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使用晶片參考資料庫 

及簡易學生 T檢定之基因表現晶片預測分析  

 

 

 

 

 

 

研究生：陳淑慎    指導教授：黃冠華 博士 

國立交通大學統計學研究所 

 

摘要 

收集在網路資料庫公開發表過型號為 HGU-133A 的艾菲爾基因晶片，挑選無患病的一

般正常晶片集合成晶片參考集合，利用 R的套裝軟體 refPlus 預處理新的目標晶片，

無須再一次同時預處理晶片參考集合和新目標晶片，並使用 bar code 的原則挑選一

些代表基因和簡易學生 T檢定方法建立六種不同的分類方法，比較我們所建立的分類

法與 PAM 分類法之晶片分類能力優劣。 

 

 

 

關鍵字：微陣列晶片、艾菲爾基因晶片、bar code、RefPlus 
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ABSTRACT 

  We collect published Affymetrix GeneChip HGU-133A arrays from AE(ArrayExpress) 

and GEO (Gene Expression Omnibus), and select normal control arrays to build up a 

reference set. R package RefPlus is used to preprocess new target arrays without 

re-preprocessing them along with the reference set together again. We pick up some 

“representative” genes through the idea of bar code and build up six classifiers by simple t 

tests. We then compare the classification abilities between our six classifiers and PAM. 
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1. Introduction 

Microarray is a useful design to simultaneously measure the expression values of many 

thousands of genes in a particular species or tissue. Nowadays, Microarray is widely used 

in many areas of biomedical research and Affymetrix GeneChip platform is selected in 

most time. There are millions of probes on an Affymetrix array. Two kinds of probes with 

length of 25 nucleotides are designed. One is “prefect match (PM)” probe which perfectly 

matches its target sequence. Another one is “mismatch (MM)” probe which is different 

with its paired perfect match in the middle base (13th) of probe sequence. Mismatch is 

created to detect the nonspecific binding because its paired perfect match may be 

hybridized to nonspecific sequence. So a paired PM and MM is called a “probe pair” and 

there are 11-20 probe pairs to represent a gene typically. Because of this special design, 

preprocessing Affymetrix expression arrays usually involves three main steps, which are 

background adjustment, normalization, and summarization. When we have a large set of 

Affymetrix arrays, we should preprocess them together. This is a necessary step before we 

use and analyze the information included in those arrays. At all times, we will refresh our 

database and compare all arrays that we have, old and new. Each time we add a new data to 

our database, we need to re-preprocess all arrays together again. This is a big work and is 

inconvenient. So, we want to find a general reference database that contains arrays created 

through most of tissue types that we usually use. Then, basing on the information of the 

reference dataset, we can preprocess our new arrays without re-preprocessing new and old 

arrays altogether.  

Also, reference dataset can be used to improve the accuracy of classifying new data. We 

build up 6 different kinds of classifiers that incorporate our created reference set to increase 

their generalization ability of classification. The major difference between our classifiers 

and those existing classifiers is the number of variables (genes) used for classification. We 

choose all genes (or all “multiple-mode” genes) to build up our classifiers, instead of 
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choosing some differentially expressed genes as done in existing methods. Simple t-test is 

then applied to all chosen genes for classification. It is found that our classifiers perform as 

well as those existing complicated rules (e.g., PAM (Tibshirani et al.,2002)).     
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2. Literature Review 

 

2.1. Affymetrix GeneChip array 

Affymetrix GeneChip array is one kind of microarrays that is used to high throughput  

assay for measuring the expression levels of many thousands of gene transcripts in one 

particular cell type or tissue at the same time. There are two main aspects of experimental 

design of microarrys. One is target design that mRNA samples allocate to the slides. The 

other is probe design that sequences print on the array. The technology of Affymetrix 

GeneChip include RNA extraction, RNA labeling, hybridization, washing and staining. It 

takes advantage of hybridization properties of nucleic acid. “Probe” is a combination of 

complementary molecules attached to a solid surface for our “target” that is the specific 

nucleic acid transcripts of interest presented in the sample and we used it to measure how 

much quantity of “target”. Millions of probes with a general length of 25 nucleotides are 

produced on an Affymetrix array. Affymetrix GeneChip probe design show in 

Figure2.1(Affymetrix GeneChip user guide). 

Pixel intensity values of the arrays are calculated using peculiar instruments by 

Affymetrix after RNA samples were prepared, labeled, hybridized to an array with millions 

of probes and array was scanned. Based on these probe-level intensities values, intensity 

values for each probe are computed and stored in a CEL file (contains probe cell 

intensities). Those CEL files of HG-U133A raw data are our targets of data collection.   

 

2.2. Microarray Retriver 

Microarray retriever is a web-based tool for searching and a large scale retrieval of 

public microarray data (Ivliev, 2008). Meta-analysis studies in which expression data is 

combined with multiple individual studies are using widely since it is useful for discovery 

of genes disproportionately overexpressed in specific tissue types, construction of robust 
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high-resolution gene coexpression networks and identification of rhythmically expressed 

genes for example. And it may improve the interpretation of new experimental studies by 

comparison with data that already publicly available. Microarray Retriever (MaRe) 

facilitates meta-analysis through searching and collecting data retrieval from two major 

public microarray repositories that are ArrayExpress (AE, European Bioinformatics 

Institute) and Gene Expression Omnibus (GEO, National Center for Biotechnology 

Information). MaRe allows us to search these two repositories for experiments with 

accession numbers, species, array platform, authors, date of submission and keyword 

search terms. It resolves the hurdle of retrieving the relevant datasets from microarray data 

repositories and saves the time of manual and sequential download data from the web or ftp 

sites of AE and GEO.   

 

2.3. Quality Control 

We perform a series of QC (quality control) metrics that is used to check all arrays that 

we colected have been hybridized correctly and the sample quality of arrays is acceptable. 

We use the function “qc” in the R package “simpleaffy” to do the procedure of QC (ACBB 

& Wilson et al.). That was contained some general QC statistics and standard QC functions 

recommended for Affymetrix arrays. And we choose this function qc is because of it can be 

called with raw data (in the AffyBatch object) and that let we can calculate the value of 

scale factors. To assess the quality of data generated in our database, we consider four out 

of the metrics (Scale factor, Background level, 5'/3' ratios for GAPDH and beta-actin and 

Proportion of transcripts called present) in the qc function. Details as the follow: 

1. Average background: The value of average background is the level of background noise 

for each chip which is experiencing that shows a considerable amount of variation. 

2. Scale factor: The level of scaling applied to an array when normalized using 

Affymetrix’s MAS5 algorithm. 
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3. 3’ to 5’ ratios for β-actin and GAPDH: the value of 3’/5’ ratios is the ratio of the 3’ 

expression to the 5’ expression for some quality control genes. 

4. Percent present calls: the number of genes called present (% present calls) is 

representing the percentage of probesets called present on an array and shows a broad 

spread in values across the whole experiment (27-57%) there is good general agreement 

between samples in each replicate group and between each experimental condition. 

The criteria of these four metrics is  

1. Scale factors should be within 6-fold, 4-fold, and 3-fold of each other stepwisely. 

2. Those values of averages background should be smaller than 300. 

3. The value of actin3/actin5 should not exceed 3 and the value of gapdh3/gapdh5   

should not exceed 1.25. 

4. Those values of percent present should be not less than 20%. 

 

2.4. justRMA, our preprocessing function 

Since many systematical biases from different sources in microarray experiments the 

preprocessing procedure of data becomes more necessary and more important. To get a 

correct intensity value that represents the abundance of mRNA instead of an uncertain 

brightness biased by other sources is the goal of preprocessing. RMA is one preprocessing 

method of most popular preprocessing methods.  

“justRMA” is a function of R package named “affy”, that can read .cel files and compute 

the RMA (robust multi-array average) expression measure without using an AffyBatch. 

“rma” is a function of the affy package that be considered as the canonical implementation 

of RMA and converts an AffyBatch into an ExpressionSet during the RMA calculation. 

Both of justRMA and rma do the same expression estimates. So compare to the function 

“rma”, “justRMA” is a better option for the user of function “rma” with a really huge 

dataset that need to process together or struggling with memory problem. We use justRMA 
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instead of rma in our preprocess step. And RMA (the Robust Multichip Average) 

methodology consists of three steps that are a background adjustment, quantile 

normalization and summarization (Irizarry et al., 2003). RMA methodology only use PM 

(perfect match) probes since MM (mismatch) may detect not only non-specific binding and 

background noise but also the transcript signal just like the PM probe and that is not always 

appropriate to subtracting the MM intensity from the PM intensity as the way of correcting 

for background noise and non-specific binding. Convolution background correction method 

in the background adjustment of RMA is assumed that the expression value of each PM 

probe ( ijgPM ) combine with background intensity caused by optical and nonspecific 

binding ( ijgbg ) and signal intensity ( ijgs ), as follow: 

,ijg ijg ijgPM bg s= + 1, , , 1, , , 1, ,i I j J g G= = =L L L  

And the background corrected probe intensities is ( ) ( | )ijg ijg ijgB PM E s PM=  , where we 

assume that ijgbg  is distributed normal and ijgs  is distributed exponential. There are 

many obscuring sources of variation involved during the process of carrying out the 

microarry experiment involves multiple arrays, such as physical problems with laboratory 

conditions, hybridization reactions, labeling, arrays and scanner difference. So proper 

normalization is necessary for comparing measurements from different arrays that implying 

different tissues. The step of summarization is to combine those probe intensities that pass 

through background adjusted and normalized to a single measurement that estimates the 

expression value for each gene. Then the summarization of RMA is using the median 

polish algorithm that assume the value of the background corrected, normalized and took a 

log of PM intensities ( ( )ijT PM ) is the combination of the log scale expression value on 

array i ( ie ), the log scale affinity effects for probe j ( ja ), and error term ( ijε ), the formula 
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is ( )ij i j ijT PM e a ε= + + . 

We use the estimate of ie  as the log scale measure of expression. 

 

2.5. Testing Dataset 

We choose our testing dataset that is not in our reference training set. And for comparing 

our reference training set to the datasets of thesis of “bar code”, we choose our testing 

dataset through the thesis of “bar code”. We choose a dataset with 159 arrays from a breast 

cancer study (GEO identifier is GSE1456) (Pawitan et al., 2005). All 159 arrays in this 

study did not include our reference training set. Those samples was been included at the 

Karolinska Hospital from 1 January 1994 to 31 December 1996(n=524) and excluded to 

sample size 159 (n=159). In the end, there are 38 poor prognosis samples and 121 good 

prognosis samples in this dataset.   

 

2.6. The view of multiple modes 

Typically we assume the expression intensity for each gene is ( )f � , where cases and 

controls separately follow 1( )f μ and 2( )f μ  with different means, and all genes follow 

the same distribution ( )f �  that usually be normal, mixture of normals, or lognormal. But 

in fact each gene has its own distribution since the “probe effect” is large. We can find this 

from the following graph that are some probability density functions of the expression 

intensity values which has been taking log2 for different genes on the same array. There are 

one mode distribution, two close modes distribution, more than two modes distribution, and 

two separate modes distribution in Figure 2.2(Zilliox and Irizarry, 2007). 

Since it is expected that any given gene will be expressed only in some tissues, multiple 

modes should be observed. And based on those published studies of gene expression, we 

think most genes should only have one mode in its probability density function and most 
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genes are unexpressed in most tissues. So we assume that the lowest intensity mode of 

those genes with multiple modes distribution is due to a lack of expression. Then we 

determined the expression intensity distribution for each gene through collecting the raw 

data from published repositories web and simulation it. 

 

2.7. The idea of gene expression cut-off form from bar code 

Since the probability density function of gene expression intensity value have multiple 

modes, we can simulate the “unexpressed” intensity from the lowest intensity mode and the 

“expressed” intensity from the others. This idea is from “A gene expression bar code for 

microarray data” (Zilliox and Irizarry, 2007). The modes were computed and we considered 

that the mode with the smallest location is the expected intensity of an unexpressed gene. 

Expression distribution from 0 to the lowest intensity mode used to estimate the standard 

deviation of unexpressed genes. Then we selected a constant K  and set the genes 

expressed in tissues where the log expression estimates were K  standard deviations larger 

than the unexpressed mean. We show the idea in Figure 2.3.. If we want to simulate a set of 

microarray gene expression generating intensity value data, we can simulate unexpressed 

intensities from the empirical distribution on the left of the cut-off and expressed intensities 

from the empirical distribution on the right of the cut-off. And we can use this idea to 

choose those genes with differentially expressed.  

    

2.8. Classification 

Class comparison, class discovery, and class prediction are most common types of  

microarray data analysis. Classification is one of the methods of class prediction. To assign 

observational units to classes on the basis of variables describing/characterizing those 

observations is the task of classification. In classification, the classes are predefined and we 

understand the basis for the classification from a set of labeled observations 
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(training/learning set), then use this information to predict the class of future observations. 

In fact, we get the gene profiles, find function f that maps the data matrix of gene 

expression to classes, then get the predict class. Linear and quadratic discriminate analysis 

(LDA, QDA), k-nearest neighbor (KNN), and classification and regression tree (CART) are 

some methods for class prediction. These methods of classification are usually choosing 

some finite variables (less than 1,000 or smaller than size of training set) to develop the 

classification rule since it is not reasonable for fit when the number of variables is bigger 

than the sample size of training dataset. But our goal is to find a classifier with high 

generalization ability through using as much as possible variables that we can get from the 

training data generalize to predict a new example (Bittner et al., 2000). 

 

2.9. Prediction analysis for microarrays (PAM) 

Prediction analysis of microarrays (PAM) is a statistical technique for class prediction 

using gene expression data by using shrunken centroids. The method of nearest shrunken 

centroids identifies subsets of genes that best characterize each class. This technique is 

general and can be used in many other classification problems (Tibshirani et al.,2002). 

This method computes a standardized centroid for each class that is the average gene 

expression for each gene in each class divided by the within-class standard deviation for 

that gene. And nearest centroid classification compares the gene expression profile of a 

new sample to each of those class centroids then set which class with centroid that is 

closest to in squared distance as the predicted class for that new sample. Then after 

“shrink” each of the class centroids toward the overall centroid for all classes by the 

amount that we call the threshold is the difference between nearest centroid classification 

and the Nearest shrunken centroid classification which is used in PAM. This shrinkage that 

consists of moving the centroid towards zero by threshold that means to set it equal to zero 

if it hits zero. Then the new sample is classified by the usual nearest centroid rule using the 
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shrunken class centroids. We can get two advantages from shrinkage, one is that can make 

the classifier more accurate by reducing the effect of noisy genes and the other one is to 

select genes automatically. Since when a gene is shrunk to zero for all classes hat means we 

should eliminated that gene from the prediction rule. In other words, if a gene is set to zero 

for all classes except one then we know that high or low expression for that gene in that 

class. So we want to compare the generalization ability of PAM and our classifiers. 
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3. Material and Methods 

 

3.1 To seek and find a reference set from publicly available databases 

3.1.1 Use Microarray Retriever to search and download arrays 

  We use a web-based tool for searching and large scale retrieval of public microarray data, 

called Microarray Retriever (MaRe). This tool is available on the web at: 

http://www.lgtc.nl/MaRe/. Our target platform is Affymetrix GeneChip HG-U133A which 

is a kind of human genome arrays. So we set the box C with Species=“Homo sapiens”, and 

Platform keywords=“A-AFFY-33” or “GPL96” on the search web of MaRe, where 

A-AFFY-33 and GPL96 are the platform names of HG-U133A on two major public 

microarray repositories ArrayExpress (AE) and Gene Expression Omnibus (GEO). We also 

set the search options box with Search for=“Experiments and platforms”, Search in 

GEO=”∨ ”, Search in ArrayExpress=”∨ ”, Retrieve from GEO=“Only GSE”, Retrieve from 

ArrayExpress=“Not retrieved from GEO” and Retrieve raw data=”∨ ”. MaRe then found 

out 591 experiments from GEO and 110 experiments from AE which meet our search 

options. These public microarray data were then downloaded to a local machine. 

3.1.2 Choose normal control arrays 

  We choose those “normal control” raw arrays out of 701 experiments retrieved by MaRe 

for building a reference set. At the end of this stage, we derived 1886 normal control .cel 

files from GEO and 559 .cel files from AE. 

3.1.3 Perform chips’ quality assessment 

  We do quality control assessment to delete outliers of 1886+559=2445 normal control 

arrays. This can remove the effects of some special arrays and maintain the general state of 

the reference training set. First, we use an R function “qc” in package “simpleaffy” to do 

quality control and use R functions “avbg”, “sfs”, “pp” and “ratios” to calculate the criteria 

values of averages background, scale factor, percent present calls and 3’/5’ ratios for actin 
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and gapdh.  

Step 1 of quality control is to delete those arrays with scale factor values 3 standard 

deviations up or down from the mean value, and we deleted 101 arrays in this step (85 

arrays in GEO and 16 arrays in AE). Then do the same thing again for the rest of the arrays 

to delete those arrays with scale factor values 2 standard deviations up or down from the 

mean value. And do again to delete those arrays whose scale factor values are out of the 

3-fold of one another. The numbers of delete arrays in these two steps are 171 (136 arrays 

in GEO and 35 arrays in AE) and 199 (138 arrays in GEO and 61 arrays in AE).    

Step 2 of quality control is to delete those arrays with averages background values larger 

than most of the left 1974 arrays after step 1. Criteria of this step is to remove those arrays 

with avbg value larger than 320, and we removed 56 arrays (56 arrays in GEO and 0 arrays 

in AE) in this step. 

For the left 1918 arrays, 288 arrays were deleted with values of “actin3/actin5” larger 

than 3 (226 in GEO and 62 arrays in AE), and 112 arrays were deleted with values of 

“gapdh3/gapdh5” larger than 1.25 (76 arrays in GEO and 36 arrays in AE). After this step, 

we had 1518 arrays left in our database. 

The last quality control step is to delete arrays with values of percent present calls 

smaller than 20. Four arrays in GEO and 13 arrays in AE were deleted. 

Initially, we have 1279 arrays that pass our quality control criteria. We will use these 

1279 arrays to build up our reference set. Further details of delete step contained in Table 

3.1, and Figure 3.1 show a general overview about the distributions of those delete arrays 

over all 2445 arrays in four values: “avbg”, “sfs”, “pp” and “ratios”. 

 

3.2 To preprocess our reference set and classify arrays by tissues 

First, we use justRMA to preprocessing our 1279 arrays in R-2.3.0. We classify these 

1279 arrays in the reference set by their tissue types. Seventy-four tissue types were 
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obtained. There are 8 tissue types that only contain one array and 4 tissue types that contain 

more than 50 arrays. The biggest tissue type is “whole blood” with 67 arrays in there. The 

distribution of the number of arrays in each tissue type is in Table 3.2. Table 3.3 shows 

those 74 tissue types and the number of arrays they contain. Then we randomly choose 74 

arrays by tissue type (a tissue type pick one array as the representation of that tissue type). 

We use these 74 arrays as the representation of all 1279 arrays in our reference set to build 

up a set of parameters from the function “rma.para” in package “RefPlus” (Harbron C. et 

al. 2007). Then we obtain two sets of parameters: “Reference.Quantiles” and 

“probe.effects”, and later we can use an R function “rmaplus” with these two sets of 

parameters to preprocess new target arrays without re-preprocessing them along with the 

reference set together again. 

 

3.3 To find out our training dataset and preprocess it by RefPlus parameters 

We found a dataset that had both control and case samples and did not overlap with our 

arrays in the reference set. The dataset is from the Karolinska Hospital 1994-1996 that 

publish on web of GEO (Pawitan et al. 2005). There are 38 arrays as poor prognosis and 

121 arrays as good prognosis, where poor prognosis was defined as distant relapse or death 

year less than 5 by any cause. Arrays from poor prognosis are treated as case samples 

(disease) and arrays from good prognosis are treated as control samples (non-disease). 

These “training” arrays with known disease statuses are preprocessed, using R function 

rmaplus and parameters “Reference.Quantiles” and “probe.effects” from our reference 

training set. 

 

3.4 Six classification rules 

Due to the computer capacity, we choose 38 arrays from poor prognosis and 70 arrays 

from good prognosis to be our training set (totally containing 108 arrays). Let’s define   
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:D diseased  and :ND non diseased− , 

=ijd the expression value of the jth probe in the ith “diseased” array, 

=ijnd the expression value of the jth probe in the ith “non-diseased” array, 

=ijref the expression value of the jth probe in the ith “reference” array, 

∑
=

=
1

11
.

1 n

i
ijj d

n
d  

= the mean expression value of the jth probe over all 1n  diseased arrays, 

∑
=

=
2

12
.

1 n

i
ijj nd

n
nd  

= the mean expression value of the jth probe over all 2n  non-diseased arrays, 

∑
=

=
3

13
.

1 n

i
ijj ref

n
ref  

= the mean expression value of the jth probe over all 3n  reference arrays, 

=jX the expression value of the jth probe in the “newly” observed array X , 

=)( jd XD the “distance” between new observation X  and the disease group  

in the jth probe, 

=)( jnd XD the “distance” between new observation X  and the non-disease group  

in the jth probe, 

)()()( jdjndj XDXDXDiff −= , 

 where j=1,…,22283. 

In the following, we will establish various ways for calculating the “distance”, and then 

develop their corresponding classification rules. 

3.4.1 Method 1 (corrected by the reference set and training groups) 

Due to the apparent “probe effect”, the distance between new observation X  and the 

disease group in the jth probe is corrected with the distance between the disease group and 



 15

the reference group in the jth probe. The same correction is also applied to the distance 

with the non-diseased group. Therefore, we define 

||||)( ... jjjjjd refddXXD −−−= , 

||||)( ... jjjjjnd refndndXXD −−−= , 

22283,,1),()()( L=−= jXDXDXDiff jdjndj . 

If most of the probes with 0)( ≤jXDiff , we assign new observation X  to ND (the 

non-diseased group). 

If most of the probes with 0)( >jXDiff , we assign new observation X  to D (the diseased 

group). 

We proposed to do the following hypothesis testing: 

0 :H new observation X belongs to ND (the non-diseased group) 

 vs. 1 :H new observation X belongs to D (the diseased group) 

Test statistic = )1(~
))((

))(( 0

−= pt
pXDiffSD

XDiffET
H

, 

where ))(( XDiffE  is the sample mean of )(,),( 1 pXDiffXDiff L , ))(( XDiffSD  is the 

sample standard deviation of )(,),( 1 pXDiffXDiff L , and p=22283. If reject null 

hypothesis, we assign new observation X to disease group. If accept null hypothesis, we 

assign new observation X to non-disease group. To calculate the classification error of the 

proposed rule, we perform the leave-one-out cross validation on the training set. In other 

words, (1) omit one observation from the training set and develop classification Method 1 

based on the remaining observations, (2) classify the “holdout” observation, using the rule 

constructed in (1), and (3) repeat steps (1) and (2) for all observations in the training set. As 

a result, 74 out of all 108 arrays in the training set were classified correctly by Method 1.  

3.4.2 Method 2 (corrected by the reference training set) 
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Here, the distance is corrected with the distance between new observation and the 

reference group. 

||||)( .. jjjjjd refXdXXD −−−= , 

||||)( .. jjjjjnd refXndXXD −−−= , 

22283,,1),()()( L=−= jXDXDXDiff jdjndj . 

We then perform the same hypothesis test as what Method 1 does. As the result of the 

leave-one-out cross validation, 80 out of all 108 arrays in the training set were classified 

correctly by Method 2. 

3.4.3 Method 3 (no corrected) 

Here, no correction for the distance is done. 

||)( . jjjd dXXD −= , 

||)( . jjjnd ndXXD −= , 

22283,,1),()()( L=−= jXDXDXDiff jdjndj . 

We then perform the same hypothesis test as what Method 1 does. As the result of the 

leave-one-out cross validation, 80 out of all 108 arrays in the training set were classified 

correctly by Method 3. 

3.4.4 Method 4 (corrected by multiplying the standard deviation of the jth probe in 

the reference set) 

Assuming that the probes with large standard deviations in the reference set tend to be 

more capable of discriminating between diseased and no-diseased groups than the probes 

with small standard deviations, we use the standard deviation of each probe in the reference 

set as the weight when calculating the distance. Therefore, let 

)(||)( .. jjjjd refSDdXXD ×−= , 
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)(||)( .. jjjjnd refSDndXXD ×−= , 

22283,,1),()()( L=−= jXDXDXDiff jdjndj , 

where )( . jrefSD  is the sample standard deviation of jnj refref
3

,,1 L . 

We then perform the same hypothesis test as what Method 1 does. As the result of the 

leave-one-out cross validation, 80 out of all 108 arrays in the training set were classified 

correctly by Method 4. 

3.4.5 Method 5 (corrected by multiplying the standard deviation of the jth probe in 

the reference set and dividing the standard deviation of the jth probe in the 

training group) 

In addition to the assumption in Method 4, we also consider the different effects in the 

diseased and the non-diseased groups. We propose to correct the distance with the diseased 

group by dividing the standard deviation of each probe in the diseased group and the 

distance with the non-diseased group by dividing the standard deviation of each probe in 

the non-diseased group. Therefore,  

)(
)(

||)(
.

.
.

j

j
jjjd dSD

refSD
dXXD ×−= , 

)(
)(

||)(
.

.
.

j

j
jjjnd ndSD

refSD
ndXXD ×−= , 

22283,,1),()()( L=−= jXDXDXDiff jdjndj , 

where )( . jdSD  is the sample standard deviation of jnj dd
1

,,1 L , and )( . jndSD  is the 

sample standard deviation of jnj ndnd
2

,,1 L . 

We then perform the same hypothesis test as what Method 1 does. As the result of the 

leave-one-out cross validation, 70 out of all 108 arrays in the training set were classified 

correctly by Method 5. 
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3.4.6 Method 6 (corrected by dividing the standard deviation of the jth probe in the 

reference set) 

Contrary to the assumption in Method 4, one might think that the probes with large 

standard deviations in the reference set tend to be more “unstable” and thus can reduce 

their ability in discriminating between diseased and no-diseased groups. We thus use the 

inverse of the standard deviation of each probe in the reference set as the weight when 

calculating the distance. Therefore, let 

)(
1||)(

.
.

j
jjjd refSD

dXXD ×−= , 

)(
1||)(

.
.

j
jjjnd refSD

ndXXD ×−= , 

22283,,1),()()( L=−= jXDXDXDiff jdjndj . 

We then perform the same hypothesis test as what Method 1 does. As the result of the 

leave-one-out cross validation, 80 out of all 108 arrays in the training set were classified 

correctly by Method 6. 

 

3.5 To obtain the list of genes with multiple modes from the idea of bar code 

All 1279 reference files were preprocessed using justRMA of R, and then we obtain the 

empirical expression distribution across tissues for each gene. The empirical distribution is 

obtained by fitting a density smoother for each gene, using R function ( , )density n adjust , 

where n  is the number of equally spaced points at which the density is to be estimated 

and adjust  is the bandwidth used. We try some different combinations of n  and adjust  

to fit the density distribution function and show the fit result in the following graph (Figure 

3.2). Then we decide to use 512, 3n adjust= =  for all genes to fit their empirical density 

functions. After the density function of each gene is fitted, we check the changes of slopes 

of these functions to define whether or not the gene has multiple modes. If the slope 

transfers from positive to negative, this means there is a mode in this density distribution. If 
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transferring the slope from positive to negative more than once, then we define this gene to 

have a “multiple-mode” density distribution. Overall, we find 5005 multiple-mode genes 

from all 22283 genes in the HG-U133A GeneChip, based on our 1279 reference set arrays. 

These 5005 genes are used for creating our classification rule.    

 

3.6 Do classification procedure again (Method 1~Method 6) with multiple-mode 

genes 

Here we perform classification Method 1~Method 6 described in sections 3.4.1-3.4.6 by 

using only 5005 genes with multiple modes. The new results are compared with the ones 

based on all 22283 genes. 

 

3.7 Classify testing set by PAM 

For the purpose of comparison, the training set is cross-validated by PAM (Tibshirani et 

al., 2002). We use the functions in R package “pamr”. The “pamr.train” is a function to 

train a nearest shrunken centroid classifier. The “pamr.predict” is a function for producing 

predicted information from a nearest shrunken centroid fit. “pamr.predict” also gives a 

cross-tabulation of true versus predicted classes for the fit returned by “pamr.cv” or 

“pamr.train” at the specified threshold. Here, we use “pamr.train” and threshold=1. When 

classifying by PAM, we also run twice: one using all 22283 genes and the other using only 

5005 multiple-mode genes. 
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4. Result 

In the end, we do all six proposed methods and PAM twice: one using all 22283 genes and 

the other using only 5005 multiple-mode genes. Figure 4.1 show the histogram of the mean 

expression value of each gene in reference set. We find that the distribution of mean 

expression value follow a non-symmetrical and one-mode distribution. So we assume that 

mean expression value of each gene present the probe effect of each gene in Microarray 

HGU133A chip. And we use those mean expression values to modify the definition of our 

distance between observation array and different groups (using in Method 1 and Method 2). 

Figure 4.2 show the histogram of the sample standard deviation of expression value for 

each gene in reference set. We find that most sample standard deviations of expression 

value for each gene in reference set are near to 0.5 and the distribution of the sample 

standard deviation of expression value for each gene is non-symmetrical. So we think each 

gene have different contributions to classification. And we decide to use the sample 

standard deviation of each gene in reference set to be the weight of each gene in 

classification and present the different contribution of each gene in classification (using in 

Method 4, Method 5 and Method 6). Figure 4.3 and Figure 4.4 show the histograms of the 

absolute different value of mean expression for each gene between disease group, 

non-disease group, and reference set separately. Figure 4.3 and Figure 4.4 both show us 

that there are different “distances” of each gene from group to reference set. That support 

our decision to build up classifier 1 (Method 1). The results of the leave-one-out cross 

validation are shown in Table 4.1. We can find that classify with all 22283 genes and with 

5005 multiple-mode genes get similar result (there is no big different in classify correctly 

rate). We also can think it means 5005 multiple-mode genes can represent all 22283 genes 

and the information that contained by all 22283 genes. We can use these 5005 

multiple-mode genes to build up our classifier without choosing special genes by tissues 

types or diseases and can saving our computer capacity and time from replace 22283 genes 
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by 5005 multiple-mode genes. And although the result of PAM is better than the result of 

our six classifiers, it still exist about seventy percent successive-classified rate of our 

classifiers. It shows us that simple T-test still performs a not-bad result in classification.     

Figure 4.1 show the detail of all result, where a point means we classify successfully once 

and green points and black points were the results from doing simple t-test by 5005 

multiple-mode genes and by all 22283 genes respectively. There are some arrays that 

always been classified to wrong class no matter what classifier we used (PAM or M1~M6). 
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5. Conclusion and discussion 

Due to our study result we demonstrate that expressed genes are those genes with 

multiple-mode in distribution and simple t test also can be applicable in classification or 

build a classifier. Using simple t test to build up a classifier is easier than other classifiers 

and do not need to fit some complicated data selection rules. In future, we think that we can 

continue to investigate that why some arrays always been classified incorrectly by all 

classifier even by PAM. For example we can try to provide criteria for well separated genes 

and not well separated genes among 5005 2-or-more-mode genes and the difference 

between two kinds of genes show in Figure 5.1. 
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Figure 2.1. The design of probes for Microarray HGU133A chip 

 

 

Figure 2.2. The distribution of expression intensity from different genes. 
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Figure 2.3. The idea of cut-off point choosing. 
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Figure 3.1.The distributions of those delete arrays over all 2445 arrays in four quality 

assessment metrics. The red dots represent all deleted data. The block dots are the data still 

kept after all the quality assessment steps. 
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Figure 3.2.Summary of different combinations of “n” and “adjust” when fitting smoothing 

density function using R function density(n,adjust), different color lines represent different 

smooth curves with various “adjust” values. 
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Figure 4.1. The histogram of the mean expression value of all genes for reference set. 
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Histogram of SD(ref.j)

SD(ref.j)

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

0
10

00
15

00
20

00

 

Figure 4.2. The histogram of the sample standard deviation of expression value for all 

genes in reference set. 
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Histogram of |d.j-ref.j|
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Figure 4.3. The histogram of absolute different value of mean expression between disease 

group in testing set and reference set.  



 33
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Figure 4.4. The histogram of absolute different value of mean expression between 

non-disease group in testing set and reference set. 
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Figure 4.5. Summary of classification results, where a point means we classify successfully 

once and green points and black points were the results from doing simple t-test by 5005 

multiple-mode genes and by all 22283 genes respectively. 

 

 
Figure 5.1 The difference of well separated genes and not well separated genes. 
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Table 3.1.Summary of QC step 

  GEO AE Total 

Before QC 1886 559 2445 

Scale factor -359 -112 -471 

Averages background -56 0 -56 

3＇/5＇ ratios -302 -98 -400 

Percent present calls -4 -13 -17 

After QC 1165 336 1501 

Remove same type 943 336 1279 

 

 

Table 3.2.The distribution of the number of arrays in each tissue type 

number of arrays in one 

tissue type 
1 2~5 6~10 11~20 21~30 31~50 51~70 total

number of tissue types 8 14 9 16 15 8 4 74 
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Table 3.3.The number of arrays in each tissue type 

Tissue n Tissue n Tissue n Tissue n

beta cell islets 1 Theca cell 4 umbilical cord blood 13 brain 29

medulla oblongata 1 Normal_Ovary 5 thymus 14 
unknow tissue 

type 
29

Normal Breast 
1 

thyroid gland 

(thyrocytes) 
7

Post-mortem medial 

substantia nigra 
15 skeletal muscle 33

Normal Colon 

1 

Normal Spleen

7 skin 16 

Normal 

Caudate 

Nucleus 

33

Normal Corpus 
1 adipose tissue 8

Undifferentiated 

human ES cells 
16 

prefrontal 

cortex 
33

Normal Stomach
1 Normal cervix 8

lymphoblastoid cell 

lines 
17 duodenal tissue 40

Normal Thalamus

1 prostate 8
Human optic nerve 

head astrocytes 
18 

human 

post-mortem 

brain tissue 

43

normal tissue 

adjacent to Renal 

Cell Carcinoma 

1 
TERV (cell 

line) 
8 hypothalamus 22 

peripheral 

blood (human 

PBMC) 

47

Normal Adrenal 

Gland 
2 smooth muscle 9 liver 22 

white blood 

cells 
48

Fetal Cartilage 

from Distal 

Femur 

2 

primary 

fibroblast cell 

line 

9 Bronchial Epithelium 23 lateralis muscle 48
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Normal Heart 

2 
PBSC CD34 

selected cells
10 T cells resting 23 

Human 

umbilical vein 

endothelial 

cells 

53

Pancreas 2 
Baseline 

macrophages
11 cerebellum 24 bone marrow 56

spinal cord 2 Normal Bladder 11 Normal Kidney 25 lung 63

salivary gland 2 testis 11 uterus 25 whole blood 67

Pituitary 2 tonsil 11 esophageal epithelium 26   

Normal Amygdala
3 

synovial 

membrane 
11 Frontal Cortex 26   

intestinal 

xenograft tissue 
3 B-cells 12

blood (cell type : 

mononuclear cells 

from venous blood) 

26   

Trachea 3 

SH-SY5Y 

neuroblastoma 

cells 

12 blood (monocyte) 27   

Pulp tissue 4 

Stratagene 

Universal 

Human 

Reference RNA

12 placental basal plate 27   

occipital lobe 4 
peripheral blood 

CD8 T cells 
12 blood CD4 T cells 27   
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Table 4.1The results of the leave-one-out cross validation, using various classification rules 

The number of 

corrected 

classified 

arrays 

Metho

d 1 

Metho

d 2 

Metho

d 3 

Metho

d 4 

Metho

d 5 

Metho

d 6 

Metho

d 7 

(PAM) 

Total

Use all probes 74 80 80 80 70 80 88 108

(%) 68.52 74.07 74.07 74.07 64.82 74.07 81.84 100

Use 5005 

probes 

70 77 77 79 69 78 87 108

(%) 64.82 71.30 71.30 73.15 63.89 72.22 80.56 100

 

 

 


