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CHAPTER 3 

 
SELF-FEEDBACK RATIO-MEMORY CELLULAR 

NONLINEAR NETWORK (SRMCNN) FOR 
AUTO-ASSOCIATIVE MEMORY 

 

3.1  INTRODUCTION 

As introduced by Chua and Yang [55]-[56], cellular nonlinear networks (CNN) with 

locally connected neighboring cells have the inherent advantage of being easily 

implemented in VLSI for various applications. Many image operations in CNN with 

suitable templates have been successfully explored [57]-[58] and realized in many 

applications. Moreover, the CNN can be used to classify and recognize image patterns 

through appropriate learning algorithms. Recently, this innovative application of CNN 

has attracted more research effort. Some important results have been reported in the 

literature [59]-[88], [92]-[102], [165]-[170]. 

The Hebbian learning algorithm can be used to perform unsupervised learning 

operation in a neural network system, in which the learned pattern signal is equal to the 

neuron’s output. One Hebbian learning algorithm, called the discrete Hebbian learning 

algorithm, has been incorporated into CNN with some modification terms to generate 

associative memories for the learning and recognizing of image patterns [165]-[170]. 

Modified Hebbian learning is used to implement the 18×18 CNN for pattern learning 

over a fixed period [171]. The ratio memory (RM) in the Grossberg out-star structure is 

also used to form the template coefficients in the CNN for image recognition 

[169]-[172]. The resultant structure is called the ratio-memory CNN (RMCNN). To 

determine the four coefficients of the A template but not self-feedback coefficient for the 
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cell C(i,j) of the proposed RMCNN, the pixel values of the nearest four neighboring 

cells are multiplied by the pixel value of cell C(i,j), and the products are summed for all 

input patterns. Then, the accumulated product is transformed into a ratio to form the 

coefficient of the A template. The proposed RMCNN can learn and recognize three (five) 

patterns in the 9×9 (18×18) neuron array. The structure of RMCNN has been 

implemented in CMOS technology and its function has been successfully verified [171], 

[174]-[175]. 

The modified Hebbian learning algorithm used in the RMCNN can be modified to 

include a self-feedback term [170]-[172]. The modified algorithm is called the modified 

Hebbian learning algorithm with self-feedback. In this paper, the RMCNN with the 

modified Hebbian learning algorithm with self-feedback is proposed and analyzed. The 

new RMCNN is called self-feedback RMCNN (SRMCNN). In the learning process of 

the proposed SRMCNN, the features from input exemplar patterns are considered to 

update the weights. The operation of SRMCNN retains the feature enhancement effect of 

the RM. Detailed analysis and simulation results has shown that the SRMCNN can 

recognize up to 93 noisy patterns with a 100% success rate and 98 noisy patterns with a 

97% success rate after learning the input exemplar patterns in uniform (normal) noise 

level is 0.8 (0.3). Thus, the capacity for learning and recognizing patterns is greatly 

improved. 

The thesis is organized as follows. In Section 2, the operational principles, the 

modified Hebbian learning algorithm with self-feedback, and the embedded ratio 

memory in the SRMCNN are presented. Section 3 describes the architecture of the 

SRMCNN. In Section 4, the simulation results of SRMCNN are demonstrated and 

analyzed. Some phenomena are also discussed. Finally, conclusions are drawn. 
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3.2 OPERATIONAL PRINCIPLE AND LEARNING ALGORITHM 

In a CNN, the behavior of a regular cell C(i,j) and its neighboring cells C(k,l) can 

be expressed by the differential state equation, in terms of their input, state, and output 

variables as [55]-[58] 
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and the equation of the cell output Yij (t) is [1]-[4] 
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where Xij (t) represents the cell state, )(Y tkl  is the cell output from cell C(k, l) in the 

r-neighborhood system Nr(i, j) of the cell C(i, j), klu is the cell input from cell C(k, l) in 

Nr(i, j), zij is the threshold of cell C(i, j), f[ ] is bipolar activation function, and ijkla ( ijklb ) 

is the weight of template A(B) that correlates )(Y tkl ( klu ) to )(X tij . In an M×N CNN 

cell array, the r-neighborhood system Nr(i, j) of cell C(i, j) is defined as a set of cells that 

includes cell C(i, j) and its neighborhood cells. The term r is an integer that represents 

the number of the neighborhood layers. Nr(i, j) can be expressed by the following 

equation. 

Nr(i, j)={ C(k, l)|1≤ k ≤ M, 1≤ l ≤ N; |k-i| ≤ r, |l-j| ≤ r }                 (3.3) 

The general architecture of the SRMCNN is depicted in Fig. 3.1 [12]-[13] where the 

RM is used to realize the A-template weights of two neighboring cells and SRM is used 

to realize the self-feedback weight of the cell. In the SRMCNN, a coupled A template, 

an uncoupled B template, and r = 1 neighborhood is adopted. The space-variant A 

template has a self-feedback coefficient and four nearest neighboring coefficients. The B 
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template has only one coefficient that corresponds to the input of cell C(i,j). Both A and 

B templates of C(i,j) can be expressed as 
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The outermost boundary cells are called the edge cells. They are commonly used to 

realize fixed (Dirichlet) boundary conditions. The output and input of those boundary 

cells are set to zero. 

The modified Hebbian learning algorithm with self-feedback is applied in the 

SRMCNN to determine the updated volume of the weight vector at t = 0 as 
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where m is the number of learning patterns, p
iju  is the pixel value of the ith row and the 

jth column in the pth pattern of m learned patterns with the value +1 or –1, p
klu  is the 

pixel of the cell C(k,l) of Nr neighboring cells including cell C(i,j), Wijkl(0) in (3.5) is the 

weight associated with cell C(i,j) and its neighboring cells C(k,l), and zij(0) in (3.6) is the 

threshold of cell C(i, j) which is set to zero. Note that the self-feedback terms Wijij(0) is 

defined in (3.5). 

In the learning period, the weights Wijkl(0) are generated in parallel from p
kl

p
ij uu  

and accumulated for all m learned exemplar patterns. They are updated simultaneously 

when an exemplar pattern is input at a given time. Then its magnitude )0(ijklW  is 

stored on the capacitor Czs to generate the ratio weights. According to (3.5), if the 
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product of p
kl

p
ij uu  is positive, the weight Wijkl(0) of A template is increased. Otherwise, 

Wijkl(0) is decreased. Since the self-feedback term p
ij

p
ij uu  is always positive, the 

self-feedback weight Wijij(0) is one of the largest weights among the five weights in 

(3.5). 

In the elapsed period, starting from t=0, the leakage current Ileakage associated with 

capacitor Czs gradually decreases the stored voltage )0(ijklW  as time elapses. Since the 

leakage current is almost constant, the change of )(tWijkl  on capacitor Czs can be 

written as 

t
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The RM is used to generate the ratio weight aijkl of the A template in the recognition 

period. The noisy patterns are input to the SRMCNN with the ratio weights to perform 

the recognition operation. The derivative )(X tij
&  of the cell state is expressed as 

ijkl
jiNrlkC

klijklijij zuttatt +++−= ∑
∈ ),(),(

)(Y)()(X)(X&  (3.8) 

and the ratio weights aijkl(t)= aijkl are generated according to the equation [171]-[172], 

[174]-[175] 
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The ratio weight aijkl(t) in (3.9) has the effect of feature enhancement. When the 

weight magnitude exceeds the mean value of all ijkla  terms of the cell C(i,j), it is 

increased gradually with time. Otherwise, the weight decreases gradually. Since the 

self-feedback weight Wijij(0) or Wijij(t) is one of the largest weights in the cell C(i,j), the 

corresponding self-feedback ratio weight aijij is the largest in the A template. With aijij,, 



 59

the features of patterns can be enhanced to reject the noise. Thus, the capability of 

recognition for noisy patterns is significantly improved by the SRMCNN. 

In the recognition period, the outputs are adjusted according to (3.8) for noisy input 

patterns with either uniform or Gaussian (normal) noise distribution. The output pattern 

noise is gradually eliminated through a feedback-type interaction. The outputs of all 

neurons are adjusted to eliminate noise during the recognition period until no further 

change is detected. Finally, the SRMCNN reaches its stable state.  

The energy function of a CNN in quadratic form [64] can be expressed as 
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When all the cells become saturated in the recognition period, we have dE/dt=0 and the 

SRMCNN results in a stable output with the energy function converged to its local 

minimum. The minima of E correspond to stable states. The final recognized pattern 

represents one local minimum of the energy function. 

 

3.3  SRMCNN ARCHITECTURE 

The detailed block diagram of two neighboring CNN cells and their RM in the 

SRMCNN is shown in Fig. 3.2(a), and the detailed block diagram of the S block is 

shown Fig. 3.2(b) when the SRMCNN is operated during the learning period. In Fig. 

3.2(a), the block T1 is a V-I converter used to convert the voltage of input patterns into 

current. The block T2d is a V-I converter with a one-half absolute-value circuit and a 

sign-detection circuit to generate the absolute value of output current and detect the sign 

of the cell state Xij(t), respectively. The CNN cell C(i,j) is formed by T1, T2d, Rij, and Cij 

as indicated in Fig. 3.2(a) [171], [174]-[175]. 

The block M/D [171] in Fig. 3.2(a) is a combined four-quadrant multiplier and a 
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two-quadrant divider circuit. The block is used to realize the modified Hebbian learning 

algorithm with self-feedback during the learning period. It is also used to multiply 

perform the multiplication aijkl (t) and Ykl (t) in the recognition period. The resultant 

absolute weight ijklzi during the learning period is stored in the capacitor Czi in the S 

block of Fig. 3.2(b). In Fig. 3.2(b), the block T2L transfers the absolute value of the 

voltage stored in Czi to Czs and stores its sign in the latch circuit. The resistor Rzs in 

parallel with Czs is used to generated the absolute voltage from the output current of 

block T2L and to store the voltage on Czs. Block T3 is also a V-I converter to convert 

the voltage of Czs into current. The output current of T3 is sent to the sum block and 

summed with the currents from neighboring cells. The summed current is sent to the 

M/D block to generate ratio-memory. Both M/D and S blocks form the RM among CNN 

cells as indicated in Fig. 3.2(a). 

In Fig. 3.2(a), the m exemplar patterns are input in order read into the cell C(i, j) 

and the input voltage Vuij
p of the p-th input pattern is sent to T1 to be converted into 

current p
ijuI  and then to T2d to extract its absolute current value p

ijuI  and sign. Then 

the converted absolute currents p
ijuI  and p

kluI  from two neighboring cells are sent to 

the four-quadrant multiplier in the M/D block to generate the product. The generated 

product in the current mode charges the capacitor Czi for the period TP to generate the 

voltage on Czi. This operation is repeated for m patterns to sum the voltages of Czi. 

Finally, the weight voltage Vziijkl (0) stored on Czi at t = 0 when the learning period ends, 

can be written as 
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where p
ijuI  is the current of the p-th input patterns sent to the cell C(i, j), p

kluI is the 
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current of the p-th pattern sent to the cell C(k, l) of ),( jiN r  neighboring cells, Ib is a 

constant bias current, )(V 0ziijkl  is the weight Wijkl voltage stored on Czi at t = 0 sec, and 

TP is the learning time of each input pattern. Through T2l, the absolute value 

)](V[ 0ziabs ijkl  of the weight )(V 0ziijkl is stored on the capacitor Czs, whereas the sign of 

)(V 0ziijkl  is stored in the latch circuit of T2L. 

In Fig. 3.2(a), the voltage )(V 0ziijkl  weight Wijkl(0) is directly generated by the 

current product of p
kl

p
ij uu II  changing on the capacitor Czi for the period Tp. )(V 0ziijkl  

is stored on the capacitor Czi. Then, the absolute value of )(V 0ziijkl  is transferred and 

stored on the capacitor Czs.  

In the elapsed period, the configuration of SRMCNN is shown in Fig. 3.3(a), where 

Czs is disconnected from the block T2L as shown in Fig. 3(b). The leakage current 

Ileakage associated with Czs gradually decreases )](V[ 0ziabs ijkl  of Czs.  

In the recognition period, the configuration of the SRMCNN is shown in Fig. 3.4 

and that of S block are the same as that in the elapsed period. The voltage t
ijuV  of the 

test pattern to be recognized is input to T1 and converted into the current t
ijuI . The 

absolute weight voltage abs[Vzsijkl (t)] stored on Czs is converted into the current 

abs[Izsijkl(t)] through T3 and summed with the currents from other neighboring cells. 

The summed current, the weight current abs[Izsijkl (t)], and the cell output current IYkl (t) 

are sent to the M/D block to yield the current that corresponds to the term aijkl (t) Ykl (t) in 

(3.1), which is then summed with the currents from other neighboring cells, the input 

current t
ijuI , and the threshold current ijIz  to generate the cell state current Ixij(t). The 

current Ixij(t) is converted into the voltage Vxij(t) through resistor Rij. Thus, Vxij(t) can be 
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expressed as 
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where AK is the empirical gain. Ideally AK = 1. The ratioed weight 
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tzsabstzs  in (3.12) is generated by the two-quadrant divider in the 

M/D block with its sign equal to the sign of Izsijkl (t) latched in T2L, whereas the IYij (t) is 

multiplied by the ratioed weight by the four-quadrant multiplier of M/D using the 

latched sign of Izsijkl (t) and the sign of Ykl (t) in T2d. The current of input patterns is 

summed with the five weighted outputs from neighboring cells during the recognition 

period and converted into a voltage through the resistor Rij and the parasitic capacitor Cij 

to form the cell state Xij(t). 

The generated Vxij (t) is sent to T2d to generate the current abs[IYij (t)] and sign[IYij 

(t)]. The block T2d realizes )](Vx[ tf ij  by separating its magnitude and sign. The sign 

sign[IYij (t)] is detected in the block T2d and the voltage is VSYij. 

In the proposed SRMCNN, each cell requires an extra self-feedback ratio-memory 

with M/D and S block to realize the self-feedback weight Wijij or aijij. As in the original 

RMCNN, eight sets of M/D and S block are required to generate and store the ratio 

weight aijkj from cell C(k,l) and the ratio weight aklij from cell C(i,j), respectively. Thus 

five sets of M/D and S block per cell are required in the architecture of SRMCNN. As 

compared with RMCNN, the increased hardware is small but the performance in pattern 

recognition is greatly improved. 

The SRMCNN also can be integrated into the conventional CNNUM, and is called 

SRMCNNUM. The chip area of the cell, the core cell array, and the SRMCNNUM are 
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estimated by using different CMOS process technologies. Table I lists these areas. 

 

3.4  SIMULATION RESULTS 

Matlab software is used to simulate the operations of the proposed SRMCNN with 

18×18 neurons, the direct neighborhood (r=1), and the modified Hebbian learning 

algorithm with self-feedback. The 18x18 SRMCNN can process patterns with 324 pixels. 

In each pattern, a black pixel is expressed by +1 whereas a white pixel by -1. To 

elucidate the effect of leakage current in the simulation, a constant leakage current of 

0.8fA is applied to the capacitor Czs of 2pF, the stored voltage Vzsijkl will gradually 

decreased. The capacitance of 2pF is chosen as a compromise between the weight 

storage time and the capacitor chip area. 

The totals of 98 exemplar patterns to be processed in the SRMCNN are classified 

into four groups. Group 1 includes 35 (No.1~No.35) Chinese characters with 

vertical-horizontal lines of two-pixel width. Group 2 includes 52 (No.36~No.87) English 

characters (capital and small letters) with the slant lines. Group 3 includes six 

(No.88~No.93) patterns with vertical-horizontal grid lines. Group 4 includes five 

(No.94~No.98) patterns with slant lines only. It has the most complicated patterns. 

Variations of the selected weights in the A template during various operation periods in 

some selected cells are examined to verify the RM phenomenon in the SRMCNN. In 

Table 3.2 (a), the generated ratio weights Wijkl(0) and aijkl(t) of the cells (3,1), (6,2), (9,3), 

(11,17) and (15,5) after the learning period and the elapsed period with the learned 36 

(No. 1~No 36) exemplar patterns are listed. In Table II (b), the weights of the cells 

(5,10), (8,6), (11,2), (13,16), and (16,12) with learned 98 exemplar patterns. As shown in 

both Tables 3.2(a) and 3.2(b), the learned A templates for different input exemplar 
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patterns are different. The A template for larger number learned patterns has fewer 

elements than that for small number of learned patterns. Moreover, the constant leakage 

current can enhance the larger ratioed weights while suppressing the smaller is to zero. 

For N larger ratio weights, they are enhanced to 1/N during the elapsed period. The 

effect is called the feature enhancement effect [171]-[172], [174]-[175]. 

Due to the feature enhancement effect, the variations of the ratio weights of two A 

templates of A5,10 and A11,2 versus the elapsed time factor is shown in Figs. 3.6(a) and 

3.6(b), respectively, during the elapsed period.. The elapsed time factor is normalized by 

the elapsed time of 50 seconds. As seen from Figs. 3.5(a) and 3.5(b), the value of the 

weight is increased to 1 or 1/N whereas the others are decayed to zero. For example, the 

A template weights of the cell C(5,10), A5,10 =[0.15 0.25 0.25 0.18 0.18] at elapsed time 

factor=1 is changed to A5,10 =[0 0.5 0.5 0 0] at elapsed time factor=14 as shown in Fig. 

3.5(a). Similarly, The weights A11,2 =[0.22 0.18 0.24 0.13 0.22] at elapsed time factor=1 

is changed to A11,2 =[0 0 1 0 0] at elapsed time factor=14 as shown in Fig. 3.5(b). It is 

found that the success rate of pattern recognition is related to the elapsed time factor. 

The minimum required elapsed time factors that yield the maximum success recognition 

rate of with different numbers of the learned patterns are given in Table 3.3. The 

minimum required elapsed time factors are from 8 to 18 for different patterns, which 

corresponds a range from 400 to 900 seconds. Note that the maximum elapsed time is 

generally proportional to the number of the learned patterns and their complexity. 

One hundred noisy test patterns and two types of noise are used in simulations to 

determine the success rate of pattern recognition. One type is the uniform distribution 

random noise at the levels between 0 and 0.05n, where n is a noise level factor. The 

other type is the normal distribution random noise with a noise standard variance of 

0.05m, where m is a noise variance factor. As verified by the simulation results, the 
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18×18 SRMCNN can learn 93 patterns and successfully recognize the corresponding 93 

noisy patterns of Groups 1, 2, and 3 with uniform (normal) distribution noise at a level 

of n=16 (variance of m=6). The success rate is 100%. The simulation shows that the 

learned A template already catch the features of all three groups of patterns. Thus, 

actually more than 93 patterns in the same groups can be recognized correctly. Fig. 3.6(a) 

shows some noisy test patterns with uniform noise level of 0.8, whereas Fig. 3.6(b) 

shows the correctly recognized patterns. The success rate versus the noise level factor n 

and the noise variance factor m for 93 (No.1~No.93) noisy test patterns with uniform 

and normal distribution noise are shown in Figs. 3.7(a) and 3.7(b), respectively. The 

Figures show that the success rate decreases as the noise level increases beyond 0.8 and 

the noise variance exceeds 0.3. 

The success rate versus the noise level factor n and the noise variance factor m for 

98 noisy patterns of the four groups with uniform and normal distribution noise shown 

in the Figs. 3.8(a) and 3.8(b), respectively. The success rate is 97% for uniform noise 

levels of 0.8 and a normal noise variance of 0.25. The rate is rapidly decreased at noise 

levels over 1.0 or noise variances over 0.25. Analysis indicates that the two patterns 

include only slanted lines within Group 4, as shown in Fig. 3.9, cannot be completely 

recognized. Accordingly, the success rate is degraded to 97%. If only five patterns in 

Group 4 are learned and recognized under uniform noise, the success rate can reach 

100% when the uniform noise level is 0.8, as shown in Fig. 3.8(c). 

All the simulation results concerning the success rate for various numbers of 

patterns and different types of noise are summarized in Table 3.4. Those simulation 

results indicate that the SRMCNN has a better learning and recognition capability if the 

learned patterns are simpler and the noise is lower. For complex patterns like those of 

Group 4, the numbers of pattern learning and recognition should be decreased to yield a 
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100% success rate. 

If one pattern with vertical–horizontal lines in Group 3 is added to Group 4, the 

success rate is decreased to 90% due to the learning of a different type of pattern from 

those five patterns with slant lines only. 

The patterns not already learned are included in the noisy patterns to be recognized 

to verify the effect of learning on that of recognition in the SRMCNN. It is found that 

almost no unlearned patterns can be recognized correctly. Thus, pattern learning is 

required to recognize a correct pattern. 

To investigate the recognition convergence of SRMCNN, a noisy pattern with a 

uniform noise level of 0.8, as shown in Fig. 3.10(a) is recognized as the stable pattern in 

Fig. 3.10(b). The value corresponding to the energy function of each iteration in the 

recognition operation during the recognition period is shown in Fig. 3.10(c). It can be 

seen that the value of energy function is decreased to the minimum value and the correct 

pattern is generated after two iterations. 

It has been shown that the number of connection weights in the SRMCNN is much 

less then that in the Hopfield neural network and the SRMCNN can achieve higher 

capabilities with 93 patterns. The 18×18 SRMCNN has 1620 weight connections while 

the 18×18 Hopfield network has 104652. The circuit complexity of SRMCNN is 

approximately 1/65 of that of the Hopfield network. 

For comparisons, conventional CNN associative memories have been proposed 

with the learned weights of the A template processed without RM and leakage during the 

recognition operation [59]-[61]. It is shown that the maximum numbers of stored and 

recognized patterns is 25 (12) for a 9×9 CNN with 49 (25) weight connections. The 

18×18 RMCNN without a self-feedback weight in the A template can learn and 

recognize five patterns [171]. The proposed SRMCNN with RM and self-feedback 
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weight can enhance the feature of the exemplar patterns and significantly improve the 

capability of recognition. As shown in the simulation results, the 18×18 SRMCNN can 

learn and recognize 93 noisy patterns with five weights connection. This verifies the 

improved recognition capability of the SRMCNN. 

Using the same learning algorithm but without RM and leakage current, 15 

exemplar patterns can be learned in the 18×18 CNN and only 6 (11) patterns could be 

correctly recognized from input noisy patterns with a uniform noise level of 0.5 (0.3). 

The success rate of recognition is 40% (73%). This verifies the importance of the effect 

of RM on the learning and recognition capability of the SRMCNN. 

 

3.5  SUMMARY 

In this chapter, the ratio memory cellular nonlinear network with self-feedback 

(SRMCNN) is proposed and analyzed. In the SRMCNN, the modified Hebbian learning 

algorithm with self-feedback is applied to the generation the absolute weights from the 

sets of input exemplar patterns and then transform them into ratio weights through the 

ratio memory to form the coefficients of space-variant A template. With RM and the 

modified Hebbian learning algorithm with self-feedback, the SRMCNN can be used as 

the associative memory for learning, recognizing, and recovering patterns. The 

simulation results have shown that the 18×18 SRMCNN with five weights connection 

can learn and recognize 93 noisy patterns with a 100% success rate at a uniform 

distribution level of 0.8 and a normal distribution variance of 0.3. This has successfully 

verified the correct function and superior performance of SRMCNN in the patterns 

recognition.  

The proposed SRMCNN with the feature enhancement effect of the RM under 

constant leakage on the template coefficients can learn and recognize patterns with fewer 
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weight connections than that of the Hopfield neural network. Moreover, the proposed 

SRMCNN with the self-feedback ratio weight can learn and recognize more patterns 

than the CNN associative memories with RM and without RM, given the same learning 

algorithm and the same constant leakage in the coefficients of space-variant templates. 

Simulation results have successfully verified the correct function of 18×18 SRMCNN. 

Since the proposed SRMCNN has the advantages in learning, storing, and recognizing 

image patterns, it is suitable for appropriate applications of nanoelectronic associative 

memory systems for real-time image processing. 
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Table 3.1. Estimated Chip Areas of Cell, Core Cell Array, and SRMCNNUM for 

Different Types of CMOS Technology. 

 0.25um 90nm 65nm 

cell 7x104um2 9x103um2 45x102um2 

core cell array 
(128x128) 7x108um2 9x107um2 45x106um2 

SRMCNNUM 
(128x128) 11x108um2 1.4x108um2 75x106um2 

CMOS 
Technologies Circuit 
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Table 3.2 Generated Ratio Weights of Some Neuron Cells in The 18×18 SRMCNN for (a) 
36 Learned Patterns, and (b) 98 Learned Patterns After Different Operation 
Periods. 

   ( )0ijklW  )(taijkl  
0.26 0.33

0 0.26 0.23 0 0.33 0C(3,1) 
0.26 0.33
0.23 0.5

0.18 0.23 0.19 0 0.5 0C(6,2) 
0.19 0
0.2 0

0.21 0.24 0.14 0 1 0C(9,3) 
0.21 0
0.2 0

0.19 0.23 0.15 0 0.5 0C(11,17) 
0.23 0.5
0.33 043
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(a) 

  ( )0ijklW   )(taijkl  
0.17 0

0.21 0.25 0.2 0 1 0
   

C(5,10) 
0.17 0
0.18 0

0.19 0.28 0.18 0 1 0
   

C(8,6) 
0.17 0
0.22 0

0.18 0.24 0.13 0 1 0
   

C(11,2) 
0.22 0
0.21 0

0.14 0.28 0.2 0 1 0
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Table 3.3. Matlab Simulation Results of Minimum Required Elapsed Time Factor: for 
Maximum Success Rate of Recognition. 

         Learned patterns          Min elapsed time factor 
  1-5 8 
  1-15 15 
  1-36 15 
  1-61 17 
  1-87 17 
  1-98 18 
  94-98 14 

Table 3.4. Success Rate for Various Sets of Learned Patterns with Noise. 

No. of 
Learned 
patterns 

Noise of input 

patterns 

Recognized 

patterns 

Correct 

patterns 
Success rate

1-93 
Uniform noise 

Level is 0.8 1-93 93 100% 

1-93 
Normal noise 
Variance is 0.3 1-93 93 100% 

1-98* 
Uniform noise 

Level is 0.8 1-98 95 97% 

1-98* 
Normal noise 

Variance is 0.25 1-98 95 97% 

95~96* 
Uniform noise 

Level is 0.8 95~96 2 100% 

94~98* 
Uniform noise 

Level is 0.8 94~98 5 100% 

88, 94~98* 
Uniform noise 

Level is 0.8 88, 94~98 5 90% 

 Including 2 patterns in Group 4 as shown in Fig. 10.
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Fig. 3.1.  General architecture of the SRMCNN
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(b) 
Fig. 3.2.  Detailed architecture of (a) two neighboring cells and their ratio memories 

(RM) and (b) the S block in the SRMCNN during the learning period.



 74

RM

Cell C(i,j) Cell C(k,l)

T1

u i j
p

T2d

Xij

Rij Cij

Yij

T1

ukl
p

T2d

Xkl

Rkl Ckl

Ykl

IbIb Ib

M/D
I1

I3

I2 Iomd
SM

/D
I1 I3 I2

Iom
d

S

M
/D

I1 I3 I2
Iom

d
S

S and M/D

SRM SRM
RM

(a) 

T2L T3

Czi CzsRzs
 

(b) 
Fig. 3.3.  Detailed architecture of (a) two neighboring cells and their ratio memories 

(RM) and (b) the S block in the SRMCNN during the elapsed period.
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Fig. 3.4  Detailed architecture of two neighboring cells and their ratio memories (RM) 
in the SRMCNN during the recognition period.
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(b) 

Fig. 3.5  Variations of the ratioed weights (a) A5,10 and (b)A11,2  under constant leakage 
current. 
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Fig.3.6  (a) Input test patterns with uniform noise level of 0.8. 
(b) Recognized output patterns. 
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(b) 

Fig. 3.7.  Success rate versus (a) uniform distribution noise level of 0.05n and (b) 
normal distribution noise variation of 0.05m for 93 (No.1~No.93) noisy test 
patterns.  
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(c) 

Fig. 3.8  Success rate versus (a) uniform distribution noise level of 0.05n for 98 
(No.1~No.98) noisy test patterns, (b) normal distribution noise variance of 0.05m 
for 98 (No.1~No.98) noisy test patterns, and (c) uniform distribution noise level 
of 0.05n for five (No.94~No.98) noisy test patterns. 
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Fig. 3.9. Two specific patterns in Group 4 with only slant lines
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Fig. 3.10.  (a) Input noisy test pattern, (b) output stable pattern, and (c) energy function 
during the recognition period. 


