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摘 要       

本論文探討求解二次特徵值問題及有理特徵值之高效能 Arnoldi 型態演算法。其研究

主題可分為兩部分：（一）流固系統中非線性特徵值問題之 Arnoldi 型態演算法之比較；

（二）求解二次特徵值問題中的半正交廣義 Arnoldi 法。 

我們探討並分析一個具有耗散聲能吸音牆密閉空間中聲場的阻尼振動模態。利用有限

元素法，我們可由位移場的棱邊離散化將問題轉變為一個求解二次特徵值問題。另一方

面，若考慮壓力節點的離散則會獲得一個有理特徵值問題。透過線性化的技巧，我們可

將這兩個非線性特徵值問題分別改寫成型態為 x x  的廣義特徵值問題。該問題可以

用 Arnoldi 演算法處理兩種不同型態係數矩陣, 1 及 1 , 的標準特徵值問題。數值

結果顯示利用 Arnoldi 法求解 1 具有較高的精準度。 

對於求解二次特徵值問題中絕對值較靠近零之特徵值所對應的特徵對，我們發展了一

個正交投影法－半正交廣義 Arnoldi 法。此外，我們更進一步提出可精化、可重啟動的

半正交廣義 Arnoldi 法。相較於將二次特徵值問題線性化後再利用傳統隱式重啟動

Arnoldi 法求解，數值實驗顯示隱式重啟動半正交廣義 Arnoldi 法（不論是否有精化過程）

具有極佳的收斂行為。 
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ABSTRACT 

In this dissertation, we consider two themes related to Arnoldi-type algorithms for 
solving nonlinear eigenvalue problems. 

 

We develop and analyze efficient methods for computing damped vibration modes of 
an acoustic fluid confined in a cavity, with absorbing walls capable of dissipating 
acoustic energy. The edge-based finite elements for the displacement field results in a 
quadratic eigenvalue problem. On the other hand, the discretization in terms of 
pressure nodal finite elements results in a rational eigenvalue problem. We use the 
linearization technique to transform these nonlinear eigenvalue problems, respectively, 
into generalized eigenvalue problems x x   and apply Arnoldi algorithm to two 

different types of single matrices  and . Numerical accuracy shows that the 

application of Arnoldi on  is better than that on 
. 

 

For computing a few eigenpairs with smallest eigenvalues in absolute value of 
quadratic eigenvalue problems, we develop the semiorthogonal generalized Arnoldi 
method, an orthogonal projection technique. Furthermore, we propose refinable and 
restartable variations of this method to improve the accuracy and efficiency. Numerical 
examples demonstrate that the implicitly restarted semiorthogonal generalized Arnoldi 
method with or without refinement has superior convergence behaviors than the 
implicitly restarted Anoldi method applied to the linearized quadratic eigenvalue 
problem. 
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1.1 Notations

The theme explored in this thesis is to develop and exploit efficient Arnoldi-

type methods to solve the quadratic and rational eigenvalue problems. This chapter

will briefly introduce some basic notions, mathematical notations and conventional

methods of the so-called “eigenvalue problems”. We then, in Chapter 2, develop

and analyze efficient methods for quadratic and rational eigenvalues arising from

computing damped vibration modes of an acoustic fluid confined in a cavity with

absorbing walls capable of dissipating acoustic energy. In Chapter 3, we will propose

an orthogonal projection method for solving quadratic eigenvalue problems. Finally,

conclusions and the future work of this thesis will be discussed in Chapter 4.

1.1 Notations

The following notations are frequently used in this thesis. Other notations will

be clearly defined whenever they are used.

• i =
√
−1.

• We use the symbol ∀ to mean ‘for all’ throughout the thesis.

• R denotes the set of real numbers and C denotes the set of complex numbers.

• Re(λ) and Im(λ), respectively, denote the real part and the complex part of

the scalar λ ∈ C.

• 0 denotes zero vectors and matrices with appropriate size.

• In denotes the n× n identity matrix.

• ej denotes the jth column of the identity matrix In with specified n.

• We use ·⊤ and ·H to denote the transpose and conjugate transpose for vectors

or matrices.
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1.2 The Arnoldi Method for Standard Eigenvalue Problems

• ⊗ denotes the Kronecker product.

• ‖ · ‖2, ‖ · ‖F and ‖ · ‖∞ respectively denote the 2-norm, Frobenius norm and

infinity norm for vectors or matrices.

• We adopt the following MATLAB notations:

v(i : j) denotes the subvector of the vector v that consists of the ith to the

jth entries of v;

A(i : j, k : ℓ) denotes the submatrix of the matrix A that consists of the

intersection of the rows i to j and the columns k to ℓ;

A(i : j, :) denotes the rows of A from i to j and A(:, k : ℓ) denotes the columns

of A from k to ℓ.

1.2 The Arnoldi Method for Standard Eigenvalue

Problems

Given a large sparse matrix A ∈ Cn×n, the Arnoldi method [1] is a well known

and very prevalent algorithm for solving the so-called standard eigenvalue problem

(SEP)

Ax = λx. (1.1)

That is, to find a scalar λ (real or complex) and a nonzero n-vector x satisfying the

equations (1.1). In this case, we say that λ is an eigenvalue of A and x is called

an eigenvector of A with respect to λ. Moreover, the pair (λ,x) is said to be an

eigenpair of A.

Starting with a unit vector v1, the Arnoldi method successively constructs a

sequence of unitary vectors v2,v3, . . . ,vm which forms a unitary basis of the Krylov

3



1.2 The Arnoldi Method for Standard Eigenvalue Problems

subspace Km(A,v1) ≡ span{v1, Av1, . . . , A
m−1v1} with m≪ n such that





hj+1,jvj+1 = Avj −
j∑

i=1

hijvi, j = 1, 2, . . . , m,

vH
s vt = 0, ∀s 6= t and vH

s vs = 1, ∀s,

or equivalently, 



AVm = VmHm + hm,m+1vm+1e
⊤
m,

[
V H
m

vH
m+1

]
[Vm vm+1] =

[
Im
0

0

1

]
,

(1.2)

where Vm is an n×m matrix with column vectors v1,v2, . . . ,vm, Hm is an m×m

upper Hessenberg matrix. After building the factorization (1.2), called the Arnoldi

decomposition, we then reduce A into the upper Hessenberg Hm through the unitary

transformation V H
m AVm = Hm. The eigenvalues and corresponding eigenvectors of

the reduced SEP Hmz = µz can be solved by the classical eigenvalue techniques,

such as the QR algorithm (also named the Francis algorithm [18, 19]). Moreover,

we see that if (θ,y) is an eigenpair of Hm then (θ, Vmy) is called a Ritz pair of A –

an approximate eigenpair of A with the residual norm

‖(A− θIn)Vmy‖ = |hm+1,m||e⊤my|.

For more details on the practical realization and theoretical analysis of the Arnoldi

method, we refer to [2, 14, 22, 49, 54, 67, 73].

There are some variations of the Arnoldi method. In practice, a small number

of eigenvalues that are nearest to a target σ or located in a prescribed region of the

complex plane and the corresponding eigenvectors are often of interest. Under the

assumption that σ is not an eigenvalue of the SEP (1.1) but not to far away from

the wanted eigenvalues, the shift-and-invert Arnoldi method [48, 54] tends to solve

4



1.2 The Arnoldi Method for Standard Eigenvalue Problems

the transformed eigenproblem

(A− σIn)−1x = νx, (1.3)

where the scalar value σ is called a shift. It is easy to verify that (1.3) and (1.1) are

mathematically equivalent since (ν,x) is an eigenpair of (1.3) if and only if (σ+ 1
ν
,x)

is an eigenpair of (1.1).

The restarted Arnoldi method aims to overcome the increasing storage as well

as the computational cost of the Arnoldi decomposition (1.2) as m is increasing.

In [53], Saad coped with these difficulties by developing the explicitly restarted

Arnoldi iteration. The idea of this strategy is to compute another mth order Arnoldi

decomposition with a “better” initial vector which is a linear combination of some

wanted Ritz vectors. The implicitly restarted Arnoldi method [59] and Krylov-Schur

algorithm [28, 61, 63], on the other hand, are two remarkable implicitly restarting

schemes. These schemes are called implicit due to the fact that the initial vector

is sequentially constructed by using the implicitly shifted QR algorithm [18, 19]

on the Hessenberg matrix Hm in (1.2). We will review the implementation of the

Krylov-Schur restarting in Section 2.4.

Another possible problem is that even though some desirable eigenvalues com-

puted by the Arnoldi method already attempt to converge, the corresponding ap-

proximate eigenvectors may converge very slowly and even fail to converge. The

refined Arnoldi method [32] proposed by Jia gave an alternative approach to rem-

edy this problem by computing refined approximate eigenvectors. See also [33]. We

will mimic this idea and design a refinement strategy for our Arnoldi-type method

in Section 3.4. Other variations of the Arnoldi method include the block-Arnoldi

method [55], the inexact Arnoldi method [56], the residual Arnoldi method [37, 38],

and so on.
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1.3 The Generalized Arnoldi Method for Generalized Eigenvalue
Problems

1.3 The Generalized Arnoldi Method for General-

ized Eigenvalue Problems

The generalized eigenvalue problem (GEP) for the matrix pencil A− λB of two

square matrices A and B with size n is to determine scalars λ and n-vectors x 6= 0

such that

Ax = λBx. (1.4)

If B is nonsingular, the GEP (1.4) can be transformed into SEPs

(B−1A)x = λx (1.5)

or

(AB−1)y = λy, y = Bx (1.6)

and subsequently solved by the standard Arnoldi method. Alternatively, the QZ

algorithm [45], an analog of the QR algorithm for the GEP, is the method of choice

for dealing with the GEP (1.4) with small dense coefficient matrices.

The truncated QZ method proposed by Sorensen [60] is one of the approaches

for solving large-scale GEPs. For m ≪ n, this method constructs a generalization

of the standard Arnoldi decomposition (1.2),





AZm = YmHm + hm+1,mym+1e
⊤
m,

BZm = YmRm,

ZH
mZm = Im, Y

H
m Ym = Im, Y

H
m ym+1 = 0,

(1.7)

which is called the generalized Arnoldi reduction in [60], and deals with the small-

sized GEP Hmv = µRmv of the m×m upper Hessenberg-triangular pair (Hm, Rm)

to approximate eigenpairs of the original large-scale GEP (1.4).

6



1.4 Quadratic Eigenvalue Problems and Linearizations

1.4 Quadratic Eigenvalue Problems and Lineariza-

tions

In this section, we consider the quadratic eigenvalue problem (QEP) of the form

Q(λ)x ≡ (λ2M + λD +K)x = 0, (1.8)

where M , D and K are n× n large and sparse matrices. The QEP is a special case

of the polynomial eigenvalue problem (PEP)

P (λ)x ≡
(

d∑

i=0

λiPi

)
x = 0, (1.9)

where Pi are constant matrices of size n for 1 ≤ i ≤ d. P (λ) ≡
d∑

i=0

λiPi is called a

matrix polynomial (in λ) of degree d. Obviously, for d = 0, 1 and 2, the PEP (1.9)

is, respectively, indeed the case of SEP (1.1), GEP (1.4) and QEP (1.8).

The “linearization” is a typical and most widely used technique to solve the QEP

in which the problem is reformulated into a linear one which doubles the order of

the system. By selecting suitable matrices A,B ∈ C2n×2n and the vector ϕ ∈ C2n,

we can convert (1.8) into the GEP

(A− λB)ϕ = 0 (1.10)

satisfying the relation

E(λ)(A− λB)F(λ) =
[
Q(λ)

0

0

In

]
,

where E(λ) and F(λ) are 2n × 2n matrix polynomials in λ with constant nonzero

7



1.4 Quadratic Eigenvalue Problems and Linearizations

determinants. In this case,

det(A− λB) = det(λ2M + λD +K)

indicates the eigenvalues of the original QEP (1.8) coincide with the eigenvalues of

the enlarged GEP (1.10). As a result, the linearization technique of QEPs makes

classical methods for GEPs as well as SEPs can be used.

There are many choices of (A,B)’s, but probably the most popular ones in prac-

tice are the so-called companion forms [21]: the first companion form

A =



−D −K

In 0


 and B =



M 0

0 In




as well as the second companion form

A =



−D In

−K 0


 and B =



M 0

0 In


 . (1.11)

There are some drawbacks, however, of the linearization technique to solve QEPs.

For instance, the doubling size of the problem increases the computational cost and

the original structures of the coefficient matrices (M,D,K) such as symmetry and

positive definiteness may be lost. To circumvent these drawbacks, one may expect

to solve the QEP (1.8) directly. The QEP is projected onto a properly chosen low-

dimensional subspace in order to lower the matrix sizes of the coefficient matrices

in (1.8). The reduced QEP can then be solved by a standard approach for dense

matrices. Methods of this type include the residual iteration method [27, 43, 47], the

Jacobi-Davidson method [57, 58], a Krylov-type subspace method [40], the nonlinear

Arnoldi method [68], the second-order Arnoldi method [3, 41, 72] and an iterated

8



1.5 Rational Eigenvalue Problems and the Trimmed Linearization

shift-and-invert Arnoldi method [75]. While these methods use a similar projection

process, the main difference between them is the selection of projection subspaces.

Convergence analysis of projection methods to approximate eigenpairs of the QEP

(1.8) has recently been invented in [29].

In Chapter 2, we consider a QEP arising from a finite element model and convert

it into SEPs in (1.5) and (1.6) through an equivalent second companion form (1.11).

We will report theoretical and numerical comparisons of these two SEPs (1.5) there.

In Chapter 3, we combine the generalized Arnoldi reduction (1.7) and the second

companion form linearization (1.11) of the QEP (1.8) to develop a projection method

to solve the QEP (1.8) directly.

1.5 Rational Eigenvalue Problems and the Trimmed

Linearization

The rational eigenvalue problem (REP) concerns the problem of finding (λ,x)

with x 6= 0 satsifying the equation

R(λ)x ≡
(
P (λ)−

r∑

j=1

sj(λ)

tj(λ)
Cj

)
x = 0, (1.12)

where P (λ) is an n×n matrix polynomial in λ, sj(λ) and tj(λ) are scalar polynomials

in λ, and Cj are n × n constant matrices. The simulation of the three-dimensional

pyramid quantum dot heterostructure [31] produces a REP. For more examples

related to the REPs, see [9, 44, 64].

To solve the REP (1.12), one may immediately multiply (1.12) by the scalar

polynomial
r∏

j=1

tj(λ) to convert it into a PEP. Subsequently, the PEP can be lin-

earized to a GEP. The nonlinear eigensolver, on the other hand, is another way to

9



1.5 Rational Eigenvalue Problems and the Trimmed Linearization

solve this problem. The nonlinear Jacobi-Davidson method [70] and the nonlinear

Arnoldi method [68] fall into this category. Yet, these approaches also have the prob-

lem that restricts advantages of the underlying matrix structures and properties of

REPs.

Trimmed linearization [64] is a recent linearization-based approach to solve the

REP (1.12), especially when matrices Cj in (1.12) have the low-rank property. This

method utilizes and preserves the structure and property of the REP (1.12) as much

as possible to transform it into a GEP (and hence a SEP), and it only slightly

increases the size of the GEP, compared to the size of the original REP (1.12).

The REP discussed in this thesis is a quadratic matrix polynomial (P (λ) in (1.9)

with d = 2) together with low-rank rational terms (see Eq. (2.20)). We will use the

trimmed linearizing skill and the shift-and-invert Arnoldi method with Krylov-Schur

restarting to detect desired eigenpairs.

10
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2.1 Introduction

2.1 Introduction

Efficient and correct computation of the damped vibration modes generated by

an inviscid, compressible, barotropic fluid in a cavity, with absorbing walls is an

important issue when for example one is interested in decreasing the level of noise

in aircraft or cars. In general, one needs first a mathematical model consisted of

partial differential equations with proper boundary and initial conditions. After this

first phase of mathematical formulation, the next phase is to find efficient methods

to compute the modes. This phase involves correct discretization of the mathemati-

cal formulation and computation of large scale nonlinear eigenvalue problems, be it

quadratic, cubic, or even rational. Choosing correct discretization schemes to avoid

spurious modes and finding efficient methods to locate eigenvalues that lie in the

interior of the spectrum are among important issues to deal with. In the mathemat-

ical formulation phase, we have interaction between the fluid and structure (cavity

walls), and the displacement variable natural for the solid could be chosen for the

fluid as well so that compatibility and equilibrium (cf. (2.3) and (2.7) below) through

the fluid-solid interface can be satisfied automatically. A drawback lurking behind

the displacement formulation is the possible presence of nonphysical zero-frequency

spurious circulation modes, if one is not careful in choosing the discretization scheme

associated with the underlying partial differential system. For example discretization

by standard finite elements or finite differences often exhibit such a phenomenon.

Approaches circumventing this drawback can be found in [4, 12, 20, 24, 71], among

others.

One of the discretizations we will be using in this chapter is the edge-based or

Raviart-Thomas finite elements for the displacement field, following [5, 7]. The main

concerns in [5, 51] are pure mathematical issues of proving that their numerical

approximation is free of spurious modes and has second order convergence rate.
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2.1 Introduction

Efficient computation of the modes is not a concern, as they solved the associated

quadratic eigenvalue problem by the standard eigensolver eigs from MATLAB that

employs Arnoldi iterations.

In this chapter our primary concern is to develop and study efficient eigensolvers

for the spectral approximation of the damped vibration modes. Two approximations

are investigated, one constructed from the edge-based displacement space (cf. Eq.

(2.11) below), which results in quadratic eigenvalue problems (QEPs) and one from

the node-based pressure space (cf. Eq. (2.12)), which results in rational eigenvalues

problems (REPs). Our first approximation is identical to that in [5, 7], but we

further develop efficient methods for solving the associated QEP. However, we show

in Section 2.2 that this problem has a large zero-frequency or null space and this

fact may influence the efficiency of Arnoldi-type algorithms. Motivated by this, we

extensively explore the second approximation of using the pressure space, which

has a much smaller eigenvalue system to solve and which has a one dimensional

null space. While there is an extensive literature on QEPs problems [66], REPs are

much less studied [64, 68, 69]. Although on the surface the REP (Eq. (2.20)) could

be turned into a cubic one by multiplying out the denominator, we will preserve its

rational structure and design efficient methods to numerically solve it in Section 2.3.

The organization of this chapter is as follows. We describe the underlying model

fluid-solid problem of this chapter in Section 2.2, where the edge-based displace-

ment approximation and the node-based pressure approximation are derived. We

pay particular attention to identifying the dimension of the associated null space,

which may influence performance of the numerical method introduced later. In Sec-

tion 2.3, we use the general strategy of turning a nonlinear eigenvalue problem into

a standard one by some sort of linearization techniques. We then apply the Arnoldi

type algorithms to solve it. For the two nonlinear eigenvalue problems, the QEP

13



2.2 The Model Problem

is as usual turned into a generalized eigenvalue problem (GEP), from which two

types of standard eigenvalue problems (SEP) (2.19.1) and (2.19.2) are derived. The

REP is trimmed-linearized into two types of three by three block SEPs (2.31.1) and

(2.31.2). The important issue of residual error bound analysis is addressed here.

We then apply Arnoldi method with Schur-restarting described in Section 2.4 to the

resulting SEPs. The important issues of stopping criteria and computational costs

for applying Arnoldi method to the QEP and REP are also derived in this section.

In Section 2.5, we present numerical results and evaluate the merits of the schemes

involved where we also demonstrate the role of normwise scaling in preprocessing

the eigenvalue problems. Summaries are included in Section 2.6.

2.2 The Model Problem

Let us consider a simple model of a rigid container filled with an inviscid com-

pressible barotropic fluid and its acoustic energy is absorbed through a thin layer of a

viscoelastic material applied to some or all of its walls. For simplicity we assume the

fluid domain Ω ⊂ Rd (d = 2 or 3) to be polyhedral, and the boundary ∂Ω = ΓA∪ΓR,

where the absorbing boundary ΓA is the union of all the different faces of Ω and is

covered by damping material. The rigid boundary ΓR is the remaining part of Γ.

An example of the setup is in Figure 2.1(i) on Section 2.5, where the top boundary

is absorbing and the remaining boundary is rigid.

The dynamic variables of our model problem are the fluid pressure P and the
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2.2 The Model Problem

displacement field U, which satisfy ([8, 35])

ρ
∂2U

∂t2
+ ∇P = 0 in Ω, (2.1)

P = −ρc2divU in Ω, (2.2)

P =

(
αU · n+ β

∂U

∂t
· n
)

on ΓA, (2.3)

U · n = 0 on ΓR. (2.4)

Here ρ is the fluid density, c, the acoustic speed, and n, the unit outer normal vector

along ∂Ω. At the absorbing boundary (2.3) indicates that the pressure is balanced

by the effects of the viscous damping (the β term) and the elastic behavior (the α

term). We assume the coefficients α and β are given positive constants.

To look for the damped vibration modes we assume (2.1)–(2.4) has complex

solution of the form U(x, t) = eλtu(x) and P (x, t) = eλtp(x). This leads to a

problem of finding λ ∈ C,u : Ω→ Cn and p : Ω→ C, (u, p) 6= (0, 0) such that

ρλ2u + ∇p = 0 in Ω, (2.5)

p = −ρc2 divu in Ω, (2.6)

p = (α + λβ)u · n on ΓA, (2.7)

u · n = 0 on ΓR. (2.8)

The boundary condition (2.7) makes this eigenvalue problem nonlinear. For each

damped vibration mode, ω := Im(λ) is the vibration angular frequency and Re(λ)

the decay rate. In practice, we select a range of ω values and are interested in

the least decaying modes in this range. We next describe the natural variational

formulation of the above problem on which the numerical approximation will be

based.
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2.2 The Model Problem

Let

V := {v ∈ H(div,Ω) : v · n ∈ L2(∂Ω) and v · n = 0 on ΓR}.

Here we employ standard Sobolev spaces notation. For example, H(div,Ω) stands

for the space of all L2 vector functions v on Ω with L2 integrable divergence.

Testing (2.5) by v̄ ∈ V and integrating by parts, we obtain a variational for-

mulation of problem (2.5)–(2.8) involving only the displacement variable: Find

λ ∈ C and u ∈ V,u 6= 0, such that

λ2

∫

Ω
ρu · v̄ + λ

∫

ΓA

βu · nv̄ · n+

∫

ΓA

αu · nv̄ · n+

∫

Ω
ρc2 divu divv̄ = 0 ∀ v ∈ V. (2.9)

This is a quadratic eigenvalue problem. Note that λ = 0 is an eigenvalue and the

dimension of its eigenspace

N := {u ∈ V : div u = 0 in Ω and u · n = 0 on ∂Ω}

is infinity. All nonzero eigenvalues have finite multiplicity (the dimension of the

eigenspace is finite) [6]. It is shown in [6] that all the other solutions of (2.9), the

decay rate is strictly negative. That is, if an eigenpair 0 6= λ ∈ C and 0 6= u ∈ V is

a solution of problem (2.9) then Re(λ) < 0.

Alternatively we can derive a variational formulation in terms of the pressure:

Find λ ∈ C and p ∈ H1(Ω) := {p ∈ L2(Ω) : ∇p ∈ L2(Ω)} such that

λ2

c2

∫

Ω

pq̄ +
λ2

α + λβ

∫

ΓA

ρpq̄ +

∫

Ω

∇p · ∇q̄ = 0 ∀ q ∈ H1(Ω). (2.10)

However, in this case the eigenvalue problem is rational, which is rarely studied

compared with linear and quadratic eigenvalue problems. Note that in contrast to

the displacement formulation, the eigenspace corresponding to λ = 0 is now one

16



2.2 The Model Problem

dimensional. Thus this formulation has a much smaller null space or kernel, which

may be more stable and efficient when used in conjunction with projection-like

spectral approximation methods.

2.2.1 Spectral approximation

We now turn to the finite element methods for approximating the solutions of

the quadratic eigenvalue problem (2.9) and the rational eigenvalue problem (2.10).

Spurious modes are usually present when standard finite elements are used in a

displacement formulation. However Bermúdez et. al. [6] successfully demonstrated

that the spurious modes can be avoided by using the lowest order Raviart-Thomas

elements in Rd, d = 2, 3 (see, for instance, [10, 50]). For simplicity we will consider

only the two dimensional case. Let {Th} be a regular family of triangulations of Ω

indexed by h, the maximum diameter of the elements. Let

Vh := {vh ∈ H(div,Ω) : vh|T ∈ Pd
0 ⊕ P0x ∀ T ∈ Th and vh · n = 0 on ΓR} ⊂ V,

where d = 2 and Pk denotes the set of polynomials of degree at most k. Thus locally

vh takes the form (a+ sx, b+ sy)⊤. The discrete problem associated with (2.9) is :

Find λ ∈ C and uh ∈ Vh,uh 6= 0, such that

λ2

∫

Ω

ρuh · v̄h + λ

∫

ΓA

βuh · n v̄h · n+

∫

ΓA

αuh · n v̄h · n+

∫

Ω

ρc2 divuh divv̄h = 0, ∀ vh ∈ Vh.

(2.11)

Theorem 2.1. The dimension of the zero eigenspace E0 associated with (2.11) equals

the number of interior nodes in the triangulation.

Proof. Setting vh = uh and λ = 0 in (2.11), we see that

divuh = 0 on Ω and uh · n = 0 on ∂Ω.
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Since uh = (a + sx, b + sy)⊤ on T ∈ Th, the divergence free condition implies that

uh is a constant vector (a, b)⊤ on T . By direct computation, we see that there exists

a linear polynomial ψT such that

∂ψT

∂x
= −b and

∂ψT

∂y
= a.

Let n = (n1, n2)
⊤ be a unit normal to an edge e of T , so t = (−n2, n1)

⊤ is a unit

tangent vector to e. We see that

uh · n = ∇ψT · t =
∂ψT

∂t
.

So if an edge e is common to T1 and T2 then in general ψT1
and ψT2

differ by a

constant only by the continuity of uh · n across e. At an interior node Nj , we can

assign a common value for all ψT at that node. Here T are all triangles sharing Nj

as the common node. We then spread this defining process outward to all Ω using

the induced values on other nodes. Consequently, Ψ is continuous piecewise linear

over Ω. Let ∇⊥ := (− ∂
∂y
, ∂
∂x
)⊤ and define

∇⊥Sh := {∇⊥Ψh : Ψh is continuous piecewise linear and vanishes on the boundary}.

Thus we have just shown the zero eigenspace E0 is contained ∇⊥Sh and the opposite

inclusion is also easily checked. Hence

E0 = ∇⊥Sh.

We now find the dimension of ∇⊥Sh. Let N be the number of interior nodes and

let Ψj, j = 1, . . . , N , be the nodal basis functions such that Ψj(Nk) = δkj . The

linear independence of Ψj’s is preserved by the perp-gradient operation. In fact,

18



2.2 The Model Problem

suppose
N∑
j=1

cj∇⊥Ψj = 0. Then this implies
N∑
j=1

cjΨj = c for some constant c. Hence

cj = c by the condition Ψj(Nk) = δkj. Consequently, c(
∑

j Ψj − 1) = 0. But we

know
N∑
j=1

Ψj 6= 1 due to the vanishing boundary condition. Thus cj = c = 0 and we

conclude that the dimension of the zero eigenspace dim E0 = dim∇⊥Sh equals the

number of interior nodes in the mesh.

Define the conforming P1 finite element space

Hh := {ph ∈ H1(Ω) : ph|T ∈ P1 ∀ T ∈ Th}.

This is the subspace of H1(Ω) consisted of continuous piecewise linears. The alter-

native discrete problem in terms of the approximate pressure field is: Find λ ∈ C

and ph ∈ Hh such that

λ2

c2

∫

Ω

phq̄h +
λ2

α + λβ

∫

ΓA

ρphq̄h +

∫

Ω

∇ph · ∇q̄h = 0 ∀ qh ∈ Hh. (2.12)

Letting qh = ph and λ = 0 in (2.12) we can easily see that the dimension of the zero

eigenspace in this case is one, which is the same as the original problem (2.10).

Again we see that the pressure formulation has a much smaller null space than

the displacement formulation. Also the number of unknowns is much smaller. Thus

the pressure formulation turns out to be a very good alternative, once in addition

we show in the remaining sections that its associated eigenvalue problem can be

efficiently solved. A minor remark is in order here.

Remark 2.2. Suppose an eigenpair (λ, ph), λ 6= 0 has been computed, what if, in

addition, one wants to know a corresponding displacement approximation uh? One

must not find uh by solving an additional system linear equations again so as to

maintain the advantage of the pressure formulation. It should be given by a simple
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formula. A naive way is to use the relation (2.5) to evaluate a uh, but this would

be ill conceived since the computed displacement would be piecewise constant. Con-

sequently, ∇ · uh = 0, which certainly does not approximate (2.6). Fortunately, a

general principle for such a problem (recovery of uh from the pressure approximation

ph) has been provided in [13] where one can obtain an accurate uh in the Raviart-

Thomas space by a simple evaluation formula which is a modification of the above

naive formula.

2.3 Linearization of Nonlinear Eigenvalue Problems

In this section we start to address the computational issues related to the dis-

placement approximation (2.11) and the pressure approximation (2.12).

2.3.1 Linearization of quadratic eigenvalue problems

Suppose the total number of interior and absorbing edges is n1. Let {φj}n1

j=1

denote the cardinal basis of Vh, so that on the edge ej , φj has the unit normal flux

and zero normal flux on the remaining n1 − 1 edges. That is,
∫
ei
φj · nidς = δij .

For uh ∈ Vh, we write uh =
n1∑
j=1

ujφj and denote u = [u⊤1 , · · · , u⊤n1
]⊤. Note that

the unknown vector u contains normal fluxes in its components. Then, the discrete

problem (2.11) can be expressed as the following QEP:

Q(λ)u ≡ (λ2Mu + (α + λβ)Au +Ku)u = 0, (2.13)

where Mu ≡ [Mu
ij ] and Ku ≡ [Ku

ij ] are mass and stiffness matrices, respectively, and

Au ≡ [Au
ij] is used to describe the effect of the absorbing wall. Here

Mu
ij =

∫

Ω

ρφi · φ̄j, Ku
ij =

∫

Ω

ρc2 divφi divφ̄j , Au
ij =

∫

ΓA

φi · n φ̄j · n, (2.14)
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for i, j = 1, . . . , n1. For this problem, we are only interested in eigenvalues that are

located in the interior of the spectrum. Suppose that the eigenvalues near σ are of

interest. Accordingly, the QEP (2.13) is shifted into

(
µ2M̃u + µD̃u + K̃u

)
u = 0 (2.15)

with µ = λ− σ and





M̃u =Mu,

D̃u = 2σMu + βAu,

K̃u = σ2Mu + (α + σβ)Au +Ku.

(2.16)

On the one hand, one can numerically solve (2.15) without transforming it further.

Among such direct methods we mention the second-order Arnoldi (SOAR) method

[3] and the Jacobi-Davidson algorithm applied to polynomial eigenvalue problems

[57]. On the other hand, it is more common to transform or linearize (2.15) into a

SEP [66]. In this chapter, we let

Au =




0 −M̃u

In1
−D̃u


 , Bu =



In1

0

0 K̃u


 (2.17)

and linearize (2.15) into the GEP

Auϕ =
1

µ
Buϕ with ϕ ≡



−µM̃uu

u


 ≡




v

u


 . (2.18)

The matrix K̃u in (2.17) is nonsingular owing to the fact that the shift value σ is

not an eigenvalue of (2.13). Furthermore, the GEP (2.18) can then be transformed

into two types of SEPs of the forms (B−1
u Au)ϕ = µ−1ϕ and (AuB−1

u )ψ = µ−1ψ,
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2.3 Linearization of Nonlinear Eigenvalue Problems

respectively, where ψ = Buϕ. Therefore, from (2.17) and (2.18) we have

(Q-SEP1) B−1
u Au




v

u


 =




0 −M̃u

K̃−1
u −K̃−1

u D̃u







v

u


 =

1

µ




v

u


 (2.19.1)

and

(Q-SEP2) AuB−1
u




v

w


 =




0 −M̃uK̃
−1
u

In1
−D̃uK̃

−1
u







v

w


 =

1

µ




v

w


 ,w = K̃uu.(2.19.2)

Note that the SEPs of (2.19.1) and (2.19.2) derived by the QEP in (2.15), are called

Q-SEP1 and Q-SEP2, respectively. The standard Arnoldi method can then be

applied to solve Q-SEPs, and the details will be given in Section 2.4.

2.3.2 Trimmed linearization for rational eigenvalue problems

Let {ψj}n2

j=1 be a nodal basis of Hh. For ph ∈ Hh, we write ph =
n2∑
j=1

pjψj and

denote p = [p1, · · · , pn2
]⊤. Then, the discrete problem (2.12) can be written as the

following REP:

R(λ)p ≡
(
λ2

c2
Mp +Kp +

λ2

λβ + α
Ap

)
p = 0, (2.20)

where Mp ≡ [Mp
ij ] and Kp ≡ [Kp

ij ] are mass and stiffness matrices, respectively, and

Ap ≡ [Ap
ij ] describes the effect of the absorbing wall. Here,

Mp
ij =

∫

Ω

ψiψ̄j , Kp
ij =

∫

Ω

∇ψi · ∇ψ̄j , Ap
ij =

∫

ΓA

ρψiψ̄j (2.21)

for i, j = 1, . . . , n2.

To solve REP (2.20), one approach is to multiply equation (2.20) by the scalar

λβ+α and expand it into a cubic polynomial eigenvalue problem, and then solve it by
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Jacobi-Davidson method [30]. An alternative approach is to treat (2.20) as nonlinear

eigenvalue problem and solve it by a nonlinear eigensolver, such as Newton’s method,

nonlinear Arnoldi method, or nonlinear Jacobi-Davidson method [52, 68, 69]. Re-

cently, a trimmed linearization is proposed in [64] which linearizes (2.20) into a GEP

so that the standard Arnoldi method can be applied. We introduce the trimmed

linearization below.

Given a shift value σ. With µ = λ− σ, the rational λ-matrix R(λ) in (2.20) can

be rewritten as

R(λ) =
(λ− σ + σ)2

c2
Mp +Kp +

(λ− σ + σ)2

(λ− σ + σ)β + α
Ap

=
(λ− σ)2 + 2(λ− σ)σ + σ2

c2
Mp +Kp +

(λ− σ)2 + 2(λ− σ)σ + σ2

(λ− σ)β + σβ + α
Ap

= µ2

(
1

c2
Mp

)
+ µ

(
2σ

c2
Mp

)
+

(
σ2

c2
Mp +Kp

)
+
µ2 + 2µσ + σ2

µβ + σβ + α
Ap.

(2.22)

By applying the long division, the rational term in (2.22) can be simplified into the

following

µ2 + 2µσ + σ2

µβ + σβ + α
= µ2

[
α2

(σβ + α)3

]
+ µ

[
σ2β + 2σα

(σβ + α)2

]

+
σ2

σβ + α
− µ2

[
(σβ + α)3

α2
+

(σβ + α)4

α2βµ

]−1

.

This implies that

R(λ) = µ2

(
1

c2
Mp +

α2

(σβ + α)3
Ap

)
+ µ

(
2σ

c2
Mp +

σ2β + 2σα

(σβ + α)2
Ap

)

+

(
σ2

c2
Mp +Kp +

σ2

σβ + α
Ap

)
− µ2

(
(σβ + α)3

α2
+

(σβ + α)4

α2βµ

)−1

Ap

= µ2M̃p + µD̃p + K̃p − µ2
(
ϑ− ̺µ−1

)−1
LpR

⊤
p , (2.23)
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2.3 Linearization of Nonlinear Eigenvalue Problems

where

M̃p =
1

c2
Mp +

α2

(σβ + α)3
Ap, (2.24)

D̃p =
2σ

c2
Mp +

σ2β + 2σα

(σβ + α)2
Ap, (2.25)

K̃p =
σ2

c2
Mp +Kp +

σ2

σβ + α
Ap, (2.26)

ϑ =
(σβ + α)3

α2
, ̺ = −(σβ + α)4

α2β
, (2.27)

and LpR
⊤
p = Ap is the full-rank decomposition of Ap with Lp, Rp ∈ Rn2×ℓ, ℓ ≪ n2.

Introducing an auxiliary vector

q =
µ

ϑµ− ̺R
⊤
p p, (2.28)

the REP in (2.20) can be reformulated as

(
µ2M̃p + µD̃p + K̃p

)
p− µ2Lpq = 0. (2.29)

Using (2.28) and (2.29), we get the GEP

Apϕ ≡




0 −M̃p Lp

In2
−D̃p 0

0 −R⊤
p ϑIℓ



ϕ =

1

µ




In2
0 0

0 K̃p 0

0 0 ̺Iℓ



ϕ ≡ 1

µ
Bpϕ, (2.30)

where ϕ = [((µ−1K̃p + D̃p)p)
⊤,p⊤,q⊤]⊤. As before, the matrix K̃p in (2.26) is

nonsingular due to the fact that the shift value σ is not an eigenvalue of (2.20). As

in (2.19.1) and (2.19.2), the GEP (2.30) can then be, respectively, transformed into

the following two types of the SEPs of the forms (B−1
p Ap)ϕ = µ−1ϕ and (ApB−1

p )ψ =
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2.3 Linearization of Nonlinear Eigenvalue Problems

µ−1ψ where ψ = Bpϕ. Consequently, we have

(R-SEP1) B−1
p Apϕ =




0 −M̃p Lp

K̃−1
p −K̃−1

p D̃p 0

0 −̺−1R⊤
p ̺−1ϑIℓ



ϕ =

1

µ
ϕ, (2.31.1)

and

(R-SEP2) ApB−1
p ψ =




0 −M̃pK̃
−1
p ̺−1Lp

In2
−D̃pK̃

−1
p 0

0 −R⊤
p K̃

−1
p ̺−1ϑIℓ



ψ =

1

µ
ψ, ψ = Bpϕ. (2.31.2)

Note that the SEPs of (2.31.1) and (2.31.2) derived by the REP in (2.29) are called

R-SEP1 and R-SEP2, respectively.

2.3.3 Error analysis

In this subsection, we will discuss residuals of QEP (2.13) and REP (2.20) by

using linearizations (2.19) and (2.31), respectively.

We first derive residual bounds of approximate eigenpairs for QEP (2.13) by

by using linearizations Q-SEP1 and Q-SEP2, respectively. Let (µ−1
1 ,
[
v1

u1

]
) be an

approximate eigenpair of (2.19.1) and
[
f11
f12

]
be the associated residual vector. That

is,




f11

f12


 =




0 −M̃u

K̃−1
u −K̃−1

u D̃u







v1

u1


− 1

µ1




v1

u1




=
1

µ1




−v1 − µ1M̃uu1

K̃−1
u (µ1v1 − µ1D̃uu1 − K̃uu1)


 .
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2.3 Linearization of Nonlinear Eigenvalue Problems

It follows that

µ2
1M̃uu1 + µ1D̃uu1 + K̃uu1 = µ1(−v1 − µ1f11) + µ1v1 − µ1K̃uf12

= −µ2
1f11 − µ1K̃uf12.

Let λ1 = µ1 + σ. From (2.13) we have

‖Q(λ1)u1‖
‖u1‖

=
‖µ2

1M̃uu1 + µ1D̃uu1 + K̃uu1‖
‖u1‖

≤ |µ1|2‖f11‖+ |µ1|‖K̃u‖‖f12‖
‖u1‖

. (2.32)

On the other hand, let (µ−1
2 ,
[
v2

w2

]
) be an approximate eigenpair of (2.19.2) and

[
f21
f22

]

be the associated residual vector. That is,




f21

f22


 =




0 −M̃uK̃
−1
u

I −D̃uK̃
−1
u







v2

w2


− 1

µ2




v2

w2




=



−M̃uK̃

−1
u w2 − 1

µ2
v2

v2 − D̃uK̃
−1
u w2 − 1

µ2
w2


 .

It follows that

µ2
2M̃uK̃

−1
u w2 + µ2D̃uK̃

−1
u w2 +w2 = µ2(−v2 − µ2f21) + µ2v2 − µ2f22

= −µ2
2f21 − µ2f22.

Letting u2 = K̃−1
u w2 and λ2 = µ2 + σ. From (2.13) we have,

‖Q(λ2)u2‖
‖u2‖

=
‖µ2

2M̃uu2 + µ2D̃uu2 + K̃uu2‖
‖u2‖

≤ |µ2|2‖f21‖+ |µ2|‖f22‖
‖u2‖

. (2.33)

Now, we derive residual bounds of approximate eigenpairs for REP (2.20) by us-

ing linearizations R-SEP1 and R-SEP2, respectively. Let (µ−1
1 , [s⊤1 ,p

⊤
1 ,q

⊤
1 ]

⊤) be
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2.3 Linearization of Nonlinear Eigenvalue Problems

an approximate eigenpair of (2.31.1) and [g⊤
11, g

⊤
12, g

⊤
13]

⊤ be the associated residual

vector. That is,




g11

g12

g13



=




0 −M̃p Lp

K̃−1
p −K̃−1

p D̃p 0

0 −̺−1R⊤
p ̺−1ϑIℓ







s1

p1

q1



− 1

µ1




s1

p1

q1



.

This implies that

s1 = −µ1M̃pp1 + µ1Lpq1 − µ1g11, (2.34)

g12 = K̃−1
p s1 − K̃−1

p D̃pp1 −
1

µ1
p1, (2.35)

q1 =
(
µ1̺

−1ϑ− 1
)−1

µ1

(
g13 + ̺−1R⊤

p p1

)
. (2.36)

Substituting (2.36) into (2.34), s1 can be represented by

s1 = −µ1M̃pp1 + µ2
1

(
µ1̺

−1ϑ− 1
)−1 (

Lpg13 + ̺−1LpR
⊤
p p1

)
− µ1g11. (2.37)

Substituting (2.37) into (2.35) and taking λ1 = µ1 + σ. From (2.23) and (2.27),

R(λ1)p1 = µ2
1M̃pp1 + µ1D̃pp1 + K̃pp1 − µ2

1

[
(σβ + α)3

α2
+

(σβ + α)4

α2βµ1

]−1

LpR
⊤
p p1

= −µ2
1g11 − µ1K̃pg12 − µ2

1

(
β

σβ + α
+

1

µ1

)−1

Lpg13

which implies that

‖R(λ1)p1‖
‖p1‖

≤ 1

‖p1‖

{
|µ1|2‖g11‖+ |µ1|‖K̃p‖ ‖g12‖

+

∣∣∣∣∣µ
2
1

(
β

σβ + α
+

1

µ1

)−1
∣∣∣∣∣ ‖Lp‖ ‖g13‖

}
. (2.38)
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On the other hand, let (µ−1
2 , [s⊤2 , t

⊤
2 ,q

⊤
2 ]

⊤) be an approximate eigenpair of (2.31.2)

and [g⊤
21, g

⊤
22, g

⊤
23]

⊤ be the associated residual vector. That is,




g21

g22

g23



=




0 −M̃pK̃
−1
p ̺−1Lp

In2
−D̃pK̃

−1
p 0

0 −R⊤
p K̃

−1
p ̺−1ϑIℓ







s2

t2

q2



− 1

µ2




s2

t2

q2



.

This implies that

g21 = −M̃pK̃
−1
p t2 + ̺−1Lpq2 −

1

µ2
s2, (2.39)

s2 = D̃pK̃
−1
p t2 +

1

µ2

t2 + g22, (2.40)

q2 =

(
̺−1ϑ− 1

µ2

)−1 (
R⊤

p K̃
−1
p t2 + g23

)
. (2.41)

Substituting (2.40) and (2.41) into (2.39), we have

µ2
2M̃pK̃

−1
p t2 + µ2D̃pK̃

−1
p t2 + t2 − µ2

2

(
ϑ− ̺µ−1

2

)−1
LpR

⊤
p K̃

−1
p t2

= −µ2
2g21 − µ2g22 + µ2

2

(
ϑ− ̺µ−1

2

)−1
Lpg23.

Letting p2 = K̃−1
p t2 and setting λ2 = µ2 + σ. From (2.23) we get

R(λ2)p2 = µ2
2M̃pp2 + µ2D̃pp2 + K̃pp2

−µ2
2

[
(σβ + α)3

α2
+

(σβ + α)4

α2βµ2

]−1

LpR
⊤
p p2

= −µ2
2g21 − µ2g22 + µ2

2

α2β

(σβ + α)4

(
β

σβ + α
+

1

µ2

)−1

Lpg23.
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2.3 Linearization of Nonlinear Eigenvalue Problems

Hence,

‖R(λ2)p2‖
‖p2‖

≤ 1

‖p2‖

{
|µ2|2‖g21‖+ |µ2|‖g22‖

+

∣∣∣∣∣µ
2
2

α2β

(σβ + α)4

(
β

σβ + α
+

1

µ2

)−1
∣∣∣∣∣ ‖Lp‖‖g23‖

}
. (2.42)

Remark 2.3. In order to check the tightness of upper bounds in (2.32) and (2.33),

as well as, (2.38) and (2.42) for residuals, respectively, we refer to the coefficient

matrices generated in Example 2.1 of Section 2.5. For (2.9) we adopt the data as in

[6] by setting ρ = 1kg/m3, c = 340 m/s, α = 5 × 104 N/m3, and β = 200 Ns/m3. In

addition, we choose σ = −25 + 600πi as the shift value. Then

(i) from (2.14), the element mass and stiffness matrices are

h2

6
ρ




2 −1 0

−1 2 0

0 0 2




and ρc2




2 2 2
√
2

2 2 2
√
2

2
√
2 2
√
2 4



,

respectively. Hence, by (2.16) the infinity norm of K̃u can be estimated by

‖K̃u‖∞ ≈ ‖Ku‖∞ = O(ρc2) = O(105). From (2.32) and (2.33), we conclude

that the upper bound for the residual of the approximate eigenpair (µ1 + σ,u1)

of (2.13) by solving Q-SEP1 is larger than that of the approximate eigenpair

(µ2 + σ,u2) of (2.13) by solving Q-SEP2.

(ii) From (2.21), the element mass and stiffness matrices are

h2

24




2 1 1

1 2 1

1 1 2




and




1 −1/2 −1/2

−1/2 1/2 0

−1/2 0 1/2



,
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2.4 Arnoldi Method with Schur-restarting

respectively. Hence, by (2.26) we have that ‖K̃p‖∞ ≈ ‖Kp‖∞ = O(1). If the

eigenvalue λ is one of the desired eigenvalues in Figure 2.2, then with µ = λ−σ

we have

4× 107 <

∣∣∣∣∣µ
2

(
β

σβ + α
+

1

µ

)−1
∣∣∣∣∣ < 3.1× 1010

and

0.001 <

∣∣∣∣∣µ
2 α2β

(σβ + α)4

(
β

σβ + α
+

1

µ

)−1
∣∣∣∣∣ < 0.8.

Clearly, from (2.38) and (2.42) we conclude that the upper bound for the resid-

ual of the approximate eigenpair (µ1+σ,p1) of REP (2.20) by solving R-SEP1

is larger than that of (µ2 + σ,p2) of (2.20) by solving R-SEP2.

2.4 Arnoldi Method with Schur-restarting

The Arnoldi method is the most popular method for solving large sparse SEPs:

Ax = λx. In Arnoldi process, an orthonormal matrix Vm+1 is generated to satisfy

AVm = VmHm + hm+1,mvm+1e
⊤
m, (2.43)

where Hm ∈ Cm×m is an upper Hessenberg matrix. If the dimension of the Krylov

subspace span{Vm} is larger than a certain value, then the process of Arnoldi de-

composition will be restarted.

For the restarting process, we can use an implicit restart scheme [46, 59]. The

package ARPACK [39] includes a very successful implementation of the implicitly

restarted Arnoldi algorithm. It has been used by numerous engineering fields and

remains a popular choice for solving eigenvalue problems. However, these implicitly

restart type schemes may suffer from numerical instability due to rounding errors.

Stewart proposed the Krylov-Schur method [28, 61, 63] that relaxes the need to
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2.4 Arnoldi Method with Schur-restarting

preserve the structure of the Arnoldi decomposition and therefore ease the compli-

cations of the purging and deflating.

We state the Schur-restarting scheme as follows. Let

Hm = [Uk Uℓ]



Tk Tf

0 Tℓ






UH
k

UH
ℓ


 (2.44)

be a Schur decomposition of Hm where Tk and Tℓ are upper triangular, and the

eigenvalues of Tk are of interest. Substituting (2.44) into (2.43), we see that

A(Vm [Uk Uℓ]) = (Vm [Uk Uℓ])



Tk Tf

0 Tℓ


+ hm+1,mvm+1(e

⊤
m [Uk Uℓ]),

which implies that

AṼk = ṼkTk + ṽk+1t
H
k , (2.45)

where Ṽk ≡ VmUk, ṽk+1 = vm+1 and tHk ≡ hm+1,me
⊤
mUk.

Let Q1 be a Householder matrix with tHk Q1 = τe⊤k . Then (2.45) can be rewritten

as

A(ṼkQ1) = (ṼkQ1)(Q
H
1 TkQ1) + τ ṽk+1e

⊤
k . (2.46)

The matrix QH
1 TkQ1 can be reduced to a new Hessenberg matrix H+

k by using

Householder matrices Qi for i = 2, . . . , k − 1 with

QH
k−1 · · ·QH

2 (Q
H
1 TkQ1)Q2 · · ·Qk−1 = H+

k

e⊤kQ2 · · ·Qk−1 = e⊤k .
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Multiplying (2.46) by Qi, i = 2, . . . , k − 1, a new Arnoldi decomposition of order k

AV +
k = V +

k H
+
k + τv+

k+1e
⊤
k

is obtained where V +
k := ṼkQ1 · · ·Qk−1, v+

k+1 = ṽk+1 = vm+1 and the Arnoldi

process can be applied to generate it to order m in (2.43). One repeats the above

process until the desired eigenvalues are convergent. The process is summarized in

Algorithm 2.1.

Algorithm 2.1 Arnoldi method with Schur-restarting for solving Ax = λx

Input: A: coefficient matrix, tolA: tolerance for convergence, rmax: maximum num-
ber of Schur-restartings.

Output: The desired k eigenpairs.
1: Build an initial Arnoldi decomposition of order k as in (2.43) and set r = 0.
2: restart
3: Extend Arnoldi decomposition of order k to order m = k+ℓ and set r = r+1.

4: Compute all Ritz pairs (µ−1
i , zi) with Hkzi = µ−1

i zi, i = 1, . . . , m and sorting
Ritz values so that {(µ1, z1), . . . , (µk, zk)} are wanted.

5: for i = 1, . . . , k do
6: Check convergence by |hm+1,m||e⊤mzi| < tolA.
7: end for
8: if ( Not all m desired eigenvalues are convergent and r < rmax ) then
9: Compute the Schur decomposition of Hm as in (2.44), where the eigenvalues

of Tk are of interest.
10: Set Vk := VmUk, vk+1 := vm+1 and tHk := hm+1,me

⊤
mUk.

11: Compute Householder transformation Q1 such that tHk Q1 = τe⊤k .
12: Reduce QH

1 TkQ1 to a new Hessenberg matrix Hk by using Householder
transformations Qi for i = 2, . . . , k − 1.

13: Set Vk := VkQ1 · · ·Qk−1 and hk+1,k = τ to get the new Arnoldi decomposi-
tion with order k:

AVk = VkHk + hk+1,kvk+1e
⊤
k . (2.47)

14: end if
15: until ( desired k eigenpairs are convergent or r ≥ rmax )

Now, we will apply the Algorithm 2.1 to solve QEP (2.13) and REP (2.20),

respectively, by setting A to be the coefficient matrices in (2.19) and (2.31), respec-

tively.
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2.4 Arnoldi Method with Schur-restarting

2.4.1 Stopping criteria

Let (µ−1, z) be a Ritz pair and satisfy Hmz = µ−1z. From (2.43) and Q-SEP1

in (2.19.1) we have




0 −M̃u

K̃−1
u −K̃−1

u D̃u






Vm1

Vm2


 z =

1

µ



Vm1

Vm2


 z+ hm+1,m




vm+1,1

vm+1,2


 e⊤mz, (2.48)

where Vm =
[
Vm1

Vm2

]
and vm+1 =

[
vm+1,1

vm+1,2

]
are partitioned with compatible sizes. Using

the first equation of (2.48), we can eliminate Vm1z in the second equation and get

‖Q(λ)u1‖
‖u1‖

=
‖(µ2M̃u + µD̃u + K̃u)u1‖

‖u1‖
=
|µ| |hm+1,m|

∣∣e⊤mz
∣∣ ζ1

‖u1‖
≡ q1(µ), (2.49)

where u1 = Vm2z, λ = µ + σ and ζ1 = ‖µvm+1,1 + K̃uvm+1,2‖. Without ambiguity

by using the same notations as above in Algorithm 2.1, from (2.43) and Q-SEP2

in (2.19.2) we also have




0 −M̃uK̃
−1
u

In1
−D̃uK̃

−1
u






Vm1

Vm2


 z =

1

µ



Vm1

Vm2


 z+ hm+1,m




vm+1,1

vm+1,2


 e⊤mz

and

‖Q(λ)u2‖
‖u2‖

=
‖(µ2M̃u + µD̃u + K̃u)u2‖

‖u2‖
=
|µ| |hm+1,m|

∣∣e⊤mz
∣∣ ζ2

‖u2‖
≡ q2(µ), (2.50)

where u2 = K̃−1
u Vm2z, λ = µ+ σ and ζ2 = ‖µvm+1,1 + vm+1,2‖. Therefore, q1(µ) in

(2.49) and q2(µ) in (2.50), respectively, can be used as stopping criteria for residuals

while Algorithm 2.1 is applied to solved QEPs (2.13).

Similarly, we can apply Algorithm 2.1 to solve REPs (2.20). As above, we let

(µ−1, z) be a Ritz pair and satisfy Hmz = µ−1z. From (2.43), and R-SEP1, R-
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2.4 Arnoldi Method with Schur-restarting

SEP2 in (2.31) we have




0 −M̃p Lp

K̃−1
p −K̃−1

p D̃p 0

0 −̺−1R⊤

p ̺−1ϑIℓ







Vm1

Vm2

Vm3



z =

1

µ




Vm1

Vm2

Vm3



z+ hm+1,m




vm+1,1

vm+1,2

vm+1,3



e⊤mz (2.51)

and




0 −M̃pK̃
−1
p ̺−1Lp

In2
−D̃pK̃

−1
p 0

0 −R⊤

p K̃
−1
p ̺−1ϑIℓ







Vm1

Vm2

Vm3



z =

1

µ




Vm1

Vm2

Vm3



z+ hm+1,m




vm+1,1

vm+1,2

vm+1,3



e⊤mz, (2.52)

where Vm = [V ⊤
m1, V

⊤
m2, V

⊤
m3]

⊤ and vm+1 = [v⊤
m+1,1,v

⊤
m+1,2,v

⊤
m+1,3]

⊤ are partitioned

with compatible sizes. Using the first and the third equations of (2.51) and (2.52), we

can eliminate V1z and V3z in the second equation of (2.51) and (2.52), respectively,

and get

‖R(λ)p1‖
‖p1‖

=
‖[µ2M̃p + µD̃p + K̃p − µ2(ϑ− ̺µ−1)−1Ap]p1‖

‖p1‖

=
|µ| |hm+1,m|

∣∣e⊤mz
∣∣ ξ1

‖p1‖
≡ r1(µ), (2.53)

where p1 = Vm2z, λ = µ+ σ and ξ1 = ‖µvm+1,1 + K̃pvm+1,2 − ̺µ2

ϑµ−̺
Lpvm+1,3‖, and

‖R(λ)p2‖
‖p2‖

=
‖
[
µ2M̃p + µD̃p + K̃p − µ2(ϑ− ̺µ−1)−1Ap

]
p2‖

‖p2‖

=
|µ| |hm+1,m|

∣∣e⊤mz
∣∣ ξ2

‖p2‖
≡ r2(µ), (2.54)

where p2 = K̃−1
p Vm2z, λ = µ + σ and ξ2 = ‖µvm+1,1 + vm+1,2 − µ2

ϑµ−̺
Lpvm+1,3‖.

Therefore, r1(µ) in (2.53) and r2(µ) in (2.54) can be used as stopping criteria for

residuals while Algorithm 2.1 is applied to solve REPs (2.20).

Applying Algorithm 2.1 to solve QEPs (2.13) and REPs (2.20) are summarized
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2.4 Arnoldi Method with Schur-restarting

in Algorithm 2.2 and Algorithm 2.3, respectively.

Algorithm 2.2 Arnoldi method with Schur-restarting for solving QEP in (2.13)

Input: Coefficient matrices Mu, Du and Ku, parameters c, α and β, σ: shift value,
tolQ: tolerance for convergence, rmax: maximum number of Schur-restartings.

Output: The desired eigenpairs (λi,ui) for i = 1, . . . , k.

1: Construct matrices M̃u, D̃u and K̃u defined in (2.16) and set r = 0.
2: Compute initial Arnoldi decomposition in Line 1 of Algorithm 2.1 with A in

Q-SEP1 or Q-SEP2.
3: restart
4: Do the steps in Lines 3 and 4 of Algorithm 2.1.
5: for i = 1, . . . , k do
6: Compute

ϕ(µi) = (|σ + µ−1
i |2‖Mu‖+ |α + (σ + µ−1

i )β|‖Au‖+ ‖Ku‖).

7: Check convergence of QEP by

qℓ(µi)

ϕ(µi)
< tolQ

with qℓ(µi) in (2.49) or (2.50), ℓ = 1, 2.
8: end for
9: if ( Not all k desired eigenvalues are convergent and r < rmax ) then

10: Do the Schur-restarting in Lines 9–13 of Algorithm 2.1.
11: end if
12: until ( desire m eigenpairs are convergent or r ≥ rmax )
13: Set λi = σ + µ−1

i and ui = Vm2zi for i = 1, . . . , k.
14: if Q-SEP2 is solved then
15: ui ← K̃−1

u ui, i = 1, . . . , k.
16: end if

2.4.2 Computational costs

In this subsection, we compare the computational costs of the j-th Arnoldi step

of Algorithm 2.1 for solving Q-SEPs (2.19) and R-SEPs (2.31), respectively. This

is of general interest, because a comparison of the CPU time is sensible only if the

number of outer iterations of Algorithm 2.2 or 2.3 is the same for each algorithm.
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2.4 Arnoldi Method with Schur-restarting

Algorithm 2.3 Arnoldi method with Schur-restarting for solving REP in (2.20)

Input: Coefficient matrices Mp, Kp and Ap, parameters c, α and β, σ: shift value,
tolR: tolerance for convergence, rmax: maximum number of Schur-restartings.

Output: The desired eigenpairs (λi,pi) for i = 1, . . . , k.

1: Construct matrices M̃p, D̃p and K̃p defined in (2.24), (2.25) and (2.26), respec-
tively, and set r = 0.

2: Compute the full-rank decomposition of Ap: LpR
⊤
p = Ap.

3: Compute initial Arnoldi decomposition in Line 1 of Algorithm 2.1 with A in
R-SEP1 or R-SEP2.

4: restart
5: Do the steps in Lines 3 and 4 of Algorithm 2.1.
6: for i = 1, . . . , m do
7: Compute

ψ(µi) = |
(σ + µ−1

i )2

c2
|‖Mp‖+ ‖Kp‖+ |

(σ + µ−1
i )2

α+ (σ + µ−1
i )β

|‖Ap‖.

8: Check convergence by
rℓ(µi)

ψ(µi)
< tolR

with rℓ(µi) in (2.53) or (2.54), ℓ = 1, 2.
9: end for

10: if ( Not all k desired eigenvalues are convergent and r < rmax ) then
11: Do the Schur-restarting in Lines 9–13 of Algorithm 2.1.
12: end if
13: until ( desire m eigenpairs are convergent or r ≥ rmax )
14: Set λi = σ + µ−1

i and pi = Vm2zi for i = 1, . . . , k.
15: if R-SEP2 is solved then
16: pi ← K̃−1

p pi, i = 1, . . . , k.
17: end if
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2.4 Arnoldi Method with Schur-restarting

From (2.47), the unit vector vj+1 is generated by

Avj =

j∑

i=1

hjivi + hj+1,jvj+1,

where hji = v∗
iAvj for i = 1, . . . , j and hj+1,j = ‖Avj −

j∑
i=1

hjivi‖2. For conve-

nience, we let vj =
[
vj1

vj2

]
with vj1,vj2 ∈ C

n. The matrix-vector product Avj in

Algorithm 2.2 for solving QEP (2.13) by Q-SEP1 (2.19.1) and Q-SEP2 (2.19.2)

can be, respectively, represented by

B−1
u Auvj =




−M̃uvj2

K̃−1
u (vj1 − D̃uvj2)


 and AuB−1

u vj =



−M̃ugu

vj1 − D̃ugu




with gu = K̃−1
u vj2. This implies that Algorithm 2.2 for Q-SEP1 and Q-SEP2

needs the same computational costs for generating the unit vector vj+1 for each j.

On the other hand, by letting vj = [v⊤
j1,v

⊤
j2,v

⊤
j3]

⊤ with vj1,vj2 ∈ Cn and vj3 ∈

Cℓ, the matrix-vector product Avj in Algorithm 2.3 for solving REPs by R-SEP1

(2.31.1) and R-SEP2 (2.31.2) can be, respectively, represented by

B−1
p Apvj =




Lpvj3 − M̃pvj2

K̃−1
p (vj1 − D̃pvj2)

̺−1ϑvj3 − ̺−1R⊤
p vj2




and ApB−1
p vj =




̺−1Lpvj3 − M̃pgp

vj1 − D̃pgp

̺−1ϑvj3 −R⊤
p gp




with gp = K̃−1
p vj2. Consequently, the computational cost of ApB−1

p vj needs an

extra cost for the computation of ̺−1Lpvj3 compared to that B−1
p Apvj . The cost

for generating the unit vector vj+1 by R-SEP1 is slightly cheaper than that by R-

SEP2. We summarize the computational costs of generating vj+1 for by Q-SEP2

and R-SEP2 in Table 2.1.

Remark 2.4. In the numerical implementation, the vectors gu = K̃−1
u vj2 and

37



2.5 Numerical Results

Q-SEP2 (2.19.2) R-SEP2 (2.31.2)

Solving linear system K̃uxu = bu K̃pxp = bp

Matrix-vector products M̃ubu, D̃ubu M̃pbp, D̃pbp, Lpcp, R⊤
p c

⊤
p

Inner products j + 1 j + 1
Saxpy operators j + 1 j + 2

Scale-vector product 1 1

Table 2.1: Computational costs of the j-th Arnoldi step of Algorithm 2.1 for Q-
SEP2 and R-SEP2.

gp = K̃−1
p vj2 for j = 1, . . . , k can be saved in Gu ≡ [K̃−1

u v12 · · · K̃−1
u vm2] and

Gp ≡ [K̃−1
p v12 · · · K̃−1

p vm2], respectively, so that the vectors u2, p2 in (2.50) and

(2.54) can be computed by u2 = Guz and p2 = Gpz directly. Hence, it requires

the same computational costs for computing u1, u2 in (2.49) and (2.50), as well

as, p1, p2 in (2.53) and (2.54), respectively. Consequently, the computational costs

of Q-SEP1 for the convergence test in Algorithm 2.2 need one extra matrix-vector

product K̃uvm+1,2 than those of Q-SEP2 in computing ζ1 and ζ2. Similarly, the

computational costs of R-SEP1 for the convergence test in Algorithm 2.3 need one

extra matrix-vector product K̃pvm+1,2 than those of R-SEP2 in computing ξ1 and

ξ2. Therefore, we conclude that Algorithm 2.2 for Q-SEP1 and Q-SEP2, as well

as, Algorithm 2.3 for R-SEP1 and R-SEP2, respectively, almost have the same

computational costs provided that they have the same outer iterations.

2.5 Numerical Results

We conduct numerical experiments to evaluate performance and accuracy of the

eigenvalue solvers described in Section 2.4. To distinguish between various eigenvalue

problems, we use notations Q1, Q2, R1 and R2 defined as follows:

• Q1: Applying Algorithm 2.2 to solve the QEP (2.13) with Q-SEP1 in (2.19.1).
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2.5 Numerical Results

• Q2: Applying Algorithm 2.2 to solve the QEP (2.13) with Q-SEP2 in (2.19.2).

• R1: Applying Algorithm 2.3 to solve the REP (2.20) with R-SEP1 in (2.31.1).

• R2: Applying Algorithm 2.3 to solve the REP (2.20) with R-SEP2 in (2.31.2).

All computations are carried out in MATLAB 2009a on a HP workstation with

an Intel Quad-Core Xeon X5570 2.93GHz and 72 GB main memory, using IEEE

double-precision floating-point arithmetic. We apply Algorithms 2.2 and 2.3 to

solve the following examples arising in fluid-solid systems. The order m of Arnoldi

decomposition in Line 3 of Algorithm 2.1 is set m = 40, the maximum number rmax

of Schur-restartings is set rmax = 15 and the number of desired eigenpairs is k = 10.

The relative residuals of approximate eigenpairs (λi,ui) and (λi,pi) computed by

Q1 and Q2, as well as, R1 and R2 are, respectively, defined by

‖Q(λi)ui‖
ϕ(λi)‖ui‖

and
‖R(λi)pi‖
ψ(λi)‖pi‖

,

where ϕ(λi) and ψ(λi) are given in Algorithm 2.2 and 2.3, respectively. Tolerances

for relative residuals of QEPs and REPs are chosen by tolQ = tolR = 5×10−15. The

linear systems in Algorithms 2.2 and 2.3 are solved by LU-factorization with the

shift value σ = −25 + 600πi. Fronbenius norm for matrices and 2-norm for vectors

are used.

Example 2.1. [6] We take the geometrical data: the domain Ω = [0m, 1m] ×

[−0.75m, 0m], ΓA = [0m, 1m] × {0m} given in Figure 2.1(i) and the following physical

data: ρ = 1kg/m3, c = 340 m/s, α = 5× 104 N/m3, and β = 200 Ns/m3.

The rectangular domain Ω is uniformly partitioned into nℓ by nw rectangles and

each rectangle is further refined into two triangles, see Figure 2.1(ii). The dimen-

sions of coefficient matrices in QEP (2.13) and REP (2.20) are (3nℓ − 1)× nw and
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2.5 Numerical Results

0.75 mb =

1.00 ma =

 

absorbing wall AΓ

RΓ
n

rigid walls

(i) Fluid in a cavity with one absorbing wall. (ii) Initial mesh.

Figure 2.1: Fluid in a cavity with one absorbing wall and initial mesh

(nℓ+1)×(nw+1), respectively. Figure 2.2 plots the analytic solutions of the desired

eigenvalues λ1, . . . , λ10 of (2.5)–(2.8) (see [6]) with the lowest positive vibration fre-

quencies satisfying 0 < Im(λi)
2π

< 600Hz.

Convergence test: We first demonstrate convergence rates of Q2 and R2 while

computing the desired eigenvalues in Figure 2.2. To measure the convergence rate,

we run the test over the five successively refined meshes (See the first column of

Table 2.2) and then calculate the rates by

rate[i,j] = log2

( |λ[i,j] − λ[i,j+1]|
|λ[i,j+1] − λ[i,j+2]|

)
, for i = 1, . . . , 10, j = 1, 2, 3,

where λ[i,j] for j = 1, . . . , 5 denote the approximate eigenvalues computed by Q2 and

R2 corresponding to λi obtained from the meshes described in Table 2.2. The 5-th

and the 6-th columns of Table 2.2 illustrate the quadratic convergence of rate[1,j]

j = 1, 2, 3 for λ1 of QEP (2.13) and REP (2.20), respectively. In our numerical

experiment, the convergence rate are always close to 2 for all desired eigenvalues,

λi, i = 1, . . . , 10, computed by Q2 and R2 as well as Q1 and R1.
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2.5 Numerical Results

(nℓ, nw)
Matrix size (QEP) Matrix size (REP) Conv. rate
(3nℓ − 1)× nw (nℓ + 1)× (nw + 1) λ1 Q2 R2

( 48, 36) 5, 148 1, 813
( 96, 72) 20, 664 7, 081
(192, 144) 82, 800 27, 985 rate[1,1] 1.9979 2.0010
(384, 288) 331, 488 111, 265 rate[1,2] 1.9995 2.0003
(768, 576) 1, 326, 528 443, 713 rate[1,3] 1.9999 2.0001

Table 2.2: Dimension information and convergence rates of λ1.

Normwise scaling of QEP: Balancing norms of coefficient matrices is an im-

portant issue [66] before solving a QEP of the form

P (λ)x ≡ (λ2P2 + λP1 + P0)x = 0. (2.55)

In [15] authors give an elegant way to scale the norms of coefficient matrices of (2.55)

as follows. Define

P̂ (ν)x ≡ (ν2P̂2 + νP̂1 + P̂0)x = 0

with ν = λ/ζ , P̂2 = ζ2ηP2, P̂1 = ζηP1 and P̂0 = ηP0, where ζ and η are scaling fac-

tors. Taking ζ and η as ζ∗ =
√
γ0/γ2 and η∗ = 2/(γ0+γ1ζ∗) with γ2 := ‖P2‖2, γ1 :=

‖P1‖2, γ0 := ‖P0‖2, it is proved in [15] that the problem

min
ζ,η

max
{
|‖P̂2‖2 − 1|, |‖P̂1‖2 − 1|, |‖P̂0‖2 − 1|

}

achieves the optimum at ζ∗ and η∗. In our implementation, the values of γi, for

i = 0, 1, 2 are computed by γ2 = ‖M̃u‖F , γ1 = ‖D̃u‖F , γ0 = ‖K̃u‖F and γ2 =

‖M̃p‖F , γ1 = ‖D̃p‖F , γ0 = ‖K̃p‖F for QEP (2.15) and REP (2.29), respectively.

We denote “#It” the number of Schur-restartings (outer iterations). In Table 2.3,

we show #Its for computing 10 desired eigenvalues of Example 2.1 with (nℓ, nw) =
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Figure 2.2: The distribution of the ten desired eigenvalues λ1, . . . , λ10.

(768, 576) by Q1, Q2, R1 and R2 with/without scaling. The tolerances tolQ and

tolR for relative residuals are chosen to be 5 × 10−15. We see that the convergence

rate of scaled Q-SEPs or R-SEPs is faster than that of unscaled Q-SEPs or R-

SEPs. The performance of Q2 and R2 is also better than that of Q1 and R1,

respectively. In the case of unscaled REP, the norms of M̃p, D̃p and K̃p in (2.24)–

(2.26) are O(10−10), O(10−5) and O(1), respectively. Since the norms of coefficient

matrices vary too much, R1 can even fail to converge to 10 eigenpairs after 15 outer

iterations.

Q1 Q2 R1 R2
#It (scaled) 3 2 4 3
#It (unscaled) 4 3 15 3

Table 2.3: #Its for λ1, . . . , λ10 of Q-SEPs and R-SEPs with/without scaling.
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Figure 2.3: The #Its of Q1 and Q2 with different shift values. “o” denotes desired
eigenvalues λ1, . . . , λ10. “(i, j)” denotes the #Its for Q1 and Q2, respectively.
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Figure 2.4: The relative residuals of computed eigenpairs, obtained by Q1, Q2 for
QEP (2.13) and R1, R2 for REP (2.20) with (nℓ, nw) = (768, 576).
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Q2 R2 TR2

TQ2(nℓ, nw) #It TQ2 #It TR2

( 48, 36) 2 1.316 2 0.471 0.36
( 96, 72) 2 7.717 2 2.387 0.31

(192, 144) 2 55.27 2 14.95 0.27
(384, 288) 2 567.8 2 134.0 0.24
(768, 576) 2 8152 2 1645 0.20

Table 2.4: Iteration numbers and CPU time for Q2 and R2.

No spurious eigenmodes: In [6], it has been proved that there are no spurious

eigenmodes for the discretization based on Raviart-Thomas finite elements. We

compute twenty desired eigenvalues of QEP (2.13) and REP (2.20) by Q2 and R2,

respectively, with scaling and various mesh sizes as shown in Table 2.2 (we computed

20 instead of 10 eigenvalues to be better confirmed). The desired eigenvalues of REP

are in one-to-one correspondence to those of QEP which match well with relative

error less than 10−6, that is, no spurious eigenmodes ever appear. We numerically

conclude that there are no spurious eigenmodes for the discretization in terms of

pressure nodal finite elements.

Null space considerations: Theorem 2.1 shows that the dimension of the null

space of QEP (2.13) is equal to the number of interior nodes, i.e., (nℓ − 1)(nw − 1).

In order to observe the interference of such a large null space in the convergence of

Q1 and Q2, we give six different shift values denoted by the “+” in Figure 2.3 to

observe variation in the #Its for Q1 and Q2. The integer pair (i, j) under each shift

value “+” denotes the #Its for Q1 and Q2, respectively. The results in Figure 2.3

demonstrate that the #It needed decreases, as the shift value σ is chosen relatively

far away from zero.

Comparison of pressure and displacement formulation: In this para-

graph, we shall discuss the advantages of using the nodal pressure finite elements

with various mesh sizes described in Table 2.2. The notations “TQ2” and “TR2” de-
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note the total CPU time for Q2 and R2, respectively. We summarize the results as

follows:

• Accuracy of eigenpairs: From Remark 2.3, the upper bound for relative resid-

ual of the approximate eigepairs of QEP (2.13) (or REP (2.20)) by using

Q-SEP2 (2.19.2) (or R-SEP2 (2.31.2)) is much smaller than that by using

Q-SEP1 (2.19.1) (or R-SEP1 (2.31.1)). On applying Q1 and Q2 to solve

QEP (2.13) with #It = 2, in Figure 2.4, we see that the relative residuals of

eigenpairs corresponding to λ4 and λ5 computed by Q2 are improved by about

1 significant digit than those by Q1. The other eigenpairs almost have the

same accuracy. On applying R1 and R2 to solve REP (2.20) with #It = 2,

in Figure 2.4, we see that the relative residuals of eigenpairs computed by R2

are improved by about 2 to 4 significant digits than those by R1.

• Comparison R2 with Q2: From Subsection 2.4.2 we see that Q1 and Q2, as

well as, R1 and R2 have the same computational costs, respectively. From

Figure 2.4, we favor applying Q2 and R2 to solve QEP (2.13) and REP

(2.20), respectively. From column 12 of Table 2.4, we see that the CPU time

for solving the REP (2.20) by R2 is only 1/5 to 1/3 of that for solving the

QEP (2.13) by Q2. The accuracy of the computed eigenpairs for REP (2.20)

is also better than that of QEP (2.13). These results tell us that using R2 to

solve nodal pressure finite elements for the discrete problem (2.12) is better

than that using Q2 to solve Raviart-Thomas displacement finite elements for

the discrete problem (2.11).

We now want to apply our methods to a more complicated configuration in which

the absorbing walls are located on three sides.

Example 2.2. We use the same geometric data and physical data in Example 2.1

except that the absorbing wall is extended to one half of the rigid walls in the left
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2.6 Summary

and right boundaries, that is Γ = [0, 1]×{0}∪ {0}× [−0.375, 0]∪ {1}× [−0.375, 0].

In Example 2.1, we numerically show that there are no spurious eigenmodes

for the discretization in terms of pressure nodal finite elements. Moreover, the

computational cost for solving the associated REP (2.20) is obviously less than that

of solving QEP (2.13) which is obtained from using Raviart-Thomas displacement

finite elements to the discrete problem (2.11). Therefore, in this example we only

use nodal finite elements to discretize the model and compare the accuracy of R1

and R2 for solving the associated REP. The computed eigenvalues λ1, . . . , λ10 with

lowest positive vibration frequencies satisfying 0 < Im(λi)
2π

< 600Hz are shown in

Figure 2.5. The convergence rates for λ1, . . . , λ10 obtained from various the mesh

sizes described in Table 2.2 are also close to 2. The relative residuals computed

by R1 and R2 are presented in Figure 2.6 which shows that the accuracy of the

eigenpairs produced by R2 is better than R1.

2.6 Summary

We consider the problem for computing damped vibration modes of an acoustic

fluid confined in a cavity, with absorbing walls capable of dissipating acoustic energy.

The discretization in terms of edge-based finite elements for the displacement field

induces the QEP (2.13) and the pressure nodal finite elements gives rise to the REP

(2.20). We utilize the linearization process to rewrite these two nonlinear eigenvalue

problems into four different types of SEPs, namely Q1, Q2, R1 and R2, which

have defined in Section 2.5. From these numerical results, we have the following

conclusions.

1. There are no spurious eigenmodes for the discretization in terms of pressure

nodal finite elements.
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2. The dimension of the null space associated with the edge-based displacement

(QEP) equals the number of interior nodes in the triangulation; the nodal-

based pressure model (REP), however, only has one dimensional null space.

3. The convergence of the eigensolver for the QEP would be disturbed by a large

null space when the shift value is close to zero.

4. The size of the QEP is larger than the size of the REP.

5. The CPU time for solving the corresponding REP (2.20) are only 1/5 to 1/3

of the CPU time for solving the QEP (2.13).

6. The accuracy of Q2 and R2 algorithms are better than Q1 and R1 respec-

tively.
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3.1 Introduction

3.1 Introduction

The problem of finding scalars λ ∈ C and nontrivial vectors x ∈ Cn such that

(λ2M + λD +K)x = 0, (3.1)

where M , D and K are n× n large and sparse matrices, is known as the quadratic

eigenvalue problem (QEP). The scalars λ and the associated nonzero vectors x are

called eigenvalues and (right) eigenvectors of the QEP, respectively. Together, (λ,x)

is called an eigenpair of (3.1).

The QEP arises in a wide variety of applications, including electrical oscillation,

vibro-acoustics, fluid mechanics, signal processing and the simulation of microelec-

tronical mechanical system etc. A good survey of applications, spectral theory,

perturbation analysis and numerical approaches can be found in [14, section 11.9],

[66] and the references therein.

In practice, some eigenvalues of a QEP near a target σ are interested. Hence we

may apply the shift transformation and consider the corresponding shifted QEP

(λ2σMσ + λσDσ +Kσ)x = 0,

where λσ = λ − σ, Mσ = M , Dσ = 2σM + D and Kσ = σ2M + σD + K . For

simplicity, we assume, without loss of generality, that σ = 0. Therefore, throughout

this chapter, we delve in the problem of finding eigenvalues near the zero (i.e., those

small ones in modulus) under the assumption that 0 is not an eigenvalue of the QEP

(3.1) or, equivalently, that K is nonsingular.

Through the so-called “linearization” process, one may first construct a suitable

matrix pair (A,B) of size 2n and a vector ϕ in C2n to rewrite the QEP (3.1)
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3.1 Introduction

equivalently into a generalized eigenvalue problem (GEP)

Aϕ =
1

λ
Bϕ. (3.2)

If B is chosen to be nonsingular, one can further reduce (3.2) as a standard eigenvalue

problem (SEP)

(B−1A)ϕ =
1

λ
ϕ (3.3)

or

(AB−1)ψ =
1

λ
ψ, (3.4)

where ψ = Bϕ. We call (3.3) and (3.4) the left-inverted SEP (ℓ-SEP) and the

right-inverted SEP (r-SEP), respectively. After transforming a QEP equivalently

to a SEP, the standard Krylov subspace projection methods such as the Arnoldi

algorithm can be applied to solve it [66].

The way of linearization is not unique [66]. Here, we consider the second com-

panion form of linearization [21] for the QEP (3.1)



−D In

−M 0






x

x̃


 =

1

λ



K 0

0 In






x

x̃


 , (3.5)

where x̃ = −λMx. The computational advantage of using the second companion

form will be revealed in section 3.3.

Since K is nonsingular, from (3.5) the corresponding ℓ-SEP and r-SEP of (3.1)

are, respectively, given by



−K−1D K−1

−M 0






x

x̃


 =

1

λ



x

x̃


 (3.6)

51



3.1 Introduction

and 

−DK−1 In

−MK−1 0






Kx

x̃


 =

1

λ



Kx

x̃


 . (3.7)

In addition to solving the QEP (3.1) by SEP (3.6) or (3.7), one may also work

with the GEP (3.5) to find the desired eigenpairs of (3.1). The QZ algorithm [45] is

the most prevalent algorithm for solving the dense GEP of the form (3.2). This pro-

cedure reduces the matrix pair (A,B) equivalently to a Hessenberg-triangular pair

(H,R) via unitary transformations in a finite number of steps. This truncated QZ

method proposed by Sorensen [60] is one of the approaches for solving large-scale

GEPs. The method generalizes the idea of the Arnoldi algorithm to construct a gen-

eralized Arnoldi reduction which is a truncation of the QZ iteration and computes

the approximated eigenpairs of the original large-scale GEP from the corresponding

reduced Hessenberg-triangular pair. Furthermore, in [26], the generalized ⊤-skew-

Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm is

discussed for solving the palindromic QEP arising from vibration of fast trains. The

generalized ⊤-isotropic Arnoldi process also produces the generalized Arnoldi re-

duction for a GEP whose coefficient matrices are ⊤-skew-Hamiltonian, however, a

further ⊤-bi-isotropic property is required.

However, the linearization technique will double the size of the problem and,

in general, matrix structures and spectral properties of the original QEP are not

preserved. More importantly, a backward stable technique for linear eigenvalue

problems applied to the linearized QEP is not backward stable for the original QEP

[65].

In this chapter, we introduce a Semiorthogonal Generalized Arnoldi (SGA) algo-

rithm for the particular linearized problem (3.5) to generate a SGA decomposition.

The SGA algorithm is a variation of the generalized Arnoldi reduction [60]. We then
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propose an orthogonal projection approach termed as the SGA method to solve the

QEP (3.1) where the projection subspace is defined through its orthonormal basis

obtained from the SGA decomposition. We will extend this idea of refinement in

[32] and use the SGA decomposition to propose a refinement scheme for QEPs.

Due to the storage requirements and computational costs, the order of the SGA

decomposition can not be large and shall be limited. Therefore it is necessary to

restart the SGA method. Based on the implicitly shifted QZ iterations proposed by

Sorensen in [60], we develop a restart technique for the SGA method, called the Im-

plicitly Restarted SGA (IRSGA) method. Moreover, according to the information of

refined approximate eigenvectors (Ritz vectors), we will propose a procedure for se-

lecting better shifts, termed as refined shifts, for the implicitly shifted QZ algorithm

to develop an Implicitly Restarted Refined SGA (IRRSGA) method. Compared to

the implicitly restarted Arnoldi method applied on the linearized problems (3.6)

and (3.7), the SGA-type methods, namely IRSGA and IRRSGA, demonstrate bet-

ter convergence behaviors and require less CPU time in numerical experiments.

This chapter is organized as follows. In section 3.2, we first introduce the SGA

algorithm associated with the GEP (3.5). In section 3.3, we propose an orthogonal

projection method based on the orthonormal basis generated by the SGA algorithm

for solving the QEP (3.1). In section 3.4, we present a refinement scheme to get

better Ritz vectors by taking advantage of the SGA decomposition. In section 3.5,

we develop a restart technique for the SGA-type methods and discuss the selection

of shifts according to the information of refinement so that the faster the methods

may converge. Numerical examples are presented in section 3.6 and the concluding

remarks are given in section 3.7.

53



3.2 The SGA Decomposition

3.2 The SGA Decomposition

In this section, we first give the definition of the SGA decomposition and then

discuss the existence and uniqueness of the SGA decomposition in section 2.1. In

section 2.2, we will propose a SGA algorithm to generate the SGA decomposition.

Subsequently, we discuss the possibility of the early termination of the SGA algo-

rithm.

Definition 3.1 (The SGA decomposition). Given M,D,K ∈ Cn×n and m ≪ n.

We define the mth order SGA decomposition of the QEP (3.1) to be the relation of

the form



−D In

−M 0






Qm

Pm


 =



Vm

Um


Hm +



gm

fm


 e⊤m, (3.8a)



K 0

0 In






Qm

Pm


 =



Vm

Um


Rm, (3.8b)

QH
mQm = Im, V H

m Vm = Im and V H
m gm = 0, (3.8c)

where Qm, Pm, Vm, Um ∈ Cn×m, gm, fm ∈ Cn, and Hm, Rm ∈ Cm×m are upper Hes-

senberg matrix and upper triangular matrix, respectively.

Remark 3.2. (i) The orthogonality requirements in (3.8c) referred to as the semi-

orthogonality of the SGA decomposition, guarantee the linearly independence

of columns of [Qm

Pm
] and [ Vm

Um
], respectively.

(ii) If the semiorthogonality (3.8c) is replaced by

QH
mQm + PH

mPm = Im, V H
m Vm + UH

mUm = Im and V H
m gm + UH

m fm = 0,
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3.2 The SGA Decomposition

we actually obtain a generalized Arnoldi reduction [60] associated with the GEP

(3.5). Therefore, the SGA decomposition can be also viewed as a variation of

the generalized Arnoldi reduction.

3.2.1 Existence and uniqueness

Given a 2n × 2n matrix A, a nonzero vector b ∈ C
2n and a positive integer

m ≤ n, the Krylov matrix of A with respect to b and m is defined by

KJA,b, mK =
[
b Ab · · · Am−1b

]
.

In the following, for convenience, for a matrix G ∈ C2n×j we usually partition G of

the form G = [G1

G2
] with G1 = G(1 : n, :) and G2 = G(n+ 1 : 2n, :).

From (3.8), if we set

A =



−D In

−M 0


 , B =



K 0

0 In


 , (3.9)

and

Zm =



Qm

Pm


 , Ym =



Vm

Um


 , ηm =



gm

fm


 , (3.10)

then the SGA decomposition (3.8) can be compactly written as

AZm = YmHm + ηme
⊤
m, (3.11a)

BZm = YmRm, (3.11b)

QH
mQm = V H

m Vm = Im, V
H
m gm = 0. (3.11c)
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Using equations (3.8)–(3.10) of the SGA decomposition (3.11) and based on the

proof technique of Theorem 3.3 in [17], we give the following theorem.

Theorem 3.3. Given z1 ≡
[
q1

p1

]
∈ C2n with ‖q1‖2 = 1 and set

Bz1 = ρ1y1 ≡ ρ1



v1

u1




with ‖v1‖2 = 1 and ρ1 > 0. Let

Kℓ = KJB−1A, z1, mK ≡



Kℓ,1

Kℓ,2


 and Kr = KJAB−1,y1, mK ≡



Kr,1

Kr,2


 .

Suppose that Kℓ,1 is of full column rank and Kℓ,1 = QmRℓ,m is the QR-factorization

with Qme1 = q1 and diagonal entries of Rℓ,m are chosen to be positive. Here and

hereafter, we use the QR+-factorization to indicate such a QR-factorization. Then

(i) Kr,1 is of full column rank. Moreover, if Kr,1 = VmRr,m is the QR+-factorization,

then Vme1 = v1.

(ii) Let

Pm = Kℓ,2R
−1
ℓ,m and Um = Kr,2R

−1
r,m.

Then there exist an unreduced upper Hessenberg matrix Hm with positive sub-

diagonal entries and an upper triangular Rm with positive diagonal entries

satisfying the SGA decomposition (3.11).

(iii) The SGA decomposition (3.11) is uniquely determined by Zme1 =
[
q1

p1

]
with

‖q1‖2 = 1.
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Proof. (i) Since



Kr,1

Kr,2


 = KJmathcalAB−1,y1, mK =

[
y1 (AB−1)y1 · · · (AB−1)m−1y1

]

=
1

ρ1
B
[
z1 (B−1A)z1 · · · (B−1A)m−1z1

]

=
1

ρ1
BKℓ =

1

ρ1



K 0

0 In






Kℓ,1

Kℓ,2


 =

1

ρ1



KKℓ,1

Kℓ,2


 , (3.12)

the matrix Kr,1 = ρ−1
1 KKℓ,1 is of full column rank and has the unique QR+-

factorization Kr,1 = VmRr,m with Vme1 = v1.

(ii) By assumptions and (3.10), we get Kℓ =
[
Qm

Pm

]
Rℓ,m = ZmRℓ,m. From (i) and

(3.10), we also have Kr =
[
Vm

Um

]
Rr,m = YmRr,m. It follows from (3.12) that

BZm = BKℓR
−1
ℓ,m = ρ1KrR

−1
ℓ,m = Ym(ρ1Rr,mR

−1
ℓ,m) ≡ YmRm,

where Rm is upper triangular with positive diagonal entries. On the other

hand, it holds that

(B−1A)KJB−1A, z1, mK = KJB−1A, z1, mKH0 + (B−1A)mz1e⊤m, (3.13)

where H0 is the lower shift matrix, i.e., a matrix with ones below the main

diagonal and zeros elsewhere. From (3.13) and (3.12) we have

AZm = BZmRℓ,mH0R
−1
ℓ,m + B(B−1A)mz1e⊤mR−1

ℓ,m

= Ym(ρ1Rr,mH0R
−1
ℓ,m + Ỹ H

m zme
⊤
m) + [(I − YmỸ H

m )zm]e
⊤
m

≡ YmHm + ηme
⊤
m,
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3.2 The SGA Decomposition

where zm = R−1
ℓ,m(m,m)B(B−1A)mz1 ≡

[
zm,1

zm,2

]
and Ỹ H

m = [V H
m 0m,n]. Since

H0 is unreduced Hessenberg with subdiagonal entries “1”, Rℓ,m and Rr,m are

upper triangular with positive diagonal entries, and Vm is orthogonal, it is

easily seen that Hm is unreduced Hessenberg with positive subdiagonal entries

and V H
m gm = V H

m [(In − VmV H
m )zm,1] = 0.

(iii) By (i) and (ii), we know that Ym, ηm, Rm and Hm are uniquely determined

by Zm so we only need to show that Zm is unique for given Zm(:, 1) =
[
q1

p1

]

with ‖q1‖2 = 1. From (3.11), we have

AZm = BZm(R
−1
m Hm) + ηme

⊤
m.

Let Zm = Z̃mTm be the QR+-factorization of Zm. Then we have the standard

Arnoldi decomposition





(B−1A)Z̃m = Z̃mH̃m + η̃me
⊤
m,

H̃m = (TmR
−1
m Hm + Z̃H

mB−1ηme
⊤
m)T

−1
m ,

η̃m = (Im − Z̃mZ̃
H
m )B−1ηme

⊤
mT

−1
m .

(3.14)

Note that the standard Arnoldi decomposition (3.14) is unreduced, it is es-

sentially unique. It follows that Qm and T−1
m of the QR+-factorization Q̃m =

QmT
−1
m are unique, and then Pm = P̃mTm is unique. This concludes the proof.

Theorem 3.4. If the mth order SGA decomposition (3.11) exists, then

Kℓ = KJB−1A, z1, mK = Zm[e1 R−1
m Hme1 · · · (R−1

m Hm)
m−1e1], (3.15a)

Kr = KJAB−1,y1, mK = Ym[e1 HmR
−1
m e1 · · · (HmR

−1
m )m−1e1]. (3.15b)
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3.2 The SGA Decomposition

Proof. It suffices to show

Kℓ = [z1 (B−1A)z1 · · · (B−1A)m−1z1]

= Zm[e1 R
−1
m Hme1 · · · (R−1

m Hm)
m−1e1]. (3.16)

Since Zme1 = z1, we suppose

(B−1A)i−1z1 = Zm(R
−1
m Hm)

i−1e1, ∀i < m,

and prove (3.16) by induction. From (3.11) we have

(B−1A)iz1 = (B−1A)Zm(R
−1
m Hm)

i−1e1

= [Zm(R
−1
m Hm) + B−1ηme

⊤
m](R

−1
m Hm)

i−1e1

= Zm(R
−1
m Hm)

ie1 + B−1ηm(e
⊤
m(R

−1
m Hm)

i−1e1)

= Zm(R
−1
m Hm)

ie1 (3.17)

because of e⊤m(R
−1
m Hm)

i−1e1 = 0, for i < m. On the other hand, from (3.11) follows

(AB−1)Ym = Ym(HmR
−1
m ) + η̃me

⊤
m, (3.18)

where η̃m = Rm(m,m)−1ηm. Similar to (3.17), The equation (3.15b) follows from

(3.18) immediately.

Remark 3.5. Theorem 3.3 shows that Kℓ,1 has the QR+-factorization, Kℓ.1 =

QmRℓ,m, then the SGA decomposition (3.11) exists and unique up to Yme1 = y1.

Theorem 3.4 shows that if the SGA decomposition (3.11) exists, then Kℓ and Kr

have the QR+-factorizations (3.15a) and (3.15b), respectively.
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3.2 The SGA Decomposition

3.2.2 The SGA algorithm

We now derive an algorithm termed as the SGA algorithm for the computation

of the SGA decomposition (3.9). Given q1,p1 ∈ Cn with ‖q‖1 = 1, let

R1 = ‖Kq1‖2 6= 0, v1 = Kq1/R1, u1 = p1/R1,

H1 = vH
1 (−Dq1 + p1), g1 = −Dq1 + p1 − v1H1 and f1 = −Mq1 − u1H1,

then q1,p1,v1,u1, g1, f1, R1 andH1 satisfy the SGA decomposition (3.8) with m = 1.

Suppose that we have computed the jth order (j < m) SGA decomposition



−D In

−M 0






Qj

Pj


 =



Vj

Uj


Hj +



gj

fj


 e⊤j , (3.19a)



K 0

0 In






Qj

Pj


 =



Vj

Uj


Rj , (3.19b)

QH
j Qj = Ij, V H

j Vj = Ij and V H
j gj = 0. (3.19c)

To expand the SGA decomposition to order j + 1, we first assume that the residual

vector gj 6= 0. The case gj = 0 will be discussed later. Our goal is to find suitable

updating vectors and scalars satisfying the SGA decomposition of order j + 1



−D In

−M 0






Qj q

Pj p


 =



Vj v

Uj u






Hj h

γe⊤j α


+



gj+1

fj+1


 e⊤j+1, (3.20a)



K 0

0 In






Qj q

Pj p


 =



Vj v

Uj u






Rj r

0 ρ


 , (3.20b)

QH
j+1Qj+1 = Ij+1, V H

j+1Vj+1 = Ij+1 and V H
j+1gj+1 = 0, (3.20c)

where Qj+1 = [Qj q] and Vj+1 = [Vj v]. Comparing the leading j columns of (3.20a)
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3.2 The SGA Decomposition

with (3.19a), we get

γ = ‖gj‖2 6= 0, v = gj/γ 6= 0 and u = fj/γ. (3.21)

Equating the (j+1)st column on both sides of (3.20b) and noting (3.20c), the vector

q must satisfy

Kq = Vjr+ vρ and QH
j q = 0. (3.22)

Premultiplying (3.22) by QH
j K

−1 and applying the relation KQj = VjRj gives

0 = QH
j K

−1Vjr+QH
j K

−1vρ = R−1
j r+QH

j K
−1vρ

and it follows that

r = −RjQ
H
j K

−1vρ. (3.23)

Substituting (3.23) into (3.22), we have

q = K−1Vjr+K−1vρ

= (QjR
−1
j )(−RjQ

H
j K

−1vρ) +K−1vρ = (Ij −QjQ
H
j )K

−1vρ,

where ρ ≡ ‖(Ij − QjQ
H
j )K

−1v‖−1
2 so that QH

j q = 0 and ‖q‖2 = 1. Note that ρ is

well-defined, otherwise, ‖(Ij − QjQ
H
j )K

−1v‖2 = 0 implies K−1v ∈ span{Qj} and

hence v = KQjc = VjRjc for some constant vector c. However, V H
j v = 0 implies

v = 0 which contradicts to the fact (3.21). After determining u, r and ρ, (3.20b)

shows that p can be directly computed by

p = Ujr+ uρ.
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3.2 The SGA Decomposition

Equating the (j +1)st column on both sides of (3.20a), we know that if we take



h

α


 =



V H
j (−Dq+ p)

vH(−Dq+ p)


 and



gj+1

fj+1


 =



−D In

−M 0






q

p


−



Vj v

Uj u






h

α


 (3.24)

then V H
j+1gj+1 = 0 and this completes the (j + 1)st expanding of the SGA decom-

position.

Breakdown and deflation. As we encounter gj = 0, there are two possibilities,

which are called breakdown and deflation. A breakdown occurs if the vector sequence

{
[
v1

u1

]
, . . . ,

[
vj

uj

]
,
[
0

fj

]
} is linearly dependent. In this case, both Kj(B−1A,q1) and

Kj(AB−1,v1) are invariant subspaces simultaneously and hence the expanding pro-

cess terminates. On the other hand, it may happen that {
[
v1

u1

]
, . . . ,

[
vj

uj

]
,
[
0

fj

]
} is

linearly independent. This situation is called deflation and the expanding process of

the SGA decomposition should continue with modified orthogonality requirements.

When a deflation is detected at step j, we assign γ any nonzero number (say

γ = 1), v = gj = 0 and u = fj/γ 6= 0 to start the (j + 1)st expanding process of

the SGA decomposition. Without repeating the discussions above, it is effortless to

see that v, u and γ satisfy the jth column of (3.20a) but V H
j+1Vj+1 =

[
Ij

0

]
.

Equating the (j+1)st column on both sides of (3.20b) shows that q = K−1Vjr =

Qj(R
−1
j r) (since KQj = VjRj) and the orthogonality requirement {q1, . . . ,qj,q} in

(3.20c) enforces r = 0 and q = 0. Again, by taking ρ any nonzero number (say

ρ = 1) and then setting p = uρ = fjγ
−1ρ, the updating q, p, r and ρ satisfy

the (j + 1)st column of (3.20b) but QH
j+1Qj+1 =

[
Ij

0

]
. This indicates that if

the expanding process of the SGA decomposition encounters deflation at a certain

step then the updating v-vector and q-vector will be zero simultaneous in the next

expanding process. Therefore, the zero vectors of the V -matrix and the Q-matrix

in a deflated SGA decomposition appear in the same columns.
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3.2 The SGA Decomposition

To accomplish the (j + 1)st expanding process of the SGA decomposition, the

equations in (3.24) are given by



h

α


 =



V H
j p

0


 and



gj+1

fj+1


 =



−D In

−M 0






0

p


−



Vj 0

Uj u






h

0


 .

In summary, if deflations occur at step 1 < j1, . . . , jd ≤ m, then we have the mth

order deflated SGA decomposition



−D In

−M 0






Q̊m

P̊m


 =



V̊m

Ům


 H̊m +



gm

fm


 e⊤m, (3.25a)



K 0

0 In






Q̊m

P̊m


 =



V̊m

Ům


 R̊m, (3.25b)

Q̊H
mQ̊m = Jm, V̊ H

m V̊m = Jm and V̊ H
m gm = 0, (3.25c)

where Q̊m(:, ji) = V̊m(:, ji) = 0, R̊m(1 : ji − 1, ji) = 0, H̊m(ji, ji) = 0, R̊m(ji, ji),

H̊m(ji, ji − 1) are nonzero numbers and

Jm(s, t) =





1 if s = t 6= ji,

0 otherwise,
i = 1, . . . , d.

The following theorem distinguishes the deflation and breakdown.

Theorem 3.6 ([3], Lemma 3.2). For a sequence of linearly independent vectors

{y1, . . . ,ym} with partition yi =
[
vi

ui

]
, if there exists a subsequence {vi1 , . . . ,vij}

of the v vectors that are linearly independent and the remaining vectors are zeros,

vij+1
= · · · = vim = 0, then a vector y =

[
0

u

]
∈ span{y1, . . . ,ym} if and only if

u ∈ span{uij+1
, . . . ,uim}.

The pseudocode for the SGA algorithm that iteratively generates an mth order
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3.2 The SGA Decomposition

(deflated) SGA decomposition is listed in Algorithm 3.1.

Algorithm 3.1 The SGA Algorithm

Input: M,D,K ∈ Cn×n, q1,p1 ∈ Cn with ‖q1‖2 = 1 and m ≥ 1.
Output: Qm, Vm, Um, gm := g, fm := f , Mm, Dm, upper Hessenberg Hm ∈ Cm×m

and upper triangular Rm ∈ Cm×m satisfy the SGA decomposition (3.8) of order
m.

1: Q1 := q1; R1 := ‖Kq1‖2; V1 := Kq1/R1; U1 := p1/R1; M1 := Mq1;
D1 := Dq1;

2: g := −D1+ p1; H1 := V H
1 g; g := g− V1H1; f := −M1− U1H1;

3: for j = 1, 2, . . . , m− 1 do
4: if g 6= 0 then
5: γ := ‖g‖2; v := g/γ; u := f/γ; Vj+1 := [Vj v]; Uj+1 := [Uj u];

Hj :=

[
Hj

γe⊤j

]
;

6: Solve Kq = vj+1 for q
7: r := QH

j q; q := q−Qjr; ρ := ‖q‖−1
2 ; q := qρ; µ :=Mq; δ := Dq;

8: Qj+1 := [Qj q]; Mj+1 := [Mj µ]; Dj+1 := [Dj δ]; Rj+1 :=

[
Rj r

0 ρ

]
;

9: g := −δ + Uj+1Rj+1(:, j + 1); h := V H
j+1g; Hj+1 := [Hj h];

10: g := g − Vj+1h; f := −µ− Uj+1h;
11: else
12: if f ∈ span{ui | i : vi = 0, 1 ≤ i ≤ j} then
13: breakdown
14: else
15: Vj+1 := [Vj 0]; Uj+1 := [Uj f ]; Qj+1 := [Qj 0];

Mj+1 := [Mj 0]; Dj+1 := [Dj 0];

16: h := V H
j f ; Hj+1 :=

[
Hj h

e⊤ 0

]
; Rj+1 :=

[
Rj 0

0 1

]
;

g := f − Vjh; f := −Ujh;
17: end if
18: end if
19: end for

Remark 3.7. The following remarks give some detailed explanations of the SGA

algorithm.

(i) At each expanding process of the SGA decomposition, we need to solve a linear

system (see line 6 of the SGA algorithm). To make the computation more

efficient, a factorization of K, such as the LU factorization, should be made

available outside of the first for-loop of the SGA algorithm.
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

(ii) At lines 8 and 15 of the SGA algorithm, we additionally store the vectors Dqj

and Mqj at each expanding step and output two n×m matrices

Dm := [Dq1 · · · Dqm] = DQm and Mm := [Mq1 · · · Mqm] =MQm.

The pre-stored matrices Dm and Mm save computational costs in the subsequent

projection process for solving the QEP.

(iii) From (3.8b), we know that Pm can be completely determined by Um, that is,

for j = 1, . . . , m, pj can be replaced by the relation

pj = Um(:, 1 : j)Rm(1 : j, j).

See line 9 of the SGA algorithm. Hence we only need to evaluate and store

Qm, Vm, gm, Um, fm, Hm and Rm as we implement the SGA algorithm.

(iv) At line 12 of the SGA algorithm, we decide whether the expanding process

encounters a deflation or a breakdown. In practice, we use the modified Gram-

Schmidt procedure to check it as suggested in [3].

3.3 The SGA Method for Solving Quadratic Eigen-

value Problems

In this section, we use the unitary matrix Qm produced by the SGA algorithm

to develop an orthogonal projection technique to solve the QEP. For simplicity, we

assume that the deflation does not occur and hence QH
mQm = Im. When the deflation

occurs, the same orthogonal projection technique is applied with the modification

of replacing Qm with the nonzero columns of Q̊m shown in (3.25).
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

3.3.1 The SGA method

The SGA method applies the Rayleigh-Ritz subspace projection technique on

the subspace Qm ≡ span{Qm} with the Galerkin condition:

(θ2M + θD +K)υ ⊥ Qm,

that is, we seek an approximate eigenpair (θ,υ) with θ ∈ C, υ ∈ Qm such that

ω∗(θ2M + θD +K)υ = 0 for all ω ∈ Qm, (3.26)

where ·∗ denotes the transpose ·⊤ when M,D,K are real or complex symmetric,

otherwise, ·∗ denotes the conjugate transpose ·H of matrices. Since υ ∈ Qm, it can

be written as υ = Qmξ and (3.26) implies that θ and ξ must satisfy the reduced

QEP:

(θ2Mm + θDm +Km)ξ = 0, (3.27)

where

Mm = Q∗
mMQm, Dm = Q∗

mDQm, Km = Q∗
mKQm. (3.28)

The eigenpair (θ, ξ) of the small-scale QEP (3.27) defines a Ritz pair (θ, Qmξ) of

the QEP (3.1) whose accuracy is measured by the norm of the residual vector rθ,ξ =

(θ2M + θD +K)Qmξ.

Note that by explicitly formulating the matrices Mm, Dm, and Km, essential

structures of M , D, and K are preserved. For example, if M is symmetric positive

definite, so is Mm. As a result, essential spectral properties of the QEP will be

preserved. For example, if the QEP is a gyroscopic dynamical system in which M

and K are symmetric, one of them is positive definite, and D is skew-symmetric,

then the reduced QEP is also a gyroscopic system. It is known that in this case, the
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

eigenvalues are symmetrically placed with respect to both the real and imaginary

axes [36]. Such a spectral property will be preserved in the reduced QEP.

Before we present the SGA method for solving the QEPs, we discuss how to

take advantage of the SGA algorithm to efficiently generate the coefficient matrices

(Mm, Dm, Km) of the projected QEP (3.28). As we describe in Remark 3.7(ii), the

resulting matrices

Mm :=MQm and Dm := DQm

produced from the SGA algorithm provide us the necessary multiplications of M,D

with Qm. For the projected matrix Km, even if the SGA algorithm does not exactly

perform the matrix-vector product of K and qj at each step, j = 1, . . . , m, we can

use the equality KQm = VmRm in (3.8b) to reduce the computational costs. The

product of VmRm needs about 2nm2 flops, but the product of KQm needs about

2n2m flops. Therefore, the small-scale matrices Mm and Dm can be respectively

generated by

Mm = Q∗
mMm, Dm = Q∗

mDm and Km = Q∗
mVmRm. (3.29)

Totally, (3.28) needs about 6n2m + 6nm2 flops to generate the coefficient matrices

of the projected QEP (3.27), however, the matrix products (3.29) only need 8nm2

flops. Also note that if we consider the first companion form linearization of the

QEP (3.1), there is no such an advantage. That is, (3.28) is the only way to generate

the coefficient matrices of the reduced QEP (3.27).

3.3.2 The projection subspace

In this subsection we explain the motivation of choosing the projection subspace

Qm ≡ span{Qm} where Qm is generated from the SGA algorithm. We first recall a
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

Algorithm 3.2 The SGA method

Input: M,D,K ∈ Cn×n, q1,p1 ∈ Cn with ‖q1‖2 = 1 and m ≥ k ≥ 1.
Output: k Ritz pairs and their relative residuals.
1: Run the SGA algorithm (Algorithm 3.1) to generate an mth order SGA decom-

position (3.8).
2: Compute Mm, Dm and Km via (3.29).
3: Solve the reduced QEP (3.27) for (θi, ξi) with ‖ξi‖2 = 1, i = 1, . . . , 2m and

sorting Ritz values so that {(θ1, Qmξ1), . . . , (θk, Qmξk)} are wanted Ritz pairs.
4: Test the accuracy of Ritz pairs (θi,υi), υi = Qmξi, i = 1, . . . , k as approximate

eigenvalues and eigenvectors of the QEP (3.1) by the relative norms of residual
vectors:

‖(θ2iM + θiD +K)υi‖2
|θi|2‖M‖F + |θi|‖D‖F + ‖K‖F

, i = 1, . . . , k. (3.30)

lemma in the SOAR method [3].

Lemma 3.8 ([3], Lemma 2.2). Let A be an arbitrary n × n matrix. Let Wm+1 =

[Wm wm+1] be an n× (m+ 1) rectangular matrix that satisfies

AWm = Wm+1Hm

for an (m+1)×m upper Hessenberg matrix Hm. Then there is an upper triangular

matrix Tm such that

WmTm =
[
w1 Aw1 · · · Am−1w1

]
.

Furthermore, if the first m− 1 subdiagonal elements of Hm are nonzero, then Tm is

nonsingular and

span{Wm} = Km(A,w1).

Next, we consider a Krylov subspace associated with the linearized eigenvalue

problem (3.3) and show that it is embedded into a larger subspace spanned by some

column vectors in the SGA decomposition (3.8).
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3.3 The SGA Method for Solving Quadratic Eigenvalue Problems

Theorem 3.9. Consider the SGA decomposition (3.8) of order m. Let

Q̂m̂ =




m m 1

n Qm 0 0

n 0 −MQm p1


 ∈ C

2n×(2m+1). (3.31)

Then, for A and B defined in (3.9), we have Km(B−1A,
[
q1

p1

]
) ⊆ span{Q̂m̂}.

Proof. From (3.11b), we have



Vm

Um


 =



K 0

0 In






Qm

Pm


R−1

m .

Substituting it into the equation (3.11a) and then premultiplying it by
[
K−1

0

0

In

]
,

we get 

−K−1D K−1

−M 0






Qm

Pm


 =



Qm qℓ

m

Pm pℓ
m






Hℓ

m

e⊤m


 , (3.32)

where Hℓ
m = R−1

m Hm is an unreduced upper Hessenberg matrix, qℓ
m = K−1gm and

pℓ
m = fm. By (3.32) and Lemma 3.8, we know that

Km


B−1A,



q1

p1





 ≡ Km






−K−1D K−1

−M 0


 ,



q1

p1





 = span







Qm

Pm








(3.33)

and the set {
[
q1

p1

]
, . . . ,

[
qm

pm

]
} is a non-orthonormal basis of the above Krylov sub-

space (3.33). Next, we show that



qi

pi


 ∈ span{Q̂m̂} for i = 1, . . . , m, (3.34)

and the conclusion of Theorem 3.9 follows directly from (3.33) and (3.34).
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To prove (3.34), it suffices to show that pi ∈ span{−MQm,p1}, 1 ≤ i ≤ m. We

prove this by induction. Clearly, p1 ∈ span{−MQm,p1}. Suppose that p1, . . . ,pi ∈

span{−MQm,p1} for 1 < i ≤ m− 1. From the equality (3.32), we have −MQm =

PmH
ℓ
m + pℓ

me
⊤
m. Thus,

−Mqi = PmH
ℓ
m(:, i) = PiH

ℓ
m(1 : i, i) + pi+1H

ℓ
m(i+ 1, i)

and it follows that

pi+1 = Hℓ
m(i+ 1, i)−1

(
−Mqi − PiH

ℓ
m(1 : i, i)

)
∈ span{−MQm,p1}.

We complete the proof.

Instead of using the Krylov subspace Km(B−1A,
[
q1

p1

]
), we choose the larger sub-

space span{Q̂m̂} to extract approximations of eigenpairs. To project the coefficient

matrices of the GEP (3.5) onto the subspace span{Q̂m̂}, we get

Q̂∗
m̂



−D In

−M 0


 Q̂m̂ =




m m 1

m −Dm −Mm Q∗

mp1

m Nm 0 0

1 −p∗

1MQm 0 0



≡ Â, (3.35a)

Q̂∗
m̂



K 0

0 In


 Q̂m̂ =




m m 1

m Km 0 0

m 0 Nm −Q∗

mM∗p1

1 0 −p∗

1
MQm p∗

1
p1



≡ B̂, (3.35b)

where Mm, Dm, Km are defined in (3.28) and Nm = Q∗
mM

∗MQm. Therefore, the
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GEP (3.5) is reduced to the problem

Âs = νB̂s (3.36)

with Â and B̂ defined in (3.35). Observe that if we premultiply (3.36) by the

nonsingular matrix

L ≡




Im 0 0

0 Im 0

0 p∗

1MQmN−1
m 1




then the coefficient matrices of the resulting GEP (LÂ)s = µ(LB̂)s are respectively

of the forms

LÂ ≡




−Dm −Mm Q∗

mp1

Nm 0 0

0 0 0



, LB̂ ≡




Km 0 0

0 Nm −Q∗

mM∗p1

0 0 c



, (3.37)

where c = p∗
1(In −MQmN

−1
m Q∗

mM
∗)p1. The pencil obtained from the last compo-

nent of both matrices in (3.37) either provides the zero eigenvalue or be a singular

pencil. In both cases, the eigenvalues computed from this pencil are not wanted.

Therefore, we can simply drop the last column and row of both matrices in (3.37) to

consider the leading 2m × 2m submatrices, which is just the first companion form

linearization [21] of the reduced QEP (3.27), for solving QEPs.
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3.4 Refined SGA Method

As we obtain a Ritz pair (θ,υθ) by the SGA method, a refinement strategy for

the QEP is to seek a unit vector υ+
θ ∈ Qm = span{Qm} satisfying

υ+
θ ≡ argmin

υ∈Qm, ‖υ‖2=1

‖(θ2M + θD +K)υ‖2. (3.38)

Here we call υ+
θ the refined Ritz vector corresponding to the Ritz value θ. We

next turn to propose a novel refinement scheme by taking advantage of the SGA

decomposition for computing refined Ritz vectors. An other refinement scheme for

QEPs we refer to [34].

Let (θ, ξθ) be an eigenpair obtained from the small-scale QEP (3.27), then

(θ,υθ) = (θ, Qmξθ) is a Ritz pair the QEP (3.1). To solve the optimization problem

(3.38), we find that

(θ2M + θD +K)Qm

= θ2(−UmHm − fme
⊤
m) + θ(Pm − VmHm − gme

⊤
m) + VmRm

= Vm(−θHm +Rm) + gm(−θe⊤m) + Um(−θ2Hm + θRm) + fm(−θ2e⊤m)

=

[
Vm gm Um fm

]




−θHm +Rm

−θe⊤m
−θ2Hm + θRm

−θ2e⊤m




, (3.39)

where we use the SGA decomposition (3.8) in the first two equalities. Since Vm is

a column orthonormal matrix, the QR factorization of [Vm gm Um fm] is of the
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3.4 Refined SGA Method

form

[Vm gm Um fm] =
[
Vm g̃m Ũm f̃m

]




Im t12 T13 t14

t22 t23 t24

T33 t34

t44




, (3.40)

where
[
Vm g̃m Ũm f̃m

]
is unitary. Since the vector 2-norm is invariant under

unitary transformations, (3.39) and (3.40) imply

min
υ∈Qm, ‖υ‖2=1

‖(θ2M + θD +K)υ‖2 = min
‖ξ‖2=1

‖(θ2M + θD +K)Qmξ‖2

= min
‖ξ‖2=1

‖S(m, θ)ξ‖2,

where

S(m, θ) ≡




Im t12 T13 t14

t22 t23 t24

T33 t34

t44







−θHm +Rm

−θe⊤m
−θ2Hm + θRm

−θ2e⊤m




∈ C
(2m+2)×m. (3.41)

Since the right singular vector Vθem of S(m, θ) corresponding to the smallest singular

value sθ,min yields the minimum ‖S(m, θ)Vθem‖2 = sθ,min, as a consequence, the

unit vector υ+
θ ≡ QmVθem is the solution to the minimization problem (3.38) with

minimum sθ,min. In summary, we have the following theorem.

Theorem 3.10. Let (θ, Qmξθ) be a Ritz pair the QEP (3.1) computed from the SGA

method. Let S(m, θ) = UθΣθ(Vθ)
H be a singular value decomposition of S(m, θ)

defined in (3.41) and sθ,min be its smallest singular value. Then the vector υ+ ≡

QmVθem is the solution to the optimization problem (3.38) with minimum sθ,min.
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3.5 Implicit Restarting of the SGA Method

When applying the refinement strategy for several Ritz pairs, we compute the

QR factorization (3.40) only once and subsequently use the factorization for refining

each Ritz pair. Combining the SGA method with the refinement strategy, we propose

the refined SGA (RSGA) method in Algorithm 3.3.

Algorithm 3.3 The RSGA method

Input: M,D,K ∈ Cn×n, q1,p1 ∈ Cn with ‖q1‖2 = 1 and m ≥ k ≥ 1.
Output: k refined Ritz pairs and their relative residuals.
1: Run steps 1–3 of the SGA method to obtain k wanted Ritz pairs (θi, Qmξi),
i = 1, . . . , k.

2: Calculate a QR factorization of [Vm gm Um fm] where the Q-factor and R-factor
are denoted as in (3.40).

3: for i = 1, . . . , k do
4: Calculate the matrix S(m, θi) as defined in (3.41).
5: Calculate a compact singular value decomposition of S(m, θi) = UθiΣθi(Vθi)

H .

6: Let sθi,min be the smallest singular value of S(m, θi). Then the refined Ritz
vector is given by υ+

i = QmVθiem and the corresponding relative residual is
given by

‖(θ2iM + θiD +K)υ+
i ‖2

|θi|2‖M‖F + |θi|‖D‖F + ‖K‖F
=

sθi,min

|θi|2‖M‖F + |θi|‖D‖F + ‖K‖F
. (3.42)

7: end for

3.5 Implicit Restarting of the SGA Method

Similar to the standard implicitly restarted Arnoldi (IRA) method [59] for SEPs,

the SGA/RSGA method also needs restarting to control storage and orthogonaliza-

tion expense. In this section, we will apply the implicitly shifted QZ iteration [60]

to implicitly restart the SGA/RSGA method, namely IRSGA/IRRSGA.

3.5.1 The IRSGA method and the IRRSGA method

In this subsection, we first briefly discuss the implicitly restarted step of the SGA

algorithm based on the implicitly shifted QZ iteration [60]. For details, see [60, 62].
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3.5 Implicit Restarting of the SGA Method

Suppose we have computed the mth order SGA decomposition (3.11). For given

shifts ϑ1, . . . , ϑp, p = m− k, which are in general the unwanted approximate eigen-

values, let Ei and Fi be unitary matrices computed by the implicitly shifted QZ iter-

ation with the single shift ϑi, i = 1, . . . , p. Write E+ = E1 · · ·Ep and F+ = F1 · · ·Fp.

Note that Fi is upper Hessenberg, i = 1, . . . , p.

Let

H+
m ≡ (E+)HHmF

+,

R+
m ≡ (E+)HRmF

+,

Z+
m ≡ ZmF

+,

Y +
m ≡ YmE

+.

Then H+
m and R+

m are again upper Hessenberg and upper triangular, respectively.

Set

Q+
m ≡ QmF

+ and V +
m ≡ VmE

+,

we then have (Q+
m)

HQ+
m = (V +

m )HV +
m = Im. Postmultiplying (3.11a) and (3.11b) by

F+, we get

AZ+
m = Y +

mH
+
m + ηme

⊤
mF

+, (3.43a)

BZ+
m = Y +

mR
+
k . (3.43b)

Since e⊤mF1 = [0 · · · 0 α1 β1], by induction, we see that the first k − 1 entries of

e⊤mF
+ are zeros.

Let η ≡ h+k+1,ky
+
k+1 + F+(m, k)ηm. Drop the last m− k columns of (3.43a) and

(3.43b), and then set η+
k ≡ η. Then, by writing Z+

k =
[
Q+

k

P+

k

]
, Y +

k =
[
V +

k

U+

k

]
and
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3.5 Implicit Restarting of the SGA Method

η+
k =

[
g+

k

f
+

k

]
, we get the k step SGA decomposition:

AZ+
k = Y +

k H
+
k + η+

k e
⊤
k , (3.44a)

BZ+
k = Y +

k R
+
k , (3.44b)

(Q+
k )

HQ+
k = (V +

k )HV +
k = Ik, (V

+
k )Hg+

k = 0. (3.44c)

Now, we present the IRSGA method and the IRRSGA method in the following

algorithm.

Remark 3.11. Note that applying an implicitly restarted process on a deflated SGA

decomposition (3.25) may not yield a deflated SGA decomposition. We know that

the Q-matrix and V -matrix of the SGA decomposition must adhere to one of the

two orthogonality requirements: (1) all column vectors form an orthonormal set

and (2) when deflation occurs, all column vectors form an orthonormal set except

zero columns. In the first case, the resulting Q+-matrix and V +-matrix maintain

the same orthogonality requirement as in the Q-matrix and V -matrix of the SGA

decomposition. In the second case, both Q-matrix and V -matrix contain some zero

column(s). Then the nonzero columns of the updated Q+-matrix will be linearly

dependent and the resulting decomposition is not a SGA decomposition. The same

phenomenon occurs on the updated V +-matrix.

To overcome this problem, we only need to perform column compression to make

the updated Q+-matrix and V +-matrix of the forms [Q̂+ 0] and [V̂ + 0], simulta-

neously. On the other hand, it requires to update H+-matrix and R+-matrix by

postmultiplying an upper triangular matrix as we perform the column compression.

The resulting H+-matrix and R+-matrix are still upper Hessenberg form and upper

triangular, respectively. Consequently, the column compression transforms a decom-

position to a deflated SGA decomposition.
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3.5 Implicit Restarting of the SGA Method

Algorithm 3.4 The IRSGA/IRRSGA method

Input: M,D,K ∈ Cn×n and m ≥ k ≥ 1.
Output: k desired eigenpairs.
1: for i = 1, 2, . . . do
2: Run the SGA algorithm (Algorithm 3.1) to generate an mth order SGA de-

composition.
3: Run the SGA method (Algorithm 3.2) or the RSGA method (Algorithm 3.3)

to compute k candidates of Ritz pairs and check their convergence by (3.30)
or (3.42).

4: if #(convergent Ritz pairs) ≥ k then
5: break
6: else
7: Select p := m− k shifts ϑ1, . . . , ϑp.
8: Let ε := e⊤m and η := ηm
9: for i = 1, . . . , p do

10: Compute unitary matrices Ei and Fi by the implicit-QZ step with a single
shift ϑi so that EH

i HmFi and EH
i RmFi are upper Hessenberg and upper

triangular, respectively.
11: Update

Hm := EH
i HmFi, Rm := EH

i RmFi,

Zm := ZmFi, Ym := YmEi and ε := εFi.

12: end for
13: Set ηk := Hm(k + 1, k)Ym(:, k + 1) + ε(k + 1)η
14: Set

Zk := Zm(:, 1 : k), Yk := Ym(:, 1 : k),

Hk := Hm(1 : k, 1 : k), Rk := Rm(1 : k, 1 : k).

15: end if
16: end for

77



3.5 Implicit Restarting of the SGA Method

3.5.2 The selection of shifts

The above scheme involves selection of shifts ϑ1, . . . , ϑm−k. A good selection of

shift is a key for success of the implicit restart technique. A popular choice of the

shift values for IRA method [59] is to choose unwanted Ritz values, and are called

exact shifts in [59]. When we solve the reduced QEP (3.27) to get 2m eigenvalues and

select k Ritz values as approximations to the desired eigenvalues, we may directly

use the reciprocal values of the remaining unwanted Ritz values as shifts which we

also call them exact shifts. Among the selection of 2m−k shift candidates, we always

take the reciprocal values of the m−k unwanted Ritz values which are farthest from

the target as shifts. Applying implicitly shifted QZ iteration with exact shifts to

the SGA method, we have an implicitly restarted SGA (IRSGA) method.

For the RSGA method, we can also choose exact shifts. However, the refine-

ment strategy can not only improve the accuracy of the Ritz pairs but also provide

more accurate approximations to some of the unwanted eigenvalues. Suppose that

(ϑ,ω) = (ϑ,Qmζ) is a Ritz pair of the QEP (3.1) which we are not interested in and

the reciprocal of ϑ is one possible candidate of the shifts for the restarting process.

Let ω+ = Qmζ
+ be the refined Ritz vector corresponding the Ritz value ϑ as we

discussed in section 3.4. Now, we illustrate how to find better shifts based on the

unwanted refined Ritz vector ω+. For an approximate eigenvector ω of the QEP

(3.1), the usual approach to deriving an approximate eigenvalue θ from ω is to im-

pose the Galerkin condition (θ2M + θD +K)ω ⊥ ω and this follows that θ = θ(ω)

must be one of the two solutions to the quadratic equation [25]

a2θ
2 + a1θ + a0 = 0, (3.45)

where a2 = ω∗Mω, a1 = ω∗Dω and a0 = ω∗Kω. Therefore, as we obtain the
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3.6 Numerical Results

unwanted refined Ritz vector ω+, (3.45) provides us one way to compute more

accurate Ritz value beyond our interests and should be filtered in the restarting

process. Since ω+ = Qmζ
+, the coefficients corresponding to the quadratic equation

(3.45) would be reduced as follows

a2 = (ζ+)∗Mmζ
+, a1 = (ζ+)∗Dmζ

+ and a0 = (ζ+)∗Kmζ
+, (3.46)

whereMm, Dm andKm is the projections ofM,D andK onto the subspace span{Qm}

respectively as described in (3.28).

Hence, if ϑ+1 and ϑ+2 are roots of the quadratic equation (3.45) with coefficients

defined in (3.46) then their reciprocal values would be better candidates for the

restarting process. Consequently, if (ϑ1, Qmζ1), . . . , (ϑp, Qmζp) are p Ritz pairs that

are farthest from our target and if ϑ+i,1, ϑ
+
i,2 are the roots of the quadratic equation

(3.45) with respect to the unwanted refined Ritz vector ω+
i = Qmζ

+
i , i = 1, . . . , p,

then we choose the p values from ϑ+1,1, ϑ
+
1,2, . . . , ϑ

+
p,1, ϑ

+
p,2 that are farthest from our

target and take their reciprocal values as the shifts for the restarting process and call

them the refined shifts. In our numerical examples, an implicitly restarted refined

SGA (IRRSGA) method is a restart version of the RSGA method with refined shifts.

3.6 Numerical Results

The purpose of this section is to present a few numerical experiments to validate

that the IRRSGA method is viable for solving the QEP (3.1). In addition, the ex-

amples demonstrate the superior properties of the IRSGA method and the IRRSGA

method than the two versions of the IRA method [59] for solving the QEP where

one IRA method is applied to the ℓ-SEP (3.6) and the other is applied to the r-SEP

(3.7), respectively. The abbreviations ℓ-IRA and r-IRA are used to indicate that
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3.6 Numerical Results

the IRA method is applied to ℓ-SEP and r-SEP, respectively.

In our examples, the number m denotes the order of the SGA/Arnoldi decompo-

sition, k denotes the number of desired eigenpairs. The starting vector of the SGA

method and the standard Arnoldi method are chosen as a vector with all compo-

nents equal to 1 and the stopping tolerance for relative residuals is chosen to be

tol = 10−14. The maximum number rmax of restarting process is set to be rmax = 30.

Example 3.1. This example is obtained from “NLEVP: a collection of nonlinear

eigenvalue problem” [9], namely “damped beam” arising from the vibration analysis

of a beam simply supported at both ends and damped in the middle. In our MAT-

LAB implementation, the command nlevp(’damped_beam’,2000) is used to con-

struct real symmetric coefficient matrices M,D,K with M =M⊤ > 0, D = D⊤ ≥ 0

and K = K⊤ > 0. The matrix size is n = 4, 000. Ten eigenvalues nearest the ori-

gin (i.e., k = 10) are computed by by four methods with m = 20. Figure 3.1(a)

shows the maximum relative residuals of the ten desired eigenpairs computed by

ℓ-IRA, r-IRA, IRSGA and IRRSGA with respect to iterations 1, 2, . . . , 30. We find

that the maximum relative residuals computed by ℓ-IRA and r-IRA stagnate and

those computed by the IRSGA method oscillate between 10−12 and 10−13. All rela-

tive residuals of the desired eigenpairs computed by the IRRSGA method meet the

stopping tolerance in 1 iteration. To investigate the convergence behaviors of the

ten eigenpairs computed by ℓ-IRA, r-IRA, IRSGA and IRRSGA, we depict relative

residual norms of the 1 step iteration in Figure 3.1(b).

Compared to the IRSGA method, the refinement strategy of the IRRSGA method

significantly improves the accuracy of computed eigenpairs even up to 5 digits for

the eight computed eigenpairs that do not meet the convergence criterion. We re-

port the number of iterations and CPU times in Table 3.1. In summary, among the

four methods the IRRSGA method is the only viable approach that accurately finds

80
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#Its CPU time
ℓ-IRA 30 32.8563
r-IRA 30 55.4423
IRSGA 30 38.3231
IRRSGA 1 7.3048

Table 3.1: Iteration numbers and CPU time in Example 3.1.
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Figure 3.1: Convergence histories for methods ℓ-IRA, r-IRA, IRSGA and IRRSGA
in Example 3.1.

desired eigenpairs within 30 iterations.

Example 3.2. In Example 3.1, we see an amazing effect of the refinement strategy,

i.e., ten wanted eigenpairs converge in one iteration before the restarting process

with refined shifts in IRRSGA. This example illustrates that the refinement strategy

with refined shifts introduced in section 3.5.2 for the IRRSGA method accelerate

the convergence.

We consider the damped vibration mode of an acoustic fluid confined in a cavity

with absorbing walls capable of dissipating acoustic energy [6]. The fluid domain

Ω ⊆ R2 is assumed to be polyhedral, and the boundary ∂Ω = ΓA ∪ ΓR, where the

absorbing boundary ΓA is the union of all the different faces of Ω and is covered by
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damping material. The rigid boundary ΓR is the remaining part of ∂Ω. Figure 2.1(i)

gives an example of such a setup, where the top boundary is absorbing and the

remaining boundary is rigid. The equations characterizing the wave motion in Ω are





ρ∂2U
∂t2

+∇P = 0 and P = −ρc2divU in Ω,

P =
(
αU · n+ β ∂U

∂t
· n
)

on ΓA,

U · n = 0 on ΓR,

where the acoustic pressure P and the fluid displacement U depend on space x and

time t, ρ is the fluid density, c is the speed of sound in air, n is the unit outer normal

vector along ∂Ω, and α, β are coefficients related to the normal acoustic impedance.

The absorbing boundary on ΓA indicates that the pressure is balanced by the effects

of the viscous damping (the β term) and the elastic behavior (the α term). The

model induces the following QEP

(λ2Mu + (α + λβ)Au +Ku)u = 0,

where Mu and Ku are mass and stiffness matrices, respectively, and Au is used to

describe the effect of the absorbing wall.

#Its CPU time
ℓ-IRA 18 806.69
r-IRA 18 836.14
IRSGA 9 777.74
IRRSGA 7 735.38

Table 3.2: Iteration numbers and CPU time in Example 3.2.

In this example, we adopt the geometry illustrated in Figure 2.1(i) and physical

data used in Example 2.1. The rectangular domain is uniformly partitioned into
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Figure 3.2: Convergence histories for methods ℓ-IRA, r-IRA, IRSGA and IRRSGA
in Example 3.2.

384 by 288 rectangles and each rectangle is further refined into two triangles. The

dimension of coefficient matrices in this problem is n = 331, 488. We compute ten

analytic solutions of the desired eigenvalues λ1, . . . , λ10 plotted in Figure 2.2 with

the lowest positive vibration frequencies satisfying 0 < Im(λi)
2π

< 600Hz. The order

m is set to be m = 20. The shift target is taken by σ = −25 + 600πi.

Table 3.2 shows that compared to the IRSGA method, the refinement strategy

used in the IRRSGA method reduces the number of iterations and CPU time. More-

over, the IRRSGA method calculates ten desired eigenpairs in the smallest number

of iterations and the shortest CPU time among four competitive methods.

Example 3.3. This experiment consists of six benchmark examples from the NLEVP

[9]. In the following, we describe each example and the choice of parameters for gen-

erating the coefficient matrices of corresponding QEPs. All numerical results show

that regardless of iteration numbers or CPU time, both IRSGA and IRRSGA ap-

pear to be more efficient and more competitive than the traditional Arnoldi methods

ℓ-IRA and r-IRA. The standard Arnoldi methods can not calculate all desired eigen-
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pairs in 30 iterations but our IRSGA and IRRSGA methods can effectively find all

desired eigenpairs with high accuracy in less or around 10 iterations. The IRSGA

and the IRRSGA methods have similar convergence behavior and the latter con-

sumes a slightly more time than the former. This might be due to the fact that the

IRSGA method converges in very few iterations. Figure 3.3 depicts the maximum

of the k residual norms versus restarts and show the convergence processes of each

example. Correspondingly, Table 3.3 lists the iteration numbers and the CPU time

of each method for each example.

(a) Acoustic 1D. This example arises from the finite element discretization of

the time harmonic wave equation −∆p − (2πf/c)2p = 0 [11]. Here p denotes

the pressure, f is the frequency, c is the speed of sound in the medium, and

ζ is the (possibly complex) impedance. On the domain [0, 1] with c = 1, the

n× n matrices M , D and K are defined by

M = −4π2 1
n
(In − 1

2
ene

⊤
n ),

D = 2πi1
ζ
ene

⊤
n ,

K = n
(
tridiag(−1, 2,−1)− ene

⊤
n

)
,

where tridiag(−1, 2,−1) is a tridiagonal matrix with −2 on the main diagonal

and −1 above and below it. Observe that matrices M,K are real symmetric

and D is complex symmetric. We use nlevp(’acoustic_wave_1d’,5000,1)

to generate M,D,K with size n = 5, 000 and compute the six eigenvalues

nearest origin (i.e., k = 6) with m = 12.

(b) Acoustic 2D. This example is a two-dimensional acoustic wave equation [11]
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on [0, 1]× [0, 1]. The coefficient matrices (M,D,K) are given by

M = −4π2h2Iq−1 ⊗ (Iq − 1
2
eqe

⊤
q ),

D = 2πih
ζ
Iq−1 ⊗ (eqe

⊤
q ),

K = Iq−1 ⊗Dq + Tq−1 ⊗ (−Iq + 1
2
eqe

⊤
q ),

where h denotes the mesh size, q = 1/h, ζ is the impedance (possibly com-

plex), Dq = tridiag(−1, 4,−1) − 2eqe
⊤
q ∈ Rq×q and Tq−1 = tridiag(1, 0, 1) ∈

R(q−1)×(q−1). We use nlevp(’acoustic_wave_2d’,90,0.1*1i) to get the real

symmetric matrices (M,D,K). The matrix size is given by n = 8, 010 and we

compute six eigenvalues nearest origin (i.e., k = 6) with m = 12.

(c) Concrete. This problem arises from a model of a concrete structure support-

ing a machine assembly [16] and induces the QEP

(λ2M + λD + (1 + µi)K)x = 0,

where M is real diagonal and low rank. D, the viscous damping matrix, is pure

imaginary and diagonal, K is complex symmetric, and the factor 1 + µi adds

uniform hysteretic damping. We use nlevp(’concrete’,0.04) to generate

the complex symmetric coefficient matrices. The matrix size n = 2, 472 and

we compute ten eigenvalues nearest the origin (i.e., k = 10) with m = 20.

(d) Spring dashpot. The QEP arises from a finite element model of a linear

spring in parallel with Maxwell elements [23]. The mass matrix M is rank de-

ficient and symmetric, the damping matrixD is rank deficient and block diago-

nal, and the stiffness matrix K is symmetric and has arrowhead structure. Ma-

trices M,D,K are generated from nlevp(’spring_dashpot’,7850,5000,0)
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with size n = 10, 002. We compute 50 eigenvalues nearest the origin (i.e.,

k = 50) with m = 100.

(e) Wiresaw1. We use nlevp(’wiresaw1’,10000,0.01) to generate the coef-

ficient matrices of the gyroscopic QEP arising in the vibration analysis of a

wiresaw [74]. Here M,D,K are n× n matrices defined by

M =
1

2
In, D = −D⊤ = [dij] and K = diag

1≤i≤n

(
i2π2(1− υ2)

2

)
,

where dij =
4ij

i2−j2
υ if i+ j is odd and, otherwise, dij = 0. The matrix size for

this problem is n = 10, 000 and we compute 10 eigenvalues nearest the origin

(i.e., k = 10) with m = 20.

(f) Wiresaw2. When the effect of viscous damping is added to the problem in

Wiresaw1, the corresponding QEP has the form [74]

(λ2M + λ(D + ηIn) +K + ηD)x = 0,

where M , D and K are the same as in Wiresaw1 and η is a real nonnegative

damping parameter. We use nlevp(’wiresaw2’,10000,0.01,0.5) with η =

0.5 to generate the coefficient matrices. The matrix size is n = 10, 000 and we

compute 10 eigenvalues near the target −0.5 (i.e., k = 10 and σ = −0.5) with

m = 20.

3.7 Summary

We propose the SGA method, an orthogonal projection approach, for solving

QEPs and deduce several variations:
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(a) Acoustic 1D

#Its CPU time
ℓ-IRA 30 34.41
r-IRA 30 56.60
IRSGA 3 7.31
IRRSGA 3 7.47

(b) Acoustic 2D

#Its CPU time
ℓ-IRA 30 88.27
r-IRA 30 127.83
IRSGA 12 31.89
IRRSGA 11 27.45

(c) Concrete

#Its CPU time
ℓ-IRA 30 7.20
r-IRA 30 7.30
IRSGA 4 3.84
IRRSGA 4 4.06

(d) Spring dashpot

#Its CPU time
ℓ-IRA 30 907.47
r-IRA 30 1595.34
IRSGA 3 106.08
IRRSGA 3 114.98

(e) Wiresaw1

#Its CPU time
ℓ-IRA 8 69.80
r-IRA 4 75.24
IRSGA 2 35.83
IRRSGA 2 37.09

(f) Wiresaw2

#Its CPU time
ℓ-IRA 7 65.00
r-IRA 4 78.16
IRSGA 2 37.23
IRRSGA 2 39.39

Table 3.3: Iteration numbers and CPU time in Example 3.3.
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(b) Acoustic 2D
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(c) Concrete
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Figure 3.3: Convergence histories for methods ℓ-IRA, r-IRA, IRSGA and IRRSGA
in Example 3.3.

88



3.7 Summary

• RSGA : A refinable version of the SGA method.

• IRSGA : The SGA method combining the implicit restart technique.

• IRRSGA: A restartable and refinable variation of the SGA method.

The numerical results on computation of the approximate eigenpairs with small

eigenvalues in modulus show that, compared to the standard IRA method, both

IRSGA and IRRSGA are superior in accuracy as well as convergence rate. More-

over, the IRRSGA method may significantly improve the accuracy for obtaining the

desired eigenpairs.
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4
Conclusions and Future Work
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In this thesis, we consider two themes related to Arnoldi-type approaches for

solving nonlinear eigenvalue problems.

In the first topic (Chapter 2), we propose efficient Arnoldi-type methods for

computing damped vibration modes of an acoustic fluid confined in a cavity, with

absorbing walls capable of dissipating acoustic energy. Two approximations are

investigated. One constructed from the edge-based displacement space, which results

in QEPs (2.13) and one from the node-based pressure space, which results in REPs

(2.20). Our numerical results show that both nodal and edge-based finite elements

have second-order convergence rate. We theoretically prove that the nullity of the

QEP (2.13) equals the number of the interior grid points. These numerical results

show that if the shift value is close to zero, then such a large null space interfere

with the convergence of the eigensolver. Furthermore, the numerical evidences also

show that (i) there are no spurious eigenmodes for the discretization in terms of

pressure nodal finite elements and (ii) the CPU times for solving the corresponding

REP (2.20) are only 1/5 to 1/3 of the CPU times for solving the QEP (2.13). For

solving the nonlinear eigenvalue problems (2.13) and (2.20), a linearization and a

trimmed-linearization method are used to linearize QEP (2.13) and REP (2.20) into

four different types of SEPs which can be solved by Q1 and Q2 as well as R1 and

R2. Numerical accuracy shows that Q2 and R2 algorithms are better than Q1 and

R1 respectively.

In Chapter 3, to deal with QEPs, we presented an orthogonal projection method

(named the SGA method) based on a SGA decomposition. We have developed a

practical algorithm to compute the SGA decomposition. The application of the

SGA decomposition is three aspects. First of all, we compute an orthonormal basis

of the projection subspace in the SGA decomposition. Secondly, the SGA decompo-

sition (3.8) has computational advantage for generating the coefficient matrices of
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reduced QEP (3.28). Finally, we take advantage of the SGA decomposition to save

some computational costs in the refinement process resulting a refined version of

the SGA method abbreviated as the RSGA method for solving QEPs. After apply-

ing an implicit restart technique to SGA/RSGA methods, we have restart versions

of SGA and RSGA, namely, the IRSGA/IRRSGA method. We have reported the

numerical results on computation of the approximate eigenpairs with small eigenval-

ues in modulus. Compared to the standard IRA method, both the IRSGA method

and IRRSGA method are superior in accuracy and convergence rate. We also see

that the IRRSGA method had significantly improved the accuracy of computing the

desired eigenpairs when the standard IRA method and the IRSGA method cannot

converge in a certain number of iterations.

Based on this research, the forthcoming work is to generalize the SGA method

and its variations to provide orthogonal projection methods for solving the PEP

(1.9) as well as the REP (1.12), respectively. Even though these PEPs/REPs can

be solved by nonlinear eigensolvers, these approaches restricts the advantages of the

underlying structure and property of PEPs/REPs. Therefore, the generalization

of the SGA method may provide an alternative structure-preserved approach for

solving PEPs/REPs. Moreover, how to efficiently compute refined eigenpairs using

the partial-orthogonal Arnoldi-like decomposition and to appropriately select refined

shift for implicitly restarting process will be challenging problems.
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