

國立交通大學

資訊科學與工程研究所

碩 士 論 文

以硬體協助之多核心嵌入式系統

效能與耗能評估工具

Hardware-Assisted Performance/Energy Evaluation Tool

for Multi-core Embedded System

研 究 生：林俊瑋

指導教授：曹孝櫟 博士

中 華 民 國 九 十 八 年 八 月

以硬體協助之多核心嵌入式系統效能與耗能評估工具

Hardware-Assisted Performance/Energy Evaluation Tool

for Multi-core Embedded System

研 究 生：林俊瑋 Student: Jyun-Wei Lin

指導教授：曹孝櫟 Advisor: Shiao-Li Tsao

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

August 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年八月

i

以硬體協助之多核心嵌入式系統效能與耗能評估工具

學生：林俊瑋 指導教授：曹孝櫟

國立交通大學 資訊科學與工程研究所 碩士班

摘要

有效的效能與耗能評估是嵌入式系統設計時期的關鍵技術。然而，傳統的評估方法

難以兼具快速以及精確。此外在多核心逐漸應用於嵌入式系統的今日，傳統的評估方法

將面臨更為複雜及困難的挑戰。有鑑於此，本文提出一種以硬體協助且適用於多核心嵌

入式系統的效能與耗能評估工具，並予以實現。所提之工具提供程式執行時期硬體事件

的監控，並藉此推算出元件耗能，其可避免軟體取樣(Sampling)所造成的額外負擔，以

便能呈現系統原始的行為與特性。實驗結果顯示，所提之方法可於 100 MHz 的四核心

仿真環境下進行，精度可達微秒以下，其兼具快速、精細且真實的特性將有助於複雜多

核心嵌入式系統設計時期之細部評估與分析。

ii

Hardware-Assisted Performance/Energy Evaluation Tool

for Multi-core Embedded System

Student: Jyun-Wei Lin Advisor: Shiao-Li Tsao

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Effective performance and energy evaluation of embedded systems is one of the critical

issues during design phase. However, conventional approaches suffer from difficulties to

provide fast and accurate evaluation of the system, especially for those embedded systems

using multi-core technology. In this thesis, we propose and realize a hardware-assisted

performance and energy evaluation tool for a multi-core embedded system. Our approach

provides hardware monitor for runtime programs, and uses these monitor information to

estimate the system energy consumption without introducing extra software sampling

overhead. The experimental results show that our approach can work at a 100 MHz quad-core

emulation platform. The profiling granularity is higher than microsecond. It provides fast and

fine-grained evaluation of the multi-core embedded system during the design phase.

iii

誌謝

能順利完成本論文，首先要感謝指導教授曹孝櫟博士，在碩士兩年的學習過程中使

我們能以正面樂觀的態度面對所遭遇的各種挑戰，並提供良好的實驗設備及適時的指

導。另外也感謝口試委員施吉昇教授、范倫達教授、曾建超教授針對論文提出許多建議，

使本論文能更趨完善。

實驗方面感謝網路上許多開放原始碼的社群及組織，提供無論是硬體及軟體的程式

碼及討論。並感謝國科會「系統層級之多核心嵌入式系統發展與驗證環境」計畫的支持

及相關子計畫的協助與合作。

最後要感謝實驗室學長、同學及學弟妹，無論在學業、研究、計畫及日常生活上的

幫忙與照應，使我能順利度過這充實的兩年。

iv

Contents

摘要 ... i

Abstract ... ii

誌謝 ... iii

Contents .. iv

List of Tables ... v

List of Figures .. vi

Chapter 1. Introduction .. 1

Chapter 2. Related Work .. 3

2.1. Performance Evaluation ... 3

2.1.1. Software Simulation ... 3

2.1.2. Software Profiling .. 4

2.1.3. Runtime Hardware Monitor.. 6

2.2. Energy Evaluation .. 8

2.2.1. Circuit Simulation .. 8

2.2.2. Hardware Measurement .. 8

2.2.3. Architecture-Level Evaluation ... 8

Chapter 3. Performance/Energy Evaluation Tool for Multi-core Embedded Systems 11

3.1. Performance and Energy Evaluation Methodology .. 12

3.2. Proposed Evaluation Architecture .. 13

3.3. Energy Model ... 15

3.4. Advantages of Our Approach ... 17

Chapter 4. Implementation ... 18

4.1. Emulation Platform .. 19

4.1.1. GRLIB Open Source IP Library ... 19

4.1.2. LEON3 MPSoC Emulation Environment .. 20

4.1.3. DE3 Development and Education Board ... 21

4.1.4. SnapGear Embedded Linux Distribution for LEON3 21

4.2. Evaluation of LEON3 Processor .. 23

4.2.1. Runtime Performance Monitor ... 23

4.2.2. Energy Calculation ... 24

Chapter 5. Experimental Results ... 26

5.1. Case Study: SPLASH-2 FFT .. 29

Chapter 6. Conclusions ... 31

References .. 32

v

List of Tables

Table 1. Register descriptions ... 14

Table 2. LEON3 processor configurations ... 20

Table 3. LEON3 processor events for REALprof monitors ... 23

Table 4. LEON3 processor energy consumption .. 25

Table 5. Feature comparison of performance and energy evaluation approaches 27

Table 6. StratixIII 340 FPGA resource usage ... 28

vi

List of Figures

Figure 1. OProfile profiling overhead .. 5

Figure 2. SnoopP architecture... 5

Figure 3. Airwolf profiler architecture ... 5

Figure 4. MAMon monitoring system .. 7

Figure 5. Bhattacharjee’s approach .. 9

Figure 6. Ghodrat’s approach ... 10

Figure 7. Suggested development and evaluation flow for embedded systems 11

Figure 8. Emulation platform infrastructure ... 13

Figure 9. REALprof architecture .. 14

Figure 10. Overview of our emulation platform .. 18

Figure 11. Block diagram of LEON3 processor ... 19

Figure 12. Block diagram of LEON3 MPSoC ... 20

Figure 13. DE3-340 development and education board ... 22

Figure 14. A stack of DE3 board - more powerful emulation system 22

Figure 15. Flow of gate-level power analysis .. 24

Figure 16. Overhead comparison with different number of HPCs ... 26

Figure 17. Overhead comparison with different sampling frequencies 27

Figure 18. Hardware performance counters sampling of CPU_0 .. 29

Figure 19. Energy evaluation of CPU_0 .. 30

Figure 20. Energy evaluation of each core ... 30

1

Chapter 1. Introduction

Multi-core has become a trend of processor design today. According to recent researches,

multi-core is one of efficient ways to use transistors and increase performance, it also

provides better energy efficiency and thermal management. Embedded system grows

dramatically in recent several years. It has become more powerful and more complex.

Multi-core technology is thus applied to some embedded systems in order to offer better

performance and improve energy efficiency. For example, some high-end application

processors [1][2][3] use ARM MPCore [4] multi-core technology for MID (Mobile Internet

Device) products.

Embedded systems are designed for specific applications. They are usually

battery-driven devices with limited operating time. To meet system requirements and extend

operating time, it is very important to evaluate and optimize performance and energy

consumption of embedded systems in design stage. However, conventional approaches suffer

from difficulties to provide fast and accurate evaluation of the system, especially for those

multi-core embedded systems with complex hardware and software. Therefore, fast and

accurate profiling technology for multi-core embedded systems is a critical issue.

Reconfigurable device provides more flexible and relatively lower performance than

conventional ASIC (application specific integrated circuit). FPGA (field programmable gate

array) is the most popular reconfigurable device in recent several years. Due to improvement

of manufacturing technology, capacity and performance of FPGA increases very fast. Today,

it is possible to perform a complex SOPC (system-on-a-programmable-chip) on a FPGA.

Therefore, some previous researchers have taken advantage of FPGAs to assist system

profiling [5][6][7][8].

2

According to above discussion, this thesis proposes REALprof, a hardware-assisted

performance/energy evaluation tool for multi-core embedded systems. Our approach is fast

and effective for system analysis, and helps designers in adjusting hardware configuration and

improving software in design stage. It provides hardware monitor for runtime programs, and

uses these monitor information to estimate energy consumption of the target system. Besides,

it is possible to perform different profiling granularities from coarse-grained to fine-grained

using our approach. We also provide some tools to generate system-level performance and

energy report of the target system.

Our approach is different from conventional simulation approaches. It uses FPGA to

accelerate evaluation speed and performs full system emulation with operating system.

Comparing to conventional software profiling approaches, our approach uses hardware to

sample runtime hardware information without extra software sampling overhead. Therefore,

our approach reserves the original target system behavior without inserting sampling

instructions into the target software.

The remainder of this thesis is organized as follows: Chapter 2 discusses related work.

Chapter 3 describes methodology and architecture of our proposed performance/energy

evaluation tool, REALprof. Chapter 4 describes implementation and experimental

environment in detail. Chapter 5 presents experimental results and a case study using our

approach. Finally, Chapter 6 concludes the thesis.

3

Chapter 2. Related Work

In this chapter, we review previous works of performance and energy evaluation. In

general, performance evaluation (Section 2.1) can be categorized into three categories:

software simulation (Section 2.1.1), software profiling (Section 2.1.3), and runtime hardware

monitor (Section 2.1.3). Energy evaluation (Section 2.2) can be categorized into three

categories: circuit simulation (Section 2.2.1), hardware measurement (Section 2.2.2), and

architecture-level evaluation (Section 2.2.3).

2.1. Performance Evaluation

2.1.1. Software Simulation

It is popular to use software simulators for system development, hardware behavior

verification, and performance evaluation. ISS (instruction set simulator) is common used for

processor simulation, such as SimpleScalar [9]. In recent years, system-level virtual platform

is very popular to perform simulation of a full system or a SoC (System-on-a-Chip), such as

CoWare Platform Architect [10]. For multi-core simulation, some previous researchers

proposed several simulators [11][12][13][14][15].

Software simulation is convenient for developers in early design stage. It is easy to

modify the system behavior and doesn’t need the real target hardware. However, software

simulation speed is slower than real hardware execution. It is very difficult and

time-consuming to perform effective simulation for multi-core systems with complex

hardware and software. Because simulation speed is slow, it is inefficient to simulate huge

software such as operating system. In general, only a small and critical portion of the program

4

performs simulation, and operating system is usually ignored. However, multi-core systems

usually need operating system to manage each core. Besides, multi-core simulators must

consider synchronization between each core to perform the real system behavior. Otherwise,

the simulation may be different from the real system execution.

2.1.2. Software Profiling

Software profiling is popular for program performance evaluation. Profiling tool

statistics or inserts some instructions into the target program or the operating system to

measure the program behavior at runtime. For example, Intel VTune Performance Analyzer

[16] is a statistical profiler which profiles the program at runtime for Intel processors.

OProfile [17] is a system profiler for Linux. GNU profiler, gprof [18] is a part of GNU

Binutils (binary utilities) for inserting some profiling instructions into the target program at

compile time.

Software profiling is useful and convenient for software development. However, it is

inaccurate because profiler inserts some extra instructions into the target program or system,

and it takes some overhead. To minimize the profiling overhead, we must reduce the extra

inserted instructions. However, the more information you want to gain from profiling, the

more extra instructions you need to insert, and the more profiling overhead you need to pay. It

is a trade-off between profiling information and accuracy. Figure 1 illustrates OProfile

profiling overhead which executes on HP Netserver with two 400 MHz Pentium II processors.

It takes about 10% overhead when the profiling frequency is 10,000 times per second with

separate threads mode. The default profiling frequency is 2,000 times per second to perform

acceptable low-overhead profiling. It is useful for millisecond level profiling but difficult to

perform accurate profiling in higher granularities.

Besides, the original system behavior may be changed due to the inserted profiling

instructions. For multi-core systems, it may cause different process schedule.

5

Figure 1. OProfile profiling overhead

Figure 2. SnoopP architecture

Figure 3. Airwolf profiler architecture

6

To improve profiling accuracy, some previous approaches use specific hardware to assist

performance evaluation. For example, SnoopP [5] (Figure 2) and Airwolf profiler [6] (Figure

3) are FPGA-based profilers. They proposed specific hardware logic to calculate execution

time of each function call. The accuracy of these approaches is better than gprof software

profiler.

2.1.3. Runtime Hardware Monitor

Some processors include performance counters to monitor the specific, low-level, and

hardware-related activities at runtime. These performance counters provide meaningful

sampling and reflect some important information of the target system performance, such as

cache miss count, pipeline stall cycle. For example, ARM processor family provides several

performance counter registers in control coprocessor CP15 [19]. Programmer setups PMNCs

(performance monitor control registers) to control variant performance monitor facilities of

performance counter registers by using coprocessor instructions. However, different

processors have different performance counters and different access methods. Software with

performance counters support causes poor portability. Browne [20] proposed a general

performance counters application program interface - PAPI to enhance the software

portability with performance counters support. Programmer can use PAPI to perform profiling

conveniently.

Performance counters perform fast and effective performance evaluation. However, the

real target processor is need, and it must support the performance counters which you need. It

lacks for flexibility because it is impossible to modify the existing hardware design after

fabrication. It is only useful for software performance evaluation and optimization. Besides,

we must consider performance counters access overhead. As mentioned before, it is a

trade-off between profiling information and accuracy.

7

Figure 4. MAMon monitoring system

MAMon [21] (Figure 4) is one of hardware approaches for accurate runtime system

monitor which is different from conventional performance counters approaches. A specific

monitor hardware records timestamp and some parameters when dedicated events are

triggered on the target system. These data are managed by a specific memory management

unit, and transmitted to the host computer with specific hardware controller, interface, and

protocol. The host computer constructs an event database using these data. Finally, designers

can retrieve meaningful event information from the event database and analyze the target

system. MAMon is good for event-based profiling. However, the infrastructure of MAMon is

complex. Because of limited transmission bandwidth, it is difficult to scale MAMon to

monitor huge number of events in detail.

8

2.2. Energy Evaluation

2.2.1. Circuit Simulation

Energy consumption is related to manufacturing technology, transistor character, circuit

architecture, and other low-level hardware-related factors. Circuit simulation is a common

energy evaluation approach. For example, Synopsys HSPICE [22] is a circuit simulator with

power estimation for full-custom design, and Synopsys PrimeTime PX [23] is a cell-based

design tool for gate-level power analysis. These tools are useful for hardware designers to

estimate energy consumption at early design stage, but the simulation speed is extremely slow

for ultra large scale integration circuit today. For multi-core systems with complex hardware

and software, these kinds of approaches are not feasible.

2.2.2. Hardware Measurement

Device energy consumption can be measured by power meter directly [24]. It is fast and

true, but it needs measurement environment and the real target hardware with essential

measurement points. Besides, synchronization between the measurement host and the target

device must be considered for detail evaluation.

Some power management chips provide runtime voltage and current sampling of the

target system. Programmers can read sampling registers to retrieve present voltage and current

data and calculate energy consumption.

2.2.3. Architecture-Level Evaluation

Architecture-level energy evaluation analyzes architecture of the target design and

constructs energy models for each component. Wattch [25] is one of the well-known previous

works using this approach. It categorizes processor components into four categories: array

9

structures, fully associative content-addressable memory, combinational logic and wires, and

clocking. Power models of each component are based on capacitance equations with interface

to SimpleScalar. Architecture-level energy simulation [26][27] is faster than circuit simulation,

but it is still time-consuming for complex systems today.

Contreras [28] proposed another architecture-level approach for Intel XScale processor.

The concept of this approach is that energy consumption is close related to some hardware

activities. Intel XScale processor provides some performance counters for monitoring some

hardware activities, and the mechanism is similar to ARM processor family. Contreras

constructs processor power models by using these available hardware performance counters.

It performs a quick energy evaluation with acceptable accuracy. Because it is based on

runtime hardware monitor, the real target hardware is required, and it must provide essential

performance counters which are related to the energy consumption of each component. This

approach can be also applied to XScale software simulator to perform energy evaluation [29].

Figure 5. Bhattacharjee’s approach

Bhattacharjee [7] proposed a FPGA-based power emulation approach (Figure 5). The

concept is similar to Contreras’s approach. They add some component-specific event counters

10

to the target processor design and use these counters to construct power models. Because

FPGA is reconfigurable, this approach is more flexible than Contreras’s approach. Although

FPGA emulation speed is slower than the real target hardware, it is extremely faster than

circuit simulation and software architecture-level energy evaluation. The energy evaluation

approaches of Contreras and Bhattacharjee are based on runtime hardware monitor. As

mentioned before, performance counters access introduces some extra software overhead. It is

useful for millisecond level profiling but difficult to profile in higher granularities with

acceptable accuracy.

Figure 6. Ghodrat’s approach

Ghodrat [8] proposed a hybrid approach for system energy evaluation (Figure 6). Some

of the components use software simulation and some of the components use FPGA emulation.

This approach reduces the simulation time and has more flexible than pure FPGA emulation.

However, the communication between software simulation and FPGA emulation introduces

some overhead, and it needs interfaces and protocols between the host simulation computer

and the target FPGA board.

11

Chapter 3. Performance/Energy Evaluation Tool

for Multi-core Embedded Systems

In this chapter, we discuss our proposed performance and energy evaluation solution for

multi-core embedded systems in detail. Section 3.1 introduces methodology and evaluation

flow. Section 3.2 describes our proposed tool - REALprof. Section 3.3 discusses how to

construct component energy models in early design stage. Section 3.4 describes the

advantages of our approach.

Figure 7. Suggested development and evaluation flow for embedded systems

12

3.1. Performance and Energy Evaluation Methodology

Our approach uses FPGA to perform fast performance and energy evaluation. Figure 7

illustrates our suggested development and evaluation flow for embedded systems. Hardware

of the embedded system uses powerful FPGA to construct a complex SoC emulation platform.

It includes several synthesizable soft intelligent properties and uses FPGA to perform fast

emulation. Software of the embedded system then executes on the emulation platform.

Designer debugs on such prototype system and evaluates the system. To meet the

requirements of the embedded system, designer makes heavy efforts to optimize the hardware

and software.

Our proposed tool, REALprof is based on FPGA. It uses hardware to assist system

evaluation. Designer adds REALprof to the target hardware design, and builds emulation

platform using FPGA. For embedded software, REALprof provides runtime hardware

monitor for the target program without software sampling overhead. Designer can use

REALprof to perform fast, fine-grained, and real profiling. The generated profiling report

includes performance and energy information. Performance information is retrieved from

REALprof, it includes many useful data about runtime hardware monitor. Energy information

is based on performance information. Designer constructs component energy models using

gate-level power analysis or component datasheets. The generated performance and energy

report provides designers a system-level view of the target embedded system, and helps

designers to optimize the hardware and software in design stage. After several iterations of the

evaluation and optimization, designer can remove REALprof from the target design, and the

final well-optimized embedded system is done.

13

Figure 8. Emulation platform infrastructure

Figure 8 illustrates a typical emulation environment for a multi-core embedded system

using our approach. Designer integrates the target MPSoC (Multi-Processor System-on-a-

Chip) design with debug interface cores (JTAG, UART…) and REALprof, then uses FPGA to

construct a target emulation platform. Embedded software executes on the target emulation

platform, it includes several multi-thread embedded application programs and Linux with

SMP (Symmetric Multi-Processing) support. Programmer uses our provided middleware to

control the REALprof hardware and perform performance and energy evaluation. The host

computer communicates with the target emulation platform using debug link and retrieves

monitor information from REALprof.

3.2. Proposed Evaluation Architecture

As mentioned before, conventional software profiling approaches insert profiling

instructions into the target software. It destroys the original target system behavior and causes

extra software overhead. In order to improve profiling accuracy for embedded systems. This

thesis proposes a reconfigurable hardware-assisted log profiler - REALprof. The behavior of

REALprof is similar to conventional software profilers which records hardware performance

14

counters periodically at runtime. However, our approach uses hardware to record runtime

information automatically. It doesn’t cause extra software sampling overhead and reserves the

original system behavior.

Figure 9. REALprof architecture

Table 1. Register descriptions

Memory Map Register Description

Base + 0x00000000 Status Control status of the controller and monitors.

Base + 0x00000004 Sampling Period Sampling period of REALprof.

Base + 0x00000008 Start Offset Start profiling with specific delay cycles.

Base + 0x0000000C Sampling Number Sampling number of each event monitor.

Base + 0x00000010 Event Mask Enable/Disable of each event monitor.

Figure 9 illustrates the architecture of REALprof. REALprof is designed as a bus slave

component. Programmer can use memory-map I/O to access REALprof. It consists of a

controller and several monitors. REALprof controller contains several control registers. Table

1 lists the detail register descriptions. Programmer indicates status, sampling period, start

15

offset, and event mask by setting these registers. Several event active signals are connected to

REALprof controller, such as pipeline stall and cache miss. Each event active signal is

connected to EveAct signal of an individual REALprof monitor. REALprof monitor snoops

the EveAct signal and increases the event counter once the event is active. En signal is true

when REALprof is active, it indicates whether REALprof monitors snoop signals or not.

EnLog signal is similar to timer IRQ (Interrupt ReQuest) signal. The period is indicated by

Sampling Period register. When EnLog is triggered, each REALprof monitor stores the

current value of event counter to the SRAM and resets the event counter to zero. At the same

time, REALprof controller increases Sampling Number register to indicate that number of

samples is collected in each REALprof monitor SRAM.

In order to connect the profiling results with the source code, program counter of each

processor is also connected to REALprof. Each program counter is connected to an individual

REALprof monitor with a similar mechanism to record the program counter. After profiling is

done, programmer accesses REALprof to retrieve runtime monitor information from SRAMs.

According to these monitor information, designer can understand runtime program behavior

in detail without extra software profiling overhead.

3.3. Energy Model

Component energy models can be constructed in several ways. For existent components,

we can reference datasheets or measure components directly. For components in early design

stage, power analysis is a feasible solution.

Gate-level power analysis is popular for digital designs using CMOS manufacture

technology in early design stage, such as Synopsys PrimeTime PX. It calculates power

dissipation using the target design netlist, cell library power models, signal activities, and

capacitance effects.

16

Equation (1) describes that CMOS power dissipation (P) consists of dynamic power

(Pdynamic) and leakage power (Pleakage):

 leakagedynamic PPP  (1)

Dynamic power is related to signal activities. Equation (2) describes that dynamic power

dissipation due to switching power (Pswitching: charge/discharge of load capacitances) and short

circuit power (Pshort_circuit: switching causes both NMOS and PMOS are partially on):

 circuit_shortswitchingdynamic PPP  (2)

Equation (3) describes that leakage power dissipation due to reverse-biased (Preverse_biased)

and sub-threshold (Psub-threshold) conduction:

 thresholdsubbiasedreverseleakage PPP   (3)

 Equation (4) describes that energy consumption (E) is the integral of the instantaneous

power dissipation:

   dtPE (4)

According to above equations, foundry can develop their cell library with gate-level

power models. We can perform gate-level power analysis to evaluate the component energy

consumption in early design stage.

In order to offer system-level energy evaluation, we construct high-level component

energy models according to the gate-level power analysis results. Equation (5) shows our

high-level component energy model:

  
activeeventactiveeventtotalidle

CETPE
__ (5)

17

Total energy consumption (E) consists of idle energy and active energy. Idle energy is the

product of idle power (Pidle) and total execution time (Ttotal). Idle power reflects leakage power

and power of modules which are always active. Active energy is the product of event active

energy (Eevent_active) and event active count (Cevent_active). Active energy reflects energy

consumption variations of different hardware events. The event active count is based on

performance monitor information which can be retrieved from REALprof, such as pipeline

stall, cache miss.

3.4. Advantages of Our Approach

Our approach provides both performance and energy evaluation for embedded systems. It

is useful for designers to optimize system and make a trade-off between performance and

energy efficiency in design stage. Because we use FPGA to construct reconfigurable

emulation platform, our approach is more flexible than ASIC approach. The evaluation speed

is faster than software simulator, and it is possible to evaluation program with operation

system and complex software.

Our approach is different from conventional software profiling. We use hardware to

sample performance counters and program counters periodically. It avoids software sampling

routine, and the target program doesn’t need to insert extra profiling instructions. Therefore,

our approach doesn’t cause heavy software profiling overhead and reserves the original

behavior of the target system.

In order to reduce profiling overhead and provide acceptable accuracy, conventional

software profiling usually works in millisecond level granularities. Without software sampling

overhead, our approach can provide different profiling granularities. It is possible to perform

cycle sampling using our approach. In design stage, designer can do several profiling

iterations from coarse-grained to fine-grained to understand the program behavior in detail.

18

Chapter 4. Implementation

Figure 10 illustrates overview of our emulation platform. We construct the target MPSoC

design using GRLIB open source IP library with our proposed tool - REALprof. Then, we

download the target design to DE3 FPGA board to construct an emulation platform. We use

SnapGear Linux distribution with SMP support and multi-thread applications to construct the

embedded software. Embedded software executes on the emulation platform and performs

runtime hardware monitor using REALprof. After profiling done, our tools generate

performance and energy reports with diagrams for system analysis.

The rest of this chapter is organized as follows: Section 4.1 introduces hardware and

software of the emulation platform. Section 4.2 describes REALprof implementation in detail.

Figure 10. Overview of our emulation platform

19

4.1. Emulation Platform

4.1.1. GRLIB Open Source IP Library

In this thesis, we use GRLIB [30] IP library to construct the target MPSoC platform.

GRLIB is an integrated set of reusable IP cores provided by Aeroflex Gaisler. It is provided

under dual license mode, GNU GPL license or commercial license. It includes LEON3

soft-core processor and abounding peripheral cores. Each core of GRLIB is interfaced using

AMBA 2.0 protocol and uses synthesizable VHDL model. LEON3 is a 32-bit soft-core

processor based on the SPARC V8 architecture. It has 7-stage pipeline with L1 Harvard

architecture cache. Data cache of LEON3 supports snoop protocol. It is possible to perform

SMP system using LEON3 processors. To provide debug environment for the target system,

GRLIB also includes a debug support unit core for LEON3 processor with GRMON [31]

debug monitor software support. Figure 11 illustrates the block diagram of LEON3 processor.

The original design of LEON is developed by ESA (Europe Space Agency) for space

applications.

Figure 11. Block diagram of LEON3 processor

20

Figure 12. Block diagram of LEON3 MPSoC

Table 2. LEON3 processor configurations

Module Configurations

Integer Unit

8 register windows, 1-cycle load delay,

SPARC V8 MUL/DIV support, 2-cycle multiplier latency,

power-down mode support

Floating Point Unit only netlist is available for FPGA

L1 Instruction Cache 4-way set-associative, total 16 KB, 32 bytes/line, LRU

L1 Data Cache
4-way set-associative, total 16 KB, 32 bytes/line, LRU,

AHB fast snoop and separate snoop tags

MMU
Separate instruction/data TLB, fast write buffer, LRU

32 entries for each instruction/data TLB

4.1.2. LEON3 MPSoC Emulation Environment

Figure 12 shows our target MPSoC design. It includes LEON3 quad-core, abounding

peripherals, and our proposed tool - REALprof. Four LEON3 processors snoop data on AHB

(Advanced High-performance Bus). Configurations of each processor are shown in Table 2.

21

REALprof is wrapped as an AHB slave. Each processor connects its program counter and

event signals to REALprof. Detail of performance events and energy calculation will describe

in section 4.2.

4.1.3. DE3 Development and Education Board

In this thesis, we use DE3-340 [32] development and education board to construct

prototype emulation platform, as shown in Figure 13. DE3 is developed by Terasic

Technologies. It consists of Altera Stratix III 340 FPGA, DDR2 SO-DIMM socket, and

several peripheral components. Figure 14 shows that multiple DE3 boards can be joined

together to increase gate count using HSTC (High Speed Terasic Connectors) interface. Altera

Stratix III 340 FPGA uses TSMC 65-nm process to provide high performance and high

density. It contains 338000 equivalent logic elements and rich on-chip embedded memory. We

use Quartus II 8.0 design suite [33] to compile our design and download the target design to

DE3 FPGA.

4.1.4. SnapGear Embedded Linux Distribution for LEON3

SnapGear Linux distribution [34] is a full open source package for embedded systems

with boot loader, device drivers, Linux kernel, libraries, and abounding applications. Aeroflex

Gaisler provides LEON3 port of SnapGear Linux 2.6.21.1 with SMP support for multi-core

embedded systems. We add middleware for REALprof access includes device drivers and

some utilities. Multi-thread applications can be integrated to SnapGear Linux package and use

REALprof to perform performance and energy evaluation on the target multi-core emulation

platform.

22

Figure 13. DE3-340 development and education board

Figure 14. A stack of DE3 board - more powerful emulation system

23

4.2. Evaluation of LEON3 Processor

4.2.1. Runtime Performance Monitor

In order to evaluate performance and energy of LEON3 processor, we monitor several

hardware events of each processor using REALprof. Table 3 lists these events in detail.

Table 3. LEON3 processor events for REALprof monitors

Event number Event description

0 Program counter

1 Pipeline stall because of instruction cache miss

2 Pipeline stall because of data cache miss

3 Multiplication operation

4 Division operation

5 Instruction cache hit

6 Data cache read hit

7 Data cache write hit

8 Instruction cache miss

9 Data cache read miss

10 Data cache write miss

11 Cache flush

12 Instruction TLB miss

13 Data TLB miss

14 Power down cycle

15 Single register access

16 Double register access

24

4.2.2. Energy Calculation

We use runtime hardware monitor information to calculate component energy

consumption. Figure 15 illustrates gate-level power analysis flow that describes in section 3.3.

We use Design Compiler [35] to synthesis the target design with Faraday cell-based design kit

for UMC 90 nm 1P9M process. In typical condition (25˚C, 1.0 Volt), the target design

operates at 400 MHz. After synthesis, we use ModelSim [36] to perform gate-level simulation

for generated netlist and software. The generated waveform in VCD (Value Change Dump)

format then feeds to PrimeTime PX for dynamic power calculation. PrimeTime PX performs

hierarchical power report and FSDB (Fast Signal DataBase) waveform according to design

netlist, cell library, cell delay, and VCD waveform. Finally, we construct component energy

models using power report and waveform.

Figure 15. Flow of gate-level power analysis

25

Table 4 lists event energy consumption of LEON3 processor according to the gate-level

power analysis report. In typical case, data cache dominates processor energy variances.

Table 4. LEON3 processor energy consumption

Component Event Energy/Power

Pipeline

Power down 16.1 mW

Idle 49.2 mW

Normal 58.2 mW

Multiplication operation 32 pJ

Division operation 218.75 pJ

Instruction TLB miss 4.25 pJ

Data TLB miss 4.25 pJ

Instruction cache

Power down 0.4084 mW

Idle 49.1 mW

Flush 16.403 nJ

Hit 126.575 pJ

Miss 123 pJ

Data cache

Idle 0.601 mW

Flush 25.869 nJ

Hit 314 pJ

Miss 952.95 pJ

Register file

Idle 6.28 mW

Single access 9.65 mW

Double access 12.9 mW

26

Chapter 5. Experimental Results

Our approach uses hardware to assist sampling automatically. Programmer sets

REALprof registers to start sampling before the target program section and stop sampling

after the section. It doesn’t need extra software overhead to sample hardware performance

counters periodically. Figure 16 shows that overhead of conventional software sampling for

hardware performance counters increases linearly with number of counters. The more

information you want to get by sampling counters, the more overhead and inaccurate samples

you get. However, our approach offers constant and negligible extra software overhead. It

reserves the original target program behavior.

Figure 16. Overhead comparison with different number of HPCs

Figure 17 shows that software sampling overhead increases with profiling frequency.

Sampling overhead is only negligible in millisecond granularity. It is difficult to perform

acceptable profiling results in microsecond granularity using conventional approach.

27

Figure 17. Overhead comparison with different sampling frequencies

Table 5 compares our approach with other conventional approaches for performance and

energy evaluation. Our approach offers fast emulation about 100 MHz. Software overhead is

negligible and it provides fine-grained profiling. It is possible to profile target software with

operating system and scalable for complex multi-core systems.

Table 5. Feature comparison of performance and energy evaluation approaches

 REALprof HPC profiling uArch simulator Circuit simulation

Method HW emulation directly execute SW simulation SW simulation

Speed ~ 100 MHz real speed KIPS ~ MIPS extremely slow

Flexibility reconfigurable N Y Y

SW overhead negligible Y N/A N/A

Granularity > cycle ~ ms N/A great

HW resource HPC + BRAM HPC N N

Program

behavior
keep destroy N/A keep

Operating

system
Y Y usually skip skip

Multi-core

support
scalable VTune, OProfile SESC, GEMS Y

28

Our approach uses reconfigurable hardware resource to record the sampling information.

Table 6 shows the resource usage report of our emulation FPGA. Each REALprof monitor

uses one M9K memory block to provide up to 256 records of each 32-bit hardware

performance counter. For StratixIII 340 FPGA, the target design with REALprof only uses

about 30% logic and 12% memory blocks. REALprof only uses about 2% logic and 4%

memory blocks for 1 controller and 68 monitors. Therefore, it is possible to use REALprof for

more complex embedded systems.

Table 6. StratixIII 340 FPGA resource usage

Combinational

ALUTs
Logic registers DSP block

Block

memory bit
Number

LEON3

processor
12581 8451 4 343936 4

DDR2

controller
781 601 0 4096 1

peripherals 2600 1269 0 16384 N/A

REALprof 4826(2%) 2091(1%) 0(0%) 557056(4%)
1 ctrl

68 mon

Total 58531(22%) 37765(14%) 16(3%) 1953280(12%)

29

5.1. Case Study: SPLASH-2 FFT

This section demonstrates our approach for a multi-core embedded system. We use

SPLASH-2 [37] FFT as the target multi-thread application program. Figure 18 illustrates the

hardware performance counters sampling of CPU_0. As shown in figure, our approach

provides fine-grained sampling in microsecond level. Designer can use REALprof to observe

the variation of each counter in detail. According to these runtime hardware information and

energy models, we can estimate energy consumption of each component. Figure 19 illustrates

energy evaluation of CPU_0 components. As shown in figure, data cache behavior dominates

the variation of the processor. This phenomenon is match with the gate-level power analysis

result. Figure 20 illustrates energy evaluation of each core. Designer can use the evaluation

result to analysis and optimize the target design. In this case, we can observe that SPLASH-2

FFT is a well parallelized multi-thread program.

Figure 18. Hardware performance counters sampling of CPU_0

30

Figure 19. Energy evaluation of CPU_0

Figure 20. Energy evaluation of each core

31

Chapter 6. Conclusions

In this thesis, we propose a hardware-assisted performance and energy evaluation tool -

REALprof. Our approach uses FPGA to provide fast full system emulation, and it is scalable

for complex multi-core embedded systems. The experimental results show that it can work at

a 100 MHz quad-core emulation platform. Our approach uses hardware to sample runtime

hardware information without extra software sampling overhead. It provides different

granularities from coarse-grained to fine-grained. As shown in case study, multi-core

embedded system with Linux operating system can use REALprof to perform effective

fine-grained profiling in microsecond level. The generated system-level performance and

energy report is useful for designers to optimize hardware and software in design stage.

In order to provide experimental environment of a multi-core embedded system. We

construct a powerful LEON3-based quad-core MPSoC emulation platform on DE3 board.

Besides, we construct energy models of LEON3 soft-processor using gate-level power

analysis with UMC 90 nm cell library. Finally, we perform a case study of profiling a

SPLASH-2 multi-thread program on the target multi-core embedded system.

32

References

[1] NVIDIA Tegra.

http://www.nvidia.com/page/handheld.html

[2] Qualcomm Snapdragon.

http://www.qctconnect.com/products/snapdragon.html

[3] Texas Instruments OMAP 4 Platform.

http://www.ti.com/omap4_platform

[4] ARM11 MPCore.

http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html

[5] L. Shannon and P. Chow, “Using Reconfigurability to Achieve Real-Time Profiling for

Hardware/Software Codesign,” Proceedings of the 12th International Symposium on

Field Programmable Gate Arrays, pp. 190-199, Monterey, California, February 2004.

[6] J. G. Tong and M. A. S. Khalid, “Profiling Tools for FPGA-Based Embedded Systems:

Survey and Quantitative Comparison,” Journal of Computers, Vol. 3, No. 6, pp. 1-14,

June 2008.

[7] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Full-System Chip Multiprocessor

Power Evaluations Using FPGA-Based Emulation,” Proceedings of the 13th

International Symposium on Low Power Electronics and Design, pp. 335-340, Bangalore,

India, August 2008.

[8] M. A. Ghodrat, K. Lahiri, and A. Raghunathan, “Accelerating System-on-Chip Power

Analysis Using Hybrid Power Estimation,” Proceedings of the 44th Design Automation

Conference, pp. 883-886, San Diego, California, June 2007.

[9] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for Computer

System Modeling,” IEEE Computer, Vol. 35, No. 2, pp. 59-67, February 2002.

[10] CoWare Platform Architect.

http://www.coware.com/products/platformarchitect.php

[11] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen,

K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet's General Execution-driven

Multiprocessor Simulator (GEMS) Toolset,” ACM SIGARCH Computer Architecture

News, Vol. 33, No. 4, pp. 92-99, November 2005.

33

[12] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt,

“The M5 Simulator: Modeling Networked Systems,” IEEE Micro, Vol. 26, No. 4, pp.

52-60, July 2006.

[13] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi, P. Sack, K.

Strauss, and P. Montesinos, SESC: Cycle Accurate Architectural Simulator, January 2005.

http://sesc.sourceforge.net

[14] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri, “MPARM: Exploring

the Multi-Processor SoC Design Space with SystemC,” Journal of VLSI Signal

Processing, Vol. 41, No. 2, pp. 169-182, September 2005.

[15] J. Cong, K. Gururaj, G. Han, A. Kaplan, M. Naik, and G. Reinman, “MC-Sim: An

Efficient Simulation Tool for MPSoC Designs,” Proceedings of the 2008 IEEE/ACM

International Conference on Computer-Aided Design, pp. 364-371, November 2008.

[16] Intel VTune Performance Analyzer.

http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm

[17] OProfile - A System Profiler for Linux.

http://oprofile.sourceforge.net

[18] GNU gprof.

http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html

[19] ARM11 MPCore Processor Technical Reference Manual, ARM Limited, 2008.

[20] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Programming

Interface for Performance Evaluation on Modern Processors,” International Journal of

High Performance Computing Applications, Vol. 14, No. 3, pp. 189-204, April 2000.

[21] M. E. Shobaki and L. Lindh, “A Hardware and Software Monitor for High-Level

System-on-Chip Verification,” Proceedings of the 2nd International Symposium on

Quality Electronic Design, pp. 56-61, San Jose, California, March 2001.

[22] Synopsys HSPICE.

http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPIC

E/Pages/default.aspx

[23] Synopsys PrimeTime PX.

http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx

[24] D. Shin, H. Shim, Y. Joo, H.-S. Yun, J. Kim, and N. Chang, “Energy Monitoring Tool for

Low-Power Embedded Programs,” IEEE Design and Test of Computers, Vol. 19, No. 4,

pp. 7-17, July 2002.

34

[25] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for Architectural-Level

Power Analysis and Optimizations,” Proceedings of the 27th International Symposium

on Computer Architecture, pp. 83-94, Vancouver, British Columbia, Canada, June 2000.

[26] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The Design and Use of

SimplePower: A Cycle-Accurate Energy Estimation Tool,” Proceedings of the 37th

Design Automation Conference, pp. 340-345, Los Angeles, California, June 2000.

[27] R. Ben Atitallah, S. Niar, and J.-L. Dekeyser, “MPSoC Power Estimation Framework at

Transaction Level Modeling,” Proceedings of the 19th International Conference on

Microelectronics, pp.245-248, Cairo, Egypt, December 2007.

[28] G. Contreras and M. Martonosi, “Power Prediction for Intel XScale Processors Using

Performance Monitoring Unit Events,” Proceedings of the 10th International Symposium

on Low Power Electronics and Design, pp. 221-226, San Diego, California, August

2005.

[29] G. Contreras, M. Martonosi, J. Peng, G.-Y. Lueh, and R. Ju, “The XTREM Power and

Performance Simulator for the Intel XScale Core: Design and Experiences,” ACM

Transactions on Embedded Computing Systems, Vol. 6, No. 1, February 2007.

[30] J. Gaisler, E. Catovic, M. Isomäki, K. Glembo, and S. Habinc, GRLIB IP Library User’s

Manual Version 1.0.20, Aeroflex Gaisler, February 2009.

[31] GRMON User’s Manual Version 1.1.35, Aeroflex Gaisler, March 2009.

[32] ALTERA DE3 Development and Education Board User Manual, Terasic Technologies.

[33] Altera Quartus II.

http://www.altera.com/products/software/quartus-ii/subscription-edition

[34] D. Hellström, Manual: SnapGear Linux for LEON Version 1.38.0, March 2009.

[35] Synopsys Design Compiler.

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/DesignCompilerG

raphical.aspx

[36] Mentor Graphics ModelSim.

http://www.mentor.com/products/fv/modelsim

[37] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Programs:

Characterization and Methodological Considerations,” Proceedings of the 22nd

International Symposium on Computer Architecture, pp. 24-36, Santa Margherita Ligure,

Italy, June 1995.

