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半正定規劃

研究生：葉彬 指導教授：翁志文

國立交通大學應用數學系碩士班

摘要

在半正定規劃的問題中，我們要求一些對稱矩陣的彷射組合必須是半正

定，在這樣的限制下試圖將目標線性函數最小化。這些限制未必是線性，

但它們具有中凸的性質故半正定規劃是一種中凸規劃。在這篇論文中我們

探討了一些半正定規劃的基本性質與基礎理論並給出證明。
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Semidefinite Programming Problems

Student: Bin Yeh Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

In semidefinite programming problems one minimizes a linear func-

tion subject to some constraints which requires an affine combination

of symmetric matrices to be positive semidefinite. The constraints

may not be linear but it is convex so semidefinite programming prob-

lems are convex optimization problems. In this paper we give some

basic properties and fundamental theorems with their proofs regrading

semidefinite programming problems.
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1 Introduction

This paper is based on the survey paper by Vandenberghe and Boyd

[1] and some details, mostly proofs, which are omitted in that survey. In

this paper we focus on fundamental theory about semidefinite programming

problem, rather than its application.

Semidefinite programming (SDP) is an optimization problem concerned

with the optimization of a linear objective function over the intersection of

the cone of positive semidefinite matrices. Linear programming, a well-used

mathematical model which is used to obtain the best outcome with some

certain restriction in the form of linear equations, is actually a special case

of semidefinite programming problem. There are many different types of

algorithms to solve semidefinite programming problem and these algorithms

are capable of getting the result in polynomial time.

There are a lot of applications of semidefinite programming. In opera-

tions research and combinatorial optimization many problems are modeled

as semidefinite programming problem so they can be well approximated. For

example, Goemans and Williamson found an algorithm to obtain maximum

cut using semidefinite programming [3].

In section 2 we give some basic definition about semidefinite programming

problem and an example for better understanding. In section 3 the maybe

most important property of semidefinite programming problem, duality, is

discussed. In the further sections some more lemmas and propositions are
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given and eventually in section 5 a critical theorem is proved.

Some proofs in this paper are based on the lecture note written by László

Lovász [2] and the book by Abraham Berman and Naomi Shaked-Monderer

[4] and the note by Konstantin Aslanidi [5]. The main idea of proof of lemma

4.13 is provided by Renato Paes Leme.

2 Semidefinite programing problems

Throughout, we use Rn to denote the set of column vectors of size n and

Rn×n to denote the set of n×n symmetric matrices over R. For a real matrix

M , we use M ≥ 0 when M has nonnegative entries, and use M ≥p 0 when

M is symmetric and positive semidefinite, i.e. zTMz ≥ 0 for all z ∈ Rn.

Similarly, we will denote positive definite by M >p 0. The following is the

general form of a semidefinite programming problem.

Problem 2.1. (SDPn(c, F0, F1, . . . , Fm))

Given a column vector c ∈ Rm and m + 1 n × n symmetric matrices

F0, F1, . . . , Fm ∈ Rn×n. Find

min
x

cTx

for x = [x1, x2, . . . , xm]
T ∈ Rm subject to

F0 +
m∑
i=1

xiFi ≥p 0.

Give a SDPn(c, F0, F1, . . . , Fm) and let F (x) = F0 +
∑m

i=1 xiFi. A vector

x ∈ Rm is said to be feasible if F (x) ≥p 0 and the set {x ∈ Rm | F (x) ≥p 0} is

2



called the feasible region of the problem. A vector xopt in the feasible region

is called an optimal point if cTxopt reaches the minimum of cTx among all

feasible points x. In this case the value cTxopt is called the minimum of the

problem. The number

inf
x
cTx ∈ R ∪ {−∞},

where the infimum is taking for feasible x, is called the infimum of the prob-

lem. If the infimum is not equal to the minimum, then SDPn(c, F0, F1, . . . , Fm)

is said to be infeasible. The following is a simple example of semidefinite

programming problem.

Example 2.2. Consider

SDP2(

 0

1

 ,

 0 1

1 0

 ,

 1 0

0 0

 ,

 0 0

0 1

).

The feasible region is
 x1

x2

 |

 0 1

1 0

+ x1

 1 0

0 0

+ x2

 0 0

0 1

 ≥p 0


=


 x1

x2

 |

 x1 1

1 x2

 ≥p 0

 .

Note that

 x1 1

1 x2

 is semidefinite if and only if both x1 and x1x2 − 1

are nonnegative, i.e. x1 ≥ 0 and x1x2 − 1 ≥ 0. Thus the feasible region is
 x1

x2

 |x1 ≥ 0, x1x2 ≥ 1

 . (1)

3



The minimum of (0, 1)(x1, x2)
T = x2 does not exist in the feasible region since

x2 tends to zero as x1 tends to infinity. However the infimum of this problem,

obtained by above discussion, is zero. Thus, this example is infeasible.

The following is the general form of a linear programming problem,

which we will show to be a special case of semidefinite programming problem.

Problem 2.3. (LPPm(c, b, A))

Given b, c ∈ Rm and a symmetric matrix A ∈ Rm×m. Find

min
x

cTx

subject to all x ∈ Rm satisfying

Ax+ b ≥ 0.

Note that a linear programming problem is a special case of semidefinite

programming problem. In fact by setting F0 = diag(b), Fi = diag(Ai) for

i = 1, . . . ,m, where Ai is the ith column of A, the LPPm(c, b, A) becomes

the SDPn(c, F0, F1, . . . , Fm).

Similar to the semidefinite programming problem, in LPPm(c, b, A), a

vector x ∈ Rm is said to be feasible if Ax + b ≥ 0 and the set {x ∈

Rm | Ax+ b ≥ 0} is called the feasible region. A vector xopt in the feasible

region is called an optimal point if cTxopt reaches the minimum of cTx for

all feasible points x.

We now show Example 2.2 is no way to be interpreted as a linear program-

ming problem. To the contrary assume Example 2.2 is also a LPm(c, b, A).

4



Then from the definition m = 2 and A is a 2 × 2 matrix. Let V denote

the nullspace of A. Then referring to (1) as the feasible region Ω := {x ∈

R2 | Ax + b ≥ 0} also as a feasible region of LPm(c, b, A) we must have

Ω + V ⊆ Ω. This only happens when V = 0, i.e. A is invertible. But then

the feasible region of LPm(c, b, A) is {x ∈ R2 | x ≥ −A−1b}, which is clearly

not to be Ω, a contradiction.

3 Dual problem

To solve a classical optimization problem, the problem and its dual prob-

lem play an important role. The following problem is the dual of SDPn(c, F0, F1, . . . , Fm).

Problem 3.1. (SDP∗
n(c, F0, F1, . . . , Fm))

Given c ∈ Rm and m+1 symmetric matrices F0, F1, . . . , Fm ∈ Rn×n. Find

max
Z

−tr(F0Z)

subject to all symmetric n× n matrices Z with

Z ≥p 0,

tr(FiZ) = ci for 1 ≤ i ≤ m, (2)

where tr(M) is the trace of M .

Give a SDP∗
n(c, F0, F1, . . . , Fm), a symmetric matrix Z is said to be fea-

sible if Z ≥p 0 and tr(FiZ) = ci for 1 ≤ i ≤ m. The set {Z ∈ Rn×n|Z ≥p

0 and tr(FiZ) = ci for 1 ≤ i ≤ m} is called the feasible region of the

5



problem. A symmetric matrix Zopt in the feasible region is called an opti-

mal point if −tr(F0Z) reaches the maximum of −tr(F0Z) among all feasible

points Z. In this case the value cTxopt is called the maximum of the prob-

lem. The number

sup
Z

−tr(F0Z) ∈ R ∪ {∞},

where the supremum is taking for feasible Z, is called the supremum of the

problem. If the supremum is not equal to the maximum, then SDP∗
n(c, F0, F1, . . . , Fm)

is said to be infeasible. The original semidefinite programming problem will

be referred as the primal problem.

In Section 5, we will show that the supremum of SDP∗
n(c, F0, F1, . . . , Fm)

is no larger than the infimum of SDPn(c, F0, F1, . . . , Fm). This explains their

dual relation. Here we give an example of dual semidefinite programming

problem.

Example 3.2. The dual problem of

SDP2(

 0

1

 ,

 0 1

1 0

 ,

 1 0

0 0

 ,

 0 0

0 1

)

in Example 2.2 is

SDP∗
2(

 0

1

 ,

 0 1

1 0

 ,

 1 0

0 0

 ,

 0 0

0 1

).

That is to maximize

−tr(

 0 1

1 0

Z)
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for all 2× 2 symmetric matrices Z subject to

tr(

 1 0

0 0

Z) = 0, tr(

 0 0

0 1

Z) = 1, and Z ≥p 0.

Let Z =

 Z11 Z12

Z21 Z22

. The first condition says

0 = tr(

 1 0

0 0

 Z11 Z12

Z21 Z22

) = tr(

 Z11 Z12

0 0

) = Z11,

and the second condition implies

1 = tr(

 0 0

0 1

 Z11 Z12

Z21 Z22

) = Tr(

 0 0

Z21 Z22

) = Z22.

Thus we only need to consider matrices of the form

 0 Z12

Z21 1

. The

third condition Z ≥p 0 is equivalent to

(
x1 x2

)
Z

 x1

x2

 ≥ 0

for all x1, x2 ∈ R. As

0 ≤
(

x1 x2

)
Z

 x1

x2

 =
(

x2Z21 x1Z12 + x2

) x1

x2


= x1x2(Z21 + Z12) + x2

2 = 2x1x2Z12 + x2
2,

Z ≥p 0 is equivalent to Z12 = 0. Then our feasible region is
 0 Z12

Z21 1

 |Z21 = Z12 = 0

 .

7



The goal is to maximize

−tr(

 0 1

1 0

 Z11 Z12

Z21 Z22

) = −tr(

 Z21 Z22

Z11 Z12

) = −(Z21 + Z12),

which is always zero in the feasible region. Then the maximum of

SDP∗
2(

 0

1

 ,

 0 1

1 0

 ,

 1 0

0 0

 ,

 0 0

0 1

)

is 0 which, as we showed before, is also the infimum but not the minimum of

SDP2(

 0

1

 ,

 0 1

1 0

 ,

 1 0

0 0

 ,

 0 0

0 1

).

The general theory of relation between a primal problem and its dual problem

will be given the section 5.

4 A few lemmas

Before proceeding, we introduce some basic properties of positive semidef-

inite matrices. Positive semidefinite matrices have some great properties in

the way of geometry space. To see this we need some definition first. A

convex cone C is a set of vectors in a vector space such that (i) for any

vector v in C, rv is also in C for any r > 0, and (ii) for any two vectors v,

v′ ∈ C, v + v′ ∈ C.

For any convex cone C ⊆ Rn×n, the polar cone C∗ is defined by

C∗ = {A|A ∈ Rn×n, A ·B ≥ 0 for all B ∈ C}

8



where A ·B is the inner product for matrices, defined as

A ·B = tr(AtB) =
∑

1≤i,j≤n

Ai,jBi,j.

Note that a polar cone is also a convex cone, which is trivial to prove by

applying the definition of convex cone.

Lemma 4.1. A positive multiple of a positive semidefinite symmetric matrix

is still positive semidefinite, and sum of two positive semidefinite symmetric

matrices is still positive semidefinite.

Proof. Let symmetric matrices A,B ∈ Rn×n be positive semidefinite and

r > 0. Then for any vector x ∈ Rn, we have

xT (rA)x = r(xTAx) ≥ 0

and

xT (A+B)x = (xTAx) + (xTBx) ≥ 0,

which finished the proof.

The above lemma shows that the set of all symmetric positive semidefinite

matrices Pn is actually a convex cone in Rn×n. For next lemma, we will use

Hadamard product of matrices; that is, for two matrices A,B ∈ Rn×n, the

Hadamard product A ◦B is defined as

(A ◦B)ij = AijBij

for all 1 ≤ i, j ≤ n.

A property of Hadamard product will be given later. To prove the prop-

erty we first show the following proposition.

9



Proposition 4.2. Let A be a symmetric n×n real matrix. Then A is positive

semidefinite if and only if there exists an n×n matrix B such that A = BBT .

Proof. (⇐)

For all x ∈ Rn,

xTAx = xT (BBT )x = (BTx)T (BTx) = (BTx) · (BTx) ≥ 0.

(⇒)

Since A is symmetric, it follows that A is normal and therefore A is unitary

similar to a diagonal matrix, i.e. PAP T = D for some n× n matrix P with

P TP = I and some diagonal matrix D. Then A = P TDP . Note since A

and D are similar, they have same eigenvalues λ1, λ2, . . . , λn and they are

all nonnegative because A is positive semidefinite. Then we may assume

D = diag(λ1, λ2, . . . , λn). Now let

D′ =



√
λ1 0

√
λ2

. . .

0
√
λn

 ,

thus

A = P TDP = P TD′D′P = (P TD′)(P TD′)T .

Corollary 4.3. Let A be symmetric n × n real matrix. Then A is positive

semidefinite if and only if there exist vectors v1, v2, ..., vn ∈ Rn such that

A =
∑n

i=1 viv
T
i .

10



Proof. (⇒)

By last lemma A = BBT for some n×n matrix B. Let vi be the ith column

vector of B for 1 ≤ i ≤ n. Then

(A)ij = (BBT )ij =
n∑

h=1

(vh)i(vh)j =
n∑

h=1

(vhv
T
h )ij = (

n∑
h=1

vhv
T
h )ij.

(⇐)

Let A =
∑n

i=1 viv
T
i . Let B =

(
v1 v2 . . . vn

)
. Then

(A)ij = (
n∑

h=1

vhv
T
h )ij =

n∑
h=1

(vhv
T
h )ij =

n∑
h=1

(vh)i(vh)j = (BBT )ij.

Then by last proposition, A is positive semidefinite.

Corollary 4.4. The Hadamard product of two positive semidefinite matrices

is still positive semidefinite.

Proof. Let A =
∑k

i=1 viv
T
i and B =

∑l
j=1wjw

T
j , then

A ◦B =

k,l∑
i=1,j=1

(vi ◦ wj)(vi ◦ wj)
T .

Therefore by last corollary A ◦B is positive semidefinite.

Now the lemma mentioned earlier can be proved.

Lemma 4.5. The polar cone of Pn is itself, i.e. P ∗
n = Pn.

Proof. Let symmetric matrices A,B ∈ Rn×n be positive semidefinite. Note

tr(AB) =
n∑

i=1

(AB)ii =
n∑

i=1

∑
1≤j≤n

AijBji =
n∑

i=1

∑
1≤j≤n

AjiBji = eT (A ◦B)e

11



where e ∈ Rn is the all-1 vector. Then by corollary 4.4, A ◦B is still positive

semidefinite and then eT (A ◦B)e ≥ 0. Therefore, P ∗
n ⊇ Pn.

On the other hand, suppose A ∈ P ∗
n . For any column vector x ∈ Rn, the

n× n symmetric matrix xxT is positive semidefinite since

yT (xxT )y = (xTy)T (xTy) = (
n∑

i=1

xiyi)(
n∑

i=1

xiyi) = (
n∑

i=1

xiyi)
2 ≥ 0

for any y ∈ Rn. Thus

xAxT = tr(x(AxT )) = tr(AxTx) ≥ 0

for any x ∈ Rn. Then A ∈ Pn.

So the polar cone of Pn is itself, which leads to the next proposition.

Proposition 4.6. A symmetric matrix A is positive semidefinite if and only

if tr(AB) ≥ 0 for all symmetric positive semidefinite matrix B.

We immediately have the following corollary.

Corollary 4.7. Let A,B ∈ Rn×n be symmetric matrices. If A,B ≥p 0, then

tr(AB) ≥ 0.

Proposition 4.8. Let A ∈ Pn and B ∈ Rn×n be a positive definite matrix.

Then tr(AB) = 0 if and only if A = 0.

Proof. It’s clearly tr(0B) = 0. On the other hand, since A ≥p 0 by taking

ei, i.e. the vector with 1 at the ith entry and zero for the rest, we have

Aii = eTi Aei ≥ 0.

12



Furthermore there exists a n× n matrix P such that P tP = PP t = I and

A′ = P tAP = diag(λ1, ..., λn) is diagonal. Note A′ is still positive semidefi-

nite. Then

0 = tr(AB) = tr(P tPAB) = tr(P tABP ) = tr(P tAPP tBP )

= tr(A′P tBP ) =
∑

1≤i≤n

λi(P
tBP )ii =

∑
1≤i≤n

λi(e
t
iP

tBPei)

=
∑

1≤i≤n

λi((Pei)
tB(Pei)) ≥ 0

Since (Pei)
tB(Pei) > 0 for all 1 ≤ i ≤ n, it follows that λi = 0 for all

1 ≤ i ≤ n, A′ = 0. Therefore A = 0.

Now we need something else to prove next lemma. A set C ⊆ Rn is

convex if

(1− t)x+ ty ∈ C for all x, y ∈ C, t ∈ [0, 1].

Let |x0| =
√
x · x for all x ∈ Rn, where x · x is the inner product of x and

x. For any C ⊆ Rn, let cl(C) = {x|x ∈ Rn and for any r > 0, there is a y ∈

C such that |x − y| < r}. A subset M of Rn is called an affine set if M =

{x|Bx = b} for some B ̸= 0, B ∈ Rn×n and b ∈ Rn

A hyperplane in Rn is a subset which can be written as {x|x ∈ Rn, x · b =

β} for some β ∈ R and b ̸= 0, b ∈ Rn. A hyperplane separates Rn into two

parts {x|x ∈ Rn, x · b ≥ β} and {x|x ∈ Rn, x · b < β}. The sets C1 and C2 are

separated if there exist a hyperplane H such that C1 and C2 are in different

parts which H separates Rn into.

13



Proposition 4.9. Let C ⊂ Rn be a convex set and x0 ∈ Rn with x0 /∈ cl(C).

Then there is a hyperplane H separates C and x0.

Proof. Since Rn is compact, we have

|y∗ − x0| = inf
y∈C

|y − x0|

for some y∗ ∈ cl(C). Note |y∗ − x0| ̸= 0 since x0 /∈ cl(C). Let

h(x) =
1

|y∗ − x0|2
(2(x · (y∗ − x0)) + |x0|2 − |y∗|2)

Then

h(x0) =
1

|y∗ − x0|2
(2(x0 · y∗)− 2(x0 · x0) + |x0|2 − |y∗|2)

=
1

|y∗ − x0|2
(2(x0 · y∗)− (x0 · x0)− |y∗|2)

=
1

|y∗ − x0|2
(2(x0 · y∗)− (x0 · x0)− (y∗ · y∗))

=
−1

|y∗ − x0|2
(x0 − y∗) · (x0 − y∗) = −1

And

h(y∗) =
1

|y∗ − x0|2
(2(y∗ · (y∗ − x0)) + |x0|2 − |y∗|2)

=
1

|y∗ − x0|2
(2(y∗ · y∗)− 2(y∗ · x0) + |x0|2 − |y∗|2)

=
1

|y∗ − x0|2
((y∗ · y∗)− 2(y∗ · x0) + (x0 · x0))

=
1

|y∗ − x0|2
(y∗ − x0) · (y∗ − x0) = 1

Thus the hyperplane {x|h(x) = 0} separates C and x0 since C is convex.

Proposition 4.10. Let C ⊆ Rn be a convex set. Let M ⊆ Rn be a nonempty

affine set with C ∩ M = ∅. Then there is an hyperplane H containing M

such that C is contained in one of the two parts that H separates Rn into.

14



Proof. By induction on dim(M). First let S be a subspace with M = S + a

for some a ∈ Rn. If dim(S) = n − 1 then M itself is such a hyperplane, so

we are done.

Suppose it holds for all S with dimension larger than k < n− 1 for some

k. When dim(S) = k − 1, we have dim(S⊥) ≥ 2 and therefore contains a

subspace T of dimension 2. The set C−M = {x−y|x ∈ C, y ∈ M} does not

contain 0, so we can find a subset L ⊂ T of dimension 1 such that 0 ∈ L and

L∩(C−M) = ∅. We now can add the basis of L into the basis of S obtaining

a new subspace S ′. Then by induction hypothesis, there is a hyperplane H

containing S ′ and C is contained in one of two parts that H separates Rn

into. Thus we are done.

Proposition 4.11. Let C1, C2 ⊆ Rn be nonempty convex sets with C1∩C2 =

∅. Then they are separated.

Proof. Taking C = C1 − C2 = {x − y|x ∈ C1, y ∈ C2} and M = {0} in last

proposition. Thus there is a hyperplane H contains 0 and H ∩ C = ∅. Let

H = {x|x ∈ Rn, x · b = 0} for some b ∈ Rn. By using −b to replace b if

necessary, we have

inf
x∈C

x · b ≥ 0,

sup
x∈C

x · b > 0.

Then

0 ≤ inf
x∈C

x · b = inf
x1∈C1

x1 · b− sup
x2∈C1

x2 · b,

that is

inf
x1∈C1

x1 · b ≥ sup
x2∈C1

x2 · b.

15



Then C1 and C2 are separated by hyperplane

H ′ = {x|x · b = inf
x1∈C1

x1 · b}.

The next lemma is well-known as the semidefinite version of Farkas’

Lemma, which is a similar theorem regarding linear programming.

Lemma 4.12 (Homogenous Version). Let A1, A2, . . ., Am be symmetric

matrices in Rn×n. Then the system

x1A1 + . . .+ xmAm >p 0

has no solution in x1, x2, . . ., xm if and only if there exists a symmetric

matrix Y ̸= 0 such that Ai · Y = tr(AiY ) = 0 for all 1 ≤ i ≤ m and Y ≥p 0.

Proof. (⇒)

Since the system has no solution, we have that

{
∑
i

xiAi|xi ∈ R} ∩ int(Pn) = ∅

where int(Pn) is the interior of Pn. Moreover, by directly checking the def-

inition, {
∑

i xiAi|xi ∈ R} is a convex cone and therefore a convex set. We

can consider Rn×n as Rn2 , thus by last lemma, there is a hyperplane

H = {x|x ∈ Rn×n, x · Y = β}

separates {
∑

i xiAi|xi ∈ R} and Pn for some Y ∈ Rn×n and β ∈ R, which we

may assume

β = inf
P∈Pn

P · Y

16



by the definition of hyperplane. Furthermore, we may assume

inf
P∈Pn

P · Y ≥ 0

by replacing Y with −Y if necessary. But since Pn is a convex cone, for any

x ∈ Pn, rx ∈ Pn for all r > 0. By taking r small enough we have

inf
P∈Pn

P · Y = 0

Then our hyperplane

H = {x|x · Y = 0}

implies that (
∑

i xiAi) · Y ≤ 0 and P · Y > 0 for all P ∈ int(Pn). Now for a

fixed 1 ≤ i ≤ m, let xi = 1 and xj = 0 for all i ̸= j. Then

0 ≥ (
∑
i

xiAi) · Y = Ai · Y.

We can also let xi = −1 and xj = 0 for all i ̸= j. Then

0 ≥ (
∑
i

xiAi) · Y = −Ai · Y.

These two inequalities show that Ai · Y = 0 for all 1 ≤ i ≤ m. On the other

hand, P · Y ≥ 0 for all P ∈ Pn. Then by proposition 4.6, Y ≥p 0.

(⇐)

Suppose there is a solution of x1A1 + . . .+ xmAm >p 0. Then

(
∑
i

xiAi) · Y =
∑
i

xi(Ai · Y ) = 0

By proposition 4.8, Y = 0, a contradiction.

17



Lemma 4.13 (Nonhomogeneous Version). Let A1, A2, . . ., Am, B be sym-

metric matrices in Rn×n. Then the system

x1A1 + . . .+ xmAm −B >p 0

has no solution in x1, x2, . . ., xm if and only if there exists a symmetric

matrix Y ̸= 0 such that tr(AiY ) = 0 for all 1 ≤ i ≤ m, tr(BY ) ≥ 0 and

Y ≥p 0.

Proof. This is done by applying last lemma to following matrices A1 0

0 0

 ,

 A2 0

0 0

 , ...,

 Ak 0

0 0

 ,

 −B 0

0 1

 .

We claim that if the system

x1

 A1 0

0 0

+x2

 A2 0

0 0

+...+xk

 Ak 0

0 0

+xk+1

 −B 0

0 1

 >p 0

has a solution, then so does the system

x1A1 + . . .+ xmAm −B >p 0.

To prove this claim, suppose v1, ..., vk, vk+1 is a solution of

x1

 A1 0

0 0

+x2

 A2 0

0 0

+...+xk

 Ak 0

0 0

+xk+1

 −B 0

0 1

 >p 0.

Let

M = (
∑
1≤i≤k

vi

 Ai 0

0 0

) + vk+1

 −B 0

0 1

 .

Then M >p 0. Thus

0 < etk+1Mek+1 = vk+1.
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Let ui =
vi

vk+1
for all 1 ≤ i ≤ k + 1, and

M ′ = (
∑
1≤i≤k

ui

 Ai 0

0 0

) +

 −B 0

0 1

 =
1

vk+1

M

which is still positive definite. Note that all principal submatrices of a positive

definite matrix is again positive definite. Therefore the following principal

submatrix of M ′

(
∑
1≤i≤k

uiAi)−B >p 0.

Thus u1, u2, ..., uk is a solution of

x1A1 + . . .+ xmAm −B >p 0.

(⇒)

The claim we proved is equivalent to that if

x1A1 + . . .+ xmAm −B >p 0

has no solution, then either the system

x1

 A1 0

0 0

+x2

 A2 0

0 0

+...+xk

 Ak 0

0 0

+xk+1

 −B 0

0 1

 >p 0.

So by previous lemma, there exists Y ∈ R(n+1)×(n+1) such that Y ≥p 0 and Ai 0

0 0

 · Y = 0 for all 1 ≤ i ≤ k, and

 −B 0

0 1

 · Y = 0.

Let

Y =

 Y ′ y

yT y0


19



for some y ∈ Rn, y0 ∈ R, then

Ai · Y ′ = 0 for all 1 ≤ i ≤ k.

Since Y ≥p 0, we take en+1 and we have

0 ≤ eTn+1Y en+1 = y0.

Together with

0 =

 −B 0

0 1

 · Y = −BY ′ + y0,

we conclude that

BY ′ = y0 ≥ 0.

Note Y ′ ≥p 0 since Y ′ is a principal submatrix of Y ≥p 0.

(⇐)

By assumption there exists Y ̸= 0 such that Ai·Y = tr(AiY ) = 0 for all 1 ≤

i ≤ m, Y ≥p 0 and tr(BY ) ≥ 0. Let

Z =

 Y 0

0 B · Y

 .

Suppose there is a solution of x1A1 + . . . + xmAm − B >p 0. Then so does

the system

x1

 A1 0

0 0

+x2

 A2 0

0 0

+...+xk

 Ak 0

0 0

+xk+1

 −B 0

0 1

 >p 0.

But

Z ·

 A1 0

0 0

 =

 Y 0

0 B · Y

 ·

 A1 0

0 0

 = 0 for all 1 ≤ i ≤ m,
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and

Z ·

 −B 0

0 1

 =

 Y 0

0 B · Y

 ·

 −B 0

0 1

 = −B · Y +B · Y = 0.

Note Z ≥p 0. However, since the system

x1

 A1 0

0 0

+x2

 A2 0

0 0

+...+xk

 Ak 0

0 0

+xk+1

 −B 0

0 1

 >p 0

has solution, such Z should not exist by last lemma, a contradiction.

5 Property of Semidefinite programming Prob-

lems

A SDPn(c, F0, F1, . . . , Fm) is said to have feasible solution if there exists

x with F (x) ≥p 0, and is said to be strictly feasible if F (x) >p 0 for some

x in the feasible region, where as before F (x) = F0 +
∑m

i=1 xiFi. In this case

x is called a strictly feasible solution. Similarly SDP∗
n(c, F0, F1, . . . , Fm)

is said to have feasible solution if there is some Z in the feasible region,

and Z is said to be strictly feasible if Z >p 0. In this case Z is called a

strictly feasible solution.

Theorem 5.1. Let p∗ and d∗ be the infimum of SDPn(c, F0, F1, . . . , Fm) and

supremum of SDP∗
n(c, F0, F1, . . . , Fm) respectively, and assume p∗, d∗ < ∞.

Then p∗ ≥ d∗. Moreover, suppose either of the following conditions (i)-(ii)

holds.
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(i) The primal problem is strictly feasible.

(ii) The dual problem is strictly feasible.

Then p∗ = d∗.

Proof. Let x be a vector in the feasible region of primal problem and Z be a

symmetric matrix in the feasible region of its dual problem. Then referring

to (2) and by corollary 4.7,

cTx+ tr(ZF0) =
m∑
i=1

tr(ZFixi) + tr(ZF0) = tr(ZF (x)) ≥ 0.

Thus cTx ≥ −tr(ZF0) which shows p∗ ≥ d∗.

Now the system

cTx < p∗

F (x) ≥p 0

has no solution x ∈ Rm by the definition of p∗. Therefore if we define the

matrices

F ′
0 =

 p∗ 0

0 F0

 and F ′
i =

 −ci 0

0 Fi

 for 1 ≤ i ≤ m,

F ′
0 + x1F

′
1 + . . . + xmF

′
m >p 0 has no solution in Rn. Thus by lemma 4.13

there is a positive semidefinite matrix Y ̸= 0 such that

tr(F ′
0Y ) ≥ 0 and tr(F ′

iY ) = 0 for 1 ≤ i ≤ m.

By letting

Y =

 y00 y

yT Z

 for some y00 ∈ R and y ∈ Rn,
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we obtain

tr(F0Z) ≥ y00p
∗ and tr(FiZ) = y00ci for 1 ≤ i ≤ m.

We claim that y00 ̸= 0. Suppose not. Then

tr(F0Z) ≥ 0 and tr(FiZ) = 0 for 1 ≤ i ≤ m.

Therefore by lemma 4.13, the existence of Z implies F0 + x1F1 + . . . +

xmFm >p 0 has no solution in Rn, contradicts to the hypothesis that primal

problem is strictly feasible. Thus, y00 ̸= 0.

Now y00 ̸= 0 and since Y is positive semidefinite, y00 > 0. By scaling we may

assume y00 = 1. But then Z satisfies tr(ZF0) ≥ y00p
∗ = p∗ and d∗ ≥ tr(ZF0)

by definite of d∗, thus d∗ ≥ p∗. Together with first part of the proof we have

p∗ = d∗.

The case that condition (ii) holds is similar to prove. Therefore the proof is

complete.
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