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CHAPTER 2 

 

REVIEW OF CELLULAR NONLINEAR NETWORKS AND 

THEIR APPLICATIONS 

1.  
2.1  FUNDAMENTALS OF CELLULAR NONLINEAR NETWORKS 

 

Due to the advantageous feature of local connectivity, the cellular nonlinear 

(neural) network (CNN) introduced by Chua and Yang [55] is very suitable for VLSI 

implementation and used in many applications [56]-[58], [64], [89]-[90]. One of CNN 

application is as neural associative memories for pattern learning, recognition, and 

association [61], [87]-[103], [107]-[109], [112]-[117]. Among them, many innovative 

algorithms and software simulations of CNN associated memories were reported 

[87]-[88], [107]-[109]. As to the hardware implementation, special learning algorithm, 

and digital hardware implementation for CNN were proposed in [110]-[112] to solve 

the sensitivity problems are caused by the limited precision of analog weights. 

Moreover, CMOS chip implementation of CNN associative memory was also reported 

in [110]. The stability analysis for CNN is discussed in [148]-[152]. 

 

2.1.1 Basic Definition and Mathematical Foundation of CNN [55]-[58], 

[64-[65], [79], [139]-[140] 

 

(1) Basic Definition and Mathematical Foundation 
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The fundamental concepts and architectures used in CNN are reviewed. For image 

processing purposes, usually a 2D CNN structure as shown in Fig. 2.1 is used, where 

each box denotes a cell. The basic structure of CNN is similar to a typical biological 

cellular cell is shown in Fig 2.2. The CNN array shown in Fig. 2.1 is called an MxN 

CNN which consists of M rows and N columns of cells. A cell is a basic CNN unit. A 

cell has direct coupling only to its near neighbors. This local connectedness is formally 

defined by the following definitions [55]-[58]. 

 

Definition 1: Standard CNN Architecture 

A standard CNN architecture is shown in Fig. 2.1, and it consists of an MxN 

rectangular array of cells C(i,j) with Cartesian coordinate (i,j), i = 1,...,M, j = 1,...,N. 

 

Definition 2: Sphere of Influence of Cell C(i,j) 

The sphere of influence, Nr(i,j), of radius r of cell C(i,j) is defined to be the set of all 

neighboring cells satisfying the following property 

}≒|}-||,-{||),{C(),( max
≒≒  ,≒ ≒ 

rjliklkjiN
Nl1Mk1

r =  (2.1) 

where r is a positive integer. 

Nr(i,j) in (2.1) is usually referred the as (2r+1)x(2r+1) neighborhood. Fig. 2.3(a) 

shows the r = 1 (3x3) neighborhood, Fig. 2.3(b) shows the r = 2 (5x5) neighborhood, 

and Fig. 2.3(c) shows the r = 3 (7x7) neighborhood. In the CNN, every cell is 

connected to all its neighboring cells in ),( jiNr  via “synaptic” or “weight” circuits. If 

r = N-1 and M = N, a fully connected CNN is corresponds to the classic Hopfield 

network. ),( jiN 0
r  is the set of r-neighboring cells ),( jiNr  without the center cell 

),(C ji . 
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Definition 3: Regular and Boundary Cells. 

A cell C(i,j) is called a regular cell with respect to Nr(i,j) if and only if all 

neighboring cells C(k,l)∈Nr(i,j) exist. Otherwise, C(i,j) is called a boundary cell. The 

outermost boundary cells are called the edge cells. Not all boundary cells is edge cell if 

r > 1. The illustration of each cell is shown in Fig. 2.4. 

 

Definition 4: A class 1 standard CNN 

A class 1 MxN standard CNN is defined by an MxN rectangular array of cells C(i,j) 

located at site (i,j), i = 1,...,M, j = 1,...,N. Each cell C(i,j) is defined by the following 

equations: 

1. State Equation of cell C(i,j) 
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where xij ∈ R, ykl ∈ R, ukl ∈ R, and zij ∈ R denote the state variable, output, input, and 

threshold of the cell C(i,j), respectively, and R is the set of real number. aijkl and bijkl 

denote the feedback and input synaptic operators between cells C(i,j) and C(k,l), 

respectively. The bias is zij (also called threshold) of the cell C(i,j), which may be static, 

temporal-variant, spatial-invariant, or spatial-variant. Cij > 0 and Rij > 0 are the values 

of the capacitor and resistor, respectively.   

2. Output Equation of cell C(i,j) 
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This function f(xij) is also called as the activation function. There are several activation 

function are applied to the neural networks as shown in section 2.2. The standard 

piecewise linear output function yij = f(xij) is most used by standard CNN. 

3. Input equation of cell C(i,j) 

)E(= ijuij fu  (2.4) 
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where Eij is the input signal, for example, the intensity of light detected by an 

embedded optical sensor in the cell C(i,j). In the elementary CNN, fu(.) is used to 

normalize the detected signal to a proper range. 

4. Boundary Conditions 

Boundary conditions are part of CNN design for different tasks. Some CNNs may 

fail to work correctly without specified boundary conditions while others are 

independent of boundary conditions. There are three kinds of boundary conditions as 

Fixed (Dirichlet) boundary conditions (Fig. 2.5) 

Each boundary cell has fixed input and fixed output. The fixed input and output are 

usually spatial-invariant. 

Zero-flux (Neumann) boundary conditions (Fig. 2.6) 

The input and output of a boundary cell are the same as that of the regular cells at 

the symmetry position with respect to the boundary cells. 

Periodic (Toroidal) boundary conditions (Fig. 2.7) 

The neighboring cells of a boundary cell are those symmetrical with respect to the 

center of CNN. For an MxN regular cells array CNN, the outputs and inputs of 

boundary cells are listed as follow: 

Left boundary cells: yi0=yiN, ui0=uiN, i = 1, 2, …, M 

Right boundary cells: yi(N+1)=yi1, ui(N+1)=ui1, i = 1, 2, …, M 

Top boundary cells: y0j=yMj, u0j=uMj, j = 1, 2, …, N 

Bottom boundary cells: y(M+1)j=y1j, u(M+1)j=u1j, j = 1, 2, …, N 

 

5. Initial State 

xij(t=0)    i=1,...,M;  j=1,...,N (2.5) 

xij(t=0) is the cell state before the CNN starts the image processing. Sometimes, 

the processing image is stored in the cell state X instead the constant inputs U. The 

input ukl is usually the pixel intensity of an MxN gray-scale image or picture, 
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normalized without loss of generality to have the range +1  1 ≤≤− klu  where white is 

coded by -1 and black is coded by +1. In the most general case, both aijkl and bijkl are 

nonlinear operators which operate on xkl(t), ykl(t), ukl(t), xij(t), yij(t), and uij(t), 0 0≤ ≤t t , 

to produce a scalar (aijkl ykl)(t0) and (bijkl ukl)(t0), 0 0≤ ≤t t . 

 

In VLSI implementation of CNNs, uij, xij, and yij are three voltages and zij is a bias 

current. The block diagram of a cell realized by electronic circuits is shown in Fig. 2.8, 

where all diamond-shape symbols denote a voltage-controlled current source that 

injects a current proportional to the indicated controlling voltage ukl or ykl and weighted 

by bijkl or aijkl. In the internal core which is a nonlinear voltage-controlled current source, 

the state equation (2.2) is realized with the output voltage yij = f(xij). 

 

Definition 5: Spatial-invariant or isotropic CNN 

A CNN is spatial-invariant or isotropic if and only if both the synaptic operators 

aijkl and bijkl and the threshold zij do not vary with space. In this case, we have  
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zij = z  (2.6) 

 

Definition 6: A class 2 standard CNN 

A class 2 MxN standard CNN with linear synaptic operators is defined by the 

following state equation (using the same notation as in (2.2)):  
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where the notations aijkl and bijkl are the same as those in (2.2), the synaptic weights cijkl 

(template C) and dijkl (template D) depending on the states and mixed variables (inputs, 

states, and outputs), respectively. 

 

(2) Three CNN classes 

 

Each CNN is uniquely defined by 3 cloning templates {A, B, Z}, which consists 

of 19 real numbers for a 3x3 neighborhood (r = 1).   

 

Definition 7:  Excitatory and inhibitory synaptic weights 

A feedback synaptic weight aijkl is said to be excitatory (inhibitory) if and only if it 

is positive (negative). 

A synaptic weight is excitatory (inhibitory) because it increases (decreases) the 

derivation of state &xij , namely the rate of growth of xij(t). The signal flow structure of a 

standard CNN {A, B, Z} with a single neighborhood N1(i,j) is shown in Fig. 2.9(a). The 

2 shaded cones symbolize the weighted contributions of input and output voltages of 

the cell C(k,l) ∈N1(i,j) to the state voltage. The system structure of a cell C(i,j) is shown 

in Fig. 2.9 (b) where arrows printed in bold mark parallel data paths from the input ukl 

and the output ykl of the neighboring cells C(k,l), respectively. Arrows on thinner lines 

denotes the threshold zij, input uij, state xij, and output yij, respectively.  

 

Definition 8: Zero-feedback (feed-forward) class {0, B, Z} 

A CNN belongs to the zero-feedback class {0, B, Z} if and only if all feedback 
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template weights are zero, i.e., A ≡ 0. 

Each cell of a zero-feedback CNN is described by 
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Fig. 2.10(a) shows the signal flow structure of a zero-feedback (feed-forward) 

CNN with a 3x3 neighborhood. The cone symbolizes the weighted contributions of 

input voltages of the cells C(k,l)∈N1(i,j) to the center cell C(i,j). Fig. 2.10(b) shows the 

system structure of a cell C(i,j).  

 

Definition 9: Zero-input (Autonomous) class {A, 0, Z} 

A CNN belongs to the zero-input class {A, 0, Z} if and only if all feed-forward 

template weights are zero, i.e., B ≡ 0. 

Each cell of a zero-input CNN is described by  
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The signal flow structure of a zero-input (Autonomous) CNN with a single 

neighborhood is shown in Fig. 2.11(a). The shaded cone symbolizes the weighted 

contributions of the output voltage of the cells C(k,l)∈N1(i,j) to the center cell C(i,j). In 

the Fig. 2.11(b), the system structure of a center cell C(i,j) is presented. In this case, 

there are no input signals. 

 

Definition 10: uncoupled (scalar) class {A0, B, Z} 

A CNN belongs to the uncoupled class {A0, B, Z} if and only if aijkl = 0 except ij = 

kl, i.e., A ≡ 0 

Each cell of an uncoupled CNN is described by 
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Fig. 2.12(a) shows the signal flow structure of an uncoupled CNN with a single 
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neighborhood. The system structure of a center cell C(i,j) is shown in Fig. 2.12(b). 

 

2.1.2 Activation Functions 

 

A rule, which gives the effect of all inputs on the activation of the cell, is needed. 

Often, the rule that is also called as the activation function f(x) is a non-linear, 

mono-increasing function of the weighted sum of its inputs. Generally, some sort of 

threshold function is applied: a hard limit threshold function (step function or sign 

function), or a semi-linear or piecewise linear function (ramp function), or a smoothly 

limiting threshold function (sigmoid function) [138]. These activation functions are 

formulated as follows: 

1. Step function 

⎩
⎨
⎧

<
===

0       1- 
0≡       1

)sgn()(
x
x

xxfy  (2.11) 

2. Ramp function 
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3. Sigmoid function 
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+
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4. Gaussian function 

1n   e)(
2-n === xxfy  (2.14) 

where x is the cell state, y is the cell output of the activation function, and n is the order 

that represents the grade of transferring curves. 

The transferring characteristic curves are shown in Fig. 2.13. Which activation 

function is used is decided by the choice of the neural network. Generally, the step 

function and ramp function is usable to the software simulation for the simple 
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calculation, but they are hard to be implemented in the VLSI technology because of the 

high gain or piecewise linearity. The sigmoid function and Gaussian function are much 

similar to the practical transfer function in the VLSI technology, but it needs 

complicated calculation in the software simulation. Thus, all the four activation 

functions can be implemented in the software simulation, but only the sigmoid function 

and Gaussian function can be implemented by the VLSI technology.  

 

2.2 APPLICATIONS OF CELLULAR NONLINEAR NETWORKS 
 

A compilation of the selected templates for cellular nonlinear (neural) networks is 

presented [55]-[58]. Many items or structures are used in the CNN for variety 

applications. Some representative applications are shown below. The templates applied 

in the CNN for simulating Muller-Lyer optical illusion [57], for halftoning [57]-[58], 

for discrete-time CNN [139], [142], for gray-scale contour detection [95], [113], [179] 

for gray-diagonal detection [58], for Herring-grid illusion [58], for information 

coding/decoding [132], for associative memory [61], [94] for character recognition 

[116], for artificial network [161] applications. Besides the application on associative 

memory, the image processing is another important application for the CNN. A 

multistage CNN called CNN universal machine (CNNUM) is developed for handling 

kinds of image processing. 

 

2.2.1 Cellular Nonlinear Network Applications [55]-[58], [139]-[142] 

 
Since the invention of CNN (L. O. Chua and L. Yang, 1988) [55]-[56], different 

CNN structures have been proposed for different applications and from different 

biological models. After the original CNN is invented, another main CNN branch, 
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discrete-time CNN (DTCNN), was proposed by Harrer in 1994 [142]. The DTCNN is 

specified by a set of difference equations that represent the discrete dynamics of cells 

and the nonlinearity of the output activation function. The standard DTCNN presented 

by Harrer and Nossek in 1992 is given by 

State equation of cell C(i,j) 
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Output equation of cell C(i,j) 
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where xij[n] and zij[n] are the state and threshold of the cell C(i,j), respectively. The 

output activation function is not limited to only the hard-limit activation function; it can 

be any kind of function depending on applications and implementing platforms. The 

original CNN with continue-time dynamics is called as CTCNN to emphasize the 

difference between the CTCNN and DTCNN. However, the CNN community trends to 

used CNN and CTCNN interchangeably. In this thesis, the CNN is used loosely as 

CTCNN for simplicity. Except the DTCNN, there are several CTCNNs being 

developed. They will be described in the follow section. 

First one is the multiplayer CNN (MCNN). A MCNN uses more than one layer of 

CNN to perform a single task [55], [143]-[144]. Different MCNN prototypes were 

presented by Majorana and Chua [130]. One widely used form of nth-order CNN is a 

multilayer CNN that was presented by Chua and Yang [55]. The state equation of a 

K-layer CNN cell C(i,j) is given by 
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the outputs (inputs) of pth-layer neighboring cells C(k,l) of the central cell C(i,j) 

whereas the ][ pq
ijkla ( ][ pq

ijklb ) are the feedback (feed-forward) weights between the pth and 

qth layer. So far, the MCNN has applied to process the binary image processing engine, 

the linear filters, and adaptive edge detection [143]-[145]. 

In motion-related applications (T. Roska and L. O. Chua, 1993) [67], time delays 

are introduced into CNN structures and result in the kinds of delay-type CNNs (DCNNs) 

that are defined by T. Roska and L. O. Chua [67]-[68] as  
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where τ is called the time delay. The delay-type templates provide us with even more 

flexibility and new applications, including the detection of some motion-related [67] 

CNN applications. There are some theoretical results on the stability of DCNN in works 

by Finnocchiaro and Perfetti [148], Gilli [147], T. Yang [139]. As DCNN is governed 

by a set of functional partial differential equations (PDE), some complex phenomena, 

for example, chaos, were observed by Civalleri and Gilli [146] even when only a small 

number of cells were used. Some results of predicting the chaotic sequence generated 

by chaotic DCNN are presented by Gilli [147]. 

Since only linear synaptic weights are not enough to deal with some image 

processing tasks where nonlinear properties are embedded, the CNN with nonlinear 

synaptic laws were introduced and called the nonlinear CNN (NCNN) [68]. The state 

equation of cell C(i,j) is defined by 
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where A(ykl(t),t) (B(ukl(t),t), and Z(t)) denotes nonlinear template A (B, and Z) for the 

outputs (inputs and threshold) variables within Nr(i,j). In this case, synaptic laws are 
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functions of time, outputs, inputs, and threshold within the neighborhood system. The 

NCNN provides a rigorous theoretical framework to solve many complex 

image-processing problems, for example, noise removal and feature extraction of 

gray-scale picture [68]. In addition to many new applications, the non-linear cloning 

templates allow us to model some biological properties of the retina, Moreover; it can 

also be used for modeling motion dynamics. 

There also exist some other kinds of CNN structures such as chaotic CNN 

(CCNN), where every cell is a chaotic dynamic system [88], [93], [95], [154]-[155] that 

can be used to model some kinds of emergent behaviors and simulate some wave and 

pattern formation phenomena in an active medium [153]. In CCNN arrays, some 

nonlinear dynamic behaviors such as synchronization [154], cluttering, and cooperative 

phenomena were also found [155]. The existing results of CCNN consist of two main 

branches. One branch studies how to use the elementary CNN to generate chaotic 

signals and relevant applications. The other branch studies how to use chaotic elements 

as elementary cells to model spatial-temporal chaotic processes [156]. For the more 

complicated image processing, the multistage CNN is developed. A multistage CNN, 

called CNN universal machine (CNNUM), will be introduced in the next section. 

 

2.2.2 Cellular Nonlinear Network Universal Machine 
 

The CNN universal machine [157] is a programmable CNN. It can perform several 

complicated functions that cannot be simultaneously realized by the original CNN. 

Much research effort on the CNNUM has been undertaken and its implementation has 

been successfully demonstrated. Current CNNUM are based on the 

single-neighborhood (SN-CNN) structures [157]-[159]. 

The global architecture of the CNN universal machine [157] (CNNUM) is shown 
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in Fig. 2.14, where the analogical CNN universal cells are arranged on a regular grid. 

Fig. 2.15 shows the analog part of the analogical CNN universal cell. The CNN-UM 

consists of two main parts: (1) the array of analogical CNN universal cells and (2) the 

Global Ana logic Programming Unit (GAPU). As shown in Fig. 2.14, an analogical 

CNN universal cell has the following main additions to a CNN nucleus (core cell): 

• Local analog memory (LAM): A few continuous (analog) values are stored in 

the LAM, cell by cell. 

• Local logic memory (LLM): A few binary (logic) values are stored in the LLM, 

cell by cell. 

• Local analog output unit (LAOU): A simple programmable multi-input-single 

output analog operation is executed and the input(s) and output are stored in 

LAM. 

• Local communication and control unit (LCCU): It receives the messages from 

the central (global) commander, the GAPU, and programs the analogical CNN 

universal cells accordingly. The messages in the return directions are also 

possible. 

 

The global analogical programming unit (GAPU) consists of four main parts: 

• The analog program register (APR) that stores the templates (or their codes) 

used in the program. 

• The logic program register (LPR) that stores the local logic operators (or their 

codes) used in the program. 

• The switch configuration register (SCR) that stores the switch states (or their 

codes) and governing the cell configurations used in the program. 

• The global analogical control unit (GACU) that is stored the physical machine 

code of the program. 
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By using these units, the CNNUM can be programmed to implement analogical CNN 

algorithms. 

The CNN universal machine (CNNUM) [157] is not only an elementary CNN 

structure, but also a platform for integrating the flow of CNN operations. Moreover, the 

CNNUM is an important tool for organizing different kinds of CNN structures to 

perform complicated tasks that a single CNN cannot finish. The CNNUM can also be 

used to solve some global problems that are difficult to decompose in the CNN 

structure [158]-[160]. In fact, the CNNUM has been proved to be as universal as a 

Turing machine [162]. As it is only a platform for CNN operations, any kind of CNN 

should be included in the core of this platform, including DTCNN [142], and FCNN 

[163]-[164]. However, the current CNNUM has only an elementary CNN core. Thus 

this platform needs further improvement. 

Local connection is the most significant characteristic of SN-CNN. Thus it can be 

easily implemented in VLSI technology. Furthermore, the SN-CNN can perform many 

useful functions in image signal processing. 

However, the locally connected SN-CNN restricts their ability to solve complex 

problems that require large-neighborhood templates. Conceptually, each CNN cell can 

be connected to more than one layer of neighboring cells. Such a CNN is called the 

Large-Neighborhood Cellular Nonlinear (Neural) Network (LN-CNN). Recently, the 

initial design of symmetric LN-CNN has been proposed and implemented by a new 

device called the neuron BJT (νBJT) [31]-[32], [178]. 

The CNN universal machine [157] is a programmable CNN. It can perform 

several complicated functions that cannot be simultaneously realized by the original 

CNN. Much research effort on the CNNUM has been undertaken and its 

implementation has been successfully demonstrated. Current CNNUM are based on the 

SN-CNN structures [158]-[160]. 
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In this thesis, a compact LN-CNN cell with synaptic structure to realize large cell 

arrays and special architecture to realize the large-neighborhood template is proposed. 

The LN-CNN cell is used to form the kernel unit of the original CNNUM so that the 

LN-CNNUM can be designed. The conceptual design, architecture, and realization of 

the LN-CNNUM are described. Software simulations are performed to verify the 

function of the LN-CNNUM with corresponding templates. 

 

2.3 LEARNING RULES 

 

The pattern recognition systems with ANN can be categorized into two distinct 

sorts on learning methodologies, one is supervised pattern recognition system, and the 

other is unsupervised pattern recognition system. The block diagrams of the supervised 

and unsupervised pattern recognition system are shown in Fig. 2.16. The learning 

method of supervised pattern recognition system is supervised learning, which is also 

called as learning with a teacher or learning with the desired output whereas the 

learning method of unsupervised pattern recognition system is unsupervised learning, 

and it is also called as learning without a teacher. Supervised learning in which an 

external teacher trains the ANN until the real output matches the desired output. 

Unsupervised learning in which external teacher’s guidance is absent. Under this 

circumstance, the network adaptive weights base exclusively on the experiences with 

all the input patterns. 

 

2.3.1 Supervised Learning 

 

Well-known examples of supervised neural network are Perceptron [3], [138], 

ADALINE [119], Multi-layer ADALINE [120], MADLINE [121], and various 
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multi-layer feed-forward networks, etc. Due to the nature of supervised learning, the 

training patterns must be provided in terms of input/output patterns pairs, and the 

trainee will be told by the teacher about how to make proper adjustment to improve the 

performance. Some basic supervised learning rule is presented as follow: 

Widrow-Hoff Learning [119]-[121] 

The Widrow-Hoff learning is presented by Widrow and Hoff in 1960 and 1962 

[119]. In 1960, the Adaptive Linear Combiner (ALC) is presented. The learning system 

of ALC is shown in Fig. 2.17(a). The learning rule of ALC is a Least Mean Square 

Error (LMSE) learning rule. The derivation weight ∆wij is shown as 

∆wij = c ( di - yi ) uj (2.20) 

where c is a constant when d i is the desired output, and yi is the real output of cell C( i ) 

whereas uj is the input of cell C( j ). In 1962, the binary output is added to the ALC, and 

the new structure is called as ADAptive LINear Element (ADALINE) and its block 

diagram is shown in Fig. 2.17(b). 

Delta Learning [103] 

The Delta learning rule is proposed by Rumelhart, Hinton, and Williams in 1986 

[122], and is evolved from the Widrow-Hoff learning. The learning system of Delta 

learning is shown in Fig. 2.18. The derivation of weight ∆wij is proportional to the 

multiplication of the derivation of activation function and the difference of the desired 

and real outputs, and is shown as 

∆wij = c ( di - yi ) f’(xi) uj (2.21) 

where c, di, yi, and uj are the same as the above description whereas f(xi) is the 

activation function, and f’(xi) is its derivation. The limit of the Delta learning is that the 

activation function must be a differentiable function. 
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2.3.2 Unsupervised Learning 
 

Unsupervised learning may be essential to classification in the absence of 

teacher’s guidance. Since there will be no teacher, unsupervised learning exclusively on 

the characteristic inherently associated with the learning patterns. Various kinds of 

competitive learning network have been developed by Kohonen [51]-[52], [123], von 

der Malsburg [124]-[125], Fukushima [127], and Grossberg [4], [128]-[135], etc. The 

unsupervised learning systems have the following common features: 1) the training is 

based on competition. 2) Well-known examples of unsupervised neural network are 

Self-organization feature map [21], [51], [124], ART I-II [12]-[13]. 

Hebbian learning [2], [136]-[138] 

The Hebbian learning rule is proposed by D. O. Hebb in 1949 [2]. The derivation 

of weight ∆wij is proportional to the cross product of input and output, and can be 

written as 

∆wij = c xi uj (2.22) 

where c is a constant, uj is the input of cell C(j) and xi is the state of cell C(i). The 

modified Hebbian learning is proposed by Zurada in 1992 [138]. The derivation of 

weight ∆wij is proportional to the cross product of cell input and the other cell input. So 

the derivation ∆wij can be written as 

∆wij = c ui uj (2.23) 

and the learning system is shown in Fig. 2.19. 

Winner-take-all learning 

Only the weighting vector connected to the output node that has maximum 

response output will be adjusted. The learning system is shown in Fig. 2.20 [64], and 

the derivation of weight ∆wij can be written as 

∆wij = c ( uj - wij ) (2.24) 
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where wij is the weight of cell C(j) to the cell C(i), and the output yi of the cell C(i) has 

the maximum output response. 

The above four learning methods are the fundamental learning methods applied in 

neural network. Many learning methods are evolved from the above four learning 

methods. Sometimes, the neural network has more than one layer cells, so more than 

one learning methods are combined to be used in the multi-layer neural networks. 
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Fig. 2.1 The basic configuration of an MxN CNN array. 
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Fig. 2.2 A caricature of a typical cell C(i,j) receiving an input from a sensory cell on 

the left and a neighbor cell below through respective synapse. 
 

C(i,j) C(i,j) C(i,j)

 

(a)                       (b)                       (c) 
Fig. 2.3 Three examples of neighborhood systems of central cell C(i,j): (a) r = 1 

neighborhood system N1(i,j); (b) r = 2 neighborhood system N2(i,j); (c) r = 3 
neighborhood system N3(i,j). 



 39

 

Boundry Cells

Edge Cells

Regular
 Cells

 

 
Fig. 2.4 Illustration of boundary cells, edge cells, corner cells, and regular cells in a 

CNN cell array. 
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Fig. 2.5 The fixed (Dirichlet) boundary condition. 
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Fig. 2.6 The zero-flux (Neumann) boundary condition. 
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Fig. 2.7 The periodic (Toroidal) boundary condition. 
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Fig. 2.8 The cell realization of a standard CNN cell C(i,j). 
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Fig. 2.9 (a) The signal flow structure of a standard CNN {A, B, Z} with a 

single-neighborhood N1(i,j); and (b) the system structure of a cell C(i,j). 
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Fig. 2.10 (a) The signal flow structure of a zero-feedback (feed-forward) CNN with a 
single-neighborhood; and (b) the system structure of a cell C(i,j). 
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Fig. 2.11 (a) The signal flow structure of a zero-input (Autonomous) CNN with a 
single neighborhood; and (b) the system structure of a cell C(i,j). 
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Fig. 2.12 (a) The signal flow structure of a uncouple CNN {A0, B, Z} with a single 

neighborhood; and (b) the system structure of a cell C(i,j). 
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(a)                              (b) 
 

   
(c)                              (d) 

Fig. 2.13 The basic nonlinear activation functions of the cell. (a) Hard limiter (Step) 
function. (b) Ramp function. (c) Sigmoid function. (d) Gaussian function. 
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Fig. 2.14 The architecture of the CNN Universal Machine (CNN-UM). 
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Fig. 2.15 The analog part of the analogic CNN universal cell with a symbolic analog 

cell unit. 
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Fig. 2.16 The block diagrams of (a) the supervised and (b) the unsupervised pattern 
recognition system 
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(b) 

Fig. 2.17 The learning systems of Widrow-Hoff learning in (a) Adaptive Linear 
Combiner (ALC) structure; (b) ADAptive LINear Element (ADALINE) 
structure. 
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Fig. 2.18 The learning system of the Delta learning. 
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Fig. 2.19 The learning systems of (a) the original Hebbian learning, and (b) the 
modified Hebbian learning. 
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Fig. 2.20 The learning system of Winner-Take-All learning. 


