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Semidefinite Programming Problems

Student: Bin Yeh Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

In semidefinite programming problems one.minimizes a linear func-
tion subject to some constraints which requires.an affine combination
of symmetric matrices to be positive semidefinite. The constraints
may not be linear but it is convex so semidefinite programming prob-
lems are convex optimization problems.-In-this paper we give some
basic properties and fundamental theorems with their proofs regrading

semidefinite programming problems.
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1 Introduction

This paper is based on the survey paper by Vandenberghe and Boyd
[1] and some details, mostly proofs, which are omitted in that survey. In
this paper we focus on fundamental theory about semidefinite programming
problem, rather than its application.

Semidefinite programming (SDP) is an optimization problem concerned
with the optimization of a linear objective function over the intersection of
the cone of positive semidefinite matrices. Linear programming, a well-used
mathematical model which is used to obtain the best outcome with some
certain restriction in the form of linear-equations, is actually a special case
of semidefinite programming;problem. There are many different types of
algorithms to solve semidefinite programming problem and these algorithms
are capable of getting the result in polynomial time.

There are a lot of applications of semidefinite programming. In opera-
tions research and combinatorial eptimization many problems are modeled
as semidefinite programming problem so they can be well approximated. For
example, Goemans and Williamson found an algorithm to obtain maximum
cut using semidefinite programming [3].

In section 2 we give some basic definition about semidefinite programming
problem and an example for better understanding. In section 3 the maybe
most important property of semidefinite programming problem, duality, is

discussed. In the further sections some more lemmas and propositions are



given and eventually in section 5 a critical theorem is proved.

Some proofs in this paper are based on the lecture note written by Lészld
Lovész [2] and the book by Abraham Berman and Naomi Shaked-Monderer
[4] and the note by Konstantin Aslanidi [5]. The main idea of proof of lemma

4.13 is provided by Renato Paes Leme.

2 Semidefinite programing problems

Throughout, we use R™ to denote the set of column vectors of size n and
R™™ to denote the set of n x n symmetric matrices over R. For a real matrix
M, we use M > 0 when M hasnonnegative entries, and use M >, 0 when
M is symmetric and positive semidefinite, i.e. 27 Mz > 0 for all z € R".
Similarly, we will denote positive definite by M >, 0. The following is the

general form of a semidefinite programming problem.

Problem 2.1. (SDP,(c, Fy, Fy,. .., F1,))
Given a column vector ¢ € R™"and m + 1 n X n symmetric matrices
Fo, Fy, ..., F, € R™™ Find

min 'z

T

for z = [z1, 29, ...,2,])T € R™ subject to
F() + Z JIZE Zp 0.
i=1
Give a SDP,,(c, Fo, F1, ..., F,,) and let F(z) = Fo+ >_" | x;F;. A vector

x € R™ is said to be feasible if F'(z) >, 0 and the set {x € R™ | F((x) >, 0} is



called the feasible region of the problem. A vector z,y in the feasible region
is called an optimal point if "z, reaches the minimum of ¢’z among all
feasible points x. In this case the value chopt is called the minimum of the
problem. The number

infc'z € RU{—o0},

where the infimum is taking for feasible x, is called the infimum of the prob-
lem. If the infimum is not equal to the minimum, then SDP,, (¢, Fy, F1, ..., Fy,)
is said to be infeasible. The following is a simple example of semidefinite

programming problem.

Example 2.2. Consider

0 01 1. 0 0 0
SDPs( ) ; , ).
1 10 00 01
The feasible region is
1 01 1 0 00
| L + 9 >, 0
T 10 00 01
1
_ T | T Zp 0
) 1 T
T 1
Note that is semidefinite if and only if both z; and x1xs — 1
1 T2

are nonnegative, i.e. 1 > 0 and xyx9 — 1 > 0. Thus the feasible region is

T
|I1 2 0,1’1.%‘2 Z 1 . (].)

T2



The minimum of (0, 1)(x1, 22)” = x4 does not exist in the feasible region since
xo tends to zero as x; tends to infinity. However the infimum of this problem,

obtained by above discussion, is zero. Thus, this example is infeasible.

The following is the general form of a linear programming problem,
which we will show to be a special case of semidefinite programming problem.
Problem 2.3. (LPP,,(c,b, A))

Given b, ¢ € R™ and a symmetric matrix A € R™*™. Find

min ¢’ x
X

subject to all x € R™ satisfying

Az +b>.0.

Note that a linear programming problem is & special case of semidefinite
programming problem.~In fact by setting Fy =-diag(b), F; = diag(A;) for
i =1,...,m, where A; is the ith column of A, the LPP,,(c, b, A) becomes
the SDP,(c, Fy, F1, ..., Fy).

Similar to the semidefinite programming problem, in LPP,,(c,b, A), a
vector x € R™ is said to be feasible if Az +b > 0 and the set {z €
R™ | Az +b > 0} is called the feasible region. A vector . in the feasible
region is called an optimal point if ¢’z reaches the minimum of ¢’z for

all feasible points x.

We now show Example 2.2 is no way to be interpreted as a linear program-

ming problem. To the contrary assume Example 2.2 is also a LP,,(c,b, A).
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Then from the definition m = 2 and A is a 2 x 2 matrix. Let V' denote
the nullspace of A. Then referring to (1) as the feasible region Q := {z €
R? | Az +b > 0} also as a feasible region of LP,,(c,b, A) we must have
Q4+ V C Q. This only happens when V' = 0, i.e. A is invertible. But then
the feasible region of LP,,(c,b, A) is {x € R? | x > —A~'b}, which is clearly

not to be €2, a contradiction.

3 Dual problem

To solve a classical optimization problem, the problem and its dual prob-

lem play an important role. The following problem is the dual of SDP,, (¢, Fy, F1, . . .

Problem 3.1. (SDP; (¢, Fy, Fi, .. F))

Given ¢ € R™ and m+ 1 symmetric matrices Fy, F1, ..., F,, € R"™". Find
max —tr(Fy2)
subject to all symmetric n x n'matrices 2" with

A zp 07

tr(F32) = ¢ for 1<i<m, (2)
where tr(M) is the trace of M.

Give a SDP/ (¢, Fy, Fi, ..., Fy,), a symmetric matrix Z is said to be fea-
sible if Z >, 0 and tr(F;Z) = ¢; for 1 < i < m. The set {Z € R"™*"|Z >,

0 and tr(F;Z) = ¢; for 1 < ¢ < m} is called the feasible region of the

, Fn).



problem. A symmetric matrix Z,,; in the feasible region is called an opti-
mal point if —tr(FyZ) reaches the maximum of —tr(FyZ) among all feasible
points Z. In this case the value chopt is called the maximum of the prob-

lem. The number

sup —tr(FpZ) € RU {00},
Z

where the supremum is taking for feasible Z, is called the supremum of the

problem. If the supremum is not equal to the maximum, then SDP} (¢, Fy, Fi, . ..

is said to be infeasible. The original semidefinite programming problem will

be referred as the primal problem.

In Section 5, we will show that the supremum of SDP; (¢, Fy, F,. .., Fiy,)
is no larger than the infimum of SDP, (¢, Fy, Fy,+ ., F},,). This explains their
dual relation. Here we give an example of dual semidefinite programming

problem.

Example 3.2. The dual problem of

0
SDP,( :
1

in Example 2.2 is

0
sopy(| .
1

01
10
0 1 10 0 0
10

That is to maximize



for all 2 x 2 symmetric matrices Z subject to

10 0 0
tr( Z) =0, tr( Z)=1, and Z >,0.
00 0 1
Zn Zaz ..
Let Z = . The first condition says
Zon Zoa
10 AT Zun 74
0= tr( 1 Zi2 ) = ta 1 Zi2 )= 700,
00 Zo1 Lo 0 0

and the second condition implies

00 Zy Lo 0 0
1= tT( ) — TT( ) = 222.
01 Z3y Lo Zo1  Za
0 Zs
Thus we only need to.consider matrices of the form . The
Zgl 1
third condition Z >, 0.s equivalent to
Ty
( 1 - To > A Z 0
4op)
for all 1, x5 € R. As
T X1
O§<x1 xz)Z :<$2221 $1Z12+$2>
X9 X2

= ZL’ll’g(Zgl + 212) + l’g = 2ZE1I2212 + Ig,

Z >, 0 is equivalent to Z12 = 0. Then our feasible region is

0 Zp
Zgl 1

| Zo1 = Z12 =0



The goal is to maximize

0 1 ZH 212 221 Z22
—tr( ) = —tr( ) = —(Za1 + Z12),
1 0 Zgl ZQQ le Z12

which is always zero in the feasible region. Then the maximum of

0
SDP%( : , : )
1 10 00 0 1

0
SDP,( : : : ).
1 10 00 0 1

The general theory of relation between a primal problem and its dual problem

will be given the section-5:

4 A few lemmas

Before proceeding, we introduce some basic properties of positive semidef-
inite matrices. Positive semidefinite matrices have some great properties in
the way of geometry space. To see this we need some definition first. A
convex cone C is a set of vectors in a vector space such that (i) for any
vector v in C, rv is also in C for any r > 0, and (ii) for any two vectors v,

velC, v+ eC.
For any convex cone C' C R™™ " the polar cone C* is defined by

C*={A|[AeR"™ A-B>0forall BeC}

8



where A - B is the inner product for matrices, defined as

1<i,j<n

Note that a polar cone is also a convex cone, which is trivial to prove by

applying the definition of convex cone.

Lemma 4.1. A positive multiple of a positive semidefinite symmetric matriz
is still positive semidefinite, and sum of two positive semidefinite symmetric

matrices is still positive semidefinite.

Proof. Let symmetric matrices A, B € R™ " be positive semidefinite and

r > 0. Then for any vector x € R”, we have
s (rA)z = r(zt Ax)> 0
and
' (A + B)x = (2" Ax) + (2" Bx) > 0,

which finished the proof: O

The above lemma shows that'the set of all symmetric positive semidefinite
matrices P, is actually a convex cone in R"*". For next lemma, we will use
Hadamard product of matrices; that is, for two matrices A, B € R"*", the

Hadamard product A o B is defined as
(Ao B)ij = Ai; By;

forall 1 <1,7 <n.
A property of Hadamard product will be given later. To prove the prop-

erty we first show the following proposition.

9



Proposition 4.2. Let A be a symmetric n xn real matriz. Then A is positive

semidefinite if and only if there exists an n xn matriz B such that A = BBT.

Proof. (<)
For all x € R",

v Ar = 27 (BB")r = (BT2)"(B"z) = (B'2) - (B"z) > 0.

(=)

Since A is symmetric, it follows that A is normal and therefore A is unitary
similar to a diagonal matrix, i.e. PAPT = D for some n x n matrix P with
PTP = I and some diagonal matrix D. Then A = PTDP. Note since A
and D are similar, they have same eigenvalues \i, Ao, ..., A\, and they are

all nonnegative because«A is peositive semidefinite. Then we may assume

D = diag(Ai, Ag, ..., \). Now let

VAL 0
Vg

0 vV,

thus
A=P'DP=P'D'D'P=(P'D)P'D).

O

Corollary 4.3. Let A be symmetric n X n real matriz. Then A is positive

semidefinite if and only if there exist vectors vi,vs,...,v, € R™ such that

_xn T
A= Zi:l VU5 -

10



Proof. (=)
By last lemma A = BBT for some n x n matrix B. Let v; be the ith column

vector of B for 1 <7 <n. Then

(A)ij = (BB )i = > (wn)i(on); = > _(wwvi)ig = O vnvy)ij.
h=1 h=1 h=1
(<)
Let A=Y vl Let B = ( v Ve . v ) Then
(A)ij = O _onvl)ij = > _(onvh)ig = > _(vn)i(va); = (BB")s;.
h=1 h=1 h=1

Then by last proposition, A is positive semidefinite.

]

Corollary 4.4. The Hadamard-product of two positive semidefinite matrices

is still positive semidefinite.

Proof. Let A=Y"F v0f and B = 22:1 w;wj ».then

Kl
Ao B = Z (v; owj)(v; 0 wj)T.
i=1,j=1
Therefore by last corollary A o B is positive semidefinite. O

Now the lemma mentioned earlier can be proved.
Lemma 4.5. The polar cone of P, is itself, i.e. P = P,.

Proof. Let symmetric matrices A, B € R"*" be positive semidefinite. Note

n

tT(AB) = Z(AB)“ = i Z Aiiji = i Z Ajz'Bji = €T<A (0] B)e

i=1 i=1 1<j<n i=1 1<j<n

11



where e € R" is the all-1 vector. Then by corollary 4.4, Ao B is still positive
semidefinite and then e (A o B)e > 0. Therefore, P: 2O P,.

On the other hand, suppose A € Pr. For any column vector x € R”, the

T

n X n symmetric matrix zz" is positive semidefinite since

y @y = (") (@) = O ww) O way) = O way)* > 0
i=1 i=1 i=1
for any y € R". Thus
Az = tr(z(AxT)) = tr(Az"z) > 0

for any x € R™. Then A € P,.

So the polar cone of B, is itself, which leads to the next proposition.

Proposition 4.6. A symmetric matriz A is positive semidefinite if and only

if tr(AB) > 0 for all symmetric positive:semidefinite matriz B.

We immediately have the following corollary.

Corollary 4.7. Let A,B € R™" be symmetric matrices. If A,B >, 0, then
tr(AB) > 0.

Proposition 4.8. Let A € P, and B € R™™™ be a positive definite matrix.
Then tr(AB) = 0 if and only if A= 0.

Proof. 1t’s clearly tr(0B) = 0. On the other hand, since A >, 0 by taking

e;, i.e. the vector with 1 at the ¢th entry and zero for the rest, we have
Aii = eereZ- 2 0.

12



Furthermore there exists a n X n matrix P such that PP = PP! = I and
A" = P'AP = diag()\y, ..., \n) is diagonal. Note A’ is still positive semidefi-
nite. Then

0 = tr(AB) = tr(P'PAB) = tr(P'ABP) = tr(P'APP'BP)

=tr(AP'BP)= Y N(P'BP);= Y \(elP'BPe;)

1<i<n 1<i<n
= ) N((Pe;))'B(Pe;)) > 0
1<i<n

Since (Pe;)'B(Pe;) > 0 for all 1 < i < n, it follows that \; = 0 for all
1<i<n, AA=0. Therefore A = 0.

Now we need something else to prove next lemma. A set C' C R” is
convex if

(1—t)a+tyelC forallz,y e Citel0,1]

Let |zo| = /o -z for all 2. € R”, where a7+ a+is the inner product of z and
x. For any C' C R", let cl(C) = {z]x € R™ and for any r > 0, thereisa y €
C' such that |z — y| < r}. A subset M of R" is called an affine set if M =
{z|Bx = b} for some B # 0, B € R™" and b € R"

A hyperplane in R™ is a subset which can be written as {x|z € R*,z-b =
B} for some 5 € R and b # 0,b € R". A hyperplane separates R" into two
parts {z|r € R",z-b > f} and {z|r € R",z-b < $}. The sets C; and C; are
separated if there exist a hyperplane H such that C; and C5 are in different

parts which H separates R™ into.

13



Proposition 4.9. Let C C R" be a convex set and xg € R™ with xy & cl(C).

Then there is a hyperplane H separates C' and xy.
Proof. Since R™ is compact, we have
ly* — ol ;Qo ly — 2o

for some y* € cl(C). Note |y* — x| # 0 since xy ¢ cl(C'). Let

1 . .
h(z) = m@(fc (y" = 20)) + |zo|* — |y7[?)
Then
1
h(xg) = v — x0|2(2($0 y*) = 2(z0 - o) + |mo|* — |y*]?)
1 *
~ T _$0|2(2(1‘o y*) = (o - o) — |y %)
1 *
= |y* —$0|2(2(x0 Y )- ($0 I‘o) o (y Y ))
-1 .
- |2(='1?0 y) (wo=y*) = —1
And
* 1 * * *
hy") = "= _x0|2(2(y (yE=0)) + |zl — |y
1 * * * *
= o 29 =207 @) + ol — ly7T?)
1 * * *
= m((y ~y") = 2(y" - wo) + (20 - 20))
1 * *
:m(y —x0) - (¥ —20) =1

Thus the hyperplane {z|h(z) = 0} separates C and z, since C'is convex. [

Proposition 4.10. Let C' C R" be a convex set. Let M C R™ be a nonempty
affine set with C N M = (). Then there is an hyperplane H containing M

such that C' is contained in one of the two parts that H separates R™ into.

14



Proof. By induction on dim(M). First let S be a subspace with M =S +a
for some a € R™. If dim(S) = n — 1 then M itself is such a hyperplane, so
we are done.

Suppose it holds for all S with dimension larger than £ < n — 1 for some
k. When dim(S) = k — 1, we have dim(S*) > 2 and therefore contains a
subspace T of dimension 2. The set C — M = {z —y|z € C,y € M} does not
contain 0, so we can find a subset L C T of dimension 1 such that 0 € L and
LN(C—M) = 0. We now can add the basis of L into the basis of S obtaining
a new subspace S’. Then by induction hypothesis, there is a hyperplane H
containing S” and C' is contained in one of two parts that H separates R"

into. Thus we are done. O

Proposition 4.11. Let Cy,Cy C R™ be nonempty conver sets with C;NCy =

(). Then they are separated.

Proof. Taking C' = C; = Cy = {& =ylr € C1,y € Cy} and M = {0} in last
proposition. Thus there'is a hyperplane H contains 0 and H N C = (). Let
H = {z|z € R",x - b = 0} for some b€ R". By using —b to replace b if

necessary, we have

infx-b>0,
zeC
supz - b > 0.
zeC
Then
O<infx-b= inf z;-b— sup zs-b,
zeC z1€Ch 29€C,
that is

inf x1-b> sup x5 -b.
r1€Cq :EzGCl

15



Then C; and C5 are separated by hyperplane

H ={z|z-b= inf z-b}.

r1€CL

]

The next lemma is well-known as the semidefinite version of Farkas’

Lemma, which is a similar theorem regarding linear programming.

Lemma 4.12 (Homogenous Version). Let Ay, As, ..., A, be symmetric

matrices in R™*™. Then the system
[BlAl—l-—{—iL'mAm >p0

has no solution in x1, Tos v.v, Ty, if and-only if there exists a symmetric

matriz Y # 0 such that A;- Y =1tr(A;Y ) =0 foralll <i<m andY >,0.

Proof. (=)

Since the system hasmno solution, we-have that
O wiAilare Ry Cint(P,) = 0

where int(P,) is the interior of P,. Moreover, by directly checking the def-
inition, {)_, x;A;|z; € R} is a convex cone and therefore a convex set. We

can consider R™*" as R, thus by last lemma, there is a hyperplane
H={z|lz e R"",z-Y =g}

separates {> . x;A;|x; € R} and P, for some Y € R™*" and € R, which we
may assume

f=inf P-Y

PeP,

16



by the definition of hyperplane. Furthermore, we may assume

inf P-Y >0

PeP,

by replacing Y with —Y if necessary. But since P, is a convex cone, for any

x € P,, re € P, for all » > 0. By taking r small enough we have

inf P-Y=0
PeP,

Then our hyperplane
H={z|z-Y =0}

implies that (>, #;4;)-Y <0and P-Y > 0 for all P € int(P,). Now for a
fixed 1 <7 <m, let x; =1 and z; = 0-forall ¢ # j. Then

We can also let z; = —1 and z; = O for all < # 7. Then
02D mA) Y =44 Y.

These two inequalities show that A;-Y =0 for all 1 <7 < m. On the other
hand, P-Y > 0 for all P € P,. Then by proposition 4.6, Y >, 0.

(<)

Suppose there is a solution of 14, + ... 4+ 2, A, >, 0. Then

(szAz) Y = Z{L’Z(AZ Y)=0

By proposition 4.8, Y = 0, a contradiction.

17



Lemma 4.13 (Nonhomogeneous Version). Let Ay, As, ..., Ay, B be sym-

metric matrices in R™*™. Then the system
$1A1+...+$mAm—B>p0

has no solution in x1, o, ..., T, if and only if there exists a symmetric
matriz Y # 0 such that tr(A;Y) = 0 forall1 < i < m, tr(BY) > 0 and
Y >, 0.

Proof. This is done by applying last lemma to following matrices

A O Ay 0O A, 0 -B 0
oo/ Vo o/ "Loo) \ o1

We claim that if the system

A O Ay 0 Ap 0 -B 0
T + x5 +...4xp + Tkt >, 0
0 0 0 0 0,0 0 1

has a solution, then so does the system
ZL‘1A1++$mAm—B >p0'

To prove this claim, suppose vy, ..., Uk, Uk41 is a solution of

A 0 Ay O A O -B 0
Ty +Iq 4.tz +Tpy1 >, 0.
0 0 0 0 0 0 0 1
Let
A; O —-B 0
M = ( Z V4 )+ Vk+1
1<i<k 0 0 1

Then M >, 0. Thus

t
0 < ek+1M6k+1 - 'Uk_l’_l.

18



Let u; = % forall 1 <:<k+1, and

VE+1

A; 0 ~B 0 1
M=()" u ) + - M

1<i<k 0 0 0 1 Uk+1

which is still positive definite. Note that all principal submatrices of a positive
definite matrix is again positive definite. Therefore the following principal

submatrix of M’

(> wA)—B>,0.

1<i<k

Thus uy, us, ..., ux is a solution of
.fClA1+—|—$mAm—B >p0.

(=)

The claim we proved is equivalent to that if
x1A1++xmAm—B>pO

has no solution, then either the.system

A 0 Ay 0 A 0O -B 0
T +xq +... 4z +Trp1 >, 0.
0 O 0 O 0 0 0 1

So by previous lemma, there exists Y € R®+Dx(+1) gych that YV >, 0 and

A, 0O -B 0
Y =0foralll1 <i<Ek, and -Y =0.
0 0 0 1
Let
Y/
Y = Y
yT Yo



for some y € R", yo € R, then
A Y =0foralll <i<k.
Since Y >, 0, we take e,;1 and we have
0< €Z+1Y€n+1 = 1p.

Together with

-B 0
— Y = —BY' +y,
0 1
we conclude that
BY/ = Yo Z 0.

Note Y’ >, 0 since Y’ is a‘principal submatrix of Y >, 0.

(<)

By assumption there-exists ¥ # Osuch that A;«Y = tr(A;Y) =0 for all 1 <
i<m,Y >,0and tr(BY) >0: Let

Y 0
0 B-Y

78

Suppose there is a solution of z14; + ... + 2, A,, — B >, 0. Then so does

the system
A O Ay 0O A 0 —-B 0
T +xq +... 4z +Try1 >, 0.
0 O 0 O 0 0 0 1
But
A 0 Y 0 A O .
Z - = . =0forall 1 <i<m,
0 O 0 B-Y 0 0

20



and

—-B 0 Y 0 —B 0
0 1 0 B-Y 0 1

Note Z >, 0. However, since the system

A 0 As 0 A, 0 —-B 0
T + 9 +...+x + T >, 0
0 O 0 O 0 O 0 1

has solution, such Z should not exist by last lemma, a contradiction.

5 Property of Semidefinite programming Prob-

lems

A SDP, (¢, Fy, F1, . .-, F,,) is said to have feasible solution if there exists
x with F(x) >, 0, and is'said to be strictly feasible if F'(x) >, 0 for some
z in the feasible region, where as before Fi(x) = Fy + > ", z;F;. In this case
x is called a strictly feasible solution. Similarly SDP*,(c, Fy, F1, ..., F,)
is said to have feasible solution if there is some Z in the feasible region,
and Z is said to be strictly feasible if Z >, 0. In this case Z is called a

strictly feasible solution.

Theorem 5.1. Let p* and d* be the infimum of SDP, (¢, Fy, F, ..., F,) and
supremum of SDP*, (¢, Fy, Fi, ..., F,,) respectively, and assume p*,d* < oo.
Then p* > d*. Moreover, suppose either of the following conditions (i)-(ii)
holds.
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(i) The primal problem is strictly feasible.

(7i) The dual problem is strictly feasible.
Then p* = d*.

Proof. Let x be a vector in the feasible region of primal problem and Z be a
symmetric matrix in the feasible region of its dual problem. Then referring

to (2) and by corollary 4.7,

r+tr(ZF) = zm:tr(ZFixi) +tr(ZFy) =tr(ZF(x)) > 0.

i=1

Thus 'z > —tr(ZF,) which shows p* > d*.

Now the system

has no solution z € R™ by the definition-of p*. "Therefore if we define the

matrices

Fy = and F, = for 1 <i<m,

0 Fo 0 F
Fy+ 2 F] + ...+ x,F), >, 0 has no solution in R”. Thus by lemma 4.13

there is a positive semidefinite matrix Y # 0 such that
tr(FY) >0 and tr(FY) =0 for 1 <i <m.

By letting

Y = Y for some 799 € R and y € R",
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we obtain
tr(FoZ) > yoop™ and tr(F;Z) = ygoc; for 1 <7 < m.
We claim that yg9 # 0. Suppose not. Then
tr(FoZ) > 0and tr(F;Z) =0 for 1 <i <m.

Therefore by lemma 4.13, the existence of Z implies Fy + x1F; + ... +
T F >p 0 has no solution in R", contradicts to the hypothesis that primal
problem is strictly feasible. Thus, oo # 0.
Now ygo # 0 and since Y is positive semidefinite, yoo > 0. By scaling we may
assume Yoo = 1. But then Z satisfies tr(ZFy) > yoop* = p* and d* > tr(Z Fyp)
by definite of d*, thus d* > p*. Together with first part of the proof we have
p*=d".
The case that condition (ii) holds is similar to prove. Therefore the proof is

complete.
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