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半導體量子結構雷射元件之相對雜訊強度研究 

學生：湯皓玲                                  指導教授：林國瑞 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘        要 

本篇論文目的在藉由量測半導體雷射之相對雜訊強度的方法，分析

多層量子井分佈回饋型雷射 (DFB) 與自行設計之啁啾式堆疊多層量子

點雷射的高頻操作特性。過去研究量子井雷射的文獻已趨完整，本論文

延伸此觀念對多層堆疊量子"點"雷射做進一步探討。 

首先討論 DFB 雷射的微分增益值與 K 係數變溫量測之下的結果。當

溫度從 10 ℃升高至 40 ℃，增益頻譜受熱延展，微分增益值隨溫度升高

而下降了 1.5 倍 ( 1.66×10-15 cm2 降至 1.1×10-15 cm2)。然而，我們的實驗

中最大調變頻寬在同樣溫度範圍內幾乎保持定值 27 GH，符合文獻記載

多層量子井雷射的特性 。 

接下來針對自行設計的多層堆疊啁啾式量子點雷射進行量測分析。

一般建議待測量子點雷射的腔長小於 2mm，在我們的量測之中腔長 750 

μm 的元件經過校正 RIN 頻譜顯示了最低強度值為 -160 dB/Hz，並且必

須是激發態發光，增益值才足夠克服總耗損而達到閾值條件；另外希望

直接藉由探針點測自然劈裂的雷射元件，但是此量測方式控溫不易，導

致電流密度上升的過程接面溫度快速上升，微分增益值由 8.210-16 cm2 

下降至 3.010-16 cm2。儘管如此，因為載子傳輸受堆疊多層量子結構限

制反而保護 K 係數不受溫度影響，最大調變頻寬為 14 GHz，相當於

Stevens 等人於 2009 年八月直接調變激發態量子點雷射的最大頻寬值。 
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據了解，我們首次取代直接調變以量測相對雜訊強度的方式預測最大頻

寬。 

另外當共振腔長更短時，意外觀察到 RIN 頻譜出現雙共振頻率的現

象。但是造成多重共振頻率的機制仍具爭議，亟需更進一步的研究與分

析。 
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Relative Intensity Noise of  

Semiconductor Quantum Structure Lasers 

 

Student: Hao-Ling Tang                  Advisors: Dr. Gray Lin 

Department of Electronics Engineering & Institute of Electronics Engineering 

National Chiao Tung University 

Abstract 

Relative Intensity Noise (RIN) of multiple quantum well (MQW) DFB 

laser and chirped multilayer quantum dot (CMQD) lasers have been measured 

and analyzed. The carrier dynamics in multilayer quantum structure are 

therefore determined. 

The temperature-dependent RIN measurement of MQW DFB laser was 

undertaken to evaluate the K-factor and differential gain. Carrier transport is 

limited by multiple layer structure in the DFB laser as the values of K-factor 

remain almost constant in the temperature range of 10 - 40 ℃. Therefore, the 

intrinsic fmax is evaluated to be 27 GHz. However, differential gain reflects the 

nature of gain spectrum broadening which decreases by a factor of 

approximately 1.5 (from 1.66×10-15 cm2 down to 1.1×10-15 cm2) over the 

measured temperature range.  

In general, cavity length for RIN measurement is suggested to be within 2 

mm. The characteristics of chirped multilayer quantum dot (CMQD) lasers 

has been presented with different cavity lengths of 750 μm, 1000 μm, and 

1500 μm at ambient temperature of 20 ℃. For cavity length of 750 μm, the 

highly damped RIN spectra have calibrated level of -160dB/Hz. In addition, 

excited state lasing is essential in our device in order to overcome the total loss 

and therefore reaches the lasing condition. The differential gain is estimated 
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to be in the range of 3.0-8.210-16 cm2, which is subject to junction heating 

in as-cleaved devices. However, the K-factor limited bandwidth , which is 

temperature insensitive, is as large as 14 GHz, shows excellent agreement 

with Stevens et al., who firstly demonstrated direct modulation of excited 

state QD lasers in August 2009. To the best of our knowledge, we have 

successfully demonstrated RIN spectrum of excited state quantum dot lasers 

for the first time.  

Another unexpected observation is the double-resonance RIN spectra in 

even shorter cavity length. However, the mechanism is still a controversial 

issue. Therefore, this thesis has thrown up some questions for further 

investigation. 
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Chapter 1 Introduction 

Intensity Noise refers to power fluctuations in the lightwave signal. When 

the power fluctuations normalized to its average value, we call it relative 

intensity noise (RIN). According to the laser dynamics, the laser RIN spectra 

carry out two pieces of important information: maximum noise amplitude and 

maximum modulation bandwidth of the light sources. 

Laser intensity noise is one of the limiting factors in the transmission of 

analog or digital signals, since intensity noise reduces signal-to-noise ratios 

(S/N) so that increases bit error rates. The noise level is necessary to be 

defined so that the noise amplitude can be quantified. In addition, it needs to 

modulate information onto light sources. To meet the quest for faster 

information transfer rates, RIN provides a method to estimate maximum 

modulation bandwidth of the lasers. In brief, RIN serves as a quality indicator 

of laser devices. 

Compared with direct modulation response of lasers, RIN measurement 

reveals the intrinsic information of damping rate, and modulation bandwidth 

without any electrical parasitics. Moreover, RIN measurement can be done by 

direct probe test without additional package cost and time. 

RIN of quantum well lasers are well studied in the literature. However, 

little work has been performed so far on quantum dot lasers owing to some 

limitation. In this thesis, we demonstrate the dynamic behavior of multiple 

Quantum well DFB laser and characterize that of Chirped Multilayer 

Quantum Dot Lasers.  
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Chapter 2 Theoretical Fundamentals and 

Experimental Techniques 

2.1   Theoretical Fundamentals 

2.1.1 Characteristics of Quantum Dot Lasers 

Density of state 

Electron confinement within sufficiently narrow region of semiconductor 

material can significant change the energy spectrum. Size-quantization also 

has noticeable effects on the density of state (DOS) of the active region. Thus, 

the family of possible dimensionalities of the laser-active region involves 

bulky semiconductor epilayer (three-dimensional), thin epitaxial layer of 

quantum well (two-dimensional), elongated tube of quantum wire 

(one-dimensional) and self-assemble quantum dot (zero-dimensionl). All 

these four cases are shown schematically in Fig. 2.2-1 

 In the ultimate case of QD, the only allowed energy states correspond to 

discrete quantum levels of the QD. Density of states represents a set of 

delta-function peaks centered at the atomic-like energy levels. There are two 

main advantages of delta-function like DOS in QD lasers: low transparency 

carrier density result in low threshold current density and temperature stable 

operation; Low linewidth enhancement factor leads high-speed modulation. 

However, the dot size of self-assembled QDs growth by Stranski-Krastanov 

(S-K) growth mode is not ideally uniform. Size fluctuation of QDs gives rise 

inhomogeneous broadening about 30-50 meV. Moreover, single energy level 

also broaden homogeneously about 5-10 meV due to uncertainty principles. 
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Therefore, the DOS of QDs laser is Gaussian-like distribution rather than 

delta-like in ideal case.  

 

Fig. 2.1-1 Density of States of Various Quantum Structure 

Gain­current relation [1] 

In addition to the ground state (GS) level, one or more excited-state (ES) 

levels can be thermally populated. In addition, these excited levels have 

higher degeneracy and, consequently, the higher saturated gain. Thus, the 

transition of the lasing line from the GS to the ES can be observed with 

increasing loss. 

mithgg  mod

          (2.1) 

This situation is schematically presented in Fig. 2.1-2, where the 

gain-current dependence is schematically shown for the ground level of the 

ideal QD array as well as two subbands (ground and first excited) of a 

self-organized array. Due to non-ideality of the self-organized array discussed 

above, their gain-current characteristic demonstrates higher transparency 

current density, lower saturation gain, and less abrupt increase of the gain on 
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increasing the current density. g-J curve, which corresponds to the excited 

subband, is characterized by the higher saturated gain and higher transparency 

current density as compared to those of the ground subbands owing to a large 

concentration of available states on the excited level. 

Taking into account the existence of higher-energy states, inhomogeneous 

broadening and possible non-equilibrium carrier distribution, complete 

theoretical description of the gain characteristics of QD lasers is a complicated 

problem. Zhukov et al. [2] has proposed in 1999 that the experimental 

dependence of the optical modal gain on the current density can be well fitted 

by the following empirical equation: 
















 


0

0exp1
J

JJ
gg sat 

          (2.2)
 

Where gsat and Jtr have the usual meaning of the saturated gain and the 

transparency current density,  is an additional dimensionless gain parameter 

that can be treated as a non-ideality parameter.  

 

Fig. 2.1-2 Schematic dependence of the optical gain on the 
current density for the ideal and real (self-organized) QDs. 
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2.1.2  Theory of RIN Spectra 

Definition of RIN 

Relative Intensity Noise was measured under continuous-wave (CW) 

condition. RIN can be thought of as a type of inverse carrier-to-noise-ratio 

measurement. RIN is defined to be the ratio of the mean-square optical 

intensity noise to the square of the average optical power: 

HzdB/     
2

2

P

P
RIN


             (2.3) 

where  2P is the mean-square optical intensity fluctuation (in a 1-Hz 

bandwidth) at specified frequency, and P is the average optical power.  

Single­mode RIN [3] 

An expression for the RIN may be derived from the single-mode (strictly 

for single-longitudinal mode) rate equations for the photon and carrier density 

which may be written as: 

   tF
V

R
ssng

dt

dS
s

sp

ph
g 
















 1
,

       

(2.4) 

l

   tFssng
n

qV

I

dt

dn
ng

e

 ,


          (2.5) 

 
where S, n are the photon and carrier densities in the active region, Fs(t) 

and Fn(t) are the Langevin noise terms, g(n, s) is the electronic gain, Rsp is the 

spontaneous emission rate into the lasing mode, I is the injection current, V is 

the volume of the active region,  is the confinement factor, τe and τph are the 

electron and photon decay times, and υg is the group velocity. By using the 

standard small signal analysis with the use of the diffusion relations for the 

noise terms[4] , the RIN is found to be:  
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Where the resonant frequency R and the damping  are given by 

))(
1

(2 sgg
dn

dR

V
sa sgg

sp
gnsr  

     
(2.7) 

ns 
               

(2.8) 

And the parameter Γs and Γn are defined by: 

sg
sV

R
sg

sp
s 


               (2.9) 










e

sgn

n

dn

d
sg




               

(2.10) 

a = dg(n, s)/dn is the differential gain and gs = dg(n,s)/ds is the nonlinear gain. 

To a good approximation, a single term dominates (2.7), hence the resonant 

frequency and damping may be written 

2/12/1 )/()( phgggr saasa         (2.11) 













e

phrsg
sp n

dn

d
sg

sV

R


 2

         

(2.12) 

The first term of (2.12) is small except at very low output powers. It is 

convenient to introduce the parameters D and K such that 

fr PDf 
             

  (2.13) 

'/12   RKf
                (2.14) 

Where fR = (o / 2n), Pf is the output power per facet and the term       

1/ τ‘ corresponds to the last term of (2.12). D and K act as figures of merit 

characterizing the frequency response of the laser, such that high-speed 

performance is expected from devices with a high value of D and low value of 

K. From (2.11) and (2.12): 
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2/1

int 12 











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





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V
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
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(2.15) 

   agK sph /12 2  
           

(2.16) 

Where αint and αm are the internal and mirror losses, respectively. To take 

into account the nonlinear gain, the electronic gain is commonly 

approximated by:  

    sngsng  1, 0            
(2.17) 

Where  is the nonlinear gain coefficient. Then, using the condition for 

threshold, the damping coefficient may be written as:  

   aK gph  /2 2 
             

(2.18) 

According to (2.6), the measured RIN spectra were fitted to the following 

form, using four parameters:  

  2222

2








r

BA
RIN

         

(2.19) 

It was found that all the RIN spectra could be well fitted to this form, with 

the second term of the numerator dominant for frequencies above 2 GHz, and 

that the parameters R and  could be accurately determined. In addition, in 

almost all the devices measured, it was found that the resonant frequency and 

damping were extremely well described by (2.13) and (2.14) up to powers of 

~10 mW. 

According to rate-equation analysis, resonance frequency and damping 

factor are the same in intrinsic frequency response and in intensity noise. 

Since the noise is internally generated and is not filtered through the parasitic 

elements, noise measurements give the true intrinsic peak frequency and the 

true damping factor. 

The knowledge of fR and  allows the estimation of several figures of 

merit giving indications about the laser’s intrinsic dynamic behavior, the most 
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important being the well-known K factor [5]. The K factor, given in 

nanoseconds, is the slope of the  versus fR
2 and is related to the maximum 

achievable intrinsic 3 dB small signal modulation frequency through (2.20) 

K
f

22
max




             
(2.20) 

The relaxation oscillation frequency can be described as follows: 

  2

p

pg
r

aN




 
             

(2.21) 

Where τp is photon density, a is differential gain, group velocity, photon 

lifetime. Therefore, the differential gain can be calculated via (2.13) and 

(2.14). 

The actual laser performance account for the parasitic and it only reach 

power levels way above the usual operating domain. Therefore, another figure 

of merit must be considered together with the K factor before to draw any 

conclusion about the device’s modulation capability. 

Ideally, a device should combine a low K factor and a high D factor, 

meaning that a high modulation bandwidth can be reached at moderate optical 

power levels. 

Multi­mode RIN 

The equivalent equations for multimode operation may be obtained by 

taking the sums of the above equations for each mode, with photon density si, 

ai (n, si,…,sm) and noise term Fs,i(t). However, except at low frequencies 

(below the frequencies of interest in this thesis) the single-mode equations 

provide a sufficiently good description [6] for multimode lasers provided all 

modes are included in the received power. On the other hand, if only one mode 

is filtered out from a multimode spectrum, it is typically found to contain a 

much larger noise level, especially at the low frequency. This is because of 
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mode partitioning. The energy tends to switch back and forth randomly 

between the various modes observed in the time-averaged spectrum causing 

larger power fluctuations in any one mode. If all modes are included, the net 

power tends to average out these fluctuations.  
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2.2   Experimental Techniques 

2.2.1 Measurement Setup 

The schematic diagram for the measurement of RIN spectra is shown in 

Fig. 2.2-1. As-cleaved lasers were placed on a temperature controlled copper 

stage. KEITHLEY 2520 is the laser driver to injecte current. To lower the 

optical feedback, the light output power was first reduced by an optical 

attenuator, slightly tilted off axis. Second, the laser light was collected trough 

a collimator with anti-coating at 1.3 m, and coupled into single-mode fiber. 

Finally, the relative intensity noise (RIN) spectrum was detected by a 9 

GHz photodetector Newport AD-40xr, it is composed by a InGaAs p-i-n 

photodiode. The conversion gain was 475 V/W @ 1310 nm and output for DC 

voltage measurements. The spectral density of the RF noise component of the 

photocurrent was measured using an Agilent E4407B electrical spectrum 

analyzer. The resolution of electrical analyzer was set to be 100 kHz and the 

signal data were averaged for 20 times or more before recording. 

 

Fig. 2.2-1 The schematic diagram for the measurement of RIN spectrum 
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2.2.2 Corrected Laser Intensity noise 

The noise at the receiver output results from three fundamental 

contributions: laser intensity noise, thermal noise and shot noise. The total 

system noise, NT(f), is the summation of these three noise sources. 

 

NT (f) = NLaser(f) + Nshot + Nthermal(f) [W/Hz]    (2.22) 

 

where:  NLaser(f) is the laser intensity noise power per Hz; 

Nshot is the photonic shot noise power per Hz; 

Nthermal(f) is the contribution of thermal noise power per Hz; 

While it is desirable to determine the laser noise, it is also valuable to 

determine separately the individual contributions of shot and thermal noise. 

Thermal Noise 

The amplifier and electronics that follow the photodiode produce thermal 

noise. Thermal noise is input power independent, which is the electronic noise, 

generated by the thermal agitation of the charge carriers inside a conductor at 

equilibrium and regardless of any applied voltage. Therefore, we refer the 

background value of the Electrum Analyzer to the thermal noise. The thermal 

background of our Electrum Analyzer is shown in Fig. 2.2-2. 

We express thermal noise in dB relative to the room temperature and the 

lower limit of –174 dBm/Hz. Electrical spectrum analyzers usually have noise 

figures of 30 dB or higher. For a system at a given temperature, thermal noise 

is usually constant for every frequency component.  



 

 12

0 2 4 6 8 10 12 14 16 18 20
-100

-90

-80

-70

-60

E
le

ct
ri

c
a

l p
o

w
e

r 
(d

B
m

)

Frequency (GHz)

 

Fig. 2.2-2 Thermal noise floor regards to the background of electrical 

spectrum analyzer. 

Shot Noise[7] 

In pn junction and p-i-n devices the main source of noise is shot noise due 

to the dark current and photocurrent. Carriers are collected as discrete 

amounts of charge (e) that arrive at random times and not continuously. As a 

result, shot noise varies with average optical power. 

When a pn junction is reverse biased there is still a dark current Id present, 

which is mainly due to thermal generation of electron-hole pairs in the 

depletion layer. This discrete nature of photons means that there is 

unavoidable random fluctuation in the rate of arrival of photons. This 

fluctuation is called quantum noise (or photon noise). The lowest signal that a 

photodetector can detect is determined by the extent of random fluctuation in 

the current through the detector and the voltage across it. The photocurrent 

signal must be greater than the shot noise in the dark current.  
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Fig. 2.2-2  In pn junction and pin devices the main source of noise is shot 

noise due to the dark current and photocurrent. 

We have photon current Iph out of the photodiode due to the average 

optical power input, the noise produced is related directly to the amount of 

light incident on the photodetector. The shot noise, generated in the photo 

detector, has a white Gaussian statistical distribution and an root-mean-square 

(RMS) spectral density: 

<i2>shot =2qIph=2q <P>     (2.23) 

Where q is the elementary electron charge (1.60  10–19 coulomb),  is the 

detector responsivity which takes on the value of 0.85 ± 0.05 A/W and is 

assumed to be frequency independent in the relevant range of 0 to 9 Hz (Fig. 

2.2-3) and < P > is the average optical power at the receiver input.   

For the amplified photodetector, the transfer function, M (f ), is 475 V/W 

at 1310 nm. From the familiar equation P=V2/R where the input impedance (R) 

of the Spectrum analyzer is 50 , the optical power converted to electrical 

output power. Therefore, the shot-noise power, Nshot becomes: 

    
)(2 2

R

fMPq
Nshot 




         

(2.24) 

In addition, great care must be taken when using this subtraction method 

to determine the laser RIN. In subtracting small numbers from small numbers, 

errors in values that are close to the excess-noise value of the laser can have 
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large effects. It is important to know the frequency response for the total 

system before making noise subtractions.  

 

Fig. 2.2-3 Bandwidth of photodetector is 9 GHz 

Laser Intensity Noise 

Laser intensity noise, NLaser, refers to the noise generated by the laser. Laser 

intensity noise is caused by intensity fluctuations due primarily to 

spontaneous light emissions that are dependent on structural parameters of the 

laser. According to (3.1), the quantity we obtain from the electrical analyzer is 

the total electrical power. For RIN measurements of the laser only, thermal 

and shot noise effects become unwanted “errors” and must be removed.  

Since    
)(2 2

R

fMPq
Nshot 


 as (2.24) and from the definition of RIN we 

write down the relation of laser electrical power with other parameters. 

R

fMPRIN

R

fMP
P

P

R

fMP
Nlaser

)()()()( 22
22

2

2

22 










   

(2.25) 
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(2.26) 

Resolution Bandwidth [8] 

We use a spectrum analyzer to measure the electrical power (the square of 

the optical power) associated with the noise. We assume that the spectrum 

analyzer applies a narrowband filter to the signal with a passband described by 

F (), then the measured mean-square time-averaged signal would be given 

by: 

 







 '*)'()()*'()(

)2(

1
)( )'(

2
2 


  ddeFFPPtP tj

 

(2.27) 

For completely random noise, the magnitude of the noise at any given 

frequency is completely uncorrelated with the magnitude of the noise at any 

other frequency. As a result, when the product of the two frequency 

component is averaged over time is a delta function. The strength of the delta 

function correlation is defined as the spectral density, )(PS , of )(P at  : 

)'(2)()*'()(    PSPP
     

(2.28) 

We say that the measurement filter is centered at 0, and is narrowband 

relative to variations in the spectral density, then with 1)( F  we obtain 

fSdfFStP PP  



2)()()()( 0

2
0

2  
   

(2.29) 

Note that f2  is regarded as both positive and negative frequency. If the 

spectral density is defined as single-sided, then the factor 2 should be 

removed. 

The measurement bandwidth can vary from application to application, it 

is common to specify the quantity in dB/Hz or Relative Intensity Noise per 
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unit bandwidth. The full intensity noise is found by integrating the RIN per 

unit bandwidth over the detection bandwidth of the system of practical interest. 

Therefore, the required RIN per unit bandwidth of the laser is found from: 

])[(log10)()/( 10 HzfdBRINHzdBRIN 
     

(2.30) 

Consequently, if the system bandwidth is increased, the laser RIN per unit 

bandwidth must be decreased in order to maintain the same total RIN. 

 

Fig. 2.2-4 The spectrum analyzer applies a narrowband filter to the 
signal with a passband F (). 

Finally, consider the entire factor influence absolute laser RIN, this 

chapter has given an efficacious calibration formula as follows:  
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(2.31) 

 Hzbandwidth Resolution  :     where f  
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2.2.3 Limitation 

The noise at the receiver output results from three fundamental 

contributions: laser intensity noise primarily due to spontaneous light 

emissions; thermal noise from the electronics; and photonic shot noise. 

To evaluate laser-intensity noise contributions in this chapter, the 

relative-intensity-noise specification, RIN, was developed. This measurement 

is the ratio of the laser intensity noise to the average power of the laser, in 

equivalent electrical units. Work on improving laser intensity noise continues. 

In some cases, the intensity noise levels of the laser can approach the noise 

limitations of measurement system. There are some limits to measuring the 

noise contribution of the laser we should be notified for measuring the laser 

Intensity noise. 

In Fig. 2.2-5 [9] the measurement of the system noise would be very 

similar to the thermal noise, thus an accurate measurement of the laser noise is 

difficult to achieve. A large amount of averaging could be employed; however, 

only the RIN peak would be observed, rather than the full RIN spectrum. 

When the noise of the laser far exceeds the shot or thermal noise terms, the 

total system noise is essentially equal to the laser intensity noise as shown in 

Fig. 2.2-6. In such cases, RIN Laser equals RIN System. However, as laser 

quality improves and the intensity-noise level decreases, the effects of shot 

and thermal-noise sources become more significant in RIN measurements. 
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Fig. 2.2-5 the measurement of the system noise would be very similar to the 

thermal noise 

 

 

 

Fig. 2.2-6 the noise of the laser far exceeds the shot or thermal noise terms 
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Chapter 3  Multiple Quantum Well DFB Laser 

3.1   Device Specification 

We demonstrated RIN characteristics of a commercial MQW DFB laser. 

The attached specification is shown in Table. 3.1-1. The DFB laser package 

in a 14 pin ‘butterfly’ type module. The module couples the laser output 

through a optical isolator in-line into a single mode fiber. The module also 

includes a monitor photodiode, a thermoelectric cooler (TEC) and a 

thermistor. 

 

Table. 3.1-1 The commercial MQW DFB laser Specification 
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3.2   Static characteristics 

Temperature dependence of the light output versus the current 

characteristics is shown in Fig. 3.2-1. The measurement was done under a CW 

operation from 10 ℃ to 30 ℃ The threshold current at 20 ℃ was 7.5 mA. 

Good linearity maintained up to a bias current of 10 times the threshold with 

the slope efficiency of 25.5 %. 

Fig. 3.2-2 shows the temperature dependent spectra from 10℃ to 30℃ 

under continuous wave (CW) condition. The lasing wavelengths from 10℃ 

to 30 ℃ were 1306.25 nm, 1.06.94 nm and 1307.74 nm, respectively. The 

temperature dependence of the lasing wavelength was 0.08 nm / K. Side mode 

suppression ratios more than 26 dB were obtained at threshold for three 

different temperatures. 
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3.3 RIN level 

The measured RIN spectrums for DFB laser operated under 60 mA and 

taken at 20  are℃  plotted in Fig. 3.3-1. To obtain a correct RIN level, each 

measured electrical noise spectral density function has to be corrected for the 

thermal and shot noise contributions. By the calibration formula derived in 

chapter 2 , we obtained RIN level of –155 dB/Hz. 

Calibrated RIN level is consistent with the laser specification; the 

accuracy of the measurement is therefore confirmed. This level is also 

comparable to that of conventional well-designed DFB lasers. 
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Fig. 3.3-1 RIN Level of -155 dB/Hz 
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3.4   Modulation bandwidth and Differential gain 

Using our experimental setup, we followed noise variations up to 12 GHz. 

The measured RIN spectra for DFB laser with different injection currents 

taken at 20 ℃ are plotted in Fig. 3.4-1. Under CW bias conditions, as the 

current increases, the peak frequency (resonance frequency) shifted to a 

higher frequency. At low frequencies, the RIN level increased due to the 

detection system. The periodic response at high frequencies was stemmed 

from an electronic oscillatory response of the amplifier [10]. 
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Fig. 3.4-1 RIN spectra of DFB at 20℃ 

Fig. 3-4-2 depicts measured data with the corresponding fit. The curves 

were well fitted to Eq. (2.19). The fitted fR and  are listed in Tafble 3-4-1. 

Both parameters increased with increasing operating current.
 
A typical plot of 

 versus fR
2 is shown in Fig. 3.4-3. The least-squares linear approximation has 
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a slope of 0.326 ns (K-factor), which indicates a 3 dB modulation bandwidth 

in excess of 27 GHz by Eq. (2.20). 

 

Fig. 3.4-2 RIN spectra of DFB laser at 20℃ with the corresponding fit. The 
dark solid lines were fitting lines. 
 
 

Table 3.4-1 Fitted fR and  of DFB laser at 20 ℃.  

Operating Current fR (GHz)   (s-1) 

1.1 Ith 1.27 3.49109 

1.2 Ith 2.50 4.81109 

1.3 Ith 3.27 6.54109 

1.6 Ith 4.46 9.14109 

1.9 Ith 5.41 1.281010 

2.1 Ith 6.45 1.631010 
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Fig. 3.4-3. K-factor derived from the slope of damping factor () verse square 
of resonance frequency (fr

2). 

The D coefficient was found to be 4.11 GHz/mW1/2 from the slope of the 

fr versus square root of the optical power curve, as illustrated in Fig. 3.4-4 .The 

good linearity of the curve also assesses the validity of both the model and the 

measurement. 

For the mode spacing of 0.75 nm at 20 ℃ as in Fig. 3.2-2, the cavity 

length and refractive index are estimated to be 300 m and 3.8. We further 

assume the optical mode volume to be 300 m1.5 m 0.4 m ( L  w  d ). 

Both Internal quantum efficiency and couple efficiency for the single-mode 

fiber pigtail package are taken to be 80 %. The quantum efficiency is 

measured to be 25.5 % as mentioned in the previous section. Therefore, the 

differential gain is estimated to be. In Fig. 3.4-5, the data in Fig. 3.4-4 were 

replotted as a function of the 216106 cm square root of current (I-Ith), where 

I is the bias current, Ith is the threshold current. Since )(0 thIIP   , the 

slope of 2.13 GHz/mA1/2 in Fig. 3.4-5 is D coefficient, 4.11 GHz/mW1/2 , 
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multiplied by the square root of  (0.268 mW/mA at 20℃). 
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Fig. 3.4-4 The D coefficient was found from the slope of the fr versus P1/2. 
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3.5 Temperature Characteristics of MQW lasers 

Fig. 3.5-1(a)–(d) show the RIN spectra at three temperatures: 10 ℃, 20 

℃, 30 ℃, and 40 ℃. The relaxation peaks move toward high frequency as the 

DC bias increased. Nevertheless, if we fix the bias current at a value of 12 mA 

as Fig 4.5-2 demonstrated, the resonance frequency at 10 ℃ is about 3 GHz 

higher than that at 40 ℃ while the RIN spectrum is more flattened at 10℃. 

The above observations are interpreted as follows. 
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Fig. 3.5-1 (a)-(d) RIN spectra at three temperatures: 10 ,℃  20 ℃, 30 ℃, and 40 ℃ 
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Fig. 3.5-2  Fixing the bias current at 12 mA, the fR at 10 ℃ is about 3 GHz 

higher than that at 40 ℃ while the RIN spectrum is more flattened at 10 ℃. 
 

The fitting procedure described above is applied to of the measured RIN 

spectrum. Fig. 3.5-3 shows the relaxation oscillation frequency versus square 

root of current at four ambient temperatures. The proportional factor D is 

found to vary from 1.8 GH/mA1/2 at 40 ℃ to 2.3 GH/mA1/2 at 10 ℃. 

Therefore, the differential gain shows strong temperature dependence and is 

plotted in Fig. 3.5-4 over the temperature range plotted, the differential gain 

decreases by a factor of approximately 1.5, which shows a linear function of 

the temperature [11]. Increasing temperature can result in altered gain 

characteristics. Besides the broadening of the Fermi occupation, probability 

function spreads the carriers over a larger energy range for a given overall 

carrier density. It is to say that a lower spectral concentration of inverted 

carriers leads to a broadening and flattening of the gain spectrum. Furthermore, 

thermionic emission of electrons from the QW to the barrier region enhanced 

at high temperatures. These effects contribute to strong recombination outside 

the QW and carrier leakage. Since the increased carrier population in the 

barrier region does not contribute to the optical gain, the differential gain 
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decreases rapidly at high temperatures. Consequently, the smaller differential 

gain at 40 ℃ leads to lower resonance frequency as Eq. (2.21) stated. 

In addition, RIN spectrum is flatten at higher resonance frequency 

because of larger damping factor. We can understand it from the linear 

relationship between damping term and square of resonance frequency. The 

carrier transport effect increases with increasing band discontinuities and 

barrier width, which determines the modulation bandwidth for QW lasers. The 

nature of K-factor reported in the literature was that the more number of wells 

the less sensitive to temperature [12]. For single-QW lasers, the K-factor can 

vary by two times for 200 to 350 k. Since the K- factor in Fig. 3.4-5 is 

independent on temperature, we conclude that this commercial DFB contains 

more than eight layers of QW in the active region.  
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Fig. 3.5-3  fR versus (I-Ith)
1/2 at four ambient temperatures. 
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Fig. 3.5-4 Differential gains against temperature showed strong temperature 

dependence. 
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Fig. 3.5-5 The K-factor is plotted as a function of temperature, which is 

insensitive to temperature. 
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3.6   Summary 

The measured RIN level of the commercial DFB laser strongly 

confirmed the accuracy of the measurement and calibration.From the derived 

D coefficient and K-factor from the fitting procedure of room temperature 

RIN spectra, the calculated differential gain and modulation bandwidth are 

comparable to that of well-designed DFB lasers. 

The temperature dependent measurement of RIN was demonstrated. From 

the tendency of D and K-factor, we observed the expected characteristics of 

multiple Quantum Well laser as the literature. The important characteristics 

are differential gain decrease linearly with temperature and K-factor is not 

sensitive to the temperature. 
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Chapter 4  Chirped Multilayer Quantum Dot 

Laser 

4.1   Device Structure 

The chirped 10-layer QD laser was grown by molecular beam epitaxy 

(MBE). As the schematic diagram shown in Fig. 4.1-1, chirped multilayer QD 

(CMQD) lasers with 2-, 3- and 5-layer of long-, medium- and 

short-wavelength QD stacks (designated as 2*QDL, 3*QDM and 5*QDs) were 

engineered in the laser structure, which correspond to InAs QDs of 2.6 ML 

capped by InGaAs of 4 nm, 3 nm and 1 nm, respectively. The staking 

sequence was arranged so that QDL was near the n-side. Fabrication details 

can be found in our previous work in [13]. 

Various cavity lengths of 750 m, 1000 m, and 1500 m were then 

analyzed by RIN characteristics. CMQD lasers contain many layers in the 

active region so that slower carrier dynamics discussed in MQW DFB laser 

may play an important role. 

 

Fig. 4.1-1 The schematic diagram of chirped multilayer QD structure. 
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4.2   Static Characteristics 

Fig. 4.2-1 shows a CW L-I curves measured at 20 . The slope ℃

efficiency of 0.59 %, 0.49 %, and 0.50 % for cavity length (L) of 750 m, 

1000 m, and 1500 m, respectively, up to a bias of ~100 mA. Fig. 4.2-2 is a 

plot of the laser emission spectra with cavity lengths with 750 m, 1000 m, 

and 1500 m. None of them emitting in single wavelength, several modes 

exist simultaneously. In addition, threshold current densities and the center 

wavelengths are shown in Table 4.2-1. The threshold current densities range 

from 453.3 A/cm2 to 888.8 A/cm2 corresponding to QDL excited state lasing 

which confirmed by modal gain analysis in Fig. 4.2-3 as our previous work 

presented [13]. The QDL excited state (ES) and QDM ground state (GS) were 

suppose to be 1183 nm and 1230 nm, however center wavelengths of three 

QDL ES lasing devices were red shift to the range of 1195 nm to 1212 nm. 

This is because the small energy difference between QDM GS and QDL ES 

such that carriers from QDM GS contribute to the tail of QDL ES gain profile. 
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Fig. 4.2-1 CW L-I curve measured at 20 ℃ 
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Fig. 4.2-3 Model gain-current relation in [13] 

Table 4.2-1 Center λ and threshold current densities of three cavity lengths 
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Fig. 4.2-2 Laser spectra for three cavity lengths at 20℃. 
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4.3   RIN Level of Quantum Dot laser 

In contrast to the QW lasers, the small signal modulation response in QD 

lasers is known to be highly damped [14,15] and the maximum modulation 

bandwidth is limited to below 10 – 12 GHz for lasers operating in the long 

wavelength of 1300-1500 nm [16-18]. 

The differential gain was shown to reduce due to the state filling effect as 

well as carrier capture process [19,20], which further limiting the high 

frequency modulation capabilities. The modulation characteristics and the 

noise spectra are governed by the same dynamic processes. The highly 

damped limited bandwidth modulation response of QD lasers therefore leads 

unique low noise characteristics. The very low RIN levels make QD lasers 

suitable light sources for use in analog transmission applications. However, it 

was more difficult to measure the weak noise signal of QD laser. 

Consequently, empirical noise spectra of QD laser can rarely be found in the 

publication. 

In 2006, the measured relative intensity noise levels of multi-stack 

quantum dash laser operating at 1320 nm was first demonstrated as low as 

-160 dB/Hz as shown in Fig. 4.3-1 [21]. In 2007, the RIN spectrum with 

different DC bias levels of 15-layer QD laser was presented (Fig. 4.3-2). The 

RIN level was extract to be -158 ~ -160 dB/Hz at high optical powers. 

Nevertheless, the actual RIN is somewhat masked by the electrical resonances 

at high frequencies [22]. 
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Fig. 4.3-1 Schematic diagram of QD laser structure and RIN spectrum [20] 

 

Fig. 4.3-2 RIN spectra for different laser power levels in 2007 [21] 

In our recent work, the RIN measurements of QD lasers were carried out. 

The noise power of QD lasers was in the order of Pico-watt, the slight 

difference of every spectral density recorded directly from the electrical 

spectrum analyzer has to be separated with attention. The vertical far-field 

angle is usually large for edged emitting laser structure. Moreover, the laser 

bar was titled a small angle off the optical axis to lower the optical feedback. 

Thus, it was more difficult to efficiently couple the optical power into a 

single-mode fiber (The couple efficiency of this sample was 12 %). Cares 
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must be taken while adjusting collimator for coupling, since the position with 

maximum focused optical power was extremely critical.  

As-measured RIN spectra were shown, Fig 4.3-3 (a) – (d) depicts 

evolution of noise spectral density with increasing bias current, in which the 

electrical power of noise enlarged before 50 mA and then went down 

gradually. In addition, the sharp drop at 3 GHz was due to system error of 

spectrum analyzer.  

 In order to obtain correct RIN spectra, measured noise spectral density 

functions have to calibrate for the thermal and shot noise contribution as well. 

RIN spectra of our work shown in Fig. 4.3-3 (e) is clear presented in the order 

of rising bias current. The problem of electrical resonances was overcome 

with higher coupled power. It revealed that flat RIN spectra reached very low 

levels of -160 dB/ Hz, which is consistent with earlier observations. 
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Fig. 4.3-3 (a)-(d) Evolution of measured noise spectral density with increasing
bias current 
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Fig. 4.3-3 (e) Calibrated RIN spectra reveals very low level as low as -160 
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4.4   Excited State RIN spectra 

As mentioned above, the modulation bandwidth of QD lasers is 

damping-limited due to the comparatively low saturated gain and slow carrier 

dynamics [23]. Fortunately, the situation could be somehow released if we 

can modulate excited state QD lasers. Modulation bandwidth of excited state 

is expected to be about two times of ground state. This is attributed to an 

increase in the saturated gain and reduced carrier scattering time of the excited 

state compared to the ground state. The direct modulation of excited state 

quantum dot lasers was first demonstrated experimentally by Stevens el al. in 

August 2009 [24]. In their study, the K-factor limited modulation bandwidth 

of ground state and excited state are 6.7 GHz and 13.0 GHz, respectively.  

For our excited state lasing QD laser with cavity length of 750 m, the 

RIN spectrum was carried out as shown in the previous section and well-fitted 

with the Eq. (2.19) as in Fig. 4.4-1. The extracted K-factor was 0.628 ns in Fig. 

4.4-2, and the predicted maximum modulation bandwidth of 14 GHz was 

comparable with Stevens’s work on excited state. On the other hand, we 

learned that the K-factor was insensitive to the temperature for the carrier 

dynamic limited devices. Therefore, the strong evidence certified again this is 

the RIN spectrum of excited state QD laser.  

To the best of our knowledge, we have successfully demonstrated RIN 

spectrum of excited state QD for the first time. 
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Fig. 4.4-1 RIN spectra and corresponding solid fitted lines of 750 m 
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Fig. 4.4-2 K-factor of CMQD Laser with L =750 m 
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4.5   Different Cavity length 

The QD laser RIN measurements were limited for short cavity lasers to 

avoid more modes lasing in the long cavity mode. Because of mode 

partitioning, the energy tends to switch back and forth randomly between the 

various modes observed in the time-averaged spectrum causing larger power 

fluctuations in any one mode. If all modes are included, the net power tends to 

average out these fluctuations. Fig 4.5-1 (a)-(c) show the RIN spectra for L of 

750 m, 1000 m, and 1500 m, we could see that the spectra flatten out for 

1500m. Thus, the RIN characteristic was even difficult to be observed in 

long cavity lasers. In general, cavity length for QD RIN measurement was 

suggested to be within 2 mm. 

Now we comment on the profile of those RIN spectra with different 

cavity lengths. Compared to Fig. 4.4-1, the RIN spectra of 750 m shown in 

Fig. 4.5-1(a) were further biased to higher powers. To response the thermal 

effect in the previous section, we can see apparently the resonance frequencies 

for these higher power levels reduced along bended arrow line shown. In 

contrary, it was hard to see the resonance frequencies reducing in 1500 m in 

Fig. 4.5-1(c) by eyes and we considered the arrow line still went 

straightforward. This was because the lower current density of 1500 m 

somehow reduce junction heating. These observations confirmed our 

previous understanding of thermal effect. 
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Fig. 4.5-1 (a)-(c) RIN spectra with different cavity lengths 
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For three lasers with different cavity lengths ( 750 m, 1000 m, and 

1500 m ), the resonance frequencies verse (I-Ith)
1/2 were shown in Fig. 4.5-2 . 

One unexpected finding was observed: slope has a marked fall of linear fit and 

fitted line did not go through the zero. As a result, differential gain could not 

be obtained from the slope of fitting. By connecting each data point to the zero, 

we are confident that the differential gains should fall within the slopes 

individual, or we can say the resonance frequencies would be underestimated. 

The red dash lines for 750 m depict how resonance frequencies drop from the 

access line. The instantaneous differential gains were listed in Table 4.5-1, 

they declined from 8.210-16  cm2 to 3.010-16 cm2. We learned that the 

differential gain as well as resonance frequency decrease linearly with 

increasing temperature in chapter 3. It is encouraging to turn the idea into this 

chapter. For our measuring, cleaved QD laser was barely placed on a 

temperature controlling heatsink. Compare to other packaged laser with a 

thermoelectric cooler included, temperature controlling of our QD laser was 

much less efficient. As a result, junction temperature rose rapidly and 

differential gain reduced with increasing power. In brief, differential gain fell 

due to heating effect. It was important information for RIN measurement of 

as-cleaved lasers. 
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Fig. 4.5-2 For three lasers with different L of 750 m, 1000 m, and 1500 m, 

the fR verse (I-Ith)
1/2 were shown together 

Table 4.5-1 Declining of the instantaneous differential gains 

L=750 m_Ith=33.33mA 

Operating 

Current(mA) 

Current 

Density(A/cm2) 
a (cm2) 

40  (1.2Ith) 1067 8.210-16 

45  (1.4Ith) 1200 5.410-16 

50  (1.5Ith) 1333 4.010-16 

55  (1.7Ith) 1467 3.410-16 

60  (1.8Ith) 1600 3.010-16 
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At a fix value of (I-Ith)
1/2 as black dash line illustrated, the differential 

gains, optical mode volumes and resonance frequencies could be compared in 

Table 4.5-2. Differential gain slightly decreased in short cavity length. That is 

because our threshold current density for 750 m most approached gain 

saturation that differential gain decreased base on the g-J relation of quantum 

dot lasers. In addition, optical mode volumes (Vp) also expand with cavity 

length. These two factors however lead opposite influences on the resonance 

as the following equation interpreted. 

 
2/1












 thi

p

g
R II

qV

a



  

We could find the dominant factor determine the resonance frequency. 

Obviously, mode volume grew faster than differential gain result in a decline 

of resonance frequency in the longer cavity laser. Overall, for high-speed 

device a shorter cavity length may be optimum, moving the RIN peaks out to 

higher frequencies 

 

Table 4.5-2 Parameters at a fix value of (I-Ith)
1/2 

L a (cm2) Vp (cm2) fR (GHz) 

750 m 5.010-16 1.310-9 2.4 

1000 m 5.410-16 1.810-9 2.2 

1500 m 7.010-16 2.610-9 1.9 
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4.6   Double Resonance Peaks 

Finally, the most interesting finding of our work was that double 

resonance frequencies RIN spectra were observed in even shorter cavity of 

600 m. As shown in Fig 4.6-1, it was somewhat surprising that the RIN 

spectra were well fitted if we added another term to the Eq. (2.19): 
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(4.1) 

The fitting parameters of peaks on the left were listed in Table 4.6-1. 

From the extracted K-factor of 0.68 ns, the maximum modulation bandwidth 

was extended to 13 GHz, which was considered excited state lasing. 

However, the second resonance frequencies kept fixed and we failed to 

define the K-factor. 

In recent years, there has been some literature on multi-peak RIN spectra 

for VCSEL. There are two main suggestions for the cause of multi-peak RIN 

spectra. One believe that two-mode noise spectra incorporate the dependence 

on the degree of spatial overlapping between the modes and peaks appear at 

frequencies that correspond to the relaxation oscillation frequencies of the 

multimode laser [25]. The other resists that there is only one relaxation 

oscillation frequency and that the other peaks in the RIN spectrum can be 

considered as mode partition frequencies that result from carrier interchanges 

between the modes [26]. It is a controversial issue that further study is 

required to understand the real cause.  



 

 46

 
Fig. 4.6-1 double resonance frequencies RIN spectra were observed in even 
shorter cavity 

Table 4.6-1 fitting parameters of peaks on the left 

L = 600 m_Ith=31.25mA 

Operating Current fR (GHz)  (s-1) 

50mA 1.6 Ith 2.64 5.47 x 109 

60mA 1.9 Ith 2.83 6.06 x 109 

80mA 2.6 Ith 2.98 6.78 x 109 
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Fig. 4.6-2 Extracted K-factor of left resonance peaks 
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Chapter 5  Conclusion  

Relative Intensity Noise (RIN) of multiple quantum well (MQW) DFB 

laser and chirped multilayer quantum dot (CMQD) lasers have been measured 

and analyzed. The carrier dynamics in multilayer quantum structure are 

therefore determined. 

The temperature-dependent RIN measurement of MQW DFB laser was 

undertaken to evaluate the K-factor and differential gain. Carrier transport is 

limited by multiple layer structure in the DFB laser as the values of K-factor 

remain almost constant at 0.33 ns in the temperature range of 10 - 40 ℃. 

Therefore, the intrinsic maximum modulation bandwidth ( fmax ) is evaluated 

to be 27 GHz. However, differential gain reflects the nature of gain spectrum 

broadening which decreases by a factor of approximately 1.5 (from 1.66×10-15 

cm2 down to 1.1×10-15 cm2) over the measured temperature range.  

 The RIN measurement is limited for short cavity lasers as modes 

contribute to partition noise that average out the power fluctuation. In general, 

cavity length for RIN measurement is suggested to be within 2 mm. The 

characteristics of chirped multilayer quantum dot (CMQD) lasers has been 

presented with different cavity lengths of 750 μm, 1000 μm, and 1500 μm at 

ambient temperature of 20 ℃. For cavity length of 750 μm, the highly 

damped RIN spectra have calibrated level of -160dB/Hz, which consist with 

the literature. In addition, excited state lasing is essential in our device in 

order to overcome the total loss and therefore reaches the lasing condition. 

The differential gain is estimated to be in the range of 3.0-8.210-16 cm2, 

which is subject to junction heating in as-cleaved devices. However, the 

K-factor limited bandwidth (fmax), which is temperature insensitive, is as 
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large as 14 GHz, shows excellent agreement with Stevens et al., who firstly 

demonstrated direct modulation of excited state QD lasers in August 2009. To 

the best of our knowledge, we have successfully demonstrated RIN spectrum 

of excited state quantum dot lasers for the first time.  

Another unexpected observation is the double-resonance RIN spectra in 

even shorter cavity length of 600 μm. However, the mechanism is still a 

controversial issue. Therefore, this thesis has thrown up some questions for 

further investigation.  
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