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ABSTRACT

Recent studies have been conducted to indicate the ineffective usage of
licensed bands due to the static spectrum allocation. In order to improve the
spectrum utilization, the cognitive radio is therefore suggested to dynamically
exploit the opportunistic primary frequency spectrums. The interference from
the secondary users to the primary user consequently draws the attention to the
spectrum and power management for the cognitive radio networks. In this
paper, the constrained stochastic games are utilized to exploit the optimal
policies for power management by considering the variations from both the
channel gain and the primary traffic. Both the underlay and overlay waveforms
are considered within the network scenarios for the proposed power
management scheme. Constraints for allowable interferences will be applied in
order to preserve the communication quality among the primary and the
secondary users. With the assumption of the Markovian property of dynamic
environment, finite and infinite time horizon scenarios are both considered in
target function. According to the formulation of the constrained stochastic
games, the existence of the constrained Nash equilibrium will be validated with
rigorous proofs. Simulation results further validate the correctness of the
theoretically-derived policies, compare with the greedy mechanism and

examine the effect of channel sensing error for dynamic power management.
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Chapter 1

Introduction

Due to rapid development of wireless systems, the demand for wireless spec-
trums has resulted in spectrum scarcity based on the conventional fixed al-
location schemes. Even with the intensive usage of frequency spectrums, it
has been studied by extensive measurements [1] that 62% of spectrum still
remains unoccupied by the licensed primary user (PU). Cognitive radio (CR)
is an intelligent wireless communication system that is perceptible to its sur-
roundings. It is advanced as an emerging technology to effectively exploit
the under-utilized spectrum in order to overcome the overcrowded spectrum
problem.

There are two types of spectrum sharing that are defined for the CR
networks (CRNs), including the underlay and the overlay waveforms. The
underlay waveform represents that the unlicensed secondary users (SUs) are

allowed to simultaneously share the primary frequency spectrum with the



PUs. The transmission power of the SUs are in general limited in order not
to cause excessive interferences to the PUs. On the other hand, an overlay
waveform allows the SUs to perform packet transmission under the existence
of a spectrum hole. The spectrum hole is defined as a frequency band au-
thorized to PUs, however, it is vacant at a particular time and geographic
location. With the overlay waveform, the SUs can sense and identify the
existence of spectrum hole for data communications. Therefore, spectrum
utilization can be enhanced with these frequency-agile features. The research
work in the CRNs has been investigated from various aspects. The work pro-
posed in [2; 3] presents the techniques for spectrum sensing and detection;
while [4; 5] investigate the spectrum allocation problem for the CR. There
are also research [6; 7] focusing on the medium access control design for the
CRNs.

Game theory [8] has been considered a feasible mathematical tool for solv-
ing the resource allocation problems in distributed CRNs. The fundamental
concept of game theory is to resolve the conflict and cooperation between
intelligent rational decision-makers (DMs). Instead of reaching a globally
optimized solution based on identical objective, the DMs within the gaming
formulation are seeking for solutions selfishly without the knowledge of other
DMs’ decisions. The primary reason is due to the inherent conflicts between
the objectives that are assigned among the DMs, which can be adopted to
model the behaviors of both PUs and SUs within the CRNs. After reaching

the optimized solution (i.e. Nash equilibrium (NE) [8]) based on the game



theory, each individual DM will not benefit from any action to deviate from
the NE. In other words, by considering the conflicted interests between the
DMs, the solutions obtained at the NE will provide every DM to possess the
optimal resource allocation.

In general, two different types of games are categorized for the game
theory, i.e. the strategic games and the extensive games. With the objective
of reaching the NE, all DMs simultaneously select their strategies only for
one-time by adopting the strategic games [8], which have been exploited
to resolve the power control problem for the CRNs in recent research work
[9; 10]. The work in [9] proposed an algorithm for distributed multi-channel
power allocation based on the strategic gaming model;while the pricing-based
games are utilized in [10] to achieve a higher signal-to-noise ratio with the
guarantee of reliable data transmissions. However, computation of NEs in
strategic game will introduce some computation time at each time.

On the other hand, the extensive games [8; 11; 12] represent a class of
gaming models where the DMs repeatedly conduct decision-making numer-
ous times for resource allocation. Unlike the strategic games that each DM
considers his strategy only at the beginning of the game, the extensive games
is implemented whenever a decision has to be made in order to increases the
spectrum efficiency by the multi-stage gaming model. The scheme proposed
in [12] utilized the repeated game to solve NE point under underlay wave-
form. But it can’t character the variation of CRN environment. In addition,

constrained stochastic games [13; 14] are formulated by extending the exten-



sive games for dynamically-changing environments with the consideration of
certain constraints for optimization. It can be considered as an extension of
the Markov decision process from a single DM to multiple DMs. The power
allocation algorithm proposed in [15] imposes both the power and the buffer
length constraints under the environments with varying channel states. It
is noticed that only independent states between the DMs are considered in
[15], i.e. the states of power and buffer length for each DM is independent
to those from other DMs. So, constrained stochastic games can be applied
to the resource management problems for CRNs.

In this paper, the constrained stochastic games are adopted and extended
to study the dynamic power management problem in CRNs. The dynamic
environments occurred from the channel variations and the uncertain spec-
trum holes will be modeled as the ergodic Markov decision process. It is
noticed that the spectrum holes are considered the dependent states for each
SU since the SUs are sharing to utilize the spectrum holes while the original
licensed PU is temporarily releasing the frequency band. Moreover, each SU
can perceive its own current state but is unaware of the states and strate-
gies from the other SUs. As the licensed spectrum is occupied by the PUs,
the underlay waveform is executed by the SUs with the introduction of rea-
sonable interferences to the PUs. On the other hand, the SUs will share
the spectrum hole with the overlay waveform as the primary traffic is ab-
sent. Constraints for allowable interferences will also be imposed to preserve

the communication quality among the SUs under the existence of spectrum



holes. With the satisfaction of the defined constraints, the constrained NE
suggests an optimal solution to the dynamic power assignment according to
the SUS’ current state within the CRNs. In finite and infinite time horizon,
i.e.time non-converge and converge to stable point respectively , existence of
constrained NE will be proved.

Therefore, considering all of the issues mentioned above, two stochastic
game are proposed in this paper to describe the finite time and infinite time
horizon respectively in the CRNs. Similar Dynamic programming method
will prove the existence of constrained NE in finite time horizon. Using the
stable property of CRNs the existence of constrained NE will be demon-
strated in infinite time horizon.

The rest of this paper is organized as follows. chapter 2 presents the
system models of finite and infinite time horizon of CRNs. The correspond-
ing proofs for the existence of constrained Nash equilibrium are provided in
chapter 3 and chapter 4 respectively. Numerical evaluation is performed in

chapter 5; while chapter 6 draws the conclusions.



Chapter 2

System Model for Dynamic
Power Management with

Constrained Stochastic Games

The schematic diagram of the CRN is illustrated in Fig. 2.1, where a syn-
chronous slotted time structure is considered. A PU is communicating with
its primary base station; while there exists N = 2 SU pairs where SU(Tx) is
intending to transmit its data packets to the respective SU(Rx) within the
same frequency spectrum as the PU. The overlay waveform is shown at the
time slot 2 where a spectrum hole happens for the SUs to share the licensed
band without the existence of the PU. At both time slots 1 and 3, with toler-
able interferences to the PU, the SUs coexist with the PU to conducts their

transmissions under the execution of the underlay waveform.
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Figure 2.1: The schematic diagram of the cognitive radio network for dynamic
power management. (Tx : transmitter , Rx : receiver)

At each time slot ¢, each SU(Tx) i forwards its data packets with a specific
power level pt € p; = {Pio, Pit, > Pimax}, Which is referred as the action
set in the game theory. The global set of the power level for the entire CRN
is denoted as P = Hf;l p;- The dynamic environment in CRN is modeled
as an ergodic Markov chain [16], where feedback information is considered
available for each SU pair, i.e. from SU(Rx) to SU(Tx). In other words,
each SU(Tx) will possess the information about all the current states that
are detected by its corresponding SU(Rx). The compound state st of each SU
i at the time slot ¢ is constructed by two elements ¢! and ¢f, i.e. st = (¢}, gt).
The parameter ¢! € ¢; = {0,1} is utilized to denoted the status of the
PU, where ¢! = 0 indicates the absence of the primary traffic, and ¢! = 1
represents the existence of the PU within the CRN. It is noted that, at each
time slot ¢, the indication of the primary traffic ¢! is considered equal for

all the SUs ¢ that share the licensed spectrum. Therefore, the global space



can be obtained as ® = [[' ¢, = {a,--- ,a}, where ® has N elements with
a € {0,1}. Moreover, the state of the channel gain for each SU ¢ at time slot
t is denoted by the index gf € g; = {0,--- , L; — 1}. The compound state s
will therefore belong to the set s; = ¢, x g, with the length of state vector

equal to 2L;. The global state space of s! considering all the N SUs can also

be represented as S = Hf\il s;. The immediate utility of SU i is defined as
r; which is a function of (s', p'). Furthermore, P!, = M(s{"' = y|sl = )

is utilized to express the state transition probability, where M/(e) is the
probability measure over an event €.

A history at time epoch ¢ of SU ¢ is a time sequence of its current
state as well as its previous states and actions, which is denoted as h§ =
(89,09, sk pt -+ skt phtt st) with s¥ € s; and pF € p,. Let H! be the col-
lection of all possible histories of length ¢ for SU 7. A policy employed by SU
i can be denoted as a sequence u; = (u, u;, -+ ,ut), where u} : H — M(p;)
is a function mapping from the histories to the probability measure over
the action sets of SU 4. The elements within the policy u! indicate the oc-
curring probabilities for their corresponding power level p;; for j = 0 to
max. It is noted that the decision of the policy u! for each SU is indepen-
dent to that for the other SUs. The set of all reasonable policies for SU
¢ is in the policy space U;, i.e. u; € U;. Therefore, with the considera-
tion of all the N SUs, the global policy space U = Hfil U; is called the

class of multi-policies. In addition, the multi-policy except SU ¢ is defined

as u_; = (wy, U, -+ ,Wi_1,Uiy1, - ,uy) € U_;. Moreover, the stationary



policies are characterized as the policy that is independent of the histories,

ie. ul: s, — M(p,) as a function mapping only from the current state

(3

s;. The union of all possible stationary policies is denoted as Uy € U;, and

U° = Hfil U? € U represents the class of stationary multi-policies.

2.1 Finite Time Horizon

The expected utility of SU ¢ with the policy u = (uq,us, -+ ,uy) € U and

the initial state s° = (s?,s9,--- ,s%) € S can be obtained as

R (8% u) ZE { } (2.1)

where % is the operator for the computation of expectation value. Further-
more, the allowable interferences between the SUs and the PU are considered
in order to guarantee the quality of service (QoS) of the CRN. The supreme

expected allowable interference at the SU i(Rx) is obtained as

N
I7,(s,w) = 1 S B [ph - v () - dul6)] vim £

(2.2)



1
T(0 _
Ip (S ) U) - T—1 Z

o Bo|01(0)] =5

T-1 N
b [pl - v (s}) - 01(00)|¥p € {1, M}
k=

1

(2.3)

where § is the Kronecker delta function. The function vg,,(st) and vy, (sh)
represent the corresponding channel gains from SU j(Tx) to SU i(Rx) and
SU j(Tx) to PU in state s, respectively. In (2.7), I/ (s°,u) indicates the
case with the absence of primary traffic, i.e. do(¢} = 0) = 1; while I (s°, u)
denotes the case with primary traffic, i.e. 4;(¢! = 1) = 1. Under the usage of
licensed band from PU, the influence occurred from the SUs is confined by
17(s",u) < C4 to assure the QoS of the PU, where C; denotes the the PU’s
tolerable interference. Considering the case without the primary traffic, the
allowable interference between the SUs are constrained by I, (s% u) < Co,
where Cj indicates the QoS constraint among the SUs that share the common
spectrum band. Therefore, the set of feasible policies can be defined as u € U
in order to satisfy the condition I, (s% u) < Cy Vm # i and I (s°,u) <

Cl Vp

Definition 1. A multi-policy u* = (u],ud,--- ,u}y) € U is a constrained

Nash equilibrium (CNE) if it is a feasible policy such that for all SUs i

R (s”,uw”) > R (8", [u]vi]) (2.4)

10



for any feasible policies [u*,;|v;], where the policy [u*;|v;] means that SU i

uses the policy v; while other SUs k # i takes the policy uj.

2.2 Infinite Time Horizon

The expected utility of SU 7 is

N

-1

1
Ri(s’,u) = lim sup E¥% [ri(s', p")] (2.5)

T— 00 Tt

Il
o

The expected allowable interference at the SU i(Rx) are

1
Lim(s% u) = lim sup 0 :
S B |60(6))]
T-1 N
>° B bl viom(sk) - dol@h)] vm £ (2.6)
=0 k=1
k#m
and
I(s% u) = Thm SUp ——— !
o B [01(6h)]
T-1 N
SOEB [P vl @) Vpe L MY (@)
=0 k=1
A multi-policy ©* = (uj,u3,--- ,uy) € U is a CNE in infinite time

11



horizon if it is a feasible policy such that for all SUs ¢

Ri(s", u") > Ri(s", [uZ;|vi]) (2.8)

It is considered that the SUs are rational [8] such that all SUs are in-
tending to maximize their corresponding utilities in (2.5). Furthermore, the
decision for each SU i to transmit packets with the power level p! at the
beginning of time slot t is determined without additional knowledge about
the states and actions from the other SUs. As a result, the constrained Nash
equilibrium (CNE) [14] will be utilized to facilitate the power management
problem from the perspective of game theory, which is defined as follows.

The purpose of this paper is to provide the mechanism for dynamic power
management based on the optimal polices that are derived from the CNE.
The existence of CNE for the finite and infinite time horizon problems will

be acquired in chapter IIT and IV respectively.
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Chapter 3

Existence of CNE for Finite

Time Horizon Stochastic Game

In this chapter, the constrained optimization problem with finite time horizon
considering a single SU will be introduced in Problem 1. The Markov strategy
which will be defined in Definition 2 is also a CNE. The similar dynamic
programming method will prove existence of CNE from time slot 7'— 1 to 0

sequentially.

3.1 Expected Utility and Markov Strategy

The expected utility of SU ¢ when deciding in time slot t is

1

7 rishp)+ Z: v;(m)(stﬂ)Pstsm) (3.1)

13



where st is the state that occurs in time slot t and P, g+1 is the state transition
probability from s’ to s""'. Vj;11)(s"™) is the utility that SU ¢ expects to

receive in the future starting from time t+1.

Problem 1 (Constrained Optimization Problem (COP) With Finite Time
Horizon). Given a fixed set of policies u_; € U_;, find an optimal policy v}

for SU ¢ in order to maximize the expected utility

R} (" [u_i|vi]) (32)
subject to
(8, [usilv]) < Co Ym #i (3.3)
and
(s lu|v]) <Cy Vpe{l,-- M} (3.4)

For a COP with finite time horizon with terminal time T expected utility
of SU ¢ from the strategy combination w is given by

where the first term on the right-hand side of the equation is the expected
utility using the strategy u in time slot 0, the second term is the expected
utility from using the strategy w in time slot 0 and 1 and so on till the last

term which is the expected utility in time slot T-1 when using the strategy

14



u throughout the game. Next, defined a special strategies, namely Markov

strategies.

Definition 2. A Markov strategy for SU 7 denoted by u; arqr is a sequence
{ul prar H—o such that w! ..o st — M(p;) is measurable for every t. A

Markov strategy combination w,,, is a combination of Markov strategies.

Since Markov strategies restrict SUs to make their decisions conditional
only on the current self state, this can be a fairly severe restriction on the
kind of strategies SUs can use. However, with the assumptions of Markovian
nature of transition probabilities, a SU can do just as well by using a Markov
strategy. This is so because the current and future utility of a SU is given by
(3.1). If every SUs uses a Markov strategy then the optimal p; for SU i given
the current state s; is optimal no matter what the past history. That is, if
every SUs uses a Markov strategy, then an optimal Markov strategy of SU 1
in time slot t is an optimal strategy. This thus means that if an equilibrium

in Markov strategies is found then we have obtained an equilibrium.

Definition 3. A Markov strategy for SU ¢ denoted by u; 5, is an equilibrium

if for any s; in any time slot and for any SU ¢

Vie(8ilti arar) 2 Vie(sil i) (3.5)

15



3.2 Existence of CNE

Based on an backward recursion argument, we show the proof that can be

used to construct equilibria in COP with finite time horizon.

Theorem 1. There exists a Markov strateqy wpre, € U as the CNE for
dynamic power management problem of the considered CRN in finite time

horizon.

Proof. At time slot T-1, given the state s] ', the expected utility of SU i

from time T-1 to T-1 is denoted as follows

EsiT—l[Ti(ST_lapT_l)]

T—1 T—l T—1
S 3D D) NS ol S ST s LA
— 7 7 vVl y7? T 1
pl—t 7=t T i Z%S:k% U, (pk|3k)7T8k
T—1/ T—-1| T—1
w; o (p: s T )ms, I -
= DX s [l | el e = s = )
pT=1 \ 71,71 ji Zq{%_ U (pk|8k)7r5k
f i Py =i

(3.6)

which is a strategic game. Besides, the expected interference without PU

traffic can be described as

ET 1 Z “Lokm Sk )50( Z Zp Yk Sk )50( )

=171
k;ﬁm S_; P_;
T—1 T—l T—1
u;—(py sy )m,
J J T-1
| | + § pzvzm(s ) (pl = pi|si = SZ‘) S 00(37)
Z Sk UT l(pk\sk)ﬂsk ST

J#i Srp=0

2 i
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By the same procedure, the expected interference with PU traffic can be

depicted as

ET1Zp ’Ukp Sk (51 ¢T1]—ZZP ’UkpSk )51( )

JT—1,T—1
T—1 T*l T—
ws ( ]s ) - - -
H : T 1 - + szvlp 1(pZT b= p@'\SiT I = Si) < 01(3.8)
J#i Zd’ksiqb» U; (pk‘sk sy, pr—1

According to equation (3.7) and (3.8), the policy set of SU 4 is nonempty,
compact and convex set at time slot T-1. Because of equation (3.6), the
expected utility function is both continuous and quasi-concave in its policy.
So, there exits a CNE at time slot T-1.

At time slot T — 2, given the state 5?‘2 and u*T_l, the expected utility

of SU ¢ from time T — 2 to T — 1 is denoted as follows

EISZT_2 [Ti(ST—Q’pT—2) < Ti(ST—ljpT—l)]

T—-2( T—2| T—2
U, 85 T
Y Y S el st = [ e,
pzT 2 T— 21{ 2 i Z(bks:k% (pk|5k)7'(3k
xT— — _
* Z (Z SN rilspyu (ol =pilsl T =5
T 1 pT 1 T— 11{ 1
( 1‘8 _1)7T8j
H T 1* PS.T—QS,T—l (39)
J;éz u] (pklsk)ﬂsk ’ v

where the last term is a constant. It’s also a strategic game. The same

procedure as equation (3.7), (3.8) and (3.9), we can obtain that there exists
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a CNE at time slot T-2. So, by this recursion procedure we prove that there

exist a CNE in finite time horizon stochastic game.
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Chapter 4

Existence of CNE for Infinite

Time Horizon Stochastic Game

In this chapter, the constrained optimization problem for dynamic power
management considering a single SU will first be introduced in Problem 2.
The linear programming methodology as formulated in Problem 3 will be
associated with Problem 2 based on the proofs in Lemmas 1 to 3. Conse-
quently, the dynamic power management problem as defined in Definition 1
will be proved in Theorem 2 for the entire N SUs in the CRN. Consider fixed
policies for the other SUs, a constrained optimization problem for a single

SU can be formulated to obtain the best response [8] as follows.

Problem 2 (Constrained Optimization Problem (COP)). Given a fixed set

of policies u_; € U_,, find an optimal policy v} for SU 7 in order to maximize

19



the expected utility

Ri(s", [u_|vi]) (4.1)

subject to
Lim(8%u) < Cy Vm #i (4.2)
]p(so,u) <Cy Vpe{l,--- , M} (4.3)

Therefore, a CNE multi-policy «u* € U in Definition 1 can be verified
while u] represents the optimal policy in Problem 1 for all SU 7 providing
other SUs take the policies u*,. In order to resolve Problem 2, the defined
COP can be correlated with a linear programming problem by extending
from the previous studies [14; 17; 18]. A linear programming problem is

defined as follows.

Problem 3 (Linear Programming (LP) problem). Consider a set of state-
action pairs for SU i characterized by K; = {(s;,p;) : s; € Si,p; € P;} as

well as K = Hi\] K, and K_; = H?;Z K;. Given a set of stationary policies
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u_; € U5, find 2}, = {2z, .(sip): (si,p:) € K;} which maximizes

Hi(Zim_;) = Z Riwu_;(Sis i) Ziou_;(Si, Di) (4.4)
(si:pi)EK;
subject to
zm zzu ZI’L’U, Si, D 1 ( “pZ) < C() Ym #Z (45)
(Szfl)eK k

Io(Ziu )= T (50 (sop) =0P) ey (46)

(845 pzleK Zl J
Z Ziu (80, 01) [0 (80) = PL. ] =0 Vr; €, (4.7)
(si:pi)€EK;
> i (i) =1 (4.8)
(si:pi)EK;
ZZU (SZ7pZ) > 0 V(Sl7pz) K (4'9)

where P! in (4.7) is the transition probability from state s; to r; for SU
i. The value of 4, (s;) in (4.7) is equal to 1 as the state s; = r;, other-

wise d,,(s;) = 0. The denominator Z, ; in (4.5) is utilized for normalization
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purpose as

Zi,j: Z Zi,u_i(skppk) (4-10)

(srE) EK;
Pr=J

The functions R;,_,(s;,pi) in (4.4) and Z, ,,_,(s;, p;) in (4.5) are the expected
immediate utility and the allowable interference while SU 7 executes the
power level p; at the state s; under the case that the other SUs are adopting

the policy u_;. Both functions can be expressed as

Ri,u,i(siapi) = Z H Qi,m : Ti(sap) (4'11)

(s,p) ;€K _;, m#i

S =0i,Vh#i
N
Liu_(si:pi) = Z H Qim Zpk Vki(sk)> (4.12)
(5,p) ;€K _;, mFi k=1
b =05 Vk#i

where €, ,,, corresponds to the probability of the state-action pair (s, p,) for
SU m. Let the stationary distribution of the state s,, for SU m be m,,(s),

Q; ,», can be computed as

Um(pm|5m)7rm(5m)

Z(skfk)?{m’ Um(pk\sk)ﬂm(Sk)
kE=%P:

Qi,m -

(4.13)

where u, (pm|$m) denotes the probability measure for SU m to conduct action
pm based on the state s,,. The normalized term in the denominator of (4.13)
is utilized to indicate that common spectrum among all the SUs will result

in the correlation among the states of each SU, i.e. ¢, = ¢; for all m # i.
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A set of nonnegative real numbers is defined as w; = {w;(s;,p;) : (si, Pi)
€ K;}. The probability v;(w;) = {72 (w;) : (si,pi) € K;} can be define as
Vi (wi) = wilsi, pi)/ Y-, wWr(sk, pr) in the case that Y wk(sy, px) # 0. Oth-
erwise, an arbitrary value is assigned to 72! (w;) such that > % (w;) = 1.
The parameter A;(w;) represents a set of stationary policies for SU ¢ that
selects its power level p; at the state s; with the probability 7?/(w;). Further-
more, fi(s?, u;;s;,p;) is denoted as the limiting point of the time sequence
{fH(s?, u;; s:,pi) }- The expected state-action frequency ff(sY, us; s, p;) [18]

for SU 7 at time ¢ can be obtained as

t—1
1 w
fit(sgauiésbpi) = n g Psgz(sf = si,pf =) (4.14)
k=0

where P4’ (¢) is the the probability measure over the event ¢ with the pol-

icy u; and the initial state s?. Based on the definition of the state-action
frequency, the relationship between the COP and the LP problem can be

constructed as follows.

Lemma 1. Given a set of stationary policies u_; € U, for any z;,,_, that
satisfies (4.7) to (4.9) will result in %; ;(Zin_,) = Ri(8°, [u_i|ANi(Zin_,)]) for
SU i.

Proof. Based on the definition of R;(s° u) in (2.5), the following equation

23



can be obtained:
Ri(s%,u) = lim sup— Z o [ri(s',p")] (4.15)

T—1
RTED DED DI DS
= lim su —Z (5.
T—o0 pT i\$, P
t=0 (S’tapl)eKz (S,P)_iGK_,L»
Pr=04,VIFi

PT(S? = 55,9 = p))

Py (s; = si,p; = i) (4.16)
& g Z(sk Pk)GK P (5 = Sk, p] Pk)
Z fi(s?, wis s, pi)-
(si:pi)€EK;
S 7u 73 )
DRRCIOY | ke T 1)
(s,p) _; €K _ i Z(Sk pE)EK; f](SJ7UJJ Sk7pk)
¢z=;Z7Vl¢;Z Pr=%i
Z fi(sgvui;siapi) 'Rzu (Sz;pz) (418)
(si:pi)EK;

It is noted that the equality from (4.16) to (4.17) is mainly due to the assump-
tion of stationary multi-policy. By substituting w; in (4.18) with A\;(2;._,),
it can be obtained that f;(s?, A\j(Ziw_,); Si,Pi) = Ziwu_,(Si,pi). The relation-
ship between (4.1) and (4.4) can therefore be established, which completes

the proof. O

Lemma 2. Given a set of stationary policies u_; € U®,. By choosing
Ziu_, based on (4.7) to (4.9), the following relationship can be obtained:
Fim(Ziu_,) = Lim (8%, [u—ilXi(2Ziw_,)]) and Ip(ziu_,) = 1p(8", [u—i| Xi(2iu_,)])-

Moreover, Ai(z;u_,) is considered a feasible policy for the COP if z;,,_, ad-

24



ditionally satisfies (4.5).

Proof. The allowable interference in (2.7) can be expressed via the state-

action frequency as

Ii,m(SO,U) = Z Zpk Vlm Sk ) :

(s,P)EK
¢m=j,vYm

H fl Slaulaslapl) (419)
Z(Sk pk)eKl fl(Sl , Wi Sknpk)
D=7

By adopting similar procedures as that from the proof of Lemma 1, the
relationship that %, (2iw ;) = Lim(8% [u_ilXi(ziw_,)]) and Fp(ziwn_,) =
I,(8%, [u_i|Ai(2ia_,)])can be easily acquired. Furthermore, since I; ,,, (8%, [u_;|Ni(Ziw_,)])
Iim(Zia_,) < Co and I,(8% [u_i|Ai(ziw_,)]) = Zp(zin_,) < C1, it can be
found that X;(z;._,) will be a feasible policy for the COP. This completes

the proof. O

Lemma 3. Given the set of policies u_; € U°, and 2z}, as an optimal
solution for the LP problem. It is discovered that Xi(z7,_.) will be the best

response for the COP.

Proof. Based on Lemmas 1 and 2 associated with Theorem 3.6 in [17], the

proof of this lemma can be achieved. L]

In order to extend the results to N SUs, the following parameters are
defined. Given the set z = (21, 29, -+ , 2x) such that z; = {z;(s,p) : (s,p) €

K} will satisfy (4.5) to (4.9), where u = (uy, us, - -+ ,uyn) with u; = A\i(2;).
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The set Z; is composed by the elements z; as stated above, and the global
space Z = Hf\;l Z;. By considering the mapping function V,(z) : Z — Z;,
the set of optimal solutions for the LP problem in Problem 3 for each SU 1
can be denoted as ¥;(z) = {z;,_.(5,p) : (s,p) € K;}. Moreover, its product

space can also be defined as W(z) : Z — Z where

U(z) = H U,(z) (4.20)

Theorem 2. There exists a stationary multi-policy w € U° as the CNE for

dynamic power management problem of the considered CRN.

Proof. According to the association of both the COP and the LP problem
as described in Lemma 3, it remains to show if there exists a fixed point (i.e.
z € U(z)) to the vector-valued function as in (4.20). The domain of ¥;(2)
(i.e. Z;) is considered a compact and convex set by investigating (4.5) to

(4.9), and so is its product space Z. It is noted that W,;(z) is defined as

U,(z) = argmax Z;(Ziw_,) (4.21)

Ziu_;€2;

where Z;(z;._,) is observed to be a continuous function in terms of z;,, ..
Therefore, both ¥;(z) and its product space ¥(z) are considered non-empty
based on the extreme value theorem [19]. Furthermore, ¥(z) is a convex set
for all z € Z due to the linearity of %;(z;_,). The continuity of %Z;(2;.._,)

results in the closed graph of ¥(z). The proof can consequently be completed
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by adopting the Kahutain’s fixed point theorem [8]. O

Remark 1. Given z* € V(z*), the set of stationary multi-policies

{A1(27), A2(25) -+, AN (ZN) ]} is a CNE to the dynamic power management
problem for the considered CRN.
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Chapter 5

Numerical Evaluation

In this chapter, there are three issues conducted to verify the results attained
from the derivation of the optimal policy. Additionally, the computation of
CNE can be obtained by [8; 20]. First, we want to validate the correctness of
theoretic result and examine whether to satisfy the interference constraint.
According to different Cy and C, we look into the simulation results. Sec-
ondly, we compare the proposed scheme with greedy approach which each
SUs maximize power level to get more utility. We observe the outcomes in
different interference constraints Cy and C;. Finally, we detect the effect of
channel sensing error in proposed scheme. Substitute different amount of
error to see the difference between non-error policy and error one. The error

percent is defined as follow.

erroramount = errorpercent X max M(g) Ve € S; e € ¥, (5.1)
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Moreover, it is noted that the immediate utility function r; are defined in

two types :

> i D5 vi(sh) + oF + i .

Tidata(8', D) = B -logy, 1+

and

Pi vii(s})
> i P vji(8h) + 0F + i)

Ti,pricing(stvpt) =B logQ 1 +

) —cxpt (5.3)

where st = (s},sh, -+ s) € S and p' = (p},ph,--- ,ply) € P. Equation
(5.3) represents the utility function which want to achieve the fairness, i.e.
the more power spread the more cost. In addition, Table I illustrates the

relevant parameters that are utilized in the analysis and simulations.

Table I : System Parameters

Number of PU (M) 1

Number of SU (N) 2

Bandwidth (B) 1M (Hz)

Power level (P;) {0,10mW}

Channel gain (vj;;v;;) {0.05,0.1} ; {0.025,0.05}
PU interference (g;) 5mW

AWGN (02) 0.5mW

Pricing factor (c) 5M

Interference constraints (Co; Cy)
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5.1 Finite Time Horizon

5.1.1 Validate

Fig.(5.1 - 5.4) and Fig () show the validations of theoretic and simulation re-
sults by different utility function, 5.2 and 5.2 respectively. Because the status
of expected utility doesn’t reach stable, results may have a little variation. In
addition, Cy which represents the constraint with the absence of PU mainly
affects the amount of expected utility, i.e. maximal value of expected utility
happened when Cy = 0.5mW.

Fig.(5.5 - 5.8) and Fig () present the validations of theoretic and simula-
tion interference by different utility function, 5.2 and 5.2 respectively. The
results show that all satisfy the interference constraint under the proposed

scheme.
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5.1.2 Compare with greedy mechanism

Fig.(5.9 - 5.10) display the comparison of proposed and greedy mechanisms
in equation (5.2). These outcomes don’t show the advantage of proposed
scheme due to the design of utility function. However, Fig.(5.11 - 5.12) show
that proposed scheme have better performance than greedy one. Because of
the curve of the equation (5.3), game theory has the ability to adjust the
action to the maximal value. On the other hand, the greedy scheme always
choose the maximum power which not the optimal decision. In addition,
we can observe the existence of optimal action when Cy > 0.25mW and

C1 > 0.6mW in Fig.(5.11) and Fig.(5.12) respectively.
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5.2 Infinite Time Horizon

5.2.1 Validate

Fig.(5.13 - 5.16) and Fig () show the validations of theoretic and simulation
results by different utility function, equation (5.2) and (5.3) respectively.
These results show that the proposed scheme can predict the expected utility
when time length large enough. It noted that in Fig.(5.15) and Fig.(5.16) the
expected utility have a few variation in former time slot. Due to the strict
interference constraint of Cy, SUs have lower probability to transmit data
when absence of PU. So, it may need more time to converge the theoretic

value of expected utility.
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5.2.2 Compare with greedy mechanism

Fig.(5.21 - 5.24) show the comparing of proposed and greedy mechanisms in
equation (5.2) and (5.3) respectively. These outcomes show that proposed

scheme always better than the greedy scheme.

5.2.3 Effect of channel sensing error

Fig.(5.25 - 5.26) illustrate the effect of channel sensing error in equation (5.2)
and (5.3) respectively. When error percent in equation (5.1) lower than 0.2,
the expected interference doesn’t exceed the constraint. However, it will
cause higher interference when error percent overstep 0.2. According to this
situation, we can set the strictly (e.g. Cy = 0.45mWW) to make up the effect

of sensing error.
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Chapter 6

Conclusion

This paper proposes a dynamic power management scheme for maximizing
the expected utility function in the cognitive radio networks (CRN). The
variations from both the spectrum holes and the channel gains are considered
in the network scenarios for the CRN. Based on the Markovian property of
dynamic environment, finite and infinite time horizon situations are both
investigated. Associated with the constraints of allowable interferences, the
constrained stochastic games are utilized to acquired the optimal policies
based on the objective of maximized the exptected utility function. The
existence of the constrained Nash equilibrium can be proved and is served
as the optimal policies for the power management problem. Simulations are
performed to validate the correctness of the optimal policies that are proposed
for the dynamic power management in CRN. Moreover, the proposed schemes

have better performance than greedy mechanism and channel sensing error
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does not induce severe aberration.
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