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以硬體協助之多核心嵌入式系統效能與耗能評估工具 

 

學生：林俊瑋 指導教授：曹孝櫟 

 

國立交通大學 資訊科學與工程研究所 碩士班 

 

摘要 

有效的效能與耗能評估是嵌入式系統設計時期的關鍵技術。然而，傳統的評估方法

難以兼具快速以及精確。此外在多核心逐漸應用於嵌入式系統的今日，傳統的評估方法

將面臨更為複雜及困難的挑戰。有鑑於此，本文提出一種以硬體協助且適用於多核心嵌

入式系統的效能與耗能評估工具，並予以實現。所提之工具提供程式執行時期硬體事件

的監控，並藉此推算出元件耗能，其可避免軟體取樣(Sampling)所造成的額外負擔，以

便能呈現系統原始的行為與特性。實驗結果顯示，所提之方法可於 100 MHz 的四核心

仿真環境下進行，精度可達微秒以下，其兼具快速、精細且真實的特性將有助於複雜多

核心嵌入式系統設計時期之細部評估與分析。 
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Abstract 

Effective performance and energy evaluation of embedded systems is one of the critical 

issues during design phase. However, conventional approaches suffer from difficulties to 

provide fast and accurate evaluation of the system, especially for those embedded systems 

using multi-core technology. In this thesis, we propose and realize a hardware-assisted 

performance and energy evaluation tool for a multi-core embedded system. Our approach 

provides hardware monitor for runtime programs, and uses these monitor information to 

estimate the system energy consumption without introducing extra software sampling 

overhead. The experimental results show that our approach can work at a 100 MHz quad-core 

emulation platform. The profiling granularity is higher than microsecond. It provides fast and 

fine-grained evaluation of the multi-core embedded system during the design phase. 
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Chapter 1.  Introduction 

Multi-core has become a trend of processor design today. According to recent researches, 

multi-core is one of efficient ways to use transistors and increase performance, it also 

provides better energy efficiency and thermal management. Embedded system grows 

dramatically in recent several years. It has become more powerful and more complex. 

Multi-core technology is thus applied to some embedded systems in order to offer better 

performance and improve energy efficiency. For example, some high-end application 

processors [1][2][3] use ARM MPCore [4] multi-core technology for MID (Mobile Internet 

Device) products. 

Embedded systems are designed for specific applications. They are usually 

battery-driven devices with limited operating time. To meet system requirements and extend 

operating time, it is very important to evaluate and optimize performance and energy 

consumption of embedded systems in design stage. However, conventional approaches suffer 

from difficulties to provide fast and accurate evaluation of the system, especially for those 

multi-core embedded systems with complex hardware and software. Therefore, fast and 

accurate profiling technology for multi-core embedded systems is a critical issue. 

Reconfigurable device provides more flexible and relatively lower performance than 

conventional ASIC (application specific integrated circuit). FPGA (field programmable gate 

array) is the most popular reconfigurable device in recent several years. Due to improvement 

of manufacturing technology, capacity and performance of FPGA increases very fast. Today, 

it is possible to perform a complex SOPC (system-on-a-programmable-chip) on a FPGA. 

Therefore, some previous researchers have taken advantage of FPGAs to assist system 

profiling [5][6][7][8]. 
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According to above discussion, this thesis proposes REALprof, a hardware-assisted 

performance/energy evaluation tool for multi-core embedded systems. Our approach is fast 

and effective for system analysis, and helps designers in adjusting hardware configuration and 

improving software in design stage. It provides hardware monitor for runtime programs, and 

uses these monitor information to estimate energy consumption of the target system. Besides, 

it is possible to perform different profiling granularities from coarse-grained to fine-grained 

using our approach. We also provide some tools to generate system-level performance and 

energy report of the target system. 

Our approach is different from conventional simulation approaches. It uses FPGA to 

accelerate evaluation speed and performs full system emulation with operating system. 

Comparing to conventional software profiling approaches, our approach uses hardware to 

sample runtime hardware information without extra software sampling overhead. Therefore, 

our approach reserves the original target system behavior without inserting sampling 

instructions into the target software. 

The remainder of this thesis is organized as follows: Chapter 2 discusses related work. 

Chapter 3 describes methodology and architecture of our proposed performance/energy 

evaluation tool, REALprof. Chapter 4 describes implementation and experimental 

environment in detail. Chapter 5 presents experimental results and a case study using our 

approach. Finally, Chapter 6 concludes the thesis. 
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Chapter 2.  Related Work 

In this chapter, we review previous works of performance and energy evaluation. In 

general, performance evaluation (Section 2.1) can be categorized into three categories: 

software simulation (Section 2.1.1), software profiling (Section 2.1.3), and runtime hardware 

monitor (Section 2.1.3). Energy evaluation (Section 2.2) can be categorized into three 

categories: circuit simulation (Section 2.2.1), hardware measurement (Section 2.2.2), and 

architecture-level evaluation (Section 2.2.3). 

2.1. Performance Evaluation 

2.1.1. Software Simulation 

It is popular to use software simulators for system development, hardware behavior 

verification, and performance evaluation. ISS (instruction set simulator) is common used for 

processor simulation, such as SimpleScalar [9]. In recent years, system-level virtual platform 

is very popular to perform simulation of a full system or a SoC (System-on-a-Chip), such as 

CoWare Platform Architect [10]. For multi-core simulation, some previous researchers 

proposed several simulators [11][12][13][14][15]. 

Software simulation is convenient for developers in early design stage. It is easy to 

modify the system behavior and doesn’t need the real target hardware. However, software 

simulation speed is slower than real hardware execution. It is very difficult and 

time-consuming to perform effective simulation for multi-core systems with complex 

hardware and software. Because simulation speed is slow, it is inefficient to simulate huge 

software such as operating system. In general, only a small and critical portion of the program 
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performs simulation, and operating system is usually ignored. However, multi-core systems 

usually need operating system to manage each core. Besides, multi-core simulators must 

consider synchronization between each core to perform the real system behavior. Otherwise, 

the simulation may be different from the real system execution. 

2.1.2. Software Profiling 

Software profiling is popular for program performance evaluation. Profiling tool 

statistics or inserts some instructions into the target program or the operating system to 

measure the program behavior at runtime. For example, Intel VTune Performance Analyzer 

[16] is a statistical profiler which profiles the program at runtime for Intel processors. 

OProfile [17] is a system profiler for Linux. GNU profiler, gprof [18] is a part of GNU 

Binutils (binary utilities) for inserting some profiling instructions into the target program at 

compile time. 

Software profiling is useful and convenient for software development. However, it is 

inaccurate because profiler inserts some extra instructions into the target program or system, 

and it takes some overhead. To minimize the profiling overhead, we must reduce the extra 

inserted instructions. However, the more information you want to gain from profiling, the 

more extra instructions you need to insert, and the more profiling overhead you need to pay. It 

is a trade-off between profiling information and accuracy. Figure 1 illustrates OProfile 

profiling overhead which executes on HP Netserver with two 400 MHz Pentium II processors. 

It takes about 10% overhead when the profiling frequency is 10,000 times per second with 

separate threads mode. The default profiling frequency is 2,000 times per second to perform 

acceptable low-overhead profiling. It is useful for millisecond level profiling but difficult to 

perform accurate profiling in higher granularities. 

Besides, the original system behavior may be changed due to the inserted profiling 

instructions. For multi-core systems, it may cause different process schedule. 
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Figure 1. OProfile profiling overhead 

 

 

Figure 2. SnoopP architecture 

 

Figure 3. Airwolf profiler architecture 
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To improve profiling accuracy, some previous approaches use specific hardware to assist 

performance evaluation. For example, SnoopP [5] (Figure 2) and Airwolf profiler [6] (Figure 

3) are FPGA-based profilers. They proposed specific hardware logic to calculate execution 

time of each function call. The accuracy of these approaches is better than gprof software 

profiler. 

2.1.3. Runtime Hardware Monitor 

Some processors include performance counters to monitor the specific, low-level, and 

hardware-related activities at runtime. These performance counters provide meaningful 

sampling and reflect some important information of the target system performance, such as 

cache miss count, pipeline stall cycle. For example, ARM processor family provides several 

performance counter registers in control coprocessor CP15 [19]. Programmer setups PMNCs 

(performance monitor control registers) to control variant performance monitor facilities of 

performance counter registers by using coprocessor instructions. However, different 

processors have different performance counters and different access methods. Software with 

performance counters support causes poor portability. Browne [20] proposed a general 

performance counters application program interface - PAPI to enhance the software 

portability with performance counters support. Programmer can use PAPI to perform profiling 

conveniently. 

Performance counters perform fast and effective performance evaluation. However, the 

real target processor is need, and it must support the performance counters which you need. It 

lacks for flexibility because it is impossible to modify the existing hardware design after 

fabrication. It is only useful for software performance evaluation and optimization. Besides, 

we must consider performance counters access overhead. As mentioned before, it is a 

trade-off between profiling information and accuracy. 
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Figure 4. MAMon monitoring system 

 

MAMon [21] (Figure 4) is one of hardware approaches for accurate runtime system 

monitor which is different from conventional performance counters approaches. A specific 

monitor hardware records timestamp and some parameters when dedicated events are 

triggered on the target system. These data are managed by a specific memory management 

unit, and transmitted to the host computer with specific hardware controller, interface, and 

protocol. The host computer constructs an event database using these data. Finally, designers 

can retrieve meaningful event information from the event database and analyze the target 

system. MAMon is good for event-based profiling. However, the infrastructure of MAMon is 

complex. Because of limited transmission bandwidth, it is difficult to scale MAMon to 

monitor huge number of events in detail. 
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2.2. Energy Evaluation 

2.2.1. Circuit Simulation 

Energy consumption is related to manufacturing technology, transistor character, circuit 

architecture, and other low-level hardware-related factors. Circuit simulation is a common 

energy evaluation approach. For example, Synopsys HSPICE [22] is a circuit simulator with 

power estimation for full-custom design, and Synopsys PrimeTime PX [23] is a cell-based 

design tool for gate-level power analysis. These tools are useful for hardware designers to 

estimate energy consumption at early design stage, but the simulation speed is extremely slow 

for ultra large scale integration circuit today. For multi-core systems with complex hardware 

and software, these kinds of approaches are not feasible. 

2.2.2. Hardware Measurement 

Device energy consumption can be measured by power meter directly [24]. It is fast and 

true, but it needs measurement environment and the real target hardware with essential 

measurement points. Besides, synchronization between the measurement host and the target 

device must be considered for detail evaluation. 

Some power management chips provide runtime voltage and current sampling of the 

target system. Programmers can read sampling registers to retrieve present voltage and current 

data and calculate energy consumption. 

2.2.3. Architecture-Level Evaluation 

Architecture-level energy evaluation analyzes architecture of the target design and 

constructs energy models for each component. Wattch [25] is one of the well-known previous 

works using this approach. It categorizes processor components into four categories: array 
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structures, fully associative content-addressable memory, combinational logic and wires, and 

clocking. Power models of each component are based on capacitance equations with interface 

to SimpleScalar. Architecture-level energy simulation [26][27] is faster than circuit simulation, 

but it is still time-consuming for complex systems today. 

Contreras [28] proposed another architecture-level approach for Intel XScale processor. 

The concept of this approach is that energy consumption is close related to some hardware 

activities. Intel XScale processor provides some performance counters for monitoring some 

hardware activities, and the mechanism is similar to ARM processor family. Contreras 

constructs processor power models by using these available hardware performance counters. 

It performs a quick energy evaluation with acceptable accuracy. Because it is based on 

runtime hardware monitor, the real target hardware is required, and it must provide essential 

performance counters which are related to the energy consumption of each component. This 

approach can be also applied to XScale software simulator to perform energy evaluation [29]. 

 

 

Figure 5. Bhattacharjee’s approach 

 

Bhattacharjee [7] proposed a FPGA-based power emulation approach (Figure 5). The 

concept is similar to Contreras’s approach. They add some component-specific event counters 
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to the target processor design and use these counters to construct power models. Because 

FPGA is reconfigurable, this approach is more flexible than Contreras’s approach. Although 

FPGA emulation speed is slower than the real target hardware, it is extremely faster than 

circuit simulation and software architecture-level energy evaluation. The energy evaluation 

approaches of Contreras and Bhattacharjee are based on runtime hardware monitor. As 

mentioned before, performance counters access introduces some extra software overhead. It is 

useful for millisecond level profiling but difficult to profile in higher granularities with 

acceptable accuracy. 

 

 
Figure 6. Ghodrat’s approach 

 

Ghodrat [8] proposed a hybrid approach for system energy evaluation (Figure 6). Some 

of the components use software simulation and some of the components use FPGA emulation. 

This approach reduces the simulation time and has more flexible than pure FPGA emulation. 

However, the communication between software simulation and FPGA emulation introduces 

some overhead, and it needs interfaces and protocols between the host simulation computer 

and the target FPGA board. 
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Chapter 3.  Performance/Energy Evaluation Tool 

for Multi-core Embedded Systems 

In this chapter, we discuss our proposed performance and energy evaluation solution for 

multi-core embedded systems in detail. Section 3.1 introduces methodology and evaluation 

flow. Section 3.2 describes our proposed tool - REALprof. Section 3.3 discusses how to 

construct component energy models in early design stage. Section 3.4 describes the 

advantages of our approach. 

 

 

Figure 7. Suggested development and evaluation flow for embedded systems 
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3.1. Performance and Energy Evaluation Methodology 

Our approach uses FPGA to perform fast performance and energy evaluation. Figure 7 

illustrates our suggested development and evaluation flow for embedded systems. Hardware 

of the embedded system uses powerful FPGA to construct a complex SoC emulation platform. 

It includes several synthesizable soft intelligent properties and uses FPGA to perform fast 

emulation. Software of the embedded system then executes on the emulation platform. 

Designer debugs on such prototype system and evaluates the system. To meet the 

requirements of the embedded system, designer makes heavy efforts to optimize the hardware 

and software. 

Our proposed tool, REALprof is based on FPGA. It uses hardware to assist system 

evaluation. Designer adds REALprof to the target hardware design, and builds emulation 

platform using FPGA. For embedded software, REALprof provides runtime hardware 

monitor for the target program without software sampling overhead. Designer can use 

REALprof to perform fast, fine-grained, and real profiling. The generated profiling report 

includes performance and energy information. Performance information is retrieved from 

REALprof, it includes many useful data about runtime hardware monitor. Energy information 

is based on performance information. Designer constructs component energy models using 

gate-level power analysis or component datasheets. The generated performance and energy 

report provides designers a system-level view of the target embedded system, and helps 

designers to optimize the hardware and software in design stage. After several iterations of the 

evaluation and optimization, designer can remove REALprof from the target design, and the 

final well-optimized embedded system is done. 
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Figure 8. Emulation platform infrastructure 

 

Figure 8 illustrates a typical emulation environment for a multi-core embedded system 

using our approach. Designer integrates the target MPSoC (Multi-Processor System-on-a- 

Chip) design with debug interface cores (JTAG, UART…) and REALprof, then uses FPGA to 

construct a target emulation platform. Embedded software executes on the target emulation 

platform, it includes several multi-thread embedded application programs and Linux with 

SMP (Symmetric Multi-Processing) support. Programmer uses our provided middleware to 

control the REALprof hardware and perform performance and energy evaluation. The host 

computer communicates with the target emulation platform using debug link and retrieves 

monitor information from REALprof. 

3.2. Proposed Evaluation Architecture 

As mentioned before, conventional software profiling approaches insert profiling 

instructions into the target software. It destroys the original target system behavior and causes 

extra software overhead. In order to improve profiling accuracy for embedded systems. This 

thesis proposes a reconfigurable hardware-assisted log profiler - REALprof. The behavior of 

REALprof is similar to conventional software profilers which records hardware performance 
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counters periodically at runtime. However, our approach uses hardware to record runtime 

information automatically. It doesn’t cause extra software sampling overhead and reserves the 

original system behavior. 

 

 

Figure 9. REALprof architecture 

 

Table 1. Register descriptions 

Memory Map Register Description 

Base + 0x00000000 Status Control status of the controller and monitors. 

Base + 0x00000004 Sampling Period Sampling period of REALprof. 

Base + 0x00000008 Start Offset Start profiling with specific delay cycles. 

Base + 0x0000000C Sampling Number Sampling number of each event monitor. 

Base + 0x00000010 Event Mask Enable/Disable of each event monitor. 

 

Figure 9 illustrates the architecture of REALprof. REALprof is designed as a bus slave 

component. Programmer can use memory-map I/O to access REALprof. It consists of a 

controller and several monitors. REALprof controller contains several control registers. Table 

1 lists the detail register descriptions. Programmer indicates status, sampling period, start 
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offset, and event mask by setting these registers. Several event active signals are connected to 

REALprof controller, such as pipeline stall and cache miss. Each event active signal is 

connected to EveAct signal of an individual REALprof monitor. REALprof monitor snoops 

the EveAct signal and increases the event counter once the event is active. En signal is true 

when REALprof is active, it indicates whether REALprof monitors snoop signals or not. 

EnLog signal is similar to timer IRQ (Interrupt ReQuest) signal. The period is indicated by 

Sampling Period register. When EnLog is triggered, each REALprof monitor stores the 

current value of event counter to the SRAM and resets the event counter to zero. At the same 

time, REALprof controller increases Sampling Number register to indicate that number of 

samples is collected in each REALprof monitor SRAM. 

In order to connect the profiling results with the source code, program counter of each 

processor is also connected to REALprof. Each program counter is connected to an individual 

REALprof monitor with a similar mechanism to record the program counter. After profiling is 

done, programmer accesses REALprof to retrieve runtime monitor information from SRAMs. 

According to these monitor information, designer can understand runtime program behavior 

in detail without extra software profiling overhead. 

3.3. Energy Model 

Component energy models can be constructed in several ways. For existent components, 

we can reference datasheets or measure components directly. For components in early design 

stage, power analysis is a feasible solution. 

Gate-level power analysis is popular for digital designs using CMOS manufacture 

technology in early design stage, such as Synopsys PrimeTime PX. It calculates power 

dissipation using the target design netlist, cell library power models, signal activities, and 

capacitance effects. 
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Equation (1) describes that CMOS power dissipation (P) consists of dynamic power 

(Pdynamic) and leakage power (Pleakage): 

    leakagedynamic PPP   (1)      

Dynamic power is related to signal activities. Equation (2) describes that dynamic power 

dissipation due to switching power (Pswitching: charge/discharge of load capacitances) and short 

circuit power (Pshort_circuit: switching causes both NMOS and PMOS are partially on): 

    circuit_shortswitchingdynamic PPP   (2)      

Equation (3) describes that leakage power dissipation due to reverse-biased (Preverse_biased) 

and sub-threshold (Psub-threshold) conduction: 

    thresholdsubbiasedreverseleakage PPP    (3)      

 Equation (4) describes that energy consumption (E) is the integral of the instantaneous 

power dissipation: 

      dtPE  (4)      

According to above equations, foundry can develop their cell library with gate-level 

power models. We can perform gate-level power analysis to evaluate the component energy 

consumption in early design stage. 

In order to offer system-level energy evaluation, we construct high-level component 

energy models according to the gate-level power analysis results. Equation (5) shows our 

high-level component energy model: 

     
activeeventactiveeventtotalidle

CETPE
__  (5)      
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Total energy consumption (E) consists of idle energy and active energy. Idle energy is the 

product of idle power (Pidle) and total execution time (Ttotal). Idle power reflects leakage power 

and power of modules which are always active. Active energy is the product of event active 

energy (Eevent_active) and event active count (Cevent_active). Active energy reflects energy 

consumption variations of different hardware events. The event active count is based on 

performance monitor information which can be retrieved from REALprof, such as pipeline 

stall, cache miss. 

3.4. Advantages of Our Approach 

Our approach provides both performance and energy evaluation for embedded systems. It 

is useful for designers to optimize system and make a trade-off between performance and 

energy efficiency in design stage. Because we use FPGA to construct reconfigurable 

emulation platform, our approach is more flexible than ASIC approach. The evaluation speed 

is faster than software simulator, and it is possible to evaluation program with operation 

system and complex software. 

Our approach is different from conventional software profiling. We use hardware to 

sample performance counters and program counters periodically. It avoids software sampling 

routine, and the target program doesn’t need to insert extra profiling instructions. Therefore, 

our approach doesn’t cause heavy software profiling overhead and reserves the original 

behavior of the target system. 

In order to reduce profiling overhead and provide acceptable accuracy, conventional 

software profiling usually works in millisecond level granularities. Without software sampling 

overhead, our approach can provide different profiling granularities. It is possible to perform 

cycle sampling using our approach. In design stage, designer can do several profiling 

iterations from coarse-grained to fine-grained to understand the program behavior in detail. 
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Chapter 4.  Implementation 

Figure 10 illustrates overview of our emulation platform. We construct the target MPSoC 

design using GRLIB open source IP library with our proposed tool - REALprof. Then, we 

download the target design to DE3 FPGA board to construct an emulation platform. We use 

SnapGear Linux distribution with SMP support and multi-thread applications to construct the 

embedded software. Embedded software executes on the emulation platform and performs 

runtime hardware monitor using REALprof. After profiling done, our tools generate 

performance and energy reports with diagrams for system analysis. 

The rest of this chapter is organized as follows: Section 4.1 introduces hardware and 

software of the emulation platform. Section 4.2 describes REALprof implementation in detail. 

 

 

Figure 10. Overview of our emulation platform 
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4.1. Emulation Platform 

4.1.1. GRLIB Open Source IP Library 

In this thesis, we use GRLIB [30] IP library to construct the target MPSoC platform. 

GRLIB is an integrated set of reusable IP cores provided by Aeroflex Gaisler. It is provided 

under dual license mode, GNU GPL license or commercial license. It includes LEON3 

soft-core processor and abounding peripheral cores. Each core of GRLIB is interfaced using 

AMBA 2.0 protocol and uses synthesizable VHDL model. LEON3 is a 32-bit soft-core 

processor based on the SPARC V8 architecture. It has 7-stage pipeline with L1 Harvard 

architecture cache. Data cache of LEON3 supports snoop protocol. It is possible to perform 

SMP system using LEON3 processors. To provide debug environment for the target system, 

GRLIB also includes a debug support unit core for LEON3 processor with GRMON [31] 

debug monitor software support. Figure 11 illustrates the block diagram of LEON3 processor. 

The original design of LEON is developed by ESA (Europe Space Agency) for space 

applications. 

 

 

Figure 11. Block diagram of LEON3 processor 
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Figure 12. Block diagram of LEON3 MPSoC 

 

Table 2. LEON3 processor configurations 

Module Configurations 

Integer Unit 

8 register windows, 1-cycle load delay, 

SPARC V8 MUL/DIV support, 2-cycle multiplier latency, 

power-down mode support 

Floating Point Unit only netlist is available for FPGA 

L1 Instruction Cache 4-way set-associative, total 16 KB, 32 bytes/line, LRU 

L1 Data Cache 
4-way set-associative, total 16 KB, 32 bytes/line, LRU, 

AHB fast snoop and separate snoop tags 

MMU 
Separate instruction/data TLB, fast write buffer, LRU 

32 entries for each instruction/data TLB 

 

4.1.2. LEON3 MPSoC Emulation Environment 

Figure 12 shows our target MPSoC design. It includes LEON3 quad-core, abounding 

peripherals, and our proposed tool - REALprof. Four LEON3 processors snoop data on AHB 

(Advanced High-performance Bus). Configurations of each processor are shown in Table 2. 
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REALprof is wrapped as an AHB slave. Each processor connects its program counter and 

event signals to REALprof. Detail of performance events and energy calculation will describe 

in section 4.2. 

4.1.3. DE3 Development and Education Board 

In this thesis, we use DE3-340 [32] development and education board to construct 

prototype emulation platform, as shown in Figure 13. DE3 is developed by Terasic 

Technologies. It consists of Altera Stratix III 340 FPGA, DDR2 SO-DIMM socket, and 

several peripheral components. Figure 14 shows that multiple DE3 boards can be joined 

together to increase gate count using HSTC (High Speed Terasic Connectors) interface. Altera 

Stratix III 340 FPGA uses TSMC 65-nm process to provide high performance and high 

density. It contains 338000 equivalent logic elements and rich on-chip embedded memory. We 

use Quartus II 8.0 design suite [33] to compile our design and download the target design to 

DE3 FPGA. 

4.1.4. SnapGear Embedded Linux Distribution for LEON3 

SnapGear Linux distribution [34] is a full open source package for embedded systems 

with boot loader, device drivers, Linux kernel, libraries, and abounding applications. Aeroflex 

Gaisler provides LEON3 port of SnapGear Linux 2.6.21.1 with SMP support for multi-core 

embedded systems. We add middleware for REALprof access includes device drivers and 

some utilities. Multi-thread applications can be integrated to SnapGear Linux package and use 

REALprof to perform performance and energy evaluation on the target multi-core emulation 

platform. 
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Figure 13. DE3-340 development and education board 

 

 

Figure 14. A stack of DE3 board - more powerful emulation system 
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4.2. Evaluation of LEON3 Processor 

4.2.1. Runtime Performance Monitor 

In order to evaluate performance and energy of LEON3 processor, we monitor several 

hardware events of each processor using REALprof. Table 3 lists these events in detail. 

 

Table 3. LEON3 processor events for REALprof monitors 

Event number Event description 

0 Program counter 

1 Pipeline stall because of instruction cache miss 

2 Pipeline stall because of data cache miss 

3 Multiplication operation 

4 Division operation 

5 Instruction cache hit 

6 Data cache read hit 

7 Data cache write hit 

8 Instruction cache miss 

9 Data cache read miss 

10 Data cache write miss 

11 Cache flush 

12 Instruction TLB miss 

13 Data TLB miss 

14 Power down cycle 

15 Single register access 

16 Double register access 
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4.2.2. Energy Calculation 

We use runtime hardware monitor information to calculate component energy 

consumption. Figure 15 illustrates gate-level power analysis flow that describes in section 3.3. 

We use Design Compiler [35] to synthesis the target design with Faraday cell-based design kit 

for UMC 90 nm 1P9M process. In typical condition (25˚C, 1.0 Volt), the target design 

operates at 400 MHz. After synthesis, we use ModelSim [36] to perform gate-level simulation 

for generated netlist and software. The generated waveform in VCD (Value Change Dump) 

format then feeds to PrimeTime PX for dynamic power calculation. PrimeTime PX performs 

hierarchical power report and FSDB (Fast Signal DataBase) waveform according to design 

netlist, cell library, cell delay, and VCD waveform. Finally, we construct component energy 

models using power report and waveform. 

 

 

Figure 15. Flow of gate-level power analysis 
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Table 4 lists event energy consumption of LEON3 processor according to the gate-level 

power analysis report. In typical case, data cache dominates processor energy variances. 

 

Table 4. LEON3 processor energy consumption 

Component Event Energy/Power 

Pipeline 

Power down 16.1 mW 

Idle 49.2 mW 

Normal 58.2 mW 

Multiplication operation 32 pJ 

Division operation 218.75 pJ 

Instruction TLB miss 4.25 pJ 

Data TLB miss 4.25 pJ 

Instruction cache 

Power down 0.4084 mW 

Idle 49.1 mW 

Flush 16.403 nJ 

Hit 126.575 pJ 

Miss 123 pJ 

Data cache 

Idle 0.601 mW 

Flush 25.869 nJ 

Hit 314 pJ 

Miss 952.95 pJ 

Register file 

Idle 6.28 mW 

Single access 9.65 mW 

Double access 12.9 mW 
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Chapter 5.  Experimental Results 

Our approach uses hardware to assist sampling automatically. Programmer sets 

REALprof registers to start sampling before the target program section and stop sampling 

after the section. It doesn’t need extra software overhead to sample hardware performance 

counters periodically. Figure 16 shows that overhead of conventional software sampling for 

hardware performance counters increases linearly with number of counters. The more 

information you want to get by sampling counters, the more overhead and inaccurate samples 

you get. However, our approach offers constant and negligible extra software overhead. It 

reserves the original target program behavior. 

 

 

Figure 16. Overhead comparison with different number of HPCs 

 

Figure 17 shows that software sampling overhead increases with profiling frequency. 

Sampling overhead is only negligible in millisecond granularity. It is difficult to perform 

acceptable profiling results in microsecond granularity using conventional approach. 
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Figure 17. Overhead comparison with different sampling frequencies 

 

Table 5 compares our approach with other conventional approaches for performance and 

energy evaluation. Our approach offers fast emulation about 100 MHz. Software overhead is 

negligible and it provides fine-grained profiling. It is possible to profile target software with 

operating system and scalable for complex multi-core systems. 

 

Table 5. Feature comparison of performance and energy evaluation approaches 

 REALprof HPC profiling uArch simulator Circuit simulation 

Method HW emulation directly execute SW simulation SW simulation 

Speed ~ 100 MHz real speed KIPS ~ MIPS extremely slow 

Flexibility reconfigurable N Y Y 

SW overhead negligible Y N/A N/A 

Granularity > cycle ~ ms N/A great 

HW resource HPC + BRAM HPC N N 

Program 

behavior 
keep destroy N/A keep 

Operating 

system 
Y Y usually skip skip 

Multi-core 

support 
scalable VTune, OProfile SESC, GEMS Y 
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Our approach uses reconfigurable hardware resource to record the sampling information. 

Table 6 shows the resource usage report of our emulation FPGA. Each REALprof monitor 

uses one M9K memory block to provide up to 256 records of each 32-bit hardware 

performance counter. For StratixIII 340 FPGA, the target design with REALprof only uses 

about 30% logic and 12% memory blocks. REALprof only uses about 2% logic and 4% 

memory blocks for 1 controller and 68 monitors. Therefore, it is possible to use REALprof for 

more complex embedded systems. 

 

Table 6. StratixIII 340 FPGA resource usage 

 
Combinational 

ALUTs 
Logic registers DSP block 

Block 

memory bit 
Number 

LEON3 

processor 
12581 8451 4 343936 4 

DDR2 

controller 
781 601 0 4096 1 

peripherals 2600 1269 0 16384 N/A 

REALprof 4826(2%) 2091(1%) 0(0%) 557056(4%) 
1 ctrl 

68 mon 

Total 58531(22%) 37765(14%) 16(3%) 1953280(12%)  
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5.1. Case Study: SPLASH-2 FFT 

This section demonstrates our approach for a multi-core embedded system. We use 

SPLASH-2 [37] FFT as the target multi-thread application program. Figure 18 illustrates the 

hardware performance counters sampling of CPU_0. As shown in figure, our approach 

provides fine-grained sampling in microsecond level. Designer can use REALprof to observe 

the variation of each counter in detail. According to these runtime hardware information and 

energy models, we can estimate energy consumption of each component. Figure 19 illustrates 

energy evaluation of CPU_0 components. As shown in figure, data cache behavior dominates 

the variation of the processor. This phenomenon is match with the gate-level power analysis 

result. Figure 20 illustrates energy evaluation of each core. Designer can use the evaluation 

result to analysis and optimize the target design. In this case, we can observe that SPLASH-2 

FFT is a well parallelized multi-thread program. 

 

 

Figure 18. Hardware performance counters sampling of CPU_0 
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Figure 19. Energy evaluation of CPU_0 

 

 

Figure 20. Energy evaluation of each core 
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Chapter 6.  Conclusions 

In this thesis, we propose a hardware-assisted performance and energy evaluation tool - 

REALprof. Our approach uses FPGA to provide fast full system emulation, and it is scalable 

for complex multi-core embedded systems. The experimental results show that it can work at 

a 100 MHz quad-core emulation platform. Our approach uses hardware to sample runtime 

hardware information without extra software sampling overhead. It provides different 

granularities from coarse-grained to fine-grained. As shown in case study, multi-core 

embedded system with Linux operating system can use REALprof to perform effective 

fine-grained profiling in microsecond level. The generated system-level performance and 

energy report is useful for designers to optimize hardware and software in design stage. 

In order to provide experimental environment of a multi-core embedded system. We 

construct a powerful LEON3-based quad-core MPSoC emulation platform on DE3 board. 

Besides, we construct energy models of LEON3 soft-processor using gate-level power 

analysis with UMC 90 nm cell library. Finally, we perform a case study of profiling a 

SPLASH-2 multi-thread program on the target multi-core embedded system. 
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