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ABSTRACT

In this dissertation, we consider two themes related to Arnoldi-type algorithms for
solving nonlinear eigenvalue problems.

We develop and analyze efficient methods for computing damped vibration modes of
an acoustic fluid confined in a cavity, with absorbing walls capable of dissipating
acoustic energy. The edge-based finite elements for the displacement field results in a
guadratic eigenvalue problem. On. the other hand, ‘the discretization in terms of
pressure nodal finite elements results in a rational-eigenvalue problem. We use the
linearization technique to transform these nonlinear eigenvalue problems, respectively,
into generalized eigenvalue problems Ax=ABx and apply Arnoldi algorithm to two

different types of single matrices B'A and AB"'. Numerical accuracy shows that the

application of Arnoldi on AB™' is better than that on B A.

For computing a few eigenpairs with smallest eigenvalues in absolute value of
guadratic eigenvalue problems, we develop the semiorthogonal generalized Arnoldi
method, an orthogonal projection technique. Furthermore, we propose refinable and
restartable variations of this method to improve the accuracy and efficiency. Numerical
examples demonstrate that the implicitly restarted semiorthogonal generalized Arnoldi
method with or without refinement has superior convergence behaviors than the
implicitly restarted Anoldi method applied to the linearized quadratic eigenvalue
problem.
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1.1 Notations

The theme explored in this thesis is to develop and exploit efficient Arnoldi-
type methods to solve the quadratic and rational eigenvalue problems. This chapter
will briefly introduce some basic notions, mathematical notations and conventional
methods of the so-called “eigenvalue problems”. We then, in Chapter 2, develop
and analyze efficient methods for quadratic and rational eigenvalues arising from
computing damped vibration modes of an acoustic fluid confined in a cavity with
absorbing walls capable of dissipating acoustic energy. In Chapter 3, we will propose
an orthogonal projection method for solving quadratic eigenvalue problems. Finally,

conclusions and the future work of this thesis. will be discussed in Chapter 4.

1.1 Notations

The following notations are frequently used in this thesis. Other notations will

be clearly defined whenever they are used.

i=+—1

e We use the symbol V' tomean ‘for all’” throughout the thesis.
e R denotes the set of real numbers and C denotes the set of complex numbers.

e Re(\) and Im(\), respectively, denote the real part and the complex part of

the scalar A € C.
e 0 denotes zero vectors and matrices with appropriate size.
e [, denotes the n x n identity matrix.
e ¢, denotes the jth column of the identity matrix 7, with specified n.

e We use -' and -# to denote the transpose and conjugate transpose for vectors

or matrices.




1.2 The Arnoldi Method for Standard Eigenvalue Problems

e ® denotes the Kronecker product.

o |||z, || - ||r and || - ||oo respectively denote the 2-norm, Frobenius norm and

infinity norm for vectors or matrices.

e We adopt the following MATLAB notations:

v(i : j) denotes the subvector of the vector v that consists of the ith to the

jth entries of v;

A(i @ j,k @ £) denotes the submatrix of the matrix A that consists of the

intersection of the rows ¢ to 7 and the columns £ to ¢;

A(i @ j,:) denotes the tows of Afromito g and A(:, & : ¢) denotes the columns

of A from k to £.

1.2 The Arnoldi Method for Standard Eigenvalue
Problems

Given a large sparse matrix A« C"*" the Arnoldi method [1] is a well known
and very prevalent algorithm for solving the so-called standard eigenvalue problem
(SEP)

Ax = Ix. (1.1)

That is, to find a scalar A (real or complex) and a nonzero n-vector x satisfying the
equations (1.1). In this case, we say that A is an eigenvalue of A and x is called
an eigenvector of A with respect to A. Moreover, the pair (A, x) is said to be an
eigenpair of A.

Starting with a unit vector vy, the Arnoldi method successively constructs a

sequence of unitary vectors vo, v3, ..., Vv,, which forms a unitary basis of the Krylov




1.2 The Arnoldi Method for Standard Eigenvalue Problems

subspace K,, (A4, vi) = span{vy, Avy,..., A" v, } with m < n such that

J
hj—f—l,jvj—l—l = AVj — Z hijvi, ] = 1, 2, e,y
i=1

vy, =0, Vs #t and viv,=1, Vs,

or equivalently,

Avm = VmHm + hm,erleJrle;l;a

(1.2)
v _Im O
[VH+1] [Vm Verl] - [ gl 1} )
where V,,, is an n X m matrix with column vectors vq,va,...,Vv,,, H, isan m X m

upper Hessenberg matrix. After building the factorization (1.2), called the Arnoldi
decomposition, we then reduce A intothe upper Hessenberg H,, through the unitary
transformation VAV,, = Hy—The eigenvalues and. corresponding eigenvectors of
the reduced SEP_H,,z = uz can be solved by the classical eigenvalue techniques,
such as the QR algorithm (also named the Francis algorithm [18, 19]). Moreover,
we see that if (0, y)is an eigenpair of H,, then (0,1],y) is called a Ritz pair of A —

an approximate eigenpair.of A with the residual norm

I(ASOL)Viay = s 1m] e, -

For more details on the practical realization and theoretical analysis of the Arnoldi
method, we refer to |2, 14, 22, 49, 54, 67, 73].

There are some variations of the Arnoldi method. In practice, a small number
of eigenvalues that are nearest to a target o or located in a prescribed region of the
complex plane and the corresponding eigenvectors are often of interest. Under the
assumption that o is not an eigenvalue of the SEP (1.1) but not to far away from

the wanted eigenvalues, the shift-and-invert Arnoldi method [48, 54| tends to solve
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the transformed eigenproblem

(A—ol,) 'x = vx, (1.3)

where the scalar value o is called a shift. It is easy to verify that (1.3) and (1.1) are
mathematically equivalent since (v, x) is an eigenpair of (1.3) if and only if (0 +1,x)
is an eigenpair of (1.1).

The restarted Arnoldi method aims to overcome the increasing storage as well
as the computational cost of the Arnoldi decomposition (1.2) as m is increasing.
In [53], Saad coped with these difficulties by developing the explicitly restarted
Arnoldi iteration. The idea of this strategy is to compute anether mth order Arnoldi
decomposition withra “better” initial vector which is a linear combination of some
wanted Ritz vectors. The implicitly restarted Arnoldi method [59] and Krylov-Schur
algorithm |28, 61, 63|, on the other hand, are two remarkable implicitly restarting
schemes. These schemes are called implicit due to the fact that the initial vector
is sequentially constructed, by using the implicitly shifted QR algorithm [18, 19]
on the Hessenberg matrix H,, in (1.2).. We-will review the implementation of the
Krylov-Schur restarting in Section 2.4.

Another possible problem is that even though some desirable eigenvalues com-
puted by the Arnoldi method already attempt to converge, the corresponding ap-
proximate eigenvectors may converge very slowly and even fail to converge. The
refined Arnoldi method [32] proposed by Jia gave an alternative approach to rem-
edy this problem by computing refined approximate eigenvectors. See also [33]. We
will mimic this idea and design a refinement strategy for our Arnoldi-type method
in Section 3.4. Other variations of the Arnoldi method include the block-Arnoldi
method [55], the inexact Arnoldi method [56], the residual Arnoldi method [37, 38],

and so on.




1.3 The Generalized Arnoldi Method for Generalized Eigenvalue
Problems

1.3 The Generalized Arnoldi Method for General-

ized Eigenvalue Problems

The generalized eigenvalue problem (GEP) for the matrix pencil A — AB of two
square matrices A and B with size n is to determine scalars A and n-vectors x # 0
such that

Ax = \Bx. (1.4)

If B is nonsingular, the GEP (1.4) can be;transformed into SEPs

(B=1A)x = \x (1.5)

or

(AB™ ')y =2y y = Bx (1.6)

and subsequently solved by the standard Arnoldi method. Alternatively, the QZ
algorithm [45], an analog of the QR algorithm for the GEP; is the method of choice
for dealing with the GEP (1.4) with small densé coefficient matrices.

The truncated @QZ method proposed by Sorensen [60] is one of the approaches
for solving large-scale GEPs. For m < n, this method constructs a generalization

of the standard Arnoldi decomposition (1.2),

AZm = YmHm + hm—i—l,mYm-‘rle;;a
BZp, = Yy R, (1.7)

Zme - Im7 YWI;IYm = Ima Ynljym—l—l = 07

which is called the generalized Arnoldi reduction in [60], and deals with the small-
sized GEP H,,v = uR,,v of the m x m upper Hessenberg-triangular pair (H,,, R,,)

to approximate eigenpairs of the original large-scale GEP (1.4).
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1.4 Quadratic Eigenvalue Problems and Lineariza-
tions

In this section, we consider the quadratic eigenvalue problem (QEP) of the form
QNx = (MM + XD+ K)x =0, (1.8)

where M, D and K are n X n large and sparse matrices. The QEP is a special case

of the polynomial eigenvalueproblem (PEP)
d
PVxE=E (Z xﬂ) x =0, (1.9)
=0

where P, are constant matrices of size nford < ¢ < di P(\) = i AP, is called a
matrix polynomial (in \) of degree d«“Obviously, for d = 0,1 andZiZO, the PEP (1.9)
is, respectively, indeed the case of SEP (1.1), GEP (1.4) and QEP (1.8).

The “linearization” is a typical and most widelytsed technique to solve the QEP
in which the problem is reformulated into-a linear one which doubles the order of
the system. By selecting suitable matrices A, B € C?>"*?" and the vector ¢ € C>",

we can convert (1.8) into the GEP
(A= AB)p =0 (1.10)

satisfying the relation
EO(A = AB)F()) = {

where £(A\) and F(\) are 2n X 2n matrix polynomials in A with constant nonzero
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determinants. In this case,

det(A — AB) = det(\*M + AD + K)

indicates the eigenvalues of the original QEP (1.8) coincide with the eigenvalues of
the enlarged GEP (1.10). As a result, the linearization technique of QEPs makes
classical methods for GEPs as well as SEPs can be used.

There are many choices of (A, B)’s, but probably the most popular ones in prac-
tice are the so-called companion forms |21]: the first companion form

-D —-K M 0
A= and B =

I; 0 0 I

as well as the second companion form

~D 1, M- 0
A= and B = : (1.11)

-K 0 0 [,

There are some drawbacks, however, of the linearization technique to solve QEPs.
For instance, the doubling size of the problem increases the computational cost and
the original structures of the coefficient matrices (M, D, K) such as symmetry and
positive definiteness may be lost. To circumvent these drawbacks, one may expect
to solve the QEP (1.8) directly. The QEP is projected onto a properly chosen low-
dimensional subspace in order to lower the matrix sizes of the coefficient matrices
in (1.8). The reduced QEP can then be solved by a standard approach for dense
matrices. Methods of this type include the residual iteration method [27, 43, 47|, the
Jacobi-Davidson method [57, 58|, a Krylov-type subspace method [40], the nonlinear

Arnoldi method [68], the second-order Arnoldi method [3, 41, 72| and an iterated
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shift-and-invert Arnoldi method |75]. While these methods use a similar projection
process, the main difference between them is the selection of projection subspaces.
Convergence analysis of projection methods to approximate eigenpairs of the QEP
(1.8) has recently been invented in [29].

In Chapter 2, we consider a QEP arising from a finite element model and convert
it into SEPs in (1.5) and (1.6) through an equivalent second companion form (1.11).
We will report theoretical and numerical comparisons of these two SEPs (1.5) there.
In Chapter 3, we combine the generalized: Arnoldi reduction (1.7) and the second
companion form linearization (1.11)6f the QEP.(1.8) 40 develop a projection method

to solve the QEP (1.8) directly.

1.5 Rational Eigenvalue Problems andthe Trimmed
Linearization

The rational eigenvalue problem (REP) concerns/the problem of finding (A, x)

with x # 0 satsifying the equation

R(\)x = (P()\) - ‘Z((i)) C]) x =0, (1.12)

where P () is an nxn matrix polynomial in A, s;(\) and ¢;(\) are scalar polynomials
in A\, and C; are n x n constant matrices. The simulation of the three-dimensional
pyramid quantum dot heterostructure [31] produces a REP. For more examples
related to the REPs, see |9, 44, 64].
To solve the REP (1.12), one may immediately multiply (1.12) by the scalar
polynomial ﬁ1 t;(A) to convert it into a PEP. Subsequently, the PEP can be lin-
j=

earized to a GEP. The nonlinear eigensolver, on the other hand, is another way to
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solve this problem. The nonlinear Jacobi-Davidson method [70] and the nonlinear
Arnoldi method [68] fall into this category. Yet, these approaches also have the prob-
lem that restricts advantages of the underlying matrix structures and properties of
REPs.

Trimmed linearization [64] is a recent linearization-based approach to solve the
REP (1.12), especially when matrices C; in (1.12) have the low-rank property. This
method utilizes and preserves the structure and property of the REP (1.12) as much
as possible to transform it into a GEP (and hence a SEP), and it only slightly
increases the size of the GEP, compared to the size of the original REP (1.12).

The REP discussediin this thesis is'a quadratic matrix polynomial (P () in (1.9)
with d = 2) together with low-rank rational terms (see Eq. (2.20)). We will use the
trimmed linearizing skill and the shift-and-invert Arnoldi method with Krylov-Schur

restarting to detect: desired eigenpairs:

10
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2.1 Introduction

2.1 Introduction

Efficient and correct computation of the damped vibration modes generated by
an inviscid, compressible, barotropic fluid in a cavity, with absorbing walls is an
important issue when for example one is interested in decreasing the level of noise
in aircraft or cars. In general, one needs first a mathematical model consisted of
partial differential equations with proper boundary and initial conditions. After this
first phase of mathematical formulation, the next phase is to find efficient methods
to compute the modes. This phase involves.correct discretization of the mathemati-
cal formulation and computation of large scale nonlinear-eigenvalue problems, be it
quadratic, cubic, or ‘even rational.-Choosing correct discretization schemes to avoid
spurious modes and finding efficient methods to locate eigenvalues that lie in the
interior of the spectrum are among important-issues to deal with. In the mathemat-
ical formulation phase, we have intéraction between the fluidiand structure (cavity
walls), and the displacement variable natural for-the solid could be chosen for the
fluid as well so that compatibility and equilibrium (cfi” (2.3) and (2.7) below) through
the fluid-solid interface can be satisfied automatically. A drawback lurking behind
the displacement formulation is the possible presence of nonphysical zero-frequency
spurious circulation modes, if one is not careful in choosing the discretization scheme
associated with the underlying partial differential system. For example discretization
by standard finite elements or finite differences often exhibit such a phenomenon.
Approaches circumventing this drawback can be found in [4, 12, 20, 24, 71|, among
others.

One of the discretizations we will be using in this chapter is the edge-based or
Raviart-Thomas finite elements for the displacement field, following [5, 7|. The main
concerns in [5, 51| are pure mathematical issues of proving that their numerical

approximation is free of spurious modes and has second order convergence rate.

12



2.1 Introduction

Efficient computation of the modes is not a concern, as they solved the associated
quadratic eigenvalue problem by the standard eigensolver eigs from MATLAB that
employs Arnoldi iterations.

In this chapter our primary concern is to develop and study efficient eigensolvers
for the spectral approximation of the damped vibration modes. Two approximations
are investigated, one constructed from the edge-based displacement space (cf. Eq.
(2.11) below), which results in quadratic eigenvalue problems (QEPs) and one from
the node-based pressure space (cf. Eqe (2.12)), which results in rational eigenvalues
problems (REPs). Our fitst approximation is.identical to that in [5, 7], but we
further develop efficient methods for solving the associated QEP. However, we show
in Section 2.2 that this problemhas a large zero-frequency or null space and this
fact may influence.the efficiency of Arnoldi-type-algorithms. Motivated by this, we
extensively explore the second approximation of using the pressure space, which
has a much smaller eigenvalue system to solve-and which has a one dimensional
null space. While there is.an extensive literature on QEPs problems [66], REPs are
much less studied [64, 68, 69}.. Although on thesurface the REP (Eq. (2.20)) could
be turned into a cubic one by multiplying out the denominator, we will preserve its
rational structure and design efficient methods to numerically solve it in Section 2.3.

The organization of this chapter is as follows. We describe the underlying model
fluid-solid problem of this chapter in Section 2.2, where the edge-based displace-
ment approximation and the node-based pressure approximation are derived. We
pay particular attention to identifying the dimension of the associated null space,
which may influence performance of the numerical method introduced later. In Sec-
tion 2.3, we use the general strategy of turning a nonlinear eigenvalue problem into
a standard one by some sort of linearization techniques. We then apply the Arnoldi

type algorithms to solve it. For the two nonlinear eigenvalue problems, the QEP

13



2.2 The Model Problem

is as usual turned into a generalized eigenvalue problem (GEP), from which two
types of standard eigenvalue problems (SEP) (2.19.1) and (2.19.2) are derived. The
REP is trimmed-linearized into two types of three by three block SEPs (2.31.1) and
(2.31.2). The important issue of residual error bound analysis is addressed here.
We then apply Arnoldi method with Schur-restarting described in Section 2.4 to the
resulting SEPs. The important issues of stopping criteria and computational costs
for applying Arnoldi method to the QEP and REP are also derived in this section.
In Section 2.5, we present numerical results and evaluate the merits of the schemes
involved where we also demonstrate the role of normwise scaling in preprocessing

the eigenvalue problems. Summaries are included in Section 2.6.

2.2 The Model Problem

Let us consider a simple aodel of‘a rigid container filled with an inviscid com-
pressible barotropic fluid and its acoustic energy is absorbed through a thin layer of a
viscoelastic material applied te some or all of its walls: For simplicity we assume the
fluid domain Q C R? (d = 2 or3) to bepolyhedral, and the boundary 99 = 'y UT,
where the absorbing boundary I'4 is the union of all the different faces of €2 and is
covered by damping material. The rigid boundary I'g is the remaining part of T'.
An example of the setup is in Figure 2.1(i) on Section 2.5, where the top boundary
is absorbing and the remaining boundary is rigid.

The dynamic variables of our model problem are the fluid pressure P and the
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2.2 The Model Problem

displacement field U, which satisfy ([8, 35|)

0*U

pﬁ + VP=0 in €2, (2.1)

P = —pc*divU in Q, (2.2)
ou

P = <aU-n+ﬁE -n) on 'y, (2.3)

Umn =0 on I'p. (2.4)

Here p is the fluid density, ¢, the acoustie speed, and n, the unit outer normal vector
along 0. At the absorbing boundary (2.3) indicates that the pressure is balanced
by the effects of the viscous damping (the fterm) and the elastic behavior (the «
term). We assume_the coefficients-a and (. are given positive constants.

To look for the damped vibration modes we assume (2.1)—(2.4) has complex
solution of the form U(x,t) = eMu(x) and P(x,t) = eMp(x). This leads to a

problem of findingA € C,u: Q = €C*and p: Q—=C, (u,p) #/(0,0) such that

pNu s Vp=0 in €, (2.5)
p = £pc divu in €, (2.6)
p = (e+A5)u-n on ['4, (2.7)
un = 0 on ['p. (2.8)

The boundary condition (2.7) makes this eigenvalue problem nonlinear. For each
damped vibration mode, w := Im(\) is the vibration angular frequency and Re(\)
the decay rate. In practice, we select a range of w values and are interested in
the least decaying modes in this range. We next describe the natural variational

formulation of the above problem on which the numerical approximation will be

based.
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2.2 The Model Problem

Let

Vi={veH(div,Q):v-ne L*0) and v-n =0 on ['z}.

Here we employ standard Sobolev spaces notation. For example, H(div,(2) stands

for the space of all L? vector functions v on  with L? integrable divergence.
Testing (2.5) by v € V and integrating by parts, we obtain a variational for-
mulation of problem (2.5)—(2.8) involving only the displacement variable: Find

A€ Candue€V,u#0, such that
)\Q/pu-\_/—i—)\ ﬁu-n\_f-n—i—/ au-n\_f-n—l—/pczdivudiV\_/:O Vvel. (29)
Q T4 T4 Q

This is a quadraticieigenvalue-problem. Note that A\ = 0 is-an eigenvalue and the

dimension of its eigenspace
Ne={ueV: divu=0in Q and u-n =0 on 99}

is infinity. All nonzero eigenvalues have finite multiplicity (the dimension of the
eigenspace is finite) [6]. It is shown in+{6]that-all the other solutions of (2.9), the
decay rate is strictly negative. That 1s, if an eigenpair 0 # XA € Cand 0 #u € V is
a solution of problem (2.9) then Re()\) < 0.

Alternatively we can derive a variational formulation in terms of the pressure:

Find A € Cand p € HY(Q) := {p € L*(Q) : Vp € L*(Q)} such that

2 2
= [ pa+
C2 qu Of‘i‘)\ﬁ T4

pp(j+/Vp~V(j:0 Y qe H(Q). (2.10)
Q

However, in this case the eigenvalue problem is rational, which is rarely studied
compared with linear and quadratic eigenvalue problems. Note that in contrast to

the displacement formulation, the eigenspace corresponding to A = 0 is now one
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2.2 The Model Problem

dimensional. Thus this formulation has a much smaller null space or kernel, which
may be more stable and efficient when used in conjunction with projection-like

spectral approximation methods.

2.2.1 Spectral approximation

We now turn to the finite element methods for approximating the solutions of
the quadratic eigenvalue problem (2.9) and the rational eigenvalue problem (2.10).
Spurious modes are usually present when standard finite elements are used in a
displacement formulation:. However Bermudez eét. al. [6] successfully demonstrated
that the spurious modes ¢an be avoided by using the lowest order Raviart-Thomas
elements in RY, d =2, 3 (see, for-instance, [10, 50]).-For simplicity we will consider
only the two dimensional case. Let {75} be a regular family of triangulations of €

indexed by h, the maximum diameter of the elements. Let
Vi, = A{v, € H(div, Q) : vy |7 EPgEBPOX VT € Tyandv, -n=0on g} CV,

where d = 2 and Py, denotes the set of polynomials of degree at most k. Thus locally
v}, takes the form (a + sz, b+ sy)". The discrete problem associated with (2.9) is :

Find A € C and u;, € V,,,u;, # 0, such that

)\Q/puh-\_fh—i—)\ Buh-n{rh-n—i—/
Q

aup -nvy - n+/ pc? divuy, divv, =0, ¥ v, € Vy.
T'a Q

- (2.11)

Theorem 2.1. The dimension of the zero eigenspace &y associated with (2.11) equals

the number of interior nodes in the triangulation.

Proof. Setting vi, = uj, and A = 0 in (2.11), we see that

divu, =0 on and u, -n =0 on 0.
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2.2 The Model Problem

Since uy, = (a + sz, b+ sy)" on T € Ty, the divergence free condition implies that
uy, is a constant vector (a,b)" on T. By direct computation, we see that there exists

a linear polynomial 17 such that

Ihr I

%:—b and a—y:a

Let n = (ny,n2)" be a unit normal to an edge e of T, so t = (—ny,ny)' is a unit

tangent vector to e. We see that

g
u, n=Vip -t =——
h Yr 5
So if an edge e is'eommon to-Ty-and 75, then in general ¢y, and o, differ by a
constant only by the continuity of u, - nm across e. At an interior node N, we can
assign a common value for all ¥ at that node. Here T" are all triangles sharing N;
as the common node. We then spread this-defining process outward to all ) using

the induced values on other nodes. Consequently, ¥ is continuous piecewise linear

over . Let V+ := (—a%, £ T and define

V+S), = {Vl‘llh : Uy, is continuous piecewise linear and vanishes on the boundary}.

Thus we have just shown the zero eigenspace & is contained V+S;, and the opposite

inclusion is also easily checked. Hence

& = V.

We now find the dimension of V+S,. Let N be the number of interior nodes and
let ¥;,j = 1,..., N, be the nodal basis functions such that W;(Nj) = ;. The

linear independence of W¥;’s is preserved by the perp-gradient operation. In fact,
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2.2 The Model Problem

suppose iv:lcjvl‘l!j = 0. Then this implies g:lcj\lfj = ¢ for some constant c¢. Hence
cj =c b;_the condition W;(Ny) = 6;. Coil_sequently, c(32;V; —1) = 0. But we
know i% # 1 due to the vanishing boundary condition. Thus ¢; = ¢ = 0 and we
conclu]d; that the dimension of the zero eigenspace dim &, = dim V*S), equals the

number of interior nodes in the mesh. ]

Define the conforming P; finite element space
H;, = {ph € Hl(Q) th|T ceP. . VTe€e 7;1}

This is the subspace.of H'(Q)-consisted of continuous piecewise linears. The alter-
native discrete problem in terms-of the approximate pressure field is: Find A € C

and pp € Hy, such that

)\2 ~ )\2 p :
C—Q/QPth—l-a+)\B FApphqh—F/QVph-th:O Y q, € Hp,. (2.12)

Letting ¢, = py, and A =0 n.(2:12) we can easily-see that the dimension of the zero
eigenspace in this case is one, which is the same as the original problem (2.10).
Again we see that the pressure formulation has a much smaller null space than
the displacement formulation. Also the number of unknowns is much smaller. Thus
the pressure formulation turns out to be a very good alternative, once in addition
we show in the remaining sections that its associated eigenvalue problem can be

efficiently solved. A minor remark is in order here.

Remark 2.2. Suppose an eigenpair (A, py), X # 0 has been computed, what if, in
addition, one wants to know a corresponding displacement approzimation u,? One
must not find uy, by solving an additional system linear equations again so as to

maintain the advantage of the pressure formulation. It should be given by a simple
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2.3 Linearization of Nonlinear Eigenvalue Problems

formula. A naive way is to use the relation (2.5) to evaluate a up, but this would
be ill conceived since the computed displacement would be piecewise constant. Con-
sequently, V - u, = 0, which certainly does not approximate (2.6). Fortunately, a
general principle for such a problem (recovery of wy, from the pressure approximation
pr) has been provided in [13] where one can obtain an accurate uy, in the Raviart-
Thomas space by a simple evaluation formula which is a modification of the above

naive formula.

2.3 Linearization of Nonlinear Eigenvalue Problems

In this section we start to-address the computational issues related to the dis-

placement approximation.(2.11)-and the pressure approximation (2.12).

2.3.1 Linearization of quadratic eigenvalue problems

Suppose the total number of interior and absorbing edges is ny. Let {¢, ?;1
denote the cardinal basis of V.0 that on the edge‘e;, @; has the unit normal flux
and zero normal flux on the remaining n; — 1 edges. That is, fe, ¢; - mds = ;5.

1

For u, € V), we write w, = Y u;¢; and denote u = [uf,---,u, |". Note that

Jj=1
the unknown vector u contains normal fluxes in its components. Then, the discrete

problem (2.11) can be expressed as the following QEP:
QNu= (MM, + (a+\3)A, + K,)u=0, (2.13)

where M, = [M}}] and K, = [Kjj] are mass and stiffness matrices, respectively, and

A, = [A}] is used to describe the effect of the absorbing wall. Here

Q Q Ta
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2.3 Linearization of Nonlinear Eigenvalue Problems

for 2,7 =1,...,ny. For this problem, we are only interested in eigenvalues that are
located in the interior of the spectrum. Suppose that the eigenvalues near o are of

interest. Accordingly, the QEP (2.13) is shifted into

(,LLQMU + Nﬁu + [?u> u=20 (2.15)
with = A — o and
Mu = Mu;

K, =0*My+ (a + 0B8) Ay + K,

On the one hand, one cannumerically solve (2:15) without transforming it further.
Among such direct methods we mention the second-order Arnoldi (SOAR) method
[3] and the Jacobi-Davidson algorithm applied to polynomial eigenvalue problems
[57]. On the other hand, it is more common to transform or linearize (2.15) into a

SEP [66]. In this chapter; we let

A, = . B, = (2.17)

and linearize (2.15) into the GEP

—MZT/[/uu v
(2.18)

1
Avp =—B,p with ¢ =
H u u

The matrix K, in (2.17) is nonsingular owing to the fact that the shift value o is
not an eigenvalue of (2.13). Furthermore, the GEP (2.18) can then be transformed

into two types of SEPs of the forms (B;'A,)p = p e and (AB; ) = p 4,
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2.3 Linearization of Nonlinear Eigenvalue Problems

respectively, where ¢ = B,¢. Therefore, from (2.17) and (2.18) we have

(Q-SEP1) B 'A, = _ o == (2.19.1)
u K;' -K;'D, u F1 u
and
0 MK ! _
(Q-SEP2) AB-1| @ | = o Vo Y L w = R (2.19.2)
w I, D, K1 w L

Note that the SEPs of (2.19.1) and-(2.19.2) derived by the QEP in (2.15), are called
Q-SEP1 and Q-SEP2; respectively. The standard Arnoldi method can then be

applied to solve Q-SEPs, and the details will be given in Section 2.4.

2.3.2 Trimmed linearization for rational eigenvalue problems
Let {¢;}72, be.a nodal basis of . For p, € Hy, we write p, = > p;1; and
j=1
denote p = [p1, -+ ;Pny) » Then; the discrete problem (2.12) can be written as the
following REP:

2 2

where M, = [M}}] and K, = [K};] are mass and stiffness matrices, respectively, and

A, = [A};] describes the effect of the absorbing wall. Here,

Mﬁ’}:/ﬂwi%, K Z/QV@/%-V%, Aﬁ-}z/FA pYit); (2.21)

fori,j=1,...,ns.
To solve REP (2.20), one approach is to multiply equation (2.20) by the scalar

MG+« and expand it into a cubic polynomial eigenvalue problem, and then solve it by
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2.3 Linearization of Nonlinear Eigenvalue Problems

Jacobi-Davidson method [30]. An alternative approach is to treat (2.20) as nonlinear
eigenvalue problem and solve it by a nonlinear eigensolver, such as Newton’s method,
nonlinear Arnoldi method, or nonlinear Jacobi-Davidson method [52, 68, 69]. Re-
cently, a trimmed linearization is proposed in [64] which linearizes (2.20) into a GEP
so that the standard Arnoldi method can be applied. We introduce the trimmed
linearization below.

Given a shift value . With 1 = A — o, the rational A-matrix R(\) in (2.20) can

be rewritten as

\— 2
R(\) = ﬂMp+Kp+

c2

(A =0 +0)*
A—oc+o)8+a’

— gL\ = 2
_ A—@)*+ (2>\ glo+o Moo %
¢

A—a)?+2(\—0)o + o2
AN—o)s+of+a P

1 20 o2 PE 2p0 + o
2
= =M, — M, —M, + K A,.
8 <62 ”)w(c? p)+<cg 4 p>+w+05+a !

(2.22)

By applying the long division, the rational term.in (2.22) can be simplified into the

following

w4 2u0 + o ) a? B+ 20
= M Bl T o

pB+oB +a (08 +a)? (08 + a)?
o? (08 +a)  (of+a)]"
+aﬁ+oz_uz{ a2 a?Bu } '

This implies that

1 a? 20 o’ + 20
RN = @2 (=M +—2 4 2O, P20y
W)= < vt Garay p)*“(e? vt oAt ay )

o2 o? (B+a)®  (cf+a)\ "
—M,+ K, +———A, | — A
+<02 p T p‘|‘0_6+a p) w ( o2 + 2By ) p

—~ ~ ~ 11
= (M, +pDy+ K, —pi* (0 — op™") LR, (2.23)

D
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where

—~ 1 a?
M, = =M, +-——A 2.24
p CQ p+(0’ﬁ+a)3 P> ( )
~ 20 0B+ 20a
D, = —M,+—A 2.25
p c? p + (O'ﬁ + 04)2 P ( )
~ 0'2 CJ'2
Kp — gMp + Kp + MAP’ (226)
(08 + a)? (08 + )t
v = — = —— 2.27
(){2 Y Q 0[2/8 Y ( )

and L,R' = A, is the full-rank decomposition of-A, with L,, R, € R™*‘ { < n,.
pP-"p P D p P

Introducing an auxiliary vector

M T
= R 2.28
the REP in (2.20)7¢an be reformulated-as
(uQJ\Af} +uD, + f(p) P — (i Lyd =0. (2:29)
Using (2.28) and (2.29), we get the GEP

0o —-M, L, I,
Ap=|1, -D, 0 $=1 0 K 0 |¥= By, (2.30)

0 —R] VI 0 0 ol

where ¢ = [((,u_lf?p + 5p)p)T,pT,qT]T. As before, the matrix [?p in (2.26) is
nonsingular due to the fact that the shift value o is not an eigenvalue of (2.20). As
in (2.19.1) and (2.19.2), the GEP (2.30) can then be, respectively, transformed into

the following two types of the SEPs of the forms (B, A,)p = p 'y and (A,B, ') =
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ptp where ¢ = B,ep. Consequently, we have

0 —M, L,
N I 1
—1 _ _ _ _
(R-SEP1) B, "Ap=| K,' -K,'D, 0 p = (2.31.1)
0 —9*1}%;,r o I,

and

0 —Mpf(;l g’le
— 1
(R-SEP2) A5, = | 10 SBRFN po, [ v= b =B (2312)

0" —RJK;' oW

Note that the SEPs.of (2.31.1)-and (2.31.2) derived by the REP in (2.29) are called

R-SEP1 and R-SEP2, respectively.

2.3.3 Error analysis

In this subsection, we will discuss residuals of QEP (2.13) and REP (2.20) by
using linearizations (2.19) and (2.31), respectively.
We first derive residual bounds of approximate eigenpairs for QEP (2.13) by

by using linearizations Q-SEP1 and Q-SEP2, respectively. Let (u;?, [Kﬂ) be an
f11

f12} be the associated residual vector. That

approximate eigenpair of (2.19.1) and [

is,

fio l?;l —Kglﬁu u H1 u
1 —Vi— MlMuul
S >

Kjl(ﬂlVl - Nlﬁuul - [?uul)
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It follows that

Mfﬂum + Dy + Ky = pa(—vy — ki) + mve — Ko fio
= _,u%fll — ,ulf?quQ-
Let Ay = p11 + 0. From (2.13) we have

lQOw | _ piMuas + m Dy + Kow || _ ]l + pal [ Kulll fr]
[ IoH| N [

- (2.32)

w2 foo

On the other hand, let (p5*, [V2 } ) be an approximate éigenpair of (2.19.2) and [fm}

be the associated residual vector.-That is,

for 0 —Mu}?_l Vo 1 Vo

f22 I —Eul’?_l Wo H2 Wo

It follows that

uéﬂuf?glvvz + Mzﬁu[z:lwz +wy = pa(—ve — pofor) + pave — pofoy
_ 2
= —M2f21 — pofas.
Letting us = K, 'ws and Ay = 1o + 0. From (2.13) we have,

Qo) us|| (|3 Muuts + p2 Dty + Kyus| o P + Lo oo |
[[uy [[uy B [[uy

(2.33)

Now, we derive residual bounds of approximate eigenpairs for REP (2.20) by us-

ing linearizations R-SEP1 and R-SEP2, respectively. Let (u;,[s{,p/,q/]") be
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an approximate eigenpair of (2.31.1) and (g}, g/, g3]" be the associated residual

vector. That is,

g11 0 —Mp Lp S1 S1
~ ~ o~ 1

g | = | K,' -K,'D, 0 P | T, | P

g13 0 —o 'Ry, oL || a a

This implies that

S1 = _,U/lj\zppl + i Dyqe =g, (2.34)
7o—1 —1 71 1
g2 = Kp 51— Kp Dyp1 — M—Pb (2.35)
1
= : 2
q: = (,ulg 1’(9 — 1) 1251 (g13 10 1R;p1) . (236)

Substituting (2.36) into (2.34), sy can‘be represented by

—~ _ —1 4
sy = — i Myp1 +43 (10 M — 1) (Lpgis +.0 1LpR;P1) — H1811- (2.37)

Substituting (2.37) into (2.35) and taking A; = p; + 0. From (2.23) and (2.27),

3 47-1
L

R )p1 = piMyp:1 + i Dpp1 + Kpp1 — i {

_ 1\ !
_ e - mRogs i (=P L) L
1811 — U1 812 — M) 7B +a + " pS13

which implies that

[R(A)p:|] 1 ~
< — < mPllgull + [ml1 K gzl
||P1|| ||P1

1
2 3 1
T <<75+04+M1)

1Lyl ||g13||}- (2.38)
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On the other hand, let (5", [sq,t4,qq4]") be an approximate eigenpair of (2.31.2)

and [g9;, 829, 8a3] | be the associated residual vector. That is,

g1 0 —Mpl?;l Qile So So
~ 1

822 - [112 Dpr_l 0 t2 - @ t2

g23 0 —-RK;' o'W, a2 Ao

This implies that

L 1
o1 — —Mpr_ltz + Q_leCIQ s /,L_SQ’ (239)
2
~ = 1
Sy = Dpr t2 == Iu_t2 —+ 9292, (240)
2
1\~
B = (Q‘lﬁ - u_> (R;Kgth - g23> . (2.41)
2

Substituting (2.40)and (2.41).into (2.39), we have

1F T— = - > 1\ —1 >
MK b pusD, K ey + to — a0 oty ') LyR) K, 't

_1y -1
= —[58o — Hago + Ha (19 — Oly 1) Lygas.

Letting py = K;ltg and setting Ay = po + 0. From (2.23) we get

R(A\)p2 = M%J\ZIE + ,u25pp2 + [?pp2

-1
o [(@B+a)® (o8+a) T
_MZ a2 + oﬂﬁ’uz LpRp P2
o2 8 1\'
= —5821 — [12822 + i (08 + )t <05 T o + @) Lpgas.
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Hence,

[R(A2) P2l

1 2
— 9 || |lgar || + |2ll|g22 ||
P2l P2l

,  o2f B 1\
+ 'u2(<75+0z)4 (aﬁ+a+£)

Remark 2.3. In order to check the tightness of upper bounds in (2.32) and (2.33),

HLpHngsH}- (2.42)

as well as, (2.38) and (2.42) for residuals, respectively, we refer to the coefficient
matrices generated in Example 2:4 of Section 2:5. For (2.9) we adopt the data as in
[6] by setting p = 1kg/m?, ¢ =340 m/s, a = 5 %10% Ny/m®, and B = 200 Ns,/m*. In

addition, we choose g = =25 +60071 as the shift value. Then

(i) from (2.14) pthe element mass and stiffness matrices are

2 —1 0 2 2 2\/2
—pl -1 2 0 and- pl 9 L9 22 |,
00 2 W2 22 4

respectively. Hence, by (2.16) the infinity norm of l?u can be estimated by
IKulloe = || Kullse = O(pc?) = O(10%). From (2.32) and (2.33), we conclude
that the upper bound for the residual of the approximate eigenpair (py + o, uy)
of (2.13) by solving Q-SEP1 is larger than that of the approximate eigenpair

(u2 + o,u2) of (2.13) by solving Q-SEP2.

(i1) From (2.21), the element mass and stiffness matrices are

2 11 1 —1/2 —1/2
h2
a1 21 and -1/2 1/2 0 )
112 -1/2 0 1/2
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respectively. Hence, by (2.26) we have that ||I~(p||OO ~ || Kpllo = O(1). If the

eigenvalue X\ is one of the desired eigenvalues in Figure 2.2, then with u = A\—o
1!
#(ovata)
ob+a p

,  a’B p 1 -
" B+ a) (aﬁ+a+u)

Clearly, from (2.38) and (2.42) we.conclude that the upper bound for the resid-

we have

4% 107 < < 3.1 x 10

and

0.001 < < 0.8.

ual of the approzimate eigenpasr (fi1+oypy) of REP (2.20) by solving R-SEP1

is larger than that of (u2 + o, pa)-of (2:20) by solving R-SEP2.

2.4 Arnoldi Method with Schur-restarting

The Arnoldi method is the most popular method for solving large sparse SEPs:

Ax = Ax. In Arnoldiprocess, an orthonormal-matrix V}, 41.1s generated to satisfy

AV & Vi v, e (2.43)

where H,, € C™™ is an upper Hessenberg matrix. If the dimension of the Krylov
subspace span{V,,} is larger than a certain value, then the process of Arnoldi de-
composition will be restarted.

For the restarting process, we can use an implicit restart scheme [46, 59]. The
package ARPACK [39] includes a very successful implementation of the implicitly
restarted Arnoldi algorithm. It has been used by numerous engineering fields and
remains a popular choice for solving eigenvalue problems. However, these implicitly
restart type schemes may suffer from numerical instability due to rounding errors.

Stewart proposed the Krylov-Schur method [28, 61, 63] that relaxes the need to
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2.4 Arnoldi Method with Schur-restarting

preserve the structure of the Arnoldi decomposition and therefore ease the compli-
cations of the purging and deflating.
We state the Schur-restarting scheme as follows. Let
T, T Ul
H,, = [Uy U] ! ’ (2.44)
0 7 Ul
be a Schur decomposition of H,, where T} and 7, are upper triangular, and the

eigenvalues of T}, are of interest. Substituting (2.44) into (2.43), we see that

s L .
A(Vi [Ux Ur]) = (Vi [Up—Us)) + Pt 1y Va1 (€5, [Ur Ud]),
0
which implies that
AV, = ViTy, + ¥ th | (2.45)

where Vi, = V,,Uy, Vis1 = Vinarvand t = h, el Uy
Let Q1 be a Householder matrix with tQ; = 7e/. Then (2.45) can be rewritten

as

AVi@Q1) = (ViQ)(QTThQ1) + TViref - (2.46)

The matrix Q¥T;Q; can be reduced to a new Hessenberg matrix H," by using

Householder matrices Q; for ¢ = 2,...,k — 1 with

Qiy QN QT TQ)Q2 - Quer = Hf

egQQ“'Qk—l = eg.
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Multiplying (2.46) by Q;, i = 2,...,k — 1, a new Arnoldi decomposition of order k

+ _ o+ + T
AV,T =V H] + TV €

is obtained where V,:r = f/le---Qk_l, V;H = Vgi1 = Vmy1 and the Arnoldi
process can be applied to generate it to order m in (2.43). One repeats the above
process until the desired eigenvalues are convergent. The process is summarized in

Algorithm 2.1.

Algorithm 2.1 Arnoldi method with Schur-restarting for solving Ax = Ax
Input: A: coefficient matrix; tols: tolerance for.eonvergence, r.,.,: maximum num-
ber of Schur-restartings:
Output: The desired k eigenpairs:
1: Build an initial Arnoldi decomposition of order k as'in(2.43) and set r = 0.
2: restart
3:  Extend Arnoldi decomposition of order % to order m = k+/¢ and set r = r+1.

4:  Compute all Ritz pairs (u; ', z;) with Hyz; = p; 'z;,i = 1,...,m and sorting
Ritz values so that { (g, 21), . -, (pr, zx) } are wanted.

5. for i=1,...5kdo

6: Check convergence by |him, +1.m|le),zi| < tol 4.

7. end for

8: if ( Not all m desired eigenvalues are convergent and r < 7., ) then

9: Compute the Schur decomposition-of H,, asin (2.44), where the eigenvalues
of T}, are of interest.

10: Set Vi :=V,,Ug, Vii1 := Viy1 and tkH = hm+17me;Uk.

11: Compute Householder transformation @ such that t7Q, = Te; .

12: Reduce QFT,Q, to a new Hessenberg matrix Hj by using Householder
transformations ); for i =2,..., k — 1.

13: Set Vi := VipQ1 - - Qr—1 and hjy1; = 7 to get the new Arnoldi decomposi-
tion with order k:

AVk = Vka + hk+1,kvk+1e;—. (247)
14: end if

15: until ( desired k eigenpairs are convergent or r > .y )

Now, we will apply the Algorithm 2.1 to solve QEP (2.13) and REP (2.20),
respectively, by setting A to be the coefficient matrices in (2.19) and (2.31), respec-

tively.
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2.4 Arnoldi Method with Schur-restarting

2.4.1 Stopping criteria

Let (1!, z) be a Ritz pair and satisfy H,,z = y~'z. From (2.43) and Q-SEP1

in (2.19.1) we have

0 _Mu le 1 le Vi 1,1
l 2+ hoorm | | elz, (2.48)

[};1 _Kglﬁu Vm2 . Vm2 Vim+1,2

where V,,, = [“ﬁz;] and vy, = [:Zi i;] are partitioned with compatible sizes. Using

the first equation of (2.48), we can eliminate V,,;;zin the second equation and get

Q| _ (2N 4 Do E [ il 1} [ € 2] €
] s [

=q(p), (249)

where u; = V02, A = p+ 0 and ¢ = ||V + I?uvm+1,2||. Without ambiguity
by using the same notations as abeve in Algorithm 2.1, from (2.43) and Q-SEP2
in (2.19.2) we also have

0 —]Tfu[?;l Vot Vimt1,1

1 le
o Z— — Z+ hpt1m e 7z
I,, —D,K;" Vi 1 Vs Vini1.2

3

and

QN ol _ (12 My + pDy + Kol |l [hunsrn] 2] G2 = (), (2.50)
[[us [z | [z | ’

where uy = l?;lvmgz, A=pu+oand (o = ||[tVii11 + Vimg1,2||. Therefore, ¢1(p) in
(2.49) and ga(p) in (2.50), respectively, can be used as stopping criteria for residuals

while Algorithm 2.1 is applied to solved QEPs (2.13).
Similarly, we can apply Algorithm 2.1 to solve REPs (2.20). As above, we let
(u=1,z) be a Ritz pair and satisfy H,,z = p~'z. From (2.43), and R-SEP1, R-
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2.4 Arnoldi Method with Schur-restarting

SEP2 in (2.31) we have

0 ~M, L, Vin Vint Vit
~ I 1 .
K;' —K;'D, 0 Vo | 2= 0 Via | 2+ hmtim | V1o | €m2z  (251)
0 fg_lR;— oM, Vins Vins Vm+1,3
and
0 -MK;' o'L, Vint Vin V11
In2 *Bpkpil 0 Vin2 Z= Vina z+ herLm Vm+1,2 e;yrzza (252)
0 fR;)rf};l 97119]4 Vins Vins Vim+1,3
where Vi, = [V,11, Viias Vi) and Vi = [Vi) g1, Vi 05 Ving1,] | are partitioned

with compatible sizes. Using the first and the third equationsof (2.51) and (2.52), we

can eliminate Vjz'and Vsz-in the second equation of (2.51) and (2.52), respectively,

and get
[RN)Pull w2+ pDy + K, — i2(9 —lops )~ Aplpy ||
1P [P
Wb Py 1,m | e;l;z &1
rimllenzl€ (), (2.53)
1P|
where p; = V02, A= p+ o0 and &§ = ||pvps11 + l?pvmﬂg — ﬁngpva’gH, and
IR\ pal| I [MQMp + Dy + Ky — p*(0 — op™ ') 7 Ay | ol
P2 P2
hons1ml €] z
P2
where py = [?;1Vm2z, AN=p+oand & = ||uvmer1 + V12 — #;LmeJrLgH.

Therefore, r1(¢) in (2.53) and ro(p) in (2.54) can be used as stopping criteria for
residuals while Algorithm 2.1 is applied to solve REPs (2.20).

Applying Algorithm 2.1 to solve QEPs (2.13) and REPs (2.20) are summarized
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2.4 Arnoldi Method with Schur-restarting

in Algorithm 2.2 and Algorithm 2.3, respectively.

Algorithm 2.2 Arnoldi method with Schur-restarting for solving QEP in (2.13)
Input: Coefficient matrices M, D, and K,, parameters ¢, a and (3, o: shift value,
tolg: tolerance for convergence, 7,x: maximum number of Schur-restartings.
Output: The desired eigenpairs (A\;,w;) for i =1,... k.
1: Construct matrices Mu, 5u and l?u defined in (2.16) and set r = 0.
2: Compute initial Arnoldi decomposition in Line 1 of Algorithm 2.1 with A in
Q-SEP1 or Q-SEP2.
3: restart
4: Do the steps in Lines 3 and 4 of Algorithm 2.1.
5 for i=1,...,k do
6: Compute

p(us) = (ot PIM et (4 1) Bl Aull + 1 Kull)-

7 Check convergence of QEP by

with g,(p;) in (2.49) or (2.50), £=1,2.
8: end for
9: if ( Not all k-desired eigenvalues are convergent and #.< 7., ) then
10: Do the Schur-restarting in Lines 9=13"0f Algorithm 2.1.
11:  end if
12: until ( desire m eigenpairs are convergent.or 7> . )
13: Set \; :a+u;1 and w;'=V,pzpfore=1,..., k.
14: if Q-SEP2 is solved then
15 w+ Kjlu,i=1,... k.
16: end if

2.4.2 Computational costs

In this subsection, we compare the computational costs of the j-th Arnoldi step
of Algorithm 2.1 for solving Q-SEPs (2.19) and R-SEPs (2.31), respectively. This
is of general interest, because a comparison of the CPU time is sensible only if the

number of outer iterations of Algorithm 2.2 or 2.3 is the same for each algorithm.
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2.4 Arnoldi Method with Schur-restarting

Algorithm 2.3 Arnoldi method with Schur-restarting for solving REP in (2.20)

Input: Coefficient matrices M, K, and A,, parameters ¢, « and 3, o: shift value,

tolg: tolerance for convergence, 7, maximum number of Schur-restartings.

Output: The desired eigenpairs (\;, p;) fori =1,... k.

1:

Construct matrices M, D, and K, defined in (2.24), (2.25) and (2.26), respec-
tively, and set r = 0.

2: Compute the full-rank«decomposition of A,: LPRJ = A,

@

10:
11:
12:
13:
14:
15:
16:
17:

Compute initial Arnoldi decomposition in Line 1 of Algorithm 2.1 with A in
R-SEP1 or R-SEP2.

restart
Do the stepsiin Lines 3-and 4 of ‘Algorithm 2.1.
for i =1, "2,mdo
Compute
(o + ;") (7 bt )’
) = |———=—|||M,|| + || K,|| + : Al
Vi) = | WV | \a+(U+M;1)BIH ol
Check convergence by
re(s:)
< tOlR
V(1)
with 7¢(y;) in (2.53) or (2.54), £=1,2.

end for
if ( Not all k£ desired eigenvalues are convergent and r < rp.x ) then
Do the Schur-restarting in Lines 9-13 of Algorithm 2.1.
end if
until ( desire m eigenpairs are convergent or r > 7.y )
Set \; :U+u;1 and p; = V02, fori=1,... k.
if R-SEP2 is solved then
pi < K 'pi,i=1,... k.
end if
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2.4 Arnoldi Method with Schur-restarting

From (2.47), the unit vector v;;; is generated by

J
Av; = E hjivi + hjy1Viga,

i=1

J
where hj; = viAv; for i = 1,...,j and h;41,; = ||Av; — > hj;vi|]|2. For conve-
i=1
nience, we let v; = [ij with v;1,vjo € C". The matrix-vector product Av; in
J

Algorithm 2.2 for solving QEP (2.13) by Q-SEP1 (2.19.1) and Q-SEP2 (2.19.2)

can be, respectively, represented by

—~ —

_Muv' _Mugu
7 and A, B, v = N

B;lAuVj =
K, N(vj1 —Dyvjs) Vi1 — Dygu

with g, = I?;lvﬂ. This implies that Algorithm 2.2 for Q-SEP1 and Q-SEP2

needs the same computational costs for generating the unit vector v;; for each j.

On the other hand, by letting v; = [v/s Vo, V5| with w1, v;, € C" and v;3 €

C*, the matrix-vector product Av; in Algorithm 2.3 for solving REPs by R-SEP1

(2.31.1) and R-SEP2 (2.31.2) can beyrespectively, represented by

Lpvis — Mpvjo Q_leVj?» — Mg,
-1 ~ ~ 1. ~
Bp Aij = Kp 1<Vj1 _ Dijz) and Apo \ Vi1 — ngp
0 'IVi3— 0 'R Vs o Wvis — R g,

with g, = [?p_ 'vjs. Consequently, the computational cost of AB, 'v; needs an
extra cost for the computation of ¢~ 'L,v;3 compared to that B, 'A,v;. The cost
for generating the unit vector v, 4, by R-SEP1 is slightly cheaper than that by R-
SEP2. We summarize the computational costs of generating v, for by Q-SEP2

and R-SEP2 in Table 2.1.

Remark 2.4. In the numerical implementation, the vectors g, = K,'vj» and
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2.5 Numerical Results

Q-SEP2 (2.19.2) R-SEP2 (2.31.2)
Solving linear system K., x, =b, Ky,x, =b,
Matrix-vector products Mubu, 5ubu ]\/Zpbp, 5pbp, Lyc,, R;c;)r
Inner products 7+1 j+1
Saxpy operators 7+1 J+2
Scale-vector product 1 1

Table 2.1: Computational costs of the j-th Arnoldi step of Algorithm 2.1 for Q-
SEP2 and R-SEP2.

g, = I?p_lv]g for j = 1,...,k can be saved in G, = [f(u_lvu I?u_lvmg] and

G, = [I?p_lvu Kp_lvmg], respectively;-so that the vectors uy, ps in (2.50) and
(2.54) can be computed by vy, = Gz and ps = Gpz directly. Hence, it requires
the same computational costs-for-computing uy, Uy in (2.49) and (2.50), as well
as, p1, P2 in (2.53) and«(2:54); respectively.- Consequently, the computational costs
of Q-SEP1 for the convergence test in Algorithm 2.2 need one extra matriz-vector
product [?uvm+172 than those of Q-SEPZ2 in computing ; and (3. Similarly, the
computational costsof R-SEP1 for the convergence test in Algorithm 2.3 need one
extra matriz-vector product I?pvmﬂ,g than those.of R-SEP2 in computing & and
&. Therefore, we conclude that Algorithm 2.2 for Q-SEP1 and Q-SEP2, as well
as, Algorithm 2.3 for R-SEP1 and R-SEP2, respectively, almost have the same

computational costs provided that they have the same outer iterations.

2.5 Numerical Results

We conduct numerical experiments to evaluate performance and accuracy of the
eigenvalue solvers described in Section 2.4. To distinguish between various eigenvalue

problems, we use notations Q1, Q2, R1 and R2 defined as follows:

e Q1: Applying Algorithm 2.2 to solve the QEP (2.13) with Q-SEP1 in (2.19.1).
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2.5 Numerical Results

e Q2: Applying Algorithm 2.2 to solve the QEP (2.13) with Q-SEP2 in (2.19.2).
e R1: Applying Algorithm 2.3 to solve the REP (2.20) with R-SEP1 in (2.31.1).
e R2: Applying Algorithm 2.3 to solve the REP (2.20) with R-SEP2 in (2.31.2).

All computations are carried out in MATLAB 2009a on a HP workstation with
an Intel Quad-Core Xeon X5570 2.93GHz and 72 GB main memory, using IEEE
double-precision floating-point arithmetic. We apply Algorithms 2.2 and 2.3 to
solve the following examples arising in fluid-solid systems. The order m of Arnoldi
decomposition in Line 3 of Algorithm 2.1 is set m. =40; the maximum number 7,
of Schur-restartings is set 7., =15 and the number of desired eigenpairs is £ = 10.
The relative residuals of approximate eigenpairs (\;,u;) and«();, p;) computed by

Q1 and Q2, as well as, R1 and R2 are, respectively, defined by

1Q@ gl <~ IR(A)pil
(Al A Il

where p(\;) and ¥()\;) are given in Algorithm 2.27and 2.3, respectively. Tolerances
for relative residuals of QEPs and REPS are chosen by tolg = tolgp = 5 x 107'°. The
linear systems in Algorithms 2.2 and 2.3 are solved by LU-factorization with the
shift value 0 = —25 4 6007i. Fronbenius norm for matrices and 2-norm for vectors

are used.

Example 2.1. [6] We take the geometrical data: the domain ©Q = [Om, lm| X
[—0.75m, Om], Iy = [Om, Im] x {Om} given in Figure 2.1(i) and the following physical

data: p = lkg/m®, ¢ =340 m/s, a =5 x 10* N/m*, and 8 = 200 Ns/m.

The rectangular domain €2 is uniformly partitioned into n, by n,, rectangles and
each rectangle is further refined into two triangles, see Figure 2.1(ii). The dimen-

sions of coefficient matrices in QEP (2.13) and REP (2.20) are (3n, — 1) x n,, and
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2.5 Numerical Results

——a=1.00m
vz
absorbing wall r,
b=0.75m @
.
n
FR
Z 7Z
rigid walls
(i) Fluid in a cavity with one absorbing wall. (ii) Initial mesh.

Figure 2.1: Fluid inca cavity with one-absorbing wall and initial mesh

(ng+1) X (n, +1), respectively. Figure 2.2 plots the analyticsolutions of the desired
eigenvalues Ay, .. JAjp of (2.5)=(2.8) (see [6]) with the lowest positive vibration fre-

quencies satisfying 0 < % < 600Hz.

Convergence test: We first.demonstrate convergence rates of Q2 and R2 while
computing the desired eigenvalues in Figure 2.2, Toaneasure the convergence rate,
we run the test over the five successively refined meshes (See the first column of

Table 2.2) and then calculate the rates by

[ Aig) — A+l

ratey; ) = log, ( ) , for 1=1,...,10, y =1,2,3,

[ A1 — A+l

where Aj; ;) for j = 1,...,5 denote the approximate eigenvalues computed by Q2 and
R2 corresponding to \; obtained from the meshes described in Table 2.2. The 5-th
and the 6-th columns of Table 2.2 illustrate the quadratic convergence of rate ;
Jj = 1,2,3 for \; of QEP (2.13) and REP (2.20), respectively. In our numerical
experiment, the convergence rate are always close to 2 for all desired eigenvalues,

Ai, ©=1,...,10, computed by Q2 and R2 as well as Q1 and R1.
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2.5 Numerical Results

(e, ) Matrix size (QEP) Matrix size (REP) Conv. rate
6w (Bng—1) xny,  (ng+1) X (ng +1) A Q2 R2
(48, 36) 5, 148 1,813
(96, 72) 20, 664 7,081
(192, 144) 82,800 27,985 ratepy,yy | 1.9979  2.0010
(384, 288) 331, 488 111,265 ratep g | 1.9995  2.0003
(768, 576) 1,326, 528 443,713 rate g | 1.9999  2.0001

Table 2.2: Dimension information and convergence rates of A;.

Normwise scaling of QEP: Balancing norms of coefficient matrices is an im-

portant issue [66] before solving a QEP of the form

P(X)x = (A2 PyenPp-Fp)x =.0. (2.55)

In [15] authors give an elegant way to scale the norms of coefficient matrices of (2.55)

as follows. Define
ﬁ(V)XE (V2ﬁ2+1/ﬁ1+ﬁ0)x:0

with v = A/, ﬁQ = (P, ﬁl = (nP; and ﬁo = nb%, where ( and n are scaling fac-

tors. Taking ¢ and 7 as (. = \/70/72 and 1. = 2/(70+ 71 () with 75 := || P2, 11 :=

| P1ll2, Yo := || Poll2, it is proved in [15] that the problem
I?innmax{|||P2||2 -1, |||181||2 — 1], |[[Poll2 — 1|}

achieves the optimum at (, and 7,. In our implementation, the values of ~;, for
¢ = 0,1,2 are computed by 7, = ||Mu||p, vi = |Dullr, 70 = ||Kullp and 75 =
||.Z%||F, " = ||l~)p||p, Yo = ||I?p||F for QEP (2.15) and REP (2.29), respectively.
We denote “#It” the number of Schur-restartings (outer iterations). In Table 2.3,

we show #Its for computing 10 desired eigenvalues of Example 2.1 with (ng,n,) =
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2.5 Numerical Results
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Figure 2.2:xThe distribution of the ten desired eigenvalues A, . ..

7)\10-

(768,576) by Q1, Q2, R1 and R2 with/without scaling. The tolerances toly and

toly for relative residuals are ¢hosen to be 5 x 1072, We see that the convergence

rate of scaled Q-SEPs or R-SEPs is faster than that of unscaled Q-SEPs or R-

SEPs. The performance of Q2 and R2 is also better than that of Q1 and R1,

respectively. In the case of unscaled REP, the norms of ]\Afp, 51, and l?p in (2.24)-

(2.26) are O(10719), O(107°) and O(1), respectively. Since the norms of coefficient

matrices vary too much, R1 can even fail to converge to 10 eigenpairs after 15 outer

iterations.

Table 2.3: #Its for Ay, ..

Q1 Q2| R1 R2
#1t (scaled) 3 2 4 3
#1t (unscaled) | 4 3 15 3

., A10 of Q-SEPs and R-SEPs with/without scaling.
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2.5 Numerical Results
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Figure 2.3: The #Its of Q1 and Q2 with different shift values. “0” denotes desired
eigenvalues A1, ..., Ajp. “(4,7)" denotes the #Its for Q1 and Q2, respectively.
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Figure 2.4: The relative residuals of computed eigenpairs, obtained by Q1, Q2 for
QEP (2.13) and R1, R2 for REP (2.20) with (ng,n,,) = (768, 576).
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2.5 Numerical Results

Q2 R2 T

(ng, nw) #1t TQ2 #It  Thre Tq2

(48,36) | 2 1316] 2 0471 036
(196, 72) 2 71 2 2387 | 0.31
(192, 144) | 2 55.27 2 14.95 || 0.27
(384,288) | 2 5678 | 2 134.0 || 0.24
(768, 576) | 2 8152 2 1645 || 0.20

Table 2.4: Iteration numbers and CPU time for Q2 and R2.

No spurious eigenmodes: In [6], it has been proved that there are no spurious
eigenmodes for the discretization based on'Raviart-Thomas finite elements. We
compute twenty desired eigenvalues of QEP (2.13) and'REP (2.20) by Q2 and R2,
respectively, with scaling and various mesh sizes as shown in Table 2.2 (we computed
20 instead of 10 eigenvalues to-be-better confirmed): The desired eigenvalues of REP
are in one-to-onercorrespondence to those of QEP which match well with relative
error less than 1079, that is, no spurious eigenmodes ever appear. We numerically
conclude that there are no spurious eigenmodes for the discretization in terms of
pressure nodal finite elements.

Null space considerations: "Theorem 2.1'shows that the dimension of the null
space of QEP (2.13) is equal to the number of interior nodes, i.e., (ny — 1)(n, — 1).
In order to observe the interference of such a large null space in the convergence of
Q1 and Q2, we give six different shift values denoted by the “+” in Figure 2.3 to
observe variation in the #Its for Q1 and Q2. The integer pair (7, j) under each shift
value “4” denotes the #Its for Q1 and Q2, respectively. The results in Figure 2.3
demonstrate that the #It needed decreases, as the shift value o is chosen relatively
far away from zero.

Comparison of pressure and displacement formulation: In this para-
graph, we shall discuss the advantages of using the nodal pressure finite elements

with various mesh sizes described in Table 2.2. The notations “T,” and “Try” de-
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2.5 Numerical Results

note the total CPU time for Q2 and R2, respectively. We summarize the results as

follows:

e Accuracy of eigenpairs: From Remark 2.3, the upper bound for relative resid-
ual of the approximate eigepairs of QEP (2.13) (or REP (2.20)) by using
Q-SEP2 (2.19.2) (or R-SEP2 (2.31.2)) is much smaller than that by using
Q-SEP1 (2.19.1) (or R-SEP1 (2.31.1)). On applying Q1 and Q2 to solve
QEP (2.13) with #It = 2, in Figure 2.4, we see that the relative residuals of
eigenpairs corresponding to-Ay and A5 computed by Q2 are improved by about
1 significant digit than those by Q1. The other eigenpairs almost have the
same accuracy. On applying R1 and R2 to solve REP (2.20) with #It = 2,
in Figure 2.4y we see that the relative residuals of eigenpairs computed by R2

are improvedrby about 2 to 4 significant digits than these by R1.

e ComparisonnR2 with Q2: Erom Subsection 2.4.2 we seerthat Q1 and Q2, as
well as, R1 and R2 have the same computational costs, respectively. From
Figure 2.4, we favor applying Q2 and R2 t0 solve QEP (2.13) and REP
(2.20), respectively. From column 12 of Table 2.4, we see that the CPU time
for solving the REP (2.20) by R2 is only 1/5 to 1/3 of that for solving the
QEP (2.13) by Q2. The accuracy of the computed eigenpairs for REP (2.20)
is also better than that of QEP (2.13). These results tell us that using R2 to
solve nodal pressure finite elements for the discrete problem (2.12) is better
than that using Q2 to solve Raviart-Thomas displacement finite elements for

the discrete problem (2.11).

We now want to apply our methods to a more complicated configuration in which

the absorbing walls are located on three sides.

Example 2.2. We use the same geometric data and physical data in Example 2.1

except that the absorbing wall is extended to one half of the rigid walls in the left
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and right boundaries, that is T' = [0, 1] x {0} U{0} x [-0.375,0] U {1} x [—0.375,0].

In Example 2.1, we numerically show that there are no spurious eigenmodes
for the discretization in terms of pressure nodal finite elements. Moreover, the
computational cost for solving the associated REP (2.20) is obviously less than that
of solving QEP (2.13) which is obtained from using Raviart-Thomas displacement
finite elements to the discrete problem (2.11). Therefore, in this example we only
use nodal finite elements to discretize the model and compare the accuracy of R1
and R2 for solving the associated REP. The computed eigenvalues Ay, ..., Ajp with
lowest positive vibration frequencies satisfying 0°< % < 600Hz are shown in
Figure 2.5. The convergence rates for A, ..., A\jg obtained from various the mesh
sizes described in Table 2.2 are-also close to 2. The relative residuals computed

by R1 and R2 are presented in Figure 2:6 which shows that the accuracy of the

eigenpairs produced by R2 is better than R1.

2.6 Summary

We consider the problem for computing damped vibration modes of an acoustic
fluid confined in a cavity, with absorbing walls capable of dissipating acoustic energy.
The discretization in terms of edge-based finite elements for the displacement field
induces the QEP (2.13) and the pressure nodal finite elements gives rise to the REP
(2.20). We utilize the linearization process to rewrite these two nonlinear eigenvalue
problems into four different types of SEPs, namely Q1, Q2, R1 and R2, which
have defined in Section 2.5. From these numerical results, we have the following

conclusions.

1. There are no spurious eigenmodes for the discretization in terms of pressure

nodal finite elements.
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ple 2.2.
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Figure 2.6: Relative residuals of computed eigenpairs obtained by R1 and R2 for
REP in Example 2.2 with (ng, n,) = (768, 576).
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2.6 Summary

. The dimension of the null space associated with the edge-based displacement
(QEP) equals the number of interior nodes in the triangulation; the nodal-

based pressure model (REP), however, only has one dimensional null space.

. The convergence of the eigensolver for the QEP would be disturbed by a large

null space when the shift value is close to zero.
. The size of the QEP is larger than the size of the REP.

. The CPU time for solving the corresponding REP (2.20) are only 1/5 to 1/3

of the CPU time for solving the QEP (2.13).

. The accuracy.of Q2 and R2 algorithms are better than Q1 and R1 respec-

tively.
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3.1 Introduction

3.1 Introduction

The problem of finding scalars A € C and nontrivial vectors x € C" such that

(MM +AD + K)x =0, (3.1)

where M, D and K are n x n large and sparse matrices, is known as the quadratic
eigenvalue problem (QEP). The scalars A and the associated nonzero vectors x are
called eigenvalues and (right) eigenvectors ofithe QEP, respectively. Together, (A, x)
is called an eigenpair of (3.1).

The QEP arises in a wide variety of applications, including electrical oscillation,
vibro-acoustics, fluid mechanies;-signal-processing and the simulation of microelec-
tronical mechanical system etc. A good survey of applications, spectral theory,
perturbation analysis and numerical approaches can be found in [14, section 11.9],
[66] and the references therein.

In practice, some eigenvalues of a QEP near a target o are interested. Hence we

may apply the shift transformation and consider the corresponding shifted QEP

(MM, + AoDy + Ky)x =0,

where \, = A\ — 0o, M, = M, D, = 20M + D and K, = 0?M + oD + K . For
simplicity, we assume, without loss of generality, that ¢ = 0. Therefore, throughout
this chapter, we delve in the problem of finding eigenvalues near the zero (i.e., those
small ones in modulus) under the assumption that 0 is not an eigenvalue of the QEP
(3.1) or, equivalently, that K is nonsingular.

Through the so-called “linearization” process, one may first construct a suitable

matrix pair (A, B) of size 2n and a vector ¢ in C*" to rewrite the QEP (3.1)
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equivalently into a generalized eigenvalue problem (GEP)
1

If B is chosen to be nonsingular, one can further reduce (3.2) as a standard eigenvalue

problem (SEP)
1

(B~ A)p = 1¢ (3.3)
(AB™)y = %%b, (3.4)

where 1 = By. We call (3:3)and (3.4) the left-inverted SEP (/-SEP) and the
right-inverted SEP_(7-SEP), respectively. “After transforming. a QEP equivalently
to a SEP, the standard Krylov subspace projection methods such as the Arnoldi
algorithm can be @pplied to solve. it [66].

The way of linearization is not unique [66}- Here, we consider the second com-

panion form of linearization |21] for the QEP (3.1)

-D I,||x 11K 0] [x
-M 0| |x 0 I,| [x
where X = —AMx. The computational advantage of using the second companion

form will be revealed in section 3.3.
Since K is nonsingular, from (3.5) the corresponding ¢-SEP and r-SEP of (3.1)

are, respectively, given by
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3.1 Introduction

and
-DK' I,| |Kx 1 | Kx
MK o] | x| M x

(3.7)

In addition to solving the QEP (3.1) by SEP (3.6) or (3.7), one may also work
with the GEP (3.5) to find the desired eigenpairs of (3.1). The QZ algorithm [45] is
the most prevalent algorithm for solving the dense GEP of the form (3.2). This pro-
cedure reduces the matrix pair (A, B) equivalently to a Hessenberg-triangular pair
(H, R) via unitary transformations in a finite number of steps. This truncated QZ
method proposed by Sorensen.[60]-is one of -the approaches for solving large-scale
GEPs. The method generalizes the ideaof the Arnoldi algerithm to construct a gen-
eralized Arnoldi reduction which-is a truncation of the ()% iteration and computes
the approximated eigenpairs of the original large-scale GEP from the corresponding
reduced Hessenberg-triangular pair. Furthermore, in [26], the generalized T-skew-
Hamiltonian implicitly restarted shift-and-invert Arnoldi (GT.SHIRA) algorithm is
discussed for solving the palindromic QEP arising from vibration of fast trains. The
generalized T-isotropic Arneldi. process also produces the generalized Arnoldi re-
duction for a GEP whose coefficient matrices are T-skew-Hamiltonian, however, a
further T-bi-isotropic property is required.

However, the linearization technique will double the size of the problem and,
in general, matrix structures and spectral properties of the original QEP are not
preserved. More importantly, a backward stable technique for linear eigenvalue
problems applied to the linearized QEP is not backward stable for the original QEP
[65].

In this chapter, we introduce a Semiorthogonal Generalized Arnoldi (SGA) algo-
rithm for the particular linearized problem (3.5) to generate a SGA decomposition.

The SGA algorithm is a variation of the generalized Arnoldi reduction [60]. We then
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propose an orthogonal projection approach termed as the SGA method to solve the
QEP (3.1) where the projection subspace is defined through its orthonormal basis
obtained from the SGA decomposition. We will extend this idea of refinement in
[32] and use the SGA decomposition to propose a refinement scheme for QEPs.
Due to the storage requirements and computational costs, the order of the SGA
decomposition can not be large and shall be limited. Therefore it is necessary to
restart the SGA method. Based on the implicitly shifted QZ iterations proposed by
Sorensen in [60], we develop a restart technique for the SGA method, called the Im-
plicitly Restarted SGA (IRSGA) method. Moreover, according to the information of
refined approximate eigenvectors (Ritz veetors); we will propose a procedure for se-
lecting better shifts, termed asrefined shifts, for the implicitly shifted Q2 algorithm
to develop an Implicitly Restarted Refined SGA (IRRSGA) method. Compared to
the implicitly restarted Arnoldi method applied on the linearized problems (3.6)
and (3.7), the SGA-type methods, namely IRSGA-and IRRSGA, demonstrate bet-
ter convergence behaviors and require less CPU time in numerical experiments.
This chapter is organized as-follows. In section 3.2, we first introduce the SGA
algorithm associated with the GEP (3.5). In seetion 3.3, we propose an orthogonal
projection method based on the orthonormal basis generated by the SGA algorithm
for solving the QEP (3.1). In section 3.4, we present a refinement scheme to get
better Ritz vectors by taking advantage of the SGA decomposition. In section 3.5,
we develop a restart technique for the SGA-type methods and discuss the selection
of shifts according to the information of refinement so that the faster the methods
may converge. Numerical examples are presented in section 3.6 and the concluding

remarks are given in section 3.7.
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3.2 The SGA Decomposition

In this section, we first give the definition of the SGA decomposition and then
discuss the existence and uniqueness of the SGA decomposition in section 2.1. In
section 2.2, we will propose a SGA algorithm to generate the SGA decomposition.
Subsequently, we discuss the possibility of the early termination of the SGA algo-

rithm.

Definition 3.1 (The SGA decomposition). Given M,D, K € C™" and m < n.
We define the mth order SGA decomposition-of the QEP (3.1) to be the relation of

the form

= H,, + e, (3.8a)

= ey (3.8D)

QYEQ, = Ay VEVip="T,, ~and V'g, =0, (3.8¢)
where Quy Py Vin, Uy, € CV™ g £, € C*, and H,,, R, € C™™ are upper Hes-
senberg matriz and upper triangular matrix, respectively.

Remark 3.2. (i) The orthogonality requirements in (3.8¢) referred to as the semi-
orthogonality of the SGA decomposition, guarantee the linearly independence

of columns of [%’:] and [Z’;], respectively.

(i1) If the semiorthogonality (3.8¢c) is replaced by

QLQ,+PIP, =1, ViV, +U"U, =1, and Vg, +Uf, =0,
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3.2 The SGA Decomposition

we actually obtain a generalized Arnoldi reduction [60] associated with the GEP
(3.5). Therefore, the SGA decomposition can be also viewed as a variation of

the generalized Arnoldi reduction.

3.2.1 Existence and uniqueness

Given a 2n x 2n matrix A, a nonzero vector b € C?* and a positive integer

m < n, the Krylov matrix of A with respect to b and m is defined by

KA, bym]=Tb Ab~e4”'b] .

In the following, for'econvenience, for a'matrix G € €C>***J we usually partition G of

the form G = [g;] with Gy = G(1:n,:) and Go = G(n+1:2n,:).

From (3.8), if we set

-D 1, K 0
A= . B= , (3.9)
-M 0 0 I,
and
Qm Vin Em
Zm = 5 Ym = 5 N = ) (310)
Pm m fm

then the SGA decomposition (3.8) can be compactly written as

AZm = YmHm + nme;—w (311&)
QnQm = Vi Vo = I, Vi g = 0. (3.11c)
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3.2 The SGA Decomposition

Using equations (3.8)—(3.10) of the SGA decomposition (3.11) and based on the

proof technique of Theorem 3.3 in [17], we give the following theorem.

Theorem 3.3. Given z, = [gﬂ € C* with ||qi|l2 = 1 and set

Vi
Bz, = p1y1 = ;1
oy
with ||vi]l2 =1 and p; > 0. Let
_1 Kﬁ,l 1 Kr,l
K, =K[B A, zy, m] = andKi'= KAB=,y1,m] =
K&Q KT’,2

Suppose that Ky .15 of full column rank and Ky = QR ts the QR-factorization
with Qmer = qi and diagonal entries of &y, are chosen tobe positive. Here and

hereafter, we use the QR. -factorization to-indicate such a QR-factorization. Then

(1) K, 1 is of full columm rank. Moreover, if K, = Vi Ry, is the QR -factorization,

then V,,e1 = v;.
(ii) Let
Pm = Kg,ngﬂln and Um = KTQR;’,}[L.
Then there exist an unreduced upper Hessenberg matriz H,, with positive sub-
diagonal entries and an upper triangular R, with positive diagonal entries
satisfying the SGA decomposition (3.11).
(i1i)) The SGA decomposition (3.11) is uniquely determined by Z,e; = [gi] with

lanfl2 = 1.
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3.2 The SGA Decomposition

Proof. (i) Since

Kr,l

= K[mathcal AB™" ) y1,m] = [y1 (AB Dy, - (AB™)" 1y]
KT,Q
1
= Bla (B A)m o (B4 ]
1
K 0] |K KK

P1 Prlo | [Kea| 7| Keo

the matrix K, ; = pflK Ky is of full column rank and has the unique QR -

factorization K, ;"= V3 R, ,, with V,,e; = v;.

(ii) By assumptions and (3.10),-we get K, = [%ﬁ:] Ry = ZmRe . From (i) and

(3.10), we also have K, = [g:} Ry =Y R . 1t follows from (3.12) that

BZm = BK@RZ; = leTRZ; = Ym(ler,mRZ:n) = YmRm,

where R, is upper triangular with positive'diagonal entries. On the other

hand, it holds that
(BrAK[B A, z,,m] = K[B ' A, z,,m]Hy + (B~'A)"ze, , (3.13)

where Hj is the lower shift matrix, i.e., a matrix with ones below the main

diagonal and zeros elsewhere. From (3.13) and (3.12) we have

AZpy = BZyRymHoRy ), + B(B~'A)"z1e,, R, ),
= Yu(pr Rem HoR ), + Yz 0e)) + (I - VY )z, )e,

m

=Y,.H, + nme;,

57



3.2 The SGA Decomposition

where z,, = R, (m,m)B(B~'A)"z, = [;Zj and Y = [VH 0,,,]. Since
Hy is unreduced Hessenberg with subdiagonal entries “1”, R,,, and R, ,, are
upper triangular with positive diagonal entries, and V,, is orthogonal, it is

easily seen that H,, is unreduced Hessenberg with positive subdiagonal entries

and Vg =VH[([, -V, Viz, ]=0.

(iii) By (i) and (ii), we know that Y,,, %, R, and H,, are uniquely determined
by Z,, so we only need to show that Z,, is unique for given Z,,(:,1) = [gﬂ

with ||qi]]o = 1. From (3:11), we have
AZuy = BZy (R, Hyn) + M€y,

Let Z,, = Eme be the QR -factorizationof Z,,. Thenswe have the standard

Arnoldi decomposition

(B-YA) Zn = ZiHyit-Time, 4
By =T, R H,, + 2B el )T (3.14)

T = (L — meZvnI{)Bflnme;Tngl.

Note that the standard Arnoldi decomposition (3.14) is unreduced, it is es-
sentially unique. It follows that Q,, and 7! of the Q R, -factorization @m =

QT are unique, and then P,, = ﬁme is unique. This concludes the proof.

U

Theorem 3.4. If the mth order SGA decomposition (3.11) exists, then
K, =K[B'A z;,m] = Z,[es R,'Hyner --- (R, H,)" 'el], (3.15a)
K, = K[AB ', y1,m] =Y, Jes Hn.R et - (Hn,R )™ 'ey]. (3.15b)
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3.2 The SGA Decomposition

Proof. 1t suffices to show

Kg = [Zl (BilA)Zl (BilA)milzl]

= Zm[e1 R;LIHmel (Rile)milel]. (316)

m

Since Z,,e, = 71, we suppose

(BilA)iilzl = Zm<R;L1Hm)iilelu Vi < m,

and prove (3.16) by induction:” From (3.11) we have

(BilA)iZl = (B_IA)Zm(Rale)i_lel
= [Zu(R, Hy) ¥ B e (R, Hy)' e
= Z (R Hg) e + B 'n,.(el (R NH,,) " e))

= Z. (R H,) e (3.17)
because of e} (R,'H,,)" ‘e, = 0;for i <m. Onthe other hand, from (3.11) follows
(AB Y, = Y (HRY) + Time (3.18)
where 17,, = R,,,(m,m)"'n,,. Similar to (3.17), The equation (3.15b) follows from

(3.18) immediately. O

Remark 3.5. Theorem 3.3 shows that Ky1 has the QR.y-factorization, Ky, =
QmPBem, then the SGA decomposition (3.11) exists and unique up to Y,e; = y;.
Theorem 3.4 shows that if the SGA decomposition (3.11) exists, then K, and K,

have the QR -factorizations (3.15a) and (3.15b), respectively.

59



3.2 The SGA Decomposition

3.2.2 The SGA algorithm

We now derive an algorithm termed as the SGA algorithm for the computation

of the SGA decomposition (3.9). Given qi,p; € C" with ||q||; = 1, let

RleKQ1H27é07 Vlqul/Rh ulzpl/Rl,

H, = V{{(—D(h +P1)7 gi=—-Dqi+p1—viHH; and f, =—-Mq —uH,

then qq, p1, v, ui, g1, f1, R1 and H; satisfy the SGA decomposition (3.8) with m = 1.

Suppose that we have computed the jth order (j <.m) SGA decomposition

D I,H6 V. g

2 1S D ANSEN (3.19a)
-M 0| |5 Uj f;
K o] (o v

=R, (3.19b)
0 Lif P Uj
QfQj = I, VJHV] =1, and Vngj =0. (3.19c¢)

To expand the SGA decomposition to order j + 1, we first assume that the residual
vector g; # 0. The case g; = 0 will be discussed later. Our goal is to find suitable

updating vectors and scalars satisfying the SGA decomposition of order j + 1

-D I,| |Q; g Vi v | H; h git1
= T P el (3.202)
-M 0 P, p Ui u fyejT Q@ i
K 0| 1|Q; q Vi v |R; r
T = T (3.20b)
0 I,||F p Uj u 0 p
thzﬂQjH = Lj+1 V]'I:IHVjJrl = Ij11 and ‘/]'I«{ngJrl =0, (3.20¢)

where Q;+1 = [Q; q] and Vj;; = [V} v]. Comparing the leading j columns of (3.20a)
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3.2 The SGA Decomposition

with (3.19a), we get

7= lgill:#0, v=g;/7y#0 and u=f;/y. (3.21)

Equating the (j+1)st column on both sides of (3.20b) and noting (3.20c), the vector

q must satisfy

Kq=Vyr+vp and Q]Hq =0. (3.22)

Premultiplying (3.22) by Qf K1 and applying the relation KQ; = V;R; gives

0=QK Wir+Q] K "vp=R:"r+ Q'K 'vp

and it follows that

r=—R;QI K vp. (3.23)

Substituting (3.23) into(3.22), we have

q=K 'Vir+ K 'vp

= (Q;R; ) (=R;Q K 'vp) + K™ 'vp = (I; - Q;Q]" YK 'vp,

where p = ||(I; — Q;QF)K~'v||;" so that Q¥q = 0 and |ql]> = 1. Note that p is
well-defined, otherwise, ||(I; — Q;Q)K~'v||y = 0 implies K~'v € span{@Q;} and
hence v = K@ jc = V;R;c for some constant vector c. However, V]H v = 0 implies
v = 0 which contradicts to the fact (3.21). After determining u, r and p, (3.20b)

shows that p can be directly computed by

p = Ujr + up.
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3.2 The SGA Decomposition

Equating the (j + 1)st column on both sides of (3.20a), we know that if we take

h VHA(-Dq+p g+l -D I,| |q Vi v| |h
= ]( ) and A -’ (3.24)

« v (—Dq + p) £ -M 0| |p Ui u| |a
then VjI_{ngH = 0 and this completes the (j + 1)st expanding of the SGA decom-
position.

Breakdown and deflation. As we encounter g; = 0, there are two possibilities,

which are called breakdown and deflation: A breakdown occurs if the vector sequence

{[:ﬂ e [Zj] , [f(j]} is linearly dependent.~In this case, both IC;(B~'A, q;) and

K;(AB™! v,) are invariant subspaces simultaneously andhence the expanding pro-

cess terminates. On the other-hand, it may happen that {[:’ll] ey [VJ} , [?}} is
1 u; J

linearly independent. This situation is called deflation and the expanding process of
the SGA decompesition should continue with modified ‘orthogenality requirements.
When a deflation is detected at step g, we-assign v any nonzero number (say
v=1),v=g; =0and u=fj/y# 0 to start the (j + 1)st expanding process of
the SGA decomposition.« Without repeating the-discussions above, it is effortless to
see that v, u and ~ satisfy the jth/column of (3.20a) but V],V 1 = [Ij ol-
Equating the (j+41)st column on both sides of (3.20b) shows that q = K~'Vjr =
Qj(Rj*lr) (since KQ; = V;R;) and the orthogonality requirement {qi,...,q;,q} in
(3.20c) enforces r = 0 and q = 0. Again, by taking p any nonzero number (say
p = 1) and then setting p = up = ;7 'p, the updating q, p, r and p satisfy
the (j + 1)st column of (3.20b) but Q¥ Q41 = [Ij o). This indicates that if
the expanding process of the SGA decomposition encounters deflation at a certain
step then the updating v-vector and g-vector will be zero simultaneous in the next
expanding process. Therefore, the zero vectors of the V-matrix and the (-matrix

in a deflated SGA decomposition appear in the same columns.
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3.2 The SGA Decomposition

To accomplish the (5 + 1)st expanding process of the SGA decomposition, the

equations in (3.24) are given by

= and = -
« 0 fj+1 -M 0 P Uj u 0
In summary, if deflations occur at step 1 < ji,...,jq4 < m, then we have the mth

order deflated SGA decomposition

= Ho e, (3.25a)
-M of|P, U, £
K' 0| {0 Vinle.
= PTeY (3.25b)
0o I,| |P, U,
égém = va ‘O/nlj‘o/m — Jm and f/,fgm = 0, (3250)

where Qun(:, ji) = Vinlindi) = 0 R, (1= 57 =1, 5 = 0, H,, (ji, i) = 0, R (i, i),

H,.(ji, ji — 1) are nonzero numbers and

1 ifs—=t+ji,
To(s.t) = Al

0 otherwise,

The following theorem distinguishes the deflation and breakdown.

Theorem 3.6 ([3|, Lemma 3.2). For a sequence of linearly independent vectors

Vi
u;

{y1,-.-,¥Ym} with partition y; = [ }, if there exists a subsequence {v;,,..., v}
of the v wectors that are linearly independent and the remaining vectors are zeros,

Vi = 0 = Vi, = 0, then a vector y = [3] € span{yi,...,ym} if and only if

u € span{u;, ..., W, }.

The pseudocode for the SGA algorithm that iteratively generates an mth order
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3.2 The SGA Decomposition

(deflated) SGA decomposition is listed in Algorithm 3.1.

Algorithm 3.1 The SGA Algorithm

Input: M, D, K € C"*" q,p; € C" with ||qi|| =1 and m > 1.
Output: Qu, Vi, Un, 8m = &, £ := £, My, Dy, upper Hessenberg H,, € C™*™

1

2
3

4:
5:

10:
11:
12:
13:
14:
15:

16:

18:

19

and upper triangular R, € C™*™ satisfy the SGA decomposition (3.8) of order

m.

c Q1 = qi; Ry o= ||[Kaills; VA= Kai/Ry; Uy := pi/Ry; My := Maqy;
Dy := Dqu;

. g:=-Dy+p; H =Vlg g=g-ViH;; f:=-M—-UH;

cforj=1,2,...,m—1do

if g # 0 then
v o= llglles. v = g/v ui= £y Vg = [V v Upn == [U; s
H.
H: = 2|
j ve,
Solve Kq = vy, forq
r=Qq q=q-Qr;_p=ldli% q:=ap,. p:=Mqg;, é:=Dq;
R, r
Qj+1 =@ ai Mii={M; pl; Dj31 =1{D;6;" Rjg1 := {Oj p];
g:= -0 T U R+ 1); hi=V'g Hy=[H; hj;
g =g —Vjh; fi=—p—Ujqh;
else
if f € span{w; |i:v; =0, L.<i<j} then
breakdown
else
Vigr = [V; 0 Ujpr = [U; f]; Q41 :=Q5 0];
M1 := [M; O3 Dyypu= [D; O];
H;, h R; 0O
h =V; £, Hj= ewz O}; R4 = [0] J,
g = Vih; f:= —Ujh;
end if
end if
: end for

Remark 3.7. The following remarks give some detailed explanations of the SGA

algorithm.

(i) At each expanding process of the SGA decomposition, we need to solve a linear
system (see line 6 of the SGA algorithm). To make the computation more
efficient, a factorization of K, such as the LU factorization, should be made

available outside of the first for-loop of the SGA algorithm.

64



3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

(11) At lines 8 and 15 of the SGA algorithm, we additionally store the vectors Dq;

and Mq; at each expanding step and output two n X m matrices
D,,:=[Dqi -+ Dqn] =DQ,, and M, :=[Mq - Mqu,] = MQ,.
The pre-stored matrices D, and M,, save computational costs in the subsequent

projection process for solving the QEP.

(11i) From (3.8b), we know that By, rvean bescompletely determined by U,,, that is,

forj=1,...,m, p; can bereplaced by the relation

P; = Um(:al ])Rm(l .77.])

See line 9 of the SGA algorithm.Hence we only need to evaluate and store

Qm> Vin, 8m, U, £, Hy and R, as we implement the SGA algorithm.

(iv) At line 12 of the SGA algorithm, we decide whether the expanding process
encounters a deflation or.a breakdown. In'practice, we use the modified Gram-

Schmidt procedure to check it as suggested in [3].

3.3 The SGA Method for Solving Quadratic Eigen-
value Problems

In this section, we use the unitary matrix @,, produced by the SGA algorithm
to develop an orthogonal projection technique to solve the QEP. For simplicity, we
assume that the deflation does not occur and hence Q2Q,, = I,,. When the deflation
occurs, the same orthogonal projection technique is applied with the modification

of replacing @,, with the nonzero columns of Q. shown in (3.25).
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

3.3.1 The SGA method

The SGA method applies the Rayleigh-Ritz subspace projection technique on

the subspace Q,, = span{Q,,} with the Galerkin condition:

(0*°M +60D + K)v L Q,,,

that is, we seek an approximate eigenpair (6, v) with 6 € C, v € Q,, such that

W (°M % 0D + K)yv=0 forallw € Q,,, (3.26)

where -* denotes the transpose =" when M, D, K are real or complex symmetric,
otherwise, -* denotes the conjugate transpose -7 of matrices.-Since v € Q,,, it can
be written as v =Q),,& and (3.26) implies that ¢ and € must satisfy the reduced
QEP:

(0*M,,, + 0D, + K;,)€ =0, (3.27)

where

The eigenpair (0, &) of the small-scale QEP (3.27) defines a Ritz pair (0, Q,,€) of
the QEP (3.1) whose accuracy is measured by the norm of the residual vector rg¢ =
(6°M + 60D + K)Q&.

Note that by explicitly formulating the matrices M,,, D,,, and K,,, essential
structures of M, D, and K are preserved. For example, if M is symmetric positive
definite, so is M,,. As a result, essential spectral properties of the QEP will be
preserved. For example, if the QEP is a gyroscopic dynamical system in which M
and K are symmetric, one of them is positive definite, and D is skew-symmetric,

then the reduced QEP is also a gyroscopic system. It is known that in this case, the
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

eigenvalues are symmetrically placed with respect to both the real and imaginary
axes [36]. Such a spectral property will be preserved in the reduced QEP.

Before we present the SGA method for solving the QEPs, we discuss how to
take advantage of the SGA algorithm to efficiently generate the coefficient matrices
(M, Dy, Kp,) of the projected QEP (3.28). As we describe in Remark 3.7(ii), the
resulting matrices

M, := MQ,, and D, :=DQ,,

produced from the SGA algorithm provide us the necessary multiplications of M, D
with @,,. For the projected matrix K,,, even if the.SGA algorithm does not exactly
perform the matrix-vector product of K and q; at each step, j = 1,...,m, we can
use the equality KQ,, = VR, in (3:8b) te reduce the computational costs. The
product of V,,R,, needs about 2nm? flops, but the product of KQ,, needs about
2n?m flops. Therefore, the small-scale matrices: M,, and Dy can be respectively

generated by

M,, = Q: My, - Dy =Q:Dypand " K, = QX Vi R, (3.29)

Totally, (3.28) needs about 6n?m + 6nm? flops to generate the coefficient matrices
of the projected QEP (3.27), however, the matrix products (3.29) only need 8nm?
flops. Also note that if we consider the first companion form linearization of the
QEP (3.1), there is no such an advantage. That is, (3.28) is the only way to generate

the coefficient matrices of the reduced QEP (3.27).

3.3.2 The projection subspace

In this subsection we explain the motivation of choosing the projection subspace

Qm = span{Q@,,} where @Q,, is generated from the SGA algorithm. We first recall a
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

Algorithm 3.2 The SGA method
Input: M, D, K € C*™", qi,p1 € C" with ||qi|[s =1 and m > k > 1.
Output: £ Ritz pairs and their relative residuals.
1: Run the SGA algorithm (Algorithm 3.1) to generate an mth order SGA decom-
position (3.8).
2: Compute M,,, D,, and K, via (3.29).
3: Solve the reduced QEP (3.27) for (6;,&;) with ||&]2 = 1,7 = 1,...,2m and
sorting Ritz values so that {(61, Qn&1), ..., (Ok, @m&k)} are wanted Ritz pairs.
4: Test the accuracy of Ritz pairs (0;,v;), v; = Qn€i, i = 1,.. .,k as approximate
eigenvalues and eigenvectors of the QEP (3.1) by the relative norms of residual
vectors:

[(07M + 0D + K)v|2
10 M | 2 + 10l [|D]l A [ K

i=1,... k. (3.30)

lemma in the SOAR method {3].
Lemma 3.8 ([3|, Lemma 2.2).Let A be an arbitrary n xn matriz. Let W, =
[(Wh Wini1] be ann X (m+ 1) rectangular matriz that satisfics

AWm — Werlﬂm

for an (m+1) x m upper Hessenberg matriz H,,. Then there is an upper triangular

matriz T,, such that

Wme = [Wl AWl tee Am_lwl} .

Furthermore, if the first m — 1 subdiagonal elements of H,, are nonzero, then T, is

nonsingular and

span{W,,} = KC,,(A, wy).

Next, we consider a Krylov subspace associated with the linearized eigenvalue
problem (3.3) and show that it is embedded into a larger subspace spanned by some

column vectors in the SGA decomposition (3.8).
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

Theorem 3.9. Consider the SGA decomposition (3.8) of order m. Let

m m 1

~ n | Qm 0 0
Q,\

c C2n><(2m+1). (331)
n 0 _MQm P1

Then, for A and B defined in (3.9), we have K,,,(B71 A, [gi]) C span{Qn}.

Proof. From (3.11b), we have

Vo K 0| Onfe,
Uh 0 I,

Substituting it inte the equation (3.11a) and then premultiplying it by [

K-t 0]
0 I.|’
we get
“K-'DOET A O Qo ab, || HE,
: (3.32)
<M 0 P,

; T
P p, e,

where H' = R_'H,, is an unredticed upper-Hessenberg matrix, qf, = K~'g,, and
p’, = f,.. By (3.32) and Lemma 3.8, we know that

—K7'D K| | Qm

Km | BA, =Kn : = span (3.33)
P1 -M 0 P1 Pm

and the set {[gﬂ ey [SZ]} is a non-orthonormal basis of the above Krylov sub-

space (3.33). Next, we show that

q; ~
€ span{Qn} for i=1,...,m,

(3.34)
| &

and the conclusion of Theorem 3.9 follows directly from (3.33) and (3.34).
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

To prove (3.34), it suffices to show that p; € span{—M@Q,,,p1}, 1 <i < m. We
prove this by induction. Clearly, p; € span{—MQ,,, p1}. Suppose that py,...,p; €
span{—M@Q,,,p1} for 1 < i < m — 1. From the equality (3.32), we have —MQ,, =

P,H +pte!. Thus,
—Mq; = PpHE (i) = PHS (1:0,4) + pg HE, (i + 1,4)
and it follows that
Piv1 = H, (i +1,8)(=Maq; — PH;,(1 : #4)) €span{—MQ,,, p1}.

We complete the proof. O

Instead of using the Krylov subspace I, (B~ A, [gﬂ ), we choose the larger sub-
space span{@\,ﬁ} to extract approximations of eigenpairs. To project the coefficient

matrices of the GEP(3.5) onto the subspace span{Qx }, we get

m m 1
m _Dm _Mm Q7.p1
~ -D I, . -
Q% Qm = m N,, 0 o | = A4, (3.35a)
-M 0
1 —pIMQm 0 0
m m 1
m Km 0 0
~ K 0| . ~
Q5 Qa=m| 0 N, _or oy | =B, (3.35h)
0o I,
1 0 -piMQm pPip1

where M,,, D,,, K,, are defined in (3.28) and N,, = Qf M*M@Q,,. Therefore, the
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

GEP (3.5) is reduced to the problem

As = vBs (3.36)

with A and B defined in (3.35). Observe that if we premultiply (3.36) by the

nonsingular matrix

0 PpiMQmNy' 1

-~ ~

then the coefficient matrices of the resulting GEP (LA)s = p(LB)s are respectively

of the forms

—D,, =My, | Qap: K, O 0
LA=| N/ 0 o | BB=| 0 N, | e |, (337
0 0 0 0 0 c

where ¢ = pi (I, — MQ,«N; Qi M*)p;. The pen¢il-0btained from the last compo-
nent of both matrices in (3.37) either provides the zero eigenvalue or be a singular
pencil. In both cases, the eigenvalues computed from this pencil are not wanted.
Therefore, we can simply drop the last column and row of both matrices in (3.37) to

consider the leading 2m X 2m submatrices, which is just the first companion form

linearization [21] of the reduced QEP (3.27), for solving QEPs.
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3.4 Refined SGA Method

3.4 Refined SGA Method

As we obtain a Ritz pair (6, vy) by the SGA method, a refinement strategy for

the QEP is to seek a unit vector v, € Q,, = span{Q,,} satisfying

v, = argmin |[[(0°M + 60D + K)v». (3.38)

VEQm, [lvll2=1

Here we call v, the refined Ritz vector corresponding to the Ritz value 6. We
next turn to propose a novel refinenient Scheme by taking advantage of the SGA
decomposition for computing refined Ritz vectors. An-other refinement scheme for
QEPs we refer to [34].

Let (0,&p) bejan eigenpair-obtained from the small-scale QEP (3.27), then
(0,v9) = (0, Qn&a)is a Ritz pair the QEP (3:1). To solve the-optimization problem

(3.38), we find that

(0*M + 60D + K)Qn
= 0*(~UpH,, — £, )20(P,, — Vi Hyr™= gme,) + Vi R

= V(—0H,, + R,,) + gm(—0e] Y +-U,,(=0*H,, + OR,,) + f,.(—60%€])

—0H,, + R,
—fe,

= Ve gn Un £ : (3.39)

—60*H,, + 0R,,

2,7
—0%e,,

where we use the SGA decomposition (3.8) in the first two equalities. Since V;, is

a column orthonormal matrix, the QR factorization of [V;,, g, U, f£,] is of the
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form

I, tia Tiz tiy

~  ~ log  toz o4

[Vm gm Un fm] = |:Vm gm Un fn ) (34())
T35 tay

taa

where Vi, €n Un fm] is unitary. Since the vector 2-norm is invariant under

unitary transformations, (3.39).and (3.40) imply

min  [|(6%M 4 6D + K)olls /=" <min [|(6>M + 6D + K)Q..£|-
VEQm, [|lv]2=1 ll€ll2=1
= min [[S(m,0 ,
i S\ el
where
Ly b2 (T3 tug —0H,, + R,
_paT
S(m, 0) = Y\ Yem g Clm+Dxm, (3.41)
Tys typll=0*H ~0R,,
t44 —9281—;

Since the right singular vector Ve, of S(m, 0) corresponding to the smallest singular
value Sgmin yields the minimum ||[S(m,0)Vyen|l2 = Somim, as a consequence, the
unit vector v, = Q,,Vye,, is the solution to the minimization problem (3.38) with

minimum sg min. In summary, we have the following theorem.

Theorem 3.10. Let (0, Q.,&9) be a Ritz pair the QEP (3.1) computed from the SGA
method. Let S(m,0) = UpXg(Vy)? be a singular value decomposition of S(m,0)
defined in (3.41) and Spmin be its smallest singular value. Then the vector vt =

QmVyen, is the solution to the optimization problem (3.38) with minimum sg min -
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3.5 Implicit Restarting of the SGA Method

When applying the refinement strategy for several Ritz pairs, we compute the
QR factorization (3.40) only once and subsequently use the factorization for refining
each Ritz pair. Combining the SGA method with the refinement strategy, we propose

the refined SGA (RSGA) method in Algorithm 3.3.

Algorithm 3.3 The RSGA method
Input: M,D, K € C"*", qi,p; € C" with ||qi|p =1 and m > k > 1.
Output: £ refined Ritz pairs and their relative residuals.
1: Run steps 1-3 of the SGA method to obtain k wanted Ritz pairs (0;, Q..&;),
i=1,... .k
2: Calculate a QR factorization of [V, g U f,] where the Q-factor and R-factor
are denoted as in (3.40).
3: forv=1,...,k do
: Calculate the matrix S(m, 6;) as defined in (3:41).
5. Calculate a compact singular-value decomposition of S(m, 6;) = Uy, 3. (Vp, ).

6:  Let sg, min be the smallest singular value of S(m,6;). Then the refined Ritz
vector is given by v;" = @,,Vp.e,, and the corresponding relative residual is
given by

”(GZQM -+ HZD —+ K)’Uj”Q - S0, min
10: (| M || 5t |6 || Dlle RN 102N M e + (0D + || K| 7

(3.42)

7. end for

3.5 Implicit Restarting of the SGA Method

Similar to the standard implicitly restarted Arnoldi (IRA) method [59] for SEPs,
the SGA/RSGA method also needs restarting to control storage and orthogonaliza-

tion expense. In this section, we will apply the implicitly shifted Q7 iteration [60]

to implicitly restart the SGA/RSGA method, namely IRSGA /IRRSGA.

3.5.1 The IRSGA method and the IRRSGA method

In this subsection, we first briefly discuss the implicitly restarted step of the SGA

algorithm based on the implicitly shifted @Z iteration [60]. For details, see [60, 62].
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3.5 Implicit Restarting of the SGA Method

Suppose we have computed the mth order SGA decomposition (3.11). For given
shifts ¥4, ...,9,, p = m — k, which are in general the unwanted approximate eigen-
values, let F; and F; be unitary matrices computed by the implicitly shifted ) Z iter-
ation with the single shift 9;, i =1,...,p. Write ET = Ey---E,and FF* = F, --- [,
Note that F; is upper Hessenberg, i = 1,...,p.

Let

HY = (END"H,FT,

RY ="(E™ER ',

Z+ =0Z e,
Yi—= ¥, B

Then H; and Rj-are again upper Hessenberg and upper triangular, respectively.
Set

Qf = QT and VI'= V5 EL,

we then have (QF)7QF = (V,")AV.* =T, Postmultiplying (3.11a) and (3.11b) by

F*, we get
AZN =Y TH! +nel FT, (3.43a)
BZ: =YIRy}. (3.43b)
Since e F} = [0 --- 0 oy f1], by induction, we see that the first k& — 1 entries of

e! 't are zeros.
Let n = b,y yie, + F*(m, k)n,. Drop the last m — k columns of (3.43a) and

(3.43b), and then set m;7 = m. Then, by writing Z," = [g?t], Y," = [V’j] and
k

+
Uk:
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3.5 Implicit Restarting of the SGA Method

ny = [g,j]’ we get the k step SGA decomposition:

+
fk

AZF =Y H! +nlel, (3.44a)
BZ =Y,"R[, (3.44b)
(QZ—)HQZ‘ = (Vk+)HVk+ = I, (Vk+)Hgl;F =0. (3.44c)

Now, we present the IRSGA method and the IRRSGA method in the following

algorithm.

Remark 3.11. Note that applying an implicitly restarted process on a deflated SGA
decomposition (3.25)wmay not-yield a deflated SGA decomposition. We know that
the Q-matriz and V-matriz of the SGA decomposition must adhere to one of the
two orthogonality requirements: (1) all column wvectors form.an orthonormal set
and (2) when deflation occurs, all-column vectors form an erthonormal set except
zero columns. In the first case, ‘the resulting () =matriz and V™ -matriz maintain
the same orthogonality requirement as in the Q-matriz and V-matriz of the SGA
decomposition. In the second case, both Q=-matriz and V -matrix contain some zero
column(s). Then the nonzero columns of the updated Q*-matriz will be linearly
dependent and the resulting decomposition is not a SGA decomposition. The same
phenomenon occurs on the updated V™ -matriz.

To overcome this problem, we only need to perform column compression to make
the updated Q*-matriz and V' -matriz of the forms [@* 0] and [IA/Jr 0], simulta-
neously. On the other hand, it requires to update H"-matriz and R*-matriz by
postmultiplying an upper triangular matriz as we perform the column compression.
The resulting H -matriz and R*-matriz are still upper Hessenberg form and upper
triangular, respectively. Consequently, the column compression transforms a decom-

position to a deflated SGA decomposition.
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3.5 Implicit Restarting of the SGA Method

Algorithm 3.4 The IRSGA/IRRSGA method

Input: M, D, K € C"*" and m > k > 1.
Output: £ desired eigenpairs.
1: for:=1,2,...do

2:  Run the SGA algorithm (Algorithm 3.1) to generate an mth order SGA de-
composition.
3:  Run the SGA method (Algorithm 3.2) or the RSGA method (Algorithm 3.3)
to compute k candidates of Ritz pairs and check their convergence by (3.30)
or (3.42).
4:  if #(convergent Ritz pairs).> k then
5: break
6: else
7 Select p := m — k shifts ¥y,...,0,.
8: Let € :=e,, and 17 := n,,
9: for:=1;...,pdo
10: Compute unitary matrices#; and F; by the implicit-Q) Z step with a single
shift ¥, so that EZH H,,F; and EZH R, F; are upper Hessenberg and upper
triangular; respectively.
11: Update
Hy =B HyF Ry = ER,F,
L =Ll Y, =Y, E;, and e:=c¢kF].
12: end for
13: Set n == Hp(k+ 1,E)Y,,(,k+1)+e(k+1)n
14: Set
Zy=Zn(1:0k), Y=Y, 1:k),
Hy:=H,(1:k1:k), Rp:=R,(1:k1:Ek).
15:  end if
16: end for
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3.5.2 The selection of shifts

The above scheme involves selection of shifts ¥, ...,9,,_x. A good selection of
shift is a key for success of the implicit restart technique. A popular choice of the
shift values for IRA method [59] is to choose unwanted Ritz values, and are called
exact shifts in [59]. When we solve the reduced QEP (3.27) to get 2m eigenvalues and
select k Ritz values as approximations to the desired eigenvalues, we may directly
use the reciprocal values of the remaining unwanted Ritz values as shifts which we
also call them exact shifts. Among the selection of 2m—Fk shift candidates, we always
take the reciprocal values of the'm — k unwanted Ritz values which are farthest from
the target as shifts.. Applying-implicitly shifted @7 iteration with exact shifts to
the SGA method, we have an-implicitly restarted SGA (IRSGA) method.

For the RSGA method, we can also chioose exact shifts. However, the refine-
ment strategy can not only improve theaccuracy of the Ritz pairs but also provide
more accurate approximations to some of the unwanted eigenvalues. Suppose that
(Y, w) = (¥, Q) is a Ritz pair of the QEP (3.1) which‘we are not interested in and
the reciprocal of ¥ is one possible candidate of the shifts for the restarting process.
Let wt = Q,,¢" be the refined Ritz vector corresponding the Ritz value ¥ as we
discussed in section 3.4. Now, we illustrate how to find better shifts based on the
unwanted refined Ritz vector w™. For an approximate eigenvector w of the QEP
(3.1), the usual approach to deriving an approximate eigenvalue  from w is to im-
pose the Galerkin condition (0>M + 6D + K)w | w and this follows that 6§ = §(w)

must be one of the two solutions to the quadratic equation [25]

(1202 + a10 + ag = 0, (345)

where ay = Ww*Mw, a1 = w*Dw and ag = w*Kw. Therefore, as we obtain the
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unwanted refined Ritz vector w™, (3.45) provides us one way to compute more
accurate Ritz value beyond our interests and should be filtered in the restarting
process. Since wt = Q,,¢T, the coefficients corresponding to the quadratic equation

(3.45) would be reduced as follows

as = (CHY'M,¢t, ap =)' D¢t and ap = (CH) K¢, (3.46)

where M,,, D,, and K, is the projections of M, D and K onto the subspace span{Q,, }
respectively as described in (3.28).

Hence, if 9] and 93 are toots of the quadratic equation (3.45) with coefficients
defined in (3.46) then their reciprocal values would be better candidates for the
restarting processiConsequently, if (¥4, Q€1 )yt . (V,. Qmp) are p Ritz pairs that
are farthest fromrour target and if 19:1, 192?2 are the roots of the quadratic equation

(3.45) with respect to the unwanted refined Ritz vector wf = Q,.¢, i =1,....p,

+

+ 9t
then we choose the pvalues from 0y, U755 40,4,

U4 that are farthest from our
target and take their reciprocal values as the shifts forthe restarting process and call

them the refined shifts. In our numerical-examples; an implicitly restarted refined

SGA (IRRSGA) method is a restart version of the RSGA method with refined shifts.

3.6 Numerical Results

The purpose of this section is to present a few numerical experiments to validate
that the IRRSGA method is viable for solving the QEP (3.1). In addition, the ex-
amples demonstrate the superior properties of the IRSGA method and the IRRSGA
method than the two versions of the IRA method [59] for solving the QEP where
one IRA method is applied to the (-SEP (3.6) and the other is applied to the r-SEP

(3.7), respectively. The abbreviations ¢-IRA and r-IRA are used to indicate that
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3.6 Numerical Results

the IRA method is applied to (-SEP and r-SEP, respectively.

In our examples, the number m denotes the order of the SGA /Arnoldi decompo-
sition, k denotes the number of desired eigenpairs. The starting vector of the SGA
method and the standard Arnoldi method are chosen as a vector with all compo-
nents equal to 1 and the stopping tolerance for relative residuals is chosen to be

tol = 1071*. The maximum number 7., of restarting process is set to be . = 30.

Example 3.1. This example is obtained from “NLEVP: a collection of nonlinear
eigenvalue problem” [9], namely “damped beam” arising from the vibration analysis
of a beam simply supported at both ends and damped in the middle. In our MAT-
LAB implementationy the command nlevp(’damped_beam’,2000) is used to con-
struct real symmetrie coefficient matrices M, D, K with M =M™ >0,D=D" >0
and K = KT > 0. The matrix size is n = 4,000. Ten eigenvalues nearest the ori-
gin (i.e., k = 10).are computed by by four methods with m.= 20. Figure 3.1(a)
shows the maximum relative residuals of the“ten desired eigenpairs computed by
(-IRA, r-IRA, IRSGA and IRRSGA with respect todterations 1,2,...,30. We find
that the maximum relative residuals computed by ¢-IRA and r-IRA stagnate and
those computed by the IRSGA method oscillate between 1072 and 10713, All rela-
tive residuals of the desired eigenpairs computed by the IRRSGA method meet the
stopping tolerance in 1 iteration. To investigate the convergence behaviors of the
ten eigenpairs computed by /-IRA, r-IRA, IRSGA and IRRSGA, we depict relative
residual norms of the 1 step iteration in Figure 3.1(b).

Compared to the IRSGA method, the refinement strategy of the IRRSGA method
significantly improves the accuracy of computed eigenpairs even up to 5 digits for
the eight computed eigenpairs that do not meet the convergence criterion. We re-
port the number of iterations and CPU times in Table 3.1. In summary, among the

four methods the IRRSGA method is the only viable approach that accurately finds
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relative residuals

107

1

<,

o,

CPU time

(-IRA
r-IRA
IRSGA
IRRSGA

32.8563
55.4423
38.3231

7.3048

Table 3.1: Iteration numbers and CPU time in Example 3.1.
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Figure 3.1: Convergence histories for methods ¢-IRA, 7~IRA; IRSGA and IRRSGA
in Example 3.1.

Example 3.2. In Example 3.1, we see an amazing effect of the refinement strategy,
i.e., ten wanted eigenpairs converge in one iteration before the restarting process
with refined shifts in IRRSGA. This example illustrates that the refinement strategy

with refined shifts introduced in section 3.5.2 for the IRRSGA method accelerate

We consider the damped vibration mode of an acoustic fluid confined in a cavity

with absorbing walls capable of dissipating acoustic energy [6].

The fluid domain
) C R? is assumed to be polyhedral, and the boundary 9Q = I'y U I'g, where the

absorbing boundary I'4 is the union of all the different faces of €2 and is covered by
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damping material. The rigid boundary I'g is the remaining part of 9. Figure 2.1(i)
gives an example of such a setup, where the top boundary is absorbing and the

remaining boundary is rigid. The equations characterizing the wave motion in €2 are

p

pa;ngLVP:O and P = —pc?divU in €,
P:(aU-nJrﬁ%—[{-n) on Iy,

U-n=0 on [,

\

where the acoustic pressure £ and the fluid displacement U depend on space x and
time ¢, p is the fluid density, € is the speed of sound in air; n is the unit outer normal
vector along 0€2, and @, f are coefficients related to the normal acoustic impedance.
The absorbing boundary on I'4 indicates that the pressure is balanced by the effects
of the viscous damping (the [ term) and the elastic behavior (the «a term). The

model induces the following QEP

(AM, + (o + AB) A, + K )u =0,

where M, and K, are mass and stiffness matrices, respectively, and A, is used to

describe the effect of the absorbing wall.

#1ts CPU time

(-IRA 18 806.69
r-IRA 18 836.14
IRSGA 9 T77.74
IRRSGA 7 735.38

Table 3.2: Iteration numbers and CPU time in Example 3.2.

In this example, we adopt the geometry illustrated in Figure 2.1(i) and physical

data used in Example 2.1. The rectangular domain is uniformly partitioned into
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o |-IRA
A\.’!_ - r-IRA
) Q r =& -|RSGA
% o, ’l'-
Q‘ % i""‘”“ Firg X -¥- IRRSGA
R Wl - SN A BE A
v AT 2\ i
0 (Y 3 8 GI s‘ H
© ! R oWl S !
=1 \O, N4 ‘ . % [ | Q.
o 1N 2N L E
2 y’ V? P i i
T 4 Visod i 1
0 1 1Q :
2 1 1 A H
© 1 & ! R :
] || 1 b, “-‘
1 1 KA E 3 .
T R A
1 1 RS N
Voo = )
i A *
10-15 L L L v L L L L L L
0 2 4 6 8 - 10 12 .14 16 18

iteration numbers

Figure 3.2: Convergenee histories for methods ¢-IRA, 7-IRA, IRSGA and IRRSGA
in Example 3.2.

384 by 288 rectangles and each rectangle is further refined into two triangles. The

dimension of coefficient matrices in this problem is n = 331,488. We compute ten

analytic solutions of the desired ‘eigenvalues \;, .= ., Ao/ plotted in Figure 2.2 with

the lowest positive vibration. frequencies satisfying 0 < % < 600Hz. The order
m is set to be m = 20. The shift target is taken by o = —25 + 60071.

Table 3.2 shows that compared to the IRSGA method, the refinement strategy
used in the IRRSGA method reduces the number of iterations and CPU time. More-

over, the IRRSGA method calculates ten desired eigenpairs in the smallest number

of iterations and the shortest CPU time among four competitive methods.

Example 3.3. This experiment consists of six benchmark examples from the NLEVP
[9]. In the following, we describe each example and the choice of parameters for gen-

erating the coefficient matrices of corresponding QEPs. All numerical results show

that regardless of iteration numbers or CPU time, both IRSGA and IRRSGA ap-
pear to be more efficient and more competitive than the traditional Arnoldi methods

(-IRA and r-IRA. The standard Arnoldi methods can not calculate all desired eigen-
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pairs in 30 iterations but our IRSGA and IRRSGA methods can effectively find all
desired eigenpairs with high accuracy in less or around 10 iterations. The IRSGA
and the IRRSGA methods have similar convergence behavior and the latter con-
sumes a slightly more time than the former. This might be due to the fact that the
IRSGA method converges in very few iterations. Figure 3.3 depicts the maximum
of the k residual norms versus restarts and show the convergence processes of each
example. Correspondingly, Table 3.3 lists the iteration numbers and the CPU time

of each method for each example.

(a) Acoustic 1D. This example arises from the finite element discretization of
the time harmonic wave equation —Ap — (27f/c)?p=0 [11]. Here p denotes
the pressure, f is the frequency, ¢ is the speed of sound in the medium, and
¢ is the (possibly complex) impedance. On the domain [0, 1] with ¢ = 1, the
n X n matrices M, D and K are defined by

M = —4m*L(I, — Lleqe, )

T

& QWi%enen,

K = n(tridiag(~1,2, ~1) — ese;) .

n

where tridiag(—1,2, —1) is a tridiagonal matrix with —2 on the main diagonal
and —1 above and below it. Observe that matrices M, K are real symmetric
and D is complex symmetric. We use nlevp(’acoustic_wave_1d’,5000,1)
to generate M, D, K with size n = 5,000 and compute the six eigenvalues

nearest origin (i.e., k = 6) with m = 12.

(b) Acoustic 2D. This example is a two-dimensional acoustic wave equation [11]
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on [0,1] x [0,1]. The coefficient matrices (M, D, K) are given by

M = —Ar’h*1, 1 @ (I, — Seqe, ),
= 27ri%[q,1 ® (eqe, ),

K = I ®@Dg+ T @ (=1 + %eqe;),

where h denotes the mesh size, ¢ = 1/h, ( is the impedance (possibly com-
plex), D, = tridiag(—1,4, —1) — 2eqeqT € R?7 and T,,_; = tridiag(1,0,1) €
R@=1Dx@=1) We use nlevp(’acoustic.wave_2d’,90,0.1%1i) to get the real
symmetric matrices (M, D, K).-The matrix size is given by n = 8,010 and we

compute six éigenvalues-nearest origin-(i.e., k= 6) with m = 12.

(c) Concrete. This problem arises from a model of a concrete structure support-

ing a machine assembly [16| and duces the QEP
(NM +AD + (1 + pi)K)x =0,

where M is real diagonal and low rank. D the viscous damping matrix, is pure
imaginary and diagonal, K is complex symmetric, and the factor 1 + pi adds
uniform hysteretic damping. We use nlevp(’concrete’,0.04) to generate
the complex symmetric coefficient matrices. The matrix size n = 2,472 and

we compute ten eigenvalues nearest the origin (i.e., k = 10) with m = 20.

(d) Spring dashpot. The QEP arises from a finite element model of a linear
spring in parallel with Maxwell elements [23]. The mass matrix M is rank de-
ficient and symmetric, the damping matrix D is rank deficient and block diago-
nal, and the stiffness matrix K is symmetric and has arrowhead structure. Ma-

trices M, D, K are generated from nlevp(’spring_dashpot’,7850,5000,0)
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with size n = 10,002. We compute 50 eigenvalues nearest the origin (i.e.,

k = 50) with m = 100.

(e) Wiresawl. We use nlevp(’wiresawl’,10000,0.01) to generate the coef-
ficient matrices of the gyroscopic QEP arising in the vibration analysis of a

wiresaw |74]. Here M, D, K are n X n matrices defined by

2 9201 .2
M=2I, D=—D"=[dy] and K = diag <M) ,

2 1<i<n 2

4ij
Z‘2,j2

where d;; = v if'i + 7 isodd and, otherwise, d;; = 0. The matrix size for
this problem is n.= 10,000 and we compute 10 eigenvalues nearest the origin

(ie., k = 10).with m = 20.

(f) Wiresaw2, When the effect of viscousdamping is added to the problem in

Wiresawl, the corresponding QEP has the form [74]
(WM =+ XND +nl,) + K +qD)x = 0,

where M, D and K are the same as in Wiresawl and 7 is a real nonnegative
damping parameter. We use nlevp(’wiresaw2’,10000,0.01,0.5) with n =
0.5 to generate the coefficient matrices. The matrix size is n = 10,000 and we
compute 10 eigenvalues near the target —0.5 (i.e., £ = 10 and ¢ = —0.5) with

m = 20.

3.7 Summary

We propose the SGA method, an orthogonal projection approach, for solving

QEPs and deduce several variations:
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(a) Acoustic 1D

#1ts CPU time

(b) Acoustic 2D

(-IRA 30 34.44
r-IRA 30 56.60
IRSGA 3 7.31
IRRSGA 3 7.47

#1ts CPU time

(c) Concrete

¢-IRA 30 88.27
r-IRA 30 127.83
IRSGA 12 31.89
IRRSGA 11 27.45

#1ts CPU time

(d) Spring dashpot

(-IRA 30 7.20
r-IRA 30 730
IRSGA 4 3.84
IRRSGA 4 4.06

#1ts CPU time

(e) Wiresawl

(-IRA 30 907.47
r-IRA 30 1595.34
IRSGA 3 106.08
IRRSGA 3 114.98

#1ts CPU ftime

(f) Wiresaw?2

(-IRA 8 69.80
r-IRA 4 75.24
IRSGA 2 35.83
IRRSGA 2 37.09

#Its CPU time

(-IRA 7 65.00
r-IRA 4 78.16
IRSGA 2 37.23
IRRSGA 2 39.39

Table 3.3: Iteration numbers and CPU time in Example 3.3.
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Figure 3.3: Convergence histories for methods /-IRA, r-IRA, IRSGA and IRRSGA
in Example 3.3.
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3.7 Summary

e RSGA : A refinable version of the SGA method.
e IRSGA : The SGA method combining the implicit restart technique.
o IRRSGA: A restartable and refinable variation of the SGA method.

The numerical results on computation of the approximate eigenpairs with small
eigenvalues in modulus show that, compared to the standard IRA method, both
IRSGA and IRRSGA are superior in accuracy as well as convergence rate. More-
over, the IRRSGA method may significantly improve the accuracy for obtaining the

desired eigenpairs.
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In this thesis, we consider two themes related to Arnoldi-type approaches for
solving nonlinear eigenvalue problems.

In the first topic (Chapter 2), we propose efficient Arnoldi-type methods for
computing damped vibration modes of an acoustic fluid confined in a cavity, with
absorbing walls capable of dissipating acoustic energy. Two approximations are
investigated. One constructed from the edge-based displacement space, which results
in QEPs (2.13) and one from the node-based pressure space, which results in REPs
(2.20). Our numerical results show that-beth nodal and edge-based finite elements
have second-order convergence rate. We theoretically prove that the nullity of the
QEP (2.13) equals the number of the interior grid points: These numerical results
show that if the shift value is_close to zero, then such a large null space interfere
with the convergence of the eigensolver. Furthermore, the numerical evidences also
show that (i) there are no spurious eigenmodes for the discretization in terms of
pressure nodal finite elements and (ii) the CPU times for solving the corresponding
REP (2.20) are only 1/5 to'1/3 of the CPU times forsolving the QEP (2.13). For
solving the nonlinear eigenvalue.problems (2.13) and (2.20), a linearization and a
trimmed-linearization method are used to linearize QEP (2.13) and REP (2.20) into
four different types of SEPs which can be solved by Q1 and Q2 as well as R1 and
R2. Numerical accuracy shows that Q2 and R2 algorithms are better than Q1 and
R1 respectively.

In Chapter 3, to deal with QEPs, we presented an orthogonal projection method
(named the SGA method) based on a SGA decomposition. We have developed a
practical algorithm to compute the SGA decomposition. The application of the
SGA decomposition is three aspects. First of all, we compute an orthonormal basis
of the projection subspace in the SGA decomposition. Secondly, the SGA decompo-

sition (3.8) has computational advantage for generating the coefficient matrices of
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reduced QEP (3.28). Finally, we take advantage of the SGA decomposition to save
some computational costs in the refinement process resulting a refined version of
the SGA method abbreviated as the RSGA method for solving QEPs. After apply-
ing an implicit restart technique to SGA/RSGA methods, we have restart versions
of SGA and RSGA, namely, the IRSGA/IRRSGA method. We have reported the
numerical results on computation of the approximate eigenpairs with small eigenval-
ues in modulus. Compared to the standard IRA method, both the IRSGA method
and IRRSGA method are superior_.in-accuracy and convergence rate. We also see
that the IRRSGA method had significantly improved the accuracy of computing the
desired eigenpairs when the standard IRA method and the IRSGA method cannot
converge in a certain number of iterations.

Based on this,research, the forthcoming work is to generalize the SGA method
and its variations«to provide orthogonal projection methods for solving the PEP
(1.9) as well as the REP (1.12); respectively.Even though these PEPs/REPs can
be solved by nonlinear-eigensolvers, these approaches restricts the advantages of the
underlying structure and property of PEPs/REPs: Therefore, the generalization
of the SGA method may provide an alternative structure-preserved approach for
solving PEPs/REPs. Moreover, how to efficiently compute refined eigenpairs using
the partial-orthogonal Arnoldi-like decomposition and to appropriately select refined

shift for implicitly restarting process will be challenging problems.
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