
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 1391-1405 (2007)

1391

An Adaptive and Unified Mobile Application Development
Framework for Java*

MING-CHUN CHENG1 AND SHYAN-MING YUAN1,2

1Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan
2Department of Computer Science & Information Engineering

Asia University
Wufeng, 413 Taiwan

Although wireless networks and mobile devices have become prevalent, the diver-

sity of mobile devices and unsteadiness of wireless networks still cause software devel-
opment much trouble. In addition, the variety of services in Internet or Intranet, such as
Web services, UPnP services, Jini services and so on, will also increase the difficulty in
using them. Thus, when developing a mobile application to access these services, devel-
opers are forced to expose to these problems and therefore it will spend much time writ-
ing a mobile application. Although many studies on user interface adaptation and lan-
guage transformation have attempted to solve the problems, most of them do not con-
sider the computing power and functionalities of end-devices. As a result, some re-
sources are ignored or wasted. To solve above problems, an adaptive framework, named
GMA, is proposed to help developers build mobile applications quickly and easily.
GMA framework can tailor an application to fit different devices according to not only
user interface formats but also the computing power and functionalities of the devices.
Besides, a universal service interface is proposed and developers can use a unified API
to access different backend-services. As a result, a mobile application developed on
GMA can enjoy the “write once, run everywhere, and access anything” benefit.

Keywords: computing model adaptation, user interface adaptation, network protocol ad-
aptation, universal service interface, bytecode manipulation

1. INTRODUCTION

Nowadays, mobile devices, wireless networks and service technologies become
very prevalent and widespread. Hence, the requirements for developing mobile applica-
tions have increased. However, there are many differences among them. First, these de-
vices may have different runtime environments. For instance, some of them comply with
WAP [1], some with J2ME [2], and some with Microsoft .NET CF [3]. Second, the
computing power and functionalities of these devices are diverse and they may have dif-
ferent hardware resources. Third, these devices may support different kinds of networks,
such as GPRS, UMTS and WiFi. These networks have different bandwidths, latency, and
reliability, and they may disconnect during use. Fourth, there are many different service
technologies, such as Jini [4], UPnP [5] and Web services [6], and they have different

Received November 15, 2006; accepted February 15, 2007.
Communicated by Sung Shin and Tei-Wei Kuo.
* This paper was partially supported by the National Science Council of Taiwan, R.O.C., under grants No.

NSC 95-2752-E-009-PAE and NSC 95-2221-E-009-021.

MING-CHUN CHENG AND SHYAN-MING YUAN

1392

usages. These differences all increase the complexity of developing a mobile application
capable of supporting them all. Developers have to face these issues, and have spent
much time solving them.

According to the above discussion, writing an application capable of supporting
multiple devices is difficult. Thus, many studies and standards have tried to solve them.
For example, Mobile Execution Environment (MExE [7]) defined by a 3GPP working
group categorizes these devices into four execution environments, named classmark 1-4,
to reduce mobile application development complexity. Different classmarks mean dif-
ferent execution environments. If a mobile application was developed for classmark 1, it
can be run on all devices which conform to classmark 1. Consequently, before develop-
ing a mobile application, developers have to decide which classmarks the application will
support. This approach makes developers focus on specific execution environments, and
implies that the application cannot support devices belonging to other classmarks. To
overcome this problem, many studies have been made on adaptations and attribute pro-
gramming [8], including user interface adaptation [9-13] and programming language
transformation [14, 15]. They can tailor the application to fit different user interface for-
mats or execution environments. However, most of them do not consider the computing
power and functionalities of devices and these resources are ignored or wasted. One of
aims in this paper is to design and implement a generic mobile application (GMA) de-
velopment framework. Every application developed from GMA is capable of tailoring
itself to fit different devices or situations according to user interface formats and the
computing power and functionalities of the devices. In other words, more powerful de-
vices will do more things in GMA.

thin-client computing
WEB, WAP, VNC

computing power requirements for client

com
puting pow

er requirem
ents for server

distributed computing
CORBA, RMI, DCOM

fat-client computing
J2ME, PJava, .NET CF

Fig. 1. Computing power requirements for client and server.

A server supports weak devices in this study, helping them do something they can
not do. Thus, every GMA application, called GMApp, can be viewed as client-server
computing [16]. Fig. 1 shows the computing power requirements for three different com-
puting paradigms derived from client-server computing, and every computing paradigm
has many different state-of-the-art technologies. These three computing paradigms have
different computing power requirements for clients. By adapting an application to one of
the three computing paradigms, all kinds of devices can be well supported regardless of
their computing power and functionalities. In addition, a universal service interface is
proposed in this paper to integrate different backend-services such as UPnP, Jini and

ADAPTIVE UNIFIED MOBILE APPLICATION DEVELOPMENT FRAMEWORK

1393

Web services. To support different end-devices, a GMApp is designed to run in any of
three different modes: BROWSER, STANDALONE and MASTER-SLAVE.

1. The computing power of the end-device is not good enough or the device cannot run

application other than built-in applications. BROWSER (thin-client computing) mode
is suitable for this situation and the device is responsible for user-interface only.

2. The computing power of the end-device is good enough and the device supports all
functionalities which the application requires. STANDALONE (fat-client computing)
mode is suitable for this situation and entire application codes are executed by the de-
vice independently, like running a J2ME MIDP [17] application.

3. The computing power of the end-device is good enough but the device does not sup-
port all functionalities which the application requires. MASTER-SALVE (distributed
computing) mode is suitable for this situation and the application has to be divided
into two parts. One part is executed by the device and the other part is handled by the
other powerful host (server).

2. SYSTEM ARCHITECTURE

GMA framework uses a three-tier architecture, as Fig. 2 shows, to solve the prob-
lems of diverse computing power and functionalities. End-users use their own desktops
or mobile devices, called GMAClient, in the front-tier to access mobile applications. In
order to fit different end-devices, there are four kinds of GMAClient in this framework:
(1) built-in Browser, (2) GMABrowser, (3) GMAppSlave, and (4) GMAppStandalone.
There is at least one application server, called GMAServer, in the middle-tier, which
provides necessary execution environments and services for running applications and
end-devices. An application, named GMApp, in the GMA framework is designed to be
run in the front-tier (STANDALONE mode), in the middle-tier (BROWSER mode), or
even in both tiers (MASTER-SLAVE mode) simultaneously depending on the comput-
ing power and functionalities of end-devices. More computing power in the front-tier
means more codes will be run in the front-tier (implicitly fewer codes will be run in the
middle-tier).

internet or intranet

Browser-enabled

Smartphone & PDA

Java-enabled

Other devices

Application
server

Front-tier Middle-tier Backend-tier
Fig. 2. A diagram to sketch the three-tier architecture.

MING-CHUN CHENG AND SHYAN-MING YUAN

1394

2.1 GMAServer

The GMAServer plays an important role in BROWSER and MASTER-SLAVE run-
ning modes. Some GMApp codes are executed by the GMAServer in these two modes.
GMAServer architecture is shown in Fig. 3 and it is based on OSGi [18] platform and
J2SE [19]. Furthermore, GMAServer can cooperate with other installed bundles (UPnP,
Jini, and Web services) to access backend-services. To simplify maintenance, GMA-
Server is designed as a layered architecture; with an Application Runtime Layer, Mes-
sage Routing Layer and Adaptive Transport Layer from bottom to top.

G
M

AServer

Operating System

Java Virtual Machine

OSGi

Jini

U
PnP

W
eb Service

other bundles

Fig. 3. The architecture of GMAServer.

2.1.1 Adaptive transport layer

The Adaptive Transport Layer enables the GMAServer to communicate with dif-
ferent kinds of GMAClients. Fig. 4 helps illustrate the detailed GMAServer structure.
This layer’s primary role is Communication Manager (CommMngr), which is a super
daemon capable of handling many different networks protocols including TCP, UDP,
HTTP and cHTTP. It has two missions. First, it establishes the relationship between the
GMAServer and the GMAClient when the GMAClient sends a login request to the
GMAServer. Secondly, if login is successful, CommMngr creates a logic process (i.e. a
user process, including a UserOutD, a UserInD and a UserOutQ) for the GMAClient.
Every logic process might have different components or functionalities depending on
which protocol it uses. The UserOutD thread is responsible for picking GMAMesgs from
the UserOutQ queue and sending them to the corresponding GMAClient or translating
GMAMesgs to specific formats [20]. The UserInD thread handles or translates incoming
requests from its client and put them into the InnerQueue queue.

2.1.2 Message routing layer

This layer is the asynchronous message delivery mechanism core. The main com-
ponents are Queue and Message Dispatcher (MesgDispatcher). The MesgDispatcher is
responsible for routing GMAMesg to the correct queue. There are three kinds of queues
on GMAServer: InnerQueue, AppInQ and UserOutQ.

All messages received by UserInD are placed in InnerQueue. Then MesgDispatcher
will dispatch them to the some AppInQ in which GMApp will process these GMAMesg.

ADAPTIVE UNIFIED MOBILE APPLICATION DEVELOPMENT FRAMEWORK

1395

AppInQ

ObjMngr

GMApp3

AppInQ

ObjMngr

GMApp3

AppInQ

WinMngr

GMApp2

AppInQ

WinMngr

GMApp2

AppInQ

WinMngr

GMApp1

AppInQ

WinMngr

GMApp1

InnerQueue

Application
Runtime

Layer

Message
Routing
Layer

Adaptive
Transport

Layer UserInD UserOutD

UserOutQ

UserInD UserOutD

UserOutQ

UserInD UserOutD

UserOutQ

UserInD UserOutD

UserOutQ

AppMngr

CommMngr

MesgDispatcher

UserInD UserOutD

UserOutQ

Translator

UserInD UserOutD

UserOutQ

Translator

GMABrowser

User process User process User process

built-in browser GMASlave

TCP HTTP TCP, UDP, or HTTP

Fig. 4. The detailed architecture of GMAServer. In this example, GMApp1 and GMApp2 run in

BROWSER mode. GMApp3 runs in MASTER-SLAVE mode.

Once a GMApp generates a GMAMesg whose destination is a GMAClient, the
message will be placed in the user process UserOutQ. UserOutD in this user process will
later send the message to its client or pass the message to the translator.

2.1.3 Application runtime layer

A GMAServer can serve many GMAClients at the same time. Also, the GMAClient
can access several GMApps run on the GMAServer at the same time if the GMAClient is
a GMABrowser or a built-in browser. The Application Manager (AppMngr) is responsi-
ble for loading, resuming and stopping GMApps. Before starting a GMApp, AppMngr
will check if any instance of the GMApp already exists in the memory. If it does,
AppMngr will then check the startup setting of the GMApp and decide to create a new
instance or bind the GMAClient to the old one. This is useful when a network is tempo-
rarily broken. When the GMAClient re-connects to the GMAServer, previous work can
continue. AppMngr uses different class loader instances to load a GMApp every time to
maintain independent space between them. This lets every GMApp have its own space.

2.2 GMAClient

According to the above discussion, there are four kinds of GMAClient: built-in
browser, GMABrowser, GMAppSlave, and GMAppStandalone. Different GMAClient
uses different protocol to communicate with GMAServer.

MING-CHUN CHENG AND SHYAN-MING YUAN

1396

2.2.1 Built-in browser

When a GMApp is deployed as BROWSER mode, it can be accessed by built-in
browser. There are many different kinds of built-in browsers, such as XHTML browsers,
WAP browsers, and others. They may use different network protocols to communicate,
including HTTP, cHTTP, and WAP. This means that GMAServer must support these
different protocols. Currently, most mobile devices have a built-in browser and users can
use these browsers to interact with GMApps without installing any extra application. In
the other words, most devices can access GMApp by this way.

2.2.2 GMABrowser

When a GMApp is deployed as BROWSER mode, it can be accessed by GMAB-

rowser also as Fig. 5 illustrates. A GMABrowser is a mobile application capable of
drawing UI widgets and handling end-user actions. A GMABrowser only can be installed
on programmable end-devices. Currently, the most popular mobile device programming
environments are J2ME MIDP and .NET CF. Two editions of GMABrowser are imple-
mented in GMA to support both environments.

J2SE

GMAServerGMABrowser

APP
widgets

widgets
widgets APP APP APP

J2ME MIDP/J2SE/PJava

GMAMesg over
HTTP, TCP or UDP

Front-tier Middle-tier
Fig. 5. The diagram about relationship between GMABrower and GMAServer.

Adaptive
Transport
Layer

Message
Routing
Layer

Application
Runtime
Layer

GMAServer

Fig. 6. The detailed architecture of GMABrowser.

GMABrowser architecture is similar to the GMAServer as Fig. 6 illustrates. Be-

cause a GMABrowser can communicate with only one GMAServer at a time, there are
only a couple of InputD and OutputD in the Transport Layer. InputD always listens for
an arriving GMAMesgs; if it gets any, it will add the GMAMesgs to the InputQ. At the

ADAPTIVE UNIFIED MOBILE APPLICATION DEVELOPMENT FRAMEWORK

1397

same time, MesgHandler retrieves GMAMesgs from InputQ asynchronously and passes
them to the Command Manager (CmdMngr) or WinMngr. The functionality of WinMngr
is similar to the one on the GMAServer. The difference is that there is only one WinMngr
here. CmdMngr plays almost the same role that the GMAServer AppMngr does, but it
does not physically load or stop GMApp instances. It only issues those requests to the
GMAServer and waits for the results.

Every widget has an associated listener. Whenever the status of a widget is changed
by its user, the listener is triggered and generates some corresponding GMAMesgs.
WinMngr then puts these GMAMesgs into OutputQ, and OutputD will later send them to
the GMAServer.

2.2.3 GMAppSlave

When a GMApp is deployed as MASTER-SLAVE mode, the application is divided
into two parts: master part and slave part. The slave part is a Java jar file capable of in-
stalling on mobile devices. It is executed by GMAClient and is named GMAppSlave.
The architecture of GMAppSlave is similar to GMABrowser. All communications be-
tween GMAServer and GMAppSlave are handled by Adaptive Transport Layer. The
only difference is in the Application Runtime Layer. In GMAppSlave, this layer only
contains an ObjMngr which is responsible for object management.

2.2.4 GMAppStandalone

When a GMApp is deployed as STANDALONE mode, the application is a full mo-
bile application capable of running on end-devices independently, and it is named GM-
AppStanalone. It is just like a J2ME MIDP application.

3. ADAPTATION AND INTEGRATION

This section will express how a GMApp can adapt to different running modes and
how to integrate different kinds of backend-services.

3.1 Computing Model Adaptation

Generally, a Java application is consisted of classes and all the classes will be exe-
cuted by the same host. However, in GMA, because some classes may not be executed
by GMAClient, these classes have to be handled by GMAServer. Hence, classes within a
GMApp have to be separated into two parts (MASTER-SLAVE mode). One part is exe-
cuted by GMAClient and the other part is executed by GMAServer in runtime. GMApp
developers do not need to worry about which computing model is applied and do not
need to write any interface description file such as CORBA IDL [21] in development
time. All things are handled by GMA automatically and the minimum dividable unit in
GMA is class file.

To separate an application into two parts, two problems must be solved. The first
problem is how to intercept all actions which act on non-local classes or objects which

MING-CHUN CHENG AND SHYAN-MING YUAN

1398

associate with non-local classes. The second problem is how to reflect these actions on
the corresponding remote classes or remote objects. The GMA framework must intercept
these actions and delegate them to their corresponding remote classes or remote objects.

Because many end-devices are J2ME-enabled and J2ME dose not support dynamic
class loading [22], the GMA framework generates proxy classes in advance to solve the
first problem. Every proxy class has the same class name, skeleton and inheritance rela-
tionship as the original class, but there are no fields in the proxy class as Fig. 8 shows.
Moreover, the codes within a class and its corresponding proxy class are different. The
former is practical business logic and the latter is responsible for delegating intercepted
actions to their corresponding object managers on the other side. When a method within
a proxy class is called, the codes within the method are run as the following steps:

1. (Marshaling) Encode action type, target object id, method id, and all parameters into a

specific command format.
2. Transfer the command to the object manager on the other side and wait for return re-

sults.
3. (Unmarshaling) Decode results into original return type and return it to the caller.

Because J2ME does not support Java reflection [23], the GMA framework generates
an object manager class, named ObjMngr, for a GMApp in advance to solve the second
problem. All ObjMngr classes are responsible for delegating actions to the corresponding
classes or objects. A method table is hard-coded in every ObjMngr class and is generated
in deployment time. When receiving a command from proxy classes on the other side,
ObjMngr will traverse into the method table and then invoke the corresponding methods.
The steps are as follows:

1. (Unmarshaling) Decode command from proxy classes.
2. Traverse into the method table.
3. Invoke the corresponding methods within the practical object or class.
4. (Marshaling) Encode the results into a specific command format.

Java is an object-oriented language and all objects are created from classes. Every
object is an instance of a class. In Fig. 8 (a), if ObjectX is created from ClassB, ObjectX
will have three fields: field1, field2 and field3. This obeys inheritance associations. If
ClassA and ClassB is placed on the same host, in this example, HostA, there is no trouble.
In Fig. 8 (b), ClassA in HostB (GMAClient) is replaced by a proxy class and ClassB in
HostC (GMAServer) is also replaced by a proxy class. In Fig. 8 (b), if ObjextY is created
from ClassB, ObjectY will have only two fields: field2 and field3, because of no fields in
proxy classes. To solve the problem, every object in GMA will have a complementary
object in the other host. In the example, the complementary object of ObjectY will be
created from ClassB on HostC, and it will have one field: field1. This means that a logi-
cal object may be divided into two parts physically. Traditionally, when an object is cre-
ated from a class, its constructor will be called and the constructor will call the construc-
tor of the super class. For example, in Fig. 8 (a), when an object is created from ClassB,
field1 is initialized first, constructor ClassA() is completed , then field2 as well as field3
are initialized, constructor ClassB() is completed finally. The order of this initialization

ADAPTIVE UNIFIED MOBILE APPLICATION DEVELOPMENT FRAMEWORK

1399

has to keep after replacing some classes with proxy classes. To achieve that, the every
original class has to be modified as follows:

1. Add a special constructor which is used when creating a complementary object. This

constructor does nothing but only call the special constructor of its super class. Thus, a
complementary object created from the special constructor only initializes its fields
only and the original constructors are never called.

2. Move all codes within an original constructor to another new method.
3. Modify the original constructor. The codes within the original constructor are modi-

fied to call the new method created in step 2.

ClassA(){
//initial code

}

ClassA(){
init_ClassA();

}

void init_ClassA(){
//original initial code

}

ClassA(GMApp app){
//do nothing

}

(1)

(2)

(3)

original class modified class
preprocessor

Fig. 7. An example to demonstrate the above steps.

(a) (b)

Fig. 8. An example to demonstrate how to separate two associated classes into two different hosts;
(a) describes original class relationship and (b) expresses the result after replacing some
classes with proxy classes. A class with shadowed color is a proxy class.

Fig. 8 (b) is an example after modifications. When an object is created from ClassB

on HostB, the order of initialization is as following:

MING-CHUN CHENG AND SHYAN-MING YUAN

1400

1. Initialize fields of ClassA on HostB. Because ClassA is a proxy class, no field will be
initialized.

2. The constructor of ClassA on HostB is called (from the constructor of ClassB in
HostB). Because ClassA on HostB is a proxy class, the constructor of ClassA is re-
sponsible to create a complementary object in the other host (HostC). The details will
be discussed in section 3.1.1.

3. A complementary object is created from ClassB on HostC. The special constructor
ClassB(GMApp) is used to do that.

4. Initialize fields of ClassA on HostC. The complementary object has one field: field1.
5. The remaining codes within the constructor of ClassA on HostB are executed. It will

call the remote method init_ClassA() of ClassA on HostC to initialize. The details
will be discussed in section 3.1.1.

6. Initialize fields of ClassB on HostB. The object has two fields: field2 and field3.
7. The remaining codes within the constructor of ClassB on HostB are executed.

These steps are similar to original initialization process but original object is divided
into two objects.

In the Java Virtual Machine, four kinds of action can act on a class or object: in-
stance creation action, method invoke action, field manipulation action, and synchro-
nized action. Moreover, the last two actions have to be converted to method invoke ac-
tion first and then they can be treated as method invoke action. The following content
describes how to generate proxy class and how they can intercept the first two actions
individually. All modifications are made on Java bytecode [24] level.

3.1.1 Instance creation action

According to the previous discussion, every object in GMA will have a comple-

mentary object in the other host. All instance creation action can be intercepted by
building a corresponding proxy class which has all constructors the original class has.
When a proxy class constructor is called, it will check whether the complementary object
had been created on the other host. If it was not, these constructor codes within the proxy
class will delegate instance creation actions to the corresponding object manager on the
other side to create the corresponding complementary objects.

Every object manager maintains an object table which saves the relationship be-
tween object ID and object reference. Every object created by object manager has a
unique ID and will be saved in the object table. After a complementary object is created,
the object ID of its corresponding proxy object will be set the same object id.

ClassA(){
init_ClassA();

}

ClassA(){
if(complementary object does not exist){

//1. create complementary object
}
//2. delegate the init_ClassA() to ObjMngr

}

modified class proxy class
analyzer

Fig. 9. How to intercept instance creation action.

ADAPTIVE UNIFIED MOBILE APPLICATION DEVELOPMENT FRAMEWORK

1401

After that, the remaining codes within the constructor of proxy class will do a
method invoke action to initialize the complementary object. In other words, every con-
structor in proxy class has two missions as Fig. 9 depicts. First, check whether the corre-
sponding complementary object exist on the other host. If not, notify remote object man-
ager to create it. Second, notify remote object manager to call the corresponding initiali-
zation method.

3.1.2 Method invoke action

Intercepting the method invoke action is almost the same as intercepting the in-
stance creation action mentioned above. When a method of the proxy class is invoked, it
means the method invoke action has to reflect on the complementary object. The codes
of these methods within the proxy classes are responsible for delegating these actions to
the corresponding object manager in the other side as Fig. 10 shows.

void method1(){
//business logic;

}

void method1(){
//delegate the method1() to the ObjMngr

}

modified class proxy class
analyzer

Fig. 10. How to intercept method invoke action.

Every proxy object has the same object ID as its remote object, and GMA gives

every method within proxy classes a unique method id. When receiving invoke com-
mands, the object manager can get object references from the object table by the object
ID encoded in the command.

3.2 Universal Service Interface

A universal service interface is provided in GMA and Fig. 11 is its diagram.
Adapter design pattern [25] is used to integrate different service interfaces. They convert
the interface of a class into another interface clients expect. With the universal service
interface, every GMApp can use unified API call to control physical devices or access
services in Internet without proprietary protocol knowledge. There are three kinds of API
in the universal service interface: discovery, invoke action, and event. Discovery API is
used to discover available devices or services. After discovery, invoke action API is used
to control or access these devices or services. Event API is used to provide an interface to
receive events fired by devices or services.

It is worth taking notice that some descriptors are necessary for some adapters, such
as Web services adapter. Every descriptor is an XML [26] document and it describes
related information about target services, such as URL of WSDL [27] for Web services.

4. DEVELOPMENT AND DEPLOYMENT PROCESS

Different running mode requires different deployment processes, as Fig. 12 shows.
Three important components participate in the deployment process. They are preprocessor,

MING-CHUN CHENG AND SHYAN-MING YUAN

1402

Universal Service Interface

GMApp GMApp

API call

adapteradapter adapteradapter adapteradapter

Jini
bundle

UPnP
bundle

WS
bundle

proprietary protocols

OSGi import service

device1 device2 device3 service

descriptors

XML

reference

Fig. 11. The architecture of universal service interface in GMA.

Source codes
(*.java)

compiler
Original
classes preprocessor

Modified
classes

Library
(*.class;*.jar)

analyzer
Proxy
classes

design time

BROWSER
repository

End-device
database

deployer

An end-device
(STANDALONE mode)

deployer

MASTER-SLAVE
repository

An end-device
(MASTER-SLAVE mode)

deployer

device type

lookuplookup

Fig. 12. The GMApp development flow.

the analyzer and the deployer. The preprocessor modifies the bytecodes within original
classes. Every modified class is equivalent to the original class, but bytecodes have small
differences. What preprocessor has to do had been discussed above and the following is a
summary.

1. add special constructor which is used to initialize a complementary object.
2. add initialization method which is called when its corresponding constructor of the

proxy class is called.
3. replace all field manipulation action with method invoke action.
4. replace all synchronized action with method invoke action.

The analyzer generates corresponding classes, including proxy classes and ObjMngr

classes, by analyzing the bytecodes as the previous discussion (sections 3.1.1 and 3.1.2).
Both preprocessor and analyzer exploit a bytecode manuiplation tool, BCEL [24], to

ADAPTIVE UNIFIED MOBILE APPLICATION DEVELOPMENT FRAMEWORK

1403

handle all bytecode modifications. The deployer packages necessary classes together in a
Java jar file by adding or replacing some classes. It will lookup end-device database dur-
ing deployment. The end-device database is consisted of two XML documents : device
profile and class profile. The former describes capabilites about end-devices and the lat-
ter describes the requreiments of classes. The deployer use informatin in end-device da-
tabase to choose sutiable classes which can be original or generated classes.

Write a GMApp is similar to write a J2ME MIDP application as Fig. 13 shows.
Every GMApp has a main class which must inherit from the org.dcslab.gma.app.GMApp
class. In different running modes, different edition of GMApp class is chosen and they
have different initial process. Every GMApp class is responsible for initializing neces-
sary resources and architecture for different running modes.

public class TestMIDlet
extends javax.microedition.midlet.MIDlet {

public TestMIDlet() {
//constructor

}
public void startApp() {
//this will be called, when MIDlet is started

}
public void pauseApp() {
//this will be called, when MIDlet is paused

}
public void destroyApp(boolean unconditional) {
//this will be called, when MIDlet is destroyed

}
}

public class TestGMApp
extends org.dcslab.gma.app.GMApp {

public TestGMApp() {
//constructor

}
public void startApp() {
//this will be called, when GMApp is started

}
public void pauseApp() {
//this will be called, when GMApp is paused

}
public void destroyApp(boolean unconditional) {
//this will be called, when GMApp is destroyed

}
}

Fig. 13. The left portion is a J2ME MIDP sample code and the right portion is a GMApp sample
code. They are almost the same except extending different class.

5. CONCLUSION

In this paper, a novel development framework GMA, which is capable of tailoring
mobile applications to fit different end-devices and environments, is proposed and how it
works is discussed in the previous sections. By using GMA, when developing a mobile
application, developers do not need to concern about the computing power as well as
functionalities of the target end-devices and these resources will be effectively used. Be-
sides, a universal service interface is proposed also. Developer can use unified API to
access different backend-services without background knowledge. In addition, because
XML document is flexible and extensible, anyone can easy to extend the end-device da-
tabase to support more end-devices.

REFERENCES

1. WAP, http://www.wapforum.org/.
2. J2ME − Java Micro Edition, http://java.sun.com/javame/.

MING-CHUN CHENG AND SHYAN-MING YUAN

1404

3. Microsoft .NET Compact Framework, http://msdn.microsoft.com/netframework/
programming/netcf/default.aspx.

4. Jini, http://www.jini.org.
5. UPnP, http://www.jini.org.
6. JSR-172, J2ME Web Services Specification, http://jcp.org/aboutJava/community-

process/final/jsr172/.
7. 3GPP TS 22.057 V6.0.0. Mobile Execution Environment (MExE) service descrip-

tion; Stage 1, 2004, http://www.3gpp.org/ftp/Specs/html-info/22057.htm.
8. Attribute Programming, http://msdn2.microsoft.com/en-us/library/dcy94zz2.aspx.
9. M. Butler, F. Giannetti, R. Gimson, and T. Wiley, “Device independence and the

Web,” IEEE Internet Computing, Vol. 6, 2002, pp. 81-86.
10. W. Mueller, R. Schaefer, and S. Bleul, “Interactive multimodal user interfaces for

mobile devices,” in Proceedings of the 37th Annual Hawaii International Confer-
ence on System Sciences, 2004.

11. J. Plomp, R. Schaefer, W. Mueller, and H. Yli-Nikkola, “Comparing transcoding
tools for use with a generic user interface format,” in Proceedings of the Extreme
Markup Languages, 2002.

12. J. Grundy and J. Hosking, “Developing adaptable user interfaces for component-
based systems,” in Proceedings of the 1st Australian User Interface Conference,
2002, pp. 175-194.

13. J2ME Polish, http://www.j2mepolish.org/.
14. T. H. Kao and S. M. Yuan, “Designing an XML-based context-aware transformation

framework for mobile execution environments using CC/PP and XSLT,” Computer
Standards & Interfaces, Vol. 26, 2004, pp. 377-399.

15. T. H. Kao and S. M. Yuan, “Automatic adaptation of mobile applications to different
user devices using modular mobile agents,” Software Practice and Experience, Vol.
35, 2005, pp. 1349-1391.

16. J. Jing, A. S. Helal, and A. Elmagarmid, “Client-server computing in mobile envi-
ronments,” ACM Computing Surveys, Vol. 31, 1999, pp. 117-157.

17. JSR-118, Mobile Information Device Profile 2.0, http://jcp.org/aboutJava/community-
process/final/jsr118/.

18. OSGi, http://www.osgi.org/.
19. J2SE − Java Standard Edition, http://java.sun.com/javase/.
20. M. C. Cheng and S. M. Yuan, “An adaptive mobile application development frame-

work,” in Proceedings of the Embedded and Ubiquitous Computing, 2005, pp. 765-
774.

21. Y. S. Chang, R. S. Wu, K. C. Liang, S. M. Yuan, and M. Yang, “CODEX: content-
oriented data EXchange model on CORBA,” Computer Standards & Interfaces, Vol.
25, 2003, pp. 329-343.

22. S. Liang and G. Bracha, “Dynamic class loading in the Java virtual machine,” in
Proceedings of the 13th ACM SIGPLAN conference on Object-Oriented Program-
ming, 1998, pp. 36-44.

23. G. T. Sullivan, “Aspect-oriented programming using reflection and metaobject pro-
tocols,” Communications of the ACM, Vol. 44, 2001, pp. 95-97.

24. M. Dahm, “Byte code engineering with the BCEL API,” Technical Report No. B-17-
98, Freie Universitat Berlin, Institit fur Informatik, 2001.

ADAPTIVE UNIFIED MOBILE APPLICATION DEVELOPMENT FRAMEWORK

1405

25. Y. S. Chang, M. H. Ho, and S. M. Yuan, “A unified interface for integrating infor-
mation retrieval,” Computer Standards & Interfaces, Vol. 23, 2001, pp. 325-340.

26. XML − Extensible Markup Language, http://www.xml.it:23456/XML/REC-xml-
19980210-it.html.

27. Web Services Description Language, http://www.w3.org/TR/wsdl.

Ming-Chun Cheng (鄭明俊) was born on September 4,
1977 in Taoyuan, Taiwan, R.O.C. He received his B.S. degree in
Computer and Information Science from National Chiao Tung
University, Taiwan, in 1999. Currently, he is a Ph.D. candidate in
the Institute of Computer Science, National Chiao Tung Univer-
sity, Taiwan. His research interests include web technology, dis-
tributed system, and mobile computing.

Shyan-Ming Yuan (袁賢銘) was born on July 11, 1959 in
Mauli, Taiwan, R.O.C. He received his B.S. degree in Electrical
Engineering from National Taiwan University in 1981, his M.S.
degree in Computer Science from University of Maryland, Bal-
timore County in 1985, and his Ph.D. degree in Computer Sci-
ence from the University of Maryland College Park in 1989. Dr.
Yuan joined the Electronics Research and Service Organization,
Industrial Technology Research Institute as a Research Member
in October 1989. Since September 1990, he has been an Associ-
ate Professor at the Department of Computer and Information

Science, National Chiao Tung University, Hsinchu, Taiwan. He became a Professor in
June 1995. His current research interests include distributed objects, internet technolo-
gies, and software system Integration. Starting from Feb. 2007, Professor Yuan was
temporarily on leave from National Chiao Tung University and became the Chairman
of Computer Science & Information Engineering Department, Asia University.

