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Abstract

A cloud storage system consisting of a collection of storage servers provides

storage services over the Internet for long-term storage. A user can store

data into the system and access data from anywhere at any time via the

Internet access. However, storing data in a third party’s cloud system brings

a serious concern on the data confidentiality. We consider a cloud storage

system model that has no central authority. A tight integration of public key

encryption schemes and random erasure codes is developed. By using this

integration, we present a secure cloud storage system, which guarantees the

data confidentiality and robustness and supports the secure data forwarding

functionality. Hence, in our storage system, a user can not only securely

store data but also forward data to other user in a confidential way.

Keywords: Randomized erasure codes, homomorphic encryption schemes,

networked storage systems, cloud storage systems, network coding.
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Chapter 1

Introduction

A cloud providing on-demand services on the Internet has a collection of

servers. Servers in a cloud connect to each other via networks. The con-

tributed resources, such as storage and computing power, from servers are

implicitly merged as one huge resource and shared among users. A cloud

storage system is an accumulation of storage servers that provide a location

independent storage service as long as a user has network access. A user can

store data in and retrieve data from a cloud storage system from anywhere

at any time. Companies can also outsource their data storage and manage-

ment to a cloud storage system. Cloud storage systems not only provide the

storage service as a purely virtual file system but also contribute to many

service-based applications. For instance, web-mail systems [1] allow people

to read and to write emails through the web browser without storing those

emails in local machines [2].

The advantage of using cloud storage systems instead of the local storage

devices is substantial. A user can ubiquitously enjoy the cloud storage service
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Figure 1.1: The centralized architecture and the decentralized architecture.
The centralized architecture has a central authority that manages how data
are stored and retrieved. In the decentralized architecture, each storage server
independently manages the data storage.

without the heavy burden of hardware or software maintenance. In additional

to low maintenance cost and ubiquitous use, cloud storage systems guarantee

the data availability for a long period of time. Not only users but also the

service providers gain advantage from the cloud storage systems. The service

providers can deliver quality of service to users non-interactively in real-time

in the cloud storage systems.

Cloud storage systems are not new technologies. A networked storage

system is a simple cloud storage system and this technology can be traced

back to the networked attached storage (NAS) [3] and the Network File Sys-

tem (NFS) [4]. The extra storage devices are deployed in the network and

a user can access the devices via network connection. Afterward, the extra

storage devices are replaced by the storage servers because the cost of hard-

ware becomes much economical. Moreover, the decentralized architecture of

the storage servers are proposed for better scalability because any storage

server can join or leave without the control of a central authority. Figure 1.1

shows the centralized architecture and the decentralized architecture of the

storage servers.
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Contributed by the rapid and ubiquitous network access technology, cloud

storage systems have become a reality. For example, Amazon Simple Storage

Service (S3) provides the storage service in which users store and retrieve

data via a web interface, and IBM also offers the storage cloud for enterprises.

However, storing data in the cloud brings up many security issues. According

to a research report from International Data Corporation (IDC) Enterprise

Panel [5], the security issue is the top challenge for the cloud services. The

second and third issues are performance and availability. Figure 1.2 shows

the IDC analysis about issues of the cloud. Without the security guarantee,

few people will use the system and users face potential risks of privacy leaking

and confidentiality breaking.

In the history of networked storage systems, which are the ancestors of

cloud storage systems, some of them use encryption schemes to provide the

data confidentiality. Some of storage systems [6, 7, 8, 9] using symmetric

encryption schemes to encrypt data on disk. In those storage systems, the

storage servers own the keys. Thus, the data confidentiality is not against

the storage servers. Some of the storage systems, such as Farsite [10], uses

asymmetric encryption schemes to encrypt the stored data. However, those

systems use the replication mechanism for the data robustness. The replica-

tion mechanism causes a high storage overhead.

Motivated by the strong need for security mechanisms for cloud storage

systems, this dissertation focuses on the data confidentiality and robustness

of cloud storage systems with the decentralized architecture. My dissertation

statement can be summarized as follows.

A cryptographic secure cloud storage system built on a decentralized ar-

3



Figure 1.2: IDC analysis.
IDC conducted a survey of 244 IT executives/CIOs and their colleagues about their

companies views about IT Cloud Service. The main results are summarized. The

top challenge is security. IDC concluded that cloud services still need to be more

secure.

chitecture provides strong data confidentiality against collusion of all storage

servers and is robust with low storage overhead. Furthermore, the system is

adaptable to allow data forwarding inside the cloud in a confidential way.

To validate my dissertation statement, this dissertation presents a cloud

storage system that is decentralized and provides the data confidentiality

even if all storage servers are compromised. Moreover, it also provides an

improved cloud storage system, which additionally supports the data for-

warding function in a confidential way. An investigation is done on the

relationship between the communication-efficiency parameter and the prob-

ability of a successful data retrieval event. A general setting of the parameters

is provided according to the scale of the storage system.

Through the process of validating my dissertation statement, this dis-

sertation describes two cloud storage systems and provides both a theoretic
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analysis of the performance and the probability of a successful data retrieval

event. The data confidentiality and robustness issues are addressed by using

public key encryption schemes and random erasure codes. The core tech-

nique we developed is a tight integration between the public key encryption

schemes and random erasure codes. The following novel contributions are

made in this dissertation:

• A novel cloud storage system model that provides both storage service

and key-management service.

• Cloud storage systems that allow each storage server independently

encoding data when the data are in encrypted form.

• A cloud storage system that allows data being forwarded in an en-

crypted form after the data are encoded and distributed.

• A general setting for the communication-efficiency parameters is sug-

gested according to the scale of the storage system.

Roadmap. Chapter 2 presents some background on networked storage

systems and a discussion of the security needs of networked storage systems

to illustrate our motivation for the secure cloud storage systems. Chapter 3

presents some algebraic setting and notation, our first cloud storage system

model, the advanced cloud storage system model, and the threat model for

the data confidentiality. Chapter 4 presents the construction of the first

secure cloud storage system. It also contains the full analysis of correct-

ness, performance, security, and the probability of a successful data retrieval

event. Chapter 5 presents the advanced cloud storage system, which supports

5



the data forwarding function. Chapter 6 explores a variety of mechanism

for security issues about data integrity checking in cloud storage systems

and discusses how our systems can potentially integrate with some of them.

Chapter 7 concludes and presents some future directions for further research.
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Chapter 2

Review of Networked Storage

Systems

We introduce the problem domain of this dissertation in this chapter. There

has been much research on networked storage systems in the last decade of

years. Networked storage systems are classified as centralized and decen-

tralized ones depending on the existence of a central authority. Because the

purpose of networked storage systems is to store data reliably over long pe-

riods of time, this chapter further classifies them by what technique they

employed for data robustness against machine failures. This chapter de-

scribes some well-known networked storage systems in literature, although

this brief survey is by no means complete or exhaustive. In particular, we

do not cover the papers related to altered data detection and correction in

networked storage systems. After introducing the basic research area, we

discuss the data confidentiality problem in the context of networked storage

systems.

7



Robust storage technologies. Ensuring data available against machine

failures requires the introduction of redundancy. Replication is the simplest

approach for achieving resilience to arbitrary corruption of storage. Unfor-

tunately, this method has a high overhead in storing full copy of the file at

each storage server. Erasure codes are applied in many networked storage

systems for tolerating failure of storage servers with lower storage overhead.

Networked storage systems apply each of the technologies or a mixed of them

to provide a robust data storage in either centralized or decentralized archi-

tecture.

2.1 Centralized Data Management

A centralized networked storage system has a central authority which may

be a single server or a small cluster of central servers. The central authority

has a global view of the whole storage system, such as the network topology

and the global routing table, and controls how data are stored among many

storage servers.

2.1.1 Mirrors and Replicas

At the early years, the network-attached storage (NAS) [3] deploys extra

storage devices in the network and a user can access the devices via net-

work connection. The Network File System (NFS) [4] is then proposed for

the application of a file system. A user can backup his data in the NAS

devices. This mechanism is analog to the one in the traditional file system

with multiple directly-attached storage disks, such as the redundant array of

8



Figure 2.1: Replication on storage devices.
The left figure is RAID-1 and the right figure is a small SAN with 4 storage devices.

In RAID-1, each drive stores one replica of the data. Similarly, each storage device

in the SAN stores a copy of the data. However, the storage devices in SAN are

consolidated together via a high-speed network.

independent disks(RAID)-1. The exception is that replicas are transmitted

via a network connection instead of a physical connection. In contrast to

NAS which is a file-wise storage system, Storage Attached Network (SAN) is

a block-wise storage system. A file system can be built upon SAN. Mirroring

is the simplest robust technique offered by SAN. Figure 2.1 illustrates the

RAID-1 and a small SAN.

Many file systems built upon the networked storage systems use replica-

tion and store replicas on multiple storage servers. For example, AFS [11],

Coda [12], SFS [13], and Plutus [14] are all distributed file systems that store

replicas and have varied replication mechanisms. AFS maintains replicas in

a read-only manner except one of them is writable to achieve the consistency

among all replicas, while Coda allows all storage servers to receive updates

and uses an expensive repair mechanism to handle conflicts.

When the scale of a networked storage system becomes bulky, the replica

placement and consistency problems arise. The replica placement problem

is to decide which set of storage servers to store the replicas such that the

life time of data is extended. The consistency problem is to keep all repli-

9



cas consistent with the original. Fortunately, the central authority can well

address these two problems by using the global system information.

2.1.2 Erasure Codes

The RAID-5 uses erasure codes to survive one drive failure and the RAID-6

can survive the failure of two drives. Figure 2.2 and Figure 2.3 show how

data are stored in RAID-5 and RAID-6. The parity operation is performed

in RAID-5 systems. One parity result is additionally stored to tolerate one

erasure error. In RAID-6 systems, a parity computation and a Reed-Solomon

encoding are performed over the stored data. As a result, up to two erasure

errors a RAID-6 system can tolerate.

Erasure codes are codes that encode the input of k symbols as a codeword

of n symbols such that as long as k out of n symbols of the codeword are

available, the original k symbols can be decoded back. This code can tolerate

(n − k) erasure errors.

Erasure codes are applied in many networked storage systems for data

robustness with lower storage overhead. The erasure codes are mainly used

by the following framework for the robustness of networked storage systems

against the failure of machines when a machine failure is modeled as an

erasure error. Assume that there are n storage servers in a networked storage

system. A user represents a file as an input of the encode algorithm, and

encodes the file as a codeword. Later, each storage server stores a symbol of

the codeword. As a result, as long as k out of n storage servers are available,

the file can be decoded and retrieved by the user. The scalable distributed

10



Figure 2.2: RAID-5.
The left figure is RAID-5 with 3 drives and the right figure is RAID-5 with 4 drives.

The parity function is a bitwise XOR over the input. In a RAID-5 system, data

are available as long as at most one drive crashes.

Figure 2.3: RAID-6.
The figure shows a RAID-6 with 4 drives. In a RAID-6 system, data are available

as long as at most two drives crash.

storage [15] uses the Lincoln Erasure Codes, a class of erasure codes, to

provide the data availability.

The central authority of a networked storage system can choose special

coding method to obtain a better ability on tolerating errors or a better

coding performance. We categorize the storage systems that use erasure

codes by what operations the erasure codes employ.

Algebraic Operation based Erasure Codes

One of the most well-known erasure codes is the Reed-Solomon codes and

the storage system in [16] uses Reed-Solomon codes to tolerate both erasure

and faulty errors. A simple Reed-Solomon code is described as follows and

illustrated in Figure 2.4. A message m is represented as k elements in a finite

field, i.e. m = (m1, m2, . . . , mk). Consider a polynomial function f with

11



Figure 2.4: An encoding example of a Reed Solomon code.
The message defines a polynomial function and a codeword is defined by the values

of the polynomial on n points.

Figure 2.5: An example of a storage system that uses a linear code.
The central authority encodes the messages into a codeword (C1, C2, C3) and sends

a distinct symbol to a storage server for storage.

degree k − 1 where f(x) = m1 + m2x + m3x
2 + · · · + mkx

k−1. A codeword

c with length n is (f(1), f(2), . . . , f(n)), where the polynomial function is

computed over certain finite field. As long as k elements in the codeword are

available, the polynomial function f can be recovered as well as the message

m.

In a storage system using a linear code to provide the data robustness,

the central authority can encode messages and recover them back. Figure 2.5

shows the example where there are 2 messages and 3 storage servers and the

coding is operated in a finite field. After the central authority gets the two

messages, he generates a generator matrix and encodes the messages via the

12



Figure 2.6: The EVENODD encoding.
The data are represented as a (p−1)×p table. An entry is a bit of the data. After

the encoding, the codeword is represented as a (p− 1)× (p+2) table. Each storage

server stores one column of the resulting table.

generator matrix. The codeword contains 3 symbols and each storage server

stores one of them. After the central authority retrieves 2 out of 3 codeword

symbols, he performs the decoding process and sends the messages back to

the user.

XOR Operation based Erasure Codes

Some erasure codes are proposed for their excellent performance. They only

use exclusive-or operations. As a result, the storage systems also have good

13



Figure 2.7: A system using the EVENODD encoding.
Each storage server stores a column of the encoded table. This storage system

tolerates the failure of two servers.

performance on the data storage and retrieval processes. The EVENODD

code [17, 18] and the STAR code [19] are proposed for tolerating 2 and 3

erasure errors, respectively. The encoding of the EVENODD codes and the

STAR codes are efficient, but the codes can only tolerate constant number of

erasure errors. Figure 2.6 illustrates the EVENODD encoding and Figure 2.7

shows how a system stores the encoded data. There are (p+2) storage servers

SS1,SS2,...,SSp+2 in the system and each of them stores a column data, which

is p bits. The STAR codes use an additional parity column for tolerating one

more erasure error. Figure 2.8 shows the STAR encoding and how a system

stores the encoded data.

Many low-density parity check (LDPC) codes have also more efficient

encoding and decoding algorithms than other erasure codes that use linear

algebraic operations do. A networked storage system that uses a systematic

LDPC code is described as follows. Figure 2.9 shows an overview of the

storage system. Assume that there are n messages. The storage servers are

divided into two groups R and L. The R group consists of n storage servers

14



Figure 2.8: The STAR encoding and a system storing the encoded data.
STAR codes tolerate the failure of 3 servers. There are 3 columns of parity bits.

Figure 2.9: A networked storage system that uses a LDPC code.
The system contains 7 storage servers and 4 out of them store the original data.

The other 3 storage server store the parity results of the data.

and each of them keeps one message. The L group has the rest of the storage

servers and each of them stores a parity over a subset of n messages.

Tornado codes [20, 21] are also a class of LDPC erasure codes that have

fast encoding and decoding algorithms. Tornado codes illustrated in Fig-

ure 2.10 use irregular bipartite graphs as the encoding structures. The

archival storage [22] uses Tornado codes as the fault-tolerance technique.

Different LDPC codes define different policies on the L group, i.e. how

many and which messages are used to produce the parity. The experimental

results in [23] show that how differently LDPC codes perform on the ro-

bustness ability. When the number of message symbols are below 100, the

15



Figure 2.10: The encoding structure of Tornado codes.
Tornado codes use cascaded irregular bipartite graphs. The k input message bits

are listed as k left vertices of the first bipartite graph. The right vertices of the

first bipartite graph are ak parity bits. A similar encoding process is performed

on the rest L − 1 cascaded bipartite graphs. The decoding algorithm is simple.

For each right node whose all but one neighbors are known, the missing neighbor

can be recovered. The decoding algorithm successfully terminates when all k input

message bits are recovered.

systematic LDPC codes perform better (fewer codeword symbols are required

for a successful decoding). However, when the number of message symbols

equals or greater than 100, irregular repeat-accumulate LDPC codes perform

better.

2.2 Decentralized Data Management

Because no central authority can arrange how data are distributed among

and retrieved from the whole storage system, a storage server independently

manages the stored data without global information of the networked stor-

age system. Although the data management without a central authority is

much more complicated, the decentralized architecture has many advantages

in practice. A decentralized architecture for storage systems offers a good

16



scalability since any storage server can join or leave without the control of

a central authority. The architecture can bear a global-size system scale

and the resulting massive storage space. Peer-to-peer networks are major

concrete examples for the decentralized architecture.

In this section, We describes several decentralized networked storage

servers that use different robust storage technologies.

2.2.1 Mirrors and Replicas

When there is no central authority, a datum can be flooded into the storage

system and each (available) storage server stores a copy of it. PAST [24]

leaves the choice of a replication factor, i.e. the number of replicas, to the

data owner. Farsite [10] is a reliable file system that uses random replication

to support long-term data persistence. Glacier [25] is a distributed storage

system that uses massive replication to provide data robustness across large-

scale correlated failures. Many strategies aim to arrange where a replica is

stored such that this replica can be found when needed. Carbonite [26] is a

replication algorithm for keeping data durable at a low cost. It contributes

to distributed storage prototypes such as Antiquity [27], OverCite [28], and

UsenetDHT [29].

Consider a peer-to-peer network as a special case of a networked storage

system. The replica placement and the quality of availability are a huge

research area in peer-to-peer networks. For example, a repair mechanism

handles how replicas should be re-distributed when a peer leaves the network.

In addition to the static control over the number of available replicas,
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proactive replication [30, 31] provides a better guarantee for data durabil-

ity. The replication algorithm in [30] produces replicas periodically. The

replication algorithm in [31] generates replicas by predicting the machine

availability.

2.2.2 Erasure Codes

Similar as the case in the centralized architecture, applying an erasure code

provides a lower storage overhead while the resulting system retains the data

robustness. Technologies such as fountain codes, decentralized erasure codes,

or random linear codes are proposed for the decentralized storage systems [32,

33, 34, 35, 36, 37, 38].

XOR Operation based Erasure Codes

Fountain codes enable a robust storage technique. Luby transform (LT) codes

and Raptor codes [39, 40] are two classes of fountain codes. In a fountain

code, the message symbols and codeword symbols can be modeled as vertices

in a random bipartite graph. The degree of each vertex is random over

some probabilistic distribution. Different distributions define different codes.

Figure 2.11 illustrates an overview of the fountain codes. In the LT codes,

each codeword symbol is the result of exclusive-or over d message symbols,

where the value d is random according to an Ideal Soliton distribution and a

robust Soliton distribution. The Raptor code is a class of the fountain code

with linearly encoding and decoding complexity. It uses a modification of the

Ideal Soliton distribution for the degree d. The distributed storage systems
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Figure 2.11: An abstract overview of a fountain code.
The data A,B,C and D are randomly distributed according to some probabilistic

distribution. Different codes define different distributions.

using LT codes [35] and the system using Raptor codes [37, 38] are proposed

in wireless sensor networks.

Algebraic Operation based Erasure Codes

A random linear code is a linear code with a random generator matrix. Each

storage server can randomly determine a column of the generator matrix.

The result in [34] shows that a sub-square matrix of the generator matrix

is invertible with an overwhelming probability. That is, the probability that

a user can successfully retrieve his data with an overwhelming probability.

Figure 2.12 shows an example of a small storage system that uses a random

linear code. There are 6 storage servers SS1, SS2, ..., and SS6 in the system.

After receiving some message symbols, a storage server randomly picks co-

efficients and linearly combines the received message symbols. The storage

server SS1 stores the codeword symbol C1 and the coefficients x1a, x1b, x1c

and x1d, where x1d = 0.

The number of codeword symbols that a datum is contributed could in-

fluence the probability of a successful retrieval. Therefore, a decentralized

erasure code [34] is proposed for certain settings. The system is summarized
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Figure 2.12: A networked storage system using a random linear code.
Each storage server selects a random coefficient for each received message. The

linear combination is performed by the storage server. Each column of the gener-

ator matrix and each codeword symbol is determined and computed by a storage

server. No central authority is required in the encoding process.

in Figure 2.13. In this approach, to store k data, a user makes v copies for

each datum and distributes them to randomly selected storage servers in the

storage system. After receiving those data, each storage server encodes those

data and stores the result. To retrieve k data, the user randomly queries k

storage servers for the encoding results and tries to decode those k data. It

has been shown that for n storage servers and k messages, if n = ak and

v = bk ln k where b > 5a, the probability of successful retrieval is at least

1 − k/p − o(1), where p is the size of the used group [34].

2.2.3 Hybrid Strategy

The hybrid strategy is a mixed method of the replication and an erasure code.

It trades off the advantages and disadvantages between those two approaches.

Many well-known and newly decentralized networked storage systems, such

as OceanStore [41] and Total Recall [42], take the hybrid strategy. The

20



Figure 2.13: A networked storage system using a decentralized erasure code.
The settings for the parameters n, k, and v and the random process of data distri-

bution determine the probability of a successful data retrieval.

Figure 2.14: A networked storage system that uses a hybrid strategy.
The storage system simultaneously stores the data and the resulting symbols
of the erasure coding. The number of the replicas of the data and the number
of symbols of the rasure code influence the data availability of the storage
system.

storage servers are divided into primary storage servers that keep the replicas

and the secondary storage servers that store the encoding results.

The ratio of two kinds of storage servers may influence the data availabil-

ity. Some research [43, 44, 45] are conducted to find an approximated-optimal

ratio for providing a practically long-term data availability. Figure 2.14

gives a layout for an erasure coding with primary copy. The experimen-

tal results [45] are produced by running experiments on the real traces of

large-scale distributed storage systems (e.g. Farsite [10] and Overnet [46]).
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2.3 Challenge of Data Confidentiality

After the storage servers are located on the network, the control of the storage

servers is no longer at the data owner’s hand. Therefore, there is an increasing

attention on the data confidentiality.

2.3.1 Cleartext Storage

Early networked storage systems are proposed for robust storage with simple

access control mechanisms. The data are stored in cleartext. When the

storage system uses an erasure code for data robustness and each storage

server stores a codeword symbol, the system has certain data confidentiality

because less than k storage servers cannot recover the original message, where

the message has k symbols.

2.3.2 Symmetric Encryption

After the hardware and software of the storage servers are improved, the stor-

age servers can handle more computation. Many new networked storage sys-

tems provide stronger data confidentiality by storing data in encrypted form.

Once a storage system receives data from the owner, the data are encrypted

by symmetric encryption scheme such as DES or AES before stored into the

physical drives. Blaze’s CFS [6], TCFS [8], StegFS [7] and NCryptfs [9] are

file systems that encrypt data before writing them to storage drives. Those

file systems only protect the stored data at rest and assume that the storage

servers are fully trusted.

Other large-scale networked storage systems, such as OceanStore [41],
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Figure 2.15: File 1 before and after being encrypted in a Plutus system.
The file is divided into blocks and each file block is encrypted by using a
distinct symmetric key. All symmetric keys are encrypted by using another
symmetric key MK. The encrypted symmetric keys are stored with the en-
crypted file blocks. A user may use a different MK for each file.

Plutus [14] and Tahoe [36], use encryption schemes to protect the data con-

fidentiality against both internal and external attackers. In OceanStore, all

information that enters the system must be encrypted while the owner man-

ages the access control. For example, when the owner wants to share a datum

with others, he needs to distribute the symmetric key to the authorized read-

ers. Similarly, in both Plutus and Tahoe, a user needs to encrypt files with

distinct symmetric keys and manage all of the keys by himself. A file before

and after being encrypted in Plutus is illustrated in Figure 2.15. A newly

encryption service [47] is provided for any cloud storage user who uses Ama-

zon Simple Storage Service. The encryption service encrypts the user’s data

by using AES and stores the ciphertext into the cloud storage system for the

user. Again, this application assumes that the servers who encrypt the data

are fully trusted.

However, the data confidentiality of above systems is guaranteed either
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when the storage servers are honest and secure or when users take the re-

sponsibility of key management over the huge amount of symmetric keys.

For most cases, those storage servers are assumed that they will follow the

user-defined access policy on the stored data and keep the stored data in the

encrypted form all the time. The trust on all storage servers sometimes is un-

realistic especially when the storage system is decentralized and distributed

over a large geographic area. Any one of the storage servers could be vul-

nerable from internal or external attacks. On the other hand, the burden

of key management for users should be decreased or moved to the servers.

Hence, stronger data confidentiality with low overhead on users is required.

The data should be kept secret even if all storage servers are compromised,

and users store as few as possible keys and put as less as possible effort on

the key management.

2.3.3 Public Key Encryption

Applying a public key encryption scheme in a centralized networked storage

system gives a straightforward solution to the data confidentiality issue. A

user encrypts the data and then stores into the system. The central authority

simply treats the ciphertext as a RAW data just like in the non-encrypted

case. Similarly, the strong data confidentiality is also achievable in a de-

centralized system with replication technology. For instance, Farsite [10]

uses the hybrid encryption to protect the data confidentiality and provide

an access control mechanism. In Farsite, a datum is first encrypted by using

a symmetric encryption and the symmetric key is encrypted by using the
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owner’s public key. The user only needs to store his secret key for all of his

data. When he wants to share some data with some user, he encrypts the

corresponding symmetric keys by using the authorized user’s public key and

stores the ciphertext in the storage system. The overhead of the key man-

agement is mainly moved to the servers because most of the keys are stored

in storage servers (in an encrypted form) except for the user’s secret key.

2.3.4 Motivation

To my best knowledge, few research addresses the data confidentiality against

the collusion of all storage servers in a decentralized networked storage system

that uses erasure codes. Here is the place where my results fill in. We provide

a secure cloud storage system that provides a strong data confidentiality in

a decentralized environment and a good data availability by using erasure

codes. Our key technique is combining a public key encryption scheme and

a variant of random linear code. As a result, the data are stored in an

encrypted and encoded form in each storage server and no storage server has

the decryption key. The access right management is totally controlled by the

data owner. The data confidentiality is fully guaranteed even if all storage

servers are corrupted at the same time.
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Chapter 3

Erasure Codes and System

Models

We introduce our basic algebraic notations and the erasure codes we used in

this chapter. The special erasure code is one of our key techniques to achieve

both robustness and parallelism in our cloud storage system. We consider

that there is no central authority in the collection of storage servers and

introduce our first system model and an advanced one. We also describe the

threat model to measure the security degree of the cloud storage systems.

3.1 Bilinear Map and Assumptions

Bilinear map. Let G1, G2 be cyclic multiplicative groups1 with prime or-

der p and g ∈ G1 be a generator. A polynomial-time computable map

ẽ : G1 × G1 → G2 is a bilinear map if it has the bilinearity and non-

1It can also be described as additive groups over points on an elliptic curve.
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degeneracy: for any x, y ∈ Zp, ẽ(g
x, gy) = ẽ(g, g)xy and ẽ(g, g) is not the

identity element in G2. In fact, ẽ(g, g) is a generator of G2. Let Gen(1λ)

be an algorithm generating (p, G1, G2, ẽ, g), where λ is the length of p.

Let x ∈R X denote that x is randomly chosen from the set X.

Bilinear Diffie-Hellman assumption. Following the above parameters,

given g, gx, gy, gz, where x, y, and z are randomly chosen from Zp, the

bilinear Diffie-Hellman problem is to find ẽ(g, g)xyz. The assumption is that it

is hard to solve the problem with a significant probability in polynomial time.

Formally, for any probabilistic polynomial time algorithm A, the following

probability is negligible (in λ):

Pr[A(g, gx, gy, gz) = ẽ(g, g)xyz : x, y, z ∈R Zp]

Decisional Bilinear Diffie-Hellman assumption. This assumption is that

given g, gx, gy, gz, it is hard to distinguish ẽ(g, g)xyz from a random element

from G2. Formally, for any any probabilistic polynomial time algorithm A,

the following is negligible (in λ):

|Pr[A(g, gx, gy, gz, Qb) = b : x, y, z, r ∈R Zp;

Q0 = ẽ(g, g)xyz; Q1 = ẽ(g, g)r; b ∈R {0, 1}] − 1/2|

3.2 Erasure Codes over Exponents

The erasure codes we used can be seen as a variant of the traditional random

linear codes. We briefly review the random linear codes and present the
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erasure codes over exponents in this section.

3.2.1 Random Linear Codes

Let the message be ~I = (m1, m2, . . . , mk), the generator matrix G = [gi,j]1≤i≤k,1≤j≤n

and the codeword be ~O = (w1, w2, . . . , wn). The elements of ~I and ~O and

entries of G are all over a finite field F of size p. The generator matrix of a

random linear code has random entries from the finite field. As a result, each

element of ~O is a linear combination of ~I where the coefficients are randomly

chosen from F.

A decentralized erasure code [34] is a random linear code with a sparse

generator matrix. The generator matrix G of a decentralized erasure code

constructed by an encoder is as follows. First, for each row, the encoder

randomly marks an entry as 1 and repeats this process for an ln k/k times

with replacement (an entry can be marked multiple times), where a is a

constant. Second, the encoder randomly sets a value from F for each marked

entry. The encoding process is expressed as ~I ·G = ~O. As for the decoding, a

decoder receives k columns j1, j2, . . . , jk of G and the corresponding codeword

elements wj1, wj2, . . . , wjk
. The decoding process is computed as follows:

[m1, m2, . . . , mk] = [wj1, wj2, . . . , wjk
]



















g1,j1 g1,j2 · · · g1,jk

g2,j1 g2,j2 · · · g2,jk

· · · · · · · · · · · ·

gk,j1 gk,j2 · · · gk,jk



















−1

A decoding is successful if and only if the k × k submatrix formed by the
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Figure 3.1: A storage system using the random erasure code.
Messages M1 and M2 are randomly distributed to storage servers SS1, SS2, and

SS3. The storage server SS1 randomly selects a coefficient g1,1 for the received

message. Similarly, the storage servers SS2 and SS3 individually select coeffi-

cients.

k chosen columns is invertible. Thus, the probability of a successful decoding

is the probability of the chosen submatrix being invertible. It has been shown

in [34] that the probability is at least 1 − k/p − o(1), where the randomness

is introduced by the random choices for marked entries, the random values

for marked entries, and the random choices for k columns.

3.2.2 Random Erasure Codes over Exponents

We fix a cyclic multiplicative group G with prime order p. The message

domain is G. The generation of the generator matrix G is the same as

the above decentralized erasure code except that the entries of G are over

Zp. The encoding process is to generate w1, w2, . . . , wn ∈ G, where wi =

m
g1,i

1 m
g2,i

2 · · ·mgk,i

k . An example is shown in Figure 3.1. There are 2 messages

stored into 3 storage servers. The first step of the decoding process is to com-

pute the inverse of a k × k submatrix K of G. Let K−1 = [di,j]1≤i,j≤k. The
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second step of the decoding process is to compute mi = w
d1,i

j1
w

d2,i

j2
· · ·wdk,i

jk
,

where j1, j2, . . . , jk are the indices of columns of K in G. Therefore, a suf-

ficient condition for a success decoding of the variant decentralized erasure

code is that the k×k submatrix K is invertible. Similar to the decentralized

erasure code, the probability of a success decoding is at least 1− k/p− o(1).

Since the decoder only requires k columns of G and their corresponding

codeword elements to decode, this code is resilient to (n− k) erasure errors.

Moreover, the code is decentralized because each codeword element wi can

be independently generated. A distributed networked storage system having

n servers uses a random erasure code as follows. The owner wants to store

k messages Mi, 1 ≤ i ≤ k. For each Mi, the owner randomly selects v

servers with replacement and sends a copy of Mi to each of them. Each

server randomly selects a coefficient for each received message and performs

a linear combination of all received messages. Those coefficients chosen by a

server form a column of the matrix and the result of the linear combination is

a codeword element. Because there are n servers, a k×n generator matrix and

a codeword are implicitly formed. Each server can perform the computation

independently. This makes the code decentralized.

3.3 System Models

We first consider a basic storage system model which is capable for the funda-

mental functions, i.e. storing and retrieval. Later, we extend the system by

adding the data forwarding function. The advanced system model supports

the data forwarding function such that the both the owner forwards and the
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Figure 3.2: Our first system model of our secure cloud storage system.
Messages are encrypted and then randomly distributed amon the storage servers.

Each storage server performs the combination on received ciphertexts and only

stores the result and chosen coefficients.

granted user retrieves data in a confidential way.

3.3.1 The First System Model

Figure 3.2 provides an overview of our first system model. There are n storage

servers SS1, SS2, ..., SSn and m key servers KS1, KS2, ..., KSm. The storage

servers provide storage services and the key servers provide key management

services. The system consists of 3 phases: system setup, data storage, and

data retrieval. They are described as follows.

In the system setup phase, the system chooses and computes public pa-

rameters. A user A has his own storage space, his public key PKA and secret

key SKA. The user A publishes his public key and shares his secret key to

a set of key servers by his own choice with a threshold value t. As a result,

each chosen key server KSi, 1 ≤ i ≤ m, holds a key share SKA,i of the user’s

secret key SKA.

In the data storage phase, a user A wants to store k messages Mi, 1 ≤
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Figure 3.3: The advanced system model of our secure cloud storage system.
User A generates a re-encryption key RKA→B,Fid

and distributes it to all storage

servers such that the storage servers re-encrypt the ciphertexts into ones under

user B’s key.

i ≤ k, into n storage servers SSi, 1 ≤ i ≤ n. We could think that these

messages are the segments of a file. For those k messages, A assigns a message

identifier. Each message Mi is encrypted under the public key PKA as Ci =

E(PKA, Mi). Then, each ciphertext is sent to v storage servers, where the

storage servers are randomly chosen. Each storage server SSi combines the

received ciphertexts by using the erasure code to form the stored data σi.

In the data retrieval phase, to retrieve the k messages, A instructs the

m key servers such that each key server retrieves stored data from u storage

servers and does partial decryption for the retrieved data. Then, A collects

the partial decryption results, called decryption shares, from the key servers

and combines them to recover the k messages.

3.3.2 Advanced System Model

Our advanced system model is illustrated in Figure 3.3. Again, the system

model consists of users, n storage servers SS1, SS2, ..., SSn and m key servers

KS1, KS2, ..., KSm. In addition to the basic functions, the advanced system
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model supports one more important function – data forwarding. Hence,

the storage system consists of 4 phases: system setup, data storage, data

forwarding, and data retrieval. The only different phases from the first system

model are the data forwarding and the data retrieval. Thus the two phases

are described as follows.

In the data forwarding phase, user A can forward the data D to another

user B. User A computes a re-encryption key from A to B respect to the

data D and sends it to all storage servers. After getting the re-encryption

key, each storage server re-encrypts the data D of user A. The re-encryption

operation transfers the ciphertext of D to a ciphertext for B. As a result, the

re-encrypted data can be decrypted by using B’s secret key. We say that the

originally encrypted data as level-0 ciphertexts and the re-encrypted data as

level-1 ciphertexts.

In the data retrieval phase, user A retrieves the data from the system. The

data either belong to the user A or are forwarded to him. First, the user sends

a retrieval request to all key servers. Upon receiving the user’s request of

retrieval, a key server queries a set of u storage servers. The queried storage

servers will send the requested messages (in encrypted and encoded form)

and the coefficients back to the key server. After receiving messages from

the queried storage servers, the key server performs the partial decryption

by using the key share and forwards the results to user A. As long as at least

t key servers reply to user A’s request, user A can retrieve messages with an

overwhelming probability.

A small example of a commercial company is illustrated in Figure 3.4. A

manager A stores his data in the storage system and classifies the data by
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Figure 3.4: A storage system using the secure decentralized erasure code.

different clients to whom data are associated. One day, the manager wants to

assign the case of client 1 to his employee B. The manager securely forwards

the data associated with client 1 to B. Afterward, only B can access those

forwarded data.

3.4 Threat Model

In this system model, we consider that an attacker wants to corrupt the data

confidentiality of a target user and he colludes with all storage servers and

up to (t − 1) key servers. We assume that the attacker will not tamper the

stored data but he will try to get the data content from the stored data. We

model this attack by the standard chosen plaintext attack of the underlying

encryption scheme in a threshold version.

3.4.1 Model without Forwarding

For our first system model, we extend the standard chosen plaintext attack

(CPA) security game for the threshold public key encryption scheme. The

threshold CPA security game consists of a challenger C and an attacker A.

• Setup: C does the following:
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– Run Setup(λ) to get µ = (p, G1, G2, ẽ, g).

– Run KeyGen(µ) to get a key pair (PK, SK) and run ShareKeyGen

on (SK, t, n) to get SKi, 1 ≤ i ≤ n, where t and n are randomly

chosen.

– Send (µ, PK, t, n) to A.

• Key share query: A queries (t − 1) secret key shares from C and gets

SKq1
, SKq2

, . . ., SKqt−1
, where q1, q2, . . . , qt−1 ∈ [1, n].

• Challenge: A chooses two messages M0 and M1, where M0 6= M1, and

sends them to C. C encrypts Mb as C, where b is randomly selected

from {0, 1}, and sends C to A.

• Output: A outputs a bit b′ for guessing b.

The advantage of A is defined as AdvA = |Pr[b′ = b] − 1/2|. A threshold

public key encryption scheme is CPA secure if and only if for any probabilistic

polynomial time algorithm A, AdvA is a negligible function in λ. A cloud

storage system in the basic system model is secure if the used threshold public

key encryption scheme is secure.

3.4.2 Model with Forwarding

For the advanced system model, the security game is a little bit different from

the previous one for the first system model. We consider that an attacker

wants to corrupt the data confidentiality of a target user with respect to an

identifier and he colludes with all storage servers and up to (t−1) key servers.
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Figure 3.5: The security game for the chosen plaintext attack.
Not only secret key shares but also re-encryption keys are queried by the attacker

in the security game.

We model this attack by the standard chosen plaintext attack of the proxy

re-encryption scheme in a threshold version.

This game is the same with the previous one except the steps in the

key share query. In the key share query, in addition to (t − 1) secret key

shared of T, the attacker can also query all re-encryption keys except those

re-encryption keys from T to other users. In the challenge phase, the attacker

can choose the message identifiers for each of the chosen messages.

Figure 3.5 shows the full security game for the chosen plaintext attack in

a threshold version. The challenger provides the system parameters. After

the attacker chooses a target user T, the challenger gives (t−1) key shares of

the secret key SKT of the target user T to the attacker. This step models that

the attacker colludes with (t − 1) key servers. Then the attacker can query

all re-encryption keys except those re-encryption keys from T to other users.

In the challenge phase, the attacker chooses two messages M0 and M1 and

indicates the identifiers Fid0
, Fid1

for each of them. The challenger throws a

36



random coin b and encrypts the message Mb with T’s public key PKT and the

identifier Fidb
. After getting the ciphertext from the challenger, the attacker

outputs a bit b′ for guessing b. In this game, the attacker wins if and only if

b′ = b. The advantage of the attacker is defined as |1/2 − Pr[b′ = b]|.

A cloud storage system in the advanced system model is secure if no

probabilistic polynomial time attacker wins the game with a non-negligible

advantage.
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Chapter 4

Secure Cloud Storage System

At the starting point, we consider a secure cloud storage system, which sup-

ports the basic functions – data storing and retrieval. We design a threshold

public key encryption scheme to protect the confidentiality of the stored

data. However, it is not easy to maintain the decentralized structure of the

whole network. One of the differences of our threshold encryption scheme

from other ones is that the partial decryption is independently done by each

key server. In this section, we present the threshold public key encryption

scheme and the secure storage system that employs the encryption scheme.

We also analyze the performance of the storage system and show that our

storage system is secure.

4.1 Threshold Public Key Encryption

A threshold public key encryption consists of 6 algorithms: SetUp, KeyGen,

ShareKeyGen, Enc, ShareDec, and Combine. SetUp generates the public pa-
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Figure 4.1: The primitive encryption scheme.
This is the primitive encryption scheme. We modify it into a threshold version.

Figure 4.2: The flowchart of the threshold encryption scheme.
The flow of encryption and partial decryption of the threshold encryption scheme.

Message M is encrypted as C. The decryption is performed by m partial decryption

processes and a final combine process.

rameters of the whole system, and KeyGen generates a key pair, consisting of

a public key PK and a secret key SK, for each user. Each user uses ShareKey-

Gen to share his secret key into m secret key shares such that any t of them

can recover the secret key. Enc encrypts a given message by a public key PK,

and outputs a ciphertext. ShareDec partially decrypts a given ciphertext by

a secret key share and outputs a decryption share. Combine takes a set of

decryption shares as input and outputs the message if and only if there are

at least t decryption shares.

Figure 4.1 gives the non-threshold primitive encryption scheme. We mod-

ify this primitive and propose a threshold public key encryption scheme Π

using bilinear maps as follows. Figure 4.2 shows a flow diagram of the en-

cryption and partial decryption of the encryption schemes.

• SetUp(1λ). To generate µ, run Gen(1λ) and set µ = (p, G1, G2, ẽ, g).
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• KeyGen(µ). To generate a key pair for a user, select x ∈R Zp and set

PK = gx, SK = x.

• ShareKeyGen(SK, t, m). The secret key shares SKi = f(i) are derived

by the polynomial f(z), where

f(z) =SK + a1z + a2z
2 + · · · + at−1z

t−1 (mod p),

and a1, a2, . . . , at−1 ∈R Zp.

• Enc(PK, M). To generate a ciphertext C of the message M ∈ G2,

compute

C = (α, β, γ) = (gr, h, Mẽ(gx, hr)),

where r ∈R Zp, and h ∈R G1.

• ShareDec(SKi, C). Let C = (α, β, γ). By using the secret key share

SKi, a decryption share ζi of C is generated as follows.

ζi = (αi, βi, β
′
i, γi) = (α, β, βSKi , γ)

• Combine(ζi1 , ζi2, . . . , ζit). It combines the t values (β ′
i1 , β

′
i2, . . . , β

′
it) to

obtain βSK = βf(0) via Lagrange interpolation over exponents:

βSK =
∏

i∈S

(

(β ′
i)

∏

r∈S,r 6=i
−i
r−i

)

where S = {i1, i2, . . . , it} and ζij = (αij , β, (β)′ij , γij) for all 1 ≤ j ≤ t.
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The output message is M = γ/ẽ(α, βf(0)).

When a fixed h is used for a set of ciphertexts, the set of those ciphertexts

are multiplicative homomorphic. The multiplicative homomorphic property

is that given a ciphertext for M1 and a ciphertext for M2, a ciphertext for

M1 × M2 can be generated without knowing the secret key x, M1, and M2.

Let C1 = Enc(PK, M1) and C2 = Enc(PK, M2), where

C1 = (gr1, h, M1ẽ(g
x, hr1)) and

C2 = (gr2, h, M2ẽ(g
x, hr2)).

A new ciphertext C which is an encryption of M1 ×M2 under the public key

PK is computed as follows:

C = (gr1gr2, h, M1ẽ(g
x, hr1)M1ẽ(g

x, hr2))

= (gr1+r2, h, M1M2ẽ(g
x, hr1+r2))

4.2 System Construction

We assume that there are n storage servers which store data and m key servers

which own secret key shares and perform partial decryption. We consider

that the owner has the public key PK = gx and shares the secret key x to

m key servers with a threshold t, where m ≥ t ≥ k. Let the k messages be

M1, M2, . . . , Mk. We use hID = H(M1||M2|| · · · ||Mk) as the identifier for this

set of messages, where H : {0, 1}∗ → G1 is a secure hash function.

The storage process, illustrated in Figure 4.3, and the retrieval process
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Figure 4.3: The storage process of our first secure cloud storage system.
The messages are encrypted and distributed among the storage servers. Each stor-

age server combines all received ciphertexts and stores the result and the chosen

coefficients.

are described in the following.

• Storage process. To store k messages, the storage process is as follows:

1. Message encryption. The owner encrypts all k messages via the

threshold public key encryption Π with the same hID, where hID =

H(M1||M2|| · · · ||Mk) is the identifier for the set of messages M1, M2, . . . , Mk.

Let the ciphertext of Mi be

Ci = (αi, β, γi) = (gri, hID, Miẽ(g
x, hri

ID)),

where ri ∈R Zp, 1 ≤ i ≤ k.

2. Ciphertext distribution. For each Ci, the owner randomly chooses

v storage servers (with replacement) and sends each of them a

copy of Ci.

3. Decentralized encoding. For all received ciphertexts with the same

message identifier hID, the storage server SSj groups them as Nj .

The storage server SSj selects a random coefficient gi,j from Zp
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for each Ci ∈ Nj and sets gi,j = 0 for Ci 6∈ Nj . This step forms a

generator matrix G = [gi,j]1≤i≤k,1≤j≤n of the decentralized erasure

code.

Each storage server SSj computes the following (Aj, Bj),

Aj =
∏

Ci∈Nj

α
gi,j

i and Bj =
∏

Ci∈Nj

γ
gi,j

i

and stores

σj = (Aj, hID, Bj, (g1,j, g2,j, . . . , gk,j)).

In fact, (Aj , hID, Bj) is a ciphertext for
∏

1≤i≤k M
gi,j

i since

(Aj, hID, Bj)

= (
∏

Ci∈Nj

(gri)gi,j , hID,
∏

Ci∈Nj

(Miẽ(g
x, hri

ID))gi,j)

= (g
∏

Ci∈Nj
rigi,j , hID, (

∏

Ci∈Nj

M
gi,j

i )ẽ(gx, h

∏

Ci∈Nj
rigi,j

ID ))

= (gr̃, hID, (
∏

Ci∈Nj

M
gi,j

i )ẽ
(

gx, hr̃
ID

)

),

where r̃ =
∏

Ci∈Nj
rigi,j.

• Retrieval process. To retrieve k messages, the retrieval process is as

follows:

1. Retrieval command. The owner sends a command to the m key

servers with the message identifier hID.

43



2. Partial decryption. Each key server KSi randomly queries u stor-

age servers with the message identifier hID and obtains at most u

stored data σj from the storage servers. Then the key server KSi

performs ShareDec on each received ciphertext by its secret key

share SKi to obtain a decryption share of the ciphertext. Assume

that KSi receives σj . KSi decrypts the ciphertext (Aj , hID, Bj) as a

decryption share ζi,j = (Aj , hID, hSKi
ID , Bj), and sends the following

to the owner:

ζ̃i,j = (Aj , hID, hSKi
ID , Bj, (g1,j, g2,j, . . . , gk,j))

3. Combining and decoding. The owner chooses ζ̃i1,j1, ζ̃i2,j2, . . . , ζ̃it,jt

from all received data ζ̃i,j and computes hSK
ID = h

f(0)
ID = hx

ID by the

Lagrange interpolation over exponents, where i1 6= i2 6= · · · 6= it

and S = {i1, i2, . . . , it}:

hx
ID =

∏

i∈S

(

hSKi
ID

)

∏

r∈S,r 6=i
−i
r−i

If the number of the received ζ̃i,j is more than t, the owner ran-

domly selects t out of them. If the number is less than t, the

retrieval process fails. After having hx
ID, the owner reconsiders all

received data and chooses ζ̃i1,j1, ζ̃i2,j2, . . . , ζ̃ik,jk
with j1 6= j2 6=

· · · 6= jk. By using hx
ID, the owner decrypts ζi,j as wj for all
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(i, j) ∈ {(i1, j1), (i2, j2), . . . , (ik, jk)}:

wj =
Bj

ẽ(Aj , hx
ID)

=
∏

Cl∈Nj

M
gl,j

l (4.1)

The owner then computes

K−1 = [di,j]1≤i,j≤k ,

where K = [gi,j]1≤i≤k,j∈{j1,j2,...,jk}
. If K is not invertible, the re-

trieval process fails. Otherwise, the owner successfully obtains Mi,

1 ≤ i ≤ k, by the following computation:

w
d1,i

j1
w

d2,i

j2
· · ·wdk,i

jk

= M
∑k

l=1
g1,jl

dl,i

1 M
∑k

l=1
g2,jl

dl,i

2 · · ·M
∑k

l=1
gk,jl

dl,i

k

= M τ1
1 M τ2

2 · · ·M τk
k

= Mi,

where τr =
∑k

l=1 gr,jl
dl,i = 1 if r = i and τr = 0 otherwise.

An example is given in Figure 4.4. In the ciphertext distribution step,

the ciphertext C1 is distributed to SS1, SS2, and SS3. The ciphertext C2 is

distributed to SS2 and SS3 only. After receiving ζ̃1,1, ζ̃1,2, ζ̃2,2, and ζ̃2,3, the

owner computes hx
ID from ζ̃1,1 and ζ̃2,2. By using hx

ID, the owner computes

the encoded messages, M
g1,2

1 M
g2,2

2 and M
g1,3

1 M
g2,3

2 , and decodes them to get

messages M1 and M2.

Our design uses two techniques. Firstly, for retrieving messages, the
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Figure 4.4: A storage system using the secure decentralized erasure code.

decryption process can be performed before the decoding process. Secondly,

the decryption process can be performed by the key servers independently.

The first technique comes from the multiplicative homomorphic property of

our encryption scheme. For those k messages, a fixed message identifier hID

is used. As a result, the set of ciphertexts is multiplicative homomorphic.

An encoding result of ciphertexts C1, C2, . . . , Ck is also an encryption of an

encoding result of messages M1, M2, . . . , Mk. As for the second key technique,

the design of the encryption scheme embeds the decryption power at the value

hx
ID, while hID is the message identifier. With hx

ID, the owner can decrypt all

ciphertexts marked with the message identifier hID. A key server KSi can

compute a share hSKi
ID of hx

ID. With at least t key servers, hx
ID can be computed.

4.2.1 Correctness

The correctness is that the owner A correctly retrieves the messages with

an overwhelming probability. The correctness of the encryption and the

decryption for user A is that any ciphertext C ′ = (gr, hID, wẽ(gx, hr
ID)) can

be correctly decrypted to w, when there are more than t active key servers
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who have shares of SKA. This correctness can be seen from Equation (4.1).

The user combines t decryption shares and then correctly gets the encoded

message.

4.3 Analysis

We analysis the performance, the probability of a successful retrieval, and

the security of the secure cloud storage system.

4.3.1 Performance Analysis

We analyze the computation cost and the storage cost. Let the bit-length of

the element in the group G1 be l1 and G2 be l2.

Computation cost. We measure the computation cost in the number of

pairing operations, modular exponentiations in G1 and G2, modular mul-

tiplications in G1 and G2, and arithmetic operations over GF (p). Those

operations are denoted as Pairing, Exp1, Exp2, Mult1, Mult2, and Fp, respec-

tively. We consider the cost for k messages together since the storage process

and retrieval process are designed for a set of k messages. The cost is listed

in Table 4.1. In fact, Fp has much lower cost than Mult1 and Mult2. One Exp1

is about 1.5⌈log2 p⌉ Mult1 on average (by using the fast square and multiply

algorithm). That is, when p is about 1000 bits, one Exp1 is about 1500 Mult1

on average. Similarly, Exp2 is about 1.5⌈log2 p⌉ Mult2 on average.

Since in practice the coefficients can be chosen from a smaller set, the

measure of the computation cost of the Exp1 and Exp1 is an over-estimation.

Pairing is considered as a more expensive operation than Exp. However,
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Operations Computation cost

Message encryption
(for k messages)

k Pairing + 2k Exp1 + k Mult2

Decentralized encoding
(for each SS)

k Exp1 + k Exp2 + (k − 1) Mult1 + (k − 1) Mult2

Partial decryption
(for t KS)

t Exp1

Combining k Pairing + k Mult2 + O(t2) Fp

Decoding k2 Exp2 + (k − 1)k Mult2 + O(k3) Fp

- Pairing: a pairing computation of ẽ.

- Exp1 and Exp2: a modular exponentiation computation in G1 and G2,
respectively.

- Mult1 and Mult2: a modular multiplication computation in G1 and G2,
respectively.

- Fp: an arithmetic operation in GF (p).

Table 4.1: Computation cost of each step in our first secure storage system.

some improved algorithms [48, 49] are proposed for accelerating the pairing

computation.

In the storage process, for each message encryption, generating αi requires

one Exp1, and generating γi requires one Exp1, one Pairing, and one Mult2.

Hence, in the message encryption step for k messages, the cost is (k Pairing

+ 2k Exp1 + k Mult2). In the ciphertext distribution step, no computation

occurs. In the encoding step, each SSi encodes all received messages. Here we

use a worse cast estimation that each SSi receives k messages. To compute

Ai, SSi requires k Exp1 and (k − 1) Mult1 while to compute Bi, the cost is k

Exp2 and (k − 1) Mult2.

For the partial decryption step, each KSi performs one Exp1 to get hSKi

ID .

For a successful retrieval, t key servers would be sufficient; hence, for this
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step, we consider the total cost of t key servers. That is t Exp1. For the

combining and decoding step, we split it into two sub-steps: the combining

sub-step and the decoding sub-step. The combining sub-step includes the

computation of hx
ID and the computation of codeword elements wj ’s from the

decryption shares ζ̃i,j’s. The computation of hx
ID is a Lagrange interpolation

over exponents in G1, which requires O(t2) Fp, t Exp1 , and (t − 1) Mult1.

Computing wj from Aj , Bj, and hx
ID requires one Pairing and one modular

division, which takes 2 Mult2. The decoding sub-step includes the matrix

inversion and the computation of messages Mi’s from codeword elements

wj ’s. The matrix inversion takes O(k3) arithmetic operations over GF (p),

and the decoding for each message takes k Exp2 and (k − 1) Mult2.

Storage cost. The storage cost in a key server for a user is ⌈log2 p⌉ because

the key server only requires to store the secret key share. The main storage

cost lies on the storage servers.

We measure the storage cost in bits as the average cost in a storage

server for a message bit. To store k messages, each storage server SSj stores

(Aj , hID, Bj) and the coefficient vector (g1,j, g2,j, . . . , gk,j). The total cost in a

storage server is (2l1 + l2 + k⌈log2 p⌉) bits, where Aj, hID ∈ G1, and Bj ∈ G2;

hence, the average cost for a message bit is (2l1 + l2 + k⌈log2 p⌉)/kl2 bits,

which is dominated by ⌈log2 p⌉/l2 for a sufficient large k. In practicality, gi,j’s

are chosen from a much smaller set than Zp. Then we can use fewer bits to

represent gi,j’s. This reduces the storage cost in each storage server.
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4.3.2 Successful Retrieval Probability

When n and k are fixed, u and v affect the probability of a successful retrieval.

We investigate the relations of these parameters for the success probability.

The results are given in Theorem 1 and Theorem 2.

To retrieve all k messages, the key servers have to get k stored data σj1 ,

σj2 , · · · , σjk
from k different storage servers SSj1, SSj2 , . . . , SSjk

and apply

ShareDec to acquire ζ̃i1,j1, ζ̃i2,j2, . . ., ζ̃ik,jk
. Furthermore, a k × k matrix K

formed by the coefficient vectors in ζ̃i1,j1, ζ̃i2,j2, . . ., ζ̃ik,jk
needs to be invertible

in order to solve the k messages. The random process is on the selection of

distinct SSj1 , SSj2 , . . ., SSjk
by the key servers and the coefficient vectors in

σj1 , σj2 , . . ., and σjk
. Let E1 be the event that less than k distinct storage

servers are queried by the key servers. For the generator matrix G implicitly

generated by the owner and the storage servers, let E2 be the event that the

submatrix K of k columns j1, j2, . . . , jk of G is non-invertible. The Figure 4.5

shows the probability space of the successful retrieval event. The outer circle

presents the sample space. The solid circle presents the event E1 and the

inner circle shows the event E2. The event of a successful retrieval is showed

as the shadow area. Thus, the probability of a successful retrieval by the

owner is

1 − Pr[E1] − Pr[E2|E1] Pr[E1] (4.2)

We analyze suitable settings of m, v, and u, where n = ak3/2 and n = ak,

respectively and the results are listed in the following:

1. n = ak3/2, a >
√

2, m ≥ t ≥ k > 1, v = bk1/2 ln k, u = 2 with b > 5a

50



Figure 4.5: The event of a successful retrieval is showed as the shadow area.

2. n = ak, a > 1, m = t = k > 1, v = b1 ln k, u = b2 ln k with b1 > 5a and

b2 > 4 + 3/ ln a

We image a networked storage system that consists of a large number of

storage servers. The number k of stored messages each time is much less

than n. Thus, the first setting of n = ak3/2 is better than the second setting

of n = ak. Although, in the regular coding theory, the constant information

rate for the second setting may be preferred, the first setting is more suitable

for the application to practical networked storage systems.

Theorem 1. Assume that there are k messages, n storage servers, and m

key servers where n = ak3/2, m ≥ t ≥ k > 1 and a is a constant with

a >
√

2. For v = bk1/2 ln k and u = 2 with b > 5a, the probability of a

successful retrieval is at least 1 − k/p − o(1).

Proof. To analyze Pr[E1], we consider that each storage server is a bin and

each key server has u balls, where u = 2. When a key server queries a storage

server, we consider that the key server throws a ball into the bin. Because

the key servers make queries randomly, those balls are randomly thrown into
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Figure 4.6: The random bipartite graph H .
The random bipartite graph H has two sets of vertices and random edges. The

random subgraph H ′ is defined by a random set of k vertices in V2 and the set of

k vertices in V1.

n bins. The probability that less than k bins contain balls is:

Pr[E1] ≤ Cn
k−1

(

k − 1

n

)2m

=
n(n − k + 2)

(k − 1)1

(n − 1)(n − k + 3)

(k − 2)2

· · · (n − ⌊k−2
2
⌋)(n − ⌈k−2

2
⌉)

⌈k−1
2
⌉⌊k−1

2
⌋

(

k − 1

n

)2m

≤ 2n(n − k + 2)

k

k−1

2

(

k − 1

n

)2m

≤
(

2a2k2 − 2ak3/2 + 4ak1/2
)

k−1

2

(

k − 1

n

)2k

(∵ n = ak3/2)

≤
(

2a2k2 − 2ak3/2 + 4ak1/2

a4k2

)

k
2
(

k − 1

k

)2k

= o(1) ( ∵ a >
√

2) (4.3)

The event E2 under the condition E1 can be modeled by forming a perfect

matching in the random bipartite graph H with respect to G. The random
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bipartite graph H is illustrated in Figure 4.7 and constructed as follows. Let

each ciphertext Ci be a vertex v1,i and V1 be the set of all vertices for Ci’s.

Let each storage server SSj be a vertex v2,j and V2 be the set of all vertices

for SSj ’s. When a ciphertext Ci is distributed to the storage server SSj,

there is an edge (v1,i, v2,j). The matrix K induces a subgraph H ′ of the

bipartite graph H . The subgraph H ′ consists of all vertices in V1, a subset

V ′
2 ⊂ V2 that V ′

2 is a subset of queried storage servers and |V ′
2 | = k, and edges

(v1,i, v2,j) for all v1,i ∈ V1 and v2,j ∈ V ′
2 . If H ′ has no perfect matching, K is

not invertible. If H ′ has a perfect matching, K is non-invertible if and only if

det(K) = 0. The value of det(K) depends on the random coefficients chosen

by the storage servers. Let E3 be the event that H ′ has no perfect matching,

and E4 be the event that det(K) = 0. We have,

Pr[E2|E1] = Pr[E3|E1] + Pr[E4|E3 ∧ E1] Pr[E3|E1]

≤ Pr[E3|E1] + Pr[E4|E3 ∧ E1] (4.4)

We analyze the probability of E3 conditioned on E1 by using the Hall’s

Lemma in the following form [34].

Lemma 1. (Hall’s Lemma.)

Let H ′ be a bipartite graph with vertex sets V1 and V ′
2 , where |V1| = |V ′

2 | =

k. If H ′ has no isolated vertex and no perfect matching, then there exists a

set A ⊂ V1 or A ⊂ V2 such that:

• 2 ≤ |A| ≤ k+1
2

• The number of neighbors of A is |A| − 1.
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• The subgraph induced by A and its neighbors is connected.

Hence, there are two cases that H ′ has no perfect matching. First, H ′

has at least one isolated vertex. Second, H ′ has no isolated vertex and a set

A satisfies the above conditions. Let EI be the event that H ′ has at least one

isolated vertex and EA be the event that some set A satisfies the conditions.

We obtain

Pr[E3|E1] ≤ Pr[EI|E1] + Pr[EA|E1] (4.5)

Starting from EI, we consider each vertex in V2 as a bin and each edge

from V1 to V2 as a ball. When an edge connects to a vertex in V2, a ball

is thrown into the bin. Consider the subset B of the bins corresponding to

the subset V ′
2 of V2. Thus, B contains k bins. EI means that there is one or

more empty bins in B. For a fixed bin in B, the probability of the bin being

empty is (1− 1/n)bk3/2 lnk since there are bk3/2 ln k balls. By using the union

bound on k bins, we have the probability of EI conditioned on E1 as:

Pr[EI|E1] ≤ k(1 − 1/n)bk3/2 ln k

= k

(

1 − 1

ak3/2

)ak3/2· b
a

ln k

(∵ n = ak3/2)

≤ k(e−
b
a

ln k) (∵ 1 − x ≤ e−x)

=

(

1

k

)
b
a
−1

= o(1) (∵ b > 5a) (4.6)

As for Pr[EA|E1], we separate the event into two sub-events by A ⊂ V1
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or A ⊂ V ′
2 . Thus,

Pr[EA|E1] = Pr[EA and A ⊂ V1|E1] Pr[A ⊂ V1]

+ Pr[EA and A ⊂ V ′
2 |E1] Pr[A ⊂ V ′

2 ]

≤ Pr[EA and A ⊂ V1|E1]

+ Pr[EA and A ⊂ V ′
2 |E1]

For Pr[EA and A ⊂ V ′
2 |E1], we further divide the event into sub-events

according to the size of A and use the union bound again. Consider a set

A ⊂ V ′
2 with |A| = i. The event EA conditioned on E1 can be overestimated

by the event that Γ(A) ⊂ V1 and |Γ(A)| = i − 1. In other words, there is a

set A′ ⊂ V1 with |A′| = i − 1 such that all vertices in V1\A′ only connect to

vertices in V2\A. Thus, we have
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Pr[EA and A ⊂ V ′
2 |E1]

≤
(k+1)/2
∑

i=2

Pr[EA, A ⊂ V ′
2 and |A| = i|E1]

=

(k+1)/(2)
∑

i=2

Ck
i Ck

i−1(
n − i

n
)(k−i+1)bk1/2 ln k

≤
(k+1)/(2)

∑

i=2

(
ek

i
)2i(

n − i

n
)(k−i+1)bk1/2 ln k (∵ Ck

i ≤ (
ek

i
)i)

≤ k max
i

{(ek
i

)2i(
n − i

n
)(k−i+1)bk1/2 ln k}

= max
i

{exp(2i(1 − ln i)

+ ln k[b(k − i + 1)k1/2 ln

(

n − i

n

)

+ 2i + 1])} (4.7)

To achieve Pr[EA and A ⊂ V ′
2 |E1] = o(1) as k → ∞, it is sufficient to

have

b(k − i + 1)k1/2 ln

(

n − i

n

)

+ 2i + 1 < 0 (4.8)

Since (n − i)/n = 1 − i/n < e−(i/n), we have

b(k − i + 1)k1/2

(−i

n

)

+ 2i + 1 < 0 (4.9)

By Equation (4.9), we need

b >
(2i + 1)ak3/2

(k − i + 1)k1/2i
=

(2i + 1)ak

(k − i + 1)i
(4.10)
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Since b > 5a, for 2 ≤ i ≤ (k + 1)/2, Equation (4.10) holds. It implies that

Pr[EA and A ⊂ V ′
2 |E1] = o(1)

as k → ∞. Similarly, we can get a lower bound for b from the case of A ⊂ V1

and the bound is satisfied by b > 5a.

For Pr[E4|E3∧E1], that is, det(A) = 0, we treat each coefficient, randomly

chosen from Zp, in the matrix K as a variable. Thus, det(K) is a mutlivariate

function. Since there is a perfect matching in the induced graph H ′, det(K)

is not identically zero (i.e. det(K) 6≡ 0) and the degree of det(K) is k. We

use the Schwartz-Zeppel Theorem:

Lemma 2. (Schwartz-Zeppel Theorem [50])

Let Q(x1, x2, . . . , xn) ∈ F [x1, x2, . . . , xn] be a multivariate polynomial of total

degree d. Fix and finite set S and let r1, r2, . . . , rn be chosen independently

and uniformly at random from S. Then

Pr[Q(r1, r2, . . . , rn) = 0|Q(x1, x2, . . . , xn) 6≡ 0] ≤ d

|S|

From the Schwartz-Zeppel Theorem, the probability that the randomly

chosen coefficients make det(K) = 0 is no more than k/p, i.e., Pr[E4|E3 ∧

E1] ≤ k/p. Thus, we have

Pr[E2|E1] ≤ k/p + o(1)

and conclude the proof of Theorem 1.
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For another setting for v and u, where n = ak and m = k, we have the

following theorem.

Theorem 2. Assume that there are k messages, n storage servers, and m

key servers, where n = ak for a fixed constant a > 1 and m = t = k > 1.

For v = b1 ln k, u = b2 ln k, b1 > 5a and b2 > 4 + 3/ ln a, the probability of a

successful retrieval is at least 1 − k/p − o(1), where p is the size of the used

group.

Proof. By the proof of Theorem 1, we analyze two events E1 and E2 similarly.

We have

Pr[E2] < k/p + o(1).

To bound E1, we start with

Pr[E1] ≤ Cn
k−1(

k − 1

n
)b2k lnk.

By the bound for Cn
k−1 in the proof of Theorem 1 and n = ak, we obtain:

Pr[E1] ≤
(

2n(n − k + 2)

k − 1

)
k+1

2
(

k − 1

n

)b2k ln k

≤ (4a2k)
k+1

2 (
k

ak
)b2k lnk

= ak+1+[loga(4k)] k+1

2
−b2k lnk

= o(1) (∵ b2 > 4 +
3

ln a
, k > 1)

as k → ∞. Therefore, the probability of a successful retrieval is

1 − Pr[E1] − Pr[E2|E1] Pr[E1] ≥ 1 − k/p − o(1).
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In our settings, if we increase the value of u, the value of v can be de-

creased while keeping the same probability of the event of a successful data

retrieval. Although a smaller v makes that a storage server contains less

information on average. A higher u value makes more storage servers are

queried by key servers. As a result, the probability of the event of a success

data retrieval may remain.

4.3.3 Security Analysis

As mentioned in Section 3, the security of the cloud storage system relies on

the underlying encryption scheme. We show the above threshold public key

encryption scheme is secure in Theorem 3 as follows.

Theorem 3. The above threshold public key encryption system is chosen

plaintext secure (CPA secure) under the decisional bilinear Diffie-Hellman

assumption in the standard model.

Proof. We prove by contradiction. Assume that there is an algorithm A win-

ning the CPA security game against our encryption scheme with advantage

2ǫ. We can construct an algorithm A′ solving the decisional bilinear Diffie-

Hellman problem with advantage ǫ. The reduction is illustrated in Figure ??

and described as follows.

• Setup. The input of A′ is (g, gx, gy, gz, Q) with public parameters

(ẽ, G1, G2, p). Then A′ sends (µ, PK, t, n) to A, where µ = (p, G1, G2, ẽ, g),

PK = gx, t is a threshold value and n is the number of secret key shares.

This implicitly sets SK = x.
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Figure 4.7: The reduction for the security of our first secure storage system.
The algorithm A′ aims to solve the decisional Diffie-Hellman problem and uses A
as a subroutine.

• Key share query. To answer A’s queries q1, q2, . . . , qt−1 for (t−1) secret

key shares, A′ sets SKq1
, SKq2

, . . . , SKqt−1
as random values and sends

them to A. Wlog, assume that q1, q2, . . . , qt−1 are all different.

• Challenge. A gives two messages M0 and M1. A′ randomly selects

b ∈ {0, 1} and encrypts Mb as:

C = Enc(PK, Mb) = (gy, gz, MbQ)

• Output. A′ sends C to A and gets A’s output b′. If b′ = b, then A′

outputs 0 for guessing that Q = Q0 = ẽ(g, g)xyz. If b′ 6= b, then A′

outputs 1 for guessing that Q = Q1 = ẽ(g, g)r.

When Q = Q0 = ẽ(g, g)xyz, C is a ciphertext of Mb; thus, A has advantage

2ǫ winning the game, i.e. Pr[b′ = b|Q = ẽ(g, g)xyz] = 1/2 + 2ǫ. When

Q = Q1 = ẽ(g, g)r for some random r, the distributions of (gy, gz, M0Q)
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and (gy, gz, M1Q) are identical because for any r, there exists r′ such that

M0ẽ(g, g)r = M1ẽ(g, g)r′. Thus, we have Pr[b′ = b|Q = ẽ(g, g)r] = 1/2. The

advantage of A′ is:

|Pr[A′ → 0|Q = Q0] Pr[Q = Q0]

+ Pr[A′ → 1|Q = Q1] Pr[Q = Q1] −
1

2
|

= |(1
2

+ 2ǫ) × 1

2
+

1

2
× 1

2
− 1/2|

= ǫ
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Chapter 5

Secure Cloud Storage with

Data Forwarding

We now consider an advanced secure cloud storage system, which additionally

supports the data forwarding function. We design a threshold public key re-

encryption scheme to protect the data confidentiality and support the data

forwarding function in a confidential way. Again, the partial decryption in

this encryption scheme is independently done by each key server. In this

chapter, we introduce the notion of a threshold public key re-encryption

scheme and present our advanced secure cloud storage system. We also

analyze the performance and show that our system is secure.

5.1 Threshold Public Key Re-Encryption Scheme

A threshold public key re-encryption scheme contains two more algorithm,

ReEnc and ReKeyGen, than a threshold public key encryption scheme. The

62



8 algorithms are SetUp, KeyGen, ShareKeyGen, ReEnc, Enc, ShareDec, and

Combine. Recall that SetUp generates the public parameters of the whole

system, and KeyGen generates a key pair, consisting of a public key PK and

a secret key SK, for each user. New algorithm ReKeyGen generates a re-

encryption key RKA→B,Fid
from a user A to another user B with respect to a

message identifier Fid. Each user uses ShareKeyGen to share his secret key

into n secret key shares such that any t of them can recover the secret key.

Enc encrypts a given message by a public key PK, and outputs a level-0

ciphertext. Another new algorithm ReEnc can re-encrypt A’s ciphertext to

B’s ciphertext by using the corresponding re-encryption key RKA→B,Fid
. The

re-encrypted ciphertext is a level-1 ciphertext. ShareDec partially decrypts

a given ciphertext by a secret key share and outputs a decryption share.

Combine takes a set of decryption shares as input and outputs the message

if and only if there are at least t decryption shares.

Figure 5.1 illustrates the ReKeyGen algorithm and Figure 5.2 shows the

ReEnc algorithm of our proxy re-encryption scheme. Figure 5.3 shows the

decryption algorithm of the primitive proxy re-encryption scheme. In our

system construction, we modify it into one with threshold decryption function

by sharing the secret keys. Because the public key re-encryption scheme is

tightly integrated with random erasure codes, we directly present the system

construction.
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Figure 5.1: The ReKeyGen algorithm of the proxy re-encryption scheme.
User A and user B have their own key pairs. The ReEnc algorithm generates a

re-encryption key with respective to the message identifier FID.

Figure 5.2: The ReEnc algorithm of the proxy re-encryption scheme.
A ciphertext under A’s key can be re-encrypted to one under B’s key by using the

ReEnc algorithm and the corresponding re-encryption key.

5.2 System Construction

As described in the system model, there are 4 phases of our storage system.

Those 4 phases are presented in details as follows.

System setup. The algorithm SetUp(1τ ) generates the system parame-

ters µ. A user uses KeyGen(µ) to generate his public and secret key pair and

uses ShareKeyGen(SKA, t, m) to share his secret key to a set of m key servers

with a threshold t, where k ≤ t ≤ m.

• SetUp(1λ): Run Gen(1λ) to obtain (g, h, ẽ, G1, G2, p), where ẽ : G1 ×

G1 → G2 is a bilinear map, g is a generator of G1, and both G1 and

G2 have the prime order p. Set µ = (g, h, ẽ, G1, G2, p, f) where h = gα,

α ∈R Zp and f : Zp × {0, 1}∗ → Zp is a one-way hash function.

• KeyGen(µ). For a user A, the algorithm selects a1, a2, a3 ∈R Zp and sets

PKA = (ga1 , ha2), SKA = (a1, a2, a3)
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Figure 5.3: The Dec algorithm of the proxy re-encryption scheme.
The level-0 ciphertext under A’s key can be decrypted by using A’s secret key a1.

The level-1 ciphertext under B’s key can be decrypted by using B’s secret key b−1
2 .

• ShareKeyGen(SKA, t, m). This algorithm shares the secret key SKA of

a user A to a set of m key servers by using two polynomials fA,1(z) and

fA,2(z) of degree (t − 1) over the finite field GF(p).

fA,1(z) = a1 + v1z + v2z
2 + · · ·+ vt−1z

t−1 (mod p)

fA,2(z) = a−1
2 + v1z + v2z

2 + · · ·+ vt−1z
t−1 (mod p),

where v1, v2, . . . , vt−1 ∈R Zp. The key share of the secret key SKA to

the key server KSi is SKA,i = (fA,1(i), fA,2(i)), where 1 ≤ i ≤ m.

Data storage. When user A wants to store k messages m1, m2, . . . , mk

with the same identifier Fid, he computes the encryption token τ = hf(a3,Fid)

and performs the encryption algorithm Enc(·) on τ and k messages to get the

level-0 ciphertexts. Without loss of generality, assume that all k messages

are in G2. A level-0 ciphertext is indicated by a leading bit 0 in it. User A

sends each ciphertext to randomly chosen v storage servers. A storage server

receives a set of level-0 ciphertexts with the same encryption token τ from A.

The cardinality of the set may be less than k. When the storage server does

not receive some ciphertext Ci, the storage server inserts Ci = (0, 1, τ, 1) to
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the set. The storage server performs Encode(·) on the set of k ciphertexts

and stores the output.

• Enc(PKA, τ , m1, m2, . . . , mk). For 1 ≤ i ≤ k, this algorithm computes

Ci = (0, αi, β, γi) = (0, gri, τ, miẽ(g
a1 , τ ri)),

where ri ∈R Zp, 1 ≤ i ≤ k.

• Encode(C1, C2, . . . , Ck). For each ciphertext Ci, where 1 ≤ i ≤ k, the

algorithm randomly selects a coefficient gi. If the input entry for some

ciphertext Ci is (0, 1, τ, 1), the coefficient gi is set to 0. Let Ci =

(0, αi, β, γi). The encoding process is to compute a ciphertext C ′:

C ′ = (0,
k

∏

i=1

(αgi

i ) , β,
k

∏

i=1

(γgi

i ))

= (0, g
∑k

i=1
giri , τ,

k
∏

i=1

mgi

i ẽ(g, τ)
∑k

i=1
giri)

= (0, gr′, τ, Mẽ(g, τ)r′),

where M =
∏k

i=1 mgi

i and r′ =
∑k

i=1 giri. The output is (C ′, g1, g2, . . . , gk).

Data forwarding. When user A wants to forward the messages with the

identifier Fid to another user B, he computes the re-encryption key RKA→B,Fid

via the ReKeyGen(·) algorithm and securely sends the re-encryption key to

each storage server. A storage server stores RKA→B,Fid
and makes a copy of all

messages that have the identifier Fid. By using RKA→B,Fid
, the storage server

re-encrypts the encoded ciphertext C ′ with the identifier Fid as a re-encrypted
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ciphertext C ′′ via the ReEnc(·) algorithm such that C ′′ is decryptable by B’s

secret key. A re-encrypted ciphertext is indicated by the leading bit 1. Let

the public key PKB of user B be (gb1, hb2).

• ReKeyGen(PKA, SKA, Fid, PKB). This algorithm selects e ∈R Zp and

computes

RKA→B,Fid
= (

(

hb2
)a1(f(a3 ,Fid)+e)

, ha1e)

• ReEnc(RKA→B,Fid
, C ′). Let C ′ = (0, α, β, γ) = (0, gr′, τ, Mẽ(ga1 , τ r′))

for some r′ and some M , and RKA→B,Fid
= (

(

hb2
)a1(f(a3 ,Fid)+e)

, ha1e) for

some e. The level-1 ciphertext is computed as follows:

C ′′ = (1, α,
(

hb2
)a1(f(a3 ,Fid)+e)

, γ · ẽ(α, ha1e))

Data retrieval. There are two cases for the data retrieval phase. The

first case is that a user A retrieves his own data. When user A wants to

retrieve the k messages with the identifier Fid, he informs all key servers

with the encryption token τ . A key server first retrieves stored data from

u randomly chosen storage servers and then performs the partial decryption

ShareDec(·) on every retrieved level-0 ciphertext C ′. The result of the partial

decryption is called a decryption share. The key server sends the decryption

shares ζ and the coefficients to user A. After user A collects the replies from

more than t key servers and there are k out of them originally from distinct

storage servers, he executes Combine(·) on the t decryption shares to recover

the messages m1, m2, . . . , mk. The second case is that a user B retrieves
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the data that are forwarded. When user B wants to retrieve data that are

forwarded to him, he informs all key servers directly. The collection and

combining parts are the same as the first case except that key servers retrieve

level-1 ciphertexts and perform the partial decryption ShareDec(·) on the

level-1 ciphertexts.

• ShareDec(SKj, Xi). Let Xi = (b, α, β, γ) be a level-b ciphertext and

SKj = (sk0, sk1). By using the key share SKj, a decryption share ζi,j of

Xi is generated as follows.

ζi,j = (b, α, β, βskb, γ)

• Combine(ζi1,j1, ζi2,j2, . . . , ζit,jt). Let a decryption share ζi,j be (b, αi,j, βi,j, β
′
i,j, γi,j).

This algorithm combines t decryption shares, where βi1,j1 = βi2,j2 =

· · · = βit,jt = τ , j1 6= j2 6= . . . 6= jt and there are at least k distinct val-

ues in {i1, i2, . . . , it}. Let SJ = {j1, j2, . . . , jt} and S = {(i1, j1), (i2, j2), . . . , (it, jt)}.

Without loss of generality, let SI = {i1, i2, . . . , ik} be k distinct values

in {i1, i2, . . . , it}.

In the first case, b = 0 and user A wants to retrieve his own data.

The algorithm combines the t values (β ′
i1,j1

, β ′
i2,j2

, . . . , β′
it,jt

) to obtain

τa1 = τ fA,1(0) via the Lagrange interpolation over exponents:

τa1 =
∏

(i,j)∈S

(

(β ′
i,j)

∏

r∈SJ,r 6=j
−j
r−j

)

For each of the decryption shares ζi,j, where i ∈ SI, the algorithm
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computes an encoded message

wi = γi,j/ẽ(αi,j, τ
fA,1(0)) (5.1)

Observe that wi = m
g1,i

1 m
g2,i

2 · · ·mgk,i

k for i ∈ SI, and there are k such

equations. Consider the square matrix K = [gi,j] where 1 ≤ i ≤ k, j ∈

SI. The decoding process is to compute K−1 and output the messages

m1, m2, . . . , mk. The algorithm fails when the square matrix K is non-

invertible.

In the second case, b = 1 and user B wants to retrieve the re-encrypted

messages. The algorithm does the following computation to obtain:

h(f(a3,Fid)+e)a1 =
∏

(i,j)∈S

(

(β ′
i,j)

∏

r∈SJ,r 6=j
−j
r−j

)

= h(f(a3 ,Fid)+e)a1b2fB,2(0),

where fB,2(0) = b−1
2 . Again, for each of ζi,j, where i ∈ SI, the algorithm

computes an encoded message.

wi = γi,j/ẽ(αi,j, h
(f(a3,Fid)+e)a1) (5.2)

The rest in the second case is the same as that in the first case.

5.2.1 Correctness

There are two cases for correctness. Firstly, the owner A correctly retrieves

the messages with an overwhelming probability. The correctness of the en-
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cryption and the decryption for user A is that any ciphertext C ′ = (0, gr,τ ,

wẽ(ga1, τ r)) can be correctly decrypted to w, when there are more than t

active key servers who have shares of SKA. This correctness can be seen

from Equation (5.1). The user combines t decryption shares and then cor-

rectly gets the encoded message. Secondly, user B correctly retrieves the

forwarded messages with an overwhelming probability. The correctness of

the re-encryption and the decryption for user B is that any re-encrypted

ciphertext C ′′ = (1, gr′,
(

hb2
)r′′

, wẽ(g, h)r′r′′) can be decrypted to w, when

there are more than t available key servers who have shares of B’s secret key

SKB. The correctness can be seen in Equation (5.2). The user can correctly

compute the encoded message from the k decryption shares.

5.3 Analysis

We analyze the complexity of our storage system in terms of the storage

cost and the computation cost. We analyze the probability of a successful

retrieval and show the security of our cloud storage system.

5.3.1 Performance Analysis

Let the bit-length of the element in the group G1 be l1 and G2 be l2. Let the

coefficients gi,j be randomly chosen from {0, 1}l3.

Storage cost. We measure the storage cost in a storage server in bit. To

store a set of k messages, a storage server SSj stores a ciphertext (b, αj , τ, γj)

and the coefficient vector (g1,j, g2,j, . . . , gk,j). The total cost in the storage

server is (1 + 2l1 + l2 + kl3) bits, where αj, τ ∈ G1, and γj ∈ G2; hence,
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Operation Computation cost

Enc k Pairing + k Exp1 + k Mult2
Encode
(for each storage server)

k Exp1 + k Exp2 + (k − 1) Mult1 + (k − 1) Mult2

ShareDec
(for t key servers)

t Exp1

ReEnc
(for each storage server)

1 Pairing +1 Mult2

Combine k Pairing + t Mult1 + (t − 1) Exp1

+O(t2 + k3) Fp+ k2 Exp2 + (k + 1)k Mult2

- Pairing: a pairing computation of ẽ.

- Exp1 and Exp2: a modular exponentiation computation in G1 and G2,
respectively.

- Mult1 and Mult2: a modular multiplication computation in G1 and G2,
respectively.

- Fp: an arithmetic operation in GF (p).

Table 5.1: Computation cost of each algorithm in our advanced secure cloud
storage system.

the average cost for a message bit is (1 + 2l1 + l2 + kl3)/kl2 bits, which is

dominated by l3/l2 for a sufficient large k. In practice, gi,j’s are chosen from

a much smaller set, i.e., l3 < l2. The small coefficients reduce the storage

cost in each storage server.

Computation cost. We measure the computation cost for algorithms in

each phase in the number of the pairing operations, the modular exponen-

tiations in G1 and G2, the modular multiplications in G1 and G2, and the

arithmetic operations over GF (p). Those operations are denoted as Pairing,

Exp1, Exp2, Mult1, Mult2, and Fp, respectively. The cost is summarized in Ta-

ble 5.1. Fp has much lower cost than the Mult1 and Mult2. One Exp1 is about
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1.5⌈log p⌉ Mult1 on average (by using the square-and-multiply algorithm).

Similarly, Exp2 is about 1.5⌈log p⌉ Mult2 on average. Pairing is considered

as a more expensive operation. Some improved algorithms [48, 49, 51] are

proposed for accelerating the pairing operation.

In the data storage phase, a user runs the Enc(·) algorithm and each

storage server performs the Encode(·) algorithm. In the Enc(·) algorithm,

generating each αi requires one Exp1, and generating each γi requires one

Exp1, one Pairing, and one Mult2. Hence, for k messages, the cost is (k Pairing

+ 2k Exp1 + k Mult2). For the Encode(·) algorithm, we use a maximum

estimation that each storage server encodes the k ciphertexts. The cost is k

Exp1+(k−1) Mult1 for computing α and k Exp2+(k−1) Mult2 for computing

γ.

In the secure forwarding phase, a user runs ReKeyGen(·) and each storage

server performs ReEnc(·). In the ReKeyGen(·) algorithm, the computation is

one Exp1 while in the ReEnc(·) algorithm, the computation cost is a Pairing

and a Mult1.

In the data retrieval phase, each key server runs the ShareDec(·) algo-

rithm and the user performs the Combine(·) algorithm. In the ShareDec(·)

algorithm, each key server performs one Exp1 to get βskb for a level-b cipher-

text. For a successful retrieval, t key servers would be sufficient; hence, for

this step, we consider the total cost of t key servers. The cost is t Exp1. In

the Combine(·) algorithm, it includes the computation of the Lagrange in-

terpolation over exponents in G1, the computation of the encoded messages

wj ’s from the decryption shares ζ̃i,j’s, and the decoding computation which

includes the matrix inversion and the computation of the messages mi’s from
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the encoded messages wj’s. The Lagrange interpolation over exponents in

G1 needs O(t2) Fp, t Exp1 , and (t−1) Mult1. Computing a encoded message

wj needs one Pairing and one modular division, which takes 2 Mult2. As

for the decoding computation, the matrix inversion takes O(k3) arithmetic

operations over GF (p), and the decoding for each message takes k Exp2 and

(k − 1) Mult2.

5.3.2 Successful Retrieval Probability

Again, we analyze the probability of a successful retrieval event. Here we

give our result for the setting in Theorem 4.

Theorem 4. Assume that there are k messages, n storage servers, and m

key servers, where n = akc, m ≥ t ≥ k, c ≥ 1.5 and a is a constant with

a >
√

2. For v = bkc−1 ln k and u = 2 with b > 5a, the probability of a

successful retrieval is at least 1 − o(1) − k/p.

Proof. The methodology of this proof is similar to the one for the first system.

However, here we consider a superseded parameter setting for n = akc, where

c ≥ 1.5. This setting makes the proof different in the probability bounds on

every ”bad” event.

To retrieve all k messages, there are two conditions that must be satisfied.

First, the key servers have to get k stored data from k different storage servers

SSj1, SSj2, . . . , SSjk
and perform the ShareDec(·) algorithm. Second, the k×k

matrix K formed by chosen coefficients needs to be invertible in order to solve

the k messages. We define two events E1 and E2 to capture the complements

of the two conditions such that a successful retrieval happens when neither
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E1 nor E2 happens. Define E1 be the event that less than k distinct storage

servers are queried by the key servers. For the generator matrix G implicitly

generated by the owner and the storage servers, let E2 be the event that the

matrix K is non-invertible. Thus, the probability of a successful retrieval by

the owner is

1 − Pr[E1] − Pr[E2|E1] Pr[E1] (5.3)

To analyze Pr[E1], we consider that each storage server is a bin and each

key server has u balls, where u = 2. When a key server queries a storage

server, we consider that the key server throws a ball into the bin. Because

the key servers make queries randomly, those balls are randomly thrown into

n bins. The probability that less than k bins contain balls is:

Pr[E1] ≤ Cn
k−1

(

k − 1

n

)2m

≤
[

2n(n − k + 2)

k

]
k−1

2
(

k − 1

n

)2m

(2a2k2c−1 − 2akc + 4akc−1 ≥ 1, n = akc)

≤
(

2a2k2c−1 − 2akc + 4akc−1
)

k
2

(

k − 1

akc

)2k

=

[

2a2k2c−1 − 2akc + 4akc−1

(akc−1)4

]
k
2
(

k − 1

k

)2k

(
k − 1

k
≤ 1)

= o(1) (5.4)

The event E2 under the condition E1 can be modeled by forming a perfect

matching in the random bipartite graph H with respect to G. The random

bipartite graph H is constructed as follows. Let each ciphertext Ci be a
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vertex v1,i and V1 be the set of all vertices for all ciphertexts. Let each

storage server SSj be a vertex v2,j and V2 be the set of all vertices for all

storage servers. When a ciphertext Ci is distributed to the storage server

SSj, there is an edge (v1,i, v2,j). The matrix K induces a subgraph H ′ of the

bipartite graph H . Consider the subset V ′
2 ⊂ V2 that V ′

2 is a subset of queried

storage servers with cardinality k. The subgraph H ′ consists of all vertices

in V1 and V ′
2 , and edges (v1,i, v2,j) for all v1,i ∈ V1 and v2,j ∈ V ′

2 . If H ′ has

no perfect matching, K is not invertible. If H ′ has a perfect matching, K is

non-invertible if and only if det(K) = 0. The value of det(K) depends on the

random coefficients chosen by the storage servers. Let E3 be the event that

H ′ has no perfect matching, and E4 be the event that det(K) = 0. We have,

Pr[E2|E1] = Pr[E3|E1] + Pr[E4|E3 ∧ E1] Pr[E3|E1]

≤ Pr[E3|E1] + Pr[E4|E3 ∧ E1] (5.5)

We analyze the probability of E3 conditioned on E1 by using the result of

the Hall’s Lemma described in Chapter 4. Again, there are two cases that H ′

has no perfect matching. First, H ′ has at least one isolated vertex. Second,

H ′ has no isolated vertex and a set A satisfies the above conditions. Let EÏ

be the event that H ′ has at least one isolated vertex and EA be the event

that there is a set A satisfying the conditions. We obtain

Pr[E3|E1] ≤ Pr[EÏ|E1] + Pr[EA|E1] (5.6)

Starting from EÏ, we consider each vertex in V2 as a bin and each edge
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from V1 to V2 as a ball. When an edge connects to a vertex in V2, a ball

is thrown into the bin. Consider the subset B of bins corresponding to the

subset V ′
2 of V2. EÏ means that there is one or more empty bins in B, where

B contains k bins. For a fixed bin in B, the probability of the bin being

empty is (1 − 1/n)bkc lnk since there are bkc ln k balls. By using the union

bound on k bins, we have the probability of EÏ conditioned on E1 as:

Pr[EÏ|E1] ≤ k(1 − 1/n)bkc ln k

≤ k(e−
b
a

lnk) (1 − x ≤ e−x, n = akc)

= o(1) (b > 5a) (5.7)

As for Pr[EA|E1], we separate the event into two sub-events by A ⊂ V1

and A ⊂ V ′
2 . Thus,

Pr[EA|E1] = Pr[EA and A ⊂ V1|E1] Pr[A ⊂ V1] + Pr[EA and A ⊂ V ′
2 |E1] Pr[A ⊂ V ′

2 ]

≤ Pr[EA and A ⊂ V1|E1] + Pr[EA and A ⊂ V ′
2 |E1]

For Pr[EA and A ⊂ V ′
2 |E1], we further divide the event into sub-events ac-

cording to the size of A and use the union bound again. Consider a set

A ⊂ V ′
2 with |A| = i. The event EA conditioned on E1 can be overestimated

by the event that Γ(A) ⊂ V1 and |Γ(A)| = i − 1. In other words, there is a

set A′ ⊂ V1 with |A′| = i − 1 such that all vertices in V1\A′ only connect to
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vertices in V2\A. Thus, we have

Pr[EA and A ⊂ V ′
2 |E1]

≤
(k+1)/2
∑

i=2

Pr[EA, A ⊂ V ′
2 and |A| = i|E1]

≤
(k+1)/(2)

∑

i=2

(
ek

i
)2i(

n − i

n
)(k−i+1)bkc−1 ln k (Ck

i ≤ (
ek

i
)i)

≤ max
i

{exp

(

2i(1 − ln i) − ln 2 + ln k

[

b(k − i + 1)kc−1 ln

(

n − i

n

)

+ 2i + 1

])

}

(5.8)

To achieve Pr[EA and A ⊂ V ′
2 |E1] = o(1) as k → ∞, it is sufficient to have

that for all 2 ≤ i ≤ (k + 1)/2

b(k − i + 1)kc−1 ln

(

n − i

n

)

+ 2i + 1 < 0 (5.9)

Equation 5.9 holds for b > 5a. It implies that Pr[EA and A ⊂ V ′
2 |E1] = o(1)

as k → ∞.

Similarly, we can get a lower bound for b from the case of A ⊂ V1 and

the bound is satisfied by b > 5a.

For Pr[E4|E3 ∧ E1], that is, det(A) = 0, we treat each coefficient in the

matrix K as a variable. Thus, det(K) is a multivariate function. Since there

is a perfect matching in the induced graph H ′, det(K) is a non-zero function

and the degree of det(K) is k. From the Schwartz-Zeppel Theorem, the

probability that the random chosen coefficients make det(K) = 0 is no more

than k/p, i.e., Pr[E4|E3 ∧ E1] ≤ k/p. Thus, we have Pr[E2|E1] ≤ o(1) + k/p

and conclude the proof of Theorem 4.
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5.3.3 Security Analysis

The data confidentiality of our secure cloud storage system is guaranteed

even if all storage servers and up to (t − 1) key servers are compromised by

the attacker. Recall the security game illustrated in Figure 3.5. We prove

that our cloud storage system is secure under the decisional bilinear Diffie-

Hellman assumption in Theorem 5.

Theorem 5. Our constructed cloud storage is secure under the decisional

bilinear Diffie-Hellman assumption in the standard model.

Proof. We prove by contradiction. Assume an attacker A wins the security

game with probability 1/2+ ǫ, an algorithm S can solve the decisional Diffie-

Hellman problem with advantage ǫ
2P (λ)

in polynomial time, where P (λ) is

the number of users.

The algorithm S takes (ẽ, g, gx, gy, gz, Q) and the corresponding bilinear

map ẽ : G1 × G1 → G2 as an instance of the problem input and aims to

decide whether Q = ẽ(g, g)xyz. S runs the following phases to simulate the

environment for A:

• Setup. S selects a one-way keyed hash function f : Zp × {0, 1}∗ → Zp

and sets µ = (g, h, ẽ, G1, G2, p, f) where h = gy and p is the prime

order of the group G1 and G2. S predicts the target user T and sets

PKT = (gx, ht2), and SKT = (x, t2, t3), where t2, t3 ∈R Zp and x is

implicit set (S does not know x). If A does not choose the user T, S

terminates the simulation and outputs a random value; otherwise, S

continues this simulation. S creates a polynomial number of users and

generates their keys. S sends µ and all public keys to A.
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• Key query. Firstly, S generates random values for the secret key shares

SKT,i, for 1 ≤ i ≤ (t − 1). For the secret key queries, S generates the

key pairs as the scheme defines and replies the secret key directly. For

the re-encryption key queries, there are two cases: a re-encryption key

from a non-target user to T; a re-encryption key from a non-target

user to another non-target user. For the first case, S generates the re-

encryption key from user B to T, where the public key of B is (gb1, hb2):

RKB→T,Fid
= (ht2b1(f(a3,Fid)+e), hb1e)

For the second case, since S knows all secret keys of the non-target

users, the re-encryption key can be generated as the scheme defines.

• Challenge. A decides the messages M0, M1 and the class identities

Fid0
, Fid1

and sends them to S. S first throws a random coin b ∈ {0, 1}

and then computes the encryption token and the ciphertext of Mb under

T’s key.

τb = hf(a3,Fidb
), Enc(PKT, τb, Mb) = (0, gz, τb, MbQ

f(a3,Fidb
))

S sends Enc(PKT, τb, Mb) to the attacker A.

• Output. After A outputs b′, S outputs 0 if b′ = b; otherwise, S outputs

1.

When Q = Q0 = ẽ(g, g)xyz, the ciphertext is an encryption of Mb since

Mbẽ(g
x, hzf(a3,Fidb

)) = Mbẽ(g, g)xyzf(a3,Fidb
) = MbQ

f(a3,Fidb
)
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Hence, A has an advantage ǫ winning the game, i.e., Pr[b′ = b|Q = ẽ(g, g)xyz] =

1/2 + ǫ. When Q = Q1 = ẽ(g, g)r for some random value r, the distributions

of (gz, hf(a3,Fid0
), M0Q

f(a3,Fid0
)) and (gz, hf(a3,Fid1

), M1Q
f(a3,Fid1

)) are identical

because for any r ∈ Zp, there exists a unique r′ ∈ Zp such that

M0ẽ(g, g)rf(a3,Fid0
) = M1ẽ(g, g)r′f(a3,Fid1

)

Thus, we have Pr[b′ = b|Q = ẽ(g, g)r] = 1/2. Let b” be the output bit of S.

The advantage of S is:

|Pr[S → b”, Q = Qb”, T 6= T ′] + Pr[S → b”, Q = Qb”, T = T ′] − 1

2
|

= |Pr[T 6= T ′] Pr[S → b”, Q = Qb”|T 6= T ′]

+ Pr[T = T ′, Q = Q0] Pr[S → 0|Q = Q0, T = T ′]

+ Pr[T = T ′, Q = Q1] Pr[S → 1|Q = Q1, T = T ′] − 1

2
|

= |(1 − 1

P (λ)
) × 1

2
+

1

2P (λ)
× (

1

2
+ ǫ) +

1

2P (λ)
× 1

2
− 1

2
|

=
ǫ

2P (λ)

Since ǫ is non-negligible, S solves the decisional bilinear Diffie-Hellman prob-

lem with a non-negligible advantage ǫ
2P (λ)

in polynomial time. It makes a

contradiction.
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Chapter 6

Discussion

In this chapter, we discuss the security features that our cloud storage sys-

tems have and the data integrity issue that is not addresses in our current

storage systems. We provide current results on the data integrity checking

and discuss the potential method to modify our systems to support these re-

quirements. We also discuss two features the cloud has and how our systems

fit into the cloud environment.

6.1 Security Features of Our Storage Systems

Both of our storage systems have security features: data confidentiality, data

availability (robustness), and decentralized storage control. It is possible to

improve our systems in many ways.
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6.1.1 Data Confidentiality

In our storage systems, each storage server stores data that are encrypted

by the described public key encryption schemes. Even if all storage servers

collude together, the data content is kept secret from all storage servers. Dif-

ferent from other storage systems that employ the encryption at rest (i.e.

the storage servers know the decryption keys), our storage systems have the

strong data confidentiality against collusion of all storage servers. However,

the encryption schemes we used only achieve the security against the cho-

sen plaintext attacks. In the cryptography community, a stronger property

called ”secure against the chosen ciphertext attacks” is preferred. Designing

a chosen ciphertext secure public key encryption scheme which is both homo-

morphic and threshold decryptable is a potential method. In particular, fully

homomophic encryption schemes [52, 53] are proposed recently. Modifying

one of them as a chosen ciphertext secure version may work.

6.1.2 Data Availability

Our storage systems use a variant of the random erasure codes for data avail-

ability. The data are available as long as there are k storage servers that store

codeword symbols (in the encrypted form). The coding parameters u and

v are already explored and analyzed in our research. However, we did not

include a repair mechanism for machine failures in our storage systems. In

general, once the system is aware of failure of some storage server, a repair

process should be executed. A trivial method is to re-distribute all data that

the failed storage server stores. Retrieving the data then storing again is too
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expensive and it requires the involvement of the data owner. Better repair

mechanism could be designed. In another direction, we did not address the

general errors which include random noises and intentional data alteration.

Public-key locally-decodable codes [54] provide a possible way to not only

tolerate but also correct errors when data are encrypted. Fully homomor-

phic encryption schemes [55, 56, 53] enable encoding and decoding when the

encoding and decoding operations are multiplications and additions.

6.1.3 Decentralized Storage Control

The storing process and retrieving process are performed independently among

all storage servers and key servers in our storage systems. The distributed

storage for the decryption key shares provide a good structure against cor-

rupted key servers as long as the number of corrupted key servers is less than

the threshold t. When the key servers are distributed over many networks

and guarded by different strong security mechanisms, the chance that an

attacker breaks more than t key servers is small.

6.2 Data Integrity

Our cloud storage systems address the data confidentiality against collusion

of all storage servers because it is unrealistic to fully trust all of the storage

servers. Similarly, the data integrity issue arises because the storage servers

may compromise their promise on the data availability. Any accidental break

or intentional alteration could cause permanent data loss or data errors.

Juels and Kaliski mentioned the concept of ”proof of retrievability” (POR)
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for the remotely stored large files [57]. The key idea of their method is as

follows. Before a user stores a file into the system, he divides the file into

blocks and inserts some checking blocks called sentinels. The user employs

an error correction code and a pseudo random permutation on the file blocks

and sentinels. The result of the permutation is then sent to the storage sys-

tem. Later, the user can ask a subset of random (sentinel) blocks to see if the

data are stored. Because the storage server can not distinguish the file blocks

and the sentinel blocks, he must keep all of them or he may be caught with

an overwhelming probability. The resulting proof information has a length

linear in the number of selected blocks.

At the same time as Juels and Kaliski, Ateniese et al. [58] also proposed

the concept of ”provable data possession” (PDP) that allows the storage

servers proving that the data are completely and correctly stored. They

use a quite different approach from the method in [57]. The main idea of

their method is the use of a homomorphic signature scheme. After a user

divides the file into blocks, he generates a signature on each file block. The

signature is considered as a tag for the file block. The storage server keeps

the file blocks with the tags. When the user wants to check the data integrity,

he randomly selects c indices of the file blocks and c random values as the

challenge message. The server then linearly combines the chosen file blocks

and aggregates the corresponding signatures via the indicated coefficients.

The result of the combination and the aggregated signature are verified by

the user. The homomorphic property of the signature scheme contributes to

the ”aggregation” operation and saves the communication cost. The resulting

proof information has a length independent of how many data are checked.
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After the work in [57], Ateniese et al. proposed another token-based solu-

tion for the provable data possession protocol [59]. They use random tokens

(like the sentinels) as checking points and randomly permute the tokens and

the file blocks such that the storage server cannot distinguish them. The

resulting PDP protocol supports dynamic data structure. Any modification

operation is allowed in their storage system. The robust data checking pro-

tocol [60] encodes the file blocks by using an error correction code before

proceeding any PDP protocols.

Athos [61] authenticates the outsource file system while the system sup-

ports data dynamic. The main idea is to represent the file blocks by using a

special data structure, skip list. An improved data structure, ranked-based

skip list, is used in the dynamic PDP [62]. Similarly, another approach [63]

that makes a dynamic PDP system uses the Merkle tree structure.

On the other hand, many PDP or POR protocols [64, 65, 66] take the

homomorphic signature or homomorphic hash approach. Shacham and Wa-

ters [65] propose a homomorphic signature based construction by using a

bilinear map. They left an open question for a POR system that is provable

secure without random oracle model. Later, Dodis et al. [66] solve the open

problem by using an abstract concept ”homomorphic linear authenticator

scheme”. Taking one step further, Ateniese et al. [67] show that a ”proof

of storage” system can be constructed by using any homomorphic linear au-

thenticator scheme. A concrete construction based on the hardness of the

factorization problem is given in their work. A variant of PDP protocol

in [64] considers a better data availability guarantee. The storage system

should prove not only the data possession but also the replica possession.
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Because replication is a common fault tolerant method, the storage system

should guarantee that the replicas are completely stored.

All constructions we described above allow the user checking the data

integrity by him. Some of them using public key based schemes allow a

third party checking the data integrity for the data owner. Wang [68] et al.

bring a privacy preserving property for the public auditing function. In their

construction, a third party auditor can check the data integrity for the data

owner while he gets no data content during the auditing process.

HAIL [69] is a PDP scheme for distributed storage systems. Bowers et al.

consider a cloud storage system where each storage server only stores several

codeword symbols and provide HAIL for the integrity checking function.

They use a keyed hash function for the codeword integrity checking, where

the hash function is homomorphic on the same key.

6.3 Supporting Integrity Checking

One trivial way for providing the integrity checking in our storage systems

is that treating the ciphertexts as RAW data and use the homomorphic

signature based PDP schemes. Before a user stores the ciphertexts into the

system, he also generates the signature for each ciphertext. Later, he or any

one possessing a verification key can verify the data integrity. This trivial

construction achieves the privacy-preserving property directly because the

checked data are ciphertexts. However, this method is neither sophisticated

nor efficient. We leave the integrity checking function as a future work.
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6.4 Cloud Features

Two major features a cloud has is virtualization and data migration. An end-

user of a cloud server never needs to know the physical structure of the used

cloud. He only has the virtualized view of the whole system. For example,

a user uses a web-mail service. He only has the view of the inbox and never

knows where those emails are and how they are stored. As for the data

migration, it happens when the system provider wants to change the number

of the online servers. For example, when a server is overloaded, some of the

running tasks will be transferred to some other server. The data used by

those transferred tasks must be moved. Hence, the data migration happens.

In our cloud storage systems, the data distribution process can be done by

an agent in the cloud. As a result, the user only has to upload the ciphertexts

and the agent will perform the next steps for the user. Similarly, when the

user wants to retrieve the stored data, he can ask some agent in the cloud

to collect the decryption shares for him. As a result, the user has no idea

about the structure of the cloud storage system and can still use the storage

service.

The data migration is not covered in our cloud storage systems so far.

In our cloud storage systems, each storage server stores the data in the

encrypted and encoded form. When the data migration happens, how to

re-distribute those data among storage servers such that the data can be

retrieved is an interesting issue for our future work.
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Chapter 7

Summary and Future Work

We have presented our integration of public key encryptions schemes and

random erasure codes and introduced our secure cloud storage systems. Our

systems provide both of the storage service and the key management service.

Both system constructions are fully decentralized: each encrypted message is

distributed independently; each storage server performs the encoding process

in a decentralized way; each key server queries the storage servers indepen-

dently. Moreover, the secure distributed networked storage system guaran-

tees the privacy of messages even if all storage servers are compromised. Our

storage systems securely store data for a long period of time on un-trusted

storage servers in the distributed network structure. The advance storage

system additionally supports the data forwarding in a confidential way.

We explored the relationship between the number of storage servers n,

the number of messages k, the number of key servers m, the number of

storage servers a key server queries u, and the number of message copies v

and presented our suggestions for them:
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1. n = ak3/2, a >
√

2, m ≥ t ≥ k > 1, v = bk1/2 ln k, u = 2 with b > 5a

2. n = akc, a >
√

2, c ≥ 1.5, m ≥ t ≥ k > 1, v = bkc−1 ln k, u = 2 with

b > 5a

3. n = ak, a > 1, m = t = k > 1, v = b1 ln k, u = b2 ln k with b1 > 5a and

b2 > 4 + 3/ ln a

Actually, the result of setting 2 supersedes the result of setting 1. As a

result, the setting 2 is suitable for more applications with different system

scales.

The constructions of secure cloud storage systems justify my dissertation

statement.

A cryptographic secure cloud storage system built on a decentralized ar-

chitecture provides strong data confidentiality against collusion of all storage

servers and is robust with low storage overhead. Furthermore, the system is

adaptable to allow data forwarding inside the cloud in a confidential way.

In our current secure cloud storage systems, certain security features can

be improved and the data integrity checking function is required as we dis-

cussed in previous chapter. We believe that these requirements are strongly

needed for a cloud storage system. Further study on supporting these re-

quirements is interesting. We summarize them as follows:

• Data Confidentiality. The confidentiality degree can be upgraded via

designing a chosen ciphertext secure public key encryption scheme

which allows encoding operation over ciphertexts and parallel threshold

decryption.
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• Data Robustness. Not only erasure errors, cloud storage systems should

also handle alteration errors. Error detection and correction mecha-

nisms are required.

• Data Integrity. As we discussed in previous chapter, many results on

the remote data integrity are proposed. It is desired to have one solu-

tion for data stored in the encrypted form.

• Access Control. In our current advanced system, the messages are sim-

ply gathered as groups and a user can forward messages group by group.

However, the organization of the storage space may be more compli-

cated and users need a finer-grant control of forwarding functionality.

For example, the user may want to attach certain attributes to mes-

sages when he stores the messages. Later, he can forward messages

with certain attribute values.

• Data Dynamics. When we design our storage systems, data archive is

our implicit target application. However, a cloud storage system should

provide more. After the data are encrypted, supporting data dynamic

requires a sophisticated solution.
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