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Prediction analysis for gene expression microarrays using a

reference set and simple t test

Student: Shu-Shen Chen  Advisor: Dr. Guan-Hua Huang
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ABSTRACT
We collect published Affymetrix GeneChip HGU-133A arrays from AE(ArrayExpress)
and GEO (Gene Expression Omnibus), and select normal control arrays to build up a
reference set. R package RefPlus is used to preprocess new target arrays without
re-preprocessing them along with the reference set together again. We pick up some
“representative” genes through the idea of bar code and build up six classifiers by simple t

tests. We then compare the classification abilities between our six classifiers and PAM.
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1. Introduction

Microarray is a useful design to simultaneously measure the expression values of many
thousands of genes in a particular species or tissue. Nowadays, Microarray is widely used
in many areas of biomedical research and Affymetrix GeneChip platform is selected in
most time. There are millions of probes on an Affymetrix array. Two kinds of probes with
length of 25 nucleotides are designed. One is “prefect match (PM)” probe which perfectly
matches its target sequence. Another one is “mismatch (MM)” probe which is different
with its paired perfect match in the middle base (13™) of probe sequence. Mismatch is
created to detect the nonspecific binding because its paired perfect match may be
hybridized to nonspecific sequence. So a paired PM and MM is called a “probe pair” and
there are 11-20 probe pairs to represent a gene typically. Because of this special design,
preprocessing Affymetrix expression arrays usually involves three main steps, which are
background adjustment, normalization, and summarization. When we have a large set of
Affymetrix arrays, we should preprocessthem together: This is a necessary step before we
use and analyze the information included in those arrays. At all times, we will refresh our
database and compare all arrays that we have, old and new. Each time we add a new data to
our database, we need to re-preprocess all arrays together again. This is a big work and is
inconvenient. So, we want to find a general reference database that contains arrays created
through most of tissue types that we usually use. Then, basing on the information of the
reference dataset, we can preprocess our new arrays without re-preprocessing new and old
arrays altogether.

Also, reference dataset can be used to improve the accuracy of classifying new data. We
build up 6 different kinds of classifiers that incorporate our created reference set to increase
their generalization ability of classification. The major difference between our classifiers
and those existing classifiers is the number of variables (genes) used for classification. We

choose all genes (or all “multiple-mode” genes) to build up our classifiers, instead of
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choosing some differentially expressed genes as done in existing methods. Simple t-test is
then applied to all chosen genes for classification. It is found that our classifiers perform as

well as those existing complicated rules (e.g., PAM (Tibshirani et al.,2002)).




2. Literature Review

2.1. Affymetrix GeneChip array

Affymetrix GeneChip array is one kind of microarrays that is used to high throughput
assay for measuring the expression levels of many thousands of gene transcripts in one
particular cell type or tissue at the same time. There are two main aspects of experimental
design of microarrys. One is target design that mRNA samples allocate to the slides. The
other is probe design that sequences print on the array. The technology of Affymetrix
GeneChip include RNA extraction, RNA labeling, hybridization, washing and staining. It
takes advantage of hybridization properties of nucleic acid. “Probe” is a combination of
complementary molecules attached to a solid surface for our “target” that is the specific
nucleic acid transcripts of interest presented in the sample and we used it to measure how
much quantity of “target”.. Millions of probes with a general length of 25 nucleotides are
produced on an Affymetrix array.  Affymetrix GeneChip probe design show in
Figure2.1(Affymetrix GeneChip user guide).

Pixel intensity values of the" atrays are calculated using peculiar instruments by
Affymetrix after RNA samples were prepared, labeled, hybridized to an array with millions
of probes and array was scanned. Based on these probe-level intensities values, intensity
values for each probe are computed and stored in a CEL file (contains probe cell

intensities). Those CEL files of HG-U133A raw data are our targets of data collection.

2.2. Microarray Retriver

Microarray retriever is a web-based tool for searching and a large scale retrieval of
public microarray data (Ivliev, 2008). Meta-analysis studies in which expression data is
combined with multiple individual studies are using widely since it is useful for discovery

of genes disproportionately overexpressed in specific tissue types, construction of robust
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high-resolution gene coexpression networks and identification of rhythmically expressed
genes for example. And it may improve the interpretation of new experimental studies by
comparison with data that already publicly available. Microarray Retriever (MaRe)
facilitates meta-analysis through searching and collecting data retrieval from two major
public microarray repositories that are ArrayExpress (AE, European Bioinformatics
Institute) and Gene Expression Omnibus (GEO, National Center for Biotechnology
Information). MaRe allows us to search these two repositories for experiments with
accession numbers, species, array platform, authors, date of submission and keyword
search terms. It resolves the hurdle of retrieving the relevant datasets from microarray data
repositories and saves the time of manual and sequential download data from the web or ftp

sites of AE and GEO.

2.3. Quality Control

We perform a series of QC (qualityControl) metrics that is used to check all arrays that
we colected have been hybridized correctly and the sample quality of arrays is acceptable.
We use the function “qc” in the R'package “simpleaffy” to do the procedure of QC (ACBB
& Wilson et al.). That was contained some general QC statistics and standard QC functions
recommended for Affymetrix arrays. And we choose this function gc is because of it can be
called with raw data (in the AffyBatch object) and that let we can calculate the value of
scale factors. To assess the quality of data generated in our database, we consider four out
of the metrics (Scale factor, Background level, 5'/3' ratios for GAPDH and beta-actin and
Proportion of transcripts called present) in the gc function. Details as the follow:
1. Average background: The value of average background is the level of background noise

for each chip which is experiencing that shows a considerable amount of variation.

2. Scale factor: The level of scaling applied to an array when normalized using

Affymetrix’s MASS algorithm.



3. 3’ to 5’ ratios for B-actin and GAPDH: the value of 3°/5’ ratios is the ratio of the 3’
expression to the 5 expression for some quality control genes.

4. Percent present calls: the number of genes called present (% present calls) is
representing the percentage of probesets called present on an array and shows a broad
spread in values across the whole experiment (27-57%) there is good general agreement
between samples in each replicate group and between each experimental condition.

The criteria of these four metrics is

1. Scale factors should be within 6-fold, 4-fold, and 3-fold of each other stepwisely.

2. Those values of averages background should be smaller than 300.

3. The value of actin3/actin5 should not exceed 3 and the value of gapdh3/gapdh5
should not exceed 1.25.

4. Those values of percent present should be not less than 20%.

2.4. justRMA, our preprocessing function

Since many systematical biases from different seurces in microarray experiments the
preprocessing procedure of data ‘becomes more necessary and more important. To get a
correct intensity value that represents the abundance of mRNA instead of an uncertain
brightness biased by other sources is the goal of preprocessing. RMA is one preprocessing
method of most popular preprocessing methods.

“justRMA” is a function of R package named “affy”, that can read .cel files and compute
the RMA (robust multi-array average) expression measure without using an AffyBatch.
“rma” is a function of the affy package that be considered as the canonical implementation
of RMA and converts an AffyBatch into an ExpressionSet during the RMA calculation.
Both of justRMA and rma do the same expression estimates. So compare to the function
“rma”, “justRMA” is a better option for the user of function “rma” with a really huge

dataset that need to process together or struggling with memory problem. We use justRMA
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instead of rma in our preprocess step. And RMA (the Robust Multichip Average)
methodology consists of three steps that are a background adjustment, quantile
normalization and summarization (Irizarry et al., 2003). RMA methodology only use PM
(perfect match) probes since MM (mismatch) may detect not only non-specific binding and
background noise but also the transcript signal just like the PM probe and that is not always
appropriate to subtracting the MM intensity from the PM intensity as the way of correcting
for background noise and non-specific binding. Convolution background correction method

in the background adjustment of RMA is assumed that the expression value of each PM

probe (PM. ) combine with background intensity caused by optical and nonspecific

iig

binding ( bgy ) and signal intensity ( Sy ) as follow:

PI\/lijg:bgijg-i-S izl,"'alajzla"'a‘]ag=19"'aG

ijg°

And the background corrected probe intensities is B(PM ;) = E(s;, | PM;;,) , where we

assume that bgy, is distributed ‘normalyandysy is/distributed exponential. There are

many obscuring sources of variation involved' during the process of carrying out the
microarry experiment involves multiple arrays, such as physical problems with laboratory
conditions, hybridization reactions, labeling, arrays and scanner difference. So proper
normalization is necessary for comparing measurements from different arrays that implying
different tissues. The step of summarization is to combine those probe intensities that pass
through background adjusted and normalized to a single measurement that estimates the
expression value for each gene. Then the summarization of RMA is using the median

polish algorithm that assume the value of the background corrected, normalized and took a

log of PM intensities (T(PM;)) is the combination of the log scale expression value on

array i (&), the log scale affinity effects for probe j (&;), and error term (&; ), the formula



is T(PM,)=¢ +a,+¢;.

We use the estimate of €, as the log scale measure of expression.

2.5. Testing Dataset

We choose our testing dataset that is not in our reference training set. And for comparing
our reference training set to the datasets of thesis of “bar code”, we choose our testing
dataset through the thesis of “bar code”. We choose a dataset with 159 arrays from a breast
cancer study (GEO identifier is GSE1456) (Pawitan et al., 2005). All 159 arrays in this
study did not include our reference training set. Those samples was been included at the
Karolinska Hospital from 1 January 1994 to 31 December 1996(n=524) and excluded to
sample size 159 (n=159). In the end, there are 38 poor prognosis samples and 121 good

prognosis samples in this dataset.

2.6. The view of multiple modes

Typically we assume the eXpression intensity for-each gene is f (1), where cases and
controls separately follow f(z)and “f(g;)" with different means, and all genes follow
the same distribution f(0) that usually be normal, mixture of normals, or lognormal. But
in fact each gene has its own distribution since the “probe effect” is large. We can find this
from the following graph that are some probability density functions of the expression
intensity values which has been taking log2 for different genes on the same array. There are
one mode distribution, two close modes distribution, more than two modes distribution, and
two separate modes distribution in Figure 2.2(Zilliox and Irizarry, 2007).

Since it is expected that any given gene will be expressed only in some tissues, multiple
modes should be observed. And based on those published studies of gene expression, we

think most genes should only have one mode in its probability density function and most



genes are unexpressed in most tissues. So we assume that the lowest intensity mode of
those genes with multiple modes distribution is due to a lack of expression. Then we
determined the expression intensity distribution for each gene through collecting the raw

data from published repositories web and simulation it.

2.7. The idea of gene expression cut-off form from bar code

Since the probability density function of gene expression intensity value have multiple
modes, we can simulate the “unexpressed” intensity from the lowest intensity mode and the
“expressed” intensity from the others. This idea is from “A gene expression bar code for
microarray data” (Zilliox and Irizarry, 2007). The modes were computed and we considered
that the mode with the smallest d0cation is the expected intensity of an unexpressed gene.
Expression distribution from 0 to the lowest intensity mode used to estimate the standard
deviation of unexpressed. genes. Then we selected a constant K and set the genes
expressed in tissues whererthe log expréssion estimates were K standard deviations larger
than the unexpressed mean. We'show the idea in Figure:2.3.. If we want to simulate a set of
microarray gene expression generating ifitensity value data, we can simulate unexpressed
intensities from the empirical distribution on the left of the cut-off and expressed intensities
from the empirical distribution on the right of the cut-off. And we can use this idea to

choose those genes with differentially expressed.

2.8. Classification

Class comparison, class discovery, and class prediction are most common types of
microarray data analysis. Classification is one of the methods of class prediction. To assign
observational units to classes on the basis of variables describing/characterizing those
observations is the task of classification. In classification, the classes are predefined and we

understand the basis for the classification from a set of labeled observations
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(training/learning set), then use this information to predict the class of future observations.
In fact, we get the gene profiles, find function f that maps the data matrix of gene
expression to classes, then get the predict class. Linear and quadratic discriminate analysis
(LDA, QDA), k-nearest neighbor (KNN), and classification and regression tree (CART) are
some methods for class prediction. These methods of classification are usually choosing
some finite variables (less than 1,000 or smaller than size of training set) to develop the
classification rule since it is not reasonable for fit when the number of variables is bigger
than the sample size of training dataset. But our goal is to find a classifier with high
generalization ability through using as much as possible variables that we can get from the

training data generalize to predict a new example (Bittner et al., 2000).

2.9. Prediction analysis for microanrays (PAM)

Prediction analysis of microarrays (PAM).is-a statistical technique for class prediction
using gene expression data by using shrunken centroids.*The method of nearest shrunken
centroids identifies subsets of genes that best characterize each class. This technique is
general and can be used in many other ¢lassification problems (Tibshirani et al.,2002).

This method computes a standardized centroid for each class that is the average gene
expression for each gene in each class divided by the within-class standard deviation for
that gene. And nearest centroid classification compares the gene expression profile of a
new sample to each of those class centroids then set which class with centroid that is
closest to in squared distance as the predicted class for that new sample. Then after
“shrink” each of the class centroids toward the overall centroid for all classes by the
amount that we call the threshold is the difference between nearest centroid classification
and the Nearest shrunken centroid classification which is used in PAM. This shrinkage that
consists of moving the centroid towards zero by threshold that means to set it equal to zero

if it hits zero. Then the new sample is classified by the usual nearest centroid rule using the
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shrunken class centroids. We can get two advantages from shrinkage, one is that can make
the classifier more accurate by reducing the effect of noisy genes and the other one is to
select genes automatically. Since when a gene is shrunk to zero for all classes hat means we
should eliminated that gene from the prediction rule. In other words, if a gene is set to zero
for all classes except one then we know that high or low expression for that gene in that

class. So we want to compare the generalization ability of PAM and our classifiers.
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3. Material and Methods

3.1 To seek and find a reference set from publicly available databases
3.1.1 Use Microarray Retriever to search and download arrays

We use a web-based tool for searching and large scale retrieval of public microarray data,
called Microarray Retriever (MaRe). This tool 1is available on the web at:

http://www.lgtc.nl/MaRe/. Our target platform is Affymetrix GeneChip HG-U133A which

is a kind of human genome arrays. So we set the box C with Species=“Homo sapiens”, and
Platform keywords=“A-AFFY-33” or “GPL96” on the search web of MaRe, where
A-AFFY-33 and GPL96 are the platform names of HG-U133A on two major public
microarray repositories ArrayExpress (AE) and Géne Expression Omnibus (GEO). We also
set the search options box: with-Search for="Experiinents and platforms”, Search in
GEO="v ", Search in ArrayExpress="v ”, Retrieve from GEO="Only GSE”, Retrieve from
ArrayExpress=“Not retrieved from GEO” and Retrieve raw data="v ”. MaRe then found
out 591 experiments from GEO. and 110 experiments from AE which meet our search
options. These public microarray data werethen downloaded to a local machine.
3.1.2 Choose normal control arrays

We choose those “normal control” raw arrays out of 701 experiments retrieved by MaRe
for building a reference set. At the end of this stage, we derived 1886 normal control .cel
files from GEO and 559 .cel files from AE.
3.1.3 Perform chips’ quality assessment

We do quality control assessment to delete outliers of 1886+559=2445 normal control
arrays. This can remove the effects of some special arrays and maintain the general state of
the reference training set. First, we use an R function “qc” in package “simpleaffy” to do

quality control and use R functions “avbg”, “sfs”, “pp” and “ratios” to calculate the criteria

values of averages background, scale factor, percent present calls and 3°/5’ ratios for actin
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and gapdh.

Step 1 of quality control is to delete those arrays with scale factor values 3 standard
deviations up or down from the mean value, and we deleted 101 arrays in this step (85
arrays in GEO and 16 arrays in AE). Then do the same thing again for the rest of the arrays
to delete those arrays with scale factor values 2 standard deviations up or down from the
mean value. And do again to delete those arrays whose scale factor values are out of the
3-fold of one another. The numbers of delete arrays in these two steps are 171 (136 arrays
in GEO and 35 arrays in AE) and 199 (138 arrays in GEO and 61 arrays in AE).

Step 2 of quality control is to delete those arrays with averages background values larger
than most of the left 1974 arrays after step 1. Criteria of this step is to remove those arrays
with avbg value larger than 320,-and we removed 56 arrays (56 arrays in GEO and 0 arrays
in AE) in this step.

For the left 1918 arrays, 288 arrays were deleted with, values of “actin3/actin5” larger
than 3 (226 in GEO and+62 arrays in"AE), and 112 arrays were deleted with values of
“gapdh3/gapdh5” larger than;1.25 (76 arrays in GEQ and 36 arrays in AE). After this step,
we had 1518 arrays left in our databagse.

The last quality control step is to delete arrays with values of percent present calls
smaller than 20. Four arrays in GEO and 13 arrays in AE were deleted.

Initially, we have 1279 arrays that pass our quality control criteria. We will use these
1279 arrays to build up our reference set. Further details of delete step contained in Table
3.1, and Figure 3.1 show a general overview about the distributions of those delete arrays

99 ¢¢

over all 2445 arrays in four values: “avbg”, “sfs”, “pp” and “ratios”.

3.2 To preprocess our reference set and classify arrays by tissues
First, we use justRMA to preprocessing our 1279 arrays in R-2.3.0. We classify these

1279 arrays in the reference set by their tissue types. Seventy-four tissue types were
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obtained. There are 8 tissue types that only contain one array and 4 tissue types that contain
more than 50 arrays. The biggest tissue type is “whole blood” with 67 arrays in there. The
distribution of the number of arrays in each tissue type is in Table 3.2. Table 3.3 shows
those 74 tissue types and the number of arrays they contain. Then we randomly choose 74
arrays by tissue type (a tissue type pick one array as the representation of that tissue type).
We use these 74 arrays as the representation of all 1279 arrays in our reference set to build
up a set of parameters from the function “rma.para” in package “RefPlus” (Harbron C. et
al. 2007). Then we obtain two sets of parameters: “Reference.Quantiles” and
“probe.effects”, and later we can use an R function “rmaplus” with these two sets of
parameters to preprocess new target arrays without re-preprocessing them along with the

reference set together again.

3.3 To find out our training dataset and preprocess‘it by RefPlus parameters

We found a dataset that-had bothicentrol and ease samples and did not overlap with our
arrays in the reference set. The dataset is from the Karolinska Hospital 1994-1996 that
publish on web of GEO (Pawitan et al:'2005). There are 38 arrays as poor prognosis and
121 arrays as good prognosis, where poor prognosis was defined as distant relapse or death
year less than 5 by any cause. Arrays from poor prognosis are treated as case samples
(disease) and arrays from good prognosis are treated as control samples (non-disease).
These “training” arrays with known disease statuses are preprocessed, using R function
rmaplus and parameters “Reference.Quantiles” and “probe.effects” from our reference

training set.

3.4 Six classification rules
Due to the computer capacity, we choose 38 arrays from poor prognosis and 70 arrays

from good prognosis to be our training set (totally containing 108 arrays). Let’s define
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D :diseased and ND :non-diseased ,

d;; = the expression value of the jth probe in the ith “diseased” array,
nd;; =the expression value of the jth probe in the ith “non-diseased” array,

ref; =the expression value of the jth probe in the ith “reference” array,

1 &
d; =—Zdu

N, =

= the mean expression value of the jth probe over all n, diseased arrays,

= the mean expression value of the jth probe over all n, non-diseased arrays,

12
ref , = n—Zrefij
3 i=l

= the mean expression value of the jth probe overall n, reference arrays,

X, = the expression value-of the jth probe in.the “newly” observed array X,

D, (X;) = the “distance” between new observation’ X and the disease group
in the jth probe,
D,q (X ;) = the “distance” between new observation X and the non-disease group
in the jth probe,
Diff (X ;) =D,y (X;) = Dy(X)),
where j=1,...,22283.
In the following, we will establish various ways for calculating the “distance”, and then
develop their corresponding classification rules.
3.4.1 Method 1 (corrected by the reference set and training groups)

Due to the apparent “probe effect”, the distance between new observation X and the

disease group in the jth probe is corrected with the distance between the disease group and
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the reference group in the jth probe. The same correction is also applied to the distance

with the non-diseased group. Therefore, we define

Dy (X )= X; —d;[—[d;—ref;],

D (X)) =[X;-nd;|-|nd; —ref |,

Diff (X ;) =D,y (X;) = Dy(X)), j =1,---,22283.

If most of the probes with Diff (X;) <0, we assign new observation X to ND (the

non-diseased group).

If most of the probes with Diff (X;) > 0, we assign new observation X to D (the diseased

group).
We proposed to do the following hypothesis.testing:

H, :new observation X belongs to NDi(the non-diseased group)

vs. H, :new observation:X belongs to D*(the diseased group)

E(Diff (X Ho

(_ (X)) ).
SD(Diff (X))/+/p

where E(Diff (X)) is the sample mean of Diff(X,),---, Diff (X)), SD(Diff (X)) is the

Test statistic =T =

sample standard deviation of Diff (X)), --,Diff (X)), and p=22283. If reject null

hypothesis, we assign new observation X to disease group. If accept null hypothesis, we
assign new observation X to non-disease group. To calculate the classification error of the
proposed rule, we perform the leave-one-out cross validation on the training set. In other
words, (1) omit one observation from the training set and develop classification Method 1
based on the remaining observations, (2) classify the “holdout” observation, using the rule
constructed in (1), and (3) repeat steps (1) and (2) for all observations in the training set. As
a result, 74 out of all 108 arrays in the training set were classified correctly by Method 1.

3.4.2 Method 2 (corrected by the reference training set)
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Here, the distance is corrected with the distance between new observation and the

reference group.

Dy (X)) = Xy —d |- X —ref ],
Dnd(xj):|xj _nd.j |_|Xj _ref.j B
Diff (X,) = D,y (X;) ~ Dy(X), j = 1,-+-,22283.

We then perform the same hypothesis test as what Method 1 does. As the result of the
leave-one-out cross validation, 80 out of all 108 arrays in the training set were classified
correctly by Method 2.

3.4.3 Method 3 (no corrected)

Here, no correction for the distance is done.

Dd(Xj):‘ Xj _d.j ,
Dnd(Xj):|Xj _nd‘j |5
Diff (X ;) = D,y (X ;) — Dy (X)) ji= 1:+,22283.

We then perform the same hypothesis'test as what Method 1 does. As the result of the
leave-one-out cross validation, 80 out of all 108 arrays in the training set were classified
correctly by Method 3.

3.4.4 Method 4 (corrected by multiplying the standard deviation of the jth probe in
the reference set)

Assuming that the probes with large standard deviations in the reference set tend to be
more capable of discriminating between diseased and no-diseased groups than the probes
with small standard deviations, we use the standard deviation of each probe in the reference

set as the weight when calculating the distance. Therefore, let

Dy(X;)=[ X; —d; [xSD(ref ),
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D,y (X;) = X; —nd ; | xSD(ref ;),
Diﬁ(xj): Dnd(xj)_Dd(Xj)a j=1,---,22283,

where SD(ref ;) is the sample standard deviation of ref,;,---, ref

e -
We then perform the same hypothesis test as what Method 1 does. As the result of the
leave-one-out cross validation, 80 out of all 108 arrays in the training set were classified

correctly by Method 4.

3.4.5 Method 5 (corrected by multiplying the standard deviation of the jth probe in
the reference set and dividing the standard deviation of the jth probe in the
training group)

In addition to the assumption«in-Method 4, we also consider the different effects in the
diseased and the non-diseaséd groups.jWe propose. to cotrect the distance with the diseased
group by dividing the standard deviation of each probe: in the diseased group and the

distance with the non-diseased group.by‘dividing the standard deviation of each probe in

the non-diseased group. Therefore,

SD(ref ;)
Dd(xj):| Xj _dAj | X,
sD(d,)
SD(ref ;)
Dnd(xj):| Xj _nd,j | X ————,
SD(nd ;)

Diff (X ) = Dy (X,) = Dy (X ), j = 1,---,22283,

where SD(d ;) is the sample standard deviation of d,;,---,d,;, and SD(nd ;) is the

njo

sample standard deviation of nd,;,---,nd

1j>’ nj

We then perform the same hypothesis test as what Method 1 does. As the result of the
leave-one-out cross validation, 70 out of all 108 arrays in the training set were classified
correctly by Method 5.
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3.4.6 Method 6 (corrected by dividing the standard deviation of the jth probe in the
reference set)

Contrary to the assumption in Method 4, one might think that the probes with large
standard deviations in the reference set tend to be more “unstable” and thus can reduce
their ability in discriminating between diseased and no-diseased groups. We thus use the
inverse of the standard deviation of each probe in the reference set as the weight when

calculating the distance. Therefore, let

1
D,(X)=X —-d, [x—,
o (X=X —d SD(ref ;)
1
D.(X)=X -nd [x——,
nd( J) ‘ j .J‘XSD(ref‘j)

Diff (X ;) = Dy (X;) = Dy (X ), | =1%:+,22283

We then perform the samie hypothegis test as what Method 1 does. As the result of the
leave-one-out cross validation, 80 out of all 108 arrays in the training set were classified

correctly by Method 6.

3.5 To obtain the list of genes with multiple modes from the idea of bar code

All 1279 reference files were preprocessed using jJustRMA of R, and then we obtain the
empirical expression distribution across tissues for each gene. The empirical distribution is
obtained by fitting a density smoother for each gene, using R function density(n,adjust),
where n is the number of equally spaced points at which the density is to be estimated
and adjust is the bandwidth used. We try some different combinations of n and adjust
to fit the density distribution function and show the fit result in the following graph (Figure
3.2). Then we decide to use n=512,adjust =3 for all genes to fit their empirical density
functions. After the density function of each gene is fitted, we check the changes of slopes
of these functions to define whether or not the gene has multiple modes. If the slope

transfers from positive to negative, this means there is a mode in this density distribution. If
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transferring the slope from positive to negative more than once, then we define this gene to
have a “multiple-mode” density distribution. Overall, we find 5005 multiple-mode genes
from all 22283 genes in the HG-U133A GeneChip, based on our 1279 reference set arrays.

These 5005 genes are used for creating our classification rule.

3.6 Do classification procedure again (Method 1~Method 6) with multiple-mode
genes
Here we perform classification Method 1~Method 6 described in sections 3.4.1-3.4.6 by
using only 5005 genes with multiple modes. The new results are compared with the ones

based on all 22283 genes.

3.7 Classify testing set by'PAM

For the purpose of comparison, the training set is cross-validated by PAM (Tibshirani et
al., 2002). We use the functions in/R-package “pamr”. The “pamr.train” is a function to
train a nearest shrunken centroid classifier. The “pamr.predict” is a function for producing
predicted information from a nearest shrunken centroid fit. “pamr.predict” also gives a
cross-tabulation of true versus predicted classes for the fit returned by “pamr.cv” or
“pamr.train” at the specified threshold. Here, we use “pamr.train” and threshold=1. When
classifying by PAM, we also run twice: one using all 22283 genes and the other using only

5005 multiple-mode genes.

19



4. Result

In the end, we do all six proposed methods and PAM twice: one using all 22283 genes and
the other using only 5005 multiple-mode genes. Figure 4.1 show the histogram of the mean
expression value of each gene in reference set. We find that the distribution of mean
expression value follow a non-symmetrical and one-mode distribution. So we assume that
mean expression value of each gene present the probe effect of each gene in Microarray
HGUI133A chip. And we use those mean expression values to modify the definition of our
distance between observation array and different groups (using in Method 1 and Method 2).
Figure 4.2 show the histogram of the sample standard deviation of expression value for
each gene in reference set. We find that most sample standard deviations of expression
value for each gene in reference set are near to 0.5 and the distribution of the sample
standard deviation of expregsion valuerfor each gene 1s fon-symmetrical. So we think each
gene have different contributions to classification."And we decide to use the sample
standard deviation of each. gene in.treference.set to be the weight of each gene in
classification and present the:different contribution of each gene in classification (using in
Method 4, Method 5 and Method‘6). Figure 4.3 and Figure 4.4 show the histograms of the
absolute different value of mean expression for each gene between disease group,
non-disease group, and reference set separately. Figure 4.3 and Figure 4.4 both show us
that there are different “distances” of each gene from group to reference set. That support
our decision to build up classifier 1 (Method 1). The results of the leave-one-out cross
validation are shown in Table 4.1. We can find that classify with all 22283 genes and with
5005 multiple-mode genes get similar result (there is no big different in classify correctly
rate). We also can think it means 5005 multiple-mode genes can represent all 22283 genes
and the information that contained by all 22283 genes. We can use these 5005
multiple-mode genes to build up our classifier without choosing special genes by tissues

types or diseases and can saving our computer capacity and time from replace 22283 genes
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by 5005 multiple-mode genes. And although the result of PAM is better than the result of
our six classifiers, it still exist about seventy percent successive-classified rate of our
classifiers. It shows us that simple T-test still performs a not-bad result in classification.
Figure 4.1 show the detail of all result, where a point means we classify successfully once
and green points and black points were the results from doing simple t-test by 5005
multiple-mode genes and by all 22283 genes respectively. There are some arrays that

always been classified to wrong class no matter what classifier we used (PAM or M1~M6).
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5. Conclusion and discussion

Due to our study result we demonstrate that expressed genes are those genes with
multiple-mode in distribution and simple t test also can be applicable in classification or
build a classifier. Using simple t test to build up a classifier is easier than other classifiers
and do not need to fit some complicated data selection rules. In future, we think that we can
continue to investigate that why some arrays always been classified incorrectly by all
classifier even by PAM. For example we can try to provide criteria for well separated genes
and not well separated genes among 5005 2-or-more-mode genes and the difference

between two kinds of genes show in Figure 5.1.
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Figure 4.1. The histogram of the mean expression value of all genes for reference set.
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Figure 4.2. The histogram of the sample standard deviation of expression value for all

genes in reference set.
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Figure 4.3. The histogram of absolute different value of mean expression between disease

group in testing set and reference set.
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Figure 4.4. The histogram of absolute different value of mean expression between

non-disease group in testing set and reference set.
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Table 3.1.Summary of QC step

GEO AE Total
Before QC 1886 559 2445
Scale factor -359 -112 -471
Averages background -56 0 -56
3" /5 ratios -302 -98 -400
Percent present calls -4 -13 -17
After QC 1165 336 1501
Remove same type 943 336 1279
Table 3.2.The distribution of the number of arrays in eachrtissue type
number of arrays in one
. 25| 6~10 [11+20|21~30|31~50|51~70| total
tissue type
number of tissue types 14 9 16 15 8 4 74
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Table 3.3.The number of arrays in each tissue type

Tissue n Tissue n Tissue n Tissue n
beta cell islets | 1 Theca cell 4 | umbilical cord blood | 13 brain 29
unknow tissue
medulla oblongata] 1 | Normal Ovary| 5 thymus 14 29
type
Normal Breast thyroid gland Post-mortem medial
1 7 15 |skeletal muscle|33
(thyrocytes) substantia nigra
Normal Colon Normal Spleen Normal
1 7 skin 16 Caudate 33
Nucleus
Normal Corpus Undifferentiated prefrontal
1 | adipose tissue |38 16 33
human ES cells cortex
Normal Stomach lymphoblastoid cell
1 | Normal cervix | .8 17 |duodenal tissue| 40
lines
Normal Thalamus human
Human optic nerve
1 prostate 8 18 | post-mortem |43
head astrocytes
brain tissue
normal tissue peripheral
TERV (cell
adjacent to Renal | 1 8 hypothalamus 22 | blood (human |47
line)
Cell Carcinoma PBMC)
Normal Adrenal white blood
2 | smooth muscle | 9 liver 22 48
Gland cells
Fetal Cartilage primary
from Distal 2 | fibroblast cell | 9 | Bronchial Epithelium | 23 [lateralis muscle| 48
Femur line
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Normal Heart

Human

PBSC CD34 umbilical vein
10 T cells resting 23 53
selected cells endothelial
cells
Baseline
Pancreas 11 cerebellum 24 | bone marrow |56
macrophages
spinal cord Normal Bladder| 11 Normal Kidney 25 lung 63
salivary gland testis 11 uterus 25| whole blood |67
Pituitary tonsil 11 |esophageal epithelium| 26
Normal Amygdala synovial
11 Erontal Cortex 26
membrane
blood (cell type :
intestinal
B-cells 12 |+ mononucleat cells |26
xenograft tissue
from venous blood)
SH-SYSY
Trachea neuroblastoma | 12 | Iblood (monocyte) |27
cells
Stratagene
Universal
Pulp tissue 12 | placental basal plate | 27
Human
Reference RNA
peripheral blood
occipital lobe 12| blood CD4 T cells |27
CD8 T cells
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Table 4.1The results of the leave-one-out cross validation, using various classification rules

The number of | Metho | Metho | Metho | Metho | Metho | Metho | Metho | Total
corrected dl d2 d3 d4 ds dé6 d7
classified (PAM)

arrays
Use all probes 74 80 80 80 70 80 88 108
(%) 68.52 | 74.07 | 74.07 | 74.07 | 64.82 | 74.07 | 81.84 | 100
Use 5005 70 77 77 79 69 78 87 108
probes
(%) 64.82 | 7130 | 71.30 | 73.15 | 63.89 | 72.22 | 80.56 | 100
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