

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

利用移動物體軌跡中之線索藉由分群及

彙整技術探勘物體之移動模式

CACT : Clustering and Aggregating Clues of Trajectories for

Trajectory Patterns

研 究 生：黃琬婷

指導教授：彭文志 教授

中 華 民 國 九 十 八 年 七 月

利用移動物體軌跡中之線索藉由分群及

彙整技術探勘物體之移動模式

CACT : Clustering and Aggregating Clues of Trajectories for Trajectory
Patterns

研 究 生：黃琬婷 Student：Wan-Ting Huang

指導教授：彭文志 Advisor：Wen-Chih Peng

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

i

利用移動物體軌跡中之線索藉由分群及

彙整技術探勘物體之移動模式

學生：黃琬婷 指導教授：彭文志 教授

國立交通大學資訊科學與工程研究所碩士班

摘 要

移動模式代表的是移動物體經常出現的一連串區域串列，其挑戰議題之一即是如

何決定這些具代表性的區域。在真實世界中有許多原因如取樣方式、取樣頻率，

機器限制，會使得軌跡資料難以描繪真實世界的移動行為。這將使得現有探勘物

體之移動模式的方法難以找出準確的代表區域，同時也無法探勘出準確的移動模

式。然而，即使軌跡資料只能反映出片段的移動行為，它們仍舊藏有一些關於完

整之移動行為的線索。在本論文中我們提出了一個演算法ＣＡＣＴ，利用這些線

索自給定的軌跡資料中探勘出移動模式。首先我們會提出對真實世界軌跡資料的

觀察，由這些觀察我們設計了新的相似度來衡量兩條軌跡資料的相似程度。為了

解決單一移動物體可能擁有多種移動行為的情況，我們設計了分群演算法，利用

軌跡資料中的線索將代表不同移動行為的軌跡區分成不同的群組。最後我們設計

了一個彙整演算法，利用軌跡資料中的線索將處在同群組中的多條片段軌跡聚合

起來，重新建構成一連串具有代表性的區域串列，以描繪移動物體的移動模式。

ii

CACT : Clustering and Aggregating Clues of Trajectories for
Trajectory Patterns

Student：Wan-Ting Huang Advisor：Wen-Chih Peng

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Nowadays, many positioning devices and techniques are more and more popular such
that there are a lot of trajectories of people or vehicles can be easily obtained. From
such a huge amount of trajectories collected, discovering trajectory patterns can
benefit many potential and novel applications. In general, trajectory patterns indicate
sequences of frequent regions that a user usually appears. One of the challenge issues
in trajectory pattern mining is how to define frequent region units in trajectory
patterns. In reality, there are many factors, such as sampling method, sampling
frequency and device constraints, will affect the capability of original trajectory data
capturing the actual movements. Thus, if the original trajectory data only coarsely
capture actual movements of a user, prior works cannot accurately identify frequent
regions, let alone deriving trajectory patterns. However, even if trajectories can only
reflect partial movements of a user, they reveal some clues about the moving
behaviors hidden in trajectories. Consequently, in this paper, given a set of trajectories,
we propose an algorithm CACT (standing for Clustering and Aggregating Clues of
Trajectories) for discovering trajectory patterns by exploiting such 'clues'. Exploiting
the clues of trajectories, we first propose the similarity measurement for two
trajectories by tolerating certain spatiotemporal bias. Furthermore, to deal with the
existence of multiple moving behaviors in trajectories, we propose a clustering
algorithm to divide trajectories with similar moving behaviors into several groups. For
each group, we further propose an algorithm to derive a sequence of frequent regions
with their corresponding representative line segments. To the best of our knowledge,
this is the first work that claims to cluster trajectories into groups first and then derive
the corresponding frequent regions within each group. Through experimental studies
on both synthetic and real datasets, we show that our approach is able to capture the
trajectory patterns, while handling the partial information of trajectories (i.e., the clues)
and avoiding the inaccuracy problem of frequent region determination.

Keywords: trajectory, data mining, spatiotemporal

iii

誌 謝

 首先要感謝我的指導老師─彭文志教授，在兩年的學習過程中給予我的指導

與教誨。感謝我的口試委員李旺謙教授、戴碧如教授與楊得年老師，在口試的時

候提出了許多寶貴的意見，讓我的論文可以做更進一步的改進。更要感謝系上辛

苦的老師與系辦小姐，給予我最好的教學資源與最親切的幫助。

 感謝老師的指導與教誨讓我學會了何謂研究之道，每次與老師的討論都像是

戰爭一樣，新的意見被提出來、緊接著就是一連串的質疑與挑戰，只有被承認的

問題才有價值，而這些問題往往會帶出更多有趣的東西。老師總是用很樂觀積極

的態度帶領大家做研究，期勉我們能不斷戰勝自己持續進步，成為世界一流的人

才。老師身上那用不完的活力就像新幹線的火車頭似地帶著大家向前衝，兩年的

衝刺宛如經歷一場人生洗禮。感謝老師讓我不僅在研究上有了突破，精神面也能

更上一層樓，面對未來的挑戰我相信我也能用這樣的精神克服難關。

 感謝實驗室中的同學們，博班學長洪智傑在研究上給予了許多寶貴的意見與

忠告，也扮演了實驗室的人生智者兼駐室醫生。感謝孟芬學姊關心的問候，綾音

學姊珍貴的節慶應景食物，讓很少回家的我也感受得到家的感覺。感謝忠訓學長

在中科計劃時的照顧，也謝謝一起做計劃奮鬥的夥伴們在我暑假去實習時幫我分

擔了許多工作。感謝上一屆的碩班學長們總是很親切地提供寶貴的經驗，york、

sheep、camel、講義、榕榕，真可謂是實驗室的強者傳奇，也是學弟妹們心中的

榜樣。謝謝同學和學弟妹們讓實驗室充滿了歡樂，實驗室佔了碩士兩年回憶中的

很大一部分，謝謝實驗室的大家讓這份回憶充滿了溫馨與歡笑。

 感謝高中與大學時代的好友們，心情苦悶的時候有你們真好，特別要感謝小

召學妹在四年中帶來的無窮樂趣，讓我在熬夜寫程式做研究之餘，能有個喘息休

憩的空間。最後要感謝我的家人，謝謝你們兩年來的關心與支持，讓我能順利完

成碩士的學業。

iv

Contents

中文摘要 . i
英文摘要 . ii
誌謝 . iii
目錄 . iv
表目錄 . v
圖目錄 . vi

1 Introduction . 1

2 Related Works . 5
2.1 Preliminary 6

2.1.1 Assumptions and Problem Statement 6
2.1.2 Overview of Our Proposed Algorithm 8

3 Similarity Measurement . 9

4 Clustering Trajectories . 15

5 Aggregation Phase . 22

6 Performance Evaluation . 26

6.1 Experimental Environment 26
6.2 Comparison with SFP 28

6.2.1 Sensitivity Analysis 30
6.2.2 The Heuristic of Threshold Selection 30
6.2.3 Effectiveness of Algorithm ClusDG 31
6.2.4 The Impact of Thresholds 32
6.2.5 Execution Time 34

6.3 Conclusions 35

Bibliography .37

v

List of Tables

6.1 Comparison for optimal and heuristic solutions. .33

vi

List of Figures

1.1 Some illustrative examples extracted from Carweb datasets. 2

1.2 Two illustrative examples. ..3

3.1 Two illustrative examples for ்ܵ,் . 12

3.2 Two illustrative examples for observations. .13

3.3 An illustrative example of a SC-graph. 13

4.1 A scenario of clustering in a dual graph. 18

4.2 Distribution of (a) similar and (b) close scores . 20

5.1 An illustrative example of our aggregation algorithm . 23

6.1 Three experimental results of an existing work. 28

6.2 Two experimental results of our approach with (a) Ploss = 0 and (b) Ploss = 0:5. 29

6.3 The impact of Precision and Recall in real datasets with Ploss varied. 30

6.4 The impact of Precision and Recall in synthesis data sets with Ploss varied. 30

6.5 Similar scores on synthesis datasets. 32

6.6 Close scores on synthesis datasets. .32

6.7 Successful rate with Ploss varied in (a) real and (b) synthesis datasets.33

6.8 The impact of precision and recall in different ε. 34

6.9 The values of λ and μ with ε varied. 34

6.10 The impact of precision and recall in different τ . 35

6.11 Execution time under (a) short and (b) long trajectories. .35

Chapter 1

Introduction

With the pervasiveness of mobile devices, the location of users is easily determined by either

GPS devices or some positioning techniques. Furthermore, some softwares are able to log user

movements when users go biking and traveling. Thus, a huge amount of movement trajectories

are uploaded to some Web community sites [1][2][3]. From such a huge amount of trajectories

collected, it is valuable to discover trajectory patterns which represent the moving behaviors

hidden in trajectories. Trajectory patterns have been widely utilized in many applications such

as trajectory recommendation in some trajectory sharing forums, personalized navigation and

data prefetching methods in mobile computing environment.

Given a set of trajectory data, a significant amount of research efforts have proposed

approaches of mining trajectory patterns. In general, trajectory patterns indicate sequences

of frequent regions that a user usually appears. One of the challenge issues in trajectory

pattern mining is how to define frequent region units in trajectory patterns. Previous works

for determining frequent regions in trajectory patterns can be generally classified into two

categories: the density-based approach and the line-based approach. In the density-based

approach, a region is viewed as a frequent region if the number of trajectories passing by is

larger than a pre-defined threshold. Furthermore, if nearby regions are also frequent regions,

these regions could merge into one larger region. In a line-based approach, a trajectory

data is first transformed as a series of line segments. If several line segments from different

trajectories are close, a frequent region that contains these line segments is thus determined.

The determination of frequent regions is very important since frequent regions are viewed

as basic units of trajectory patterns. Without a proper determination of frequent regions,

trajectory patterns are not able to capture the moving behaviors hidden in trajectories.

Clearly, the original trajectory data will have an impact on the determination of frequent

regions. If the original trajectory data only coarsely capture actual movements of a user,

1

(a) (b) (c) (d)

Figure 1.1: Some illustrative examples extracted from Carweb datasets.

prior works mentioned above cannot accurately identify frequent regions, let alone deriving

trajectory patterns. In reality, there are many factors which affects the capability of original

trajectory data capturing the actual movements. To log trajectory raw data, one could set

the sampling method and sampling frequency that demonstrate how and how frequent to

record the location of a user, respectively. In most positioning device, there are two sampling

methods: sampling by distance and sampling by time. In general, setting higher sampling

frequency leads to trajectories with more fine resolution. However, setting a higher sampling

frequency results in a huge amount of log data generated and the energy exhaustion of logger

or GPS-enabled mobile devices. Consequently, a lower sampling frequency is likely to be

set and thus trajectory data cannot reflect detailed movements of users. Figure 1.1 shows

illustrative examples, where Figure 1.1(a) shows the actual movement, and Figure 1.1(b) and

and Figure 1.1(c) are the trajectories following the same movement but sampling by distance

and time in a lower sampling frequency, respectively. It can be seen that these trajectories are

not accurately capture the actual movement in Figure 1.1(a). In addition, trajectories may

be different even if a user who follows the same route. That is, GPS data points in different

trajectories that demonstrate the same routing behaviors of that user may not exact the same

in terms of locations and times. Figure 1.1(c) and Figure 1.1(d) show two selected trajectories

with the same sampling frequency, where a real movement behavior is shown in Figure 1.1(a).

Moreover, due to the natural feature of GPS or other wireless network positioning techniques,

which refers to the feature that the data point determined has some tolerable errors in terms

of the coordinate (i.e., location) and the time, trajectories cannot capture exact the same

information of location and time even if the user follows a periodically movement.

From the observations above, prior works of generating frequent regions are not applica-

ble since both the density-based and the line-based could not accurately determine frequent

regions. For a density-based approach, it is harder to identify frequent regions that contain a

2

(a) (b)

Figure 1.2: Two illustrative examples.

sufficient amount of data points. For example, the gray lines means the actual movement and

the black points are sampled points. Figure 1.2(a) shows that it is possible that the frequent

regions (the dashed rectangle) cannot decide accurately by the sampled points. For the line-

based approach, the lines derived in a trajectory are likely not to approximate real movement

paths and thus, a region that includes more close lines is hardly to derived. For example,

in Figure 1.2(b), the actual movement is a S-shape curve but the line segments linked the

sampled point are straight. Without a proper design of frequent regions, trajectory pattern

mining cannot truly reflect frequent movement behaviors. However, even if trajectories can

only reflect partial movements of a user, they reveal some clues about the moving behaviors

hidden in trajectories. Consequently, in this paper, we propose an algorithm CACT (standing

for Clustering and Aggregating Clues of Trajectories) for discovering trajectory patterns by

exploiting such ’clues’. Similar to prior works in [6], trajectory patterns mined in this paper

consists of sequences of frequent regions. For each frequent region, there is a representative

lines which can capture geometry movements of a user within this region. Exploiting the

clues of trajectories, we can distinguish whether trajectories are similar or not. Note that

these trajectories may contain a variety of moving behavior of a user. Thus, it’s not appro-

priate to put all trajectories together for the determination of frequent regions. Furthermore,

to deal with the observations above, we propose a clustering algorithm to divide trajectories

into several groups. Trajectories in the same group reflect the same moving behavior of a

user and the number of groups is the number of moving behaviors of a user. Then, for each

group, we further propose an algorithm to derive a sequence of frequent regions with their

corresponding representative line segments. To the best of our knowledge, this is the first

work that claims to cluster trajectories into groups first and then derive the corresponding

frequent regions within each group. Because of the design, our proposed method of mining

trajectory patterns is able to handle the partial information of trajectories (i.e., the clues) and

avoid the inaccuracy problem of frequent region determination.

Several challenging issues arise in our proposed method, such as the formulation of simi-

larity among trajectories, the clustering algorithm, and the derivation of frequent regions and

3

representative lines. Since each trajectory some clues for its actual movement, the similarity

between two trajectories should be carefully designed. In light of the similarity of trajectories,

we could therefore develop a clustering algorithm with the objective of extracting frequent

moving behavior of a user. Clearly, the number of groups represents the number of moving

behaviors of a user. According to clues of trajectories, each group should include more tra-

jectories that are likely to have similar moving behavior so as to fully capture true moving

behavior of a user. For each group derived, we propose an aggregation method to aggregate

spatio-temporal information of trajectories within the same cluster and generate frequent re-

gion sequences. We evaluate our proposed algorithm in both the real dataset and the synthetic

dataset. Experimental results demonstrate that our proposed algorithm is able to effectively

mine trajectory patterns of a user.

The rest of the paper is organized as follows. Related works are studied in Section 2.

Preliminary background is given in Section 2.1. Section 3 describes the proposed similarity

for two trajectories. The clustering algorithm for trajectories with the same moving behavior

is proposed in Section 4. In Section 5, the aggregation method is then presented. Experimental

results are shown in Section 6. Last but not least, we conclude this paper in Section 6.3.

4

Chapter 2

Related Works

The problem of mining frequent moving patterns has attracted a considerable amount of

research efforts. Generally speaking, the flow of mining frequent moving patterns is to first

find frequent regions and then derive the relationship between these frequent regions into

frequent moving patterns. According to the definition of frequent moving patterns, prior works

are generally classified into two categories: spatial movement patterns and spatio-temporal

movement patterns. In the first category, a frequent moving pattern refers to a sequence

consisting of base station identifications or pre-defined regions. On the other hand, in the

second category, frequent moving patterns are able to reflect the spatio-temporal associated

relationships among base station identifications or pre-defined regions. For the first category,

we mention in passing that the authors in [5] proposed an information-theoretical method to

mine frequent moving patterns which are represented as a trie data structure. Moreover, the

authors in [23] proposed a statistical approach to mine frequent moving patterns. In [16] and

[18], the authors proposed a data mining approach for mining frequent moving patterns with

the moving logs of mobile users given.

In the second category, frequent moving patterns are usually extracted from trajectories,

where trajectories can reflect the actual movements. A considerable amount of research efforts

have elaborated on mining spatio-temporal association rules [17][12][21][22]. In [6], the authors

claimed the fuzziness of locations in patterns and developed algorithms to discover spatio-

temporal sequential patterns. Furthermore, the authors in [13] proposed a clustering-based

approach to discover moving regions within time intervals. In [11], the authors developed

a hybrid prediction model, consisting of vector-based and pattern-based model, to predict

movements of users. In [9] and [8], the authors exploited temporal annotated sequences

in which sequences are associated with time information (i.e., transition times between two

movements).

5

Prior works do not address the issue of geometric inaccuracy of trajectories. To our

best knowledge, this is the first work to mine frequent moving patterns from the fragment-

information trajectories. The existence of the fragment-information property brings many

challenges since the geometric properties, such as angle, length and direction, cannot be

used to find frequent regions directly. Different from the flow of existing works, we find the

fragment-information trajectories with potentially the same moving behaviors first, and then

use fragment-information trajectories in each cluster to derive a frequent region sequence. As

such, our approach can not only tolerate with spatial and temporal but also overcome the

geometric inaccuracy of trajectories. These features distinguish our works from others.

2.1 Preliminary

In this section, we present some assumption and notions used in this paper. Then, the problem

statement is described. Finally, the overview of our proposed method is given.

2.1.1 Assumptions and Problem Statement

In this paper, we assume that the location of a user is determined by GPS devices or wireless

networks. Same as in other works [6][9], a trajectory is defined as follows:

Definition 1. Trajectory representation: A trajectory Ti is a time-ordered sequence

of points, denoted as Ti =< pi,1 = (loci,1, ti,1), pi,2 = (loci,2, ti,2), ..., pi,n = (loci,n, ti,n) >, where

ti,j < ti,j+1 for all j = 1, 2, ..., n− 1, loci,j is the location at time ti,j and n is the length of Ti.

The location determined is represented as the geometry model that consists of the latitude

and the longitude of a user. Consider trajectory T1 in Figure 3.1(a) as an example, where the

black curve represents the actual movement and T1 =< p1,1, ..., p1,7 > is a trajectory generated

by GPS devices. As can be seen in Figure 3.1(a), trajectories may not always capture accurate

movements of a user. Moreover, according to the setting of GPS logger, a trajectory is in fact

represented partial information of a true movement path, which refers to the partial feature

of a trajectory in this paper.

Same to prior works [6][9][11], trajectory patterns are sequences of regions, where regions

are referred to as hot areas that a user frequently stay or pass by. As pointed out early, a

grid-based approach is divided the whole space into grids and the quality of regions is mainly

depended on the number of grids. Furthermore, grids may not true capture the movements

of a user if the user usually appears in the boundary of grids. Thus, in this paper, we adopt

a line-based approach to determine regions for trajectory patterns. Similar to the work in [6],

6

the region is defined as follows:

Definition 2: Frequent region Given a set of points and a central line L, the region RL

is called a frequent region if the distance between each point p and L is smaller than ε and

the number of trajectories that cross over this region is larger than min sup.

In light of the definition of frequent regions, we could therefore give the definition of

trajectory patterns mined in this paper.

Definition 3: Trajectory pattern A trajectory pattern considered in this paper is

a sequence of frequent regions that contain data points from at least min sup trajectories

(referred to relevant trajectories) and each point in relevant trajectories is mapped to one

frequent region such that the distance between this data point to the central line of the

frequent region is smaller than ε.

In this paper, given a set of trajectories, we intend to derive a set of trajectory pat-

terns. There are some important observations of trajectories, which provides us some real

phenomenon of trajectories, in the real dataset CarWeb[15].

Observation 1: For the same moving behavior, trajectories may have some data bias

from the spatial and temporal (i.e., time) perspective. In our collected real trajectories, a

user follows the same route to his office. These trajectories are not exact the same in their

data points of trajectories. There are some bias in the spatial domain and the time domain.

For example, one day, the user is little late to his office and the data points are shifted in the

temporal domain. Furthermore, data points in the same location (i.e., one road segment) do

not have exact the same location and time information.

Observation 2: Though setting a smaller frequency in our real dataset, the straight line

with their two end points as data points in a trajectory is not usually the true movement.

This is due to the road networks and the driving speed of a user. For example, if the driving

speed of a user is high, the distance between two points in a trajectory is far away and thus

the line between these two points cannot accurately approximate the true user movement.

Prior works in [6] that transform the original trajectory into a series of line segments are

not applicable to capture the real movements of a user since lines between two consecutive

points are not always movement segments of a user. According to the observations above,

each data point in a trajectory is viewed as a sampling point of a true user movement. Clearly,

if two trajectories have the same sampling frequency to sample the same true movement, each

data point from two trajectories is possibly not the same. Since each trajectory is viewed as

a sampling from a true movement, with more trajectories for the same true movement, one

still could capture true movement of a user. This is due to that data points from different

7

trajectories that sample the same movement path, still have more possibilities to fall into some

spatial areas along with the true movement paths. Furthermore, a user follows several regular

true movement paths. For example, a user may have more than one working place and thus

he may have more than one regular routings to his working places. Our proposed algorithm

can not only mine trajectory patterns with some bias in trajectories data but also discover a

set of trajectory patterns that reflect several moving behaviors of a user.

2.1.2 Overview of Our Proposed Algorithm

As mentioned above, trajectories contain partial information of true user movements and

data points in trajectories are affected by some bias factors, such as the sampling frequency,

positioning delay and time shifts in user movement behavior. Thus, in this paper, we pro-

pose an algorithm CACT (standing for Clustering and Aggregating Clues of Trajectories) for

discovering trajectory patterns, where clues of trajectories are referred to partial information

captured by trajectories. Explicitly, algorithms CACT consists of three phases: In phase 1, we

formulate the similarity measurement between trajectories and our similarity formulation will

take spatial and temporal bias into consideration. In phase 2, trajectories are clustered into a

set of group and trajectories in the same group have similar moving behavior. Furthermore,

since trajectories only consider some clues, we should carefully design the clustering method

to include trajectories that demonstrate the same moving behavior. In step 3, for each group,

we further aggregate trajectories in the same group for deriving a sequence of frequent regions

with their corresponding central lines. In the following section, we will describe each step in

detail.

8

Chapter 3

Similarity Measurement

In this section, we derive the similarity measurement for trajectories, which can capture the

closeness of trajectories by the clues hidden in trajectories while spatial and temporal bias are

taken into account. At first, we define point-to-point similarity to evaluate spatial closeness

of two points by considering spatial-bias threshold ε. Based on point-to-point similarity, a

point-to-trajectory is then defined to find the most near point in a trajectory for the given

point by considering the temporal-bias threshold τ . According to the point-to-trajectory, the

trajectory-to-trajectory is then defined to evaluate how closeness a trajectory to the other one

is by taking both spatial and temporal bias into account. Due to the asymmetric property of

the trajectory-to-trajectory similarity, similar and close relations are used to represent that

two trajectories behave like each other and just one trajectory behaves like to the other one,

respectively. At last, a SC-graph is constructed for representing these two relations among

trajectories.

Each trajectory can be viewed as a time series. Therefore, one may use some existing

distance measurements for time series to evaluate how similar two trajectories are, such as

p-norms, dynamic time wrapping [24][14], and edit-distance-based approaches [4][7]. However,

they are hardly applicable these distance measurements to evaluate how similar two trajecto-

ries are. Specifically, it is hard to compute distance between two trajectories by the Euclidean

distance (p-norm measurement with p=2), because two trajectories may not have points at

the same time unit. Dynamic time wrapping requires each point in a time series to match

with the closet point in the other time series such that it cannot tolerate noise and capture

the local similar parts between trajectories. Thus, the distance value derived by dynamic time

wrapping may significantly increase if the time interval of consequent points in two trajectories

are interleaving, or there exists some noises in trajectories. On the other hand, rather than

matching all points between two trajectories, the edit-distance-based approach is to match

9

two time series by allowing some points to be unmatched. Since the length of trajectories

with similar moving behavior may vary, the distance value is also affected significantly by

the length such that it is hardly used to evaluate how many similar parts between two tra-

jectories. Some similarity measurements are designed which also considers the spatial and

temporal biases among trajectories [20]. However, they are usually required that there should

be points at every time units in each trajectory. If the requirement above cannot be satisfied,

interpolation-like approaches may be used to compensate some points for some time units.

However, the trajectory may not have points in any time unit. Moreover, compensating points

by interpolation cannot reflect the actual movement precisely. The reasons above motivates

us to develop a new similarity measurements for trajectories.

To define the similarity for trajectories, we start from the point-to-point similarity:

Definition 2. Point-to-Point Similarity: Given a spatial-bias threshold ε, and two

points pi,` = (loci,`, ti,`) and pj,k = (locj,k, tj,k), the point-to-point similarity is defined as

SPP (pi,`, pj,k) = 1− dist(pi,`,pj,k)

ε
where dist(·) is the distance between locations of two points.

To tolerate some spatial bias, a parameter ε is used. The value of point-to-point similarity

linearly decays from 1 to 0 by the distance between locations of two points. The closer the

two points, the larger the value is. Once the location of two points are exactly the same,

the value is 1. On the other hand, once the distance between two points are far from ε,

the value is 0. For example, consider Figure 3.1(a) and let ε = 10 and Euclidean distance

as the distance function, it can be seen that p1,3 is more closer to p2,2 than p2,3 such that

SPP (p1,3, p2,2) = 1−
√

2
10

= 0.86 > SPP (p1,3, p2,3) = 1− 2
10

= 0.8.

Definition 3. Point-to-Trajectory Similarity: Given a point pi,`, a trajectory Tj and

a temporal-bias threshold τ , the point-to-trajectory similarity is defined as SPT (pi,`, Tj) =

max{SPP (pi,`, pj,k)|pj,k ∈ Tj and tj,k ∈ [ti,` − τ, ti,` + τ]}.
The idea of point-to-trajectory similarity is to find the nearest point in Tj which time are

allowed within τ time units from pi,`. To facilitate to describe, such a closest point from pi,` is

called the mapped point of pi,`. In practice, there usually exists some temporal bias between

two trajectories even if they follow the same moving behavior. Therefore, τ is introduced to

tolerate such temporal bias for fining the mapped point of pi,`. For example, suppose that

we can tolerate the temporal bias to be 3 time units (i.e., τ = 3), to evaluate the point-to-

trajectory similarity between p1,2 and T2, three points p2,1, p2,2, and p2,3 are considered since

their time are between t1,2 − 3 to t1,2 + 3 (i.e., 1 to 7). Since SPP (p1,2, p2,2) = 0.8 which

owns the largest value among that from p1,2 to p2,1 and p2,3, the point-to-trajectory similarity

SP,T (p1,2, T2) is 0.8.

10

According to the point-to-trajectory similarity, we can further define the similarity between

two trajectories:

Definition 4. Trajectory-to-Trajectory Similarity: Given two trajectories Ti and

Tj, the trajectory-to-trajectory similarity is defined as STT (Ti, Tj) =

∑
pi,`∈Ti

SPT (pi,`,Tj)

|Ti| .

The trajectory-to-trajectory similarity is used to evaluate how a trajectory Ti is similar

to the other one Tj. The value of STT (Ti, Tj) is in the interval [0, 1] and determined by the

average of SPT between each point in Ti and its mapped point in Tj with respect to the

length of Ti. Since STT is derived from SPT and SPP , STT also takes the spatial and temporal

biases into account. For example, let ε = 10 and τ = 3. In Figure 3.1(a), the arrows show

the mapping from each point in T1 to its mapped point in T2. Therefore, we can obtain that

STT (T1, T2) = {SPT (p1,1, p2,1)+SPT (p1,2, p2,2)+SPT (p1,3, p2,2)+SPT (p1,4, p2,3)+SPT (p1,5, p2,4)+

SPT (p1,6, p2,4)}/7 = 0.64.

There are many existing distance or similarity measurement for two time series. However,

there are several important properties of STT , which makes STT more suitable to measure the

similarity between two trajectories. First, STT allows the partial mapping for a trajectory to

the other one. That is, a point in a trajectory does not necessary map to a point in the other

trajectory. Exploiting such a feature can guarantee each point able to find its mapped point

under the spatial-bias and temporal-bias constraint. For example, in Figure 3.1(a), p1,7 has

no mapped point in T2 since there is no points which time is in [16 − 3, 16 + 3]. Moreover,

the location of points in two trajectories may vary even if their moving behaviors are the

same. Figure 3.2(b) shows an illustrative example of this case. Through this feature, STT

can identify only the parts which parts of moving behaviors are likely the same between two

trajectories but ignore that are not the same. Second, STT is noise tolerant. This is a crucial

feature because the location data of a trajectory is inherently inaccurate. With the property of

allowing the partial mapping, the value of STT does not affect significantly by noises because

the noise point will has less probability to be mapped. Third, STT is asymmetric. That is,

STT (Ti, Tj) may not equal to STT (Tj, Ti). For example, Figure 3.1(b) shows the mapping from

T2 to T1 and we can obtain that STT (T2, T1) = 0.77 which does not equal to STT (T1, T2) = 0.64.

The asymmetry is a very crucial feature since we can use it to distinguish whether a trajectory

should be compensated by others or compensate others. The detail will be described later.

From the observation of the asymmetry of STT , we can define similar and close relations

for any two trajectories.

Definition 5. Similar: Given a threshold λ, a trajectory Ti is similar to the other Tj,

denoted as Ti ∼ Tj, if and only if min(STT (Ti, Tj), STT (Tj, Ti)) ≥ λ. In brief, the similar score

11

(a) (b)

Figure 3.1: Two illustrative examples for ST,T .

of Ti and Tj, SS(i, j), is referred to the value of min(STT (Ti, Tj), STT (Tj, Ti)).

Definition 6. Close: Given a threshold µ, a trajectory Ti is close to a trajectory Tj,

denoted as Ti → Tj, if and only if STT (Ti, Tj) ≥ µ. In brief, the close score from Ti to Tj,

CS(i, j), is referred to the value of STT (Ti, Tj).

Conceptually, the similar relation represents that Ti and Tj intend to behave like each

other. That is, they have enough amount of points which are spatially and temporally nearby

to each other so that even the minimum value of STT between them is larger than a given

threshold. Moreover, the similar relation is symmetric such that Ti ∼ Tj implies Tj ∼ Ti.

On the other hand, the close relation only requires that one trajectory behaves like the other

one. Thus, the similar relation is not symmetric such that Ti → Tj does not necessarily imply

Tj → Ti. Generally speaking, we assume that two similar trajectories implies that they have

close relations between them. In order to achieve the goal, we set a larger value for λ than

µ. Formally, when λ ≥ µ, we can get that Ti → Tj and Tj → Ti if Ti ∼ Tj. As such, in the

following discussion, the value of λ is set to be greater than the value of µ.

Through discovering relations between two trajectories, we are able to distinguish whether

a trajectory should compensate its information to others or be compensated by others based

on the following observations:

Observations 1 If Ti ∼ Tj, Ti and Tj tend to have the similar length and each point tends

to be able to find its mapped point.

Observation 2: If Ti → Tj, Ti tends to be shorter than Tj and only partial points of Tj

will be mapped from points of Ti.

Figure 3.2 shows two illustrative example for these two observations. In this example, T1

and T3 follow the same movement in the black curve. Similarly, T2 and T4 follow the same

movement in the gray curve. Let ε = 10, τ = 3, λ = 0.9 and µ = 0.85. In Figure 3.2(a),

it can be derived that STT (T2, T4) = 0.92 and STT (T4, T2) = 0.92. Thus, T2 ∼ T4. It can

12

(a) (b)

Figure 3.2: Two illustrative examples for observations.

Figure 3.3: An illustrative example of a SC-graph.

be observed that the length of T2 and T4 are likely the same and only p2,2 is not mapped

when computing STT (T4, T2). Based on this observation, we can conclude that a set of the

trajectories which are mutually similar represent potentially the same moving behavior. On

the other hand, Figure 3.2(b) shows the opposite case from the former one. In the similar

fashion, we can obtain that STT (T1, T3) = 0.52 and STT (T3, T1) = 0.93. Therefore, T3 → T1.

It can be seen that T3 is shorter than T1 and only three points in T1 are mapped. In this

case, it can be observed that through adding three points in T3, T1 can be compensated and

describe the moving behavior between p1,1 to p1,2 more precisely. Overall, the close relation

is helpful for identifying which trajectories can compensate others.

The similar and close relations can describe the different functionalities when mining tra-

jectory patterns. Exploiting such relations, we can identify whether a trajectory should be

compensated by others or compensate others. Therefore, a SC-graph is constructed to repre-

sent the both relations among trajectories:

Definition 7. SC-Graph: Given a set of trajectories T = {T1, T2, ..., Tn}, a SC-graph

is a weighted graph G = (V, ES ∪ EC) where V = {v1, v2, ..., vn}, (vi, vj) ∈ ES with its

13

weight wS(vi, vj) = min(STT (Ti, Tj), STT (Tj, Ti)) if Ti ∼ Tj, and (vi, vj) ∈ EC with its weight

wC(vi, vj) = STT (Ti, Tj) if Ti → Tj and Ti � Tj.

In a SC-graph, each vertex represents a trajectory. Once two trajectories are similar to

each other, an undirected edge is then constructed between them. On the other hand, a

directed edge will be constructed if one trajectory is close to the other one. Since two similar

trajectories are required to be close to each other, a directed edge only exists when a trajectory

is close to the other but they are not similar to each other. For example, let λ = 0.5 and

µ = 0.3, Figure 3.3 shows an illustrative example of a SC-graph. To facilitate to describe, a

vertex in a SC-graph is equivalent to a trajectory, an edge in ES is called a similar edge, and

an edge in EC is called a close edge in the rest of this paper.

14

Chapter 4

Clustering Trajectories

Since the given trajectories may contain more than one moving behavior, it is required to

distinguish the trajectories with the same moving behaviors and group them into clusters. In

this section, we describe our approach for grouping trajectories with similar moving behavior

into clusters.

In Section 3, we introduce a SC-graph to present similar and close relations between trajec-

tories. As such, the similar and close edges in a SC-graph represent some clues that indicates

whether two trajectories represent the similar moving behavior or not. Thus, clustering tra-

jectories with the similar moving behavior can be viewed as the procedure of exploiting some

clues to clustering vertices in a SC-graph. To realize this idea, some definitions are elaborated

in the following.

Definition 9. Core: Given a SC-graph G = (V, ES ∪ EC) and a threshold δ, a vertex

u ∈ V is a core if there exists a set of vertices Cu such that 1. for v ∈ Cu and v 6= u,

(u, v) ∈ ES, and 2. for all v, w ∈ Cu, (v, w) ∈ ES, and 3. |Cu| ≥ δ.

A core u in a SC-graph is a vertex with sufficient trajectories similar to it and these

trajectories are mutually similar. Thus, a core set Cu contains trajectories which can most

likely represent the same moving behavior. The value of δ is usually set to be at least 2 since

the moving behavior described by a trajectory which is not similar to anyone is not enough

confident. For example, let δ = 2, v2 is a core and Cv2 = {v2, v6, v7} where v6 and v7 are the

neighboring vertices of v2 in ES, each vertex has similar edge to others, and |Cv2| = 3 ≥ δ = 2.

Even if some trajectorie follows the same moving behavior, it is possible that they are

not in the same core due to the natural of trajectories. However, some ’clues’ may exist to

indicates two cores with the similar moving behavior. This definition is elaborated in the

following.

Definition 10. Directly Clue-Reachable: A vertex u is directly clue-reachable to a

15

vertex v, denoting as u Ã v, if v is a core and u is adjacent to v in ES or EC .

Directly clue-reachability shows a vertex u with the same moving behavior to a core. A

vertex u can show it following the same moving behavior of a core through a similar or a

close edge, respectively. Obviously, all vertices in Cv are mutually directly clue-reachable.

For example, v5 Ã v6 since v6 is a core and (v5, v6) ∈ ES; v1 Ã v2 since v2 is a core and

(v1, v2) ∈ EC .

Through the directly clue-reachability, we can find those vertices which potentially repre-

sent the similar moving behavior as a core. In the following definition, we extent the directly

clue-reachability to clue-reachability which can describe a vertex following the similar moving

behavior through many clues indirectly.

Definition 11. Clue-Reachable: A vertex u is clue-reachable to a vertex v, denoting

as u Ã∗ v, if there exists a chain of vertices v = v1, v2, ..., vn = u such that vi Ã vi+1 for all

i = 1, 2, ..., n− 1.

For example, v5 Ã∗ v8 through the path v5 Ã v6 Ã v7 Ã v8.

Based on clue-reachability, we can further define the clue-connection from one core to the

other core as follows:

Definition 12. Clue-Connect: A core u is clue-connected to v if there exists a core w

such that x Ã∗ y for all x ∈ Cu and for some y ∈ Cw, and y
′ Ã∗ z for all y

′ ∈ Cw and for

some z ∈ Cv.

Conceptually, through clue-connection, we can imply the moving behavior of a core u is

similar to that of a core v. To ensure sufficient clues to support that, each vertex in Cu should

be clue-reachable to some vertices of an intermediate core sets. That is, all vertices in Cu,

i.e., trajectories stating the similar moving behavior of u, should follow the similar moving

behavior as an intermediate core set. Similarly, all vertices in this intermediate core sets

should follows the same moving behavior as the core v. For example, v11 is clue-connected to

v8. It can be seen that there is a core v5 such that all vertices in Cv11 are clue-reachable to

some vertices in Cv5 (i.e., v11 Ã v5 and v10 Ã v5), and all vertices in Cv5 are clue-reachable

to some vertices in Cv8 (i.e., v1 Ã∗ v3 and v5 Ã∗ v8).

For a core, there may be several cores clue-connected to it. To ensure that trajectories

with the most similar moving behavior are grouped into a cluster, we derive a measurement

clue-gain to evaluate how much ’clue’ a core set can obtain via the other one.

Definition 13. Clue-Gain: Consider two sets S and T . Let Est
S and Est

C be the set of

similar and close edges from S to T , respectively. The clue-gain ClueGain(S, T) = α×|Est
S |×∑

e∈Est
S

wS(e) + β × |Est
C | ×

∑
e∈Est

C

wC(e).

16

Generally speaking, more similar/close edges from S to T implies that S is more likely to

represent the similar moving behavior as T . Also, the weights between these edges should be

taken into account. The higher weights of these edges, the more similar the moving behaviors

of S and T . Therefore, the clue-gain is proportional to the number of similar and close edges

and the corresponding weights from S to T . Moreover, the similar edges should be weighted

higher than the close edges because the similar edges represent that the moving behaviors of

two vertices are mutually similar and the close edges only represents the moving behavior of

one vertex is like to the other. Thus, two constants α and β are used for weighting the similar

and close edges, respectively. Usually, the value of α should be at least two times larger than

β. By the definition of similar and close scores, SS(i, j) = min(STT (Ti, Tj), STT (Tj, Ti)) ≤
STT (Ti, Tj) = CS(i, j). Thus, 2SS(i, j) ≤ CS(i, j) + CS(j, i), which shows that one similar

edge is at least two times important as a close edge. Thus, α should be set two times larger

than β.

For example, let α = 2 and β = 1. ClueGain(Cv12 , Cv3) = 2× 1× 0.5 + 1× 1× 0.9 = 2.9

and ClueGain(Cv12 , Cv11) = 2× 2× (0.5 + 0.7) + 1× 1× 0.3 = 5.1. Obviously, Cv12 intends to

show more similar moving behavior to Cv11 than Cv3 since there are more similar edges from

Cv12 to Cv11 than to Cv3 .

According to the clue-connected and the clue-gain, we can formulate the problem of clus-

tering trajectories with similar moving behavior as follows:

Definition 14. Cluster: A cluster C is a set of vertices satisfying the following conditions:

1. for all u ∈ C, there exists a core v ∈ C such that u is clue-connected to v (connectivity);

2. for all core sets Cu ∈ C, the core set Cv which can induce ClueGain(Cu, Cv) maximal is

also in C (compactness); 3. |C| ≥ min sup (frequentness).

The first requirement states that a cluster is composed of many cores which have clues to

support them describing the similar moving behavior. The second requirement describes the

compactness of a cluster, where each core set should be in the same cluster with the core set

which can make the clue-gain maximal. That is, each core set is used to interpret the moving

behavior with the strongest clues from this core set. On the other words, a core set will not

interpret the moving behavior with weaker clues. To ensure derived regions being frequent, a

cluster should contain more than min sup vertices which is describing in the third statement.

We propose a clustering algorithm to find clusters in a SC-graph. In nut shell, this algo-

rithm first discovers all core sets, then merges them according to their clue-gains, and adds

some non-cores into clusters for enriching information of clusters at last. The algorithmic

form is listed in Algorithm 1.

17

Figure 4.1: A scenario of clustering in a dual graph.

Note that a core set in a SC-graph is equivalent to a clique with size ≥ δ on ES. Thus,

in the beginning, we find a clique cover on ES, where a clique cover refers to a set of clique

with their union being the whole graph. There are many existing heuristic algorithm to find

a clique cover efficiently [10]. One of famous heuristic algorithms is based on greedy strategy

which idea is to always select the highest degree vertex, and to pick its adjacent vertices which

have edges mutually to form a clique. For example, v8 owns the highest degree in this graph

(only considering ES). There are five vertices adjacent to it, say v7, v3, v4, v9, and v13. It

can be verified that only v3, v4, and v9 have edges between each other. Thus, the first clique

{v3, v4, v8, v9} is then generated. Cliques of a clique cover in our example are shaded in Figure

4.1.

After finding a clique cover, we can identify those clique with size ≥ δ as the core sets.

For example, let δ = 2, Cv1 , Cv2 , Cv3 , Cv11 , Cv12 , and Cv14 are core sets. As long as deriv-

ing the core sets, each core set computes the clue-gain from it to all one-step clue-connected

core sets. Then, a core set is merged to the core set with the maximal clue-gain. For ex-

ample, for Cv12 , there are two one-step clue-connected core sets Cv3 and Cv11 with the clue-

gains ClueGain(Cv12 , Cv3) = 1.9 and ClueGain(Cv12 , Cv11) = 5.1, respectively. Thus, Cv12

is merged with Cv3 rather Cv11 . The other example is that Cv14 is merged with Cv1 due to

ClueGain(Cv14 , Cv1) = 4.8 > ClueGain(Cv14 , Cv11) = 2.1. Similarly, Cv1 is merged into Cv2

and Cv2 is merged into Cv3 . Consequently, we can derive two clusters: {Cv1 , Cv2 , Cv3 , Cv14}
and {Cv11 , Cv11}. It is worth mentioning that the merged cliques are guaranteed to be clue-

connected since each clique can be only merged with its one-step clue-connected clique, thereby

satisfying the requirement 1 and 2 of a cluster. At last, some cliques with size ≤ δ are con-

sidered to join some clusters to compensate the moving behaviors represented by this cluster.

As such, a non-core joins a cluster with a core which can induce the maximal clue gain. In

18

this case, a non-core does not merge the other non-core because a chain of non-cores with dif-

ferent moving behavior may be contained in a cluster, especially for non-cores with only one

vertex. For example, v18 and v19 form such a chain. It can be seen that the v18 is close to v17

which indicates it can compensate the information of Cv11 . However, it is not obvious whether

v19 can be used to compensate or not. After that, clusters with less than min sup vertices

and the remaining non-cores are eliminated. Following the example, let min sup = 5. The

cluster {Cv11 , Cv11} and the vertex v19 are eliminated. Consequently, there are two clusters

{Cv1 , Cv2 , Cv3 , Cv14 , v10} and {Cv11 , Cv12 , v18} as the final results.

Algorithm 1: Clustering Trajectories
Input : A SC-graph: G = (V,ES ∪ EC)
Output : A set of clusters: C
C ← φ;1

K = {K1,K2, ..., Km} ← a clique cover of G;2

CORE ← cliques in K with the size ≥ δ;3

for each clique Ki in CORE do4

Compute the clue-gain with all one-step clue-connected cliques in CORE;5

Ci = Ki;6

add Ci into C;7

for each clique Ki in CORE do8

Kmax ← the clique in CORE which can maximize ClueGain(Ki,Kmax);9

Cmax ← the cluster containing Kmax;10

Cjoin ← the cluster containing Ki;11

Cmax ← Cmax ∪ Cjoin;12

for each clique Kj in K − CORE do13

Kmax ← the clique in some Cmax which can maximize ClueGain(Kj ,Kmax);14

Put Kj into Cmax;15

Selection of Thresholds

The selection of thresholds usually depends on user’s requirements and the properties of

the environment. However, setting λ and µ are not straightforward tasks. The selection of

thresholds highly affects the structure of a SC-graph since the number of edges significantly

depend on the thresholds for similar and close relations (i.e., λ and µ). The larger λ and µ

restrict whether two trajectories have similar and close relations or not more seriously. Thus,

larger thresholds incur the fewer edges in a dual graph and make a dual graph more sparse.

A cluster in a sparse dual graph may contain only few trajectories such that it is hard to

aggregate them to obtain the frequent movement precisely. The smaller λ and µ makes a dual

graph more dense. However, it is easy for a cluster to contain more irrelevant trajectories such

that the frequent regions cannot be derived precisely. Therefore, the results of clustering are

highly dependent on the values of λ and µ.

Here, we propose a heuristic for selecting λ and µ adaptively according to the distribution

19

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

N
um

be
r

of
 E

dg
es

Similar Score

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

N
um

be
r

of
 E

dg
es

 (
lo

g)

Similar Score (log)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

N
um

be
r

of
 E

dg
es

Close Score

(c)

Figure 4.2: Distribution of (a) similar and (b) close scores

of similar and close scores. To determine a proper value of λ, we can observe that the

distribution of similar scores. Figure 4.2 shows an experimental result for the distribution

of similar scores in our real datasets. Figure 4.2(a) shows that there are a lot of edges with

extremely small similar score, and relatively fewer edges for the remaining similar scores (i.e.,

long tail). Figure 4.2(b) shows the same plot as above one, but the same distribution shows

itself to be linear on a log-log scale, which is the characteristic signature of the power law

distribution. Thus, by the observations above, we can conclude that the similar scores follow

the power law distribution.

As such, the threshold λ should not be these small similar score since it will make a dual

graph too dense. In this case, we should not select the threshold λ to be 0.05. To prevent the

threshold λ too large, a heuristic approach to select the threshold λ is to select the average

similar score in the long tail. For the efficiency sake, the long tail can be simply determined

by 80-20 principle where we suppose that the edges with 20% largest similar score form the

long tail [19]. In our example, the edges with similar score larger than 0.15 form the long tail.

On the other hand, Figure 4.2(c) shows that the distribution of the close scores tends to have

two peaks. Note that the close relation is used to identify which trajectories should provide

information to compensate the other one. Therefore, to prevent less trajectories with different

moving behavior to put into a cluster, the edges with lower close score should not exist in

20

a dual graph. As such, the threshold µ can be selected to be the average of all close scores

which value can keep the right peak and discard the left peak. In this example, the value of

µ is set to be about 0.4. In our latter experimental results, we will show that the heuristic

approach can group trajectories with the same moving behavior into the fewer clusters.

21

Chapter 5

Aggregation Phase

In clustering phase, the trajectories are divided into several clusters where each cluster con-

tains more than min sup trajectories. In this phase, the spatial and temporal information of

trajectories in a cluster will be aggregated and then a frequent region sequences is generated

for each cluster.

The trajectories in a cluster may represent the same moving behavior. However, it is not

a trivial task to aggregate the information of these trajectories because there may exist some

spatial bias, temporal bias, and noise data in them. To overcome these issues, a trajectory

which can best represent the moving behavior of trajectories in a cluster will be chosen. Such

a trajectory is referred as to the kernel. The information of other trajectories are adjusted to

compensate the kernel. Once obtaining the compensated kernel, the coming issue is how to

decide the minimal number of regions which can satisfy the spatial bias threshold ε.

Since the weight of two similar edges represents how much these two trajectories are similar

to each other, the vertex which the highest total weights of the similar edges incident to refers

the trajectory which the most trajectories in a cluster are similar to. For example, in Figure

4.1, v3 is the kernel in the cluster {Cv1 , Cv2 , Cv3 , Cv14 , v10}. Note that the kernel is likely from

more larger cores. A larger core has more mutually similar vertices such that each vertex has

more similar edges incident to it. The total weights of a vertex in a larger core is more easily

larger than that in a smaller core. In addition, we have more confident to the moving behavior

describing by a larger core than a smaller one. It satisfies that we shall select the trajectory

which can most represent the moving behavior of this cluster. Moreover, a larger core tends

to have more close edges incident to it. It also follows the intuition that the kernel can be

compensated the moving behavior from other trajectories.

Since not all information of trajectories can be used to compensate the kernel, the order of

adding trajectories should be carefully decided to make as more trajectories able to compensate

22

(a) (b) (c) (d)

Figure 5.1: An illustrative example of our aggregation algorithm

their information to the kernel as possible. As such, the trajectories which are most likely

similar to the kernel should be first considered. To evaluate how a trajectory is similar to the

kernel, we should first consider the minimal steps from the trajectory to the kernel, which can

be done by BFS. Once a vertex can achieve the kernel by fewer edges, this vertex has less spatial

and temporal bias to the kernel with higher probability. Moreover, the path that induces the

minimal steps from the trajectory to the kernel is also important. Product of the weights

along the path implies that how much this trajectory is similar to the kernel transitively.

Overall, the trajectory with smaller BFS steps and the higher product of weight along its BFS

path should be first considered. For example, consider the cluster {Cv1 , Cv2 , Cv3 , Cv14 , v10} in

Figure 4.1. In this cluster, the kernel is v3. The vertices v6 and v7 are two-step far from the

kernel. From v6 to v3, the maximal product of weight is 0.5 × 0.6 = 0.3. From v7 to v3, the

maximal product of weight is 0.5 × 0.5 = 0.25. Thus, v6 has higher priority to compensate

the kernel than v7 does.

After deciding the order of compensating the kernel, the next task is to adjust the spatial

and temporal information of other trajectories such that these information can be used to

compensate the kernel. The concept of our aggregation algorithm can be best understood

by the example in Figure 5.1. Suppose that the black points are from the kernel and the

grey points are from the compensating trajectory. The number associated with each point

represents the time. In the beginning, all points of the compensating trajectory are spatially

projected as shown in Figure 5.1(a). Among the compensating points, The point w has some

temporal bias with the kernel because it locates between kernel points a and b but the value

of time of w is not between that of a and b. The point x has such temporal bias as well. In

addition, the point y is a noise point which is too far from the other points. Then, according

to the points of the kernel, the temporal information of compensating points will be adjusted.

Suppose that a compensating point p locates between two kernel points q and r. If p is

between [tq− τ, tr + τ] where τ is the temporal-bias threshold, then its time is adjusted by the

proportion of its distance to q and r Specifically, tp = tq +(tr−tq)× dist(p,q)
dist(p,q)+dist(p,r)

. Otherwise,

23

the point is discarded. Such adjustment is reasonable because a temporal-bias τ is allowed

when computing the similarity between two trajectories. For example, let τ = 2. Suppose

that the distance between a and w equals to that between b and w. Since the time of w is 7

which is between [2− 2, 6 + 2], the time of w is adjusted as 2 + (6− 2)× dist(a,w)
dist(a,w)+dist(w,b)

= 4.

On the other hand, the time of x is 11 which is outside the interval [6 − 2, 8 + 2]. Thus, the

compensating point x is discarded. In the similar fashion, the time of z is adjusted to 18.

Next, the noise points are discarded. Following the notations above, the point p is a noise

point if dist(p, qr) > ε. The point y is the noise point and thus eliminated. Figure 5.1(b)

shows the results after adjusting the temporal information and eliminating noise points. The

procedure repeats until all compensating trajectories are added.

Algorithm 2: Aggregation Algorithm
Input : A set of clusters: C
Output : A set of frequent region sequences: R
for each cluster K ∈ C do1

Tker ← the kernel trajectory of C;2

for each vertex v ∈ K do Compute its BFS steps and largest weight product to the kernel;3

for each trajectories T in the descending order of BFS steps and weight products do4

Spatial projection all points of T ;5

for each points p do6

q, r ← two points in the kernel that p locates between them;7

if tp ∈ [tq − τ, tr + τ] and dist(p, qr) ≤ ε then8

tp = tq + (tr − tq)× dist(p,q)
dist(p,q)+dist(p,r)9

else10

discard p;11

end12

end13

L ← lines obtaining by Douglas-Peucker algorithm;14

Ω ← regions by central lines L;15

Add Ω into R;16

end17

After adding all compensating points, Douglas-Peucker algorithm are used to determine the

number of regions. The purpose of this algorithm is that finding the minimal line segments

which the distance of each point to the corresponding line is smaller than a threshold ε.

Therefore, the minimal number of regions can be obtained while the distance between each

point to the line can be guaranteed to be smaller than a threshold ε. Conceptually, the

algorithm recursively divides the line. Initially a line segment with the first and the last

points is constructed. If the farthest point to the line segment is closer than ε, it represents

the point can be represented by this line. Otherwise, if the point furthest from the line segment

is greater than ε, the original line segment will be separated into two line segments at this

point. The algorithm recursively calls itself until the distance of all points to the derived lines

are smaller than ε. Taking the line segments in Figure 5.1(b) as input, Figure 5.1(c) shows the

24

final results where two line segments are derived. Consequently, by viewing the derived lines

as the central lines, the regions can be easily derived. The final results are shown in Figure

5.1(d).

25

Chapter 6

Performance Evaluation

In this section, the effectiveness and efficiency of mining trajectory patterns from trajectories

are evaluated. In Section 6.1, we present the environments and settings in our experiments. All

experiments are conducted by both the synthesis dataset and the real dataset. The comparison

between our approach and the existing work are shown in Section 6.2. Sensitivity analysis in

several parameters are also investigated in Section 6.2.1.

6.1 Experimental Environment

In our experiments, both real and synthesis datasets are used to evaluate the existing works

and the proposed methods. For real datasets, we extract trajectories from a GPS-based

testbed, CarWeb, which aims at collecting real trajectories of users [15]. In CarWeb system,

each user can obtain his location from GPS every five seconds and upload his location to the

CarWeb server. Note that, we can manually category the trajectories in CarWeb dataset such

that we could have the ground truth about the moving behaviors represented by trajectories.

In our experiments, we choose three kinds of trajectories which represents 3 kinds of frequent

moving behaviors and one kind of trajectories which represents infrequent ones. Specifically,

there are 30, 20, and 10 trajectories with 300, 130, and 500 points in average, respectively.

There are 3 infrequent trajectories with 160 points in average. On the other hand, for synthetic

datasets, we construct a simulator to generate many synthetic trajectories by given source

trajectories as inputs. The source trajectories we extract are generated in a very high sampling

rate and we also manually adjust them to ensure the correctness. Each synthetic trajectory is

a variant from a input trajectory, where the time of each point may shift by t time units and

the location of each point may shift by the angle θ and the distance r in a probability pbias.

The value of θ and r are uniformly distributed from 0 to 2π and 0 to ε (i.e., the threshold

26

for spatial bias), respectively. In our simulation, there are four kinds of source trajectories,

which have 3000, 4000, 5000, and 6000 points, respectively. To simulate the different sampled

rates, we induce the loss rate Ploss to determine the probability of a point in a highly-sampled

trajectory will be discarded. Explicitly, each point in a trajectory is discarded with probability

Ploss. Thus, a trajectory tends to be more inaccurate from the real movement under a higher

loss rate. The default value of parameters are listed as follows: τ = 30 minutes, ε = 10

meters, min sup = 0.1, the total number of trajectories is 200, r = 5 meters, t = 30 minutes,

Pbias = 80%, and Ploss = 50%.

For the comparison purposes, the method of mining spatio-temporal frequent patterns in

[6], denoted by SFP, is implemented. Since this approach is not designed for mining trajectory

patterns from trajectories, we exploit linear interpolation and cubic spline interpolation to

estimate the locations for low-sampled trajectories and use these compensated trajectories

as inputs of SFP, say SFP-L and SFP-C. Also, since SFP cannot cluster trajectories with

the different moving behavior, the inputs of SFP are the trajectories with the same moving

behaviors.

To evaluate experimental results, three performance metrics, precision, recall and execution

time, are used. Since both SFP and our methods use a sequence of spatial regions to represent

the frequent patterns from trajectories, a smaller region may cover less road segments, which

can describe which road segments are frequent more precisely. Since the both datasets are

obtained from the movement on a road network, each data point in a trajectory can be

also bind with a road segment id. Thus, a trajectory can represent as a sequence of road

segments. By presenting each trajectory into a sequence of road segments, the conventional

approaches for mining frequent itemsets, such as apriori, can be used to find frequent road

segments from the given trajectories. The precision is used to evaluate how precise the

derived frequent regions in different approaches. Let C be the road segments covered by

the derived regions and F be the frequent road segments. The precision is formulated as

L(C∩F)/(L(C∩F)+L(C∩ F̄)), where L(·) represents the total length of the roads. A higher

precision value means that the derived region tends to cover more frequent road segments

and fewer infrequent ones. On the other hand, the recall is used to evaluate the area that

the derived regions can cover the frequent road segments derived by apriori. The recall is

formulated as L(C ∩ F)/(L(C ∩ F) + L(C̄ ∩ F)). A higher recall value means that more

frequent road segments can be covered by the derived region. At last, the execution time is

used to measure the efficiency and the scalability of the proposed method.

27

(a) (b) (c)

Figure 6.1: Three experimental results of an existing work.

6.2 Comparison with SFP

In this section, we evaluate our approach and SFP in terms of the visualized results, the

precision and the recall.

We first show the frequent regions discovered from real datasets in a visualized manner.

Figure 6.1(a) shows the result of SFP when the given trajectories are manually compensated

and corrected the position of each point. The derived regions are thin and located on the road

segments, which are consistent with the fact that trajectories in a road network moves on

roads. Then, consider lossrate = 50%, the derived regions derived by SFP is shown in Figure

6.1(b). It can be seen that region A locate outside the road segments, which are inconsistent

to the fact of the movement on a road network. Moreover, some regions disappear. To deal

with the problem, one may propose that interpolation can be used to compensate the location

data between the remaining points. Given the compensated trajectories, Figure 6.1(c) shows

the derived regions. Comparing with Figure 6.1(b), such strategy is effective because more

derived regions locate on the roads, especially the two regions at the center. However, it

still does not work well because some frequent regions are still missing. In brief, from these

experimental results, we can observe that the frequent regions cannot be derived precisely,

even incorrectly, by the line-based approach.

As mentioned above, there are four kinds of moving behaviors within the given trajectories

in real datasets. Figure 6.2 shows one of the frequent regions which is found by our approach.

Comparing the results of SFP in Figure 6.1(a) and that of our approach in Figure 6.2(a),

it can be seen that the frequent regions found by two approaches are similar, which shows

our approach can also find frequent spatio-temporal regions found by SFP. Moreover, the

common regions in Figure 6.2(a) and Figure 6.1 represent the most frequent road segments

among trajectories. Figure 6.2(b) shows the result with Ploss = 0.5, which the derived regions

28

(a) (b)

Figure 6.2: Two experimental results of our approach with (a) Ploss = 0 and (b) Ploss = 0.5.

are almost the same as the case when Ploss = 0. Therefore, we can conclude that our approach

is robust when Ploss varied such that can find frequent regions from trajectories. It is worth

mentioning that our approach does not find frequent regions B found by SFP in Figure 6.1(a).

This is because in the aggregation phase, we choose only one kernel trajectory which is similar

to most trajectories in a cluster and only those points which comply the moving behavior with

the kernel trajectory are used to compensate. As such, only the regions which present the

most frequent moving behavior are derived and some regions which are less frequent will not

be generated. We left the methodology of solving this issue as a future work.

We now evaluate the Precision and recall. As mentioned above, SFP takes trajectories

with the same moving behavior as inputs. The shown results of SFP-L and SFP-C are the

average of the precision and recall of all clusters. Figure 6.3 shows the precision and recall

with ploss varied in real datasets. As shown in Figure 6.3(a), our approach outperforms SFP-L

and SFP-C. Moreover, the precision of our approach can keep almost constant while that

of SFP-L and SFP-C decrease with Ploss increasing. Figure 6.3(b) shows the recall of three

approaches. Although the recall of all approaches decrease with Ploss increasing, the recall of

our approach is much higher than other two approaches. Since the regions tend to be boarder

with a larger Ploss, more infrequent road segments are included into the derived regions such

that the recall decreases. Figure 6.4 shows the results for the synthesis datasets. Since the

trajectories in synthesis datasets are more complicated, which have more turns and varied

length, than that in real datasets, the precision and recall are about 20% lower than that in

real datasets. However, the similar results can be obtained as the results in real datasets.

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

on

Ploss

Ours
SFP-L
SFP-C

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
ec

al
l

Ploss

Ours
SFP-L
SFP-C

(b)

Figure 6.3: The impact of Precision and Recall in real datasets with Ploss varied.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

on

Ploss

Ours
SFP-L
SFP-C

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
ec

al
l

Ploss

Ours
SFP-L
SFP-C

(b)

Figure 6.4: The impact of Precision and Recall in synthesis data sets with Ploss varied.

6.2.1 Sensitivity Analysis

In this section, we further investigate the parameters used in our algorithm. First, the effec-

tiveness of algorithm ClusDG is presented. Then, we examine the impact of thresholds and

the environment settings for the mining results. At last, the scalability of our approach is

discussed.

6.2.2 The Heuristic of Threshold Selection

To construct the dual graph, there are two thresholds λ and µ to be decided. A heuristic

approach is proposed in the former section. This heuristic approach is based on the observation

that the distribution of weight of edges follow the power law distribution. We first vary

the number of each kind of trajectories and observe the distribution of the weight of edges.

Figure 6.5(a) shows that the weight of edges follows the power law distribution with different

parameters. With the increasing of trajectories, the edges with lower similar scores increase

such that the long tail of the power law distribution becomes shorter. In Figure 6.5(b), we

30

Number of Range of Range of Heuristic Heuristic
Trajectories λ µ λ µ

80 .01∼.02 .016∼.02 .016 .015
120 .01∼.025 .015∼.015 .019 .018
160 .02∼.045 .01∼.037 .024 .021

Table 6.1: Comparison for optimal and heuristic solutions.

fix the number of trajectories and vary the loss rate Ploss. It can be seen that the pow law

distribution is little sensitive with Ploss. On the other hand, Figure 6.6 shows the distribution

of close scores. It can be seen that there are more edges when the close score is lower than

0.01 and higher than 0.04. Similarly, the distribution of close scores are less sensitive with

Ploss.

Once we make sure that the distributions of similar and close scores, the following task

is to verify the correctness of the selected thresholds. As mentioned above, the selection of

thresholds will affect which trajectories will be grouped into a cluster. Since we are aware of

the moving behaviors of trajectories, we try all possible values of λ and µ in a brute force

manner and check whether the trajectories with the same moving behavior can be put into

the same cluster or not. Table 6.2.2 shows the experimental results. The values of λ and µ

which can induce each cluster containing the trajectories with the same moving behavior are

usually in an interval. For example, when there are 80 trajectories, when λ is set between 0.01

and 0.02 and µ is set between 0.016 and 0.02, all clusters contain trajectories with the same

moving behavior. The second and third columns show the ranges for λ and µ. The values of

λ and µ decided by our heuristic approach is shown in the fourth and fifth columns. In each

case, it can be seen the values of λ and µ obtained by our heuristic approach are fallen in the

intervals which can induce the correct clustering results. Therefore, we can conclude that the

proposed heuristic approach for threshold selection is effective.

6.2.3 Effectiveness of Algorithm ClusDG

Algorithm ClusDG is used to cluster trajectories with the same moving behaviors. The effec-

tiveness of algorithm ClusDG leads the correctness of the derived frequent regions. Hence, in

this experiment, we show the effectiveness of algorithm ClusDG under both datasets. Since

the moving behaviors of trajectories are known, we can evaluate the percentage of trajectories

in the right cluster. Specifically, the successful rate is defined as the number of trajectories

in the correct cluster to the total number of trajectories. In both datasets, S refers the given

trajectories and SP as the trajectories derived from the given ones with the loss rate varied.

31

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.01 0.02 0.03 0.04 0.05

N
um

be
r

of
 E

dg
es

Similar Score

80 trajectory
120 trajectory
160 trajectory

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.01 0.02 0.03 0.04 0.05

N
um

be
r

of
 E

dg
es

Similar Score

Ploss = 0.0
Ploss = 0.3
Ploss = 0.5
Ploss = 0.7

(b)

Figure 6.5: Similar scores on synthesis datasets.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.01 0.02 0.03 0.04 0.05

N
um

be
r

of
 E

dg
es

Close Score

80 trajectory
120 trajectory
160 trajectory

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.01 0.02 0.03 0.04 0.05

N
um

be
r

of
 E

dg
es

Close Score

Ploss = 0.0
Ploss = 0.3
Ploss = 0.5
Ploss = 0.7

(b)

Figure 6.6: Close scores on synthesis datasets.

We compare the successful rate by the union SP and S (abbreviated as S + SP), and SP

with different loss rate. The experimental results are shown in Figure 6.7, where the successful

rate is above 80% in each set of trajectories. In both datasets, the successful rates of S + SP

is higher than that of SP and the decay speed of S + SP is much slower than that of SP .

The more complete trajectories the given set owns, the higher correctness of clustering the

Algorithm ClusDG can achieve. It is because the more complete trajectories can not only

form larger cores but also provide more hints for clustering those trajectories. From this ex-

ample, we can conclude that trajectories with the same moving behavior can be grouped into

a cluster effectively by algorithm ClusDG.

6.2.4 The Impact of Thresholds

In our approach, spatial-bias threshold ε is a user-specified threshold for defining a decaying

function in the point-to-point similarity and bounding the size of a region. Also, temporal-bias

threshold τ should be given in our approach for tolerating the time bias between points in the

32

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
uc

ce
ss

fu
l r

at
e

Ploss

S+SP
SP

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
uc

ce
ss

fu
l r

at
e

Ploss

S+SP
SP

(b)

Figure 6.7: Successful rate with Ploss varied in (a) real and (b) synthesis datasets.

point-to-trajectory similarity. Here, we investigate the impact with two thresholds varied.

Figure 6.8 shows the precision and recall with ε varied. It can be seen that both precision

and recall keep almost constant until ε = 1500. With ε > 1500, the precision and recall

both decrease by 10%. It is because two trajectories have higher probability to identify as

similar when ε becomes larger and larger. We observe that the clustering results are correct

when ε < 1500 (i.e., trajectories with the same moving behavior belong to the same cluster).

However, when ε > 1500, some distant trajectories with the different moving behaviors are

put into a cluster such that the derived regions become less precise. It is interesting that

the precision and the recall do not decrease when ε is small. One may claim that when the

ε become smaller, two trajectories are hard to be similar or close to each other such that

the trajectories with similar moving behaviors are also hard to group in a cluster. With

fewer trajectories in a cluster, the information of a moving behavior may not be compensated.

However, the value of λ and µ can be adjusted adaptively. Figure 6.9 shows the change of

λ and µ values with ε varied. Note that if the value of ε is smaller than 5, it is hardly able

to capture the moving behavior because r is set to be 5 meters. The values of λ and µ keep

increasing with the value of ε smaller than 10. After that, the values of them remain constant.

It shows that the dynamic adjustment of λ and µ can keep the precision and recall even if the

value of ε is set as a unreasonable value.

On the other hand, the threshold of τ is used to tolerate the existence of a certain bias

between trajectories. Figure 6.10 shows the precision and recall with τ varied. It can be seen

that the precision and recall remain constant in all cases. Interestingly, although precision and

recall are not sensitive with τ , various setting of τ affects the number of clusters. Note that

the trajectories in synthesis datasets follow four kinds of moving behaviors. We observe that

the number of clusters becomes 6 if t ≤ τ , where two clusters with two moving behaviors are

33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 500 1000 1500 2000

P
re

ci
si

on

ε

r=5m
r=25m
r=50m

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 500 1000 1500 2000

R
ec

al
l

ε

r=5m
r=25m
r=50m

(b)

Figure 6.8: The impact of precision and recall in different ε.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

S
co

re

ε

λ with r=5m
µ with r=5m

Figure 6.9: The values of λ and µ with ε varied.

divided into four smaller clusters with two moving behaviors. It will not affect the precision

and recall because each two smaller clusters can be used to conduct the same moving behaviors.

Overall, besides the impacts of thresholds mentioned above, we can also observe that

the values of precision and recall highly depends on the clustering results. The effectiveness

of proposed clustering algorithm is shown from experimental results above. Therefore, our

approach can perform well in our experiments.

6.2.5 Execution Time

The execution time with the number of trajectories varied are discussed here. Two kinds

of synthesis trajectories are used here where each trajectory has about 2000 points in short

trajectories , and has 6000 points in long trajectories. The execution time includes three parts:

1. computing similarity between trajectories, 2. clustering trajectory, and 3. aggregating the

information and generating regions. Figure 6.11 shows the experimental results. Overall, the

execution time increases with the increasing of the number of trajectories. Moreover, the

execution time for clustering is much less than others since the total number of trajectories

34

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.5 1 1.5 2 2.5 3

P
re

ci
si

on

τ (hour)

t Shift=0m
t Shift=30m
t Shift=60m
t Shift=90m

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.5 1 1.5 2 2.5 3

R
ec

al
l

τ (hour)

t Shift=0m
t Shift=30m
t Shift=60m
t Shift=90m

(b)

Figure 6.10: The impact of precision and recall in different τ .

 0

 60

 120

 180

 240

 300

 0 80 160 240 320 400

R
un

 ti
m

e
(s

)

Number of trajectory

Making regions.
Cluster.

Computing similarity matrix.

(a)

 0

 1800

 3600

 5400

 0 80 160 240 320

R
un

 ti
m

e
(s

)

Number of trajectory

Making regions.
Cluster.

Computing similarity matrix.

(b)

Figure 6.11: Execution time under (a) short and (b) long trajectories.

is relatively fewer than the total number of points. However, the proportion of computing

similarity and generating regions are not the same in different kinds of trajectories. In the

short trajectories, as shown in Figure 6.11(a), the execution time for computing similarity is

the major part in the whole execution time. In this case, the trajectories are shorter such that

the aggregating information and making regions do not waste too much time. On the contrary,

in Figure 6.11(b), our approach spends most execution in making regions when we consider

the longer trajectories. Longer trajectories needs more time for aggregating the information

and executing Douglas-Peucker line simplifier.

6.3 Conclusions

Nowadays, many positioning devices and techniques are more and more popular such that

there are a lot of trajectories of people or vehicles can be easily obtained. From such a huge

amount of trajectories collected, discovering trajectory patterns can benefit many potential

and novel applications. In general, trajectory patterns indicate sequences of frequent regions

35

that a user usually appears. One of the challenge issues in trajectory pattern mining is how to

define frequent region units in trajectory patterns. Previous works for determining frequent

regions in trajectory patterns can be generally classified into two categories: the density-

based approach and the line-based approach. However, the original trajectory data will have

an impact on the determination of frequent regions. In reality, there are many factors, such

as sampling method, sampling frequency and device constraints, will affect the capability

of original trajectory data capturing the actual movements. Thus, if the original trajectory

data only coarsely capture actual movements of a user, prior works mentioned above cannot

accurately identify frequent regions, let alone deriving trajectory patterns. However, even

if trajectories can only reflect partial movements of a user, they reveal some clues about

the moving behaviors hidden in trajectories. Consequently, in this paper, given a set of

trajectories, we propose an algorithm CACT (standing for Clustering and Aggregating Clues of

Trajectories) for discovering trajectory patterns by exploiting such ’clues’. Exploiting the clues

of trajectories, we first propose the similarity measurement for two trajectories by tolerating

certain spatiotemporal bias. Furthermore, to deal with the existence of multiple moving

behaviors in trajectories, we propose a clustering algorithm to divide trajectories into several

groups. Trajectories in the same group reflect the same moving behavior of a user and the

number of groups is the number of moving behaviors of a user. Then, for each group, we

further propose an algorithm to derive a sequence of frequent regions with their corresponding

representative line segments. To the best of our knowledge, this is the first work that claims to

cluster trajectories into groups first and then derive the corresponding frequent regions within

each group. Because of the design, our proposed method of mining trajectory patterns is

able to handle the partial information of trajectories (i.e., the clues) and avoid the inaccuracy

problem of frequent region determination. Through experimental studies on both synthetic

and real datasets, we show that our approach is able to efficiently and effectively derive

trajectory patterns to capture the frequent moving behaviors from trajectories.

36

Bibliography

[1] EveryTrail - GPS Travel Community. [available] http://www.everytrail.com/.

[2] MapMyRun Website. [available] http://www.mapmyrun.com.

[3] Run GPS Community Server. [available] http://www.gps-sport.net/.

[4] L. C. 0002 and R. T. Ng. On The Marriage of Lp-norms and Edit Distance. In Proc. of

VLDB, 2004.

[5] A. Bhattacharya and S. K. Das. LeZi-Update: An Information-Theoretic Framework for

Personal Mobility Tracking in PCS Networks. Wireless Networks, 8(2-3), 2002.

[6] H. Cao, N. Mamoulis, and D. W. Cheung. Mining Frequent Spatio-Temporal Sequential

Patterns. In Proc. of ICDM, 2005.

[7] L. Chen, M. T. Özsu, and V. Oria. Robust and Fast Similarity Search for Moving Object

Trajectories. In Proc. of SIGMOD, 2005.

[8] F. Giannotti, M. Nanni, and D. Pedreschi. Efficient Mining of Temporally Annotated

Sequences. In Proc. of SDM, 2006.

[9] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory Pattern Mining. In

Proc. of KDD, 2007.

[10] J. Gramm, J. Guo, F. Huffner, and R. Niedermeier. Data Reduction, Exact, and Heuristic

Algorithms for Clique Cover. In Proc. of SIAM Workshop on Algorithm Engineering and

Experiments, 2006.

[11] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A Hybrid Prediction Model for Moving

Objects. In Proc. of ICDE, 2008.

[12] H. Jeung, H. T. Shen, and X. Zhou. Mining Trajectory Patterns Using Hidden Markov

Models. In Proc. of DaWaK, 2007.

37

[13] P. Kalnis, N. Mamoulis, and S. Bakiras. On Discovering Moving Clusters in Spatio-

temporal Data. In Proc. of SSTD, 2005.

[14] E. J. Keogh. Exact Indexing of Dynamic Time Warping. In Proc. of VLDB, 2002.

[15] C.-H. Lo, W.-C. Peng, C.-W. Chen, T.-Y. Lin, and C.-S. Lin. CarWeb: A Traffic Data

Collection Platform. In Proc. of MDM, 2008.

[16] S. Ma, S. Tang, D. Yang, T. Wang, and C. Yang. Incremental Maintenance of Discovered

Mobile User Maximal Moving Sequential Patterns. In Proc. of DASFAA, 2004.

[17] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W. Cheung.

Mining, Indexing, and Querying Historical Spatiotemporal Data. In Proc. of KDD, 2004.

[18] W.-C. Peng and M.-S. Chen. Developing Data Allocation Schemes by Incremental Mining

of User Moving Patterns in a Mobile Computing System. IEEE Transaction Knowledge

and Data Engineering, 15(1), 2003.

[19] W. J. Reed. The Pareto, Zipf and other power laws. Economics Letters, 74(1):15–19,

December 2001.

[20] G. Trajcevski, H. Ding, P. Scheuermann, R. Tamassia, and D. Vaccaro. Dynamics-aware

similarity of moving objects trajectories. In Proc. of GIS, 2007.

[21] F. Verhein. k-STARs: Sequences of Spatio-Temporal Association Rules. In Proc. of

ICDM Workshops, 2006.

[22] F. Verhein and S. Chawla. Mining Spatio-temporal Association Rules, Sources, Sinks,

Stationary Regions and Thoroughfares in Object Mobility Databases. In Proc. of DAS-

FAA, 2006.

[23] H.-K. Wu, M.-H. Jin, and J.-T. Horng. Personal Paging Area Design Based On Mobiles

Moving Behaviors. In Proc. of INFOCOM, 2001.

[24] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient Retrieval of Similar Time Sequences

Under Time Warping. In ICDE, 1998.

38

