obtained by

V;Wg,./,) _ ((’)Elw,l//) _ m;g,w)) xR™ — m;g,l//) xd+ Vq(ow,u/) _ Véog:w)
.-z siny=y, Gosy=my)" (333)
=| (x, =L +I)cosy—xm -

s dt
(x, =1 +1)siny

and

(wg.b;) _ w.0,) _ ~(8.6,) W) _ 3(8.6) (0,,6,) _ v (O¢:05)
v, = (o, o,/ )xR 0,/ xd+V, Vv,

) RC(Sinxa}e + CJ:;,SC;S/H; /pg) a0, (3.34)
- a7 < e dt
— R, cos 6,

3.3. Tooth pointing of concave spherical helical gear

Tooth pointing of a gear means that the tooth thickness of the tooth topland
becomes zero. In other words, the tooth pointing can also be considered as the
left-side and right-side tooth profiles of a gear intersect as a point at its tooth topland

in a cross-section of face width. Since the concave spherical helical gear can be
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considered as hobbing a helical gear with its hobbing path of continuous
negative-direction profile-shiftings in a quadric form, beginning from both sides of
the tooth face width to its middle section. Therefore, the occurrence of tooth pointing
on both ends of face width is easier than that at the middle section for a concave
spherical helical gear. Figure 3.4 illustrates the tooth pointing occurs on the tooth
topland of a concave spherical helical gear. Symbol d; of Fig. 3.4 denotes the tooth
thickness of the tooth topland at any Z, cross-section of face width of the concave
spherical helical gear. According to the concept of tooth pointing, the condition
equations of tooth pointing at the Z, cross-section of face width of the concave

spherical helical gear can be considered as follows:

Ry sen =Ry g (3.35)
\/ Xt + Voun = J X i VY g = T (3.36)
Srien Uy ses Buotosi> Vs O s ) = 05 (3.37)
Sosep Uy segi> Buvsenis Wien> Osgen) = 05 (3.38)
g U righes Brsighe W vighes Or igne) = 0, (3:39)
a0/, Uy s B oV i Orig) = 0 (3.40)

where, subscripts “left” and “right” of Egs. (3.35)-(3.40) denote the left-side and

right-side tooth profiles of the concave spherical helical gear, respectively, while

symbol r, indicates the radius of the tooth top circle. Symbols X, and Y, denote
the X'and Y components of position vector R, respectively. Equation (3.35) explains
that the left-side and right-side tooth flank profiles of the concave spherical helical
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Fig. 3.4 Tooth pointing of concave spherical helical gear
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gear intersected as a point at the Z, cross-section of the gear fact width. Equation
(3.36) denotes the crossing point formed by the left-side and right-side tooth profiles
of the concave spherical helical gear locates on the tooth topland. Moreover,
Eqgs.(3.37) and (3.38) are the equations of meshing of left-side tooth profile of the
concave spherical helical gear, while Eqgs.(3.39) and (3.40) are the equations of
meshing of right-side tooth profile of the gear. Since Eq. (3.35) includes three

independent nonlinear equations, Egs. (3.35)-(3.40) yields a system of eight

independent equations with eight variables I, .., @100 Vi Coiens Lyrin> Povigns

l//right and 6

s,right *

3.4. Numerical examples

According to the developed tooth undercutting condition equations of the convex
spherical helical gear (Egs. (3.7)-(3.9)), the tooth undercutting analysis of the
proposed convex spherical helical gear is investigated. Moreover, the tooth pointing
analysis of the concave spherical helical gear 1s also discussed based on the
development tooth pointing condition equations (Egs. (3.35)-(3.40)) of the gear. All
analysis results of the tooth undercutting and tooth pointing are illustrated by the
following numerical examples. Furthermore, some major design parameters of the
proposed convex and concave spherical helical gears for the numerical examples are

given in Table 3.1.

Example 3.1: Tooth profiles of the convex spherical helical gear with tooth
undercutting under different Z, cross-sections.

This example investigates the tooth profiles of the convex spherical helical gear
with tooth undercutting under different Z, cross-sections. Where the Z, cross-section

denotes the cross-section along the rotation axis (Zg-axis) of the convex spherical
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Table 3.1 Major design parameters of the hob cutter, convex spherical helical gear

Hob cutter Convex tooth  Concave tooth
Normal module, m, (mm/tooth) 4 4 4
Number of teeth, T 1 22 22
Normal pressure angle, «, (deg.) 20 20 20
Lead angle (deg.) 3.823 RH 75 RH 75 RH
Face width, I (mm) - 20 20
Pitch radius, ; (mm) 30 45.552 45.552
Spherical radius, R; (mm) - 45.552 45.552
Cutting radius, R, (mm) - 75.552 15.552

helical gear. The analysis results are obtained based on the convex spherical helical
gear data given in Table 3.1.

Figure 3.5 illustrates the tooth profiles of the convex spherical helical gear with
tooth undercutting under different Z, cross-sections of the gear. It can be found that
the convex spherical helical gear have tooth undercuttings on the left-side tooth
profiles of Z;=+ 10mm and Z,=+ 5Smm of the face width and on the right-side tooth
profiles of Z,=—10mm and Z,=—-5mm of the face width. Therefore, the tooth
undercutting curves on the left- and right-side tooth surfaces of the convex spherical
gear are not symmetric. Table 3.2 lists the coordinate positions of the left- and
right-side tooth profiles of the convex spherical helical gear at Z,=0mm cross-section
of face width of the gear, while each coordinate position of the tooth profiles of the
gear can be generated by the corresponding hob cutter’s parameter /, under its

working interval [, <[, <[, .. According to Table 3.2, the left- and right-side

,max

tooth profiles of the convex spherical helical gear are geometrical symmetry at central

cross-section (Z,=0mm) of face width of the gear.

Example 3.2: Limit curves of tooth undercutting of convex spherical helical gears

under different number of gear teeth
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Table 3.2 The coordinates of left- and right-side tooth profiles of the convex spherical

helical gear at Z;=Omm cross-section

(unit: mm)
Left-side Right-side

lb Xg Yg Zg Xg Yg Zg
5.758 49.530 —1.470 49.530 +1.470
7.294 47514 —2.482 47.514 +2.482
8.831 45.787 —3.141 45.787 +3.141

10.368 44.410 -3.512 0.0 44.410 +3.512 0.0
11.905 43.442 —3.669 43.442 +3.669
13.441 42.938 ~3.699 42.938 +3.699

Tooth undercutting
curve

Cross-section Z; = 10 mm

Pitch circle

Tooth
undercutting

Cross-section Zg =5 mm

Pitch circle

Tooth
undercutting

Cross-section Zg=-10 mm

Cross-section Zg = -5 mm

Cross-section Zg =0 mm

Pitch circle

Tooth
undercutting

Pitch circle

Tooth
undercutting

Pitch circle

Fig. 3.5 Tooth profile of the convex spherical helical gear with tooth undercutting

under different Z, cross-sections
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This example shows the positions of singular points appeared along the Zg-axis
of the convex spherical helical gears under different number of gear teeth 7, (7,=22,
24, 26, 28 and 30 teeth). A set of singular points appeared on the generated gear tooth
flank which corresponds to a set of points located on hob cutter working surface is
called the limit curve of tooth undercutting. The analysis results are obtained based on
the convex spherical helical gear data given in Table 3.1.

Figure 3.6 shows the locations of limit curves of tooth undercutting appeared on
the left-side tooth flank along the Z,-axis of the convex spherical helical gear in terms
of hob cutter’s surface parameter /, under different number of gear teeth T,.

Symbols /,,.. and [ denote the maximum and minimum working intervals of

max b,min

the hob cutter’s surface parameter [, respectively (see Fig. 2.2(b)). If the limit curve

of tooth undercutting locates inside the working interval of hob cutter’s surface

parameter /,, it means that the tooth undercutting occurs on the tooth flank of the

[, (mm)

13.441 L max(€= 20°)

4929 ———————— —f ———— — — — — — — b min (22 =20%)
| | Z ( )
10 5 0 5 1075

Fig. 3.6 Locations of limit curves of the convex spherical helical gear under different

number of teeth 7,
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convex spherical helical gear. When the number of teeth of the convex spherical
helical gear is 22 teeth, there is a more severe tooth undercutting at its end section
(Z;7=+ 10mm) of tooth face width. Moreover, it can be obtained that the locations of
the limit curves of tooth undercutting of the convex spherical helical gear are moving
) of hob cutter’s surface parameter

away from the working interval (1, <[, <[,

min , max

[, by increasing the number of gear teeth. It means that the tooth undercutting
phenomenon of the convex spherical helical gear can also be improved by increasing

the number of gear teeth.

Example 3.3: Limit curves of tooth undercutting of convex spherical helical gears
under different gear’s lead angles

This example discusses .the positions of singular points appeared along the
Zg-axis of the convex spherical helical gears under different gear’s lead angle A,
(A=75°, 80°, 85° and 90°). The analysis results are obtained based on the convex
spherical helical gear data givenin Table 3.1.

Figure 3.7 illustrates the locations of limit curves of tooth undercutting appeared

on the left-side tooth flank along the Z,-axis of the convex spherical helical gear in

terms of hob cutter’s surface parameter /, under different gear’s lead angle A,. It can

be obtained that the lead angle of the convex spherical helical gear affects the trend of
limit curve of gear’s tooth undercutting. When the lead angle of the convex spherical
helical gear is equal to 90° (helix angle becomes 0°), the limit curve of tooth
undercutting of the gear becomes symmetry in the central section of face width of the

gear (Z;~0mm).
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[, (mm)

13.441 L max(€= 20°)

4929 ————————— 4+ ———————— — — Ly min (@n= 209
| | Z ( )
10 3 0 5 1075

Fig. 3.7 Locations of limit curves of the convex spherical helical gear under different

gear's lead angle A,

Example 3.4: Limit curves of tooth undercutting of convex spherical helical gears
under different hob cutter’s pitch radii

This example discusses the positions. of singular points appeared along the
Zg-axis of the convex spherical helical gears under different hob cutter’s pitch radius
rw (r=30mm, 45mm and 60mm). The analysis results are obtained based on the
convex spherical helical gear data given in Table 3.1.

Figure 3.8 illustrates the locations of limit curves of tooth undercutting appeared
on the left-side tooth flank along the Z,-axis of the convex spherical helical gear in
terms of hob cutter’s surface parameter /, under different hob cutter’s pitch radius r,,.
It is formed that decreasing the hob cutter’s pitch radius can improve the tooth
undercutting of the convex spherical helical gear at the end of gear’s face width.
However, the size of hob cutter’s pitch radius depends on the strength and the shaft

size of the hob cutter.
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[} (mm)

13.441 L max(€a= 20°)

7, = 30mm

4929 ———————— —4 ————————— — Lo min (2= 20%)
| | Z
10 5 0 5 1g-e ™

Fig. 3.8 Locations of limit curves of the convex spherical helical gear under different

hob cutter's pitch radius r;,

Example 3.5: Limit curves of tooth undercutting of convex spherical helical gears
under different gear’s normal pressure angles

This example discusses the positions of singular points appeared along the
Zg-axis of the convex spherical helical gears under different gear’s normal pressure
angle o, (a,=14.5°, 20° and 25°). The analysis results are obtained based on the
convex spherical helical gear data given in Table 3.1.

Figure 3.9 illustrates the locations of limit curves of tooth undercutting appeared
on the left-side tooth flank along the Z,-axis of the convex spherical helical gear in
terms of hob cutter’s surface parameter /, under different gear’s normal pressure
angle «,. The red, black and blue curves of Fig. 3.9 indicate the limit curves of tooth
undercutting of the convex spherical helical gear under the gear’s normal pressure
angles 14.5°, 20° and 25°, respectively. Since different normal pressure angles of the
convex spherical helical gear result in different working intervals of hob cutter’s
surface parameter /,, the red, black and blue limit curves of Fig. 3.9 correspond to
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16.679

Ly max(Qn=14.5°)
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11.846

lb,max(an =20°)

lb,max(an = 250)
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Fig. 3.9 Locations of limit curves of the convex spherical helical gear under different

normal pressure angle o,

the red, black and blue hidden lines of the working intervals (/,,, <[, <[, ),

respectively. According to Fig. 3.9, increasing the normal pressure angle of the

convex spherical helical gear can improve the gear’s tooth undercutting.

Example 3.6: Investigation on tooth pointing of concave spherical helical gears
by checking along Z, cross-sections under different hob cutter’s pitch radii and
number of gear teeth

Based on the developed condition equations (Egs. (3.35)-(3.40)) of tooth
pointing of the proposed concave spherical helical gear, this example discusses the Z,
cross-section of tooth pointing beginning of the concave spherical helical gear under
different hob cutter’s pitch radius r,, (r,=30mm, 45mm and 60mm) and different
number of teeth 7, (7, =15~35 teeth). Where the Z, cross-section denotes the
cross-section along the rotation axis (Zg-axis) of the concave spherical helical gear.

The analysis results are obtained based on the concave spherical helical gear data
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given in Table 3.1.

Figure 3.10 illustrates the beginning tooth pointing at +Z, cross-sections of the
concave spherical helical gear under different hob cutter’s pitch radii and different
number of teeth. The purple hidden curves of Fig. 3.10 indicate the +Z, cross-sections
of tooth pointing beginning of the concave spherical helical gear generated by the hob
cutter’s pitch radius »,=30mm under different number of teeth, while the blue and red
ones denote those of the hob cutter’s pitch radii 7,,=45mm and 60mm, respectively.
Since the spherical radius R, of the concave spherical helical gear is limited by the
hob cutter’s pitch radius 7, (see Fig. 2.6) and the spherical radius R; depends on the
number of the gear teeth (R=r,), the initial number of teeth of the gear for the tooth
pointing beginning at Z, cross-section is limited by the hob cutter’s pitch radius. For
the gear design parameters given in Table 3.1 and hob cutter’s pitch radii 7,=30mm,

45mm and 60mm, the initial number of teeth of the concave spherical helical gear are

(mm)
35
28 ..4-‘*""5‘&
.,--t-*‘-‘-”""*#fhf$*

21 n e

14 |
g
2 7 - |
b e 1, =30mm
2 0 ke 1, =45mMm
8 . e 1, =00mm
Nu(

Number of teeth

Fig. 3.10 The Z, cross-sections of tooth pointing beginning of the concave spherical

helical gear
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15, 22 and 29 teeth, respectively. According to Fig. 3.10, the size of the hob cutter’s
pitch radius only has a small effect on the tooth pointing beginning at Z, cross-section
of the concave spherical helical gear. Moreover, it can also be found that the +Z,
cross-sections of tooth pointing beginning of the concave spherical helical gear
depend on the number of the gear teeth. Therefore, the suitable face width of the
concave spherical helical gear with tooth non-pointing can be designed by

W <|+ Zy|+|—Zg.

Example 3.7: Tooth pointing of concave spherical helical gears under different
normal pressure angles and different gear’s lead angles by checking along Z,
cross-sections

This example investigates the Z, cross-section of tooth pointing beginning of the
concave spherical helical gear under different normal pressure angle o, (,=14.5°,
20° and 25°) and different gear’s lead angle 4, (4, =75%,80°, 85° and 90°). Again, the
Z, cross-section denotes the cross-section along the rotation axis (Zg-axis) of the
concave spherical helical gear. The analysis results are obtained based on the concave
spherical helical gear data given in Table 3.1.

Tables 3.3 and 3.4 list the +Z, cross-sections of tooth pointing beginning of the
concave spherical helical gear under different normal pressure angles and gear's lead
angles, respectively. It is found that the concave spherical helical gear with a larger
normal pressure angel and gear lead angle allows a smaller value of face width of the
gear. However, the effects of increasing the normal pressure and the gear lead angle

on the value of face width of the concave spherical helical gear are small.

3.5. Remarks

Since the tooth surfaces of the proposed convex spherical helical gear are the
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Table 3.3 The Z, cross-section of tooth pointing beginning of the concave spherical

helical gear under different normal pressure angle o,

Basic gear parameters: A,=75°, T,=22 teeth, r,,=30mm

Normal pressure angle ¢, (deg.) 14.5 20 25
Z4 cross-sections (mm) +22.29 +22.25 +21.48
Suitable face width W (mm) <44.58 <44.50 <42.96

Table 3.4 The Z, cross-section of tooth pointing beginning of the concave spherical

helical gear under different gear’s lead angle A,

Basic gear parameters: ,=20°, 7,=22 teeth, r,=30mm

Gear lead angle A, (deg.) 75 80 85 90
Z, cross-sections (mm) +22.25  £21.57  £21.16 +21
Suitable face width /' (mm) <4450 <43.14 <4232 <42

envelope to the two-parameter family of surfaces, the kinematic method to find the
differentiated equations of meshing (Egs. (3.20) and (3.21)) has been developed for
investigating tooth undercutting of the proposed convex spherical helical gear. The
characteristics and limit curves of tooth undercuttings of the convex spherical helical
gear under different design parameters were also studied and verified by five
numerical examples (Examples 3.1~3.5). The tooth undercutting of the convex
spherical helical gear can be avoided by design a gear set with a larger number of
teeth or a larger pressure angle. Moreover, the condition equations of tooth pointing of
the concave spherical helical gear had been developed. Based on the development
condition equations of tooth pointing of the concave spherical helical gear, the Z,
cross-section of tooth pointing beginning of the gear under different design
parameters were also investigated and verified by two numerical examples (Examples
3.6 and 3.7). Furthermore, the value of suitable face width of the concave spherical

helical gear with tooth non-pointing had been also determined.
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CHAPTER 4

Tooth Contact Analysis

4.1. Introduction

Gear sets are important machine elements used for power transmissions. The
profile and assembly errors are two major factors that effect the gear kinematic errors.
The profile errors include the errors of pressure angle, lead angle, tooth profile, etc.
These errors relate to the manufacture of gears. Therefore, improving the precision of
manufacture is an important issue to increase the gear transmission performance.
Another important factor that effects the kinematic errors of the gear set is assembly
errors. Assembly errors include the errors of center distance, axial shifted error along
the tooth face width, vertical axial misalignment and horizontal axial misalignment.
The tooth contact analysis (TCA) method was proposed by Litvin [3,4] and Litvin and
Fuentes [5], and it had been applied to simulate the meshing situations of a gear set.
The TCA results can provide useful information on the tooth contact loci, contact
ratios and kinematic errors (KEs) of gear sets.

Due to the elasticity of gear tooth surfaces, the tooth surface contact point is
spread over an elliptical area. It is known that the instantaneous contact point of the
mating gear pair can be determined from the TCA results. When gear drives transmit a
power or motion, a set of contact ellipses forms the bearing contacts on the tooth
surfaces. Simulation methods for the analysis of contact ellipses can be classified into
the elastic body method and the rigid body method. The finite element method
belongs to the elastic body method for analyzing the contact area with consideration
of elastic deformation of tooth surfaces due to the contact stress, thermal stress, and so
on. On the other hand, the rigid body method for contact ellipse analysis includes the

curvature analysis method [3-5] and the surface separation topology method [37].
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In this chapter, based on the mathematical models of the spherical helical gear
developed in Chapter 2, the influences of assembly errors of the spherical helical gear
sets under parallel and crossed axes mounting modes and three mating combinations
on kinematics errors are investigated. Moreover, the contact ellipses of the gear sets
with assembly errors under two axes mounting modes and three mating combinations

are obtained by using the surface separation topology method [37].

4.2. Meshing model for spherical helical gear set
Figure 4.1 shows the schematic diagram that the spherical helical pinion and gear
are meshed with assembly errors. The crossed axes mounting mode of the spherical

helical gear set can be considered by the relationship of coordinate systems

S,(X,.Y,,Z,) and S, (X,,Y,,Z,). Moreover, the assembly errors can be

simulated by changing the settings and orientations of the reference coordinate

systems S,(X,.Y,,Z,) and" S, (X .Y, ,Z, ) with respect to the coordinate system

S,(X,,Y ,Z ). Coordinate systems §,(X,,Y,,Z,) and S,(X,,Y,,Z,) are

attached to the spherical helical pinion and gear, respectively. When the spherical
helical pinion and gear tooth surfaces are meshed with each other, ¢, and ¢, are
the actual rotation angles of the spherical helical pinion and gear on the rotational
axes Z; and Z,, respectively. The spherical helical pinion and gear are mounted as

crossed axes mode with an angle y, called the crossing angle. The crossing angle
7, 1s formed by pinion’s and gear’s rotation axes Z, and Z,. When the crossing

angle y, of the spherical helical gear set equals zero degree, the gear set becomes
mating under a parallel axes mounting mode. Moreover, to simulate the horizontal
axial misalignment of pinion, it can be performed by rotating the coordinate system Sj,
about axis JXj through a misaligned angle Ay, with respect to coordinate system Sy.
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Fig. 4.1 Simulation of meshing for spherical helical gear set with assembly errors
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Similarly, simulation of the vertical axial misalignment of pinion can be achieved by
rotating the coordinate system S, about axis X, through a misaligned angle A4y, .
Moreover, the center distance error of the spherical helical set can be performed by
moving the coordinate system S, along axis Xy through a distance AC. Symbol AZ
denotes the axial shifted error of the face width between the spherical helical pinion
and gear tooth surfaces measured from point O, to O; along the gear’s rotation axis
Z;. Where symbols Ay, , Ay,, AC and AZ represent the horizontal axial
misaligned angle, vertical axial misaligned angle, center distance error and axial
shifted error of the tooth face width of the gear set, respectively.

According to the TCA method [3-5], the position vectors and unit surface normal
vectors of both pinion and gear should be represented in the same coordinate system,
say Sy Therefore, the instantaneous common contact point on the pinion and gear
tooth surfaces is the same point in the fixed coordinate system S;; as shown in Fig. 4.2.
Moreover, the unit surface normal vectors of the pinion and gear must be collinear to
each other. Therefore, the following equations must be observed at the point of

tangency of the mating gear pair represented in the same fixed coordinate system:

R -RY =0, (4.1)
and n'’xn'? =0, (4.2)

where symbol R/’ (j=I and 2) denotes the position vector, while symbol n'/’ (j=1

and 2) indicates the unit surface normal vector of the spherical helical pinion and gear
represented in coordinate system S;. The position vector and unit surface normal

vector of the spherical helical pinion represented in coordinate system S, can be

transformed to the fixed coordinate system S, by applying the following

homogeneous coordinate transformation matrix equations:
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Fig. 4.2 Relationship among two contact teeth and their common tangent plane
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R =M M, M, M, R, (4.3)

and
n(}) - LfoLththvgn(gl) ’ (“4)
where
[ cosg, sing, 0 0
—sing, cosg, 0 0
Mv _ ¢1 ¢1 , (4.5)
i 0 0 1 0
| 0 0 01
[ cosdy, 0 sindy, 0
0 1 0 0
th = . ) (46)
—sindy, 0 cosdy, 0
0 0 0 1
1 0 0 —0
0 cosA sin A 0
M()h = . }/h yh ) (47)
0 —sinAy, cosAy, 0
0 0 0 1
1 0 0 0
0 cos sin 0
Mfo = . 7/0 70 ) (4~8)
0 —-siny, cosy, O
10 0 0 1
[ cosg sing’ 0
L, =|-sing’" cos¢’ 0/, 4.9)

0 0 1

[ cosdy, 0 sindy,
L,=| 0 1 0 | (4.10)
| —sindy, 0 cosdy,

1 0 0
L,=|0 cosAy, sinAy, |, (4.11)
|0 —sinAy, cosAy,
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1 0 0
and L, =/0 cosy, siny, |. (4.12)

0 —siny, cosy,

Similarly, the position vector and unit surface normal vector of the spherical
helical gear represented in coordinate system S> can be transformed to the fixed
coordinate system Sy by applying the following homogeneous coordinate

transformation matrix equations:

R7 =M,R, (4.13)
and n? =L 0, (4.14)
where
cos¢, —sing, 0 C'
sing, cosg, -0 O
.= 9. % , (4.15)
0 0 1. A7
0 0 0. 1
cosg, —sing, 0
and L, =|sing] cosgy O], (4.16)

0 0 1

where symbol C’ denotes the operational center distance of the spherical helical
gear set with center distance error AC (i.e. C'= réf” + réz) +A4C).
Equations (4.1) and (4.2) give a general form of meshing model of the gear set

with assembly errors under the parallel and crossed axes mounting modes. The

mounting spherical helical pinion and gear may have their helices either with the

same or the opposite direction, as shown in Fig. 4.3. Where symbols A" and A}
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denoted in Fig. 4.3 indicate the helix and lead angle of the spherical helical pinion,
while symbols S ;,2 ) and /11,2) denote the helix and lead angle of the spherical helical
gear. Symbol y, of Fig. 4.3 denotes the crossing angle of the spherical helical gear

set under crossed axes mounting mode. Moreover, the helix angles A" and B, if

they are in opposite directions, are not equal as in the case of spherical helical gears
with parallel axes mounting mode. The helix angles £ gf,” and S ;,2 ' and the crossing

angle y, are related as [3-5]
7, =P B, 4.17)

where the upper and lower “* ” signs of Eq. (4.17) denote the spherical helical pinion

and gear with the same and opposite helix directions, respectively.

4.3. Kinematic errors
Considering two equations of meshing for the spherical helical pinion tooth surfaces,
two equations of meshing for the spherical helical gear tooth surfaces, and Egs. (4.1)

and (4.2), these equations yield a system of nine independent equations with ten
variables I{", I/*, ¢, ¢, w, v, 07, 07, ¢ and ¢, since

‘ny)‘ =‘n}2)‘ =1. Superscripts 1 and 2 of the variables indicate the spherical helical
pinion and gear, respectively. If the pinion’s input rotation angle ¢, is given, another
nine variables can be solved by using a nonlinear solver. By substituting the solved
independent nine variables and the given spherical pinion’s input rotation angle ¢,
into Egs. (4.3) and (4.5), the contact points on the spherical helical pinion and gear

tooth surfaces can be obtained, respectively.

The kinematic error (KE) of the spherical helical gear set with assembly errors
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Fig. 4.3 Mounting relationships of the spherical helical gear set under the crossed axes

mounting mode
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can be calculated by applying the following equation:

()

Agy(4) = ¢5(¢})—ﬁ¢1’, (4.18)

where Tg(j ) denotes the number of teeth of the spherical helical pinion (j=/) and gear

(7=2), respectively.

4.4. Contact ratio

The contact ratio (CR) of a gear set can be defined by the gear’s rotation angle,
measured from the starting contact point to the end contact point, to be divided by the
angle formed by two adjacent teeth. Therefore, the contact ratio m, of the spherical

helical gear set can be expressed by the following equation [3-5]:

m, = bs (4.19)
360

T

where symbol ¢, denotes the rotational angle of the spherical helical pinion that
corresponds to the starting contact point of the spherical helical gear set during
meshing, while symbol ¢/, indicates the rotational angle at the end of contact point
for the same pinion tooth profile. The rotational angles ¢/, and ¢, can be obtained

by TCA simulations discussed in section 4.3.

4.5. Contact ellipses

According to the surface separation topology method [37], the tooth surfaces of
the spherical helical pinion and gear must be transformed from the fixed coordinate
system Sy of meshing model to the coordinate system S,(X,,Y,,Z,). Herein, the

coordinate system S, is attached to the common tangent plane of the two contact tooth
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surfaces at every contact instant. Figure 4.4 shows the relationship between the fixed
coordinate system Sy and the common tangent plane coordinate system S, The
coordinate system S,(X,.Y,,Z,) and S,(X,.,Y,,Z,) are two auxiliary coordinate
systems that are rotated about the axes X, and Y, through angles §and &, respectively.
Therefore, the position vectors of the spherical helical pinion and gear tooth surfaces,
represented in coordinate system S;, can be obtained by the following homogenous

coordinate transformation matrix equation:

R =M,M, M, R, (4.20)
where
1 0 0 —p,
01 0 -
M, = Pyl 421)
0 01 —p,
0 0 0 1
1 0 0 0
0 cosd -—sino 0
M, = . ) (4.22)
0 sind coso 0
0 0 0 1
cose 0 —sing O
0 1 0 0
and M, =| . . (4.23)
sing 0 cose¢ O
0 0 0 1

Where superscript j appeared in Eq. (4.20) denotes the spherical helical pinion (j=1)
and gear (j=2). Symbols p., p, and p. are three coordinate components of the
instantaneous contact point of the two mating tooth surfaces expressed in the fixed
coordinate system S. Moreover, the angle ¢ is formed by axes Z, and Z,, while the
angle ¢1is formed by axes Z, and Z,. Therefore, the angles dand ¢ can be obtained by:
7
S =tan” % , (4.24)
ny )
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Fig. 4.4 Coordinate system relationship of the contact point and tangent plane
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-l M
and g=tan| —— L& | (4.25)

M L 02
where n}, n} and n} symbolize the three components of the unit tooth surface

normal vector n(]’? of the spherical helical pinion (j=/) and gear (j=2) at their

instantaneous common contact point expressed in the fixed coordinate system Sy
Figure 4.5 shows the contact tooth surfaces of pinion J; and gear 3, which
tangent to each other at their instantaneous contact point O, It is noted that the
instantaneous contact point O; can be determined by the TCA computation. In Fig. 4.5,
symbol n represents the unit surface normal vector of the pinion J; represented in
coordinate system S; and coincides with the Z; axis. The calculation of the contact
ellipses is based on the TCA results and polar coordinates concept. The geometric
center of a contact ellipse is the instantaneous contact point of two mating tooth
surfaces, determined by the TCA simulations. The geometric center is considered as
the origin of the polar coordinate system. To determine a family of contour points of
the contact ellipse, one should search a pair of polar coordinates (», €), as shown in
Fig. 4.5(a), beginning from axis X; with an increment angle for g, e.g. 2 degrees. The
symbol r represents the position (polar coordinate) of the contact ellipse at the
corresponding polar coordinate @, expressed in the coordinate system S;, and is
located on the common tangent plane. The value of every position point » of the
contact ellipse must satisfy the separation distance (d;+d>)=0.00632mm. Since the
coating paint on the pinion tooth surfaces for bearing contact test will be scraped
away and printed on the gear tooth surfaces when the distance, measured along Z, axis,
of two mating tooth surfaces (2; and 3)) is less than the paint’s diameter, as shown in
Fig. 4.5(b). Since the diameter of coating paint for bearing contact test is 0.00632mm,

the separation distance is set to equal the diameter of the coating paint for simplicity.
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(b)Separation distances between pinion and gear surfaces

Fig. 4.5 Schematic diagram for surface topology measurement
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Herein, the symbol d; is the distance, measured along Z, direction, of 3; and common
tangent plane 7, whereas the symbol d, is the distance between 3> and common
tangent plane 7. Therefore, the contact ellipses of the spherical helical gear set can be

determined by applying the following equations:

XW=x=rcost (-n<6, <), (4.26)
YW=y =rsing (-n<0 <m, (4.27)
and |7 -7, =0.00632mm. (4.28)

Thus, the position and size of contact ellipses of the spherical helical gear set can be

determined by using Eqgs. (4.26)~(4.28).

4.6. Numerical examples for gear meshing simulations

In this section, the contact situations (KEs, CRs, contact loci and bearing
contacts) of the spherical helical gear sets under two axes mounting modes and three
mating combinations have been discussed by the following numerical examples.
Figures 4.6(a) and 4.6(b) show two axes modes of gear mounting for spherical helical
gear sets with parallel and crossed axes mounting modes, respectively. Moreover, the
effects of gear assembly errors (4y,, A4y,, AC and AZ) on the contact situations
of the spherical helical gear sets are also studied by the numerical examples. The gear
meshing simulations for the spherical helical gear sets under two axes mounting

modes are discussed in subsections 4.6.1 and 4.6.2, respectively.

4.6.1 Spherical helical gear sets under parallel axes mounting mode
In this subsection, the KEs, contact ratios (CRs), contact loci and bearing

contacts of the spherical helical gear sets under parallel axes mounting mode and
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(a)Parallel axes (b)Crossed axes

Fig. 4.6 Two axes mounting modes of the spherical helical gear sets

three mating combinations are studied by five numerical examples (Examples

4.1~4.5).

Example 4.1: KEs and contact ellipses of a spherical helical gear set with convex
pinion and convex gear meshing under parallel axes mounting mode and
different assembly conditions

The major design parameters of the hob cutter, convex pinion and convex gear
are given in Table 4.1. In addition, the spherical helical gear set under parallel axes

mounting mode is assembled with four conditions as follows:

Casel: Ay, =A4y,=0" and AC =A4Z =0mm (ideal assembly condition)

Case2: Ay, =A4y,=0", AZ=0mm and AC=05mm (0.3% of center distance
variation)

Case3: Ay, =A4y,=0", AC=0mm and A4Z =0.5mm (2.5% of axial shifting
variation)

Case4: Ay, =2°, Ay, =0.5", AC=0mm and 4Z =0mm

Case 1 is an ideal assembly condition, it means that there are no assembly errors

for the spherical helical gear set with convex pinion and convex gear. Case 2 indicates
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Table 4.1 Major design parameters of hob cutter, pinion and gear for spherical helical

gear sets under parallel axes mounting mode

Pinion Gear

Types of gear Hob -
Convex Convex Concave Helical

Normal module m, (mm/tooth) 4 4 4 4 4
Number of teeth T; 1 33 47 47 47
Normal pressure angle «, (deg.) 20 20 20 20 20
Lead angle A, (deg.) 3823RH 75RH 75LH 75LH 75LH
Face width W (mm) - 20 20 20 20
Pitch radius 7; (mm) 30 68.328 97.316 97316 97.316
Spherical radius R, (mm) - 68.328 97.316 97.316 -
Cutting radius R, (mm) - 98.328 127.316 67.316 -
Center distance C (mm) - - 165.644 165.644 165.644

that the spherical helical gear set has center distance assembly error. Case 3 denotes
the axial shifting of the face width between the pinion and gear tooth surfaces. Case 4
indicates that the gear set has both vertical and horizontal axial misalignments. Figure
4.7 illustrates the KEs of the spherical helical gear set with convex pinion and convex
gear under above-mentioned four assembly conditions (i.e. Cases 1~4). Meanwhile,
Fig. 4.8 reveals a set of contact ellipses and loci on the pinion (Fig. 4.8(a)) and gear
(Fig. 4.8(b)) tooth surfaces of the spherical helical gear set called the bearing contacts.

It is found that the spherical helical gear set with convex pinion and convex gear
has a lower level of KEs under the ideal assembly condition (Case 1), and the bearing
contacts are located on the middle region of the pinion’s and gear's face width. The
contact loci are all near to the central section of the pinion’s and gear's face width. If
the spherical helical gear set is assembled with a center distance variation (Case 2),
there is also a lower level of KEs in meshing. By comparing Case 2 with Case 1, the
bearing contact and the contact locus of the spherical helical gear set of Case 2 have a
small shift to the top land of pinion. However, the bearing contact of the spherical

helical gear set shown in Case 2 is still located on the middle region of the face width.
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Fig. 4.7 KEs of the spherical helical gear set with convex pinion and convex gear

under parallel axes mounting mode and different assembly conditions
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(b)Convex gear

Fig. 4.8 Contact ellipses and contact loci on tooth surfaces of the spherical helical
gear set under parallel axes mounting mode and different assembly

conditions
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According to the simulation results shown in Fig. 4.7, the assembly condition of Case
3 also results in a lower level KEs, while the bearing contacts and the contact loci are
all shifted a small distance away from the middle region, as shown in Fig. 4.8. Case 4
has a little higher level of KEs and a larger among of shifting of the bearing contact
than other three assembly conditions (Cases 1~3). However, the bearing contacts of
Case 4 are still located near by the middle region of the face width. Moreover, the
positions of contact loci and bearing contacts of the spherical helical gear set of Cases

1, 2 and 3 are almost the same.

Example 4.2: KEs and contact ellipses of a spherical helical gear set with convex
pinion and concave gear under parallel axes mounting mode and different
assembly conditions

The major design parameters of the hob cutter, convex pinion and concave gear
are also given in Table 4.1. Moreover, the spherical helical gear set is assembled with

four conditions as follows:

Case5: Ay, =A4y,=0" and AC =AZ =0mm (ideal assembly condition)

Case 6: Ay, =A4y,=0", AZ=0mm and AC=0.5mm (0.3% of center distance
variation)

Case 7: Ay, =A4y,=0", AC=0mm and AZ =0.5mm (2.5% of axial shifting
variation)

Case 8: Ay, =2, A4y,=0.5, AC=0mm and 4Z=0mm

Case 5 is the ideal assembly condition, and it means that there are no assembly
errors for the spherical helical gear set with convex pinion and concave gear. Case 6
indicates that the spherical helical gear set has a center distance assembly error. Case

7 denotes an axial shifting of the face width between the pinion and gear tooth

82



surfaces. Case 8 indicates that the gear set has both vertical and horizontal axial
misalignments. Figure 4.9 illustrates the KEs of the spherical helical gear set with
convex pinion and concave gear meshing under four assembly conditions (i.e. Cases
5~8), while Fig. 4.10 shows a set of contact ellipses and loci on the pinion tooth
surface of the spherical helical gear set.

Observing Case 5 of Figs. 4.9 and 4.10, there is a lower level of KEs (ideal
assembly condition), and the bearing contacts are located near by the middle region of
the face width. Cases 6 and 7 also reveal a lower level of KEs, and the bearing
contacts of the mating gear sets (Cases 6 and 7) are still located near by the middle
region of the face width. However, when compared with that of Case 5, the bearing
contact of Case 7 has a larger shifting than that of Case 6. Moreover, Case 8 has the
largest position shifting of bearing contact in this example. The KEs of Case 8 are

almost the same as those of other three assembly conditions in this example.

Example 4.3: KEs and contact ellipses of a gear set with convex spherical helical
pinion and conventional helical gear under parallel axes mounting mode and
different assembly conditions

The major design parameters of the hob cutter, convex spherical helical pinion
and helical gear are also given in Table 4.1. In addition, the gear set is assembled with

four conditions as follows:

Case9: Ay, =A4y,=0" and AC =A4Z =0mm (ideal assembly condition)
Case 10: Ay, =4y, =0", AZ=0mm and AC=0.5mm (0.3% of center distance

variation)

Case 11: Ay, =4y, =0", AC=0mm and AZ =0.5mm (2.5% of axial shifting

variation)
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Fig. 4.9 KEs of the spherical helical gear set with convex pinion and concave gear

under parallel axes mounting mode and different assembly conditions
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Fig. 4.10 Contact ellipses and contact loci on tooth surfaces of the spherical helical
gear set under parallel axes mounting mode and different assembly

conditions
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Case 12: Ay, =2, Ay, =0.5", AC=0mm and 4Z =0mm

Case 9 is the ideal assembly condition, and it means that there are no assembly
errors for the gear set with convex spherical helical pinion and conventional helical
gear. Case 10 indicates that the gear set has a center distance assembly error. Case 11
denotes an axial shifting of the face width between the pinion and gear tooth surfaces.
Case 12 indicates that the gear set has both axial vertical and horizontal
misalignments. Figure 4.11 illustrates the KEs of the gear set with convex spherical
helical pinion and conventional helical gear meshing under four assembly conditions
(i.e. Cases 9~12), while Fig. 4.12 shows a set of contact ellipses on the pinion tooth
surface.

It is found that Case 9 has a lower level of KEs, and the bearing contacts of Case
9 are located near by the middle region of the face width. Comparing with that of
Case 9, the KEs shown in Cases 10-12 are almost the same. The bearing contacts of
Cases 10 and 11 are similar to that of Case 9, but the bearing contacts of Case 12 are
shifted a small distance from the middle region of the face width on pinion’s tooth
surface.

Comparing the KEs of Example 4.3 with those of Examples 4.1 and 4.2, all of
the assembly conditions of the spherical helical gear set with convex pinion and
concave gear (Example 4.2) have a lower level KEs than other corresponding
assembly conditions in Examples 4.1 and 4.3. For example, in the ideal assembly
conditions (Cases 1, 5 and 9), Case 5 has a lower level of KEs than other ideal
assembly conditions. Moreover, all the assembly conditions discussed in Example 4.2
have a larger size of contact ellipse than other assembly conditions of Examples 4.1
and 4.3, since the mating tooth surfaces of pinion and gear of Example 4.2 are convex

tooth surface mating with concave tooth surface.

85



KE (arc-sec.)

—o— Case9 —o— Casell

41~ —8— Case 10

I 360°
2+ T
2+

i \
4

] | ] | ] | ] | ] | ] ¢I’

-15 -10 -5 0 5 10 15 (deg.)

Fig. 4.11 KEs of the gear set with convex pinion and conventional helical gear under

parallel axes mounting mode and different assembly conditions

| —— Case9 —=~ Casel0 —e— Casell |

(a)Convex pinion

| —— Case 9 —— Case 10 —— Casell

(b)Helical gear

Fig. 4.12 Contact ellipses and contact loci on tooth surfaces of the gear set under

parallel axes mounting mode and different assembly conditions
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Example 4.4: Contact ratios of the spherical helical gear set under parallel axes
mounting mode and three mating combinations

Some major design parameters of the hob cutter and three mating combinations
of spherical helical gear sets are summarized in Table 4.1. Moreover, three mating

combinations of the spherical helical gear sets are all assembled under ideal condition
and axial misalignments Ay, =2° and Ay, =0.5".

Table 4.2 summarizes the contact ratios (CRs) and the rotation angles (¢,; and
¢, ) of starting contact and end contact of the pinion tooth surface during the meshing
of the spherical helical gear sets. The CRs of the spherical helical gear sets under

three mating combinations with the ideal assembly condition and axial misalignments

Ay,=2" and Ay, =0.5" are about 1.7. Comparing with the ideal assembly

condition, the spherical helical gear set with vertical and horizontal axial

misalignments (Ay, =2° and A4y, =0.5") has only a slightly influence on their CRs.

Example 4.5: Average ratio a/b of the major and minor axes of the contact
ellipses of spherical helical gear sets under parallel axes mounting mode and
different assembly conditions

In this example, the averages of a set of ratio a/b of the major and minor axes of
the contact ellipses of the spherical helical gear sets during the pinion’s tooth meshing
cycle from ¢, to ¢, (see section 4.4) are determined. Where the ratio a/b
indicates the ratio of major and minor axes of a contact ellipse of a spherical helical
gear set at its meshing instant. The major design parameters of the hob cutter and
three mating combinations of the spherical helical gear set are chosen the same as

those shown in Table 4.1. Moreover, two assembly conditions, ideal assembly
condition and axial misalignments (4y, =2" and Ay, =0.5"), are assembled under
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Table 4.2 Contact ratios and rotation angles of the spherical helical gear sets under

parallel axes mounting mode and two different assembly conditions

Ideal Axial
assembly condition misalignments
Convex pinion with Convex gear 1.75 (-12.4°~6.7°) 1.73 (-11.8°~7.1°)
Convex pinion with Concave gear 1.71 (-12.3°~6.4°) 1.71 (-12.5°~6.2°)
Convex pinion with Helical gear 1.76 (-12.5°~6.7°) 1.74 (-12°~7°)

Mating combinations

Table 4.3 Average ratio a/b and rotation angles of major and minor axes of contact
ellipses of the spherical helical gear sets under parallel axes mounting

mode and two different assembly conditions

] o Ideal Axial
Mating combinations o o
assembly condition misalignments
Convex pinion with Convex gear 2.88 2.90
Convex pinion with Concave gear 5.09 4.82
Convex pinion with Helical gear 3.7 3.69

three mating combinations for spherical helical gear sets.

Table 4.3 lists the average ratio a/b of the major and minor axes of the contact
ellipse a/b for three mating combinations of spherical helical gear sets with different
assembly conditions when the pinion’s rotation angles are ¢ =—10"~5" with an
increment angle, e.g. 0.1 degree. The gear set of having convex pinion mating with
concave gear has a larger average ratio a/b than other two mating combinations.
Moreover, the condition of convex pinion mating with convex gear has a smaller level
of average ratio a/b than other two mating combinations. Comparing with the ideal
assembly condition, the average ratio a/b is not sensitive to axial misalignments for
the mating combinations of convex pinion with convex gear and convex pinion with
conventional helical gear. However, the spherical helical gear set of convex pinion

mating with concave gear has a larger variation of the a/b ratio than other two mating
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combinations under the ideal assembly condition and axial misalignments.

4.6.2 Spherical helical gear sets under crossed axes mounting mode
In this subsection, the KEs, CRs, contact loci and bearing contacts of the
spherical helical gear sets with crossed axes mounting mode under three mating
combinations are investigated by five numerical examples (Examples 4.6~4.10).
According to Eq. (4.17) and the pinion’s and gear's design parameters (see Table 4.4)

of the spherical helical gear sets, the crossing angle y, of the gear set for Examples

4.6~4.10 is defined as 30 degrees (i.e. y, = B + B =307).

Example 4.6: KEs and contact ellipses of a spherical helical gear set with convex
pinion and convex gear meshing under crossed axes mounting mode and
different assembly conditions

The major design parameters of the hob cutter, convex pinion and convex gear

are given in Table 4.4. The assembly conditions of the spherical helical gear set with
convex pinion and convex gear under crossed axes mounting mode (i.e. y, =30") are

chosen the same as those of given in Example 4.1 and listed as follows:

Case 13: Ay, =4y, =0" and AC =A4Z =0mm (ideal assembly condition)
Case 14: Ay, =4y, =0", AZ=0mm and AC=0.5mm (0.3% of center distance

variation)

Case 15: Ay, =4y, =0", AC=0mm and A4Z =0.5mm (2.5% of axial shifting
variation)

Case 16: Ay, =2, Ay, =0.5", AC=0mm and 4Z =0mm
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Table 4.4 Major design parameters of hob cutter, pinion and gears for spherical helical

gear sets under crossed axes mounting mode

Pinion Gear

Types of gear Hob -
Convex Convex Concave Helical

Normal module m, (mm/tooth) 4 4 4 4 4
Number of teeth T; 1 33 47 47 47
Normal pressure angle «, (deg.) 20 20 20 20 20
Lead angle A, (deg.) 3823RH 75RH 75RH 75RH 75RH
Helix angle . (deg.) - ISRH I5RH 15RH 15RH
Face width W (mm) - 20 20 20 20
Pitch radius »; (mm) 30 68.328 97.316 97316 97.316
Spherical radius R; (mm) - 68.328 97316 97.316 -
Cutting radius R, (mm) - 98.328 127.316 67.316 -
Center distance C (mm) - - 165.644 165.644 165.644

Figure 4.13 illustrates the KEs of the spherical helical gear set with convex

pinion and convex gear under crossed axes mounting mode y,6 =30" and

above-mentioned four assembly conditions (i.e. Cases 13~16). Meanwhile, Fig. 4.14
reveals a set of contact ellipses and their loci on the convex pinion (Fig. 4.14(a)) and
convex gear (Fig. 4.14(b)) tooth surfaces of the spherical helical gear set.

It is found that the spherical helical gear set (with convex pinion and convex gear)
with crossed axes has a lower level of KEs under the ideal assembly condition (Case
13), and the bearing contacts are located on the middle region of the pinion’s and
gear's face widths. If the spherical helical gear set with crossed axes is assembled with
a center distance variation (Case 14), there has also a lower level of KEs in meshing.
By comparing Case 14 with Case 13, the bearing contact and the contact locus of the
spherical helical gear set of Case 14 have a small shift to the top land of pinion.
However, the bearing contact of the spherical helical gear set in Case 14 is still

located on the middle region of the face width. According to the simulation results
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Fig. 4.13 KEs of the spherical helical gear set with convex pinion and convex gear

under crossed axes mounting mode and different assembly conditions

| —— Case13 —= Caseld _—o— Casels |

(a)Convex pinion

| —— Case 13 —— Case 14 —— Case 15

(b)Convex gear

Fig. 4.14 Contact ellipses and contact loci on tooth surfaces of the spherical helical
gear set under crossed axes mounting mode and different assembly

conditions
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shown in Fig. 4.13, the assembly condition of Case 15 also results in a lower level of
KEs, while the bearing contacts and the contact loci are all shifted a small distance
away from the middle region, as shown in Fig. 4.14. Case 16 has a little higher level
of KEs than other three assembly conditions. There is a larger among of shifting of
the bearing contact and the contact locus of the spherical helical gear set than other
three assembly conditions for the Case 16. However, the bearing contacts are still
located near by the middle region of the face width. Moreover, the positions of
contact locus and bearing contacts of the spherical helical gear set of Cases 13, 14 and

15 are almost the same.

Example 4.7: KEs and contact ellipses of a spherical helical gear set with convex
pinion and concave gear under crossed axes mounting mode and different
assembly conditions

The major design parameters of the hob cutter, convex pinion and concave gear
are also given in Table 4.4. The assembly conditions of the spherical helical gear set

with convex pinion and concave gear under crossed axes mounting mode (i.e.

7, =30") are chosen the same as those of given in Example 4.2 and listed as follows:

Case 17: Ay, =4y, =0" and AC = A4Z =0mm (ideal assembly condition)

Case 18: Ay, =4y, =0", AZ=0mm and AC=0.5mm (0.3% of center distance

variation)

Case 19: Ay, =4y, =0", AC=0mm and AZ =0.5mm (2.5% of axial shifting
variation)
Case 20: Ay, =2, Ay, =0.5", AC=0mm and 4Z=0mm
Figure 4.15 illustrates the KEs of the spherical helical gear set with convex
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Fig. 4.15 KEs of the spherical helical gear set with convex pinion and concave gear

under crossed axes mounting mode and different assembly conditions
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Fig. 4.16 Contact ellipses and contact loci on tooth surfaces of the spherical helical
gear set under crossed axes mounting mode and different assembly

conditions
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pinion and concave gear under crossed axes mounting mode and four assembly
conditions (Cases 17~20), while Fig. 4.16 shows a set of contact ellipses on the pinion
(Fig. 4.16(a)) and gear (Fig. 4.16(b)) tooth surfaces of the spherical helical gear set.
Observing Case 17 of Figs. 4.15 and 4.16, there is a lower level of KEs (ideal
assembly condition), and the bearing contacts are located near by the middle region of
the face width. Cases 18 and 19 also reveal a lower level of KEs, and the bearing
contacts of the mating gear sets are still located near by the middle region of the face
width. However, when compared with that of Case 17, the bearing contact of Case 19
has a larger shifting than that of Cases 17 and 18. Moreover, Case 20 has the largest
position shifting of bearing contact in this example. However, the KEs of Case 20 are

almost the same as those of other three conditions in this example.

Example 4.8: A gear set with convex spherical helical pinion and conventional
helical gear under crossed axes mounting and different assembly conditions

The major design parameters of the hob cutter, convex spherical helical pinion
and helical gear are also given in Table 4.1. In addition, the gear set is assembled with

four conditions as follows:

Case21: Ay, =4y, =0" and AC = A4Z =0mm (ideal assembly condition)

Case22: Ay, =4y, =0", AZ=0mm and AC=0.5mm (0.3% of center distance
variation)

Case23: Ay, =4y, =0", AC=0mm and AZ =0.5mm (2.5% of axial shifting
variation)

Case 24: Ay, =2, Ay, =05, AC=0mm and 4Z=0mm

Figure 4.17 illustrates the KEs of the gear set (with convex spherical helical

pinion and conventional helical gear) with crossed axes mounting mode (i.e.
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7, =30") under four assembly conditions (Cases 21~24), while Fig. 4.18 shows a set

of contact ellipses on the pinion and gear tooth surfaces.

It is found that Case 21 has a lower level of KEs, and the bearing contacts of
Case 21 are located near by the middle region of the face width. Comparing with that
of Case 21, the KEs shown in Cases 22-24 are almost the same. The bearing contacts
of Cases 23 and 24 are similar to that of Case 21, but the bearing contacts of Case 24
are shifted a small distance from the middle region of the face width on pinion’s tooth
surface.

Comparing the KE of Example 4.8 with those of Examples 4.6 and 4.7, all of the
assembly conditions of the spherical helical gear set with convex pinion and concave
gear (Example 4.7) have lower level of KEs than other corresponding assembly
conditions in Examples 4.6 and 4.8. For example, for the ideal assembly conditions
(Cases 13, 17 and 21), Case 17 has a lower level of KEs than other ideal assembly
conditions. Moreover, all the assembly conditions discussed in Example 4.7 have a
larger size of contact ellipse than other-assembly conditions of Examples 4.6 and 4.8,
since the mating tooth surfaces of pinion and gear of Example 4.7 are convex tooth

surface mating with concave tooth surface.

Example 4.9: Contact ratios of the spherical helical gear set with crossed axes
meshing under three mating combinations

Some major design parameters of the hob cutter and three mating combinations

of the spherical helical gear sets with crossed axes mounting mode (i.e. y, =30") are

summarized in Table 4.4. Moreover, three mating combinations of the spherical
helical gear sets with crossed axes are all assembled under ideal condition and axial

misalignments A4%,=2° and Ay, =0.5°.
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Fig. 4.17 KEs of the gear set with convex pinion and conventional helical gear under

crossed axes mounting mode and different assembly conditions
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(a)Convex pinion
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(b)Conventional helical gear

Fig. 4.18 Contact ellipses and contact loci on tooth surfaces of the gear set under

crossed axes mounting mode and different assembly conditions
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Table 4.5 summarizes the contact ratios (CRs) and the rotation angles (¢, and
@, ) of starting contact and end contact of the pinion tooth surface during the meshing
of the spherical helical gear sets. The CRs of the spherical helical gear sets under

three mating combinations with the ideal assembly condition and axial misalignments

Ay,=2" and Ay, =0.5" are about 1.7. Comparing with the ideal assembly

condition, the spherical helical gear set with vertical and horizontal axial

misalignments (Ay, =2° and A4y, =0.5") has only a slightly influence on their CRs.

Example 4.10: Average ratio a/b of the major and minor axes of the contact
ellipse of the spherical helical gear set with crossed axes meshing under different
assembly conditions

The major design parameters of the hob cutter and three mating combinations of
the spherical helical gear sets with crossed axes are chosen the same as those shown

in Table 4.4. Two assembly conditions, ideal assembly condition and axial
misalignments ( Ay, =2° and Ay, =0.5"), are assembled under three mating

combinations for the spherical helical gear sets with crossed axes.

Table 4.6 lists the average ratio of the major and minor axes of the contact ellipse
a/b for three mating combinations of spherical helical gear sets with different
assembly conditions when the pinion’s rotation angles are ¢ =—10"~5" with an
increment angle, e.g. 0.1 degree. The gear set of having convex pinion mating with
concave gear has a larger average ratio a/b than other two mating combinations. In the
inverse situation, the convex pinion mating with convex gear has a smaller level of
average ratio a/b than other two mating combinations. Comparing with the ideal
assembly condition, the average ratio a/b is not sensitive to axial misalignments for

the mating combinations of convex pinion with convex gear and convex pinion with
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Table 4.5 Contact ratios of the spherical helical gear sets with crossed axes under

different assembly conditions

] o Ideal Axial
Mating combinations . o
assembly condition misalignments
Convex pinion with Convex gear 1.72 (-12.3°~6.5°) 1.72 (-11.8°~7°)
Convex pinion with Concave gear 1.65 (-11.7°~6.3°) 1.7 (-10.9°~7.4°)
Convex pinion with Helical gear 1.72 (-12.3°~6.5°) 1.72 (-11.8°~7°)

Table 4.6 Average ratio a/b of major and minor axes of contact ellipses of spherical

helical gear sets with crossed axes meshing under different assembly

conditions
] o Ideal Axial
Mating combinations o o
assembly condition misalignments
Convex pinion with Convex gear 2.94 2.95
Convex pinion with Concave gear 5.33 5.02
Convex pinion with Helical gear 3.69 3.69

conventional helical gear. However, the spherical helical gear set of convex pinion
mating with concave gear has a larger variation of the a/b ratio than other two mating

combinations under the ideal assembly condition and the misalignments.

4.7. Remarks

According to the mathematical models of the spherical helical gears with convex
and concave teeth developed in Chapter 2, the meshing model of the spherical helical
gear sets with assembly errors under two axes mounting and three mating
combinations are derived by using the TCA method (Egs. (4.1) and (4.2)). Based on
the developed meshing model of the gear set, the contact loci, KEs (Eq. (4.18)) and
contact ratios (Eq. (4.19)) for three mating combinations of the spherical helical gear
set with different assembly conditions under two axes mounting modes can be

investigated. Moreover, the bearing contacts and average ratios a/b of major and
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minor axes of contact ellipses for the three mating combinations of the spherical

helical gear sets with different assembly conditions under two axes mounting modes

are estimated by utilizing the TCA method and surface separation topology method

(Egs. (4.26)~(4.28)). According to the TCA simulation results, the following remarks

can be drawn:

(1)

2)

The KEs of spherical helical gear sets under the proposed two axes mounting
modes and three mating combinations will be induced under the ideal assembly
condition, the center distance error and the axial shifting error of the face width.
However, the levels of KEs of the spherical helical gear sets under the proposed
two axes mounting modes and three mating combinations are small. Moreover,
the bearing contacts of the spherical helical gear sets under the two axes
mounting modes and three mating combinations are localized in the middle
region of the face width. Comparing with the ideal assembly condition, the
bearing contact of the spherical helical gear set with convex pinion and concave
gear under the parallel axes mounting mode and an axial shifting error of the face
width has a larger shifting displacement (see Fig. 4.10) than other two mating
combinations. This phenomenon is quite similar to that of the spherical helical
gear set with convex pinion and concave gear under crossed axes mounting mode
has the same situation (see Fig. 4.16).

The KEs of the spherical helical gear sets under the three mating combinations

are not sensitive to the misalignments (Ay, =2° and A4y, =0.5") because the
contact type of the proposed spherical helical gear set is in point contacts.
Bearing contacts of the spherical helical gear set are localized near by the middle

region of the face width. The spherical helical gear set with axial misalignments

has a larger level of bearing contact shifting than other assembly error conditions.
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€)

(4)

©)

However, the bearing contacts of the spherical helical gear set with a large axial
misalignment are still located near by the middle region of the face width.

Regardless of the axes mounting modes (parallel or crossed axes mounting
mode), the CRs of the spherical helical gear set for the three mating

combinations under ideal assembly condition and the large axial misalignments

(4y,=2" and Ay, =0.5") are about 1.7 (see Tables 4.2 and 4.5). Comparing

with the ideal assembly condition, the CRs of the spherical helical gear sets
under the two axes mounting modes and three mating combinations are not
sensitive to the axial misalignments (see Tables 4.2 and 4.5).

Regardless of the assembly combinations and the axes mounting modes, the
spherical helical gear set with convex pinion and concave gear has a larger
average ratio of the major and minor axes, a/b, of the contact ellipses than other
two mating combinations. The spherical helical gear sets with convex pinion and
convex gear under two axes mounting modes have smaller a/b ratios (see Tables

4.3 and 4.6). Moreover, the average ratios a/b are not sensitive to the assembly

condition of axial misalignments (Ay, =2 and Ay, =0.5") for the spherical

helical gear set under parallel and crossed axes mounting modes (see Tables
4.3 and 4.6).

If the axial misalignments of the spherical helical gear set under parallel and

crossed axes mounting modes are modified as Ay, =-2" and Ay, =-0.5", the

KE’s amplitude, contact ratio and average a/b ratio of the gear set will have no
apparent change, while the KE’s phase of the gear set will change from phase

lead (or lag) to phase lag (or lead).
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CHAPTER S

Finite Element Stress Analysis

5.1 Introduction

Due to the progress of computer technology and the computational techniques,
finite element method (FEM) [46] becomes a popular tool to determine the formation
of bearing contact and stress distribution of a gear drive, especially with a complex
tooth geometry. For the conventional and standard gears, the contact and bending
stresses can be calculated by employing the stress formulae given in the handbook
[47]. However, the stress of gears with a special and complex tooth profile can’t be
accurate predicted by using the stress formula of the conventional and standard gears.
Therefore, FEM is adopted to perform the stress analysis of the proposed spherical
helical gear set for complex contact situations.

In this chapter, an automatic mesh-generation program for the contact models of
the spherical helical gear set with three types of mating combinations, convex with
convex teeth, convex with concave teeth and convex with helical teeth, under two
axes mounting modes (parallel axes and crossing axes) was performed by employing
the C++ program language. The design parameters and boundary conditions are also
imposed on the contact model of the spherical helical gear sets. Furthermore, several
illustrative numerical examples are presented to demonstrate the finite element (FE)
stress analyses of the spherical helical gear sets with three types of mating
combinations under two axes mounting modes by utilizing the commercial finite
element analysis (FEA) package, ABAQUS/Standard [48]. Besides, all analyzed FE
contact models of the spherical helical gear sets are adopted after meshes convergence
test. Therefore, the results of the FEA in this chapter and the results of contact ellipse

simulations in previous chapter (Chapter 4) can prove mutually, and can also verify
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the superiority of the proposed spherical helical gear sets.

5.2 Finite element contact models of spherical helical gear sets

5.2.1 Processes of establishing FE contact model

The automatic mesh-generation program is developed by utilizing the C++

program language. The processes of establishing the FE contact model of a spherical

helical gear set are summarized as follows:

(1)

2

€)

(4)

©)

Determine the surface coordinates, including the tooth profiles and fillets of the
spherical helical pinion and gear in meshing, by utilizing the developed
mathematical model (Chapter 2) and TCA meshing model (Chapter 4) of the
mating spherical helical pinion and gear. A 3-D tooth solid model of the
spherical helical gear can be illustrated as shown in Fig. 5.1(a).

As shown in Fig. 5.1(b), set up some auxiliary points (red points of Fig. 5.1(b))
to partition the 3-D tooth solid model of the spherical helical gear into six parts
for easy to generate the hexahedron solid element.

Calculate and generate the nodes on the tooth surfaces and in the tooth body of
the spherical helical pinion and gear, and assign those nodes in a sequential
number, as shown in Fig. 5.1(c).

As shown in Fig. 5.1(d), establish the hexahedron solid elements that include a
serial regular nodal numbers by referring the ordering rule of hexahedron solid
elements [48], and assign those elements in a sequential number, too.

Set up the material properties, loadings, boundary conditions and interactions
between two surfaces in meshing to the mating spherical helical pinion and gear.

The hexahedron solid element type, C3D8I, has been chosen to improve the

bending behavior [48]. The steel material, AISI 1045, is chosen for all FE contact

models of the investigated spherical helical gear sets. The basic material properties are
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(a)3-D solid model (b)Partition into six parts
(c)Seed nodes (d)Generate elements

Fig. 5.1 Processes of establishing the FE contact model of a spherical helical gear

Young’s modulus £=2.05x10° MPa, Poisson’s ratio v=0.29 and density p=7.85x10
Kg/mm®. Besides, the material is considered as isotropic, and the heat generation and
thermal stress are ignored. However, the actual contact situation of a gear set is
complex since the friction on the interface of contact surfaces is hard to know.
Therefore, the lubrication condition on the interface of contact surfaces of the
spherical helical gear set is assumed as good lubrication that means the frictionless
condition is applied to the interface of the contact surfaces. In the software
ABAQUS/Standard, the contact pair must be defined as a master surface and a slave
surface [48] before the contact stress analysis. According to the rule of the software

ABAQUS/Standard, the master and slave surfaces are identified as the large and small
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curvature surfaces, respectively. Therefore, all pinion’s and gear’s tooth surfaces of
the proposed spherical helical gear sets are defined as the master and slave surfaces,
respectively.

By using the developed automatic mesh-generation program and the gear’s
design parameters of Table 5.1, a FE contact model of whole spherical helical gear set
with convex pinion and concave gear under parallel axes mounting mode can be
established as shown Fig. 5.2. Consequently, another FE contact model of whole
spherical helical gear set with convex pinion and concave gear under crossed axes
mounting mode can also be established by utilizing the same developed automatic
mesh-generation program and the gear’s design parameters of Table 5.1 as shown in

Fig. 5.3.

5.2.2 Simplified meshing model of a gear set
However, the FE contact models shown in Figs. 5.2 and 5.3 are not good models

for stress analyses of the gear sets because of those coarse meshes. According to the

Table 5.1 Major design parameters of spherical helical gear set with convex pinion

and concave gear under parallel and crossed axes mounting modes

Parallel axes Crossed axes
Types of gear Hob  Convex Concave Convex Concave
pinion gear pinion gear
Normal module m, (mm/tooth) 4 4 4 4 4
Number of teeth T; 1 33 47 33 47
Normal pressure angle «, (deg.) 20 20 20 20 20
Lead angle A, (deg.) 3823RH 75RH  75LH 75RH 75RH
Face width W (mm) - 20 20 20 20
Pitch radius r; (mm) 30 68.328 97316 68328 97.316
Spherical radius R, (mm) - 68.328 97316 68.328 97.316
Cutting radius R, (mm) - 98.328  127.316 98.328 127.316
Center distance C (mm) - - 165.644 - 165.644
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Fig. 5.2 Finite element contact model of a spherical helical gear set with convex

pinion and concave gear under parallel axes mounting mode

Fig. 5.3 Finite element contact model of a spherical helical gear set with convex

pinion and concave gear under crossed axes mounting mode
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investigated results of TCA, the contact ratios of the proposed spherical helical gear
sets under parallel and crossed axes mounting mode are about 1.7 (see Examples 4.4
and 4.9). It means that at most of contact instants the maximum numbers of teeth in
contact is 2. Therefore, a simplified contact model for a gear set with four teeth can be
considered as shown in Fig. 5.4. The middle two teeth of the simplified gear set with
four teeth are defined as the teeth in contact, whereas, other two teeth are set as the
teeth in non-contact. Moreover, the bottom surface and both-side surfaces of the
simplified pinion are considered as rigid surfaces to simulate the constraint effect of
rotation shaft and the effect that acted by other teeth [43], respectively. A roller
boundary condition is applied on both-side surfaces and bottom surface of the
simplified gear. The roller boundary condition on both-side surfaces of gear has a free
degree-of-freedom (DOF) along the radius direction of gear, while the other DOFs are
fixed. The roller boundary condition on bottom surface of gear has a free DOF along
the tangent direction of that surface, while the other DOFs are also fixed. Besides,
symbols 74z (j=I and 2) denote the shaft-hole radii of pinion and gear, respectively.

Symbol O; indicates the reference node for the rigid surfaces of pinion, while symbol

Roller
boundary
condition

Fig. 5.4 Simplified contact model of a gear set with boundary conditions
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O; denotes the center point of gear. For all FE contact models of the spherical gear

sets appear in this study, a toque, 7=200 N-m, is applied to the pinion’s rotation axis.

5.2.3 Meshes convergence test and local refined FE model

In general, a more refined mesh model may obtain a more accurate simulation
result but it takes much more time in analysis. Therefore, it is important to adopt a
properly refined mesh to ensure the simulation result is acceptable. In this study, the
sufficiently refined meshes of the spherical helical gear set have been performed by
applying the meshes convergence test [46] and employing the developed automatic
mesh-generation program. Major design parameters of the spherical helical gear set
with convex pinion and concave gear under parallel axes mounting mode for the
meshes convergence test are given in Table 5.1. Table 5.2 gives five different mesh
densities for the spherical helical convex pinion and concave gear, while Fig. 5.5
reveals different cases of mesh densities for the convex spherical helical pinion. If the
spherical helical gear set is subjected to a torque 200N-m, Fig. 5.6 shows the nodal
displacements and bending stresses of those cases (Cases 1~5) for the convex pinion
(Fig. 5.6(a)) at position coordinates of X;=65.195mm, Y,=—3.961mm and Z,=0Omm,
and for the concave gear (Fig. 5.6(b)) at position coordinates of X,=72.396mm,
Y,=10.487mm and Z,=0mm. It is found that the nodal displacements are converged to
a stable level (variation is less than 2%) in the cases of refined (Case 3) and high
refined meshes (Case 4). However, the FE analysis for the high refined case (Case 4)
is time consumptive. Therefore, the local refined mesh case (Case 5) can be adopted
for the FE analysis [44]. The information and analysis results of the local refined case
(Case 5) are also shown in Table 5.2 and Fig. 5.6, respectively. According to Fig. 5.6,
the local refined mesh case (Case 5) is also convergent and similar to that of the high

refined mesh case (Case 4), but the numbers of elements and nodes of the local
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refined case are substantially less than those of the high refined case (reduction about
30%). Therefore, the local refined mesh model (Cases 5) is adopted thereafter in this
study for stress analysis of the spherical helical gear sets under parallel and crossed
axes mounting modes. The local refined mesh zone of the spherical helical gear set is
controlled with 42 elements along the face width direction. Figures 5.7 and 5.8

illustrate the spherical helical gear sets with local refined mesh models under parallel

Table 5.2 Mesh densities of the spherical convex pinion and concave gear

Mesh Convex pinion Concave gear
Cases densities Total nodes Total elements Total nodes  Total elements
1 Coarse 14,076 11,198 12,788 10,142
2 Normal 26,004 21,152 23,232 18,848
3 Refined 40,248 33,138 36,636 30,114
4 High refined 66,528 55,366 61,236 50,902
5 Local refined 45,408 37,506 41,796 34,482

(a)Coarse meshes (b)Normal meshes

(c)Refined meshes (d)High refined meshes

Fig. 5.5 Finite element model of the convex spherical helical pinion with different

mesh densities
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Fig. 5.6 Convergence test of nodal displacements and bending stresses for the mating
of spherical convex pinion and concave gear with four teeth subjected to a

torque of 200N-m
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Fig. 5.7 Finite element contact model of the spherical helical gear set with local

refined meshes under parallel axes mounting mode

Fig. 5.8 Finite element contact model of the spherical helical gear set with local

refined meshes under crossed axes mounting mode
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and crossed axes mounting modes, respectively. Moreover, the local refined mesh
method is also applied in the elements along the tooth thickness directions of the
pinion and gear (see Appendix A). The refined elements along the tooth thickness

directions of the pinion and gear are concentrated near the tooth surface.

5.3 Numerical examples

Based on the developed mathematical model and the automatic mesh-generation
program of the proposed spherical helical gear sets, the stress analysis of the gear sets
can be investigated by using the commercial FEM package, ABAQUS/Standard. In
this section, six numerical examples are demonstrated for analyses on the contact and
bending stresses of the spherical helical gear sets under different axes mounting
modes, mating combinations and assembly conditions. Again, the FE models of Figs.
5.7 and 5.8 with local refined meshes for the spherical helical gear sets under two
axes mounting modes are adopted for following numerical examples, respectively.
Moreover, some major design parameters of the spherical helical gear sets for all

following numerical examples are given in Table 5.3.

Table 5.3 Major design parameters of the spherical helical gear sets under parallel

axes mounting mode

Pinion Gear

Types of gear Hob -
Convex Convex Concave Helical
Normal module M, (mm/tooth) 4 4 4 4 4
Number of teeth 7} 1 33 47 47 47
Normal pressure angle «, (deg.) 20 20 20 20 20
Lead angle A, (deg.) 3823RH 75RH 75LH 75LH 75LH
Face width W (mm) - 20 20 20 20
Pitch radius 7; (mm) 30 68.328 97.316 97316 97.316
Spherical radius R (mm) - 68.328 97.316 97.316 -
Cutting radius R, (mm) - 08.328 127.316 67.316 -

Center distance C (mm) - - 165.644 165.644 165.644
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Example 5.1 Stress distributions of spherical helical gear sets with three types of
mating combinations under parallel axes mounting mode and ideal assembly
condition

The contact and bending von-Mises stresses on tooth surfaces of spherical helical
gear sets with three types of mating combinations under parallel axes mounting mode
are performed and summarized in Table 5.4. Moreover, the spherical helical gear sets
are meshing at pinion’s beginning rotation angle (i.e.#, =0"). Figures 5.9, 5.10 and
5.11 reveals the von-Mises stress distributions on tooth surfaces of the spherical
helical gear sets with convex pinion (Fig. 5.9(a)) and convex gear (Fig. 5.9(b)),
convex pinion (Fig. 5.10(a)) and concave gear (Fig. 5.10(b)), and convex pinion (Fig.
5.11(a)) and conventional helical gear (Fig. 5.11(b)), respectively. It is found that
contact regions of the spherical helical gear sets are located near by the middle region
of the tooth face width under the ideal assembly condition. Moreover, the convex
pinion mating with concave gear has the largest size of contact region (Fig. 5.10),
while the convex pinion mating with convex gear has the smallest size of contact
region (Fig. 5.9). This verified that the convex pinion mating with concave gear has
the smallest von-Mises stress because it has the largest contact region, whereas, the

inverse situation exists for the convex pinion mating with convex gear. It is worth

Table 5.4 Contact and bending von-Mises stresses of the spherical helical gear set
with three types of mating combinations under parallel axes mounting

mode at the pinion’s beginning rotation angle

Convex pinion Convex pinion ~ Convex pinion

Mating types VS. convex gear vs. concave gear  vs. helical gear
Pinion Gear Pinion @ Gear Pinion Gear

Contact stress (MPa) 1135 1114 9124 8123 9784 9474

Bending stress (MPa) 75.37 66.13 62.26 83.56 7636 65.16
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Fig. 5.9 von-Mises stress distributions on tooth surfaces of the spherical helical gear
set with convex pinion and convex gear under the parallel axes mounting

mode and ideal assembly condition
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Fig. 5.10 von-Mises stress distributions on tooth surfaces of the spherical helical gear
set with convex pinion and concave gear under the parallel axes mounting

mode and ideal assembly condition
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(b)Conventional helical gear
Fig. 5.11 von-Mises stress distributions on tooth surfaces of the spherical helical gear
set with convex pinion and conventional helical gear under the parallel axes

mounting mode and ideal assembly condition
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mentioned that contact regions analyzed by the FEM are similar to those of using the

surface topology method [37] (see Figs. 4.10, 4.11 and 4.12).

Example 5.2 Stress distribution of the spherical helical gear set with convex pinion
and concave gear under parallel axes mounting mode and axial misalignments
Figure 5.12 illustrates the von-Mises stress distributions of the spherical helical

gear set under parallel axes mounting mode and axial assembly misalignments
Ay,=2.0" and Ay, =0.5" at the pinion’s beginning rotation angle (i.e. ¢ =0").

Moreover, the spherical helical gear set is composed of a convex pinion and a concave
gear. Compared with Fig. 5.10, the contact regions of the spherical helical gear set are

shifted a distance from the middle section of face width due to axial misalignments of

Ay,=2.0" and Ay, =0.5". However, there is still no edge contact occurred for the

spherical helical gear set even under axial assembly misalignments. The contact
stresses of the convex pinion and concave gear at the pinion’s beginning rotation
angle are 1000.5MPa and 910.9MPa, respectively, whereas the bending stresses are

63.79MPa and 130.19MPa, respectively.

Example 5.3 Stress analysis of the spherical helical convex pinion mating with
concave gear with large modified spherical radii R; (j=1 and 2) under parallel axes
mounting mode

In this example, a large modified spherical radius R; (j=1 and 2; refer to Figs. 2.4
and 2.6) has been applied to the spherical helical gear set under parallel axes
mounting mode. The convex pinion with a modified spherical radius of R;,=1000mm
is given to mesh with the concave gear with a modified spherical radius of
R,=1200mm. Moreover, the design parameters of the spherical helical gear set are

also given in Table 5.3, while the gear set is assembled under the ideal condition.
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Fig. 5.12 von-Mises stress distributions on tooth surfaces of the spherical helical gear

set with convex pinion and concave gear under the parallel axes mounting

mode and axial misalignments
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The tooth shapes of spherical helical pinion and gear with large modified
spherical radii are quite similar to those of helical gears, and thus they result in
slender contact regions along the longitudinal direction of face width as shown in Fig.
5.13. The contact stresses of convex pinion and concave gear at the pinion’s
beginning rotation angle are 554.2MPa and 550.8MPa, respectively, whereas the
bending stresses are 74.21MPa and 57.30MPa, respectively. Therefore, the contact
stresses of spherical helical gear set at the pinion’s beginning rotation angle are

substantially decreased compared with those of Example 5.1.

Example 5.4 Stress distributions of spherical helical gear sets with three types of
mating combinations under crossed axes mounting mode and ideal assembly
condition

Some major design parameters of the spherical helical gear sets under crossed
axes mounting mode are given in Table 5.5. The contact and bending von-Mises
stresses on tooth surfaces of ‘spherical helical gear sets with three types of mating
combinations under crossed axes mounting mode are performed and summarized in
Table 5.6. Figures 5.14, 5.15 and 5.16 reveals the von-Mises stress distributions on
tooth surfaces of the spherical helical gear sets with convex pinion (Fig. 5.14(a)) and
convex gear (Fig. 5.14(b)), convex pinion (Fig. 5.15(a)) and concave gear (Fig.
5.15(b)), and convex pinion (Fig. 5.16(a)) and conventional helical gear (Fig. 5.16(b)).
The spherical helical gear set with convex pinion and concave gear under crossed
axes mounting mode also has the smallest von-Mises stress because it has the largest
contact region, whereas, the inverse situation exists for the convex pinion mating with
convex gear. It is worth mentioned that contact regions analyzed by the FEM are
similar to those of using the surface topology method (see Figs. 4.14, 4.16 and 4.18).

Again, the spherical helical gear sets with ideal assembly condition under crossed
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Fig. 5.13 von-Mises stress distributions on tooth surfaces of the spherical helical gear
set with large modified spherical radii under the parallel axes mounting

mode and ideal assembly condition
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Table 5.5 Major design parameters of the spherical helical gear sets under crossed

axes mounting mode

Pinion Gear

Types of gear Hob -
Convex Convex Concave Helical

Normal module M, (mm/tooth) 4 4 4 4 4
Number of teeth T; 1 33 47 47 47
Normal pressure angle «, (deg.) 20 20 20 20 20
Lead angle A, (deg.) 3823RH 75RH 75RH 75RH 75RH
Face width W (mm) - 20 20 20 20
Pitch radius 7; (mm) 30 68.328 97.316 97316 97.316
Spherical radius R, (mm) - 68.328 97.316 97.316 -
Cutting radius R, (mm) - 98.328 127.316 67.316 -
Center distance C (mm) - - 165.644 165.644 165.644

Table 5.6 Contact and bending von-Mises stresses of the spherical helical gear set
with three types of mating combinations under crossed axes mounting

mode at the pinion’s beginning rotation angle

Conyex pinion Convex pinion  Convex pinion

Mating types Vs..convex gear  vs.concave gear  vs. helical gear
Pinion Gear Pinion @ Gear Pinion Gear

Contact stress (MPa) 1125 1102 884.5 795.2 1020 854.7

Bending stress (MPa) 75.44 65.84 63.06 81.33  76.55 62.65

axes mounting mode are meshing at the pinion’s beginning rotation angle (i.e. ¢ =0°).

Example 5.5 Stress distribution of the spherical helical gear set with convex pinion
and concave gear under crossed axes mounting mode and axial misalignments
Figure 5.17 illustrates the von-Mises stress distributions of the spherical helical

gear set with convex pinion and concave gear under crossed axes mounting mode and
axial assembly misalignments Ay, =2.0° and Ay, =0.5" at the pinion’s beginning

rotation angle (i.e.¢, =0°). Compared with Fig. 5.15, the contact regions of the

spherical helical gear set are shifted a small distance due to the axial assembly
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Fig. 5.14 von-Mises stress distributions on tooth surfaces of the spherical helical gear

set with convex pinion and convex gear under crossed axes mounting mode

and ideal assembly condition
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Fig. 5.15 von-Mises stress distributions on tooth surfaces of the spherical helical gear
set with convex pinion and concave gear under crossed axes mounting

mode and ideal assembly condition
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Fig. 5.16 von-Mises stress distributions on tooth surfaces of the spherical helical gear

set with convex pinion and conventional helical gear under crossed axes

mounting mode and ideal assembly condition
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Fig. 5.17 von-Mises stress distributions on tooth surfaces of the spherical helical gear

set with convex pinion and concave gear under crossed axes mounting

mode and ideal assembly condition
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misalignments. The contact stresses of the convex pinion and concave gear at the
pinion’s beginning rotation angle are 931.3MPa and 879.5MPa, respectively, whereas
the bending stresses are 59.47MPa and 79.63MPa, respectively. However, there is still
no edge contact occurred for the spherical helical gear set even under the crossed axes

mounting mode and axial assembly misalignments.

Example 5.6 Stress analysis of the spherical helical convex pinion mating with
concave gear with large modified spherical radii R; (j=1 and 2) under crossed axes
mounting mode

In this example, a large modified spherical radius R; (j=1 and 2; refer to Figs. 2.4
and 2.6) also has been applied to the spherical helical gear set under crossed axes
mounting mode. The convex pinion with a modified spherical radius of R;,=1000mm
is given to mesh with the concave gear with a modified spherical radius of
R,=1200mm. Moreover, the design parameters of the spherical helical gear set are
also given in Table 5.5, while the gear set is assembled under the ideal condition.

A conventional helical gear set is in point contact during its meshing. The tooth
shapes of spherical helical pinion and gear with large modified spherical radii are
quite similar to those of conventional helical gears. Therefore, the contact region of
the spherical helical gear set only has a slightly increasing by adopting the large
modified spherical radii for convex pinion and concave gear as shown in Fig. 5.18.
The contact stresses of convex pinion and concave gear at the pinion’s beginning
rotation angle are 832.9MPa and 567.4MPa, respectively, while the bending stresses
are 74.20MPa and 56.15MPa, respectively. Therefore, the contact stresses of the
spherical helical gear set at the pinion’s beginning rotation angle are substantially

decreased compared with those of Example 5.4.
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Fig. 5.18 von-Mises stress distributions on tooth surfaces of the spherical helical gear
set with large modified spherical radii under the parallel axes mounting

mode and ideal assembly condition
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5.4 Remarks

According to the developed mathematical model (Chapter 2) and TCA
simulation (chapter 4) of the spherical helical gear set, the FE meshing model of the
gear set with local refined meshes for stress analyses have been performed by the
developed automatic mesh-generation program of the gear set. Investigations on the
contact and bending stresses of the spherical helical gear set with assembly conditions
under two axes mounting modes and three types of mating combinations have been
performed by employing the commercial FEA package, ABAQUS/Standard. The
analysis results lead to the following conclusions:

(1) Among three types of mating combinations of spherical helical gear sets with
ideal assembly condition, the spherical helical gear sets composed of convex
pinion and concave gear under parallel (Example 5.1) and crossed (Example 5.4)
axes mounting modes have the smallest contact and bending stresses, whereas the
spherical helical gear set composed of convex pinion and convex gear has the
largest contact and bending stresses.

(2) For the spherical helical gear set composed of convex pinion and concave gear

with large axial misaligned angles Ay, =2.0° and Ay, =0.5" under parallel

axes mounting mode (Example 5.2), the contact zone of the gear set has a small
shift along the longitudinal direction of face width of the gear set, and the contact
stress only has a slightly change when compared with the spherical helical gear
set with convex pinion and concave gear under the ideal assembly condition

(Example 5.1). Moreover, the contact zone of the spherical helical gear set with

large axial misaligned angles Ay, =2.0° and Ay, =0.5" under crossed axes

mounting mode (Example 5.5) also has a small shift along the longitudinal

direction of face width of the gear set. The contact stress only has a slightly
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change when compared with the spherical helical gear set with convex pinion and
concave gear under the ideal assembly condition (Example 5.4).

(3) The contact area of the spherical helical gear set with convex pinion and concave
gear under parallel axes mounting mode (Example 5.3) can be increased by
adopting a large modified spherical radius. Therefore, the increase of contact
region results in the decrease of contact stress. If the spherical radii of the gear set
with spherical helical pinion and gear under crossed axes mounting mode are
modified and approach to infinite, the gear set composed of spherical helical
pinion and gear will become a conventional helical gear set under crossed axes
mounting mode. However, a conventional helical gear set is in point contact
during its meshing [3-5]. Therefore, the contact area of the spherical helical gear
set with convex pinion and concave gear under crossed axes mounting mode
(Example 5.6) only has a slightly increasing by adopting the large modified

spherical radii for convex pinion and concave gear.
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CHAPTER 6

Conclusions and Future works

6.1 Conclusions

In this study, the mathematical models of the convex (Egs. (2.31)~(2.33)) and
concave (Egs. (2.58)~(2.60)) spherical helical gears are developed in chapter 2. Then,
based on the developed mathematical models of the spherical helical gears, the
condition equations of the tooth undercutting (Egs. (3.7)~(3.9)) and tooth pointing
(Egs. (3.35)~(3.40)) for the convex and concave spherical helical gears are derived in
chapter 3, respectively. The limit curve of tooth undercutting and Z, cross-section of
tooth pointing beginning for the convex and concave spherical helical gears under
different design parameters are also investigated, respectively. In chapter 4, a general
form of meshing model of the spherical helical set with assembly errors under two
axes mounting modes is developed (Egs. (4.1) and (4.2)). According to the meshing
model of the spherical helical gear set, the equations of the contact ellipses (Egs.
(4.13)~(4.15)) of the gear set is developed by utilizing the surface separation topology
method [37]. Therefore, the KEs, contact ratios, contact loci and contact ellipses of
the spherical helical gears sets with assembly errors under two axes mounting modes
and three mating combinations are investigated. Moreover, an automatic
mesh-generation program for the contact models of the spherical helical gear sets
under two axes mounting modes and three types of mating combinations is developed.
Therefore, the stress distributions on tooth surfaces of the spherical helical gear set
under two axes mounting modes and three mating combinations are determined by
using the software ABAQUS/Standard. Based on the analysis results obtained in the

previous chapters, the following conclusions are drawn:
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(1) The mathematical model of convex and concave spherical helical gears generated
by a ZN-type worm-type hob cutter has been developed based on the cutting
mechanism of a 5-axes CNC hobbing machine. The tooth profiles obtained by the
mathematical model can be considered as a standard profile for the convex and
concave spherical helical gears.

(2) The kinematic method to find the differentiated equations of meshing is developed
for analyzing tooth undercutting of the convex spherical helical gear. According to
the tooth undercutting analysis results, the occurrence of tooth undercutting at the
both-end sections of face width of the convex spherical helical gear is much easier
than other sections. The tooth undercutting of the convex spherical helical gear
can be avoided with a large number of teeth or pressure angle, and the tooth
undercutting may lessen by decreasing the pitch radius of hob cutter.

(3) The tooth pointing of the concave spherical helical gear is investigated by utilizing
the derived condition equations of tooth pointing of the concave spherical helical
gear. According to the tooth pointing analysis results, the concave spherical helical
gear can be avoided with a large number of teeth or small pressure angle. The
tooth pointing of the concave spherical helical has a slight effect by changing pitch
radius of the hob cutter.

(4) The spherical helical gear set under two axes mounting modes and three mating
combinations generated by a ZN-type worm-type hob cutter induces KEs when the
gear set is meshing under ideal assembly condition and center distance error.
However, the level of KEs of the gear set is small. Moreover, the KEs of the gear
set are not sensitive to axial shifting of face width and axial misalignments
because the contact type of the proposed spherical helical gear set is in point
contacts.

(5) The spherical helical gear set under two axes mounting modes and three mating
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combinations with axial misalignments has a larger level of bearing contact
shifting than other assembly error conditions. However, the bearing contacts of the
spherical helical gear set with a large axial misalignment are still located near by
the middle region of the face width. It means that there is no edge contact on the
pinion and gear tooth surfaces of the spherical helical gear set.

(6) The CRs of the spherical helical gear set under the two axes mounting modes and

three mating combinations with ideal assembly condition and the large axial

misalignments (4y, =2° and Ay, =0.5") are about 1.7. Moreover, the CRs of

the spherical helical gear sets under the two axes mounting modes and three
mating combinations are not sensitive to the large axial misalignments.

(7) An automatic mesh-generation program for generating the FE contact model of the
spherical helical gear sets under two axes mounting modes and three mating
combinations is developed. Moreover, the FE meshes, the definition of contacting
surfaces, material properties and boundary conditions of the gear sets are also
automatically generated by using the developed computer program. The stress
analysis of the spherical helical gear set is performed by utilizing the software
ABAQUS/Standard. The analysis results show that the spherical helical gear set
with convex pinion and concave gear has the smallest contact and bending stresses
due to the largest contact region, whereas the gear set with convex pinion and
convex gear has the largest contact and bending stresses due to the smallest
contact region.

(8) Due to the conventional helical gear set is in line contact, the helical gear set with
small axial misalignments under parallel axes mounting mode has edge contact

and tooth interference (see Appendix B). However, the spherical helical gear set

with larger axial misalignments (A4y, =2° and Ay, =0.5") under parallel axes
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mounting mode has no edge contact and no tooth interference.

(9) The large modified spherical radius can decrease the contact and bending stresses
of the spherical helical gear set with convex pinion and concave gear under
parallel and crossed axes mounting modes. Since the spherical helical gear set
with a large modified spherical radius under crossed axes mounting mode is
similar to that of a conventional helical gear set under crossed axes mounting
mode, the contact and bending stresses of the gear set with convex pinion and
concave gear under parallel axes mounting mode have larger decreasing margin
than that of the gear set under crossed axes mounting mode by the same increasing

margin of the spherical radius.

6.2 Future works

The tooth surfaces of the convex and concave spherical helical gears generated
by a ZN-type hob cutter are indeed new types of gear surfaces. Advanced studies of
these kinds of gear for industrial applications are important and necessary. In the
future, the following research topics can be extended:

(1) The illustrated approach in Chapter 2 can be further extended to derive the
mathematical model for noncircular hobbing locus of the gears, e.g. parabolic or
elliptical curved hobbing locii.

(2) The sensitivity analysis can be used to study the surface deviation of the spherical
helical gear with respect to hob cutter settings in the manufacturing process.

(3) The curvature analysis of the proposed convex and concave spherical helical gears
should be developed for the determination of principal curvatures and directions of
the surfaces of convex and concave spherical helical gears.

(4) Real contact ratio, load sharing between the meshing teeth, and transmission error

under the given load may be implemented by considering multi-tooth finite
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element models. Moreover, the effect of friction force may be investigated by
defining the tooth surfaces interaction with friction.

(5) In order to save the preprocess time of the finite element model of other types of
gear sets, the developed automatic mesh-generation program of chapter 5 can be
further extended to include other types of gear sets, e.g. curvilinear-tooth gear set,
bevel gear set, conical gear set, gear set of worm and worm wheel, etc. Moreover,
the developed automatic mesh-generation program can be packaged as a plug-in
for the software ABAQUS/Standard.

(6) The single flank test and the measurement of noise and vibrations could be

performed with the proposed convex and concave spherical helical gear sets.
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Appendix A

Stress distributions of A Spherical Helical Gear Set with Uniform

Element Size along Tooth Thickness Direction

Example A.1 Stress distributions of spherical helical gear sets with convex pinion
and convex gear under parallel axes mounting mode and ideal assembly condition
The stress analysis result of the spherical helical gear set with convex pinion and
convex gear are illustrated in Fig. A.1. The design parameters of the gear set are the
same as those of Table 5.3. Noteworthy, the element sizes along the tooth thickness
direction of the convex pinion and convex gear of the gear set are uniform (see Fig.
A.1), moreover, the other settings of element size of the convex pinion and convex
gear are the same as those of the spherical helical gear set with convex pinion and
convex gear of Example 5.1. The contact stresses of the convex pinion and convex
gear at the pinion’s beginning rotation angle are 1225MPa and 1034MPa, respectively,
whereas the bending stresses are 76.92MPa and 66MPa, respectively. By comparing
the analysis results (Fig. A.1) of Example A.1 with those of Example 5.1 (Fig. 5.9),
the contact and bending stresses only have a slight change between the two examples.
However, the analysis time cost of Example A.1 is expensive due to the total elements
and nodes are 297228 and 325080, respectively. Therefore, the local refined mesh
along the tooth thickness direction of the pinion and gear is also adopted in this study
for stress analysis of the spherical helical gear sets under parallel and crossed axes

mounting modes.
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(b)Convex gear

Fig. A.1 von-Mises stress distributions on tooth surfaces of the spherical helical gear

set with convex pinion and convex gear under the parallel axes mounting

mode and ideal assembly condition
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Appendix B

Stress Distributions of A Conventional Helical Gear Set with Axial

Misalignments under Parallel Axes Mounting Mode

Example B.1 Stress distributions of conventional helical gear set with axial

misalignment Ay, =0.15" under parallel axes mounting mode

Figure B.1 illustrates stress distributions of the conventional helical gear set with
33 teeth helical pinion and 47 teeth helical gear under parallel axes mounting mode.
The normal module and normal pressure angle of the helical pinion and gear are 4

mm/tooth and 20 degrees, respectively. Moreover, the gear set is assembled with axial

misalignment Ay, =0.15". It can be found. that the conventional helical gear set has

edge contacts on tooth flanks of the helical pinion and gear. Therefore, the

conventional helical gear set can’t be applied to the assembly condition with a large

axial misalignment Ay, .

Example B.2 Stress distributions of conventional helical gear set with axial

misalignment Ay, =0.1" under parallel axes mounting mode

The design parameters of the conventional helical gear set of this example are

given the same as those of Example B.2. The gear set is assembled with axial
misalignment Ay, =0.1" under parallel axes mounting mode. Figure B.2 illustrates
stress distributions of the helical pinion and gear set. It can be found that the gear set

also has edge contact on the tooth flanks of the helical pinion and gear. Therefore, the

conventional helical gear set can’t be applied to the assembly condition with a large

axial misalignment Ay, .
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Fig. B.1 von-Mises stress distributions on tooth surfaces of the conventional helical
gear set with axial misalignment Ay, =0.15" under the parallel axes

mounting mode

143



Edge contact

3, Mises
(Avg: 75%)
+6.635e+02
+6.082e+02
+5.520e+02
+4.078e+02
+4.424e+02
+3.871e+02
+3.318e+02
+2.765e+02
+2.2128+02
+1.5559e+02
+1.1088+02
+5.5338+01
+4.071e-02

Max: +6.6352+02
Elem: PART1.6016

MNode: 8029
Min: +4.071e-02
Elem: PARTL.49784
MNode: 61233

Edge contact

(a)Conventional helical pinion

3, Mises
(Avg: 75%)

+4.937e+02
+4.528e+02
+4.115e+02
+3.703e+02
+3.2928+02
+2.880e+02
+2.469e+02
+2.057e+02
+1.648e+02
+1.235e+02
+8.231e+01
+4.117e+01
+2.4098-02

Edge contact

Max: +4.937e+02
Elem: PART2.6012
MNode: 8009

Min: +2 408e-02

Elem: PARTZ2.50728

MNode: 62700
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Fig. B.2 von-Mises stress distributions on tooth surfaces of the conventional helical
gear set with axial misalignment Ay, =0.1" under the parallel axes

mounting mode
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