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摘要 

電荷自洽密度泛函緊束縛方法（以下簡稱 SCC-DFTB）已被成功地應用在不同

的化學系統的結構，電性，和振動性質上:１.共軛雜環高分子， 2.奈米鑽石， 3.

多環芳香族化合物-石墨片和 HPB 分子， 4.單層和多層富勒烯， 5.奈米碳管。

我們觀察了一些新的題目。１.對於共軛雜環高分子的研究，包括順－反式聚乙

炔，聚環戊二烯，聚吡咯，聚呋喃，和聚噻吩。我們探討了能階差，電子態密度，

偶極矩，四極矩和極化率等等的性質。這些性質整體而言呈現了收斂的行為。２. 

對於奈米鑽石，我們計算了四面體和八面體結構之奈米鑽石的拉曼光譜。這些光

譜擁有實驗得到之鑽石拉曼光譜特有的位於 1332 波數的訊號。３.多環芳香族

化合物的拉曼光譜已經以電荷自洽密度泛函緊束縛方法計算得到。４.我們已經

計算得到了單層富勒烯的電子和振動性質。我們也探討了內嵌水分子和乙炔之富

勒烯包合物的振動光譜。我們發現如果外層的富勒烯足夠大，則裡面分子的振動

光譜訊號會完全被外層富勒烯遮蔽。５.我們運用了兩種不同的 SCC-DFTB 分散力

模型計算了 60 240C @C 的位能面.這兩種分散力模型分別是 Slater-Kirkwood 形式

和 Lennard-Jones 形式。在以 Lennard-Jones 模型得到的結果中， 60C 轉動的能

障僅僅只有１.62 Kcal/mol。這指明在室溫之下， 60C 能在 240C 裡面自由轉動，



並且位能面上存在許多局部的最小值。對於多層富勒烯之 0 結構的研究結果和

60 240C @C 的位能面研究一致：對於只有單層差距的多層富勒烯（ 60 240C @C ，

240 540C @C ，和 60 240 540C @C @C ），內層富勒烯會坐落在中心點。而對於更大層距

的多層富勒烯（ 60 540C @C ， 60 960C @C ，和 240 960C @C ），內層富勒烯傾向停留在外

層富勒烯壁的附近。多層富勒烯之振動光譜的結果和富勒烯包合物的結果相似。

這些光譜指出，只要外層富勒烯的尺寸足夠大，內層富勒烯的訊號就會被遮蔽。

５.我們計算了不同尺寸和長度之扶手椅型單層奈米碳管的的拉曼光譜。即使是

在此研究中最長的碳管模型：15 奈米的（5,5）單層奈米碳管，朝著實驗所得之

單層奈米碳管拉曼光譜的收斂仍未達到。目前的研究闡述了 SCC-DFTB 方法對於

研究大分子性質和這些性質收斂至固態材料的能力和限制。 
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             Abstract 
The SCC-DFTB method has been applied for studying the geometrical, electronic, 

and vibrational properties of various chemical systems. The systems can be divided 

into following categories: 1.conjugated heterocyclic polymer chains, 2.nanodiamonds, 

3.polycyclic aromatic hydrocarbons (PAHs) including graphene flakes and 

hexa-peri-benzacoronenes (HPBs), 4.single and multi-shell fullerenes and, 5.carbon 

naotubes. Several new topics have been investigated. 1. The study on the conjugated 

heterocyclic oligomer chains, including trans-cisoid polyacetylene, 

polycyclopentadiene, polypyrrole, polyfuran, and polythiophene, shows overall 

convergent behavior of ramous properties including HOMO-LUMO gaps, DOS, 

dipole moment, quadrupole moment and polarizability.  2. For nanodiamonds, the 

Raman spectra of both series of octahedral and tetrahedral diamonds show an 

evidence of the unique peak at 1332 cm-1, which was previously observed in 



experimental Raman spectra of diamond. 3. The Raman spectra of the finite PAHs 

have been computed out using the SCC-DFTB method. 4. The electronic and 

vibrational properties of single-shell fullerenes have been calculated. The vibrational 

spectra of endohedral fullerenes with inserted water and acetylene molecules have 

been discussed for different size of the encapsulating fullerene. It is found that when 

the cage is large enough, the signal from the inner molecule is completely shielded by 

the fullerene cage. The PES of 60 240C @C  have been scanned with two types of 

dispersion-corrected SCC-DFTB models, Slater-Kirkwood type and Lennard-Jones 

type. The energy barrier for 60C  to rotate is merely 1.62 Kcal/mol in the LJ scheme, 

which indicates that 60C  can freely rotate at room temperature and there exist many 

energy local minima in the PES. The geometric structures of multi-shell fullerenes are 

in accord with the 60 240C @C  PES study: for the multi-fullerene cages with only one 

shell difference ( 60 240C @C , 240 540C @C , and 60 240 540C @C @C ), the inner fullerene is 

located in the center. But for the aggregates with larger spacing between shells 

( 60 540C @C , 60 960C @C , and 240 960C @C ), the inner fullerenes prefer to stay near the 

outer cage. Vibrational spectra of the multi-shell fullerenes lead to similar conclusions 

as those of the endohedral molecule-fullerene complexes. They show that if the cage 

is large enough, the signal from the inner fullerene is masked. 5. Raman spectra of 

armchair single–wall carbon nanotubes (SWNT) with different diameters and lengths 

are presented. The convergence toward the experimental Raman spectra of 

“infinitely” long SWNT is still not achieved even for the longest studied presently 

model, i.e. a 15nm (5,5) armchair SWNT. The present study illustrates the capability 

and limitations of the SCC-DFTB method for studying the properties of large 

molecules and their convergence toward the corresponding solid state materials.  
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Chapter 1  

 

Introduction 

 
In recent years, owing to the fast development in both the computer hardwares and 

quantum chemical theories, computational chemistry has become applicable to study 

larger systems and obtain more accurate results. On the other side, many new 

important physical observables of solid–state materials like energy band gaps and 

infrared (IR) and Raman vibrational spectra, can be accessed through experiment.  

   For theoreticians, once the energy of the system at equilibrium is computed, vast 

of extended properties can be directly gained by differentiating the energy with 

respect to different variables.1 These include the HOMO-LUMO energy gaps, 

equilibrium structural information, charge distribution, harmonic vibrational 

frequencies, etc. If external perturbation is added, the Hamiltonian can be modified to 

include the perturbation and the properties resulting from the interaction between the 

molecule and the external perturbation can be calculated. There exist in general two 

approaches to obtain the above properties for extended systems: molecular approach 

and the traditional, solid-state approach. The main idea of the molecular approach is 

using the quantum chemical theories to obtain the properties of interest first at the 

molecular level. Say, for energy gaps of polymers, one can start the calculation for a 

monomer and extend gradually the system to longer-and-longer oligomers to obtain 

the calculated energy gaps as a function of the size of the system. By extrapolating 

this function one can get the approximate value of the energy gap of the polymer built 

of infinitely many monomers, which corresponds to the band gap computed within 
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solid-state approach. The molecular approach ignores the effects that may occur in the 

real solid-state matters. For example, interactions of building blocks like chain 

interaction in polymers or layer interaction in graphite, are neglected. Still, the 

molecular approach has been used extensively and gained constructive results. The 

second approach, the solid-state method, employs periodic nature in the crystal 

lattices, this can be done in the reciprocal space introduced by Fourier transformation 

of the real space quantities.2,3     

The Self-Consistent Charge Density-Functional Tight-Binding (SCC-DFTB)4 

method had been born and can be applied to material science with the two approaches 

mentioned above. It is a semi-empirical method based on the second-order Taylor 

expansion of the density functional theory (DFT) energy with respect to the charge 

density fluctuation. Although it is a semi-empirical method, it can cope with 

molecules up to thousands of atoms much faster than the existing ab initio methods 

without losing much accuracy.5,6 It is a good candidate to perform the calculations for 

systems containing up to thousands of atoms.  

The principal idea of this study is to investigate the following two issues: 1.the 

evolution of the physical properties with growing molecular size, and 2. the 

transformation of physical properties from molecular stage toward solid-state stage. 

We have chosen as the prototypes of the conductive polymer chains, the systems of 

polypyrrole, polyfuran, polythiophene, trans-cisoid polyacetylene, and 

polycyclopentadiene. At present, our study of these polymers mainly focuses on the 

molecular geometrical and electronic convergence toward the infinite polymer. This 

has been done by examining several properties that will be discussed in Chapter 4. 

Besides the well-studied conductive polymers, we also have chosen several other 

carbon-containing materials. First of them is the nanodiamond. For this molecule, we 

intend to locate the signature of the solid state Raman spectra — the unique 1332 
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cm-1 peak at the molecular stage. We trace the unique 1332 cm-1 peak. Next, for PAHs, 

we focus on the evolution of the Raman spectra. The character of the Raman spectra 

changes with different PAH size7; we are trying to relate the change to their  

molecular size. The main parameter here is the so-called D/G ratio in the Raman 

spectra, which is defined as the intensity ratio between the 1gA D (disorder) band and 

the 2gE  G (graphite) band. The study is still under investigation. The third type of 

the carbon-containing systems introduced by us are the well-known fullerene cages. 

We have been trying to analyze two topics concerning the icosahedral fullerenes. The 

first issue is signal shielding in the SCC-DFTB Raman spectra of single- and 

multi-shell fullerenes. The signal shielding effect is discussed for the endohedral and 

multi-shell fullerenes. The second issue is the scan of the potential energy surface 

(PES) for 60 240C @C , which is meant to give a visualization of a free rotation of 60C  

inside 240C . The last systems being discussed are the single-wall carbon nanotubes 

(SWNTs). We mainly focus on their Raman spectra. Experimental first-order Raman 

spectra show only the strong G band for SWNTs.8 For now, we only present brief 

reprot showing that for the armchair (5,5) SWNTs with length of 15 nm, the Raman 

spectra displays only the D band, which suggests that the transformation from 

molecular level toward the solid-state level occurs for larger tubes. Further study will 

pursue this issue in the future.            

In chapter 1, we give a general introduction to the topics studied in this Thesis, 

which is followed by the extension of various theoretical aspects in chapter 2. Chapter 

3 is a brief note on the programs and the parameters we have used for calculation. 

Chapter 4 gives the results and discussion of the application of the SCC-DFTB 

method on several systems, including the conductive polymers and the carbon 

nanostructures. Unfortunately, at this time many of the research are still far from 
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completion, hence in several paragraphs only concise results are shown. The 

conclusions of this Thesis are given in chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5

 

Chapter 2  

 

Theory 

 
2.1 The Electronic Properties of Matter 

In the present study, several material properties are investigated. They are generally a 

subject of interest in solid-state physics. Here, we give concise introduction to each of 

the properties studied in this Thesis. 

 

2.1.1 Band Structure, Density of States and Band Gaps 

In nature, every atom possesses its own set of atomic orbitals, in which the electrons 

can “reside” in. For example, every hydrogen atom has one 1s orbital, and a carbon 

atom has one core 1s orbital and four valence orbitals (one 2s orbital and 2px, 2py, 2pz 

orbitals). When atoms come together and form a molecule, linear combinations of the 

atomic orbitals belonging to each atom are made to give the molecular orbitals (MO). 

This approach is referred to as the linear combination of atomic orbitals (LCAO) 

method. For the simplest hydrogen molecule, there are two MOs originating from the 

two 1s AO of the two hydrogen atoms. The number of thus obtained MOs will be 

equal to the total number of AOs in the molecule.  

When the system is expanded from a molecule to a solid crystal, there will be 

infinitely many orbitals made from the infinitely many AOs. We consider the simplest 

model: a hypothetical 1D chain built of n equally spaced hydrogen atoms. The unit 

cell of this crystal is a single H atom. Now we call the LCAO here the crystal orbitals 
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(CO), rather than molecular orbitals. The lowest in energy CO will be made by 

summing up all the n 1s orbitals with plus signs:                                         

 0
1 1 2 3 4

1 1

... ( )
n n

i j
n j j

j j

e       
 

         , (2.1) 

which can be interpreted as bonding orbital with zero nodes. The highest in energy 

CO will be  

 1 2 3 4
1 1

... ( ) ( 1)
n n

i j j
n n j j

j j

e       
 

           , (2.2) 

which can be interpreted as an antibonding orbital with n-1 nodes. The mth CO will be  

 
( 1) ( 1)

1 2 3 4( 1) ( 1)
1 2 3 4

1

( ... ) ( )
m mni i

n jn n
m n j

j

e e e e e e e
 

      
 
 



              (2.3) 

The exponential term 
( 1)

( 1)

m j
i

ne


  is called the phase factor, and the coefficient of i, 

( 1)

( 1)

m j

n



, is the so-called k vector in the reciprocal space. The k vector is 

characterized by periodicity, which ranges from 0 to π in this case.  

The mathematics behind this formalism is the Fourier transform. A periodic 

function f(x) which satisfies the condition: f(x) = f(x+a), where a is the periodicity of 

function f, can be expanded into a Fourier series. By using Euler’s formula 

cos( ) sin( )inxe nx i nx  , we obtain ( )
n

inx
n

n

f x c e




  , where cn is the Fourier 

coefficient. Because the crystal lattice has the periodicity of the lattice translation 

vectors, the electron motion is also periodic in the lattice, hence can be expanded in a 

Fourier series. If we now plot the energies of different sets of CO corresponding to 

different values of k, we obtain the diagram called “band structure”. The band 

structure of the 1D hydrogen atom chain is shown in figure 19. Because the unit cell 

contains only one hydrogen atom, and thus only one 1s orbital per unit cell, the only 

curve in the band structure corresponds to this orbital. In practice, the systems under 

studied are usually 3D and contains more than on atom in the unit cell. Hence the 

band structure looks much more complicated. To extract the relevant information 
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from such complicated 3D band structures, people found out a way of doing this by 

means of the density of states (DOS). The DOS is defined as the number of one 

electron levels in a small energy interval, or mathematically in the 1D case:  

 ( ) ~
dk

D E
dE

 
 
 

 (2.4)    

The DOS is a function of band energy E, and it is the inverse slope of the band being 

considered. That is, the flatter the band, the steeper the corresponding DOS. A very 

sharp DOS results from an extremely flat, atomic-like band, one that arises from an 

atomic orbital that does not overlap significantly with neighboring orbitals. Electrons 

occupied in such a band can not easily move through the crystal and they are slow. On 

the other hand, a wide DOS indicates rapidly moving electrons due to strong 

interatomic coupling.  

a)                                    b) 

 

Figure 2.1 (a) The schematic band structure of the 1D chain of hydrogen atoms with  

H-H distance of 1 Å. (b) The corresponding DOS. The shape of the wave function is  

symbolically represented by circles. 

 

If now we turn to another 1D atomic chain, substituting hydrogen to nitrogen, then 
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π* 

π  

σ* 

σ 

σ 

σ* 

we will have four AOs per nitrogen atom in one unit cell. The resulting band structure, 

as we can see, contains four valence bands. Note that the 2px and 2py bands are 

degenerate in the plot. Note that the partial DOSs come from the three 2p orbitals 

superpose together in the DOS diagram.    

a)                                         b)                        

 

 

 

 

 

 

 

 

Figure 2.2 (a) The schematic band structure of the 1D chain of nitrogen atoms with 

N-N distance of 2 Å. And (b), the DOS of the band structure. The shapes of the wave 

function are iconized with circles.  

 

   The electrons fill the bands in the same way as they fill the molecular orbitals. The 

bands are filled according to their energy order, for example, for the 1D atomic chain 

of nitrogen, the 2s band will be filled by the 2s electrons from each nitrogen atom, and 

the 2p electrons occupy the 2p bands. The bands filled with electrons are called 

valence bands, and the empty bands are called conduction bands. Note that the 

valence bands may be only partially filled. Electrons may be excited from the valence 

band to the conduction band through thermal energy or an external electric field, 

which results in electric current. The Fermi-Dirac distribution ( )f E  gives the 

probability that an orbital of energy E will be occupied in an ideal electron gas2: 
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 

1
( )

1 exp /F

f E
E E kT


   

  (2.5) 

In the formula, k is the Boltzmann constant, and T is the temperature Kelvins. The 

Fermi level EF is defined as the energy of the topmost filled orbital at absolute zero 

(T=0). The difference in energy between the top of the highest valence band and the 

bottom of the lowest conduction band is the so-called band gap. The band gap for 

solids is corresponding to HOMO-LUMO energy gap for molecules. It is an index of 

the electrical conductivity of materials and can be used to classify the insulators, 

semi-conductors, and conductors. In a qualitative perspective, the insulators can be 

thought as solids with large band gap between the completely filled valence band and 

the conduction band, and these two bands do not cross at any k point. The 

semi-conductors are insulators with relatively small band gap (say less than 3 eV)10, 

thus the electrons can be excited to conduction band by thermal energy. Metals have 

the highest valence band partially filled, thus no energy gap exists.  

   

2.1.2 Dipole Moment and Quadrupole Moment 

The dipole and quadrupole moments describe the properties of the charge 

distributions inside a molecule. In the classical point of view, atoms or molecules can 

be regarded as an assembly of point charges with definite positions in space. In 

quantum mechanical picutre, the definite description of the positions of charges are 

replaced by the probability distributions in space. Summations over discrete charges 

are also substituted by integrals over charge distribution probability corresponding to 

the square of the wave function.  

Here we start at the classical level, to see that the molecular charge distribution 

can be decomposed into a hierarchy of electric moments (monopole, dipole, 

quadrupole, etc.).11 Consider a collection of discrete charges  iq  located at 
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distances  ir from an arbitrary origin. The resulting potential at some point R


 is 

given by 

 
0

1
( )

4
i

ii

q
V R

R r






  , (2.6)             

where 0 is the vacuum permittivity and 
0

1

4
 is the Coulomb’s constant. For the 

condition R >> ri, 
1

iR r
  can be expanded using the Taylor expansion:  

 1 1 1 1 1
: ...

2
i i i

i

r r r
R R RR r

               

  
   (2.7) 

Here the single and double dots represent tensor contractions. The potential V is then  

 0

1 1 1
4 ( ) : ...

2

q
V R

R R R
              

   

 
 (2.8)  

The above equation introduces a hierarchy of multipole moments: the charge q  

(monopole), dipole moment 


, quadrupole moment , etc. There are still higher 

order terms, like octupole, hexadecapole, etc., moments. The first three multipole 

moments are defined as:  

 

( )

( )

( )

i
i

i i
i

i i i
i

q q r dr

q r r r dr

q r r rr r dr



 



 

 

  

 

 

 

 

    

   
, (2.9) 

with ( )r


being the charge density.  

Note that the charge is a scalar, the dipole moment is a vector, and the quadrupole 

moment is a tensor. The definitions express the multipole moments either as 

summations of discrete charges or integrals over continuous charge density. Usually 

the dipole moment has the unit of Debye. 1D = 303.336 10 C m .The quadrupole 

moment is a symmetric square matrix with totally nine components. But only six of 
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them are independent due to symmetry relations. That is, ij ji   , where i and j can 

be x,y or z. Usually the quadrupole tensor is chosen to be traceless, which means that 

the sum of the diagonal terms is zero. The traceless   is defined as  

 
21

(3 )
2 i i i i

i

q r r r   I
 

, (2.10) 

where I is the unit matrix, with diagonal elements equal to one.  

The multipole moments introduced above can be used to describe the interaction 

of electromagnetic field with matter. For example, the energy of a collection of 

charges subjected to an external field is given by 

 1
: ...

3
W qV E E      

  
 (2.11)  

Here we use W to denote energy, to avoid the confusion with the electric field E


. The 

picture here is that the total charge q interacts with the potential, the dipole moment 

interacts with the field, and the quadrupole moment interacts with the field gradient. 

They contribute additional energy to the total energy in the presence of the electric 

field.     

In the SCC-DFTB framework (which will be introduced later), the Mulliken 

charge is used to describe the charge q. The electron density ( )r


at certain position r


 

within a molecule is defined as the square of the MO.1 

 2( ) ( )r r 
 

  (2.12) 

The ith MO in a molecule can be expanded in the LCAO form as described in the 

previous section, 

 i ic 


   (2.13) 

, where ic is the coefficient for the AO  . The square of the MO is then 

 2
i i ic c   



   . (2.14) 
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We introduce the occupation number (number of electrons), n, for each MO. Then the 

total number of electrons N in a molecule can be given by  

 2
MO AO MO AO MO AO

i i i i i i i i
i i i

N n d n c c n c c S D S        
  

         r  (2.15) 

, where S is defined as the overlap matrix of AOs and D is the density matrix given by 

summing up the multiplications the occupation numbers and the AO coefficients.    

In computational chemistry, the Mulliken population analysis based on the DS matrix 

is used for distributing the electrons into the atomic contributions.  

The contributions from all AOs located on a given atom A may be summed up to 

give the number of electrons associated with atom A. In the Mulliken sheme, the 

contribution involving basis functions on different atoms is divided equally between 

the two atoms. The Mulliken electron population is thereby defined as  

 
AO AO

A
A

D S 
 




   (2.16) 

The gross charge on atom A is the sum of the nuclear and electronic contributions.   

 A A Aq Z     (2.17) 

Here ZA is the number of positive charge that the nucleus owns. 

 

2.1.3 Polarizability  

In the presence of the external electric field, the molecular charge distribution may be 

distorted and leads to modified multiple moments.11 Using the Taylor expansion, the 

previously discussed electric dipole moment μ can be expanded in a power series in 

the applied field:  

 0 : ...E EE       
   

, (2.18) 

where 0


 is the permanent dipole moment, i.e., the dipole moment in the absence of 

the external field.   is the linear response of the dipole moment to the applied field, 

called polarizability. Andβis the hyperpolarizability, which describes the leading 

contribution to the nonlinear response of the dipole in the applied field. The 
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polarizability is in fact a tensor with nine components:  

 
xx xy xz

yx yy yz

zx zy zz

  
   

  

 
   
  

. (2.19) 

The polarizabilitry tensor is symmetric, hence only six tensor components are 

needed to specify the whole tensor. Physically, it is a measure of the easiness that the 

larger magnitude of the dipole moment can be induced by an external field, or in other 

words, it is the ratio of the induced dipole and the external electric field.  

The total energy of the system can also be expanded using the power series of the 

electric field. 

 00

1

2
W W E E E      

   
 (2.20) 

The polarizability tensor components can thus be expressed in terms of the total 

energy: 

 
2

0

ij
i j E

W

E E




 
     

 (2.21) 

In the case of our SCC-DFTB calculations, the derivative in the equation above is 

computed numerically.  

 

2.2 The Vibrational Properties of Matter 

 

2.2.1 Phonon Dispersion Relations and Vibrational Density of States 
(VDOS)  

In crystals, the energy of a lattice vibration is quantized. The quantum of energy is 

called phonon, similar to photon for light. The relationship of phonon and lattice 

vibration is in analogy with photon and light.   

Consider an ideal crystal consisting of M diatomic unit cells (note that in reality 
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the number of unit cells should be infinitely many). The total number of vibrational 

modes for a single unit cell is3 2 6  , because every atom in the unit cell has 3 

degrees of freedom. The resulting phonon structure will contain six bands. In accord 

with the band structure plot, in the phonon dispersion plot, the vertical axis gives the 

vibrational frequency of the vibrational modes, and the horizontal axis correspond to 

the k-points used in the Fourier transform. For instance, at k=0, the crystal vibration 

of the first phonon band (lowest in energy) 1, 0kD   is formed by summation of the 

vibrational modes in each unit cell lowest in energy with plus signs over all the M 

lattices.   

 (0 )
1, 0 11 12 13 1 1

1 1

... (1)
M M

i l l
k l l

l l

D Q Q Q e Q Q
 

        (2.22) 

The 1lQ  denotes the vibrational normal mode lowest in energy of the lth unit cell. 

The crystal vibration of the second phonon band at k=0 is given by  

  

 (0 )
2, 0 21 22 23 2 2

1 1

... (1)
M M

i l l
k l l

l l

D Q Q Q e Q Q
 

        (2.23) 

Here 2lQ  corresponds to the second lowest in energy vibrational normal mode of the 

lth unit cell. The rest four bands have the same formalism. If at k  , the vibraional 

mode of the whole crystal is given by     

 ( )
1, 11 12 13 1 1

1 1

... ( 1)
M M

i l l
k l l

l l

D Q Q Q e Q Q


 

          (2.24) 

In general, the crystal vibration mode of the thj phonon band at an arbitrary k point is 

composed of the linear combination of the unit cell normal modes as  

 
1

( )
1

,
1 1

lM Mi ikM
j k jl jl

l l

D e Q e Q
 




 

   , (2.25) 

given k the phase factor and also it is the wave vector in solid state physics, which is 

defined as  

 2
k




 , (2.26) 

with   the wavelength of the incident radiation.  

The phonon branches can be classified as longitudinal or transversal according to 
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Figure 2.3 The phonon dispersion curves of infinite polyyne chain calculated 

using the SCC-DFTB method. 

the vibration spatial characteristics. These two types of phonons can be divided 

further into the so called optical or acoustic modes. The optical phonon branches are 

named “optical” because in the ionic crystals, these types of modes are easily excited 

by radiation, and in the vibration the positive and negative ions at adjacent lattice sites 

swing against each other, creating a time-varying electrical dipole moment. The atoms 

in the acoustic mode vibrate in the way similar to acoustic waves, that all the atoms or 

(ions) vibrate in phase. The acoustic modes have zero frequency at k=0, because they 

are in fact the translations when all the unit cells move in the same direction.  

An example of the phonon dispersion curve is shown in Figure 2.3. This is the 

phonon dispersion curves of the infinite polyyne chain containing two carbon atoms 

per unit cell. There are six phonon bands, but two bands are degenerated, which 

results in only four visible curves in the plot. The LO denotes the longitudinal optical 

mode and LA, the longitudinal acoustic mode. Analogous transversal phonons are 

denoted as TO and TA. The symbols  and X at the k-vector axis are the special 

points of high symmetry in the Brillouin zone.         
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The VDOS is defined analogously like the DOS in band structure theory. The 

VDOS is given by  

 ( )
k

d 






, (2.27) 

with  the vibrational frequency.  

In the SCC-DFTB VDOS calculation, we take the molecular harmonic vibrational 

frequencies, smear them along the k-axis with a Gaussian function, and then 

superpose these Gaussian functions to make the usual VDOS.    

2.2.2 Principles of Raman and Infrared (IR) Spectra 

Under the radiation of the infrared light, molecules may be excited into their 

vibrational excited states. There are several phenomena can be observed during the 

radiation. Among them, the light absorption and emission is responsible for the IR 

spectrum, and light scattering for the Raman spectrum. A simple description of these 

two processes is given below.   

 

Light Scattering 

In the light scattering, the incident light, or photon, is not absorbed by molecules, but 

instead, the scattering occurs. As shown in the diagram below, there are three types of 

scattering. They are Rayleigh scattering, Stokes shift, and anti-stokes shift. Only 

Rayleigh scattering is elastic, i.e., the photon keeps its initial energy 0h after being 

scattered by the molecule. In the second case, the incident photon losses certain 

amount of energy, which corresponds to one quantum of vibrational energy equal to  

vibrational level difference vhv of the molecule. Hence the emitted radiation will give a 

signal at the lower energy side with respect to the Rayleigh line in the Raman 

spectrum. This is the Stokes shift. In the third case, a photon gains more energy after 

scattering, hence the signal appears at the higher-energy side relative to the Rayleigh 



 17

Ground state 

1st vibrational 

excited state 

Stokes shift Rayleigh scattering  Anti-Stokes shift 

Virtual state 

v vE h 

0iE h  0fE h   0iE h 

0( )

f

v

E

h  

 

 

v vE h  v vE h 

0( )
i

v

E

h  
 
  0fE h  

line and is called anti-Stokes shift. The later two cases are inelastic processes and are 

called Raman scattering.        

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.4 Schematic representation of light scattering processes in matter. 

 

Noteworthily, these processes are not step-wise, but, the light absorption and emission 

take place simultaneously.  

Quantum chemically, the Raman scattering intensity is evaluated by applying the  

Kramers-Heisenberg-Dirac (KHD) dispersion formula12. Based on the KHD formula, 

we assume that the difference between the vibrational energy levels and the virtual 

state is much greater than the incident photon energy, that is, the off-resonance 

condition. The Raman scattering tensor a  can then be approximated by  

  a      , (2.28) 

with  the polarizability tensor and  ,  the vibrational parts of the final state 

wave function and initial state wave function. This is the so-called Placzek’s 

approximation. We can further expand the polarizability tensor into a power series of 

normal coodinates about the equilibrium molecular geometry:  
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 0

0

...j
j j

Q
Q


 


 

 
     

  (2.29) 

Substituting eq. (2.29) into eq. (2.28), we have  

  
0

j
j j

a Q
Q





 

 
     

  (2.30) 

And the resulting selection rules are:  

1    (the plus sign + for Stokes shift, the minus sign - for anti-Stokes shift ) 

 
0

0
jQ

 
   

 (2.31) 

In the SCC-DFTB Raman spectra calculations, we adapt the off-resonance conditions 

and the Placzek’s approximation is made. 

 

Light absorption 

IR vibrational spectrum occurs when molecules absorb infrared light, to be excited 

into vibrational excited states (absorption spectrum), or emit a light with same energy 

(emission spectrum).  

  
Figure 2.5 Schematic diagram of IR absorption process in matters.  

 

The IR intensity is related to the transition moment f i  and it is given under the 

Born-Oppenheimer approximation and the dipole approximation, by  

  
0

e
j

j

f i Q
Q

  
       

 (2.32) 

It is proportional to the derivative of the dipole moment derivatives with respect to a 

Ground state

Vibrational excited states
0

0

i

f

E h

E h




 

  
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normal coordinate, and to the matrix element  jQ   . Under the harmonic 

approximation, the selection rules for IR spectrum are given by: 

 

1

0e

jQ





 

 
   

 (2.33) 

 

2.3 The SCC-DFTB Method 

 

2.3.1 The Tight-Binding (TB) Theory 

The electronic properties of solids play crucial roles in the development of novel 

materials. Especially in semiconductor industry, the electronic properties like band 

gap decide whether a composite is insulating, semi-conductive, or conductive. To well 

describe these properties theoretically, several important theories have been developed 

in the past decades. One among these theories is the tight-binding (TB) theory. The 

introductory description of this theory is given below. 

In the TB theory,9 under the presumption that the electron conduction in a material 

is not significant, the atoms are assumed to be neutral free atoms, so that the electrons 

belonging to these atoms are regarded as “tightly bound ” to them. The atomic wave 

function under this condition should be very close to the original atomic wave 

functions. Thus the wave function of the electrons in the crystal can be approximated 

as a linear combination of atomic orbitals (LCAO) in the Bloch form:  

 
1

( , ) ( ) ( )
n

ikT
j j

T A
A

k r e c k r T 



 



   , (2.34) 

where T denotes the translation vector in the real space. This equation indicates that 

the wave function is formed in the periodic reciprocal lattice space. This is an analog 
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of the usual molecular LCAO method, where one uses linear combination of atomic 

orbitals to describe the electron motions in molecules, except that the TB method is 

k-dependent and being used in solid state calculations. 

The TB theory uses several important simplifications speeding up the 

computations. First, it treats only the valence electrons, and the basis sets used in the 

expansion of the atomic orbials are minimal basis sets, i.e. for carbon atom, only four 

functions are needed: 2s, 2px, 2py, and 2pz to describe the four valence electrons.  

    The total energy expression in TB theory13 is assumed to be in the following 

form: 

  
1

n

i
i

E U R R 
  


 

     (2.35) 

The i ’s are the eigenvalues of some effective one-particle Hamiltonian Ĥ ,  

 21ˆ ( ) ( ) ( ) ( )
2i i i iH r V r r r         

 (2.36) 

, and  U R R   is a short-ranged pairwise repulsion between two atoms placed at 

Rα and Rβ, respectively. This equation is solved variationally within a basis of 

localized atomic-like functions,   , which leads to a secular equation 

 0 H S  (2.37) 

where ˆ
   H H  is the Hamiltonian matrix and    S  is the 

overlap matrix. 

SCC-DFTB treats the matrix elements in the framework of the two-center 

parametrization introduced by Slater and Koster.14 There are at least four functions 

( ss , sp , pp , pp ) of inter-atomic distance to fit for a sp bonded solid and at 

least ten ( , , ,  , , ,  , , , ss sp sd pp pp pd pd dd dd dd          ) for a solid with s, p , 

and d electrons.      
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2.3.2 The Density Functional Theory (DFT)   

Before we give an outlook of the SCC-DFTB theory, we first quickly density 

functional theory (DFT). Hohenberg and Kohn stated15 that the ground state electron 

density determines the total energy of a system: 

  0 0 ( )E E  r  (2.38) 

They also proved the existence of an universal functional that connects the density 

and energy of a many-electron system : 

 [ ] [ ] [ ]HK eeF T V    ,  (2.39)!!! 

where [ ]T   is the functional of kinetic energy and [ ]eeV   of electron-electron 

interaction. The total energy expression as the functional of the electron density is 

given by 

 [ ( )] [ ] ( ) ( ) [ ] [ ] [ ]ext ee extE F v dr T V V         r r r  (2.40) 

Kohn and Sham further introduced orbitals into DFT to let the kinetic energy be 

calculated in a simple fashion. This can be achieved by the one-particle wave 

functions ( )i r  and the occupation numbers in . Their method is first for the N 

non-interacting electrons. The ground state kinetic energy is then written as   

 
1 1

[ ] [ ] ( ) ( ) ( ) ( )
2

N N

s i i i i i i
i i

F T n t n     
 


    r r r r  (2.41) 

The equation above is only true for non-interacting particles, which is no more 

validated for interacting particles. To take the particle interaction into account, they 

suggest expand the universal functional in the following way: 

 [ ] [ ] [ ] [ ]s xcF T J E       (2.42) 

Here in addition to the kinetic term [ ]sT  , the Coulomb interaction functional  

 1 ( ) ( ')
[ ] '

2 '
J d d

  


r r
r r

r r
 (2.43) 

and the exchange-correlation energy functional [ ]xcE   are also included.     

[ ]xcE   is defined as the difference between the exact functional and [ ]sT   plus 

[ ]J  : 
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 [ ] [ ] [ ]xc HK sE F T J      (2.44) 

The expression of the total energy is now given by: 

 
[ ( )] [ ] ( ) ( )

1 ( ) ( ')
' [ ] ( ) ( )

2 2 '

ext

N

i i i xc ext
i

E F v dr

n d d E v dr

  

    

 


    





  

r r r

r r
r r r r

r r

 (2.45) 

   By applying the variational principle to the energy expression above, the so-called 

Kohn-Sham equations are introduced, with the effective one-particle Hamiltonian 

operatorH and the energies i . This is actually a one-particle eigenvalue problem of 

the form: 

        1,....,i i iH i N     (2.46) 

   

  ( ')
' [ ]

2 'ext xcH d
  

    

r

r
r r

 (2.47) 

The exchange-correlation potential is a functional derivative of xcE : 

 [ ]
[ ] xc

xc

E  


  (2.48) 

The KS equation is solved in a self-consistent manner.  

Finally the DFT total energy reads: 

 1 ( ) ( ')
[ ( )] ' [ ] ( ) [ ]

2 '

N

i i xc xc
i

E n d d r E
         

  
r r

r r r
r r

 (2.49) 

 

2.3.3 The SCC-DFTB Theory 

The SCC-DFTB theory4 can be regarded as a semi-empirical approximation of DFT.   

Foulkes and Haydock6,9 showed that it can be regarded as  a second order expansion 

of the DFT energy at the reference density  0 r  with respect to the density 

fluctuations  . By including the Taylor-expanded exchange-correlation functional 

Exc and the nuclear-nuclear interaction, the resulting energy reads:  
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0
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0 0 0

2

( ')
' [ ( )]

2 '

( ') ( )1
          ' [ ( )] ( ) [ ]

2 '

[ ]1 1
          ( ) ( ') '

2 ' ( ) ( ')
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tot i i ext xc i
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xc xc NN
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n n

E n d

d d d E E

E
d d

    
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   
 




    



   


  
       

 

 



r
r r

r r

r r
r r r r r

r r

r r r r
r r r r

 (2.50) 

This expression can be resolved into three parts, the first one is the Hamitonian matrix 

with operator 0H . The second is the second line, which accounts for the repulsive 

interaction. The third one is the second order term depending on the density 

fluctuation.  

Hence the terms can be further transformed into the following: 

 
0 0 0 2[ ( )] [ ( )]

occ

tot i i i rep nd
i

E n H E E      r r  (2.51) 

If we neglect the second order contribution 2ndE , then the totE  is the non-SCC DFTB 

energy. The repulsive energy can be approximated as a summation of pairwise, 

short-ranged potentials U(|R-R|)16, so that  

 A B
,

1
( )

2

M

rep
A B A

E U


  R R  (2.52) 

The repulsive energy is a function of the inter-atomic distance, and can be derived 

from the difference of the total energy of a self-consistent DFT calculation and the 

band structure energy in a range of inter-atomic pair distances A BR R  

 A B A B 2 A B( ) ( ) ( )KS
rep tot BS ndE E E E     R R R R R R  (2.53) 

As in TB theory, the molecular orbitals in the DFTB method are expanded using 

LCAO method. The atomic orbitals are using the confined Slater-type functions. 

Hence the Hamiltonian matrix elements read: 

  * * 0
0 00 0 0

, ,

[ ( )] [ ( )] [ ( )]i i i i i iH c c H c c H      
   

        r r r  (2.54) 

Interactions between a chosen atom and other atoms other than the nearest ones are 

neglected, the two center approximation is made. Therefore the Hamiltonian matrix 

elements can be classified as: 
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 

free atom

0
0 0

                                       if =

[ ( ) ( )]      if ,  ( ) ( )

0                                                 otherwise.

A A B BH t V A B



  

  

       


    



r r  (2.55) 

The matrix elements 0H  as well as the overlap matrix S     are needed to 

be calculated only once, and tabulated for a range of inter-atomic distances for future 

calculations.  

While dealing with systems displaying charge transfer between atoms, the 

previously omitted second-order charge density fluctuation correction should be 

included in the total energy. This forms the final frame of SCC-DFTB. The density 

fluctuation can be expanded in a series of radial and angular functions centering on 

each atom, and decay fast with increasing distance from the corresponding centered. 

The expansion is truncated after the monopole term, and the coefficient is recognized 

as the fluctuation of the Mulliken charges. 

 00 00( )A A A A A A A
lm lm lm

lm

c F Y q F Y  r  (2.56) 

The Mulliken charge and the charge fluctuation are: 

 
.occ

A
i i i

i

q n c c S  
 

    (2.57) 

 0
A A Aq q q    (2.58) 

where 0
Aq  stands for the number of valence electrons of a neutral atom A.  

Hence the second-order correction 2ndE can be expressed as 

 2 AB

1
( )

2

M M

nd AB A B
A B

E q q   R  (2.59) 

, and  

 
 

0

2
00 00

AB

( )1
(R ) '

' ( ) ( ') 4

A B
xc

AB

n n

E F F
d d

 


  


  
        


r

r r
r - r r r

 (2.60) 

, where   is discussed more in detail in ref 6. 

The final SCC-DFTB energy is transformed into: 
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 * 0
AB

,

1
( )

2

occ M M

tot i i i AB A B rep
i A B

E n c c H q q E  
 

       R  (2.61) 

The coefficients of atomic orbitals can be solved by imposing the condition that the 

total energy must be stationary with respect to changes of ic ,  

 0        ,tot

i

E
i

c


 


 (2.62) 

This leads to a set of secular equations: 

 ( ) 0 ,      ,    and   ,   ,i AB ic H S S i A B   


          (2.63) 

where  

 1
( )

2

M

AB AC BC C
C

q      (2.64) 

is the Hamiltonian shift due to induced charge. A and B are the indices of the atoms 

that the atomic orbitals α and β are located on. Because the Hamiltonian matrix 

elements depend on the Mulliken charges, but these are calculated from the LCAO 

coefficients ic which in turn are obtained from the secular equations, hence a 

self-consistency treatment is needed. 

 

2.3.3 SCC-DFTB + Dispersion Correction 

Van der Waals (vdW) forces, also known as London interactions, are a type of 

interaction force between two neutral, separated particles with a non-overlapping 

charge density and without a permanent dipole moment. It is several orders weaker 

than typical covalent bonds and ionic bonds in molecules. It plays important role in 

realistic systems. One representative example is the formation of the protein structures 

in biological systems. Hydrogen bonding and the vdW forces between the base-pairs 

of amino acids in a protein stabilize the various 3D structures of the proteins and give 

them different functionalities. The vdW force has a well-known R-6 behavior for two 

interacting particles, where R is the inter-particle distance. 
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To study the systems that include the dispersive force, computational chemistry 

needs to take into account the long-range interaction between atoms or molecules in a 

system. The traditional DFT theories lack an ability to handle these kinds of 

dispersive long range interactions.17 Hence, to validate the DFT-based SCC-DFTB 

theory for wider applications into different fields, people add a dispersion term into 

the SCC-DFTB total energy, aiming to describe the long range interactions more 

physically and accurately. Presently, there are two different formalisms of the 

dispersion term being included into SCC-DFTB, one is the Slater-Koster (SK) model 

by Elstner et al.18 and the other one is the Lennard-Jones (LJ) potential by Zhechkov 

et al19. 

We briefly introduce these two types of dispersion interactions. First, for the SK 

model, London dispersion potential is obtained based on the vdW coefficient (C6)
20.  

 3
6 0.75A

A AC N p  (2.65) 

, where AN  is the Slater-Kirkwood effective number of electrons. For C to Ne atoms, 

it is given by  

 1.17 0.33 A
A vN n   (2.66) 

, with A
vn  the valence electrons of atom A. Ap  is the polarizability of atom A. For 

diatomic vdW coefficients, the Slater-Kirkwood combination rule is used and the 

coefficient is given by: 

 6 6
6 2 2

6 6

2 A B
AB A B

A A
A A

C C p p
C

p C p C



 (2.67) 

At small inter-atomic distances, the vdW interaction no longer exists and the 

6R term should be damped at the position where the electron densities start to overlap. 

The damping function is proposed as  

 0( ) 1 exp( ( / ) )
MNf R d R R      (2.68) 
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The determination of the constants is reported in ref 9 and ref 11. The dispersion 

energy term can be expressed as  

 6
6( ) ( )AB

dis AB AB
A B

E f R C R    (2.69) 

The second formalism of dispersion energy is of Lennar-Jones (LJ) type. Using 

the universal force field (UFF) parameterization21, the LJ dispersion includes two 

parameters: the vdW distance ( ijr ) and well depth ( ijd ) 

 
6 12

( ) 2 ij ij
ij ij

r r
U r d

r r

    
      
     

 (2.70) 

At short range, the LJ potential is substituted by the following polynomial with the 

parameters given as follows: 

 2
0 1 2( )short range n n

ijU r U U r U r     (2.71) 

 0

396

25 ijU d  (2.72) 

 
5

6
1 5

672
2

25
ij

ij

d
U

r
  (2.73) 

 
2

3
2 10

552
2

25
ij

ij

d
U

r
   (2.74) 

The parameters are determined such that the polynomial can match the zero-, first- , 

and second derivatives of eq. (2.71). That is, the energy, force and Hessian maintain 

the continuous character. For details the readers are referred to ref 10 and ref 12.  

 

2.3.4 The Derivation of Harmonic Vibrational frequency, Raman 

Activity and IR Intensity in the SCC-DFTB Scheme 

Harmonic Vibrational Frequency  

The vibrational frequency is an important quantity in chemistry being a unique 
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fingerprint of molecules or functional groups; it is extensively used in determination 

of molecular structure or identification of molecular constituents. In quantum 

chemistry, the harmonic vibrational frequency can be obtained through the second 

derivatives of the computed total energy with respect to nuclear coordinates. In the 

SCC-DFTB scheme,22 harmonic vibrational frequencies are related to the 

eigenvalues i of the matrix
-1 -1

2 2m Gm  by  

 i i   (2.75) 

Here m is the diagonal matrix containing the atomic masses, and G is the Hessian or 

force constant matrix.  

The Hessian matrix G is constituted by the second derivatives of the SCC-DFTB 

total energy with respect to the Cartesian coordinates 

 
2

ab

E
G

a b



 

 (2.76) 

The symbols a and b denote any of the 3N Cartesian coordinates in the system 

containing N atoms.  

In practice, the Hessian can be obtained by differentiating once the atomic forces 

with respect to the Cartesian coordinates 

 a
ab

F
G

b





 (2.77) 

with the atomic force given by:  

    
0

* ( )
occ M M

repAK
a i i i i AB A K

i K

EH S
F n c c q q

a a a a
 

 



    

       
     

    (2.78) 

A set of coupled perturbed SCC-DFTB equations should then be solved. Details are covered 

in ref 13. 

The harmonic frequency of a vibrational mode informs about the position of the 

peak in a vibrational spectrum, while the intensity of the mode informs about the 

height of the peak; both these quantities contribute a complete vibrational spectrum. 
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The interaction of a static external electric field with molecular electron density can 

be approximated in the zero-order of multipole expansion as interaction of the field 

with induced atomic charges. Thus one additional term in the SCC-DFTB 

Hamiltonian is introduced. This lead to the modified SCC-DFTB total energy : 

3
* 0

, 1

1
( )

2

occ M M M M M
rep

tot i i i AB A B AB A j a
i A B A B A j

E n c c h q q E q D x j  
 




            , (2.79) 

where jD is a Cartesian component of the electric field and ( )ax j is a Cartisian 

coordinate of atom A, with j equal to x,y, or z. We minimize the energy by 

setting tot

i

E

c




to zero, which leads to a new set of secular equations, further 

differentiation of the modified energy with respect to nuclear coordinates gives the 

new atomic force on atoms in the presence of an external electric field.   

 

Raman Intensity   

The Raman activities (Raman intensities can be derived from activity) and IR 

intensities are also implemented into the SCC-DFTB code23,24. The Raman intensity 

can be estimated using the Placzek’s theory of polarizability as described above. We 

consider the first-order geometrical derivatives of polarizability tensor at the 

equilibrium molecular geometry,  

    for    , , ,ij

k

i j x y z
Q





, (2.80) 

where kQ  is the normal coordinate associated with kth molecular vibration.   

In practice, we calculate the polarizability tensor in the following way: 

 
3 2

ij ij

a a ak k i j k i j k

a E a F a

Q a Q a D D Q D D Q

       
  

             (2.81) 

Subsequently, two invariants of polarizability derivatives are calculated,  

the mean value   and the anisotropy  : 
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                        

 (2.83) 

The Raman activity of each vibration can be obtained as  

  2 21
45 13

45nS     (2.84) 

  2 21
45 7

45pS    , (2.85) 

where the subscript n and p stand for the natural light or plane-polarized light as the 

source of radiation. 

Finally, the Raman intensity for each vibration is given by   

  
4

2 20
0 /

( )
45 13

(1 )k

k
n h kT

k

I KI
M e 

   
 


 


 (2.86) 

for the natural incident light, and  

  
4

2 20
0 /

( )
45 7

(1 )k

k
p h kT

k

I KI
M e 

   
 


 


 (2.87) 

for the plane-polarized incident light.  

The constants are defined as 

 0 : the frequency of the incident light 

 0I : the intensity of the incident light 

 M : the effective mass of each vibrational mode (equals to one because the  

normal coordinates Qk have been mass-wieghted.)  

k : vibrational frequency of the kth mode 

K: constant set to one in our calculations12 

T : the temperature in Kelvin  
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IR Intensity    

The intensities in the IR vibraional spectrum are closely related to changes of 

molecular dipole moment   during the molecular oscillation. When in diluted gases 

it can be evaluated as24 

 
2 2 2

yi x z
i

i i i i

A K
Q Q Q

  


                              
 (2.88) 

Here iA  is the IR intensity, vi is the fundamental frequency and i  is the harmonic 

frequency of the ith vibration. The constant K and the ratio of fundamental and 

harmonic frequencies i

i




 are set to unity in our calculations. In practice, we 

calculate the dipole moment derivatives using the following formula to save 

computing time:   

 
2

j j a

a a aj j j j J j

Fa E a a

Q a Q a D Q D Q

      
  

           (2.89) 
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Chapter 3  

 

Technical Details   

 
All the molecular energies, geometrical optimizations and vibrational spectra 

calculations were employing the FORTRAN based SCC-DFTB code. For the solid 

state band structure calculations, the SCC-DFTB+25 code was employed.    

The force convergence criterion for all the geometrical optimizations in this study 

is 10-6. The SCC threshold was set to be 10-12.  

To plot the bond length distributions, IR and Raman vibrational spectra, VDOS 

and DOS, we use Gaussian functions to smear the discrete raw data, then we 

superpose these Gaussians to make the plots.  

For all the 2D plots in this study, the program GRACE under the GNU project 

had been employed. 3D plots were carried out using the GNUPLOT program and 

SIGMAPLOT for the PES of 60 240C @C . The molecular geometries are visualized 

using the MOLDEN program and GAUSSVIEW.  
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Chapter 4  

 

Results and discussion 

 
4.1 Conjugated Heterocyclic Polymer Chains 

The main idea of this study is to investigate the evolution of various physical 

properties of π−conjugated oligomers with the increasing length of the system. In the 

limit of an infinite chain, the studied systems converge toward polymers. Thus, it 

would be natural to think that also the properties of the finite oligomers should 

converge toward those of the polymers. This concept is a foundation of so-called 

“oligomer approach”26 used for experimental and theoretical determination of 

properties of infinite polymers. A natural, theoretical alternative to the oligomer 

approach are the usual techniques of solid-state physics dealing with infinite systems 

and the translational symmetry. Both of these methodologies were used in a number 

of studies to investigate a variety of physical properties of extended systems.27-39 

However, none of these publications was fully devoted to a systematic analysis of the 

rate of convergence of the aforementioned properties of finite molecules upon 

elongation toward the values characteristic for the corresponding infinite systems. 

Such practical knowledge would certainly simplify the studies of polymers based on 

the oligomer approach. At present, one has to investigate a series of 

homologues—some of them very far from the convergence region and some of them 

already beyond the saturation limit—to get the information about the properties of 

polymers. This makes the oligomer approach, theoretical or experimental, 

unnecessarily expensive and cumbersome. Thus, a methodical determination of the 
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convergence region for various oligomer properties would make such studies much 

more automatic and efficient.   

In this paper we investigate the behavior of various geometrical and electronic 

properties of a series of structurally-related π−conjugated oligomers in their ground 

electronic states. We explicitly consider oligomers built of the following 

trans-connected monomers: cis-1,3-butadiene, cyclopentadiene, pyrrole, furan, and 

thiophene. In principle, two mesomeric forms are possible for the studied systems, 

aromatic and quinoid (or trans-cisoid and cis-transoid, respectively),33 which differ by 

the relative position of double bonds in the carbon backbone. Since it was 

demonstrated40 that the former form is substantially lower in energy, we consider only 

the aromatic-like oligomers and polymers. Note that the resulting infinite structure 

obtained from cis-1,3-butadiene is distinct from that one of all-trans-cisoid 

polyacetylene that was studied previously.41 We focus on the rate of convergence of 

the following physical properties: equilibrium structures, HOMO-LUMO energy gaps, 

electronic densities of states, distributions of induced charges, dipole and quadrupole 

moments, and polarizabilities. Our main interest lies in determining how rapidly the 

aforementioned properties saturate towards a constant value in the interior of the 

oligomers. Also, we want to find out the minimum length of the oligomer chain for 

which the properties are indistinguishable from those of a given polymer. Selected 

properties of the systems studied here were already investigated either theoretically or 

experimentally in a number of studies. A complete review of these studies is out of 

scope of the present work. However, the concise compilation presented here for the 

polymers and oligomers built of the acetylene,42,43 cyclopentadiene,32,43,44  

pyrrole,32,39,41,43-47 furan,32,41,43-46 and thiophene32,41,43-46 units is supposed to give a 

representative sample of the related research.  

The theoretical tool used for our analysis is based on the SCC-DFTB 
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approximation4.  which can be considered as a simplified version of density 

functional theory (DFT). We are fully aware that the results obtained within the 

framework of this method may not be very accurate. In fact, quantitative assessment 

of some of the studied properties, e.g., polarizability or quadrupole moment, is known 

to require highly advanced theoretical techniques and large basis sets. However, we 

are interested in the evolution of the physical properties rather than in their actual 

values. We are convinced that the qualitative picture we have obtained is correct even 

if the quantitative accuracy may need further verification by more elaborate 

theoretical treatment. On the other hand, using SCC-DFTB gives us the advantage of 

investigating extended molecular systems necessary to study the evolution of 

properties, which converge only in the limit of very large oligomers containing 

hundreds of atoms. An argument in favor of using SCC-DFTB for the analysis of 

π−conjugated systems is the successful application of this method in studying 

analogous properties of finite and infinite linear carbon chains.48 A comparison with 

experimental and more advanced theoretical results demonstrated an excellent 

performance of the approximate approach. Another very important advantage of using 

the SCC-DFTB method for our investigation is the possibility of a direct comparison 

with the analogous solid-state results. It should be stressed that the same identical 

SCC-DFTB Hamiltonian is used within the usually incompatible frameworks of 

quantum chemical and solid-state machineries. For the studied evolution of physical 

properties in oligomers, the solid-state calculations provide us with the necessary 

benchmark of relevant values for infinite polymers.  

The practical applicability of our results is not limited only to the methodological 

issues. The conclusions obtained from our investigations can be directly applied for 

studying various properties of conducting polymers, which have stimulated 

widespread attention since Shirakawa’s discovery of highly conductive 
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polyacetylenes.49 The conjugated polymers are widely applied to fabricate light 

emitting diodes (LED)50-52, biosensors53,54, photovoltaic cells55, etc. The first 

five-member heterocyclic polymers studied in detail were polypyrrole and 

polythiophene. Polypyrrole was found to be an insulator with a band gap of 2.85 eV.27 

However, after oxidative doping its conductivity reached 500 S/cm.56 Polythiophene 

was also found to be an insulator with a slightly smaller band gap of of 2.0 eV30, and 

the conductivity of 2000 S/cm was reported for its doped derivatives.28 Later, a 

successful synthesis of polyfuran, with a band gap of 2.35 eV and conductivity of 100 

S/cm (in a doped form), was reported. 29,35 Polycyclopentadiene has been studied only 

theoretically.31-34,37,43,44 The smallest computed band gap is 0.98 eV (extrapolated 

TD-DFT/B3LYP oligomer results). Eventually, trans-cis-polyacetylene, which can be 

treated as the carbon skeleton of all of the previously discussed systems, was studied 

theoretically as a less stable isomer of all-trans-polyacetylene.30,41,42 The presence 

conjugated π−electron system results also in increased dependence of polarizabilities 

and second-order hyperpolarizabilities on details of the molecular structure, which 

opens the way of engineering the molecular properties so that they can be used in 

various photonic devices like optical switches, logical gates or signal processors. 

The chemical formulas of polymers studied in this work are shown in Table 4.1 .  

 

 

Molecules  Formula number of atoms in the largest model 

Trans-cisoid polyacetylene 8m+2 402 

Polycyclopentadiene 9m+2 452 

Polypyrrole 8m+2 402 

Polyfuran 7m+2 352 

Polythiophene 7m+2 352 

 

Table 4.1 Molecular formulas for all the considered n = 1~50 molecular models of  

oligomers. 
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We have considered explicitly five families of one-dimensional polymers: trans-cisoid 

polyacetylene, polycyclopentadiene, polyfuran, polypyrrole, and polythiophene. The 

size of the studied finite oligomers has varied from a single monomer (m=1) unit to 50 

monomer units (m=50). The models are assumed to be planar. (This assumption has 

been further validated by vibrational analysis.) Their schematic geometrical 

representation together with molecular symmetry is shown in Fig 4.1 separately for 

the even and odd number of monomers. In addition to the quantum chemical 

calculations for the finite olygomers we have performed calculations for the infinite 

polymer chains (m=∞) using a standard solid state approach. The unit cell used in 

these calculations—shown in Fig 4. 1a—is composed of two monomer units. By 

construction our molecules possess translational symmetry in one dimension and 

therefore they can be considered as one-dimensional crystals. Although the effects of 

the interchain interactions, defects, and doping present in real three-dimensional 

crystals have been neglected, we still believe that our models are closely related to 

experimentally investigated structures and can yield valuable information about the 

convergence behavior for various molecular properties for each type of polymers. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Models of a) the 2hC  and b) 2vC  symmetric oligomers.     
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Both the quantum chemical and solid state calculations have been performed in the 

framework of the SCC-DFTB method. In the solid-state calculations, the initial unit 

cell structure of each system has been extracted from the central region of the longest 

studied finite oligomers (50-mer). The lattice vectors perpendicular to the main axis 

of each polymer have been set to 100 Å to simulate a quasi-one-dimensional periodic 

structure. The positions of atoms within the initial unit cell and the remaining lattice 

constant a have been optimized to yield a structure corresponding to minimal energy. 

After obtaining the equilibrium geometry of the unit cells, we have used 500 k-points 

between 0 and π/a to sample the band structure of each 1D polymer and to construct 

the electronic density of states (DOS) plots.  

In the present work we investigate the evolution of geometric and electronic 

properties of a family of finite heterocyclic oligomers upon the elongation of the 

chain. The molecular properties studied explicitly are equilibrium geometries, 

electronic densities of states (DOS), HOMO-LUMO gaps, distribution of induced 

charges, dipole moments, quadrupole moments, and polarizabilities. The results 

obtained for finite chains are compared with the corresponding solid state calculations, 

previous theoretical findings, and with experiment (whenever possible). Analogous 

results obtained for the vibrational and spectroscopic properties will be discussed in 

the subsequent study. 

 

4.1.1 Evolution of Equilibrium Structures 

We have computed equilibrium SCC-DFTB geometry for a series of finite 

oligomers built of five-membered monomer units introduced earlier. We are going to 

analyze the evolution of selected equilibrium bonds and angles, as represented in 

Figs. 4.2 and 4.3 
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Figure 4.2 Bond length distribution comparisons between the molecular 50-mer (red

line) and solid-state polymer (black line) of all the considered models in this study. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The distribution of equilibrium bond lengths for the infinite polymers (solid black line) 

and for the longest studied oligomers (solid red line) is shown in Fig. 2. It is clear that 

both distributions are almost identical for all the considered systems. The only 

difference concerns a few small peaks associated with the terminal monomers. A brief 

inspection of Fig. 4. 

 be identical. This observation gives us the first important conclusion of this study, 

which states that the equilibrium geometry of an infinite system can be accurately 
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accessed using the corresponding finite-length model. A natural question arising from 

this observation is how long the oligomer chain should be to reproduce the geometric 

parameters of the polymer. Figure 4.2 shows that 50-mers are more than sufficient for 

this purpose. In fact, Figures 4.3 and 4.4 demonstrate that the convergence of 

equilibrium bond lengths and angles is obtained much faster; they reach the bulk limit 

for approximately 15–20 monomer units. The most dramatic changes in molecular 

geometry are observed for very short oligomer chains (m=1–10), which shows that 

such short chains should not be used for modeling the properties of polymers. 

However, the analysis of the presented data suggests that already a 20-mer makes an 

adequate geometrical model of an infinite polymer chain. Since the differences in the 

bond distributions for the finite and infinite systems come mainly from the effect of 

the terminal units, we have investigated in detail the behavior of selected bond lengths 

and bond angles as a function of their position in the chain, using the finite 50-mer of 

pyrrole as a representative of all the systems under study. The results are presented in 

Fig. 4.4 for two bond lengths and two bond angles (as defined in Fig. 4.2). The results 

are more than surprising! Figure 4.4 shows that the effect of the finite termination is 

very local and is limited only to the 3–4 monomers adjacent to the terminal unit.  
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Figure 4.3 Bond length distribution convergence of the considered models in this 

study. 
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Figure 4.4 Bond length and bond angle distribution of pyrrole 50-mer. Calculated 

values of solid state polypyrrole are given in red solid lines. 
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To highlight this effect, we have also plotted in Fig. 4 the limit value obtained from 

the corresponding solid state calculations. The whole interior of the 50-mer of pyrrole 

is virtually identical to the structure of the infinite polymer. This observation gives us 

the second important conclusion of this study, which states that the equilibrium 

structure of the infinite polymer chain can be obtained by inspecting the interior of 

relatively short oligomer chains built of approximately 20 monomer units. In fact, 

almost perfect structural parameters of a polymer can be extracted already from the 

central unit of the corresponding decamer.44,57 For shorter chains, an experimental 

X-ray study of single crystals of terthiophene and sexithiophene single crystals 

showed that the geometry variation in the central units is of order 0.01 Å for bond 

lengths and 1° for valence bond angles. Further elongation of the chain to 12 

monomer units modifies the bond lengths by another 0.01 Å. 

Structural similarity of the five studied families of oligomers calls for investigation 

of the effect of the heteroatom substitution on the structure of the polymer. This can 

be easily done using Fig. 2, in which analogous types of bonds for the five studied 

systems are marked with the same letters. Clearly, it is not very informative to 

compare the bond lengths between the carbon atoms and the heteroatom (i.e., bond A), 

but the analysis of carbon backbone structure (i.e., bonds B, D, and E) should yield 

interesting information. The first two systems (i.e., trans-cis-polyacetylene and 

polycyclopentadiene) are expected to have polyene-like structure, while the remaining 

three systems should display a certain degree of aromaticity within the monomer rings. 

This regularity can be observed in the BD rr   bond length difference, which is 0.087 

and 0.067 Å for trans-cis-polyacetylene and polycyclopentadiene, respectively, and 

only 0.012 and 0.013 Å for polythiophene and polypyrrole, respectively. For 

polyfuran, a value of 0.040 Å reveals a structure intermediate between the polyenic 

and aromatic one. It is interesting to compare these values to the analogous data for a 
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single monomer, which are: 0.170 Å for 1,3-butadiene, 0.151 Å for cyclopentadiene, 

0.034 Å for pyrrole, 0.073 Å for furan, and 0.042 Å for thiophene. CCCBDB Two facts 

are apparent from this comparison: i) the aromatic character of a given monomer is 

enhanced upon the elongation of the chain and ii) the semi-aromatic character of 

polyfuran is inherited from the monomer. Additionally, we can state that the bonds 

connecting the adjacent monomers are predominantly single in their character. 

However, the bond lengths are somewhat smaller for monomers displaying less 

aromatic character, which may be rationalized in terms of enhanced delocalization of 

the π electrons along the chain. Note that the computed SCC-DFTB values of the 

BD rr   bond length differences in isolated monomers compare rather favorably with 

experimental data, which are: 0.139 Å for 1,3-butadiene, 0.120 Å for cyclopentadiene, 

0.035 Å for pyrrole, 0.070 Å for furan, and 0.053 Å for thiophene.CCCBDB 

Unfortunately, experimental data for longer oligomers and polymers are very scarce, 

which impedes experimental verification of our theoretical results.  

For all the studied oligomers, the optimized SCC-DFTB dihedral angles between 

the adjacent monomers are equal to 180°. In fact, equilibrium geometries of some of 

the analyzed oligomers obtained from more advanced calculations are not strictly 

planar.58 In the case of oligothiophenes the energy changes associated with deviations 

from planarity are small owing to low curvature of the potential energy surface along 

the inter-ring torsional angles; the infinite polythiophene chain has been found to be 

indeed planar.58 It was also found that aromatic systems tend to maintain their 

aromaticity for small twisting angles.59-64 Thus, one may expect that the impact of the 

non-planarity on the physical properties of the unsubstituted conjugated oligomers 

and on their remaining geometric parameters is rather marginal.39,58,65 (Note that for 

substituted systems, large steric hindrance can lead to highly non-planar structures 

with seriously modified molecular properties.53) This effect of non-planarity is 
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anticipated to be particularly small for long chains, which spontaneously gravitate 

toward the planar infinite structures.  

 

4.1.2 Evolution of HOMO–LUMO Energy Gaps 

Experimental and theoretical investigations of the energy gaps of conjugated 

polymers via the analysis of the HOMO–LUMO gaps of a series of finite oligomers 

received considerable attention.40,42 The computed HOMO–LUMO gaps for the five 

families of studied oligomers are presented in Fig. 4.5. The convergence of the 

HOMO-LUMO gaps towards the corresponding polymer band gaps seems very fast. 

However, closer scrutiny of Fig. 4.5 shows that the actual behavior is more complex. 

For oligomers of certain length, the HOMO-LUMO energy gap dependence on the 

reciprocal of the number of monomers m slowly begins to change from linear to 

quadratic.57 Deviations from the linear trend are initially very subtle and one has to 

study quite long oligomers (20-mers, 30-mers, or even longer) to obtain a distinct 

quadratic dependence allowing for the proper (quadratic) extrapolation procedure.46 

The slow change in the nature of dependence the HOMO-LUMO gap with respect to 

1/m was the source of serious inaccuracies in a number of the reported polymer band 

gaps, obtained by applying the linear extrapolation procedure to the oligomer results.8 

Our SCC-DFTB calculation estimates of the band gaps for the systems under study, 

using a quadratic fit for the longest 40 structures (so that the linear region is avoided) 

yields values almost identical to the actual energy gaps in infinite polymers obtained 

from the solid state simulations. The correlation coefficients 2r  are all 0.99 for the 

quadratic fitting curves of the five systems. The convergence of the HOMO–LUMO 

gaps for oligomers toward the band gaps of the corresponding polymers is 

demonstrated in Table 4.2 Note that for the longest studied finite chains, the 

HOMO-LUMO gap itself constitutes a good estimate of the polymer energy gap.  



 46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Band gaps of all the considered models. The values shown are the 

extrapolated results using second-order polynomial fitting for the last forty points. 

 

The actual value of the energy gap is proportional to the degree of the π−electron 

delocalization along the polymer chain. Inspection of Table 4.1 shows, that apparently 

the electrons can move more freely along the polymer chain in polycyclopentadiene 

and polyacetylene than in the polymers built of the heterocyclic rings. Also, the 

presence of strongly electronegative, second row heteroatoms (nitrogen and oxygen) 

seems to hinder the electronic mobility, as the band gaps of the corresponding 

polymers are larger than the one for polythiophene. 
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Table 4.2 HOMO-LUMO gaps and the differences between the oligomers and the 

solid-state value. 

   

 

 

 

 

 

 

 

 

4.1.3 Evolution of Electronic DOS Distributions 

The electronic density of states (DOS) is defined in solid state physics as an 

integral of one-electron energy levels over the Brillouin zone. In practice, however, 

only a finite number of Brillouin zone’s points are sampled and the electronic DOS is 

obtained as a superposition of a finite number of the discrete energy levels. To ensure 

smooth character of DOS constructed in such a way, the discrete energy levels are 

usually smeared using a Gaussian envelope of a constant width (sometimes referred to 

as the relaxational broadening24). The equivalence of these two procedures in the limit 

of large number of sampling points suggests that the electronic DOSs can be also 

constructed using the set of discrete one-electron energy levels (i.e., orbital energies) 

of finite oligomers. This idea was used by Salzner et al.17 to show in a qualitative way 

that the orbital levels of oligomers develop in the infinite limit into the band structures 

of the corresponding polymers. We have further tested this hypothesis in a 

quantitative way by plotting the resulting—finite and infinite—electronic densities of 
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states in Fig. 4.6 Since SCC-DFTB employs minimal atomic basis sets, it is only 

meaningful to analyze the resulting DOSs around the Fermi level. To facilitate the 

analysis of these graphs, the peaks corresponding to the occupied energy levels 

(valence band) have shaded area, while those corresponding to the virtual energy 

levels (conductance band) are depicted with a solid line. The electronic DOSs for 

finite oligomers presented in Fig. 4.6 show a surprisingly fast convergence toward the 

infinite limit. Already for less than 10 monomer units, the finite DOSs are very similar 

to the one of the polymer. The electronic DOSs for the longest studied oligomers 

(m=50) are practically indistinguishable from those obtained in the solid state 

calculations. Similar observation was previously made for polypyrrole,24 for which 

the DOS for oligomers built of six monomer units and the DOS for the corresponding 

polymer were closely related. Note that for each of our finite length oligomers, there 

are some tiny additional peaks present in every DOS. These spurious peaks 

correspond to the energy levels of the terminal hydrogen atoms. Obviously, the 

relative magnitude of these peaks decreases with the growing size of the chain and it 

is reduced to zero in the infinite limit.  
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Figure 4.6 Electronic DOS distribution convergence of all the considered models. 

The red areas correspond to the occupied valence bands. The red area and white area 

are separated by the calculated Fermi level.    

 

4.1.4 Evolution of Charge Distribution 

Another important molecular quantity studied in this work is the electronic charge 

distribution. The main focus here is on the change of induced atomic charges with the 

position of a given atom along the chain. We also investigate how the induced charge 
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distribution varies with the elongation of the oligomer. The induced atomic charges 

are computed using the Mulliken population analysis. The structure of the studied 

oligomer chains dictates a natural distinction between the atoms constituting the 

π-conjugated carbon skeleton and the heteroatoms. Therefore, we investigate the 

evolution of induced charges for these two subsystems separately. In fact, the term 

“heteroatom” has been used here a little frivolously as we also applied it to describe 

the sp3 carbon atom of cyclopentadiene. However, its use underlines a different 

character of that atom with respect to the carbon atoms involved in the π-conjugated 

system. Note that no heteroatom is present in the case of trans-cis-polyacetylene, 

which leads to a slightly different behavior of this system in comparison with the 

other chains.  

First we discuss the distribution of the induced charges along the longest studied 

oligomer chains. Figure 4.7 shows the induced charges on the heteroatoms. The most 

striking feature is nearly instantaneous convergence of the induced charge to the bulk 

value. The effect of the chain boundaries is visible only at the two terminal monomers. 

All the remaining monomers have virtually the same induced charge as the infinite 

polymer. Figure 4.8 shows the change of induced charges along the π-conjugated 

chains of carbon atoms. The C2v symmetry of the monomer units implies the presence 

of two pairs of carbons with identical charges, Cα and Cβ, as defined in Figure BB. 

The symmetry enforces the same behaviour in the corresponding, infinite polymer 

chains. Therefore, we expect that similar behavior can be also observed for the finite 

oligomers. Analysis of Figure 4.8 shows that such symmetry of charge distribution is 

indeed observed in oligomers, as long as a given monomer is not located too close to 

the chain boundary. The charges at the two-three terminal units deviate from the 

values calculated for the corresponding polymers, but the charges at all the remaining 

monomers are virtually indistinguishable from those in polymers. Again, the rate with 
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which the charges reach the bulk value is quite striking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Induced Mulliken charges of the heteroatoms of the 50-mer in each system. 

The red solid lines are the corresponding solid-state values.  
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Figure 4.8 Induced Mulliken charges along the  -conjugated carbon backbone of 

the 50-mer in each system. Solid lines in red and blue are the solid-state values.  

 

It is obvious that for trans-cis-polyacetylene, the charges on carbons α and β must 

be very similar, owing to their nearly identical surroundings. A slight difference 
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between these two charges stems from the cis-trans alternation in the chain structure. 

(Note that in the trans-only chain the values would be identical). In all other cases the 

difference is more pronounced and depends quite strongly on the heteroatom present 

in the ring. However, significant differences in the charge distribution within a 

monomer have little influence on the observed fast convergence of the calculated 

induced charges towards the bulk values. It thus appears to be a universal 

characteristic of the oligomers with conjugated system of π-bonds.  

Eventually, let us inspect the evolution of the induced charges with the elongation 

of the oligomer chain. The detailed analysis performed above for the 50-mers reveals 

that the induced charges reach constant values already very close to the boundaries of 

the finite oligomers. This suggests that the interior of the chain will not be affected 

even after substantial reduction of the chain length. The illustration of such a behavior 

is given in Figure 4.9, which shows the distribution of the induced charge on the 

nitrogen atoms in a series of finite oligopyrroles. The nature of the chain interior is 

preserved even in the 10-mer, which is a little surprising since the central part of such 

a short chain might be expected to “remember” its molecular origin. The presented 

results show, however, that the evolution of the induced charges with the elongation 

of the oligomer chain is one of the most rapidly convergent properties among those 

studied in this work. 
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Figure 4.9 The evolution of the induced charges on the nitrogen atoms in 

oligopyrroles. The value for polymer is given by the solid red line. 

 

4.1.5 Evolution of Dipole Moments 

The oligomers built of an even number of monomers possess an inversion center 

(see Fig. 4.1) and therefore do not have any dipole moment. The situation is quite 

different for the oligomers with an odd value of m. The dipole moment in each of the 

considered monomers is oriented along the C2 symmetry axis. Adding another 
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monomer will result in another identical dipole oriented along the same direction but 

with the opposite sign. It is clear that in a dimer—and analogously also in longer 

oligomers with even m—these two dipoles cancel out yielding a non-polar molecule, 

which is consistent with the presence of the inversion center. In oligomers with odd m 

complete cancellation is impossible. A short reflection on the value of the dipole 

moment in oligomers with odd m shows that it should be comparable in magnitude to 

the dipole of a monomer. We have plotted the absolute values of the dipole moments 

as a function of m in Fig. 4.10. The presented plots look very much alike. The dipole 

moment is reduced upon the elongation by 0.01–0.15 D. This change is the most 

pronounced for short chains. For chains longer than 11 monomer units, the absolute 

value of the dipole moment is practically constant. These results show that the 

modulus of the dipole moment is a rapidly converging molecular property and the 

bulk value is obtained already for 11m .  

Note a certain logical difficulty rising from our results. The series of oligomers that 

consist of m2  monomers is characterized by a lack of a permanent dipole moment 

(owing to the presence of the center of inversion), while the dipole moment of 

oligomers containing 12 m  monomer units converge to a non-zero value. However, 

in the infinite limit both series of oligomers should form the same polymer, the dipole 

moment of which vanishes due to symmetry reasons. Clearly, this is possible only for 

the series of even-m oligomers, as the magnitude of the dipole moment for the odd-m 

oligomers converges to a non-zero constant value (see Fig. 4.10). Apparently, the 

proper way to reproduce the dipole moment of the polymer by means of the oligomer 

approach requires using the genuine unit cell that contains two trans-connected rings 

(or cis-butadiene units). Such a unit cell has its own local centre of inversion and 

therefore, its dipole moment vanishes. This property is then naturally inherited by 

both the oligomers and the polymers constructed of such building blocks. The proper 
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repetitive unit of the polymer is thus different from the concept of the “monomer unit 

cell” commonly used in the oligomer approach. Still, many polymer properties, like 

the bond lengths or induced atomic charges, can be reproduced by using a single 

monomer as the building block. In other words, extrapolation of the monomer 

properties is sufficient for approaching the properties of the polymer. 

It is important to mention here that dipole moments are defined within the 

framework of the SCC-DFTB method using a discrete summation over the induced 

Mulliken charges. Clearly this is not a very accurate approximation giving an average 

error of 0.5 debye.66 In our calculations, the SCC-DFTB dipole moments for a single 

monomer of pyrrole, furan, thiophene, and cyclopentadiene are 2.13, 0.07, 0.38, and 

0.50 D, respectively. The corresponding experimental values are 1.84, 0.66, 0.55, and 

0.42 D.66 The evolution of dipole moments with growing m does not introduce 

changes larger than 0.15 D, showing that the dipole moment of longer odd-m 

oligomers can be well approximated by taking the SCC-DFTB value and correcting it 

for the difference to experiment for a single monomer. 
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Figure 4.10 Evolution of the dipole moments for all the considered models. Only the 
dipole moments of molecules with 2 1m   unit cells ( 2vC  symmetry) are shown. 

 

 

4.1.6 Evolution of Quadrupole Moments 

The molecular quadrupole moment (QM) is a symmetric second rank tensor with 
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six independent components. Within the SCC-DFTB formalism, the QM tensor   is 

defined via a discrete summation over the induced atomic charges 

   
    

 
atoms

A A A
ij i j

A

Δq r r   ,  (4.1) 

where AΔq  is the induced Mulliken charge on atom A and A
ir  and A

jr  are the 

Cartesian coordinates of the atom A. Note that owing to the discrete character of the 

charge distribution in the SCC-DFTB formalism, all the components of   related to 

the z coordinate—i.e., the coordinate perpendicular to the plane of the studied 

molecules—are identically equal to zero67 for all the studied systems except for 

polycyclopentadiene. Therefore, it is sufficient to investigate the evolution of the 

tensor components related to the products of the x and y coordinates only. Moreover, 

for the molecules possessing the C2v point group symmetry, i.e., for all the oligomers 

built of odd number of monomers, it is required for symmetry reasons that 0 xy . It 

is assumed that the molecular axis y coincides with the Imax principal axis of tensor of 

inertia and the molecular axis x is the other in-plane principal axis of tensor of inertia. 

The components of the QM tensor grow with the length of the investigated 

oligomers. To facilitate the comparison of this property for systems of different sizes, 

in Fig. 4.11 we show of xx , yy , and xy  normalized by 1/m. The reduced tensor 

components seem to approach constant values; this suggests that the dependence of 

the QM tensor components on the size of the system may become linear for 

sufficiently long oligomers. The convergence toward linearity is more pronounced 

and seemingly faster for xx  than for yy . The result for xx is not surprising, 

since its linear growth is a simple consequence of an increasing number of repetitive 

units. More complicated mechanism seems to be responsible for the relatively slow 
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convergence of yy  and xy . We intend to address this issue in the oncoming 

paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Evolution of the quadrupole moment tensor components of all the 

considered models. 

 

 

Another interesting observation for even-m oligomers is significant discrepancy 

between the relative orientations of the principal axes of the tensor of inertia and the 
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principal axes of the QM tensor. For these systems, the molecular point group (C2h) 

does not determine any particular directions in the xy plane. Taking into account 

strong geometrical asymmetry of the molecule and the interpretation of quadrupole 

moment as a measure of deviations of the charge distribution from sphericity, one 

might expect that the principal axes of both tensors would be similar. However, our 

calculations show that this is not the case. On the one hand, the anisotropy of the 

tensor of inertia and the orientation of its principal axes are naturally rooted in the 

shape and size of the molecule. On the other hand, the molecular geometry does not 

seem to have a strong influence on the anisotropy and orientation of the quadrupole 

moment tensor. Even for the longest studied even-m oligomers, the in-plane principal 

axes of the QM tensor do not coincide with the corresponding principal axes of the 

tensor of inertia. The value of the angle between the long axes depends strongly on 

the type of heteroatom in a monomer and varies from 0.08° to 42.46°, for the 50-mer 

of furan and cyclopentadiene, respectively.   

 

4.1.7 Evolution of Polarizabilities  

The molecular polarizability has been extensively studied for a variety of 

molecular systems.68-77 In the case of oligomers and polymers, built from repeating 

units, the natural question was whether, or to what extent, the property can be 

regarded as additive. The problem is non-trivial since in oligomers, as well as in other 

types of molecular aggregates, a single monomer is influenced by the surrounding 

molecules. This influence can be particularly strong in case of the electrostatic 

properties, since the electrostatic forces give rise to long range interactions. Therefore, 

perfect additivity can only be achieved as long as the oligomer chain properties (such 

as geometry, induced charges or electron density) are constant in a large region of 

molecule with respect to a given monomer. Also, since the molecular polarizability 
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depends on the eigenstate energies and transition dipole moments of the whole 

molecule, these properties must be within their convergence limits before one may 

properly estimate the monomer contribution to the polarizability.  

In the case of conjugated oligomers and polymers, the issue of polarizability as an 

additive property is even more complicated because of the large mobility of π 

electrons along the chain. This mobility is quantified by the so called conjugation 

length40, which sets the effective range in which the monomers can influence one 

another through the delocalized system of electrons. The conjugation length depends 

on a number of factors, such as the molecular geometry (especially the bond length 

alternation along the conjugated carbon chain), degree of aromaticity of the monomer 

units, and type of heteroatoms or substituents. As the mobility of π electrons greatly 

contributes to the strength of the electron density response to the applied electric field, 

it comes as no surprise, that it is the key factor determining the magnitude of 

molecular polarizability. The polarizability is thus linked to the conjugation length in 

the π-electron systems.   

From the theoretical point of view, the conjugation length is extremely sensitive to 

the applied methodology; it is seriously underestimated in the HF based calculations 

and largely overestimated in the DFT calculations. Hybrid functionals, such as 

B3LYP78 or B3PW8679 offer a reasonable compromise, yet they also fail in 

reproducing such conjugation-dependent properties as vibrational frequencies of the 

Raman active modes in linear carbon chains.48,80,81 Therefore, accurate calculations of 

polarizabilities for the π-conjugated, extended systems are not trivial and the results 

often bear considerable errors. Additionally, owing to the considerable the conjugation 

length, the molecular polarizabilities display very slow convergence with the length of 

the oligomers.82 The size of systems required to reach the saturation limit makes such 

calculations very demanding. In order to circumvent technical difficulties, a number 
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of approaches were used, based either on the quantum calculations at various level of 

theory70,72-74,76,77,83 or on more or less advanced physical models69,71,83-86. Owing to the 

slow convergence of the oligomer polarizabilities with the length of the system, a 

variety of extrapolation techniques had to be used69,71,72,77,85,87,88 to estimate the 

monomer contribution to polarizability in the nearly infinite chain (additivity limit). 

The results of our calculations are in accordance with the reported behavior. Therefore, 

we adopt the formula of Schulz et al. (equation 3.1 on page 455)72, applied 

successfully for modeling the evolution of polarizabilities for eight different 

conjugated oligomers, and later also for carbon nanotubes.85 We analyze the behavior 

of trace and anisotropy of the polarizability tensors, defined as: 
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, (4.2) 

as these invariants are of direct, practical importance in theories of optoelectronics 

and intermolecular forces. For the sake of clarity, we renormalize the aforementioned 

properties to values per monomer, so that they converge to a constant when the 

additivity limit is reached.  

  The results of our calculations are given in Figure 4.12. One can easily observe the 

convergent behavior of the polarizability invariants. However, careful scrutiny of the 

graphs, however, shows that saturation limits are not reached for none of the 

investigated systems.  
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Figure 4.12 Polarizability invariants of all the considered models. The blue curves are 

given according to the fitting formulas.  

 

Also, the convergence appears to be faster for oligomers containing aromatic rings 

than for those built from non-aromatic monomers. In order to obtain the converged 

values of polarization we used the relation:  
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where αn denotes the polarizability per monomer as calculated for the m-mer, and α∞ 

stands for the analogous polarizability for infinite chain. The constant c for ideal case 

should be equal to α∞ as for n = 0 the polarizability should also be zero. However, by 

allowing c to vary a better fit to the calculated data points can be obtained, and 

consequently, a more accurate value of α∞. The parameter nsat is a characteristic value 

of a given type of oligomers and is inversely proportional to the rate of convergence. 

It can thus be considered as a rough measure of the π−electron delocalization along 

the oligomer chain. The larger the value of nsat, the more pronounced the conjugation 

length along the chain and the more reluctant the polarizability to converge. The 

optimum parameters of equation 4.3 are presented in Table 4.3.  

Table 4.3 The optimum parameters used in eq. 4.3   

The extrapolated values of the average polarizabilities per monomer as well as of 

the polarization anisotropies clearly show that the studied systems can be divided into 

  α∞ [a.u.] c [a.u.] msat 

 322 324 13.0 
trans-cis-polyacetylene 

αani 910 967 13.1 

 335 331 16.4 
trans-polycyclopentadiene 

αani 922 987 16.7 

 78.5 51.4 6.9 
trans-polypyrrole 

αani 173.7 140.9 7.5 

 94.5 71.7 8.0 
trans-polyfuran 

αani 222.9 200.0 8.6 

 168.8 144.5 10.0 
trans-polythiophene 

αani 435.0 424.5 10.3 
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two groups. Significantly larger values are associated with systems containing 

all-carbon monomers, namely trans-cis-polyacetylene and trans-polycyclopentadiene, 

while for the systems built of the heterocyclic units (pyrrole, furan and thiophene) the 

polarizabilities are relatively small. Also, the anisotropies of the polarizability with 

respect to the average values are much larger in the former group. Clearly, in the 

former group the longitudinal components of the polarizability tensor are more 

pronounced with respect to the transversal ones. It indicates that the all-carbon 

oligomers are characterized by the increased π−electron mobility along the oligomer 

chain, or larger conjugation length, as compared to the oligomers containing the 

heteroatoms. It is also reflected by the values of msat parameter, which are 

considerably larger for trans-cis-polyacetylene and trans-polycyclopentadiene than 

for the remaining systems.  

   The observed differences can be rationalized in terms of the aromaticity of the 

monomer units. On the one hand, the aromaticity of a given monomer is associated 

with a decreased intra-monomer bond length difference with respect to non-aromatic 

systems. Accordingly, the difference between the (averaged) intra-monomer bond 

length and the length of the bond linking monomers becomes more pronounced. 

Eventually, this leads to the increase of the band gap for polymers (HOMO-LUMO 

gap for oligomers) built from aromatic units. This in turn influences the polarizability, 

which in a crude approximation may be considered inversely proportional to the 

HOMO-LUMO, and consequently, should be lower for polymers containing highly 

aromatic building blocks. On the other hand, the electronic polarizability can also be 

interpreted in terms of molecular response to the external, uniform electric field, 

which brings about reorganization of the electronic density leading to polarization of 

the molecule. Aromaticity increases the electron confinement within the monomers 

and thus decreases the π−electron mobility along the oligomer chains and reduces the 
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molecular polarizability. This behavior manifests itself very clearly in our results. 

Interestingly, the polarizability of thiophene, which has similar degree of aromaticity 

as pyrrole76 is considerably larger than the polarizability of the remaining aromatic 

systems. This effect can be attributed to the influence of the heteroatom; the large 

electronegativity of nitrogen and oxygen (3 and 3.5, respectively) gives additional 

contribution to the π−electron confinement within the monomers. The influence of 

sulphur is less pronounced, as sulphur has smaller electronegativity than the second 

row elements. Thus, the calculated polarizabilities for the studied oligomers reflect 

the basic chemistry of the conjugated systems. The actual values of polarizabilities, 

however, are more difficult to verify, as experiments are scarce and limited to very 

short oligomers. Also, direct comparison with experiment and other calculations is 

hindered by the inherent limitation of the SCC-DFTB method, according to which the 

polarizability component perpendicular to the molecular plane is equal to 0. 

SCC-DFTB uses a minimum valence basis to describe the behavior of valence 

electrons. Such a small basis does not have enough variational freedom to describe 

properly the behavior of the cloud of π-electrons when the field is perpendicular to the 

plane of the molecule. Despite it apparent simplicity, the SCC-DFTB performs 

remarkably well. Our average polarizabilities for 6-mers are by no more that 10% 

smaller than the values obtained by Delaere et al.76. at the B3LYP/DZP level of theory, 

with one exception of polyacetylene, for which the average polarizability was 

underestimated by 22%. Also, the calculated values for the polarizability tensor 

in-plane components seem reasonable. The longitudinal polarizability per monomer, 

calculated for polypyrrole at the Hartree-Fock/6-31G* level of theory using oligomer 

approach yielded 136 a.u.70. Analogous calculations based on couple-perturbed 

Hartree-Fock approach gave somewhat smaller value of 115 a.u. and 112 a.u. for 

polyfuran and polypyrrole, respectively83. Our calculations extrapolated to infinite 
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chains produced 241 a.u. for polyfuran and 191 a.u for polypyrrole. Our values are 

clearly overestimated with respect to the HF values. However, the HF calculations are 

bound to yield too low polarizabilities owing to their serious overestimating of the 

band gaps, whereas DFT methodology gives too small band gaps83,89 and 

overestimates the polarizabilities. Champagne et al.83 showed that the longitudinal 

polarizability for 10-mer of acetylene computed with different methods vary from 101 

a.u. for the CPHF approach to over 200 a.u. for pure DFT calculations. This proves 

how difficult it is to obtain accurate polarizabilities for conjugated systems. Also, in 

view of such large discrepancies, the SCC-DFTB results can be regarded as fair 

estimates of the oligomer (and polymer) polarizabilities available with very limited 

computational effort.  

4.2 Raman Spectra of Nanodiamonds 

Nanodiamond is an attractive material both for experimentalists and theoreticians.90 

Its potential applications are ultrathin and ultrahard antifriction coatings, optical 

coatings, and insulating or semiconducting layers in electronic devices.91,92 Higher 

diamondoids were isolated in 200393; this stimulated the characterization of 

nanodiamonds. The experimental Raman spectrum of a single crystal diamond has an 

unique triply degenerate 2gT  peak appearing at 1332 cm-1. Several theoretical studies 

had been devoted to the Raman spectra of molecular diamond94,95. These works tried 

to find out the signature of the nanodiamond Raman spectra. The different goal of this 

work is to observe the evolution of the Raman spectra of diamond from the molecular 

level to the bulk scale, tracing the appearance of the unique 1332 cm-1 peak. This 

study can be helpful for the future experimental also theoretical investigation of the 

Raman sectra of nanodiamond clusters.  

  Figure 4.13 presents the models being considered in the present study. Note that the 
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original space group of single crystal diamond is 3Fd m , but owing to the missing 

inversion symmetry operation, it reduces to the dT  symmetry for molecular diamond. 

There are two distinct structures belonging to the dT  point group: octahedron and 

tetrahedron. In this study we chose both series of nanodiamonds. We saturate the 

surface carbon atoms with hydrogen atoms to stabilize the structure. For simplicity, 

new notations for these two series of diamonds have been made. Their molecular 

formulas and notations are listed in Figure 4.13. We call adamantane (C10H16) as A; it 

is the smallest molecule in both octahedral and tetrahedral diamond series. By 

counting how many layers of “caves” in one tetrahedron formed by sp3 carbon 

networks in one molecule, we use symbols O2 to O8 to present the octahedral 

diamonds, and T2 to T10 for the tetrahedral diamonds. The temperature is set to be 25

°C and the laser frequency is 514.5 nm, which are corresponding to experimental 

environment for obtaining Raman intensity.  

The SCC-DFTB Raman spectra are shown in Figure 4.14; we perform the DFT 

vibrational spectra calculations for selected molecules, A, O1, O2, O3, T2, T3, and T4. 

The BLYP density functional and 3-21G basis set are used for geometric 

optimizations and vibrational spectra calculation. For A and T2, we calculate the 

vibrational spectra using a larger 6-31+G* basis set. Here we truncate the high 

frequency CH stretching signal from the spectra, because this signal will not appear in 

real experimental Raman spectra of single crystal diamond. At first glance, one can 

easily observe that the spectra from the two different methods show an overall 

agreement. Especially for the BLYP/6-31+G* Raman spectra of A and T2, the 

agreement is even closer. The most significant deviation of the spectra is the peak at 

around 1500 cm-1. This signal corresponds to the CH scissoring mode. The deviation 

is probably due to that the SCC-DFTB repulsive parameters for the carbon-hydrogen 

pair is not accurate enough, the new optimization of these parameters is under process. 



 69

The other discrepant peak appears at around 1150 cm-1, this is a 2T  CC waving mode. 

The discrepancy of the frequency is around 50 cm-1, which is within a reasonable 

range as reported in the previous benchmark.5 These facts provide us with an evidence 

for the quality of the SCC-DFTB Raman spectra of larger nanodiamonds.  

Further, the SCC-DFTB Raman spectra of both tetrahedral and octahedral 

diamonds are shown in Figure 4.15. As pointed out by Filik et al95, the peaks 

assemble into three groups. The lowest frequency group contains the A1 cage 

breathing mode. This mode is the peak that lowest in energy. As mentioned before95, 

this mode has been justified that it can not be a characteristic of nanodiamond Raman 

spectra. The second group of peaks explains that with the growing molecular size, the 

peaks get closer. If we go into more detail, as shown in figure 4.16, where we enlarge 

the spectra for the last three molecules of both series, the peaks belonging to 2T  rise 

up at frequency around 1200 cm-1. Note that for the spectra of O6 ~ O8, there is not 

the misleading E  symmetric band as in the spectra of tetrahedral nanodiamonds. 

The strongest peak in the spectra of O6 ~ O8 is of T2 symmetry. The mode of this 

peak is the CC-stretching mode, which is consistent to the mode at 1332 cm-1 of the 

experimental Raman spectra of nanodiamonds. This mode is in fact slightly 

red–shifting with growing molecular size. But for the largest systems we had here, it 

is almost not moving.  

We try to examine whether or not the present peaks on the Raman spectra are 

those we expect. As previously proposed by Negri96 for polycyclic aromatic 

hydrocarbons (PAH), and Filik95 for molecular diamonds, the mass of the terminating 

hydrogen atoms are artificially changed to 100 amu, which leads to a result that only 

the carbon atoms enclosed by the hydrogens are allowed to vibrate. This simulates the 

condition of the carbon atoms in a real crystal, and decouples the noisy signals caused 

by the CH vibrations within the same region of the CC stretching mode for real 

diamond crystal in the Raman spectrum. Following the same idea, we set the mass of 

the hydrogen atoms to be 10000 amu instead and repeat the SCC-DFTB vibrational 
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spectra calculations for all the diamond models, aiming to obtain the peak in the 

Raman spectra corresponding to the 1332 cm-1 peak in the experimental Raman 

spectrum of bulky diamond. We term these diamonds “infinitely heavy hydrogens” 

(infH) diamonds. Only the modes related to carbon vibration are left in the infH 

spectra. Obviously, the peak of 2T  symmetry ~1200 cm-1 shown in Figure 4.17 is the 

strongest signal in both series of infH diamonds.  

In the end of this preliminary study, we present the infH Raman spectra that only 

contain 2T -symmetric modes. The spectra are given in Figure 4.18 and Figure 4.19. 

They give the evidence that the ~1200 peak is almost solely from the 2T  mode 

intensities. Although the present value of the frequency is ~130 cm-1 from the real 

experimental result. The theoretically calculated frequency of diamond Raman spectra 

had been shown that depend strongly on the method used.97 At this stage, we can 

conclude that the 1200 cm-1 is the SCC-DFTB signal of nanodiamond Raman spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tetrahedral diamond hydrocarbons 
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Figure 4.13 The structures, molecular formula, and abbreviations of the tetrahedral 

and octahedral nanodiamonds.  

 

 

 

 

 

 

 

 

 

Octahedral diamond hydrocarbons 
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Figure 4.14 Comparison of the Raman specra calculated by BLYP/3-31G, SCC-DFTB, 

and BLYP/6-31G* (A and T2 only). 
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Figure 4.15 The Raman spectra evolution with respect to the size of the tetrahedral 

and octahedral nanodiamonds.  
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Figure 4.16 The evolution of the 2T  peak in the Raman spectra of the three  

largest nanodiamonds for tetrahedral and octahedral nanodiamonds.  
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Figure 4.17 The evolution of Raman spectra for both tetrahedral and octahedral 

nanodiamonds with “infH” case. 



 76

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 The formation of the band at around 1200 cm-1 of the “infH” tetrahedral 

nanodiamonds. 
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Figure 4.19 The formation of the band at around 1200 cm-1 of the octahedral 

nanodiamonds. 
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A1g D band E2g G band

4.3 Polycyclic Aromatic Hydrocarbons (PAHs)  

Raman spectra of the PAHs contain two characteristic peaks, one is called the D band 

at around 1300 cm-1, the other one at about 1600 cm-1 is called G band.7 The D band 

results from the defects or disorder in the sample. The G band is so-named because it 

is the only feature observed in the first order Raman spectra of highly ordered 

graphite crystal. The vibrational mode is of 1gA  symmetry and is the aromatic ring 

breathing mode for the D band, while the mode for the G band is the 2gE  

CC-stretching vibration, as shown in Figure 4.20 

Several studies concentrate on the theoretical capturing of these two modes and 

discuss their intensity ratio (D/G ratio).7,96,98-100 This enables the characterization of 

the Raman spectra for the presence of the 2sp  carbons in the specimen. The research 

groups obtain the molecular Raman spectra of the PAHs and try to extract the 

solid-state like characteristics.  

 

.  

 

 

 

Figure 4.20 The symmetries and vibration vectors of the D band and G band in 

Raman spectra of PAHs. 

 

In this study, we try to get the solid-state like characteristics with much larger 

systems. Two series of PAHs have been done, one is the usual graphene flakes, and 

the other is the so-called hexa-peri-benzacoronenes (HPBs). They can be 

distinguished by the different peripheries. The margins of graphenes are of the zig-zag 
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form, while those of HPBs are of armchair form. Both series have the symmetry point 

group 6hD . We name these two series of PAHs in a simple way. We name graphenes as 

Cn, where n is the number of the layers surrounding the central benzene ring. HPBs 

are called Bm, where m presents the number of benzene rings from the center to the 

margin, the central benzene is excluded. The molecules being considered are listed in 

table 4.4 and also the examples of nomenclature in figure 4.21 for C3 and B3. 

 

Table 4.4 Abbreviations, molecular formula, and number of atoms for Graphenes and 

HPBs. 

  Graphenes     HPB   

  molecular formula # of atoms   molecular formula # of atoms

C1 C24H12 36 B2 C42H18 52 

C2 C54H18 72 B3 C114H30 144 

C3 C96H24 120 B4 C222H42 262 

C4  C150H30 180 B5 C366H54 420 

C5 C216H36 252 B6  C546H66 612 

C6  C294H42 336 B7 C762H78 840 

C7  C384H48 396 B8 C904H90 1104 

C8 C486H54 540    

C9 C600H60 660    

C10 C726H66 792    

C11 C864H72 936    

C12 C1014H78 1092    

C13  C1176H84 1260    

 

The structures of the HPBs are not flat anymore after B3, this fact was found 

because we obtained imaginary frequencies thereafter. The imaginary modes vibrate 

along the non-planar mode. The re-opimization along the imaginary mode gives us a 

new geometry as shown in Figure 4.22 for B3. Although the HPBs are non-planar, we 

still set them as planar in this study, because the energy difference in energies of both 
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conformations are small (the difference in energy is 0.0007 Hartree and the imaginary 

frequencies are -9.470i, 9.473i and 9.613i for B3 ). Two of the opposite apices raise 

up in these deformed geometries, this is thought to avoid the repulsion between the 

armchair peripheries. The same situation can be seen for the non-planar structure of 

poly-para-phenylene (PPP). The deformation leads the molecular symmetry to reduce 

from 6hD to 2C . An example of the deformed structure is shown in Figure 4.21 for B3. 

 

 

 

 

 

 

 

 

Figure 4.21 Geometries of PAHs. Left: C3 Right: B3 

 

 

Figure 4.22 The deformed B3 obtained by optimization along the imaginary vibration 

mode. 

For comparison of the vibrations of the 2sp carbon, we also performed the infH 

Raman spectra for graphenes and HPBs. We set the mass of hydrogen atoms as 10000 

amu, which is the same as in the diamond study.  

As for diamond, the SCC-DFTB spectra are examined by comparing them with 
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the BLYP/3-21G results for small molecules, C3 and C4. Figure 4.23 shows the 

comparison. As we can see, despite of the discrepancy happens ~ 1200 cm-1 which 

correspond to the singly degenerate mode of CH waving, the other parts show 

satisfactory accordance.  

 

 

 

 

 

 

 

 

Figure 4.23 Comparison of the SCC-DFTB and BLYP/3-21G Raman spectra of C3 

and C4.  

 

Currently, we have obtained the all the Raman spectra of PAHs terminated with 

normal hydrogen atoms except the one of C11. The Raman spectrum of C11 suffers 

numerical instability which is caused by the numerical differentiation of polarizability 

tensor respect to external electric field. We are working on different values of electric 

fields for obtaining more accurate spectrum of C11. The spectra are shown in Figure 

4.24   
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Figure 4.24 Evolutions of Raman spectra of both graphenes and HPBs.  

 

In Figure 4.24, there are some common features for both graphene flakes and 

HPBs. The ~1200 cm-1 peaks are the 1gA  bands and they are the most intensive peak 

in these spectra. The ~1600 cm-1 peak of 2gE  symmetry is keeping decaying with 

growing flake size. Worthy to note is that the drastic intensity drop of the 1gA  bands, 

occurs after C10 in graphene Raman spectra, indicates that it is at the critical point of 

the D/G ratio change as presented by Ferrari et al.7  

 For the infH Raman spectra, the spectra of C11 and B8 is still under calculation 

in Figure 4.25. Detailed analysis on these spectra is needed for us to investigate the 

correspondence of the vibrations of the 2sp carbons in bulky environment and in 

molecular surroundings. 
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Figure 4.25 The evolutions of Raman spectra of “infH” graphenes and HPBs. 

 

To obtain the D/G ratio, we used the projector method to select only the 1gA  

and 2gE  modes. Thus we can obtain the intensity ratio of the spectra. But presently 

the results still have unexpected noise that may be due to the spline fitting bug of the 

SCC-DFTB repulsive energy. 

  

4.4 Icosahedral Fullerenes  

 

4.4.1 Geometrical Description of Icosahedral Fullerenes 

Graphene sheets are composed of hexagonal rings of sp2 hybridized carbon 

atoms. It is possible to curve the graphene sheets by introducing pentagonal rings so 

as to form closed cages known as fullerenes. C60, the most early found and possibly 

most famous member in the fullerene family, was discovered in 1985 by Kroto et 

al.101 Among the various symmetries of fullerene cages differ in morphology and size, 

icosahedral fullerenes are the most highly symmetric ones. The general rule of 

making icosahedral fullerenes had already been described in detail.102,103 Here we just 
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briefly review the rule. An icosahedron is formed by the equilateral triangles as 

building blocks. If the edges of the equilateral triangle differ, different kinds of 

icosahedral fullerenes will be made. In 1937, Goldberg104 showed that the number of 

vertices v in polyhedra of icosahedral symmetry can be related to two integers m and 

n ( 0 0m n   ) by the Goldberg equation:  

2 220( )v m mn n     

v here is regarded as the number of carbon atoms (we denote Nc) in a fullerene, 

m and n show the lattice point (m,n) on a graphene sheet.103 The procedure of forming 

an graphitic onion are putting the first graphene sheet with centered origin (0,0). The 

second pentagonal ring is located next to this origin, and we place another pentagonal 

ring next to the lattice point (m,n). Finally, we put the third pentagonal ring 

equilaterally with respect to the other two rings. This procedure generates a equilateral 

triangle as the building block of the icosahedral fullerenes. If the edge of the triangle 

is in the armchair form, then the resulting fullerene is of full Ih symmetry. In 

generalization, all the graphitic onions formed in the way described above can be 

classified into three families: 

(1) Ih symmetry (armchair) if m=n  

  Nc= 60n2 

 

 

 

(2) I symmetry (helical arrangement) if 2m n   

 220(3 6 4)Nc n n    

 

 

n 1 2 3 4 

Nc 60 240 540 960

(m,n) (2,0) (3,1) (4,2) (5,3)

Nc 80 260 560 980 
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(3) I symmetry (helical arrangement) if 1m n   

 220(3 3 1)Nc n n    

 

 

 

Here we show the Ih symmetric fullerenes. Fullerene C60, C240, C540, C960  have been 

chosen. Their SCC-DFTB optimized geometries are shown in Figure 4.26 along the 

principal C5 axis. Note that the size of each cage is not plotted according to the real 

geometrical ratio.  

 

 
 
 
 
 
 

 
 

Figure 4.26 Structures of the icosahedral fullerenes considered in this study.  

 
4.4.2 Potential Energy Scan (PES) of C60@C240-Search for The  

Most Stable Structure 

It is interesting to investigate how the fullerene behaves if they are combined together. 

Several articles had been focused on the energies and structures of the multi-shell 

fullerenes. Trying to capture the possible conformations of both the inner and outer 

cage, we present the PES of C60@C240 using the SCC-DFTB method.   

We combine the Ih C60 and C240 structures optimized at the SCC-DFTB level. The 

setting of the Cartesian coordinates are shown in Figure 4.27, the distance measured 

between the five-membered rings of both fullerenes is 3.952 Å. To obtain a fine 

energy profile, we rotate the C60 every one degree from 0° to 180° vertically and from 

(m,n) (2,1) (3,2) (4,3) (5,4)

Nc 140 380 740 1220

C60 

C540 
C240 

C960 
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[0°,180°] θ 

x 

[0°,72°] φ

x 

yz 

0° to 72° horizontally. These two rotations form the repeating unit of the real PES and 

include all the possible conformations. Other combinations of θ and φ will just repeat 

the energy in the repeating unit. The notations of angles and direction of rotation are 

also presented in Figure 4.27.    

 

 

 

 

 

 

 

 
Figure 4.27 Angles of rotation for 60 240C @C . 

 

   We used both Slater-Kirkwood and Lennard-Jones dispersive interaction models 

for this PES scan. Before discussing the PES of C60@C240, the two dispersion models 

should be compared to see which one is more accurate. We performed a benchmark 

calculation for these models. We adapt the benzene dimmer as a testing system105-107. 

There exist three different arrangements of the benzene dimer. They are sandwich, 

T-shaped and parallel-displaced, respectively. The geometries of these structures are 

shown in Figure 4.28. 
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Figure 4.28 The three different orientations of the benzene dimer.  

 

   We first optimized the geometry for a single benzene ring, then we made the 

different arrangements in Figure 4.28 by this unit. The computed results are shown in 

Figure 4.29 and compared with the results obtained from estimated 

CCSD(T)/aug-cc-pVQZ*106. For the sandwich conformation, the energy is reported to 

be -1.70 kcal/mol by ref 106, and the inter-ring distance R is 3.9 Å. For the 

SCC-DFTB calculations, both LJ and SK show two potential wells in the potential 

energy curve. 

   Although the LJ model has a stronger overestimation of interaction energy, it 

reflects the R mode accurately compared with the high level ab-initio result. For the 

T-shaped arrangement, the energy and distance from ref 106 are -2.61 kcal/mol and 

5.1 Å. both models have their energy minimum at the same R = 5.30 Å, but the 

minimum for LJ is lower. There are two geometrical parameters, R1 and R2, 

determining the parallel-displaced conformation (Figure 4.28). Ref10 reported R1 to 

be 3.6 Å and R2 to be 1.6 Å. The energy of this combination is -2.63 kcal/mol. Our 

results, for both models, show that R1 equals to 2.9Å and R2 equals to 2.6 Å. The 

energies are both around -8 kcal/mol, but the energy for LJ is lower.  

   In conclusion, comparing with the high level ab-initio calculation, SCC-DFTB 

dispersion models give qualitatively correct results. Further, the LJ potential is always 

R2

R1
H

RR

Sandwich 

T-shaped 

Parallel-displaced 
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T-shaped 
Parallel-displaced

Sandwich

lower in energy for the three different benzene dimer conformations. The results from  

both SK and LJ are comparably identical, but in the case of sandwich benzene dimer, 

the LJ model predicts the distance more accurately.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 The potential energy curves of the three different benzene dimers. 

 

Unfortunately, owing to the numerical problem while solving the generalized 

eigenvalue problem, we currently have completed the PES of 60 240C @C by using the 

LJ model. The most important feature can be found: the very small energy fluctuation 

is found. As presented in the energy scale of Figure 4.30, this small energy difference 

corresponds to the extremely low critical temperature, which indicates that C60 is 
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freely rotating inside C240.  

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 4.30 The PES of 60 240C @C using the LJ model. Energy in Hartree.  

 

4.4.3 Signal Shielding in the Vibrational Spectra 

 
4.4.3.1 Endohedral Fullerenes 

Two series of systems were chosen as the models for endohedral fullerenes: 

2 2 60 2 2 240 2 2 540 2 60 2 240 2 540C H @C , C H @C , C H @C  and H O@C , H O@C , H O@C .  

Based on the present investigation, we can conclude that if the space between the 

fullerene cage and the inserted molecule is large enough, then the vibrational signals 

from the small molecule are completely masked by the signals from the cage. The 

resulting IR spectra are given in Figure 4.31 and Raman spectra are in Figure 4.32. 

Next, we will analyze the deformation of the outer cage and the interaction between 

cages.  
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Figure 4.31 IR spectra of the endohedral fullerenes. 



 91

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

  

 

 

 

 

Figure 4.32 Raman spectra of the endohedral fullerenes. 
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4.4.3.2 Multi-shell Fullerenes  

In this topic, the nested fullerenes under study are: 

  

 

 

The optimized geometries of the systems are given in Figure 4.33 

For the reason of clarity, we changed the color of some inner fullerenes to reveal the 

orientation of the inner fullerene. As pointed out in the PES study of C60@C240, the 

energy barrier for the molecule to rotate inside a fullerene cage is extremely small. 

Thus the inner molecule can be regarded as freely rotating inside the cage. This 

indicates that there exist vast of energetic local minima on the PES of these systems. 

Hence the geometrical optimization can not assure to reach the genuine global 

minimum. Again similar to the endohedral fullerenes, the inner cages initially stay in 

the middle in the first optimized structures of larger-outer-cage systems, but turns out 

that these geometries have imaginary vibrational frequencies, and the imaginary 

modes are actually translation of the inner cages, making them displace from the 

origin. Further optimizations along the imaginary modes provide lead us to the 

geometries that the inner cages are not in the center anymore, even in the case of 

C60@C540, C60 rotated to overlap its hexagonal ring to the pentagonal ring of C540. The 

imaginary modes are removed for these further-optimized geometries. Note that 

although the molecules are allowed to rotate inside the outer cage, most of the 

multi-shell systems still keep the inner cage in the middle, this conformation may 

make the all the pentagonal rings and hexagonal rings from different cages overlap 

most, strengthen the dispersive attraction, hence lower the energy of the system. The 

vibrational spectra are shown in Figure 4.34 for IR and Figure 4.35 for Raman.  

 

60 240 60 540 60 960 240 540

60 240 540

C @C , C @C , C @C  and C @C .

and three-layer multi-shell fullerenes:

C @C @C



 93

60 240C @C

60 540C @C

60 960C @C

60 240 540C @C @C

240 540C @C

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Models of all the considered multi-shell fullerenes. Except for 

60 240 540C @C @C , the color of the inner fullerenes are changed to purple for the 

multi-shell fullerenes 



 94

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34 IR spectra of multi-shell fullerenes.  
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Figure 4.35 Raman spectra of multi-shell fullerenes. 
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Similar to the endohedral fullerenes, the vibrational spectra of multi-shell fullerenes 

present only the signals from the outer cage, the signals from the inner shells are 

totally shielded. 

   In the larger-cage cases, the inner fullerenes will no longer stay in the center of the 

outer cage. Rather, they travel to approach the wall of the outer cage The inter-cage 

distances are in the range of the vdW interaction, implying that the final position of 

the inner cage is making the inter-cage dispersion interaction, thus lowers the total 

energy of the system. Further analysis has to be done on the vibrational mode 

couplings of the inner moleculae and outer cage in the smaller-outer-cage systems.   

 

4.4 Raman Spectra of Single-Wall Carbon Nanotubes 

(SWNTs) 

SWNTs can be classified into three categories: armchair, zig-zag and chiral. This 

classification is according to how they are made by the combination of the indices 

(m,n), with m and n positive integers.8 And m = n for armchair nanotubes, m = 0 for 

zig-zag tubes, and m n for chiral ones. In present study, we have chosen the armchair 

SWNTs with different tube diameters and lengths. Their ends are saturated with 

hydrogen atoms. The models chosen in this study are listed in table 4.5 
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Table 4.5 List of the SWNTs considered in this study.  

indices  (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10)

length (nm) 1 1 1 1 1 1 1 

 2 2 2 2 2 2 2 

 3 3 3 3 3 3 3 

 4 4 4 4 4 4 4 

 5 5 5 5 5 5 5 

 6 6      

 7 7      

 8 8      

 9 9      

 10 10      

 13 13      

 

 

One example of the CNT structures is given below 

 

 

 

 

 

 

 

Figure 4.36 Model of (9,9) 5nm SWNT. 

 

   The main goal of this study is to observe the convergence of the Raman spectra of 

finite SWNT toward infinite SWNT. The Raman spectra of real SWNTs contain three 

principal bands, one is called the ring breathing mode (RBM) at the frequency ~200 

cm-1, the second and third ones are the same as those of graphite – the D band ~1350 

cm-1 due to disorder and the G band at around 1580 cm-1 due to carbons in the 

aromatic rings in graphite.8 According to the original paper from Tour et al, the 

Raman spectra of ultra short SWNTs may vary from the usual SWNT.108 Figure  

4.37 shows the SCC-DFTB calculated Raman spectra of the armchair SWNTs various 
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sets of diameter and length. The half-width of the Gaussians smearing the Raman 

intensity is 1.5 cm-1. Unfortunately, even for the longest model with length equals to 

13 nm, the sign of the typical G band can not be found in the computed spectra. Only 

in the 13 nm (4,4) SWNT, the D band drastically decays compared with other (4,4) 

SWNTs.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
Figure 4.37 Raman spectra of SWNTs considered in this study. 

(4,4) 
(5,5) 

(6,6) (7,7) 
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Figure 4.37 continued. 

 

 

 

 

 

(9,9) 
(10,10) 

(8,8) 
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Chapter 5 

  

Conclusions 

 
The SCC-DFTB method had been applied for studying the geometrical, electronic and, 

vibrational properties of the   conjugated polymer chains and carbon 

nanostructures. 

For the  conjugated polymeric systems, we have studied the evolutions of 

geometry, DOS and energy gaps, induced atomic charges, dipole and quadrupole 

moments as well as polarizabilities in five series of linear oligomers. Each of the 

series contained oligomers containing from one to 50 monomer units. The monomers 

were cis-butadiene, cyclopentadiene and three most common heterocyclic unsaturated 

rings: furan, pyrrole and thiophene. We found that the most of the studied properties 

show pronounced convergence towards constant values. Analysis of geometry and 

induced atomic charges of individual monomer units along the oligomer chain 

showed that for quite short chains (20-mers) the interior of the chain is virtually 

indistinguishable from the corresponding polymer, calculated at the same level of 

theory. Only several terminal units—about 3 to 4 for geometries and 

charges—showed deviations from the bulk values. Such a fast convergence of the 

geometric parameters as well as atomic charges is of great practical importance as it 

allows for investigating quasi-one dimensional polymers using relatively small, 

molecular models. This observation should thus simplify both experimental and 

theoretical studies on such properties of polymers as reactivity, interactions between 
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the polymer chains or influence of structural defects on the chain geometry and charge 

distribution. Similarly, the fast, convergent behavior of the electronic DOSs allows for 

theoretical insight into the band gaps and conductive properties of polymers from the 

oligomer level. This should be especially convenient in studying the energetics of the 

guest electronic levels appearing after doping the oligomer with electron-deficient or 

electron-rich atoms. Note that in order to quantitatively reproduce the energy gap, one 

has to consider longer oligomers that those appropriate for studying geometry or 

charge related properties, since the convergence of the HOMO-LUMO gap with 

increasing chain length is slower than the evolution of e.g. charge distribution. Some 

of the properties we have investigated show even slower convergence towards the 

infinite limits. In fact, quadrupole moments and polarizabilities seem not to reach 

saturation whatsoever, even if they are renormalized to the “property per monomer” 

values. This clearly shows that for these properties using the oligomer approach is not 

directly applicable to characterize the corresponding polymers, for which the 

contributions from individual monomers are obviously constant. Apparently, the 

second (and likely also higher) order tensor properties are extremely sensitive to the 

presence of the terminal parts of the oligomer chains, which cannot be neglected even 

for very long molecules. The contributions to those tensor properties from monomer 

units localized in the oligomer interior may still prove resemble those of polymers. 

Currently an investigation into this issue is under way in our laboratory.  

For the nanodiamonds, two different types of structures belonging to the Td point 

group have been studied, which are octahedral diamonds and tetrahedral diamonds. At 

around 1200 cm-1, the peaks shown in the SCC-DFTB Raman spectra of both series of 

nanodiamonds are coalescing and growing in intensity. Most of these peaks are of T2 

symmetry. Furthermore, the evolution of the Raman spectra of “infH” nanodiamonds 

is consistent with the normal spectra. Both kinds of spectra offer the sign of the 
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unique 1332 cm-1 peak of experimental Raman spectra of single crystal diamond. This 

suggests that for diamond, we have reached the border between the molecular stage 

and the solid-state stage and the ~1200 cm-1 band shown in the SCC-DFTB Raman 

spectra is corresponding to the experimental 1332 cm-1 peak 

The calculated Raman spectra of PAHs show that for both graphene flakes and 

HPBs growing in molecular size, the intensity of the ~ 1600 cm-1 2gE  peak decays. 

In graohene, the intensity of the ~1200 cm-1 1gA  peaks decrease drastically after C10, 

suggesting that the transformation of the D/G ratio occurs. But for the HPBs the 

intensity of the 1gA  peaks does not show any significant change. It is possible that 

the studied models are still too small to provide a clear picture of the 

molecule-to-solid transition.    

The PES of the multi-shell fullerene C60@C240 was scanned by the SCC-DFTB+ 

code using the LJ dispersion potential. In the most stable conformation for this 

complex is all the five- and six-membered rings of the two fullerenes overlap 

perfectly, which results in the same hI  symmetry as the single-cage fullerenes. The 

computed energy barrier is merely 1.6 kcal/mol, presenting a picture that the C60 can 

freely rotate inside C240.  

Both the sinlge-shell fullerenes and multi-shell fullerenes (include the 

endohedral ones) had been studied with a special focus on their Raman spectra. The 

signal shielding effect was found for both cases. Auxiliary signals will appear in the 

spectra if the inserted molecule and the outer cage are close to each other; these 

signals are probably due to the dispersion interaction between the two shells.    

By studying the Raman spectra of armchair SWNT series, the characters of the 

experimental Raman spectra has not been recovered for the 15 nm (5,5) SWNT.  
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 Some of the projects reported in this Thesis are still under investigations and 

more convincing and complete results will be presented in the future. 
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