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CACT : Clustering and Aggregating Clues of Trajectories for
Trajectory Patterns

Student : Wan-Ting Huang Advisor : Wen-Chih Peng

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Nowadays, many positioning devices and techniques are more and more popular such
that there are a lot of trajectories of people or vehicles can be easily obtained. From
such a huge amount of trajectories collected, discovering trajectory patterns can
benefit many potential and novel applications. In general, trajectory patterns indicate
sequences of frequent regions that a user usually appears. One of the challenge issues
in trajectory pattern mining is how to define frequent region units in trajectory
patterns. In reality, there are many factors, such as sampling method, sampling
frequency and device constraints, will affect the capability of original trajectory data
capturing the actual movements. Thus, if the original trajectory data only coarsely
capture actual movements of a user, prior works cannot accurately identify frequent
regions, let alone deriving trajectory patterns. However, even if trajectories can only
reflect partial movements of a user, they reveal some clues about the moving
behaviors hidden in trajectories. Consequently, in this paper, given a set of trajectories,
we propose an algorithm CACT (standing for Clustering and Aggregating Clues of
Trajectories) for discovering trajectory patterns by exploiting such 'clues'. Exploiting
the clues of trajectories, we first propose the similarity measurement for two
trajectories by tolerating certain spatiotemporal bias. Furthermore, to deal with the
existence of multiple moving behaviors in trajectories, we propose a clustering
algorithm to divide trajectories with similar moving behaviors into several groups. For
each group, we further propose an algorithm to derive a sequence of frequent regions
with their corresponding representative line segments. To the best of our knowledge,
this is the first work that claims to cluster trajectories into groups first and then derive
the corresponding frequent regions within each group. Through experimental studies
on both synthetic and real datasets, we show that our approach is able to capture the
trajectory patterns, while handling the partial information of trajectories (i.e., the clues)
and avoiding the inaccuracy problem of frequent region determination.

Keywords: trajectory, data mining, spatiotemporal
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Chapter 1

Introduction

With the pervasiveness of mobile devices, the location of users is easily determined by either
GPS devices or some positioning techniques. Furthermore, some softwares are able to log user
movements when users go biking and traveling. Thus, a huge amount of movement trajectories
are uploaded to some Web community sites [1][2][3]. From such a huge amount of trajectories
collected, it is valuable to discover trajectory patterns which represent the moving behaviors
hidden in trajectories. Trajectory patterns have been widely utilized in many applications such
as trajectory recommendation in some trajectory sharing forums, personalized navigation and
data prefetching methods in mobile computing environment.

Given a set of trajectory data, a significant amount of research efforts have proposed
approaches of mining trajectory patterns. In general, trajectory patterns indicate sequences
of frequent regions that a user usually appears. One of the challenge issues in trajectory
pattern mining is how to define frequent region units in trajectory patterns. Previous works
for determining frequent regions in trajectory patterns can be generally classified into two
categories: the density-based approach and the line-based approach. In the density-based
approach, a region is viewed as a frequent region if the number of trajectories passing by is
larger than a pre-defined threshold. Furthermore, if nearby regions are also frequent regions,
these regions could merge into one larger region. In a line-based approach, a trajectory
data is first transformed as a series of line segments. If several line segments from different
trajectories are close, a frequent region that contains these line segments is thus determined.
The determination of frequent regions is very important since frequent regions are viewed
as basic units of trajectory patterns. Without a proper determination of frequent regions,
trajectory patterns are not able to capture the moving behaviors hidden in trajectories.

Clearly, the original trajectory data will have an impact on the determination of frequent

regions. If the original trajectory data only coarsely capture actual movements of a user,
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Figure 1.1: Some illustrative examples extracted from Carweb datasets.

prior works mentioned above cannot accurately identify frequent regions, let alone deriving
trajectory patterns. In reality, there are many factors which affects the capability of original
trajectory data capturing the actual movements. To log trajectory raw data, one could set
the sampling method and sampling frequency that demonstrate how and how frequent to
record the location of a user, respectively. In most positioning device, there are two sampling
methods: sampling by distance and sampling by time. In general, setting higher sampling
frequency leads to trajectories with more fine resolution. However, setting a higher sampling
frequency results in a huge amount of log data generated and the energy exhaustion of logger
or GPS-enabled mobile devices. Consequently, a lower sampling frequency is likely to be
set and thus trajectory data cannot reflect detailed movements of users. Figure 1.1 shows
illustrative examples, where Figure 1.1(a) shows the actual movement, and Figure 1.1(b) and
and Figure 1.1(c) are the trajectories following the same movement but sampling by distance
and time in a lower sampling frequency, respectively. It can be seen that these trajectories are
not accurately capture the actual movement in Figure 1.1(a). In addition, trajectories may
be different even if a user who follows the same route. That is, GPS data points in different
trajectories that demonstrate the same routing behaviors of that user may not exact the same
in terms of locations and times. Figure 1.1(c) and Figure 1.1(d) show two selected trajectories
with the same sampling frequency, where a real movement behavior is shown in Figure 1.1(a).
Moreover, due to the natural feature of GPS or other wireless network positioning techniques,
which refers to the feature that the data point determined has some tolerable errors in terms
of the coordinate (i.e., location) and the time, trajectories cannot capture exact the same
information of location and time even if the user follows a periodically movement.

From the observations above, prior works of generating frequent regions are not applica-
ble since both the density-based and the line-based could not accurately determine frequent

regions. For a density-based approach, it is harder to identify frequent regions that contain a



(a) (b)

Figure 1.2: Two illustrative examples.

sufficient amount of data points. For example, the gray lines means the actual movement and
the black points are sampled points. Figure 1.2(a) shows that it is possible that the frequent
regions (the dashed rectangle) cannot decide accurately by the sampled points. For the line-
based approach, the lines derived in a trajectory are likely not to approximate real movement
paths and thus, a region that includes more close lines is hardly to derived. For example,
in Figure 1.2(b), the actual movement is a S-shape curve but the line segments linked the
sampled point are straight. Without a proper design of frequent regions, trajectory pattern
mining cannot truly reflect frequent movement behaviors. However, even if trajectories can
only reflect partial movements of a user, they reveal some clues about the moving behaviors
hidden in trajectories. Consequently, in this paper, we propose an algorithm CACT (standing
for Clustering and Aggregating Clues of Trajectories) for discovering trajectory patterns by
exploiting such ’clues’. Similar to prior works in [6], trajectory patterns mined in this paper
consists of sequences of frequent regions. For each frequent region, there is a representative
lines which can capture geometry movements of a user within this region. Exploiting the
clues of trajectories, we can distinguish whether trajectories are similar or not. Note that
these trajectories may contain a variety of moving behavior of a user. Thus, it’s not appro-
priate to put all trajectories together for the determination of frequent regions. Furthermore,
to deal with the observations above, we propose a clustering algorithm to divide trajectories
into several groups. Trajectories in the same group reflect the same moving behavior of a
user and the number of groups is the number of moving behaviors of a user. Then, for each
group, we further propose an algorithm to derive a sequence of frequent regions with their
corresponding representative line segments. To the best of our knowledge, this is the first
work that claims to cluster trajectories into groups first and then derive the corresponding
frequent regions within each group. Because of the design, our proposed method of mining
trajectory patterns is able to handle the partial information of trajectories (i.e., the clues) and
avoid the inaccuracy problem of frequent region determination.

Several challenging issues arise in our proposed method, such as the formulation of simi-

larity among trajectories, the clustering algorithm, and the derivation of frequent regions and



representative lines. Since each trajectory some clues for its actual movement, the similarity
between two trajectories should be carefully designed. In light of the similarity of trajectories,
we could therefore develop a clustering algorithm with the objective of extracting frequent
moving behavior of a user. Clearly, the number of groups represents the number of moving
behaviors of a user. According to clues of trajectories, each group should include more tra-
jectories that are likely to have similar moving behavior so as to fully capture true moving
behavior of a user. For each group derived, we propose an aggregation method to aggregate
spatio-temporal information of trajectories within the same cluster and generate frequent re-
gion sequences. We evaluate our proposed algorithm in both the real dataset and the synthetic
dataset. Experimental results demonstrate that our proposed algorithm is able to effectively
mine trajectory patterns of a user.

The rest of the paper is organized as follows. Related works are studied in Section 2.
Preliminary background is given in Section 2.1. Section 3 describes the proposed similarity
for two trajectories. The clustering algorithm for trajectories with the same moving behavior
is proposed in Section 4. In Section 5, the aggregation method is then presented. Experimental

results are shown in Section 6. Last but not least, we conclude this paper in Section 6.3.



Chapter 2

Related Works

The problem of mining frequent moving patterns has attracted a considerable amount of
research efforts. Generally speaking, the flow of mining frequent moving patterns is to first
find frequent regions and then derive the relationship between these frequent regions into
frequent moving patterns. According to the definition of frequent moving patterns, prior works
are generally classified into two categories: spatial movement patterns and spatio-temporal
movement patterns. In the first category, a frequent moving pattern refers to a sequence
consisting of base station identifications or pre-defined regions. On the other hand, in the
second category, frequent moving patterns are able to reflect the spatio-temporal associated
relationships among base station identifications or pre-defined regions. For the first category,
we mention in passing that the authors in [5] proposed an information-theoretical method to
mine frequent moving patterns which are represented as a trie data structure. Moreover, the
authors in [23] proposed a statistical approach to mine frequent moving patterns. In [16] and
[18], the authors proposed a data mining approach for mining frequent moving patterns with
the moving logs of mobile users given.

In the second category, frequent moving patterns are usually extracted from trajectories,
where trajectories can reflect the actual movements. A considerable amount of research efforts
have elaborated on mining spatio-temporal association rules [17][12][21][22]. In [6], the authors
claimed the fuzziness of locations in patterns and developed algorithms to discover spatio-
temporal sequential patterns. Furthermore, the authors in [13] proposed a clustering-based
approach to discover moving regions within time intervals. In [11], the authors developed
a hybrid prediction model, consisting of vector-based and pattern-based model, to predict
movements of users. In [9] and [8], the authors exploited temporal annotated sequences
in which sequences are associated with time information (i.e., transition times between two

movements).



Prior works do not address the issue of geometric inaccuracy of trajectories. To our
best knowledge, this is the first work to mine frequent moving patterns from the fragment-
information trajectories. The existence of the fragment-information property brings many
challenges since the geometric properties, such as angle, length and direction, cannot be
used to find frequent regions directly. Different from the flow of existing works, we find the
fragment-information trajectories with potentially the same moving behaviors first, and then
use fragment-information trajectories in each cluster to derive a frequent region sequence. As
such, our approach can not only tolerate with spatial and temporal but also overcome the

geometric inaccuracy of trajectories. These features distinguish our works from others.

2.1 Preliminary

In this section, we present some assumption and notions used in this paper. Then, the problem

statement is described. Finally, the overview of our proposed method is given.

2.1.1 Assumptions and Problem Statement

In this paper, we assume that the location of a user is determined by GPS devices or wireless
networks. Same as in other works [6][9], a trajectory is defined as follows:

Definition 1. Trajectory representation: A trajectory 7; is a time-ordered sequence
of points, denoted as T; =< p;1 = (loc;1,ti1),pi2 = (locia,ti2), ..., Pin = (l0Cip, tin) >, where
ti; <tijy forall j =1,2,...,n—1, loc; ; is the location at time ¢; ; and n is the length of T;.
The location determined is represented as the geometry model that consists of the latitude
and the longitude of a user. Consider trajectory 7} in Figure 3.1(a) as an example, where the
black curve represents the actual movement and 7} =< p; 1, ..., p17 > is a trajectory generated
by GPS devices. As can be seen in Figure 3.1(a), trajectories may not always capture accurate
movements of a user. Moreover, according to the setting of GPS logger, a trajectory is in fact
represented partial information of a true movement path, which refers to the partial feature
of a trajectory in this paper.

Same to prior works [6][9][11], trajectory patterns are sequences of regions, where regions
are referred to as hot areas that a user frequently stay or pass by. As pointed out early, a
grid-based approach is divided the whole space into grids and the quality of regions is mainly
depended on the number of grids. Furthermore, grids may not true capture the movements
of a user if the user usually appears in the boundary of grids. Thus, in this paper, we adopt

a line-based approach to determine regions for trajectory patterns. Similar to the work in [6],



the region is defined as follows:

Definition 2: Frequent region Given a set of points and a central line L, the region Ry,
is called a frequent region if the distance between each point p and L is smaller than ¢ and
the number of trajectories that cross over this region is larger than min_sup.

In light of the definition of frequent regions, we could therefore give the definition of
trajectory patterns mined in this paper.

Definition 3: Trajectory pattern A trajectory pattern considered in this paper is
a sequence of frequent regions that contain data points from at least min_sup trajectories
(referred to relevant trajectories) and each point in relevant trajectories is mapped to one
frequent region such that the distance between this data point to the central line of the
frequent region is smaller than e.

In this paper, given a set of trajectories, we intend to derive a set of trajectory pat-
terns. There are some important observations of trajectories, which provides us some real
phenomenon of trajectories, in the real dataset CarWeb[15].

Observation 1: For the same moving behavior, trajectories may have some data bias
from the spatial and temporal (i.e., time) perspective. In our collected real trajectories, a
user follows the same route to his office. These trajectories are not exact the same in their
data points of trajectories. There are some bias in the spatial domain and the time domain.
For example, one day, the user is little late to his office and the data points are shifted in the
temporal domain. Furthermore, data points in the same location (i.e., one road segment) do
not have exact the same location and time information.

Observation 2: Though setting a smaller frequency in our real dataset, the straight line
with their two end points as data points in a trajectory is not usually the true movement.
This is due to the road networks and the driving speed of a user. For example, if the driving
speed of a user is high, the distance between two points in a trajectory is far away and thus
the line between these two points cannot accurately approximate the true user movement.

Prior works in [6] that transform the original trajectory into a series of line segments are
not applicable to capture the real movements of a user since lines between two consecutive
points are not always movement segments of a user. According to the observations above,
each data point in a trajectory is viewed as a sampling point of a true user movement. Clearly,
if two trajectories have the same sampling frequency to sample the same true movement, each
data point from two trajectories is possibly not the same. Since each trajectory is viewed as
a sampling from a true movement, with more trajectories for the same true movement, one

still could capture true movement of a user. This is due to that data points from different



trajectories that sample the same movement path, still have more possibilities to fall into some
spatial areas along with the true movement paths. Furthermore, a user follows several regular
true movement paths. For example, a user may have more than one working place and thus
he may have more than one regular routings to his working places. Our proposed algorithm
can not only mine trajectory patterns with some bias in trajectories data but also discover a

set of trajectory patterns that reflect several moving behaviors of a user.

2.1.2 Overview of Our Proposed Algorithm

As mentioned above, trajectories contain partial information of true user movements and
data points in trajectories are affected by some bias factors, such as the sampling frequency,
positioning delay and time shifts in user movement behavior. Thus, in this paper, we pro-
pose an algorithm CACT (standing for Clustering and Aggregating Clues of Trajectories) for
discovering trajectory patterns, where clues of trajectories are referred to partial information
captured by trajectories. Explicitly, algorithms CACT consists of three phases: In phase 1, we
formulate the similarity measurement between trajectories and our similarity formulation will
take spatial and temporal bias into consideration. In phase 2, trajectories are clustered into a
set of group and trajectories in the same group have similar moving behavior. Furthermore,
since trajectories only consider some clues, we should carefully design the clustering method
to include trajectories that demonstrate the same moving behavior. In step 3, for each group,
we further aggregate trajectories in the same group for deriving a sequence of frequent regions
with their corresponding central lines. In the following section, we will describe each step in

detail.



Chapter 3

Similarity Measurement

In this section, we derive the similarity measurement for trajectories, which can capture the
closeness of trajectories by the clues hidden in trajectories while spatial and temporal bias are
taken into account. At first, we define point-to-point similarity to evaluate spatial closeness
of two points by considering spatial-bias threshold e. Based on point-to-point similarity, a
point-to-trajectory is then defined to find the most near point in a trajectory for the given
point by considering the temporal-bias threshold 7. According to the point-to-trajectory, the
trajectory-to-trajectory is then defined to evaluate how closeness a trajectory to the other one
is by taking both spatial and temporal bias into account. Due to the asymmetric property of
the trajectory-to-trajectory similarity, similar and close relations are used to represent that
two trajectories behave like each other and just one trajectory behaves like to the other one,
respectively. At last, a SC-graph is constructed for representing these two relations among
trajectories.

Each trajectory can be viewed as a time series. Therefore, one may use some existing
distance measurements for time series to evaluate how similar two trajectories are, such as
p-norms, dynamic time wrapping [24][14], and edit-distance-based approaches [4][7]. However,
they are hardly applicable these distance measurements to evaluate how similar two trajecto-
ries are. Specifically, it is hard to compute distance between two trajectories by the Euclidean
distance (p-norm measurement with p=2), because two trajectories may not have points at
the same time unit. Dynamic time wrapping requires each point in a time series to match
with the closet point in the other time series such that it cannot tolerate noise and capture
the local similar parts between trajectories. Thus, the distance value derived by dynamic time
wrapping may significantly increase if the time interval of consequent points in two trajectories
are interleaving, or there exists some noises in trajectories. On the other hand, rather than

matching all points between two trajectories, the edit-distance-based approach is to match



two time series by allowing some points to be unmatched. Since the length of trajectories
with similar moving behavior may vary, the distance value is also affected significantly by
the length such that it is hardly used to evaluate how many similar parts between two tra-
jectories. Some similarity measurements are designed which also considers the spatial and
temporal biases among trajectories [20]. However, they are usually required that there should
be points at every time units in each trajectory. If the requirement above cannot be satisfied,
interpolation-like approaches may be used to compensate some points for some time units.
However, the trajectory may not have points in any time unit. Moreover, compensating points
by interpolation cannot reflect the actual movement precisely. The reasons above motivates
us to develop a new similarity measurements for trajectories.

To define the similarity for trajectories, we start from the point-to-point similarity:

Definition 2. Point-to-Point Similarity: Given a spatial-bias threshold e, and two
points p;¢ = (locie, tiy) and pji = (lock, tjk), the point-to-point similarity is defined as
Spp(Pie,pik) =1— w where dist(-) is the distance between locations of two points.

To tolerate some spatial bias, a parameter € is used. The value of point-to-point similarity
linearly decays from 1 to 0 by the distance between locations of two points. The closer the
two points, the larger the value is. Once the location of two points are exactly the same,
the value is 1. On the other hand, once the distance between two points are far from e,
the value is 0. For example, consider Figure 3.1(a) and let ¢ = 10 and Euclidean distance
as the distance function, it can be seen that p; 3 is more closer to pso than py 3 such that
Spp(p13,p22) =1 — \1/—05 =0.86 > Spp(p1,3,P2,3) =1 — % =0.8.

Definition 3. Point-to-Trajectory Similarity: Given a point p; ¢, a trajectory 7; and
a temporal-bias threshold 7, the point-to-trajectory similarity is defined as Spr(pie, T;) =
max{Spp(pie Djx)|pix € T; and tjy € [tiy — T,ti0+ 7]}

The idea of point-to-trajectory similarity is to find the nearest point in 7; which time are
allowed within 7 time units from p; ,. To facilitate to describe, such a closest point from p; 4 is
called the mapped point of p;,. In practice, there usually exists some temporal bias between
two trajectories even if they follow the same moving behavior. Therefore, 7 is introduced to
tolerate such temporal bias for fining the mapped point of p;,. For example, suppose that
we can tolerate the temporal bias to be 3 time units (i.e., 7 = 3), to evaluate the point-to-
trajectory similarity between p; o and 75, three points py 1, pa22, and py 3 are considered since
their time are between t1o — 3 to t; 2 + 3 (i.e., 1 to 7). Since Spp(p12,p22) = 0.8 which
owns the largest value among that from p; o to po; and ps 3, the point-to-trajectory similarity

Spr(pr2,T2) is 0.8.
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According to the point-to-trajectory similarity, we can further define the similarity between
two trajectories:

Definition 4. Trajectory-to-Trajectory Similarity: Given two trajectories 7T; and

> Spr(pieTy)
p; €T

Tj, the trajectory-to-trajectory similarity is defined as Spr (T3, 7T;) = 7

The trajectory-to-trajectory similarity is used to evaluate how a trajectory T; is similar
to the other one Tj. The value of Spr(7},7}) is in the interval [0, 1] and determined by the
average of Spr between each point in 7; and its mapped point in 7 with respect to the
length of T;. Since Spr is derived from Spr and Spp, S also takes the spatial and temporal
biases into account. For example, let € = 10 and 7 = 3. In Figure 3.1(a), the arrows show
the mapping from each point in 73 to its mapped point in T5. Therefore, we can obtain that
Str(Ty, Tz) = {Spr(p1,1, p21) +Spr(P12, P22) +Spr (P13, P22) +Spr (P14, P2.3) +Spr(pis, Poa)+
Spr(p16,p24)}/7 = 0.64.

There are many existing distance or similarity measurement for two time series. However,
there are several important properties of S7r, which makes S77 more suitable to measure the
similarity between two trajectories. First, Sy allows the partial mapping for a trajectory to
the other one. That is, a point in a trajectory does not necessary map to a point in the other
trajectory. Exploiting such a feature can guarantee each point able to find its mapped point
under the spatial-bias and temporal-bias constraint. For example, in Figure 3.1(a), p; 7 has
no mapped point in T since there is no points which time is in [16 — 3,16 + 3]. Moreover,
the location of points in two trajectories may vary even if their moving behaviors are the
same. Figure 3.2(b) shows an illustrative example of this case. Through this feature, Spr
can identify only the parts which parts of moving behaviors are likely the same between two
trajectories but ignore that are not the same. Second, Spr is noise tolerant. This is a crucial
feature because the location data of a trajectory is inherently inaccurate. With the property of
allowing the partial mapping, the value of St does not affect significantly by noises because
the noise point will has less probability to be mapped. Third, Syr is asymmetric. That is,
Str(T;,T;) may not equal to Srr(1j,T;). For example, Figure 3.1(b) shows the mapping from
T5 to T1 and we can obtain that Sy (75, T1) = 0.77 which does not equal to Spr (T3, Ty) = 0.64.
The asymmetry is a very crucial feature since we can use it to distinguish whether a trajectory
should be compensated by others or compensate others. The detail will be described later.

From the observation of the asymmetry of Syr, we can define similar and close relations
for any two trajectories.

Definition 5. Similar: Given a threshold A, a trajectory T; is similar to the other Tj,

denoted as T; ~ Tj, if and only if min(Spr (75, T5), Srr(T;,T;)) > A. In brief, the similar score
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Figure 3.1: Two illustrative examples for St .

of T, and T'j, SS(4, j), is referred to the value of min(Srr (715, T;), Srr(1},T3)).

Definition 6. Close: Given a threshold p, a trajectory 7; is close to a trajectory Tj,
denoted as T; — Tj, if and only if Spr(7;,7;) > p. In brief, the close score from T; to T'j,
CS(i,7), is referred to the value of Spr(T;, T5;).

Conceptually, the similar relation represents that 7; and 7} intend to behave like each
other. That is, they have enough amount of points which are spatially and temporally nearby
to each other so that even the minimum value of Sy between them is larger than a given
threshold. Moreover, the similar relation is symmetric such that 7; ~ T implies T; ~ T;.
On the other hand, the close relation only requires that one trajectory behaves like the other
one. Thus, the similar relation is not symmetric such that 7; — T} does not necessarily imply
T; — T;. Generally speaking, we assume that two similar trajectories implies that they have
close relations between them. In order to achieve the goal, we set a larger value for A than
p. Formally, when A > p, we can get that T; — T} and T; — T; if T; ~ T};. As such, in the
following discussion, the value of X is set to be greater than the value of .

Through discovering relations between two trajectories, we are able to distinguish whether
a trajectory should compensate its information to others or be compensated by others based
on the following observations:

Observations 1 If T; ~ T}, T; and T} tend to have the similar length and each point tends
to be able to find its mapped point.

Observation 2: If T; — T}, T; tends to be shorter than 7} and only partial points of T}
will be mapped from points of T;.

Figure 3.2 shows two illustrative example for these two observations. In this example, T}
and T3 follow the same movement in the black curve. Similarly, 75 and T} follow the same
movement in the gray curve. Let e = 10, 7 = 3, A = 0.9 and p = 0.85. In Figure 3.2(a),
it can be derived that Spr(T5,Ty) = 0.92 and Spr(Ty,T>) = 0.92. Thus, To ~ Ty. It can

12



3 t,2:5 ty4:9 t15 10
PZ 2 ,

¥ . P24 : ty2:4
2 )12 ®. t,3:7 @ ty5:12 tiil Prs ‘/‘\15 IZ/PH
Py P23 Pas o > Pr t:16
1 Q© Q @ T, 3 .’V W 14 V

3 a8 itys:9 5

Pya Pas A / \ /
2 3 6 tsT o0 g1l s :zz_,, tff
Pas 0] P/4,2 Pas ©.Pas /(' \/ \/
1 Q 9 Ta 3 t3il
0 1 2 3 4 5 6 7 8 9 0 1 7 8 9

(a) (b)

Figure 3.3: An illustrative example of a SC-graph.

be observed that the length of 7, and T} are likely the same and only ps, is not mapped
when computing Spr(7y,75). Based on this observation, we can conclude that a set of the
trajectories which are mutually similar represent potentially the same moving behavior. On
the other hand, Figure 3.2(b) shows the opposite case from the former one. In the similar
fashion, we can obtain that Spr(71,73) = 0.52 and Sprr(T5, 7)) = 0.93. Therefore, T3 — T7.
It can be seen that T3 is shorter than 7} and only three points in 7} are mapped. In this
case, it can be observed that through adding three points in 75, T} can be compensated and
describe the moving behavior between p; ; to p; 2 more precisely. Overall, the close relation
is helpful for identifying which trajectories can compensate others.

The similar and close relations can describe the different functionalities when mining tra-
jectory patterns. Exploiting such relations, we can identify whether a trajectory should be
compensated by others or compensate others. Therefore, a SC-graph is constructed to repre-
sent the both relations among trajectories:

Definition 7. SC-Graph: Given a set of trajectories T = {T},T5,...,T,}, a SC-graph
is a weighted graph G = (V,Eg U E¢) where V' = {vy,v9,...,0,,}, (v3,v;) € Eg with its
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weight wg(v;, v;) = min(Syr(T3, T5), Srr(1y, 1)) if T; ~ T, and (v;,v;) € E¢ with its weight
we(vi,v;) = Spr(T5, ;) if T; — T and T; < Tj.

In a SC-graph, each vertex represents a trajectory. Once two trajectories are similar to
each other, an undirected edge is then constructed between them. On the other hand, a
directed edge will be constructed if one trajectory is close to the other one. Since two similar
trajectories are required to be close to each other, a directed edge only exists when a trajectory
is close to the other but they are not similar to each other. For example, let A = 0.5 and
u = 0.3, Figure 3.3 shows an illustrative example of a SC-graph. To facilitate to describe, a
vertex in a SC-graph is equivalent to a trajectory, an edge in Ey is called a similar edge, and

an edge in E¢ is called a close edge in the rest of this paper.
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Chapter 4

Clustering Trajectories

Since the given trajectories may contain more than one moving behavior, it is required to
distinguish the trajectories with the same moving behaviors and group them into clusters. In
this section, we describe our approach for grouping trajectories with similar moving behavior
into clusters.

In Section 3, we introduce a SC-graph to present similar and close relations between trajec-
tories. As such, the similar and close edges in a SC-graph represent some clues that indicates
whether two trajectories represent the similar moving behavior or not. Thus, clustering tra-
jectories with the similar moving behavior can be viewed as the procedure of exploiting some
clues to clustering vertices in a SC-graph. To realize this idea, some definitions are elaborated
in the following.

Definition 9. Core: Given a SC-graph G = (V, Es U E¢) and a threshold §, a vertex
u € V is a core if there exists a set of vertices C, such that 1. for v € C, and v # u,
(u,v) € Eg, and 2. for all v,w € C,, (v,w) € Eg, and 3. |C,| > 6.

A core u in a SC-graph is a vertex with sufficient trajectories similar to it and these
trajectories are mutually similar. Thus, a core set (), contains trajectories which can most
likely represent the same moving behavior. The value of § is usually set to be at least 2 since
the moving behavior described by a trajectory which is not similar to anyone is not enough
confident. For example, let 6 = 2, vy is a core and C,, = {vs, v, v7} where vg and v; are the
neighboring vertices of vy in Eg, each vertex has similar edge to others, and |C,,| =3 > 0 = 2.

Even if some trajectorie follows the same moving behavior, it is possible that they are
not in the same core due to the natural of trajectories. However, some ’clues’ may exist to
indicates two cores with the similar moving behavior. This definition is elaborated in the
following.

Definition 10. Directly Clue-Reachable: A vertex u is directly clue-reachable to a
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vertex v, denoting as u ~» v, if v is a core and wu is adjacent to v in Eg or E¢.

Directly clue-reachability shows a vertex u with the same moving behavior to a core. A
vertex u can show it following the same moving behavior of a core through a similar or a
close edge, respectively. Obviously, all vertices in C, are mutually directly clue-reachable.
For example, vs ~ vg since vg is a core and (vs,vg) € Fg; v; ~> v since vy is a core and
(v1,v9) € Eg.

Through the directly clue-reachability, we can find those vertices which potentially repre-
sent the similar moving behavior as a core. In the following definition, we extent the directly
clue-reachability to clue-reachability which can describe a vertex following the similar moving
behavior through many clues indirectly.

Definition 11. Clue-Reachable: A vertex u is clue-reachable to a vertex v, denoting
as u ~»* v, if there exists a chain of vertices v = vy, v9, ..., v, = u such that v; ~» v;;1 for all
1=1,2,...,n—1.

For example, vs ~»* vg through the path vs ~~ vg ~» v7 ~ vg.

Based on clue-reachability, we can further define the clue-connection from one core to the
other core as follows:

Definition 12. Clue-Connect: A core u is clue-connected to v if there exists a core w
such that z ~* y for all z € C, and for some y € C,, and y ~* z for all y € C,, and for
some z € C,.

Conceptually, through clue-connection, we can imply the moving behavior of a core u is
similar to that of a core v. To ensure sufficient clues to support that, each vertex in C', should
be clue-reachable to some vertices of an intermediate core sets. That is, all vertices in C,,
i.e., trajectories stating the similar moving behavior of u, should follow the similar moving
behavior as an intermediate core set. Similarly, all vertices in this intermediate core sets
should follows the same moving behavior as the core v. For example, vq; is clue-connected to
vg. It can be seen that there is a core vs such that all vertices in C,,, are clue-reachable to
some vertices in C,. (i.e., v1; ~ v and vjy ~ v5), and all vertices in C,, are clue-reachable
to some vertices in Cy, (i.e., v; ~* v3 and vz ~>* vg).

For a core, there may be several cores clue-connected to it. To ensure that trajectories
with the most similar moving behavior are grouped into a cluster, we derive a measurement
clue-gain to evaluate how much ’clue’ a core set can obtain via the other one.

Definition 13. Clue-Gain: Consider two sets S and T. Let E§ and Ef be the set of

similar and close edges from S to T, respectively. The clue-gain ClueGain(S,T) = a x |EE| x

> ws(e) + 6 x[Eg| x > wele).

ecEg! ecEZ
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Generally speaking, more similar/close edges from S to T implies that S is more likely to
represent the similar moving behavior as T'. Also, the weights between these edges should be
taken into account. The higher weights of these edges, the more similar the moving behaviors
of S and T. Therefore, the clue-gain is proportional to the number of similar and close edges
and the corresponding weights from S to T. Moreover, the similar edges should be weighted
higher than the close edges because the similar edges represent that the moving behaviors of
two vertices are mutually similar and the close edges only represents the moving behavior of
one vertex is like to the other. Thus, two constants o and 3 are used for weighting the similar
and close edges, respectively. Usually, the value of a should be at least two times larger than
B. By the definition of similar and close scores, SS(i,7) = min(Srr(1;,15), Srr(1;,T3)) <
Srr(T;,T;) = CS(i,7). Thus, 255(i,5) < CS(i,7) + CS(j, i), which shows that one similar
edge is at least two times important as a close edge. Thus, « should be set two times larger
than j3.

For example, let a = 2 and § = 1. ClueGain(Cy,,,Cpy) =2 x1x054+1x1x09=29
and ClueGain(C,,,,Cy,,) =2%x2x (0.54+0.7) +1 x 1 x 0.3 = 5.1. Obviously, C

vy, intends to

show more similar moving behavior to C,,, than C,, since there are more similar edges from
Cyy, to Cy,, than to C,,.

According to the clue-connected and the clue-gain, we can formulate the problem of clus-
tering trajectories with similar moving behavior as follows:

Definition 14. Cluster: A cluster C'is a set of vertices satisfying the following conditions:
1. for all u € C, there exists a core v € C such that u is clue-connected to v (connectivity);
2. for all core sets C, € C, the core set C, which can induce ClueGain(C,,C,) maximal is
also in C' (compactness); 3. |C| > min_sup (frequentness).

The first requirement states that a cluster is composed of many cores which have clues to
support them describing the similar moving behavior. The second requirement describes the
compactness of a cluster, where each core set should be in the same cluster with the core set
which can make the clue-gain maximal. That is, each core set is used to interpret the moving
behavior with the strongest clues from this core set. On the other words, a core set will not
interpret the moving behavior with weaker clues. To ensure derived regions being frequent, a
cluster should contain more than min_sup vertices which is describing in the third statement.

We propose a clustering algorithm to find clusters in a SC-graph. In nut shell, this algo-
rithm first discovers all core sets, then merges them according to their clue-gains, and adds
some non-cores into clusters for enriching information of clusters at last. The algorithmic

form is listed in Algorithm 1.
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Figure 4.1: A scenario of clustering in a dual graph.

Note that a core set in a SC-graph is equivalent to a clique with size > 0 on Fg. Thus,
in the beginning, we find a clique cover on Fg, where a clique cover refers to a set of clique
with their union being the whole graph. There are many existing heuristic algorithm to find
a clique cover efficiently [10]. One of famous heuristic algorithms is based on greedy strategy
which idea is to always select the highest degree vertex, and to pick its adjacent vertices which
have edges mutually to form a clique. For example, vg owns the highest degree in this graph
(only considering Eg). There are five vertices adjacent to it, say vr, vs, vy4, vg, and viz. It
can be verified that only vs, v4, and vy have edges between each other. Thus, the first clique
{v3, v4, V3, V9 } is then generated. Cliques of a clique cover in our example are shaded in Figure
4.1.

After finding a clique cover, we can identify those clique with size > § as the core sets.

For example, let 0 = 2, C,,, C,,, Cyy, Cyy,, Cyy,, and C

w115 Cuias v, are core sets. As long as deriv-

ing the core sets, each core set computes the clue-gain from it to all one-step clue-connected
core sets. Then, a core set is merged to the core set with the maximal clue-gain. For ex-

ample, for C,,,, there are two one-step clue-connected core sets C,, and C),, with the clue-

127
gains ClueGain(Cy,,, Cy,) = 1.9 and ClueGain(C,,,,C,,,) = 5.1, respectively. Thus, C,,,
is merged with C,, rather C),,. The other example is that C,,, is merged with C,, due to
ClueGain(C,,,, Cy,) = 4.8 > ClueGain(C,,,,C,,,) = 2.1. Similarly, C,, is merged into C,,
and C,, is merged into C,,. Consequently, we can derive two clusters: {C,,,Cy,, Cyy, Cui,}
and {C,,,,C,,, }. It is worth mentioning that the merged cliques are guaranteed to be clue-
connected since each clique can be only merged with its one-step clue-connected clique, thereby
satisfying the requirement 1 and 2 of a cluster. At last, some cliques with size < § are con-

sidered to join some clusters to compensate the moving behaviors represented by this cluster.

As such, a non-core joins a cluster with a core which can induce the maximal clue gain. In
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this case, a non-core does not merge the other non-core because a chain of non-cores with dif-
ferent moving behavior may be contained in a cluster, especially for non-cores with only one
vertex. For example, v1g and v1g9 form such a chain. It can be seen that the vig is close to v7
which indicates it can compensate the information of C,,,. However, it is not obvious whether
v19 can be used to compensate or not. After that, clusters with less than min_sup vertices
and the remaining non-cores are eliminated. Following the example, let min_sup = 5. The
cluster {C,,,,C,,, } and the vertex vi9 are eliminated. Consequently, there are two clusters

{Chy, Coy, Coy, Coyyyv10t and {Cy,,, Cyyy, 18} as the final results.

Algorithm 1: Clustering Trajectories
Input : A SC-graph: G = (V,Es U E¢)
Output : A set of clusters: C

1 C «— ¢;
2 K ={K;,Ks,.... K} < a clique cover of G;
3 CORFE « cliques in K with the size > d;
4 for each clique K; in CORE do
5 Compute the clue-gain with all one-step clue-connected cliques in CORFE;
6 C; = Ky;
7 add C; into C;
8 for each clique K; in CORE do
9 Koz < the clique in CORE which can maximize ClueGain(K;, Kaz);
10 Cinaz < the cluster containing K,,q4;
11 Cjoin — the cluster containing Kj;
12 Cmax — Cmaa U Cjoin;
13 for each clique K; in K — CORE do
14 Koz < the clique in some C),q, which can maximize ClueGain(K;, Kpqz);
15 Put K; into Cpraz;

Selection of Thresholds

The selection of thresholds usually depends on user’s requirements and the properties of
the environment. However, setting A and p are not straightforward tasks. The selection of
thresholds highly affects the structure of a SC-graph since the number of edges significantly
depend on the thresholds for similar and close relations (i.e., A and p). The larger A and p
restrict whether two trajectories have similar and close relations or not more seriously. Thus,
larger thresholds incur the fewer edges in a dual graph and make a dual graph more sparse.
A cluster in a sparse dual graph may contain only few trajectories such that it is hard to
aggregate them to obtain the frequent movement precisely. The smaller A\ and ; makes a dual
graph more dense. However, it is easy for a cluster to contain more irrelevant trajectories such
that the frequent regions cannot be derived precisely. Therefore, the results of clustering are
highly dependent on the values of A\ and pu.

Here, we propose a heuristic for selecting A and p adaptively according to the distribution
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Figure 4.2: Distribution of (a) similar and (b) close scores

of similar and close scores. To determine a proper value of A\, we can observe that the
distribution of similar scores. Figure 4.2 shows an experimental result for the distribution
of similar scores in our real datasets. Figure 4.2(a) shows that there are a lot of edges with
extremely small similar score, and relatively fewer edges for the remaining similar scores (i.e.,
long tail). Figure 4.2(b) shows the same plot as above one, but the same distribution shows
itself to be linear on a log-log scale, which is the characteristic signature of the power law
distribution. Thus, by the observations above, we can conclude that the similar scores follow
the power law distribution.

As such, the threshold A\ should not be these small similar score since it will make a dual
graph too dense. In this case, we should not select the threshold A to be 0.05. To prevent the
threshold A too large, a heuristic approach to select the threshold A is to select the average
similar score in the long tail. For the efficiency sake, the long tail can be simply determined
by 80-20 principle where we suppose that the edges with 20% largest similar score form the
long tail [19]. In our example, the edges with similar score larger than 0.15 form the long tail.
On the other hand, Figure 4.2(c) shows that the distribution of the close scores tends to have
two peaks. Note that the close relation is used to identify which trajectories should provide
information to compensate the other one. Therefore, to prevent less trajectories with different

moving behavior to put into a cluster, the edges with lower close score should not exist in
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a dual graph. As such, the threshold p can be selected to be the average of all close scores
which value can keep the right peak and discard the left peak. In this example, the value of
1 is set to be about 0.4. In our latter experimental results, we will show that the heuristic

approach can group trajectories with the same moving behavior into the fewer clusters.
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Chapter 5

Aggregation Phase

In clustering phase, the trajectories are divided into several clusters where each cluster con-
tains more than min_sup trajectories. In this phase, the spatial and temporal information of
trajectories in a cluster will be aggregated and then a frequent region sequences is generated
for each cluster.

The trajectories in a cluster may represent the same moving behavior. However, it is not
a trivial task to aggregate the information of these trajectories because there may exist some
spatial bias, temporal bias, and noise data in them. To overcome these issues, a trajectory
which can best represent the moving behavior of trajectories in a cluster will be chosen. Such
a trajectory is referred as to the kernel. The information of other trajectories are adjusted to
compensate the kernel. Once obtaining the compensated kernel, the coming issue is how to
decide the minimal number of regions which can satisfy the spatial bias threshold e.

Since the weight of two similar edges represents how much these two trajectories are similar
to each other, the vertex which the highest total weights of the similar edges incident to refers
the trajectory which the most trajectories in a cluster are similar to. For example, in Figure
4.1, vs is the kernel in the cluster {C,,, Cyy, Cus, Coyyy 10} Note that the kernel is likely from
more larger cores. A larger core has more mutually similar vertices such that each vertex has
more similar edges incident to it. The total weights of a vertex in a larger core is more easily
larger than that in a smaller core. In addition, we have more confident to the moving behavior
describing by a larger core than a smaller one. It satisfies that we shall select the trajectory
which can most represent the moving behavior of this cluster. Moreover, a larger core tends
to have more close edges incident to it. It also follows the intuition that the kernel can be
compensated the moving behavior from other trajectories.

Since not all information of trajectories can be used to compensate the kernel, the order of

adding trajectories should be carefully decided to make as more trajectories able to compensate
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Figure 5.1: An illustrative example of our aggregation algorithm

their information to the kernel as possible. As such, the trajectories which are most likely
similar to the kernel should be first considered. To evaluate how a trajectory is similar to the
kernel, we should first consider the minimal steps from the trajectory to the kernel, which can
be done by BF'S. Once a vertex can achieve the kernel by fewer edges, this vertex has less spatial
and temporal bias to the kernel with higher probability. Moreover, the path that induces the
minimal steps from the trajectory to the kernel is also important. Product of the weights
along the path implies that how much this trajectory is similar to the kernel transitively.
Overall, the trajectory with smaller BF'S steps and the higher product of weight along its BF'S
path should be first considered. For example, consider the cluster {C,,, C,,, Cys, Cyyyy V10} in
Figure 4.1. In this cluster, the kernel is v3. The vertices vg and v; are two-step far from the
kernel. From wvg to vz, the maximal product of weight is 0.5 x 0.6 = 0.3. From v7 to vs, the
maximal product of weight is 0.5 x 0.5 = 0.25. Thus, vg has higher priority to compensate
the kernel than v; does.

After deciding the order of compensating the kernel, the next task is to adjust the spatial
and temporal information of other trajectories such that these information can be used to
compensate the kernel. The concept of our aggregation algorithm can be best understood
by the example in Figure 5.1. Suppose that the black points are from the kernel and the
grey points are from the compensating trajectory. The number associated with each point
represents the time. In the beginning, all points of the compensating trajectory are spatially
projected as shown in Figure 5.1(a). Among the compensating points, The point w has some
temporal bias with the kernel because it locates between kernel points a and b but the value
of time of w is not between that of @ and b. The point x has such temporal bias as well. In
addition, the point y is a noise point which is too far from the other points. Then, according
to the points of the kernel, the temporal information of compensating points will be adjusted.
Suppose that a compensating point p locates between two kernel points ¢ and r. If p is

between [t, — 7,t, + 7] where 7 is the temporal-bias threshold, then its time is adjusted by the

dist(p,q)

m . OtherWISe,

proportion of its distance to ¢ and r Specifically, t, = t,+ (¢, —t,) X
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the point is discarded. Such adjustment is reasonable because a temporal-bias 7 is allowed
when computing the similarity between two trajectories. For example, let 7 = 2. Suppose

that the distance between a and w equals to that between b and w. Since the time of w is 7

which is between [2 — 2,6 + 2|, the time of w is adjusted as 2+ (6 — 2) x dist(a(]ffj;fg-a(’;iﬂszt(w,b) =4.
On the other hand, the time of x is 11 which is outside the interval [6 — 2,8 + 2]. Thus, the
compensating point x is discarded. In the similar fashion, the time of z is adjusted to 18.
Next, the noise points are discarded. Following the notations above, the point p is a noise
point if dist(p,qr) > €. The point y is the noise point and thus eliminated. Figure 5.1(b)

shows the results after adjusting the temporal information and eliminating noise points. The

procedure repeats until all compensating trajectories are added.

Algorithm 2: Aggregation Algorithm
Input : A set of clusters: C
Output : A set of frequent region sequences: R
1 for each cluster K € C' do

2 Tier < the kernel trajectory of C;
3 for each verter v € K do Compute its BFS steps and largest weight product to the kernel;
4 for each trajectories T in the descending order of BFS steps and weight products do
5 Spatial projection all points of T
6 for each points p do
7 q,r < two points in the kernel that p locates between them;
8 if ¢, € [ty — 7, t, + 7] and dist(p,qr) < € then
9 tp:thF(tr*tq)XW%
10 else
11 discard p;
12 end
13 end
14 L < lines obtaining by Douglas-Peucker algorithm;
15 Q) «— regions by central lines L;

16 Add Q into R;
17 end

After adding all compensating points, Douglas-Peucker algorithm are used to determine the
number of regions. The purpose of this algorithm is that finding the minimal line segments
which the distance of each point to the corresponding line is smaller than a threshold e.
Therefore, the minimal number of regions can be obtained while the distance between each
point to the line can be guaranteed to be smaller than a threshold e. Conceptually, the
algorithm recursively divides the line. Initially a line segment with the first and the last
points is constructed. If the farthest point to the line segment is closer than e, it represents
the point can be represented by this line. Otherwise, if the point furthest from the line segment
is greater than ¢, the original line segment will be separated into two line segments at this
point. The algorithm recursively calls itself until the distance of all points to the derived lines

are smaller than e. Taking the line segments in Figure 5.1(b) as input, Figure 5.1(c) shows the
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final results where two line segments are derived. Consequently, by viewing the derived lines
as the central lines, the regions can be easily derived. The final results are shown in Figure

5.1(d).
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Chapter 6

Performance Evaluation

In this section, the effectiveness and efficiency of mining trajectory patterns from trajectories
are evaluated. In Section 6.1, we present the environments and settings in our experiments. All
experiments are conducted by both the synthesis dataset and the real dataset. The comparison
between our approach and the existing work are shown in Section 6.2. Sensitivity analysis in

several parameters are also investigated in Section 6.2.1.

6.1 Experimental Environment

In our experiments, both real and synthesis datasets are used to evaluate the existing works
and the proposed methods. For real datasets, we extract trajectories from a GPS-based
testbed, CarWeb, which aims at collecting real trajectories of users [15]. In CarWeb system,
each user can obtain his location from GPS every five seconds and upload his location to the
CarWeb server. Note that, we can manually category the trajectories in CarWeb dataset such
that we could have the ground truth about the moving behaviors represented by trajectories.
In our experiments, we choose three kinds of trajectories which represents 3 kinds of frequent
moving behaviors and one kind of trajectories which represents infrequent ones. Specifically,
there are 30, 20, and 10 trajectories with 300, 130, and 500 points in average, respectively.
There are 3 infrequent trajectories with 160 points in average. On the other hand, for synthetic
datasets, we construct a simulator to generate many synthetic trajectories by given source
trajectories as inputs. The source trajectories we extract are generated in a very high sampling
rate and we also manually adjust them to ensure the correctness. Each synthetic trajectory is
a variant from a input trajectory, where the time of each point may shift by ¢ time units and
the location of each point may shift by the angle # and the distance r in a probability pp;as.
The value of 6 and r are uniformly distributed from 0 to 27 and 0 to € (i.e., the threshold
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for spatial bias), respectively. In our simulation, there are four kinds of source trajectories,
which have 3000, 4000, 5000, and 6000 points, respectively. To simulate the different sampled
rates, we induce the loss rate P, to determine the probability of a point in a highly-sampled
trajectory will be discarded. Explicitly, each point in a trajectory is discarded with probability
P,ss. Thus, a trajectory tends to be more inaccurate from the real movement under a higher
loss rate. The default value of parameters are listed as follows: 7 = 30 minutes, ¢ = 10
meters, min_sup = 0.1, the total number of trajectories is 200, » = 5 meters, ¢ = 30 minutes,
Pyias = 80%, and Pj,ss = 50%.

For the comparison purposes, the method of mining spatio-temporal frequent patterns in
[6], denoted by SFP, is implemented. Since this approach is not designed for mining trajectory
patterns from trajectories, we exploit linear interpolation and cubic spline interpolation to
estimate the locations for low-sampled trajectories and use these compensated trajectories
as inputs of SFP, say SFP-L and SFP-C. Also, since SFP cannot cluster trajectories with
the different moving behavior, the inputs of SFP are the trajectories with the same moving
behaviors.

To evaluate experimental results, three performance metrics, precision, recall and ezxecution
time, are used. Since both SFP and our methods use a sequence of spatial regions to represent
the frequent patterns from trajectories, a smaller region may cover less road segments, which
can describe which road segments are frequent more precisely. Since the both datasets are
obtained from the movement on a road network, each data point in a trajectory can be
also bind with a road segment id. Thus, a trajectory can represent as a sequence of road
segments. By presenting each trajectory into a sequence of road segments, the conventional
approaches for mining frequent itemsets, such as apriori, can be used to find frequent road
segments from the given trajectories. The precision is used to evaluate how precise the
derived frequent regions in different approaches. Let C be the road segments covered by
the derived regions and F' be the frequent road segments. The precision is formulated as
L(CNF)/(L(CNF)+ L(CNF)), where L(-) represents the total length of the roads. A higher
precision value means that the derived region tends to cover more frequent road segments
and fewer infrequent ones. On the other hand, the recall is used to evaluate the area that
the derived regions can cover the frequent road segments derived by apriori. The recall is
formulated as L(C' N F)/(L(C N F) + L(C N F)). A higher recall value means that more
frequent road segments can be covered by the derived region. At last, the execution time is

used to measure the efficiency and the scalability of the proposed method.
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Figure 6.1: Three experimental results of an existing work.

6.2 Comparison with SFP

In this section, we evaluate our approach and SFP in terms of the visualized results, the
precision and the recall.

We first show the frequent regions discovered from real datasets in a visualized manner.
Figure 6.1(a) shows the result of SFP when the given trajectories are manually compensated
and corrected the position of each point. The derived regions are thin and located on the road
segments, which are consistent with the fact that trajectories in a road network moves on
roads. Then, consider [05S,q. = 50%, the derived regions derived by SFP is shown in Figure
6.1(b). It can be seen that region A locate outside the road segments, which are inconsistent
to the fact of the movement on a road network. Moreover, some regions disappear. To deal
with the problem, one may propose that interpolation can be used to compensate the location
data between the remaining points. Given the compensated trajectories, Figure 6.1(c) shows
the derived regions. Comparing with Figure 6.1(b), such strategy is effective because more
derived regions locate on the roads, especially the two regions at the center. However, it
still does not work well because some frequent regions are still missing. In brief, from these
experimental results, we can observe that the frequent regions cannot be derived precisely,
even incorrectly, by the line-based approach.

As mentioned above, there are four kinds of moving behaviors within the given trajectories
in real datasets. Figure 6.2 shows one of the frequent regions which is found by our approach.
Comparing the results of SFP in Figure 6.1(a) and that of our approach in Figure 6.2(a),
it can be seen that the frequent regions found by two approaches are similar, which shows
our approach can also find frequent spatio-temporal regions found by SFP. Moreover, the
common regions in Figure 6.2(a) and Figure 6.1 represent the most frequent road segments

among trajectories. Figure 6.2(b) shows the result with P,s; = 0.5, which the derived regions
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L3 B

Figure 6.2: Two experimental results of our approach with (a) P,ss = 0 and (b) Pss = 0.5.

are almost the same as the case when P, = 0. Therefore, we can conclude that our approach
is robust when P, varied such that can find frequent regions from trajectories. It is worth
mentioning that our approach does not find frequent regions B found by SFP in Figure 6.1(a).
This is because in the aggregation phase, we choose only one kernel trajectory which is similar
to most trajectories in a cluster and only those points which comply the moving behavior with
the kernel trajectory are used to compensate. As such, only the regions which present the
most frequent moving behavior are derived and some regions which are less frequent will not
be generated. We left the methodology of solving this issue as a future work.

We now evaluate the Precision and recall. As mentioned above, SFP takes trajectories
with the same moving behavior as inputs. The shown results of SFP-L. and SFP-C are the
average of the precision and recall of all clusters. Figure 6.3 shows the precision and recall
with pj,ss varied in real datasets. As shown in Figure 6.3(a), our approach outperforms SFP-L
and SFP-C. Moreover, the precision of our approach can keep almost constant while that
of SFP-L and SFP-C decrease with Py, increasing. Figure 6.3(b) shows the recall of three
approaches. Although the recall of all approaches decrease with P, increasing, the recall of
our approach is much higher than other two approaches. Since the regions tend to be boarder
with a larger P, more infrequent road segments are included into the derived regions such
that the recall decreases. Figure 6.4 shows the results for the synthesis datasets. Since the
trajectories in synthesis datasets are more complicated, which have more turns and varied
length, than that in real datasets, the precision and recall are about 20% lower than that in

real datasets. However, the similar results can be obtained as the results in real datasets.
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Figure 6.3: The impact of Precision and Recall in real datasets with P, varied.
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Figure 6.4: The impact of Precision and Recall in synthesis data sets with P, varied.

6.2.1 Sensitivity Analysis

In this section, we further investigate the parameters used in our algorithm. First, the effec-
tiveness of algorithm ClusDG is presented. Then, we examine the impact of thresholds and
the environment settings for the mining results. At last, the scalability of our approach is

discussed.

6.2.2 The Heuristic of Threshold Selection

To construct the dual graph, there are two thresholds A and p to be decided. A heuristic
approach is proposed in the former section. This heuristic approach is based on the observation
that the distribution of weight of edges follow the power law distribution. We first vary
the number of each kind of trajectories and observe the distribution of the weight of edges.
Figure 6.5(a) shows that the weight of edges follows the power law distribution with different
parameters. With the increasing of trajectories, the edges with lower similar scores increase

such that the long tail of the power law distribution becomes shorter. In Figure 6.5(b), we
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Number of | Range of | Range of | Heuristic | Heuristic
Trajectories A 14 A W
80 01~.02 | .016~.02 .016 015
120 .01~.025 | .015~.015 .019 .018
160 .02~.045 | .01~.037 .024 .021

Table 6.1: Comparison for optimal and heuristic solutions.

fix the number of trajectories and vary the loss rate P,s. It can be seen that the pow law
distribution is little sensitive with Ps. On the other hand, Figure 6.6 shows the distribution
of close scores. It can be seen that there are more edges when the close score is lower than
0.01 and higher than 0.04. Similarly, the distribution of close scores are less sensitive with
Ploss-

Once we make sure that the distributions of similar and close scores, the following task
is to verify the correctness of the selected thresholds. As mentioned above, the selection of
thresholds will affect which trajectories will be grouped into a cluster. Since we are aware of
the moving behaviors of trajectories, we try all possible values of A and p in a brute force
manner and check whether the trajectories with the same moving behavior can be put into
the same cluster or not. Table 6.2.2 shows the experimental results. The values of A and p
which can induce each cluster containing the trajectories with the same moving behavior are
usually in an interval. For example, when there are 80 trajectories, when A is set between 0.01
and 0.02 and p is set between 0.016 and 0.02, all clusters contain trajectories with the same
moving behavior. The second and third columns show the ranges for A and p. The values of
A and p decided by our heuristic approach is shown in the fourth and fifth columns. In each
case, it can be seen the values of A and p obtained by our heuristic approach are fallen in the
intervals which can induce the correct clustering results. Therefore, we can conclude that the

proposed heuristic approach for threshold selection is effective.

6.2.3 Effectiveness of Algorithm ClusDG

Algorithm ClusDG is used to cluster trajectories with the same moving behaviors. The effec-
tiveness of algorithm ClusDG leads the correctness of the derived frequent regions. Hence, in
this experiment, we show the effectiveness of algorithm ClusDG under both datasets. Since
the moving behaviors of trajectories are known, we can evaluate the percentage of trajectories
in the right cluster. Specifically, the successful rate is defined as the number of trajectories
in the correct cluster to the total number of trajectories. In both datasets, S refers the given

trajectories and SP as the trajectories derived from the given ones with the loss rate varied.
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Figure 6.6: Close scores on synthesis datasets.

We compare the successful rate by the union SP and S (abbreviated as S + SP), and SP
with different loss rate. The experimental results are shown in Figure 6.7, where the successful
rate is above 80% in each set of trajectories. In both datasets, the successful rates of S + SP
is higher than that of SP and the decay speed of S + SP is much slower than that of SP.
The more complete trajectories the given set owns, the higher correctness of clustering the
Algorithm ClusDG can achieve. It is because the more complete trajectories can not only
form larger cores but also provide more hints for clustering those trajectories. From this ex-
ample, we can conclude that trajectories with the same moving behavior can be grouped into

a cluster effectively by algorithm ClusDG.

6.2.4 The Impact of Thresholds

In our approach, spatial-bias threshold € is a user-specified threshold for defining a decaying
function in the point-to-point similarity and bounding the size of a region. Also, temporal-bias

threshold 7 should be given in our approach for tolerating the time bias between points in the
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Figure 6.7: Successful rate with P,ss varied in (a) real and (b) synthesis datasets.

point-to-trajectory similarity. Here, we investigate the impact with two thresholds varied.

Figure 6.8 shows the precision and recall with € varied. It can be seen that both precision
and recall keep almost constant until e = 1500. With ¢ > 1500, the precision and recall
both decrease by 10%. It is because two trajectories have higher probability to identify as
similar when € becomes larger and larger. We observe that the clustering results are correct
when e < 1500 (i.e., trajectories with the same moving behavior belong to the same cluster).
However, when € > 1500, some distant trajectories with the different moving behaviors are
put into a cluster such that the derived regions become less precise. It is interesting that
the precision and the recall do not decrease when e is small. One may claim that when the
€ become smaller, two trajectories are hard to be similar or close to each other such that
the trajectories with similar moving behaviors are also hard to group in a cluster. With
fewer trajectories in a cluster, the information of a moving behavior may not be compensated.
However, the value of A and g can be adjusted adaptively. Figure 6.9 shows the change of
A and p values with € varied. Note that if the value of € is smaller than 5, it is hardly able
to capture the moving behavior because r is set to be 5 meters. The values of A\ and p keep
increasing with the value of € smaller than 10. After that, the values of them remain constant.
It shows that the dynamic adjustment of A and i can keep the precision and recall even if the
value of € is set as a unreasonable value.

On the other hand, the threshold of 7 is used to tolerate the existence of a certain bias
between trajectories. Figure 6.10 shows the precision and recall with 7 varied. It can be seen
that the precision and recall remain constant in all cases. Interestingly, although precision and
recall are not sensitive with 7, various setting of 7 affects the number of clusters. Note that
the trajectories in synthesis datasets follow four kinds of moving behaviors. We observe that

the number of clusters becomes 6 if ¢ < 7, where two clusters with two moving behaviors are
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Figure 6.9: The values of A and p with € varied.

divided into four smaller clusters with two moving behaviors. It will not affect the precision
and recall because each two smaller clusters can be used to conduct the same moving behaviors.

Overall, besides the impacts of thresholds mentioned above, we can also observe that
the values of precision and recall highly depends on the clustering results. The effectiveness
of proposed clustering algorithm is shown from experimental results above. Therefore, our

approach can perform well in our experiments.

6.2.5 Execution Time

The execution time with the number of trajectories varied are discussed here. Two kinds
of synthesis trajectories are used here where each trajectory has about 2000 points in short
trajectories , and has 6000 points in long trajectories. The execution time includes three parts:
1. computing similarity between trajectories, 2. clustering trajectory, and 3. aggregating the
information and generating regions. Figure 6.11 shows the experimental results. Overall, the
execution time increases with the increasing of the number of trajectories. Moreover, the

execution time for clustering is much less than others since the total number of trajectories
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Figure 6.11: Execution time under (a) short and (b) long trajectories.

is relatively fewer than the total number of points. However, the proportion of computing
similarity and generating regions are not the same in different kinds of trajectories. In the
short trajectories, as shown in Figure 6.11(a), the execution time for computing similarity is
the major part in the whole execution time. In this case, the trajectories are shorter such that
the aggregating information and making regions do not waste too much time. On the contrary,
in Figure 6.11(b), our approach spends most execution in making regions when we consider
the longer trajectories. Longer trajectories needs more time for aggregating the information

and executing Douglas-Peucker line simplifier.

6.3 Conclusions

Nowadays, many positioning devices and techniques are more and more popular such that
there are a lot of trajectories of people or vehicles can be easily obtained. From such a huge
amount of trajectories collected, discovering trajectory patterns can benefit many potential

and novel applications. In general, trajectory patterns indicate sequences of frequent regions
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that a user usually appears. One of the challenge issues in trajectory pattern mining is how to
define frequent region units in trajectory patterns. Previous works for determining frequent
regions in trajectory patterns can be generally classified into two categories: the density-
based approach and the line-based approach. However, the original trajectory data will have
an impact on the determination of frequent regions. In reality, there are many factors, such
as sampling method, sampling frequency and device constraints, will affect the capability
of original trajectory data capturing the actual movements. Thus, if the original trajectory
data only coarsely capture actual movements of a user, prior works mentioned above cannot
accurately identify frequent regions, let alone deriving trajectory patterns. However, even
if trajectories can only reflect partial movements of a user, they reveal some clues about
the moving behaviors hidden in trajectories. Consequently, in this paper, given a set of
trajectories, we propose an algorithm CACT (standing for Clustering and Aggregating Clues of
Trajectories) for discovering trajectory patterns by exploiting such ’clues’. Exploiting the clues
of trajectories, we first propose the similarity measurement for two trajectories by tolerating
certain spatiotemporal bias. Furthermore, to deal with the existence of multiple moving
behaviors in trajectories, we propose a clustering algorithm to divide trajectories into several
groups. Trajectories in the same group reflect the same moving behavior of a user and the
number of groups is the number of moving behaviors of a user. Then, for each group, we
further propose an algorithm to derive a sequence of frequent regions with their corresponding
representative line segments. To the best of our knowledge, this is the first work that claims to
cluster trajectories into groups first and then derive the corresponding frequent regions within
each group. Because of the design, our proposed method of mining trajectory patterns is
able to handle the partial information of trajectories (i.e., the clues) and avoid the inaccuracy
problem of frequent region determination. Through experimental studies on both synthetic
and real datasets, we show that our approach is able to efficiently and effectively derive

trajectory patterns to capture the frequent moving behaviors from trajectories.
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