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Student: Jyun-Wei Lin Advisor: Shiao-Li Tsao

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Effective performance and energy evaluation of embedded systems is one of the critical
issues during design phase. ‘However, conventional approaches suffer from difficulties to
provide fast and accurate evaluation of the system, especially for those embedded systems
using multi-core technology. In this thesis, we propose and realize a hardware-assisted
performance and energy evaluation tool for a multi-core embedded system. Our approach
provides hardware monitor for runtime programs, and uses these monitor information to
estimate the system energy consumption without introducing extra software sampling
overhead. The experimental results show that our approach can work at a 100 MHz quad-core
emulation platform. The profiling granularity is higher than microsecond. It provides fast and

fine-grained evaluation of the multi-core embedded system during the design phase.
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Chapter 1. Introduction

Multi-core has become a trend of processor design today. According to recent researches,
multi-core is one of efficient ways to use transistors and increase performance, it also
provides better energy efficiency and thermal management. Embedded system grows
dramatically in recent several years. It has become more powerful and more complex.
Multi-core technology is thus applied to some embedded systems in order to offer better
performance and improve energy efficiency. For example, some high-end application
processors [1][2][3] use ARM MPCore [4] multi-core technology for MID (Mobile Internet
Device) products.

Embedded systems are. designed -for *specific. applications. They are usually
battery-driven devices with limited operating time. To meet system requirements and extend
operating time, it is very important t0 evaluate and.optimize performance and energy
consumption of embedded systems.in design stage. However, conventional approaches suffer
from difficulties to provide fast and accurate evaluation of the system, especially for those
multi-core embedded systems with complex hardware and software. Therefore, fast and
accurate profiling technology for multi-core embedded systems is a critical issue.

Reconfigurable device provides more flexible and relatively lower performance than
conventional ASIC (application specific integrated circuit). FPGA (field programmable gate
array) is the most popular reconfigurable device in recent several years. Due to improvement
of manufacturing technology, capacity and performance of FPGA increases very fast. Today,
it is possible to perform a complex SOPC (system-on-a-programmable-chip) on a FPGA.

Therefore, some previous researchers have taken advantage of FPGAs to assist system

profiling [5][6][7][8].



According to above discussion, this thesis proposes REALprof, a hardware-assisted
performance/energy evaluation tool for multi-core embedded systems. Our approach is fast
and effective for system analysis, and helps designers in adjusting hardware configuration and
improving software in design stage. It provides hardware monitor for runtime programs, and
uses these monitor information to estimate energy consumption of the target system. Besides,
it is possible to perform different profiling granularities from coarse-grained to fine-grained
using our approach. We also provide some tools to generate system-level performance and
energy report of the target system.

Our approach is different from conventional simulation approaches. It uses FPGA to
accelerate evaluation speed and performs full system emulation with operating system.
Comparing to conventional software.profiling ‘approaches, our approach uses hardware to
sample runtime hardware information without extra software sampling overhead. Therefore,
our approach reserves the original target system -behavior without inserting sampling
instructions into the target software.

The remainder of this thesis is.organized as follows: Chapter 2 discusses related work.
Chapter 3 describes methodology and architecture of our proposed performance/energy
evaluation tool, REALprof. Chapter 4 describes implementation and experimental
environment in detail. Chapter 5 presents experimental results and a case study using our

approach. Finally, Chapter 6 concludes the thesis.



Chapter 2. Related Work

In this chapter, we review previous works of performance and energy evaluation. In
general, performance evaluation (Section 2.1) can be categorized into three categories:
software simulation (Section 2.1.1), software profiling (Section 2.1.3), and runtime hardware
monitor (Section 2.1.3). Energy evaluation (Section 2.2) can be categorized into three
categories: circuit simulation (Section 2.2.1), hardware measurement (Section 2.2.2), and

architecture-level evaluation (Section 2.2.3).

2.1. Performance Evaluation

2.1.1. Software Simulation

It is popular to use software simulators for system development, hardware behavior
verification, and performance evaluation. 1SS (instruction set simulator) is common used for
processor simulation, such as SimpleScalar [9]. In recent years, system-level virtual platform
is very popular to perform simulation of a full system or a SoC (System-on-a-Chip), such as
CoWare Platform Architect [10]. For multi-core simulation, some previous researchers
proposed several simulators [11][12][13][14][15].

Software simulation is convenient for developers in early design stage. It is easy to
modify the system behavior and doesn’t need the real target hardware. However, software
simulation speed is slower than real hardware execution. It is very difficult and
time-consuming to perform effective simulation for multi-core systems with complex
hardware and software. Because simulation speed is slow, it is inefficient to simulate huge

software such as operating system. In general, only a small and critical portion of the program



performs simulation, and operating system is usually ignored. However, multi-core systems
usually need operating system to manage each core. Besides, multi-core simulators must
consider synchronization between each core to perform the real system behavior. Otherwise,

the simulation may be different from the real system execution.

2.1.2. Software Profiling

Software profiling is popular for program performance evaluation. Profiling tool
statistics or inserts some instructions into the target program or the operating system to
measure the program behavior at runtime. For example, Intel VTune Performance Analyzer
[16] is a statistical profiler which profiles the program at runtime for Intel processors.
OProfile [17] is a system profiler for: Linux. GNU profiler, gprof [18] is a part of GNU
Binutils (binary utilities) for inserting some profiling instructions into the target program at
compile time.

Software profiling is useful and convenient for software development. However, it is
inaccurate because profiler inserts some extra instructions into the target program or system,
and it takes some overhead. To minimize the profiling overhead, we must reduce the extra
inserted instructions. However, the more information you want to gain from profiling, the
more extra instructions you need to insert, and the more profiling overhead you need to pay. It
is a trade-off between profiling information and accuracy. Figure 1 illustrates OProfile
profiling overhead which executes on HP Netserver with two 400 MHz Pentium Il processors.
It takes about 10% overhead when the profiling frequency is 10,000 times per second with
separate threads mode. The default profiling frequency is 2,000 times per second to perform
acceptable low-overhead profiling. It is useful for millisecond level profiling but difficult to
perform accurate profiling in higher granularities.

Besides, the original system behavior may be changed due to the inserted profiling

instructions. For multi-core systems, it may cause different process schedule.
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Figure 3. Airwolf profiler architecture



To improve profiling accuracy, some previous approaches use specific hardware to assist
performance evaluation. For example, SnoopP [5] (Figure 2) and Airwolf profiler [6] (Figure
3) are FPGA-based profilers. They proposed specific hardware logic to calculate execution
time of each function call. The accuracy of these approaches is better than gprof software

profiler.

2.1.3. Runtime Hardware Monitor

Some processors include performance counters to monitor the specific, low-level, and
hardware-related activities at runtime. These performance counters provide meaningful
sampling and reflect some important information of the target system performance, such as
cache miss count, pipeline stall cycle. For example, ARM processor family provides several
performance counter registers in control coprocessor. CP15 [19]. Programmer setups PMNCs
(performance monitor control registers) to control variant performance monitor facilities of
performance counter registers by ‘using coprocessor instructions. However, different
processors have different performance counters and different access methods. Software with
performance counters support causes poor™ portability. Browne [20] proposed a general
performance counters application program interface - PAPI to enhance the software
portability with performance counters support. Programmer can use PAPI to perform profiling
conveniently.

Performance counters perform fast and effective performance evaluation. However, the
real target processor is need, and it must support the performance counters which you need. It
lacks for flexibility because it is impossible to modify the existing hardware design after
fabrication. It is only useful for software performance evaluation and optimization. Besides,
we must consider performance counters access overhead. As mentioned before, it is a

trade-off between profiling information and accuracy.
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MAMon [21] (Figure 4) is one of hardware approaches for accurate runtime system
monitor which is different from ‘conventional performance counters approaches. A specific
monitor hardware records timestamp ‘and some parameters when dedicated events are
triggered on the target system. These data are managed by a specific memory management
unit, and transmitted to the host computer with specific hardware controller, interface, and
protocol. The host computer constructs an event database using these data. Finally, designers
can retrieve meaningful event information from the event database and analyze the target
system. MAMon is good for event-based profiling. However, the infrastructure of MAMon is
complex. Because of limited transmission bandwidth, it is difficult to scale MAMon to

monitor huge number of events in detail.



2.2. Energy Evaluation

2.2.1. Circuit Simulation

Energy consumption is related to manufacturing technology, transistor character, circuit
architecture, and other low-level hardware-related factors. Circuit simulation is a common
energy evaluation approach. For example, Synopsys HSPICE [22] is a circuit simulator with
power estimation for full-custom design, and Synopsys PrimeTime PX [23] is a cell-based
design tool for gate-level power analysis. These tools are useful for hardware designers to
estimate energy consumption at early design stage, but the simulation speed is extremely slow
for ultra large scale integration circuit today. For multi-core systems with complex hardware

and software, these kinds of approaches are not feasible.

2.2.2. Hardware Measurement

Device energy consumption can be measured by power meter directly [24]. It is fast and
true, but it needs measurement environment.and the real target hardware with essential
measurement points. Besides, synchronization between the measurement host and the target
device must be considered for detail evaluation.

Some power management chips provide runtime voltage and current sampling of the
target system. Programmers can read sampling registers to retrieve present voltage and current

data and calculate energy consumption.
2.2.3. Architecture-Level Evaluation

Architecture-level energy evaluation analyzes architecture of the target design and
constructs energy models for each component. Wattch [25] is one of the well-known previous

works using this approach. It categorizes processor components into four categories: array



structures, fully associative content-addressable memory, combinational logic and wires, and
clocking. Power models of each component are based on capacitance equations with interface
to SimpleScalar. Architecture-level energy simulation [26][27] is faster than circuit simulation,
but it is still time-consuming for complex systems today.

Contreras [28] proposed another architecture-level approach for Intel XScale processor.
The concept of this approach is that energy consumption is close related to some hardware
activities. Intel XScale processor provides some performance counters for monitoring some
hardware activities, and the mechanism is similar to ARM processor family. Contreras
constructs processor power models by using these available hardware performance counters.
It performs a quick energy evaluation with acceptable accuracy. Because it is based on
runtime hardware monitor, the real target hardware is required, and it must provide essential
performance counters which are related to the energy consumption of each component. This

approach can be also applied to XScale software simulator.to perform energy evaluation [29].
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Figure 5. Bhattacharjee’s approach

Bhattacharjee [7] proposed a FPGA-based power emulation approach (Figure 5). The

concept is similar to Contreras’s approach. They add some component-specific event counters



to the target processor design and use these counters to construct power models. Because
FPGA is reconfigurable, this approach is more flexible than Contreras’s approach. Although
FPGA emulation speed is slower than the real target hardware, it is extremely faster than
circuit simulation and software architecture-level energy evaluation. The energy evaluation
approaches of Contreras and Bhattacharjee are based on runtime hardware monitor. As
mentioned before, performance counters access introduces some extra software overhead. It is
useful for millisecond level profiling but difficult to profile in higher granularities with

acceptable accuracy.
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Figure 6. Ghodrat’s approach

Ghodrat [8] proposed a hybrid approach for system energy evaluation (Figure 6). Some
of the components use software simulation and some of the components use FPGA emulation.
This approach reduces the simulation time and has more flexible than pure FPGA emulation.
However, the communication between software simulation and FPGA emulation introduces
some overhead, and it needs interfaces and protocols between the host simulation computer

and the target FPGA board.
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Chapter 3. Performance/Energy Evaluation Tool

for Multi-core Embedded Systems

In this chapter, we discuss our proposed performance and energy evaluation solution for
multi-core embedded systems in detail. Section 3.1 introduces methodology and evaluation
flow. Section 3.2 describes our proposed tool - REALprof. Section 3.3 discusses how to
construct component energy models in early design stage. Section 3.4 describes the

advantages of our approach.

REALprof Embedded HW

Embedded SW Q) FPGA
Optimize
Modify
h 4

- :|
Performance/ | Energy Model
Energy Report

|

Embedded System

Emulation Platform

Gate-Level
Power Analysis

Figure 7. Suggested development and evaluation flow for embedded systems

Optimize
Modify
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3.1. Performance and Energy Evaluation Methodology

Our approach uses FPGA to perform fast performance and energy evaluation. Figure 7
illustrates our suggested development and evaluation flow for embedded systems. Hardware
of the embedded system uses powerful FPGA to construct a complex SoC emulation platform.
It includes several synthesizable soft intelligent properties and uses FPGA to perform fast
emulation. Software of the embedded system then executes on the emulation platform.
Designer debugs on such prototype system and evaluates the system. To meet the
requirements of the embedded system, designer makes heavy efforts to optimize the hardware
and software.

Our proposed tool, REALprof_istbased on. FPGA. It uses hardware to assist system
evaluation. Designer adds REALprof to the target hardware design, and builds emulation
platform using FPGA. For embedded software, REALprof provides runtime hardware
monitor for the target program without software sampling overhead. Designer can use
REALprof to perform fast, fine-grained, and real-profiling. The generated profiling report
includes performance and energy information. Performance information is retrieved from
REALprof, it includes many useful data about runtime hardware monitor. Energy information
is based on performance information. Designer constructs component energy models using
gate-level power analysis or component datasheets. The generated performance and energy
report provides designers a system-level view of the target embedded system, and helps
designers to optimize the hardware and software in design stage. After several iterations of the
evaluation and optimization, designer can remove REALprof from the target design, and the

final well-optimized embedded system is done.
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Figure 8. Emulation platform infrastructure

Figure 8 illustrates a typical emulation environment for a multi-core embedded system
using our approach. Designer integrates the target MPSoC (Multi-Processor System-on-a-
Chip) design with debug interface cores (JTAG, UART..) and REALprof, then uses FPGA to
construct a target emulation platform. Embedded software executes on the target emulation
platform, it includes several ‘multi-thread “embedded application programs and Linux with
SMP (Symmetric Multi-Processing).support. Programmer uses our provided middleware to
control the REALprof hardware and perform performance and energy evaluation. The host
computer communicates with the target emulation platform using debug link and retrieves

monitor information from REALprof.

3.2. Proposed Evaluation Architecture

As mentioned before, conventional software profiling approaches insert profiling
instructions into the target software. It destroys the original target system behavior and causes
extra software overhead. In order to improve profiling accuracy for embedded systems. This
thesis proposes a reconfigurable hardware-assisted log profiler - REALprof. The behavior of

REALprof is similar to conventional software profilers which records hardware performance

13



counters periodically at runtime. However, our approach uses hardware to record runtime
information automatically. It doesn’t cause extra software sampling overhead and reserves the

original system behavior.

REALprof Monitor
REALprof Controller

PC
— Program Counter
System Bus Status
“ Sampling Period =
Start Offset REALprof Monitor
En
Event Active Signals Sampling Number EveAct - Event Counter
_ Event Mask EnLog
Program Counters "
— Address
— > q
Data Out
Clock —
S
Figure 9. REALprof architecture
Table 1. Register descriptions
Memory Map Register Description
Base + 0x00000000 Status Control status of the controller and monitors.
Base + 0x00000004 Sampling Period Sampling period of REALprof.
Base + 0x00000008 Start Offset Start profiling with specific delay cycles.
Base + 0x0000000C | Sampling Number | Sampling number of each event monitor.
Base + 0x00000010 Event Mask Enable/Disable of each event monitor.

Figure 9 illustrates the architecture of REALprof. REALprof is designed as a bus slave
component. Programmer can use memory-map 1/O to access REALprof. It consists of a
controller and several monitors. REALprof controller contains several control registers. Table

1 lists the detail register descriptions. Programmer indicates status, sampling period, start

14




offset, and event mask by setting these registers. Several event active signals are connected to
REALprof controller, such as pipeline stall and cache miss. Each event active signal is
connected to EveAct signal of an individual REALprof monitor. REALprof monitor snoops
the EveAct signal and increases the event counter once the event is active. En signal is true
when REALprof is active, it indicates whether REALprof monitors snoop signals or not.
EnLog signal is similar to timer IRQ (Interrupt ReQuest) signal. The period is indicated by
Sampling Period register. When EnlLog is triggered, each REALprof monitor stores the
current value of event counter to the SRAM and resets the event counter to zero. At the same
time, REALprof controller increases Sampling Number register to indicate that number of
samples is collected in each REALprof monitor SRAM.

In order to connect the profiling results with the source code, program counter of each
processor is also connected to REALprof. Each program. counter is connected to an individual
REALprof monitor with a similarrmechanism to record the program counter. After profiling is
done, programmer accesses REAL prof to retrieve runtime monitor information from SRAMs.
According to these monitor information, designer_can.understand runtime program behavior

in detail without extra software profiling overhead.

3.3. Energy Model

Component energy models can be constructed in several ways. For existent components,
we can reference datasheets or measure components directly. For components in early design
stage, power analysis is a feasible solution.

Gate-level power analysis is popular for digital designs using CMOS manufacture
technology in early design stage, such as Synopsys PrimeTime PX. It calculates power
dissipation using the target design netlist, cell library power models, signal activities, and

capacitance effects.
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Equation (1) describes that CMOS power dissipation (P) consists of dynamic power

(Pdynamic) and leakage power (Pieakage):

P=P

dynamic

+ Pleakage (1)

Dynamic power is related to signal activities. Equation (2) describes that dynamic power
dissipation due to switching power (Pswitching: Charge/discharge of load capacitances) and short

circuit power (Pshort_circuit: SWitching causes both NMOS and PMOS are partially on):

P

dynamic

= Pswitching + I:)short_circuit (2)

Equation (3) describes that leakage power dissipation due to reverse-biased (Preverse biased)

and sub-threshold (Psub-threshotd) CONduction:

P

leakage

=P,

reverse—biased

+ Psub—th reshold (3)

Equation (4) describes that energy consumption (E) is the integral of the instantaneous

power dissipation:
E=[P-dt (4)

According to above equations, foundry can develop their cell library with gate-level
power models. We can perform gate-level power analysis to evaluate the component energy
consumption in early design stage.

In order to offer system-level energy evaluation, we construct high-level component
energy models according to the gate-level power analysis results. Equation (5) shows our

high-level component energy model:

E= I:)idle 'Ttotal + Z Eeventfactive ’ Ceventfactive (5)

16



Total energy consumption (E) consists of idle energy and active energy. Idle energy is the
product of idle power (Piqie) and total execution time (Tio). Idle power reflects leakage power
and power of modules which are always active. Active energy is the product of event active
energy (Eevent aciive) and event active count (Cevent active). Active energy reflects energy
consumption variations of different hardware events. The event active count is based on
performance monitor information which can be retrieved from REALprof, such as pipeline

stall, cache miss.

3.4. Advantages of Our Approach

Our approach provides both performance and energy evaluation for embedded systems. It
is useful for designers to optimize system and make a trade-off between performance and
energy efficiency in design “stage. Because we- use FPGA to construct reconfigurable
emulation platform, our approach is more flexible than ASIC approach. The evaluation speed
is faster than software simulator, and it is possible to evaluation program with operation
system and complex software.

Our approach is different from conventional software profiling. We use hardware to
sample performance counters and program counters periodically. It avoids software sampling
routine, and the target program doesn’t need to insert extra profiling instructions. Therefore,
our approach doesn’t cause heavy software profiling overhead and reserves the original
behavior of the target system.

In order to reduce profiling overhead and provide acceptable accuracy, conventional
software profiling usually works in millisecond level granularities. Without software sampling
overhead, our approach can provide different profiling granularities. It is possible to perform
cycle sampling using our approach. In design stage, designer can do several profiling

iterations from coarse-grained to fine-grained to understand the program behavior in detail.

17



Chapter 4. Implementation

Figure 10 illustrates overview of our emulation platform. We construct the target MPSoC
design using GRLIB open source IP library with our proposed tool - REALprof. Then, we
download the target design to DE3 FPGA board to construct an emulation platform. We use
SnapGear Linux distribution with SMP support and multi-thread applications to construct the
embedded software. Embedded software executes on the emulation platform and performs
runtime hardware monitor using REALprof. After profiling done, our tools generate
performance and energy reports with diagrams for system analysis.

The rest of this chapter is organized as follows: Section 4.1 introduces hardware and

software of the emulation platform. Section 4.2 describes-REALprof implementation in detail.
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Figure 10. Overview of our emulation platform



4.1. Emulation Platform

4.1.1. GRLIB Open Source IP Library

In this thesis, we use GRLIB [30] IP library to construct the target MPSoC platform.
GRLIB is an integrated set of reusable IP cores provided by Aeroflex Gaisler. It is provided
under dual license mode, GNU GPL license or commercial license. It includes LEON3
soft-core processor and abounding peripheral cores. Each core of GRLIB is interfaced using
AMBA 2.0 protocol and uses synthesizable VHDL model. LEON3 is a 32-bit soft-core
processor based on the SPARC V8 architecture. It has 7-stage pipeline with L1 Harvard
architecture cache. Data cache of LEON3 supports snoop protocol. It is possible to perform
SMP system using LEON3 processors. To provide debug environment for the target system,
GRLIB also includes a debug-support-unit core for LEON3 processor with GRMON [31]
debug monitor software support. Figure 11 tllustrates the block diagram of LEON3 processor.

The original design of LEON s developed by ESA.(Europe Space Agency) for space

applications.
3-Port Register File
IEEE-T54 FFLU Trace Buffer
T-Stage
Co-Processor ; . Debug port lé— % Debu it
Integer pipeline g support uni
HW MUL/DIY Interrupt port ———#  Intemupt controller
¥ L 4
Local IRAM | | Cache | D-Cache | Local DRAM
LB SRMMU DTLE
AHB UF

}

AMBA AHB Master (32-bit)

Figure 11. Block diagram of LEONS3 processor
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DDR2 |
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Figure 12. Block diagram of LEON3 MPSoC
Table 2. LEON3 processor configurations
Module Configurations
8register windows,-1-cycle load delay,
Integer Unit SPARC. V8 MUL/DIV support, 2-cycle multiplier latency,

power-down mode support

only netlist is available for FPGA

4-way set-associative, total 16 KB, 32 bytes/line, LRU
4-way set-associative, total 16 KB, 32 bytes/line, LRU,
AHB fast snoop and separate snoop tags

Separate instruction/data TLB, fast write buffer, LRU
32 entries for each instruction/data TLB

Floating Point Unit
L1 Instruction Cache

L1 Data Cache

MMU

4.1.2. LEON3 MPSoC Emulation Environment

Figure 12 shows our target MPSoC design. It includes LEON3 quad-core, abounding
peripherals, and our proposed tool - REALprof. Four LEON3 processors snoop data on AHB

(Advanced High-performance Bus). Configurations of each processor are shown in Table 2.
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REALprof is wrapped as an AHB slave. Each processor connects its program counter and
event signals to REALprof. Detail of performance events and energy calculation will describe

in section 4.2.

4.1.3. DE3 Development and Education Board

In this thesis, we use DE3-340 [32] development and education board to construct
prototype emulation platform, as shown in Figure 13. DE3 is developed by Terasic
Technologies. It consists of Altera Stratix 11l 340 FPGA, DDR2 SO-DIMM socket, and
several peripheral components. Figure 14 shows that multiple DE3 boards can be joined
together to increase gate count using HSTC (High Speed Terasic Connectors) interface. Altera
Stratix Il 340 FPGA uses TSMC 65-nm process to provide high performance and high
density. It contains 338000 equivalent logic elements.and rich on-chip embedded memory. We
use Quartus 11 8.0 design suite [33] to compile our design and download the target design to

DE3 FPGA.

4.1.4. SnapGear Embedded Linux Distribution for LEON3

SnapGear Linux distribution [34] is a full open source package for embedded systems
with boot loader, device drivers, Linux kernel, libraries, and abounding applications. Aeroflex
Gaisler provides LEON3 port of SnapGear Linux 2.6.21.1 with SMP support for multi-core
embedded systems. We add middleware for REALprof access includes device drivers and
some utilities. Multi-thread applications can be integrated to SnapGear Linux package and use
REALprof to perform performance and energy evaluation on the target multi-core emulation

platform.
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Figure 13. DE3-340 development and education board

Figure 14. A stack of DE3 board - more powerful emulation system
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4.2. Evaluation of LEON3 Processor

4.2.1. Runtime Performance Monitor

In order to evaluate performance and energy of LEON3 processor, we monitor several

hardware events of each processor using REALprof. Table 3 lists these events in detail.

Table 3. LEONS processor events for REALprof monitors

Event number Event description
0 Program counter
1 Pipeline stall because of instruction cache miss
2 Pipeline stall because of data cache miss
3 Multiplication operation
4 Division operation
5 Instruction cache hit
6 Data cache read hit
7 Data cache write hit
8 Instructioncache miss
9 Data cache read miss
10 Data cache write ' miss
11 Cache flush
12 Instruction TLB miss
13 Data TLB miss
14 Power down cycle
15 Single register access
16 Double register access
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4.2.2. Energy Calculation

We use runtime hardware monitor information to calculate component energy
consumption. Figure 15 illustrates gate-level power analysis flow that describes in section 3.3.
We use Design Compiler [35] to synthesis the target design with Faraday cell-based design kit
for UMC 90 nm 1P9M process. In typical condition (25°C, 1.0 Volt), the target design
operates at 400 MHz. After synthesis, we use ModelSim [36] to perform gate-level simulation
for generated netlist and software. The generated waveform in VCD (Value Change Dump)
format then feeds to PrimeTime PX for dynamic power calculation. PrimeTime PX performs
hierarchical power report and FSDB (Fast Signal DataBase) waveform according to design
netlist, cell library, cell delay, and VCD waveform. Finally, we construct component energy

models using power report and waveform:.

. Cell Library UIVIC
RTL Design s
(UMC 90nm 1P9M) R4+

i FARADAY
Synthesis SYOPSYS
(Design Compiler)

Gate-Level Netlist Testbench

Gate-Level Simulation [FeissiEe
(ModelSim) ModelSim.

VCD File
(Value Change Dump)

N Gate-Level Power IS\/I][]PS\/S
ll Analysis (PrimeTime PX) K

Energy Model

Figure 15. Flow of gate-level power analysis
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Table 4 lists event energy consumption of LEON3 processor according to the gate-level

power analysis report. In typical case, data cache dominates processor energy variances.

Table 4. LEONS3 processor energy consumption

Component Event Energy/Power
Power down 16.1 mW

Idle 49.2 mW

Normal 58.2 mW

Pipeline Multiplication operation 32 pJ
Division operation 218.75 pJ

Instruction TLB miss 4.25 pJ

Data TLB miss 4.25 pJ

Power down 0.4084 mwW

Idle 49.1 mwW

Instruction cache._| Flush 16.403 nJ
Hit 126.575 pJ

Miss 123 pJ

Idle 0.601 mW

Data cache Fl_ush 25.869 nJ
Hit 314 pJ

Miss 952.95 pJ

Idle 6.28 mW

Register file Single access 9.65 mW
Double access 12.9 mW
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Chapter 5.

Experimental Results

Our approach uses hardware to assist sampling automatically. Programmer sets

REALprof registers to start sampling before the target program section and stop sampling

after the section. It doesn’t need extra software overhead to sample hardware performance

counters periodically. Figure 16 shows that overhead of conventional software sampling for

hardware performance counters increases linearly with number of counters. The more

information you want to get by sampling counters, the more overhead and inaccurate samples

you get. However, our approach offers constant and negligible extra software overhead. It

reserves the original target program-behavior.

Cyecles

3000
. FY
2500 _27
A/
L
2000 »7
-~
-~
rd ‘ 3
1500 o
e —i& Conventional
i’ -8-REALprof
1000 _ X pro
500 X
0% a) a) o o o
1 10 20 30 40 50

Hardware Performance Counters

Figure 16. Overhead comparison with different number of HPCs

Figure 17 shows that software sampling overhead increases with profiling frequency.

Sampling overhead is only negligible in millisecond granularity. It is difficult to perform

acceptable profiling results in microsecond granularity using conventional approach.
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Figure 17. Overhead comparison with different sampling frequencies

Table 5 compares our approach with other conventional approaches for performance and
energy evaluation. Our approach-offers fast emulation about 100 MHz. Software overhead is
negligible and it provides fine-grained profiling. It-is possible to profile target software with

operating system and scalable for complex multi-core systems.

Table 5. Feature comparison of performance and energy evaluation approaches

REALprof HPC profiling uArch simulator | Circuit simulation
Method HW emulation directly execute SW simulation SW simulation
Speed ~ 100 MHz real speed KIPS ~ MIPS extremely slow
Flexibility reconfigurable N Y Y
SW overhead negligible Y N/A N/A
Granularity > cycle ~ms N/A great
HW resource HPC + BRAM HPC N N
Program
) keep destroy N/A keep
behavior
Operating . .
Y Y usually skip skip
system
Multi-core .
scalable VTune, OProfile SESC, GEMS Y
support
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Our approach uses reconfigurable hardware resource to record the sampling information.

Table 6 shows the resource usage report of our emulation FPGA. Each REALprof monitor

uses one M9K memory block to provide up to 256 records of each 32-bit hardware

performance counter. For StratixIll 340 FPGA, the target design with REALprof only uses

about 30% logic and 12% memory blocks. REALprof only uses about 2% logic and 4%

memory blocks for 1 controller and 68 monitors. Therefore, it is possible to use REALprof for

more complex embedded systems.

Table 6. StratixIll 340 FPGA resource usage

Combinational i _ Block
Logic registers DSP block _ Number
ALUTs memory bit
LEON3
12581 8451 4 343936 4
processor
DDR2
781 601 0 4096 1
controller
peripherals 2600 1269 0 16384 N/A
1 ctrl
REALprof 4826(2%) 2091(1%) 0(0%) 557056(4%) 68 mon
Total 58531(22%) 37765(14%) 16(3%) | 1953280(12%)
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5.1. Case Study: SPLASH-2 FFT

This section demonstrates our approach for a multi-core embedded system. We use
SPLASH-2 [37] FFT as the target multi-thread application program. Figure 18 illustrates the
hardware performance counters sampling of CPU_0. As shown in figure, our approach
provides fine-grained sampling in microsecond level. Designer can use REALprof to observe
the variation of each counter in detail. According to these runtime hardware information and
energy models, we can estimate energy consumption of each component. Figure 19 illustrates
energy evaluation of CPU_0 components. As shown in figure, data cache behavior dominates
the variation of the processor. This phenomenon is match with the gate-level power analysis
result. Figure 20 illustrates energy evaluation of .each core. Designer can use the evaluation
result to analysis and optimize the target design: In this case, we can observe that SPLASH-2

FFT is a well parallelized multi-thread program:

Performance Evaluation of CPU_0
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Figure 18. Hardware performance counters sampling of CPU_0
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Energy Evaluation of CPU_0

80
]
70 i
i
/
60
o ¢ mmm e mmm s mmm s mmm s e s e s mEm s M s M s M s M s M s mmm s mm s '— ......... -
]
S 50 frmr o R S e T s e e b
£ "
E 40 ] l: —RF
| | == : =Pipeline
% ! || ' L
g ! I X : o s
< 1 ] T U
1 I | - =D
11 S' :l ! . ': i I h :
20 13 i NP I 'l'l . L iy
ot TR nore A A
T LML TX RINWARE N IR Y
A S T YNA AT YA
Py ' \ I ] VI
0 \ o . . . . ; . . . : . .
1
139
138
137
136
= 135
:
5 134 1.%
E / ------ CPU_OTotal
g 133 \ A -CPU_1 Total
. - M -
§ \ NFM CPU_2 Total
< 132 v = = CPU_3Total
131
130
129
m—_——

1 2 3 45 6 7 8 910111213 14151617 18 15 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Time (ms)

Figure 20. Energy evaluation of each core
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Chapter 6. Conclusions

In this thesis, we propose a hardware-assisted performance and energy evaluation tool -
REALprof. Our approach uses FPGA to provide fast full system emulation, and it is scalable
for complex multi-core embedded systems. The experimental results show that it can work at
a 100 MHz quad-core emulation platform. Our approach uses hardware to sample runtime
hardware information without extra software sampling overhead. It provides different
granularities from coarse-grained to fine-grained. As shown in case study, multi-core
embedded system with Linux operating system can use REALprof to perform effective
fine-grained profiling in microsecond level.~The generated system-level performance and
energy report is useful for designers to-optimize hardware and software in design stage.

In order to provide experimental environment of a.multi-core embedded system. We
construct a powerful LEON3-based quad-core- MPSoC.emulation platform on DE3 board.
Besides, we construct energy models..of LEONS3 soft-processor using gate-level power
analysis with UMC 90 nm cell library. Finally, we perform a case study of profiling a

SPLASH-2 multi-thread program on the target multi-core embedded system.
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