CHAPTER 2

REVIEW OF CELLULAR NONLINEAR NETWORKS AND

THEIR APPLICATIONS

2.1 FUNDAMENTALS OF CELLULAR NONLINEAR NETWORKS

Due to the advantageous feature of local connectivity, the cellular nonlinear
(neural) network (CNN) introduced by Chua and Yang [55] is very suitable for VLSI
implementation and used in many applications [S6]-[58], [64], [89]-[90]. One of CNN
application is as neural associative memories for pattern learning, recognition, and
association [61], [87]-[103], [107]-[109], [112]-[117]. Among them, many innovative
algorithms and software simulations of CNN associated memories were reported
[87]-[88], [107]-[109]. As to the hardware implementation, special learning algorithm,
and digital hardware implementation for CNN were proposed in [110]-[112] to solve
the sensitivity problems are caused by the limited precision of analog weights.
Moreover, CMOS chip implementation of CNN associative memory was also reported

in [110]. The stability analysis for CNN is discussed in [148]-[152].

2.1.1 Basic Definition and Mathematical Foundation of CNN [55]-[58],
[64-[65], [79], [139]-[140]

(1) Basic Definition and Mathematical Foundation
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The fundamental concepts and architectures used in CNN are reviewed. For image
processing purposes, usually a 2D CNN structure as shown in Fig. 2.1 is used, where
each box denotes a cell. The basic structure of CNN is similar to a typical biological
cellular cell is shown in Fig 2.2. The CNN array shown in Fig. 2.1 is called an MxN
CNN which consists of M rows and N columns of cells. A cell is a basic CNN unit. A
cell has direct coupling only to its near neighbors. This local connectedness is formally

defined by the following definitions [55]-[58].

Definition 1: Standard CNN Architecture
A standard CNN architecture is shown in Fig. 2.1, and it consists of an MxN

rectangular array of cells C(i,j) with-Cartesian coetdinate (i,j), i = 1,....M, j = 1,....N.

Definition 2: Sphere of Influence of Cell-C(i.})
The sphere of influence, N((i,]); of radius r of cell C(i,)) is defined to be the set of all

neighboring cells satisfying the following property

Ne(i, ) ={C(D | max  {k-iL[1-J[} =r} 2.1)

1k =M,1 4 =N
where I is a positive integer.

Ni(i,)) in (2.1) is usually referred the as (2r+1)x(2r+1) neighborhood. Fig. 2.3(a)
shows the r = 1 (3x3) neighborhood, Fig. 2.3(b) shows the r = 2 (5x5) neighborhood,
and Fig. 2.3(c) shows the r = 3 (7x7) neighborhood. In the CNN, every cell is
connected to all its neighboring cells in N (i, J) via “synaptic” or “weight” circuits. If
r=N-1 and M = N, a fully connected CNN is corresponds to the classic Hopfield
network. NC(i, j) is the set of r-neighboring cells N, (i, j) without the center cell

Ca,J).
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Definition 3: Regular and Boundary Cells.

A cell C(i,j) is called a regular cell with respect to N((i,J) if and only if all
neighboring cells C(k,1) eN(i,j) exist. Otherwise, C(i,j) is called a boundary cell. The
outermost boundary cells are called the edge cells. Not all boundary cells is edge cell if

r > 1. The illustration of each cell is shown in Fig. 2.4.

Definition 4: A class 1 standard CNN
A class 1 MxN standard CNN is defined by an MxN rectangular array of cells C(i,j)

located at site (i,j), i = 1,....M, j = 1,...,.N. Each cell C(i,j) is defined by the following

equations:

1. State Equation of cell C(i,))
1
Cip&(t) = _EX” + Zaijkl Y=+ Zbijkl Uy + Z;; (2.2)

ij Ck.h) Ny (1) COGD=IN, G ])

where Xj; € R, yu € R, ug € Ry and zj; € R denote the state variable, output, input, and
threshold of the cell C(i,j), respeetively, and R is*the set of real number. ajju and bjjq
denote the feedback and input synaptic operators between cells C(i,j) and C(k,I),
respectively. The bias is zjj (also called threshold) of the cell C(i.j), which may be static,
temporal-variant, spatial-invariant, or spatial-variant. Cj; > 0 and Rjj > 0 are the values

of the capacitor and resistor, respectively.

2. Output Equation of cell C(i,))
1 1
i = f(Xij)=—=]|Xij+1|+=|xi-1 2.3
yi= 1) =5 X+ 1]+ ] xi-1| (2.3)
This function f(X;j) is also called as the activation function. There are several activation

function are applied to the neural networks as shown in section 2.2. The standard

piecewise linear output function yj; = f(X;) is most used by standard CNN.
3. Input equation of cell C(i,j)
uij = f, (Eij) (2.4)
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where Ej; is the input signal, for example, the intensity of light detected by an
embedded optical sensor in the cell C(i,j). In the elementary CNN, f,(.) is used to

normalize the detected signal to a proper range.
4. Boundary Conditions
Boundary conditions are part of CNN design for different tasks. Some CNNs may

fail to work correctly without specified boundary conditions while others are
independent of boundary conditions. There are three kinds of boundary conditions as
Fixed (Dirichlet) boundary conditions (Fig. 2.5)

Each boundary cell has fixed input and fixed output. The fixed input and output are

usually spatial-invariant.
Zero-flux (Neumann) boundary conditions (Fig. 2.6)

The input and output of a boundary,cell are the same as that of the regular cells at

the symmetry position with respect to'the boundary cells.
Periodic (Toroidal) boundary conditions (Fig:2.7)

The neighboring cells of a boundary-cell-are those symmetrical with respect to the
center of CNN. For an MxN regular. cells-array CNN, the outputs and inputs of
boundary cells are listed as follow:

Left boundary cells: yio=Yin, Uio=Uin, 1=1,2,..., M

Right boundary cells: Yin+1)=Yit, Uin+1)=Ui1, i=12, .., M

Top boundary cells: Yoj=Ymj, Uoj=Umj, J=1,2,....,N

Bottom boundary cells:  ym+1;=Y1j,  Um+pi=Uy, Jj=1,2,..,N

5. Initial State
Xij(t=0) i=1,...M; j=1,..N (2.5)
Xij(t=0) is the cell state before the CNN starts the image processing. Sometimes,
the processing image is stored in the cell state X instead the constant inputs U. The

input Uy is usually the pixel intensity of an MxN gray-scale image or picture,
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normalized without loss of generality to have the range —1< u,, <+1 where white is
coded by -1 and black is coded by +1. In the most general case, both ajj and bjjq are
nonlinear operators which operate on X(t), Yi(t), U(t), Xij(t), yij(t), and u;(t), 0 <t < to,

to produce a scalar (&ija Yi)(to) and (bija U)(to), 0 <t <to.

In VLSI implementation of CNNss, Ujj, Xij, and Yjj are three voltages and zj; is a bias
current. The block diagram of a cell realized by electronic circuits is shown in Fig. 2.8,
where all diamond-shape symbols denote a voltage-controlled current source that
injects a current proportional to the indicated controlling voltage Uy or Yy and weighted
by bija or ajju. In the internal core which is a nonlinear voltage-controlled current source,

the state equation (2.2) is realized with the output voltage y;j = f(Xj).

Definition 5: Spatial-invariant or isotropic CNN

A CNN is spatial-invariant or isetropic if and only if both the synaptic operators

aijii and by and the threshold zj; do not vary with-space. In this case, we have

2 &Y = 2D 8w Yu u=k-i,v=1j

C(k,l) Nr(i,j) U=-rv=-r

2 By Yia =22 2 bu Vi u=k-i,v=1j

C(k,l) Nr(i,j) U=-rv=-r

Zj=1z (2.6)
Definition 6: A class 2 standard CNN

A class 2 MxN standard CNN with linear synaptic operators is defined by the

following state equation (using the same notation as in (2.2)):
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1
Ci % = R DYt D byl +zi
ij Ck.) Ne(iL]) C(k,l) NG, ) (27)

+ Zcijkl Xkl + z dijkl (ukl b Xkl s ykl )
C(k,) N (i,]) C(k,) N (i, ])
where the notations ajju and bjjq are the same as those in (2.2), the synaptic weights Ciju

(template C) and djj (template D) depending on the states and mixed variables (inputs,

states, and outputs), respectively.
(2) Three CNN classes

Each CNN is uniquely defined by 3 cloning templates {A, B, Z}, which consists

of 19 real numbers for a 3x3 neighborhood (r = 1).

Definition 7:  Excitatory and inhibitory synaptic weights

A feedback synaptic weight a;jq 18 said to be excitatory (inhibitory) if and only if it
is positive (negative).

A synaptic weight is excitatory (inhibitory) because it increases (decreases) the
derivation of state X¢, namely the rate of growth of Xj(t). The signal flow structure of a
standard CNN {A, B, Z} with a single neighborhood Ni(i,j) is shown in Fig. 2.9(a). The
2 shaded cones symbolize the weighted contributions of input and output voltages of
the cell C(k,I) eNa(i,)) to the state voltage. The system structure of a cell C(i,j) is shown
in Fig. 2.9 (b) where arrows printed in bold mark parallel data paths from the input uy
and the output Yy of the neighboring cells C(k,l), respectively. Arrows on thinner lines

denotes the threshold zjj, input uj;, state Xjj, and output Yjj, respectively.

Definition 8: Zero-feedback (feed-forward) class {0, B, Z}

A CNN belongs to the zero-feedback class {0, B, Z} if and only if all feedback
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template weights are zero, i.e., A = 0.

Each cell of a zero-feedback CNN is described by

1
C; % = —R—Xij + ZDijkl Uij + Zij (2.8)

i C(k,)eNr(i, j)

Fig. 2.10(a) shows the signal flow structure of a zero-feedback (feed-forward)
CNN with a 3x3 neighborhood. The cone symbolizes the weighted contributions of
input voltages of the cells C(k,1)eN;(i,j) to the center cell C(i,j). Fig. 2.10(b) shows the

system structure of a cell C(i,j).

Definition 9: Zero-input (Autonomous) class {A, 0, Z}
A CNN belongs to the zero-input class {A, 0, Z} if and only if all feed-forward
template weights are zero, i.e., B=0.

Each cell of a zero-input CNN is described by

1
C; % = R Xij + zaijkl Vii + Zij (2.9)

i C(k,NeNr (i, j)

The signal flow structure of “a . zero-input (Autonomous) CNN with a single
neighborhood is shown in Fig. 2.11(a). The shaded cone symbolizes the weighted
contributions of the output voltage of the cells C(k,I)eN;(i,j) to the center cell C(i,j). In
the Fig. 2.11(b), the system structure of a center cell C(i,j) is presented. In this case,

there are no input signals.

Definition 10: uncoupled (scalar) class {A°, B, Z}
A CNN belongs to the uncoupled class {A°, B, Z} if and only if aijii = 0 except Ij =
kl,ie., A=0

Each cell of an uncoupled CNN is described by

1
Cij )Bu‘} = _Exij + 3y f (Xij)+ Zbijkl Uy + Z; (2.10)

ij C(k,HeNr(i,j)
Fig. 2.12(a) shows the signal flow structure of an uncoupled CNN with a single
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neighborhood. The system structure of a center cell C(i,j) is shown in Fig. 2.12(b).

2.1.2 Activation Functions

A rule, which gives the effect of all inputs on the activation of the cell, is needed.
Often, the rule that is also called as the activation function f(x) is a non-linear,
mono-increasing function of the weighted sum of its inputs. Generally, some sort of
threshold function is applied: a hard limit threshold function (step function or sign
function), or a semi-linear or piecewise linear function (ramp function), or a smoothly
limiting threshold function (sigmoid function) [138]. These activation functions are

formulated as follows:

1. Step function

f(x) (x) - (2.11)
= =Son = .
y 8 -1 X<0
2. Ramp function
-1 X =
y=f(x)=9 x -l1<x<l (2.12)
1 X=1
3. Sigmoid function
y=f(x)= 2nx 1 n=3 (2.13)
I+e
4. Gaussian function
y=f(x)=e™" n=1I (2.14)

where X is the cell state, y is the cell output of the activation function, and n is the order
that represents the grade of transferring curves.

The transferring characteristic curves are shown in Fig. 2.13. Which activation
function is used is decided by the choice of the neural network. Generally, the step

function and ramp function is usable to the software simulation for the simple

26



calculation, but they are hard to be implemented in the VLSI technology because of the
high gain or piecewise linearity. The sigmoid function and Gaussian function are much
similar to the practical transfer function in the VLSI technology, but it needs
complicated calculation in the software simulation. Thus, all the four activation
functions can be implemented in the software simulation, but only the sigmoid function

and Gaussian function can be implemented by the VLSI technology.

2.2 APPLICATIONS OF CELLULAR NONLINEAR NETWORKS

A compilation of the selected templates for cellular nonlinear (neural) networks is
presented [55]-[58]. Many items or structures are used in the CNN for variety
applications. Some representative applications ‘ate shown below. The templates applied
in the CNN for simulating Muller-Lyer optical illusion [57], for halftoning [57]-[58],
for discrete-time CNN [139], [142], for gray-scale contour detection [95], [113], [179]
for gray-diagonal detection [58], for Herring=grid illusion [58], for information
coding/decoding [132], for associative memory [61], [94] for character recognition
[116], for artificial network [161] applications. Besides the application on associative
memory, the image processing is another important application for the CNN. A
multistage CNN called CNN universal machine (CNNUM) is developed for handling

kinds of image processing.

2.2.1 Cellular Nonlinear Network Applications [55]-[58], [139]-[142]

Since the invention of CNN (L. O. Chua and L. Yang, 1988) [55]-[56], different
CNN structures have been proposed for different applications and from different

biological models. After the original CNN is invented, another main CNN branch,
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discrete-time CNN (DTCNN), was proposed by Harrer in 1994 [142]. The DTCNN is
specified by a set of difference equations that represent the discrete dynamics of cells
and the nonlinearity of the output activation function. The standard DTCNN presented
by Harrer and Nossek in 1992 is given by

State equation of cell C(i,j)

x;[n+1]= Dayylnl+ D byuuln]+z,[n] (2.15)

C(k,DeNr(i, j) C(k,)eNr(i, j)

Output equation of cell C(i.j)
y;[n1= f(x;[n]) = sgn(x;[n]) (2.16)

where Xj[n] and z;[n] are the state and threshold of the cell C(i.j), respectively. The
output activation function is not limited to only the hard-limit activation function; it can
be any kind of function depending, en applications and implementing platforms. The
original CNN with continue-time dynamics is:called as CTCNN to emphasize the
difference between the CTCNN-and DTCNN. However, the CNN community trends to
used CNN and CTCNN interchangeably. In this thesis, the CNN is used loosely as
CTCNN for simplicity. Except the DTCNN, there are several CTCNNs being
developed. They will be described in the follow section.

First one is the multiplayer CNN (MCNN). A MCNN uses more than one layer of
CNN to perform a single task [55], [143]-[144]. Different MCNN prototypes were
presented by Majorana and Chua [130]. One widely used form of nth-order CNN is a
multilayer CNN that was presented by Chua and Yang [55]. The state equation of a
K-layer CNN cell C(i,)) is given by

K K
)gﬁp] - _ Xi[jp] + Z Zal[Jlr(qu] y|[<?] + Z Zbiglzq]ul[(?] + Zi[jp]
a=1 C(kh) Nri,j) a=1 C(kh) Nr(i,j) (2.17)
I=p=K; 1=i=M; 1=]j=N
where Xxi”' (ziP') are the state (threshold) of pth-layer cell C(i,j), and yi{’ (uf’) are
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the outputs (inputs) of pth-layer neighboring cells C(k,l) of the central cell C(i.j)

whereas the ajf" (bjf"") are the feedback (feed-forward) weights between the pth and

qth layer. So far, the MCNN has applied to process the binary image processing engine,
the linear filters, and adaptive edge detection [143]-[145].

In motion-related applications (T. Roska and L. O. Chua, 1993) [67], time delays
are introduced into CNN structures and result in the kinds of delay-type CNNs (DCNN5)

that are defined by T. Roska and L. O. Chua [67]-[68] as

1 T
Cilg=- R X + za_ij_kl Ya T za_'ij_kl Ya(t—=17)
ij C(k,)eNr(i,j) C(k,hHeNr(,j) (218)

+ D bglUg+ D biU (t—1)+Z;
C(k.)eNr (i, ) C(k,eNr (i, j)

where 7 is called the time delay. The delay-type templates provide us with even more
flexibility and new applications, including the detection of some motion-related [67]
CNN applications. There are some.theoretical.results-on the stability of DCNN in works
by Finnocchiaro and Perfetti [148], Gilli-[147];, T. Yang [139]. As DCNN is governed
by a set of functional partial differential equations (PDE), some complex phenomena,
for example, chaos, were observed by Civalleri and Gilli [146] even when only a small
number of cells were used. Some results of predicting the chaotic sequence generated
by chaotic DCNN are presented by Gilli [147].

Since only linear synaptic weights are not enough to deal with some image
processing tasks where nonlinear properties are embedded, the CNN with nonlinear

synaptic laws were introduced and called the nonlinear CNN (NCNN) [68]. The state

equation of cell C(i,)) is defined by

Cy ==X, + A O.0+ B, 0.0+ 20 (2.19)

1

where A(yi(1),t) (B(uk(t),t), and Z(t)) denotes nonlinear template A (B, and Z) for the

outputs (inputs and threshold) variables within N(i,j). In this case, synaptic laws are
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functions of time, outputs, inputs, and threshold within the neighborhood system. The
NCNN provides a rigorous theoretical framework to solve many complex
image-processing problems, for example, noise removal and feature extraction of
gray-scale picture [68]. In addition to many new applications, the non-linear cloning
templates allow us to model some biological properties of the retina, Moreover; it can
also be used for modeling motion dynamics.

There also exist some other kinds of CNN structures such as chaotic CNN
(CCNN), where every cell is a chaotic dynamic system [88], [93], [95], [154]-[155] that
can be used to model some kinds of emergent behaviors and simulate some wave and
pattern formation phenomena in an active medium [153]. In CCNN arrays, some
nonlinear dynamic behaviors such as synchronization [154], cluttering, and cooperative
phenomena were also found [155] The existing tesults of CCNN consist of two main
branches. One branch studies -how: to use the elementary CNN to generate chaotic
signals and relevant applications. The other-branch studies how to use chaotic elements
as elementary cells to model spatial-temporal chaotic processes [156]. For the more
complicated image processing, the multistage CNN is developed. A multistage CNN,

called CNN universal machine (CNNUM), will be introduced in the next section.

2.2.2 Cellular Nonlinear Network Universal Machine

The CNN universal machine [157] is a programmable CNN. It can perform several
complicated functions that cannot be simultaneously realized by the original CNN.
Much research effort on the CNNUM has been undertaken and its implementation has
been successfully demonstrated. Current CNNUM are based on the
single-neighborhood (SN-CNN) structures [157]-[159].

The global architecture of the CNN universal machine [157] (CNNUM) is shown
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in Fig. 2.14, where the analogical CNN universal cells are arranged on a regular grid.

Fig. 2.15 shows the analog part of the analogical CNN universal cell. The CNN-UM

consists of two main parts: (1) the array of analogical CNN universal cells and (2) the

Global Ana logic Programming Unit (GAPU). As shown in Fig. 2.14, an analogical

CNN universal cell has the following main additions to a CNN nucleus (core cell):

Local analog memory (LAM): A few continuous (analog) values are stored in

the LAM, cell by cell.

e Local logic memory (LLM): A few binary (logic) values are stored in the LLM,

cell by cell.

Local analog output unit (LAOU): A simple programmable multi-input-single
output analog operation is executed and the input(s) and output are stored in
LAM.

Local communication and.control unit (LCCU): It receives the messages from
the central (global) commandet;the-GAPU,-and programs the analogical CNN
universal cells accordingly, The messages in the return directions are also

possible.

The global analogical programming unit (GAPU) consists of four main parts:

The analog program register (APR) that stores the templates (or their codes)
used in the program.

The logic program register (LPR) that stores the local logic operators (or their
codes) used in the program.

The switch configuration register (SCR) that stores the switch states (or their
codes) and governing the cell configurations used in the program.

The global analogical control unit (GACU) that is stored the physical machine

code of the program.
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By using these units, the CNNUM can be programmed to implement analogical CNN
algorithms.

The CNN universal machine (CNNUM) [157] is not only an elementary CNN
structure, but also a platform for integrating the flow of CNN operations. Moreover, the
CNNUM is an important tool for organizing different kinds of CNN structures to
perform complicated tasks that a single CNN cannot finish. The CNNUM can also be
used to solve some global problems that are difficult to decompose in the CNN
structure [158]-[160]. In fact, the CNNUM has been proved to be as universal as a
Turing machine [162]. As it is only a platform for CNN operations, any kind of CNN
should be included in the core of this platform, including DTCNN [142], and FCNN
[163]-[164]. However, the current CNNUM has only an elementary CNN core. Thus
this platform needs further improvement.

Local connection is the mest, significant.characteristic of SN-CNN. Thus it can be
easily implemented in VLSI technology.-Furthermore, the SN-CNN can perform many
useful functions in image signal processing.

However, the locally connected SN-CNN restricts their ability to solve complex
problems that require large-neighborhood templates. Conceptually, each CNN cell can
be connected to more than one layer of neighboring cells. Such a CNN is called the
Large-Neighborhood Cellular Nonlinear (Neural) Network (LN-CNN). Recently, the
initial design of symmetric LN-CNN has been proposed and implemented by a new
device called the neuron BJT (vBIT) [31]-[32], [178].

The CNN universal machine [157] is a programmable CNN. It can perform
several complicated functions that cannot be simultaneously realized by the original
CNN. Much research effort on the CNNUM has been undertaken and its
implementation has been successfully demonstrated. Current CNNUM are based on the

SN-CNN structures [158]-[160].
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In this thesis, a compact LN-CNN cell with synaptic structure to realize large cell
arrays and special architecture to realize the large-neighborhood template is proposed.
The LN-CNN cell is used to form the kernel unit of the original CNNUM so that the
LN-CNNUM can be designed. The conceptual design, architecture, and realization of
the LN-CNNUM are described. Software simulations are performed to verify the

function of the LN-CNNUM with corresponding templates.

2.3 LEARNING RULES

The pattern recognition systems with ANN can be categorized into two distinct
sorts on learning methodologies, one is supervised pattern recognition system, and the
other is unsupervised pattern recognition system.The block diagrams of the supervised
and unsupervised pattern recognition system are shown in Fig. 2.16. The learning
method of supervised pattern recognition-system is supervised learning, which is also
called as learning with a teacher ‘ot-learning with the desired output whereas the
learning method of unsupervised pattern recognition system is unsupervised learning,
and it is also called as learning without a teacher. Supervised learning in which an
external teacher trains the ANN until the real output matches the desired output.
Unsupervised learning in which external teacher’s guidance is absent. Under this
circumstance, the network adaptive weights base exclusively on the experiences with

all the input patterns.

2.3.1 Supervised Learning

Well-known examples of supervised neural network are Perceptron [3], [138],

ADALINE [119], Multi-layer ADALINE [120], MADLINE [121], and various
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multi-layer feed-forward networks, etc. Due to the nature of supervised learning, the
training patterns must be provided in terms of input/output patterns pairs, and the
trainee will be told by the teacher about how to make proper adjustment to improve the
performance. Some basic supervised learning rule is presented as follow:

Widrow-Hoff Learning [119]-[121]

The Widrow-Hoft learning is presented by Widrow and Hoff in 1960 and 1962
[119]. In 1960, the Adaptive Linear Combiner (ALC) is presented. The learning system
of ALC is shown in Fig. 2.17(a). The learning rule of ALC is a Least Mean Square
Error (LMSE) learning rule. The derivation weight Aw;; is shown as

Awij=c (di-Yi) Uj (2.20)
where ¢ is a constant when d is the desired output, and ; is the real output of cell C( i)
whereas Uj is the input of cell C( j )iIn 1962, the binary output is added to the ALC, and
the new structure is called as ADAptive LINeat, Element (ADALINE) and its block
diagram is shown in Fig. 2.17(b).

Delta Learning [103]

The Delta learning rule is proposed by Rumelhart, Hinton, and Williams in 1986
[122], and is evolved from the Widrow-Hoff learning. The learning system of Delta
learning is shown in Fig. 2.18. The derivation of weight Awj; is proportional to the
multiplication of the derivation of activation function and the difference of the desired
and real outputs, and is shown as

Awij = c (di- Vi) P’(X) v (2.21)
where c, di, Vi, and uj are the same as the above description whereas f(Xi) is the
activation function, and f’(X;) is its derivation. The limit of the Delta learning is that the

activation function must be a differentiable function.
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2.3.2 Unsupervised Learning

Unsupervised learning may be essential to classification in the absence of
teacher’s guidance. Since there will be no teacher, unsupervised learning exclusively on
the characteristic inherently associated with the learning patterns. Various kinds of
competitive learning network have been developed by Kohonen [51]-[52], [123], von
der Malsburg [124]-[125], Fukushima [127], and Grossberg [4], [128]-[135], etc. The
unsupervised learning systems have the following common features: 1) the training is
based on competition. 2) Well-known examples of unsupervised neural network are
Self-organization feature map [21], [51], [124], ART I-II [12]-[13].

Hebbian learning [2], [136]-[138]

The Hebbian learning rule is preposed by D. O. Hebb in 1949 [2]. The derivation
of weight Awj; is proportional to the cross product of input and output, and can be
written as

AWij = ¢ X Uj (2.22)
where ¢ is a constant, U; is the input of cell C(j) and X; is the state of cell C(i). The
modified Hebbian learning is proposed by Zurada in 1992 [138]. The derivation of
weight Aw;j is proportional to the cross product of cell input and the other cell input. So
the derivation Awjj can be written as

AWij = ¢ U; U; (2.23)
and the learning system is shown in Fig. 2.19.

Winner-take-all learning

Only the weighting vector connected to the output node that has maximum
response output will be adjusted. The learning system is shown in Fig. 2.20 [64], and
the derivation of weight Awj; can be written as

AWij =C ( uj - Wij) (2.24)
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where wijj is the weight of cell C(j) to the cell C(i), and the output y; of the cell C(i) has
the maximum output response.

The above four learning methods are the fundamental learning methods applied in
neural network. Many learning methods are evolved from the above four learning
methods. Sometimes, the neural network has more than one layer cells, so more than

one learning methods are combined to be used in the multi-layer neural networks.
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Fig. 2.1
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The basic configuration of an MxN CNN array.
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Fig. 2.2 A caricature of a typical.cell C(i,)) receiving an input from a sensory cell on

the left and a neighbor cell below through respective synapse.
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Fig. 2.3 Three examples of neighborhood systems of central cell C(i,j): (a) r = 1
neighborhood system Nj(i,j); (b) r = 2 neighborhood system N(i,j); (c) r =3
neighborhood system Nj(i.})).
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Fig. 2.4 [Illustration of boundary cells, edge cells, corner cells, and regular cells in a
CNN cell array.
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Fig. 2.5 The fixed (Dirichlet) boundary condition.
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Fig. 2.6 The zero-flux (Neumann) boundary condition.
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Fig. 2.7 The periodic (Toroidal) boundary condition.
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by the inputs of surround cells
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Fig. 2.8 The cell realization of a standard CNN cell C(i,)).
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Standard CNN: {A,B,Z}

U 7 w
— ‘ Xij N yij‘
_ .| B [dt = > () >
Uij
A B

(b)

Fig.2.9 (a) The signal flow structure of a standard CNN {A, B, Z} with a
single-neighborhood Ni(i,j); and (b) the system structure of a cell C(i,)).
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Zero-Feedback CNN: {0, B, Z}

Tuput U State X Ouput Y
(a)

. Y.
> B X|J > f() _”»
—

(b)

Fig. 2.10 (a) The signal flow structure of a zero-feedback (feed-forward) CNN with a
single-neighborhood; and (b) the system structure of a cell C(i,)).
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Zero-Input CNN: {A,0,7}
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Ouput Y

State X

(a)

yij

= ()

Xij

(b)

Fig. 2.11 (a) The signal flow structure of a zero-input (Autonomous) CNN with a

single neighborhood; and (b) the system structure of a cell C(i,)).
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Uncouple CNN: {A°, B, 7.}
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Fig. 2.12 (a) The signal flow structure of a uncouple CNN {A’, B, Z} with a single
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neighborhood; and (b) the system structure of a cell C(i,j).
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Fig. 2.13 The basic nonlinear activation functions of the cell. (a) Hard limiter (Step)

function. (b) Ramp function. (¢) Sigmoid function. (d) Gaussian function.
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CNN universal cell

GAPU

GAPU: Global Analogic

Programming Unit

APR

LPR

SCR
GACU

Global Analog Program Instructure Register

LAOU:Local Analog Output Unit
LLU: Local Logic Unit
LLM: Local Logic Memory Register

Fig. 2.14 The architecture of the CNN Universal Machine (CNN-UM).
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Fig. 2.15 The analog part of the analogic CNN universal cell with a symbolic analog

cell unit.
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A

(b)
Fig. 2.16 The block diagrams of (a) the supervised and (b) the unsupervised pattern

recognition system

49



U, Cell C(i)

output
Yi

Un Zi

A wi= c(di-yi)y;

Wjj : synapse weight
Zi : neuron threshold

(a)

Céll C(i)

fox)

Z.
1

—A W= c(d; - x)u;

W;; : synapse weight
z; : cell threshold
f(x;) : activation function

(b)

Fig. 2.17 The learning systems of Widrow-Hoff learning in (a) Adaptive Linear
Combiner (ALC) structure; (b) ADAptive LINear Element (ADALINE)
structure.
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u, Cell C(i)
Wi
\ output
. ij yi .
U - \
uN ZI _
, +
—IA = c(dy) F'Ox)y, d

W;; : synapse weight
z; : cell threshold
f(x,) :activation function

Fig. 2.18 The learning system of the Delta learning.
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Cell C(i)

Wi
. output

Yi

W;; : synapse weight
z; : cell threshold
f(x,) : activation function

(a)

Cell €(i)

output

‘ — A W= c Uy, —

W;; - synapse weight
Z; : cell threshold
f(x;) : activation function

(b)

Fig. 2.19 The learning systems of (a) the original Hebbian learning, and (b) the

modified Hebbian learning.
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Cell C(i)

Wi max
. output

W;; : synapse weight
z; : cell threshold
f(x;) :activation function

Fig. 2.20 The learning system of Winner-Take-All learning.
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