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具自回授之比例記憶細胞式非線性網路 

設計與分析及其在聯想記憶之應用 

 
研究生：賴瑞麟            指導教授：吳重雨 

 

國立交通大學電子工程系電子研究所 
 

摘要 
 

本論文的主旨在於闡述類比自回授比例記憶細胞式非線性網路

架構配合修正之 Habbian 演算法在聯想記憶應用之分析與設計。本論

文由三個主要部分所組成：(1)自回授比例記憶細胞式非線性網路架

構應用於類比聯想記憶之分析與設計; (2)具 B 或(A 和 B)樣板之

SRMCNN 於異聯想記憶應用的設計; (3) 18x18 SRMCNN 的超大型積

體電路設計及大鄰近層細胞式非線性網路泛用機器之概念設計。 
首先，本論文藉由探討一個被稱為 RMCNN 之比例記憶可學習

細胞式非線性網路的超大型積體電路神經網路之硬體實現設計，並正

確地驗正它的功能；接著提出並分析一個自回授比例記憶細胞式非線

性網路架構(SRMCNN)配合修正之 Habbian 演算法。在這比例記憶細

胞式非線性網路中，自回授權重值被導入樣板 A 中。SRMCNN 如同

聯想記憶般產生絕對權重值，再轉換為比例權重值於 A 樣板中，網

路能夠儲存圖案樣本並辨識具有雜訊之測試圖案。從模擬的結果得

知，自回授比例記憶細胞式非線性網路中之樣板權重值經學習及固定

時間漏電後，對權重值做比例處理，網路具有增強樣本特徵的學習能

力，SRMCNN 比 RMCNN 可儲存與辨識更多之圖案。對於 18x18 之

SRMCNN 能成功地學習、儲存及辨識 93 個具雜訊之圖案，雜訊之均

勻分佈準位為 0.8 或常態分佈變動量為 0.3。SRMCNN 對較單純或雜

訊較低之圖案具有較好之學習及辨識能力；反之，可允許處理之圖案

數目會降低。模擬的結果成功地印證 SRMCNN 在圖案辨識上有正確

地功能及良好地效能。在高整合力及圖案結合效能下，所提出的

SRMCNN 能用於聯想記憶系統執行影像處理應用。 
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其次，根據自回授比例記憶細胞式非線性網路架構，提出一個使

用 B 或(A 和 B)樣板於自回授比例記憶之細胞式非線性網路架構；這

網路能學習樣本圖案並正確輸出辨識圖案在異聯想記憶的應用上。B
樣板中之權重值可以由已知之輸出圖素和對應神經元之五個相臨輸

入圖素之乘積並累積所有輸入樣本圖案得到。透過學習得到之權重值

分別除以樣板中所有係數之絕對值的和，此比例記憶的效果可增強圖

案的特徵，並辨識八個具黑百雜訊之圖案。將 A 和 B 樣板同時使用

於 SRMCNN，在異聯想記憶應用的行為和功能其模擬結果作展示及

分析，成功處理四個經旋轉之圖案；由此觀之，SRMCNN 對於變異

性較大圖案之學習與辨識能力可以大大改善。 
最後，針對所提出具 B 樣板於自回授比例記憶細胞式非線性網

路的架構配合修正之 Habbian 演算法在異聯想記憶應用的電路設

計。功能方塊由 0.25 微米互補式金氧半製程技術設計出超大型積體

電路，以 HSPICE 軟體驗證電路之正確性。實現一位元具 B 樣板於

SRMCNN 之超大型積體電路晶片，觀察其比例記憶的功能動作；展

示並分析 18x18 SRMCNN 行為和功能在異聯想記憶應用的模擬結

果。因此，SRMCNN 具有方便超大型積體電路硬體電路實現的特點，

且對圖案學習與辨識的能力有效地改善。最後提出並描述一個具有大

鄰近層數不對稱模版的細胞式非線性網路泛用機器一般架構的概念

性設計。 
經由模擬與實驗的驗證，本論文以雙載子接面電晶體乘除法器發

展出自回授比例記憶細胞式非線性網路架構，SRMCNN 在各種異聯

想記憶應用中被設計於單一晶片上之神經網路系統，極具研究潛力，

而大鄰近層細胞非線性網路之設計則簡化了大鄰近層連線的複雜

度。在 SRMCNN 領域未來仍有繼續研究之議題；將比例記憶整合於

聯想記憶功能中用於細胞式非線性網路泛用機器處理及時影像於類

比平行影像處理系統是可繼續進行之研究。 
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ABSTRACT 
 

In this thesis, the self-feedback ratio memory analog cellular nonlinear network 

structure with the modified Hebbian algorithm for associative memory applications 

are designed and analyzed. The thesis is consist of three main parts: (1) the analysis 

and design of the structure of the self-feedback ratio memory cellular nonlinear 

(neural) network (SRMCNN) that applied to the implementation of the analog 

associative memory; (2) the design of the SRMCNN structure with B (A and B) 

template for Hetero-associative memory applications; (3) the VLSI implementation 

for the 18x18 SRMCNN and the conceptual design for the Cellular Nonlinear(Neural) 

Network Universal Machine with programmable large-neighborhood. 

Firstly, a learnable cellular nonlinear network (CNN) with space-variant 

templates, ratio memory (RM), and modified Hebbian learning algorithm is proposed 

and analyzed. By integrating both the modified Hebbian learning algorithm with the 

self-feedback function and a ratio memory into CNN architecture, the resultant 

ratio-memory (RMCNN) is called the self-feedback RMCNN (SRMCNN) which can 

serve as the associative memory. It can generate the absolute weights and then 

transform them into the ratioed A-template weights as the ratio memories for 
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recognizing noisy input patterns. Simulation results have shown that with the stronger 

feature enhancement effect, the SRMCNN under constant leakage current can store 

and recognize more patterns than the RMCNN. For 18×18 SRMCNN, 93 noisy 

patterns with a uniform distribution noise level of 0.8 and a variance of normal 

distribution noise of 0.3 can be learned, stored, and recognized with 100% success 

rate. The SRMCNN has greater learning and recognition capability when the learned 

patterns are simpler and the noise is lower. For the learning and recognition of 

complicated patterns, the allowable pattern number is decreased for a 100% success 

rate. Simulation results have successfully verified the correct functions and better 

performance of SRMCNN in the pattern recognition. With high integration capability 

and excellent pattern association performance, the proposed SRMCNN can be applied 

in the associative-memory systems for image processing applications. 

Secondly, the architecture with embedded ratio memory and realized the 

modified Hebbian learning algorithm in the SRMCNN with B (A and B) template is 

proposed. It can learn the exemplar patterns and correctly output the recognized 

patterns for hetero-associative memory applications. The weights of the B template 

are generated from the product of the desired output pixel value and the nearest five 

neighboring element as associative memory for all input exemplar patterns. The 

learned weights are processed in the ratio with the summation of absolute coefficients 

on the B template. The efficiency of ratio memory is enhanced the feature of pattern. 

The learned SRMCNN with B template can successful recognized the eight test 

patterns with white-black noise for auto-associative memory applications. The 

simulation results of the behavior and function of the SRMCNN with A and B 

templates for hetero-associative memory applications are demonstrated and analyzed. 

As the results shown that it was learned and recognized five exemplar patterns and 

output correctly pattern. The capability of SRMCNN for the more variant exemplar 

patterns learning and recognition is greatly improved in the hetero-associative 

memory applications. 
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Finally, the structure of the SRMCNN with B template and the modified 

Hebbian learning algorithm for auto-associative memory are proposed. The function 

blocks are implemented in the VLSI circuits for the 0.25 µm 1P5M n-well CMOS 

technology. The characteristics of the proposed circuits are correctly verified by the 

HSPICE software. The function of ratio memory for one bit SRMCNN with B 

template was realized in the VLSI chip and their behavior was observed. The 

simulation results of the 18x18 SRMCNN behavior and function are demonstrated 

and analyzed. Thus, the SRMCNN has a great feature that the network can easily 

implemented in VLSI hardware circuits. The capability of pattern learning and 

recognition is also improved. The conceptual design for the general architecture of the 

Large-Neighborhood Cellular Nonlinear (Neural) Network Universal Machine 

(LN-CNNUM) is described. 

As the results, the proposed SRMCNN structure used the analog current mode 

four-quadrant multiplier and two quadrant divider and its applications in associative 

memories have a great potential for the system-on-a-chip to realize the neural 

network systems, and the LN-CNNUM structure can simplify the complex of the 

large-neighborhood interconnections. Further researches will be join in the SRMCNN 

research in the future, and the embedded ratio memory structure will be used into the 

analog parallel image processor for the real-time image processing system 

development. 
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period 

Fig. 4.10  The recognition sequence of left-rotate A character during recognition 

period 

 

CHAPTER 5 

 

Fig. 5.1  The detailed architecture of two neighboring cells and their ratio memory 

(RM) in the SRMCNN 

Fig. 5.2  The S block in the SRMCNN during (a) learning period and (b) 

recognition period 

Fig. 5.3   (a) The circuit of V-I converter of the blocks T2, and the absolute-value 

circuit; (b) The HSPICE simulation results 

Fig. 5.4  Sign latch 

Fig. 5.5  Sign detector 

Fig. 5.6  The CMOS circuit of the block M/D 

Fig. 5.7   HSPICE simulation results for (a)Multiplication function with I2=20µA 

 (b) Division function with I1=6µA 

Fig. 5.8  The CMOS readout circuit for the cell output 

Fig. 5.9 SRMCNN (a) learn data with the five neighboring cells for six data input; 

(b) the learned weights; (c) learning and ratio state; (d) the ratioed weights 

during each elapse time 

Fig. 5.10  The layout graph of one bit SRMCNN for learning and ratio 

Fig. 5.11  The HSPICE simulation (a) learn five exemplar patterns with white-black 

noise and the recognized output pattern; (b) zoom-out the data of exemplar 

patterns; (c) zoom-out the recognized pattern 

Fig. 5.12  The layout graph and characteristics for 9x9 SRMCNN system 

Fig. 5.13 Global architecture of LN-CNNUM. 
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Fig. 5.14 (a) Structure of LN-CNN kernel unit. (b) Connections between 

neighboring cells and 

Fig. 5.15 Weights of the LN-CNNUM in (a) template A and (b) template B. 

Fig. 5.16 Architecture of one cell in the LN-CNNUM 
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