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ABSTRACT

In this thesis, the self-feedback ratio memory analog cellular nonlinear network
structure with the modified Hebbian algorithm for associative memory applications
are designed and analyzed. The thesis is consist-of three main parts: (1) the analysis
and design of the structure of the ‘self-feedback ‘ratio memory cellular nonlinear
(neural) network (SRMCNN) that applied to the implementation of the analog
associative memory; (2) the design of the SRMCNN structure with B (A and B)
template for Hetero-associative memory applications; (3) the VLSI implementation
for the 18x18 SRMCNN and the conceptual design for the Cellular Nonlinear(Neural)
Network Universal Machine with programmable large-neighborhood.

Firstly, a learnable cellular nonlinear network (CNN) with space-variant
templates, ratio memory (RM), and modified Hebbian learning algorithm is proposed
and analyzed. By integrating both the modified Hebbian learning algorithm with the
self-feedback function and a ratio memory into CNN architecture, the resultant
ratio-memory (RMCNN) is called the self-feedback RMCNN (SRMCNN) which can
serve as the associative memory. It can generate the absolute weights and then

transform them into the ratioed A-template weights as the ratio memories for
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recognizing noisy input patterns. Simulation results have shown that with the stronger
feature enhancement effect, the SRMCNN under constant leakage current can store
and recognize more patterns than the RMCNN. For 18x18 SRMCNN, 93 noisy
patterns with a uniform distribution noise level of 0.8 and a variance of normal
distribution noise of 0.3 can be learned, stored, and recognized with 100% success
rate. The SRMCNN has greater learning and recognition capability when the learned
patterns are simpler and the noise is lower. For the learning and recognition of
complicated patterns, the allowable pattern number is decreased for a 100% success
rate. Simulation results have successfully verified the correct functions and better
performance of SRMCNN in the pattern recognition. With high integration capability
and excellent pattern association performance, the proposed SRMCNN can be applied
in the associative-memory systems for image processing applications.

Secondly, the architecture with embedded ratio memory and realized the
modified Hebbian learning algorithm in thee SRMCNN-with B (A and B) template is
proposed. It can learn the exemplar patterns and correctly output the recognized
patterns for hetero-associative memary. applications,* The weights of the B template
are generated from the product of the desired output pixel value and the nearest five
neighboring element as associative memory for all input exemplar patterns. The
learned weights are processed in the ratio with the summation of absolute coefficients
on the B template. The efficiency of ratio memory is enhanced the feature of pattern.
The learned SRMCNN with B template can successful recognized the eight test
patterns with white-black noise for auto-associative memory applications. The
simulation results of the behavior and function of the SRMCNN with A and B
templates for hetero-associative memory applications are demonstrated and analyzed.
As the results shown that it was learned and recognized five exemplar patterns and
output correctly pattern. The capability of SRMCNN for the more variant exemplar
patterns learning and recognition is greatly improved in the hetero-associative

memory applications.
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Finally, the structure of the SRMCNN with B template and the modified
Hebbian learning algorithm for auto-associative memory are proposed. The function
blocks are implemented in the VLSI circuits for the 0.25 um 1P5M n-well CMOS
technology. The characteristics of the proposed circuits are correctly verified by the
HSPICE software. The function of ratio memory for one bit SRMCNN with B
template was realized in the VLSI chip and their behavior was observed. The
simulation results of the 18x18 SRMCNN behavior and function are demonstrated
and analyzed. Thus, the SRMCNN has a great feature that the network can easily
implemented in VLSI hardware circuits. The capability of pattern learning and
recognition is also improved. The conceptual design for the general architecture of the
Large-Neighborhood Cellular Nonlinear (Neural) Network Universal Machine
(LN-CNNUM) is described.

As the results, the proposed SRMCNN structure used the analog current mode
four-quadrant multiplier and two guadrant divider and-its applications in associative
memories have a great potential for, the system-on-a-chip to realize the neural
network systems, and the LN-CNNUM structure can simplify the complex of the
large-neighborhood interconnections. Further researches will be join in the SRMCNN
research in the future, and the embedded ratio memory structure will be used into the
analog parallel image processor for the real-time image processing system

development.
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