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ILap: Iterative Layer-Aware Partitioning
Algorithm for Through-Silicon Via
Minimization in 3D ICs

Student: Yang-Hsiang Liu  Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

As compared with two-dimensional (2D) ICs, three-dimensional (3D) integration is a
breakthrough technology of..growing importance that- has the potential to offer
significant performance and-functional benefits. This -emerging technology allows
stacking multiple layers of -dies and resolves the vertical connection issue by
through-silicon vias (TSVs). However, though a TSV is considered a good solution for
vertical connection, it also occupies ‘significant silicon estate and incurs reliability
problem. Because of these challenges, to minimize the number of TSVs becomes
important in the design processes. Therefore, in this thesis, we propose two iterative
layer-aware 3D partitioning algorithms, named iLap-2 and iLap-k, for TSV
minimization. iLap-2 iteratively applies 2-way min-cut partitioning to gradually divide a
given design layer by layer in the bottom-up fashion. Meanwhile, iLap-2 also properly
fulfills a special 1/0 pad constraint incurred by 3D ICs to further improve its outcome.
Based on iLap-2, iLap-k replaces the 2-way partitioning by k-way partitioning engine
for considering the distribution of the future. The experimental results show that iLap-k
can reduce the number of TSVs by about 33% as compared to several existing methods.
Besides, iLap-k distributes TSVs more evenly among different vertical layers,
preventing any layer junction from having a burst number of TSVs. That is important to
application specific integrated circuit (ASIC) as well as regular structures.
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Chapter 1 Introduction

With the advance of semiconductor manufacturing process technology, ever-shrinking
feature size and exponentially growing number of transistors on a chip are facing severe and
alarming challenges such as signal integrity, power integrity and dissipation, leakage power,
clock distribution and yield issues [1]. Besides, the wire delay becomes more important than
gate delay [2]. As shown in Figure 1, the long interconnect delay fails to shrink as the device
delay does and eventually dominates the system performance in the system-on-chip era.
Therefore, a solution is demanded to both alleviate the interconnect speed bottleneck and
provide new avenues for the advanced device and architectural innovation. As approaching
the physical limitation, traditional scaling .is no longer the only way for advancing
manufacturing process technology and _hence. three-dimensional (3D) technologies are
emerging in recent years [3]-[10]. 3D integrated circuit (3D IC) technologies enable to stack
multiple dies on a single chip.and provide three unique advantages compared to conventional
2D approaches, namely higher system integration, better heterogeneous integration, and

shorter global interconnect length.
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Figure 1. Relative delay vs. process technology. [1]



1.1 3D Structures

Among those state-of-the-art 3D integration technologies, the wire bonding method is
preferred in the system-in-package (SiP) process to accomplish the vertical interconnect
between different layers [3]-[5]. However, terminals of chips have to be arranged at the
periphery of the chips. Therefore, the wire bonding technique is difficult for high vertical
interconnections because the number of the vertical connections is limited. Another promising
technology is using the Through-Silicon Via (TSV) [6]-[10]. Figure 2 illustrates a typical
TSV-based 3D IC structure. TSVs cut across thinned silicon substrates to make inter-die
connections, allowing high compatibility with the present standard CMOS process. The
position of TSVs can be inside of chips. Besides, all external I/O signals must go through
those metal bumps located at the bottom of the 3D structure to bridge the internal logic and

the outside system.

Device layer

Block Block Block

Through- | o © -
LNIOUgn |y Metal layer
silicon vias [ Biock | [ Block | Dieletric layer
Vg
[ Block | Block

Wf y y ' - Bump
Figure 2. A TSV-based 3D structure.

Nevertheless, compared with a standard 2D process, though the TSV-based vertical
transmission can theoretically be fast by reducing the global connections as shown in Figure
3, currently available processes for TSV fabrication suffer relatively low yield [11] as well as
large area overhead [12]-[14]. Figure 4 shows the area overhead of the TSVs, compared to
the other operation cells, it is huge obviously. The area of a single TSV is 64um? (2012);

however, a 6-transistor SRAM occupies 0.061um?. We can calculate the area ratio from TSVs
2



to the SRAM is about 1049 [1]. Therefore, the area overhead is important to ASIC or some
regular structures. There are some researches about TSVs in the back-end processes
considering timing and thermal issues already [15]-[17]. In summary, using less number of
TSVs is highly desirable both for improving the yield of 3D design and for minimizing the
area overhead. Consequently, the issue of TSV minimization must be well addressed as

stepping into the 3D IC arena.

8 66 3 385 f 35 3 35 4 a4y Ko
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TSV landing pad
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Figure 4. The area overhead of TSVs. [29]



1.2 Related Works

In general, how a design gets partitioned into different vertical layers of a 3D logic
structure basically determines how many TSVs are mandatory for signal connection among
those vertical layers. In the past few years, several previous works have already been
proposed to tackle the problem of 3D partitioning for TSV minimization. One solution is to
model the problem as an integer linear programming (ILP) problem [18], however, whose
runtime grows exponentially as problem size increases. In [19][20], each of them develops a
modified FM-based [21] partitioning method to obtain the resultant layer assignment
aggregately at a time, not layer by layer. For this layer-aware algorithm, there is a brief
introduction in the later section about [19] proposed on ISQED 2010. Meanwhile, the authors
of 3D FPGA synthesis frameworksTPR{22]-[24] and MEANDER [25][26] alternatively use
a two-step approach — first applying the well-known partitioning algorithm hMetis [27][28] to
divide a design into layer-unaware partitions, and then assigning each partition to its target
layer — to accomplish 3D design partitioning.-In MEANDER, the authors assign each part to
layer randomly, while EV-matrix [22] is.used in-TPR."We will detail how it runs a few simple
and easy steps to minimize the number of TSVs in the next section.

From these related works, we can figure out the importance to the partitioning process.
Because it is the first step to translate the 2D netlist into the 3D structure, the partitioning
result directly influences the number of TSVs seriously. In our work, we try to use a

layer-aware algorithm to iteratively minimize the number of TSVs.

1.2.1 EV-Matrix

Here we introduce a linear-placement method doing layer assignment after a min-cut
partitioning in TPR [23]. It uses an EV-matrix [22] to model the 3D structure. After a min-cut

partitioning like Figure 5, the graph is mapped into an EV-matrix as Figure 6(a). Itisanm x n



matrix where m (the number of rows) is the number of edges in the graph and n (the number
of columns) is the number of parts. An element a(i, j) = 1 in the matrix is nonzero if the j-th
part is a terminal of the i-th net. If a part is not a terminal for a net, the corresponding
EV-matrix element is 0. The bandwidth of a matrix is defined as the maximum distance
between the first and last nonzero entries among all rows. In other words, the bandwidth is
associated to the number of cuts of each edge in Figure 6(b). There are two goals:

i)  To minimize the total cuts: it makes the bandwidth as small as possible on each row.

i)  To minimize the maximum cut size: it makes all of the 1’s as closed the main diagonal

as possible.
ACEL @
Figure 5. A'partitioned graph.
Vertices
123456 S .
a 101000 . b
e
g b 0so001| (1) (2) (2)(») (o
2 c 001100 A
Wd 001001 a d
€ 000011 Initial: Total cutsize = 11, Max-cut = 3
EV-matrix

(a) (b)

Figure 6. EV-matrix.



In order to complete the objective, it only needs to move columns and rows. Although it is
effective in time, it still has some disadvantages. Firstly, it cannot provide a good solution
especially in hypergraph. Secondly, though hMetis is an efficient and effective min-cut
multi-way partitioning tool, it lacks for layer-aware concept. That is, a typical 2D partitioning
algorithm basically gives a similar weight to a cut between any two partitions, while that
weight can be very different in 3D partitioning and highly depends on whether those two
partitions (i.e., layers) are closed or far away from each other. Hence, the layer-unaware

algorithms usually fall into the local minimum solution.

1.2.2 Multilevel Multilayer Partitioning Algorithm for 3D ICs

In this section we introduce another -algorithm different from layer-unaware method.
Multilevel multilayer partitioning algorithm.[19] modifies the multilevel k-way min-cut

partitioning algorithm. It is layer-aware by redefining the cut calculation fitted for 3D ICs.

== m

Construct Data Structure

v

Gate-Level
Netlist

Coarsening
No
Do Coarsening Steps Stop?
Yes

Initial-k-Layer-Partition

v

k-Layer-Partition

No

Do Uncoarsen Steps Stop?

Yes

Figure 7. The flow of multilevel multilayer partitioning algorithm.
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Figure 7 is the overall flow of this algorithm. At the beginning, the coarsening phase
clusters the cells with high connectivity together. And then, do a k-layer partitioning to
initialize the locations of all the gates. After the initial partitioning phase, repeat k-layer
partitioning and uncoarsening to refine the total number of cuts required until the
uncoarsening steps stop.

Note that this framework performs one multilevel iteration to decide which layer all of the
gates should be placed. It reduces only the total number of TSVs without considering the
maximum number of TSVs among all of the adjacent layers. Although this work is sensitive
to the 3D structure, it is not good enough to find the solution.

Therefore, in this thesis, we propose an iterative layer-aware partitioning algorithm, named
iLap, for TSV minimization in 3D ICs. Unlike [18]-[20], iLap merely identifies a layer at
each iteration, i.e., iLap is iterative and gradually produces the final result layer by layer. Also
unlike [22]-[26], which perform layer-unaware partitioning then layering, iLap applies
layer-aware partitioning at each iteration. Though iLap also utilizes min-cut partitioning as the
kernel of its engine, the experiment. results demonstrate that iLap can apparently do better
TSV minimization than three other hMetis-based and the multilevel multilayer partitioning
methods for various number of layers and the required runtime is just within few seconds.
Moreover, in addition to TSV minimization, iLap can also distribute TSVs among layers
more evenly than other existing arts. This feature is considered a big plus in design flows for

ASIC as well as for other 3D regular logic structures (e.g., 3D FPGAS).

1.3 Thesis Organization

The organization of this thesis is as follows. In Chapter 2, we briefly introduce our
motivations and the problem formulation. Chapter 3 details the proposed iterative layer-aware
partitioning algorithm. The experimental results and analyses are reported in Chapter 4.

Finally, the concluding remarks are given in Chapter 5.

7



Chapter 2 Problem Description

This chapter describes the motivations and the problem formulation. We introduce the
reasons why to develop a new partitioning algorithm fitted for 3D ICs technology and how to

calculate the number of TSVs for the 3D model.

2.1 Motivations

In 3D ICs, nets crossing multiple layers (or tiers) need vertical inter-layer connections. In
general, vertical connections are commonly achieved utilizing TSVs, which go through device
layers, connecting the pins of the same net distributed on different device layers. It has been
reported that vertical connections implemented using TSVs greatly affect area and reliability
of 3D ICs [11]. As a result, it is very important to‘minimize the TSV usage while performing
3D design partitioning (or layering). Figure 8 demonstrates a simple example of the 4-layer
3D partitioning. A given design with its 4-way min-cut: partitioning result is presented in
Figure 8(a). Figure 8(b) and (c) present two different 3D layering outcomes based on the same
partitioning result given in Figure 8(a) but-two. various layer assignments. From the
observations on Figure 8, we have to highlight three ideas. Firstly, as previously mentioned,
all external 1/0 pads (i.e., bumps) must be located at the bottom-most layer (i.e., Layer O in
Figure 8). That is, those vertices connected to 1/0 pads are likely to introduce extra TSVs for
correctly connecting to bumps located at Layer 0. As shown in Figure 8(b), five extra
connections (in red dotted line) suggest that 13 more TSVs are required, which are generally
ignored in conventional multi-way min-cut partitioning algorithms. It also explains why there
is a big difference between the total cut size (=8) in Figure 8(a) and the number of total TSVs
(=28) in Figure 8(b). Secondly, different layer assignments result in different TSV
requirements even the initial partitioning result is identical. For instance, the number of TSVs

reduces from 28 in Figure 8(b) to 21 in Figure 8(c) simply because the permutation of



partitions is changed. Finally, because min-cut partitioning does not aware the 3D
architecture, it might not produce the global solution even though exhaustively examining all
possible layer permutations. For example, the cut size in Figure 8(d) is more than Figure 8(a),

but it requires only 19 TSVs in Figure 8 (e) smaller than the best permutation in Figure 8 (c).

] /0 pad
QO Op. cell

() =) Layer 4 Q/M
4 cut3 =5
= \ A
/ ” Layer3 : e

e ".. > | Layer?2

cut; =5

cut, =6

cut, =9

cut; =5

: Layerd
Cuto=5— L DN : : ‘| cut=5
Additional TSVs — | I [] D E] ] Layer O EE

connecting to 1/0s 13 15 16 17 13 15 16 14 17
(b) total_tsv = 28 (c) total_tsv = 21

cut; =9

Layer 4
cut; =4

Layer3 cut, =5
5=
O

Y
‘eww cut; =5
W

Layer 2

Layer 1 e ’e B
Cutp=5

Layer O t]

13 15 16 14 17
(d) Cut size =10 (e) Total_tsv =19

Figure 8. A 4-layer 3D partitioning example.



Through the multilevel multilayer partitioning algorithm [19] is layer-aware, it ends the
algorithm just in one multilevel iteration without considering the maximum number of TSVs
between the adjacent layers. Figure 9 shows the different maximum cuts with the same total
number of TSVs. For some regular structures with fixed resources, the design circuit with

excess cuts might not be successfully implemented.

max_cut=4 max_cut =
@ Layer 4 , ﬁ)/@D
cut; =2 cut; =3
O—C—@ | Lwers
cut, =4 cut, =3
| |
cut; =3 cut; =3
O—X il O——O
cutg =2 : _‘ : _‘ Cutg =2
D Layer O D D
11 12 11 12
total_tsv =11 total_tsv =11

Figure 9. Different maximum.cuts with the same total number of TSVs.

According to the huge area overhead of TSVs mentioned before, the number of TSVs
directly reflects the area cost. Hence, in order to reduce the extra area introduced by TSVs
under 3D structures, we can minimize the number of TSVs.

Based on the above discussions, it should be clear that conventional multi-way min-cut
partitioning algorithms virtually have no chance to perform 3D partitioning well in their
original forms due to their ignorance about the vertical layout structure. Even though the other
exact algorithms are layer-aware, they still can not efficiently find a good mapping for 3D
ICs. Therefore, a layer-aware partitioning algorithm simultaneously considering the total

number of TSVs and maximum number of TSVs between the adjacent layers specifically
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dedicated to 3D structures should be eagerly demanded for advanced 3D IC design

methodologies.

2.2 Problem Descriptions

2.2.1 Design Model

The design is modeled as a hypergraph G = (V, E), where
\Y . A set of vertices including a set of operation cells C and a set of 1/0 pads I.
E . A set of hyperedges. Each hyperedge isa subsetof V,e < V, Ve e E.

area(v) : The area cost of v.

aredol  : The summation of area(v). That is areapa = »_  area(v).

2.2.2 3D Architecture Model

A k-layer disjoint partition set of G with the 1/0 terminals residing at the bottom-most layer
is represented as L = {Lo=I, L1, Ly ... Ly}, where
L : The partition assigned to the i-th layer. It isa subsetof C; L; < C, V 1
<i<k;LNnL,=9g vVi#jl<ij<kadl; UL U.. U
Ly = C.
area(L;) :The summation of area(v), V v € L.
areaay - The average of the total area in the k layers. It is calculated as areayota / k.
layer(v) : Indicate which layer v actually resides. That is, layer(v) =i, V v e L;.
rp(e) : The range pair of a hyperedge e. It is defined as rp(e) = (bot(e) = b, top(e)
=1) if e connects vertices from the b-th layer to the t-th layer; i.e., V v €
e,b < layer(v) < t.
Then the number of TSVs required to complete e can be calculated as
tsv(e) =t—b. (2.2)

11



jcti . It is defined as the junction between the two adjacent layers L; and L;.;,
1 <i<k

cut; : The number of TSVs passing through jct;.

2.2.3 TSV Calculation

Hence, the total number of TSVs, total_tsv, needed for the 3D partitioning solution L can

be determined either by summarizing the required TSVs for all hyperedges

total_tsv=>"__tsv(e) (2.2)

or by summarizing TSVs passing through all junctions
_ k
total_tsv= > cut;. (2.3)
Consider the example shown in Figure 8(b), rp(e;) = (0, 4) and thus tsv(e;) = 4. Similarly, the

total number of TSVs in Figure 8(b) is total _tsv = Zcuti =5+9+9+5=28, including 15

TSVs connecting between operation cells;"and 13 TSVs connecting between operation cells
and 1/0O pads. We would like to'emphasize again that existing partitioning algorithms usually
ignore the 1/0 pad connection issue, as well" as the provided min-cut-based solutions are
generally not well optimized (shown later) and always underestimate the real TSV need even
excluding TSVs for connecting 1/0 pads (8 vs. 15 in this case) due to their layer-unawareness.

Figure 10 is an example of the model. Assume the area of each vertex is set to 1. The graph
is assigned into a 3-layers 3D architecture. As like Figure 10, the area of each layer is shown.
For the hyperedge e, the bottom-most vertex {1} is in Layer 1, and the top-most vertex {2} is
in Layer 3. Hence, rng(e) is (1, 3), and the tsv(e) can be calculated by 3-1 = 2. Besides, we
can calculate the number of hyperedges through each junction, and total tsv can be figured

out by summed them up.

12



k=3 Ls @ @) rp(e)=(1, 3)
areaipa = 5 jcts e cutz=2 tsv(e)=3-1=2
aredayg = 1.67 L, \ __C;\:,)
area(Ls) = 2 jct cut,=3
weaty=1 LTS e

— - 3 2 1
area(Ll) =2 thl cut;=2 =7

" 4

Figure 10. An example of the 3D model.

2.2.4 Problem Formulation

In this work, we model the 3D partitioning problem as a layer-aware multi-way partitioning
problem. Given a target 3D structure consisting of k layers stacking vertically, a design G, the

I/O constraint, and the area constraint

area,,, x (1-r) <area(ly) <area,,, x(L+r) (2.4)
with a balanced ratio r, 0<r.<1, for balancing the area of layers. Our proposed algorithm
partitions G into k sub-designs which are explicitly associated to k different vertical layers so
that the total number of TSVs is minimized. That is, given G = (V = C U I, E) with layer(v) =

0, V v e I, our algorithm finds the mapping, 1 < layer(v) < k, V v e C, such that

total_tsv is minimized.
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Chapter 3 Proposed Algorithm

In this chapter we present our bottom-up multi-way 3D partitioning algorithm. Section 3.1
explains why we decide to adopt the iterative framework and how the framework carries out
the idea of layer-awareness by unbalanced 2-way partitioning method. In Section 3.2, the

further improvement by using k-way partitioning engine is described.

3.1 Iterative Unbalanced 2-Way Partitioning Framework

Here we propose our iterative partitioning framework that gradually constructs the solution
from the bottom layer all the way to the top. Section 3.1.1 explains how to use unbalanced
2-way partitioning algorithm iteratively to decide the members of each layer. Then Section
3.1.2 proposed the solution to solve:the parasitical-area problem in this iteratively constructive
framework. Finally, Section 3.1.3 describes our iterative layer-aware partitioning algorithm

with unbalanced 2-way partitioning engine iLap-2 in detail.

3.1.1 Iterative Procedure

Before describing the procedure step by step, we have to point out an important concept.
Because of the 3D architecture, the partitioning result displays with a permutation. From the
bottom layer, if the first layer is fixed, the number of cuts between the first layer and those
upper layers will not be changed no matter which layer the other vertices will be located.
Since there is a naturally fixed layer in the 3D structures, 1/O layer, we can construct the result
from it. Based on the concept and this initial fixed layer, this procedure can define the
solution layer by layer. Following is an example to detail how we use this concept.

Consider that all 1/0O pads must reside at Ly by definition and then the number of TSVs
through jct; (i.e., cuty,) is always fixed to |I| no matter how other operation cells (or L;~Ly) get

partitioned eventually. Therefore, if we define G; by compacting all the 1/0 pads into the

14



supervertex vs and keeping all the related hyperedges unchanged, as shown in Figure 11, it is

conclusive that jct; will remain unchanged and so will cut; in Gy if v is resided at L.

Figure 12. Unbalanced 2-way partitioning.

Next, an arbitrary conventional unbalanced 2-way min-cut partitioner is applied on G; to
get two partitions. Based on the area constraint, the paritioner chooses a part of the operation
cells together with vs in the smaller partition ps, where area(vs) is set to zero to avoid
disturbing area balancing during partitioning. The partition ps further implies that the
operation cells residing in ps should be put as close to the 1/0O pads as possible for cut

minimization and thus should be assigned to L;. For example, Figure 12 indicates the 2-way

15



min-cut partitioning with an area rate (1:3), and hence L is finally set to {7, 11, 12} as Figure

13(a) depicts.

Layer 1 NN A
RN G
Layer O Do o O Vil ?
13 15 16 17 14
(@) (b)

Figure 13. L; compaction.

Once the elements of L; are determined, cutsis therefore fixed. The next task becomes how
to decide which vertices should reside at L,. However, since L, and L; are fixed at this point,
jctz and cut; are both fixed no-matter how other else operation cells (or L,~L) get partitioned
later. As one can easily discover that the situation is extremely similar as that of identifying L;
previously. Hence, if we further derive -G, from-Gy by compacting L; into vs and apply 2-way
min-cut partitioning with the area rate changed into 1:2 on G, L, can then be identified in the
same fashion (as shown in Figure 14). An important idea is that the partitioning size becomes

smaller and smaller.

Figure 14. L, decision.
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Summarily, at each iteration the proposed framework always derives G,.; from G, by
further compacting L, into vs, then applies unbalanced 2-way min-cut partitioning with variant
area rate to get Ln+1. This iterative process is not terminated until Ly ; is identified. Figure 15

illustrates the final result generated by iLap-2, and the total TSV count is 22.

” CUt4:5
Layer 3 6 5
CUt3:6
oz | 05
Cut,=6
Layer 1 /Qs\ \;D‘ 12
CUt1:5
Layer O é -

Figure 15. The result of iLap-2.

3.1.2 iLap-2

Before describing the flow of the proposed algorithm iLap-2, two essential terms should be
revisited again:

i)  The supervertex vs represents a set of vertices, but area(vs) is always set to zero.

i) To compact a vertex v into the supervertex vs is to insert v itself into v, i.e., vs =

vs U{v}. Every net originally connected to v is reconnected to vs afterward.

The flow and pseudo code of the complete algorithm are given in Figure 16. All 1/O pads
are first compacted into the supervertex vs during initialization. Each iteration starts with
unbalanced 2-way min-cut partitioning. Once partitioning is done, the vertices residing at the
partition where vs also locates are assigned to the current layer, i.e., Layer n. n always
increases by one at every iteration end. At the final iteration, where n = k-1, the elements of

Layer k-1 are identified after 2-way partitioning. At last, the remaining operation cells are
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then automatically assigned to the top-most Layer k and the algorithm ends. That is, exact k-1

invocations of unbalanced 2-way partitioning are needed for k-layer 3D partitioning here.

n<1 Initialization
: 1n<1,
Conépfcg I(JO |\9to Vs 2 compact all I/O pads into the supervertex v.;
v 3 C<CU{v}

Constructive Loop

4 while(n < k)

Unbalanced 2-way min-cut partition(C);
foreach v, e C—{v .} do

[(e e NNe)N &)

If part(v;) == part(v.) do
Unbalanced 2-way ICI)ayér'()vi) <—p n, N
partitioning C<—C-{v}
10 compact v; into v;

11 n<n+1;

End| 12foreachv,e C—{vg}do

13 layer(v) < k;

Compact

Figure 16..The flow and pseudo code of iLap-2.

3.1.3 Parasitical Area Problem

When we use the area constraint defined-in Section 2.2 to balance the area of the 3D

structures, the partitioning engine allows: the- clustered area to be minimum and maximum

with area,, x(1-r) and area,, x(1+r) respectively. However, it may produce two kinds

(a) Excess area (b) Insufficient area

\

Area, X (L+71) Area,, x (1-r1)

Figure 17. Area Problems on top-most layers.
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of area problems on the top-most layer(s). First, if the area of most lower layers is less than

area_ ., the area of top-most layer may be excess like Figure 17(a). On the other hand, if the

avg !

area of the lower layers is more than area_,, it is possibly insufficient as shown in Figure

avg !
17(b).

To solve these parasitical problems, the additional constraint is added:
—r <R =) area_usage(L;) <r,1<i<k (3.1)

j=1

area_usage(L; ) : The ratio of the area usage on the i-th layer. It is defined as

area(L,) —area
area_usage(L,) = (L) achy
area,,

Ri denotes the summation of the ratio of the area usage from L; to L;. If we combine equation

2.4 with equation 3.1, the area constraint becomes

r-i,low = Min(r’ r+ F\)i—l)

. 2
fip = Min(r,r—R, ;) (3.2)

area,,, x(1-r,,,) <area(l)<area, , x(1+¥r,), where{

That is, different layers have the different balanced ratio numbers, r;ow and ri,,. Depend on
the summation of the area usage of previous layers, rion and riy, are the tight boundary
calculated by the above equation. Then the balanced ratio numbers are applied into the
iterations of the framework. By eq. 3.2, the parasitical area problem will be solved as Figure
18 shows. Assume the balanced ratio r is 5%, L, is the first layer to reside with ryy, = 5% and
riiow = 5%. Then, the upper balanced ratio of Ly, ra,, becomes 3% because there is already
2% area usage in L; (R;=2%). If area usage(L,) is 2%, R, is 4%(=area_usage(L;) +
area_usage(Ly)). Therefore, r3, is 1% calculated by Min(r,r —R,) . Although the area usage

of L3 is 1% equals to r3p, the insufficient area problem will not happen in L.
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Figure 18. An example for different area ratio.

3.2 Iterative k-Way Partitioning Framework

For Figure 8(b), the result-produced by iLap-2 (Figure 15) is good, but it is not good
enough when compared to the best permutation solution-as Figure 8(c). In this section, we
describe the reason why iLap-2 can not get the solution-like Figure 8(e) firstly. And then we

propose the new algorithm named-‘iLap-k.to improve the performance.

3.2.1 The Reason to Use k-Way Partitioning Engine

iLap-2 uses unbalanced 2-way partitioning algorithm to reside vertices layer by layer.
Nevertheless, considering only one junction at a time may fall into the local minimum. Figure
19 is a 4-layer example which shows why iLap-2 can not always make the right decision for

the future.
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Cut, =3
Total TSV = 13
Cut, =5

Cut, =3

A= |Cut, =3

Cut, =4
Total TSV =12

Cut, =3

Cut, =2

Figure 19. A 4-layer example for the local decision of iLap-2.

Obviously the cut size of Figure 19(a) is the same with Figure 19(b), but the partitions
clustered with different members into Layer 1, {1, 2, 3} and {1, 2, 4} respectively. After
putting those cells into Layer'1, the 2-way partitioning results in the second iteration are also
different as like L, of Figure 19..1f we construct the structure sequentially, the final result of
Figure 19(a) required 13 TSVs; however there is only 12 TSVs needed in Figure 19(b). In this
example, the partitioning results clustered previously influence the later solution. Therefore, if
we considered only one junction at a time possibly tend to a bad outcome. In order to consider
the global distribution, we replace the partitioning engine in iLap-2 by k-way min-cut
partitioning.

For instance, Figure 20 is the result associating to Figure 19 partitioned by k-way engine.
The chosen part with the supervertex is unchanged. Then the engine partitions the remaining
cells into three parts as minimizing the total cut size as possible. Obviously, the total cut in
Figure 20(b) is less than in Figure 20(a). Thus, it’s easy for iLap-k to figure out the difference
between these two situations. In brief, we use the k-way partitioning algorithm in the

framework to iteratively predict the future searching for the global solution.
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(@) Total cut=8 (b) Total cut=7

cut; =4

cut, =5

cut; =5

cutp =5

(c) (d)

Figure 21. An example of iLap-k.
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Different from the 2-way partitioning engine, we apply k-way partitioning algorithm
considering the total min-cut afterwards. At each iteration, it can generally predict the
distribution of the operation cells and choose the best part as the partial solution. Figure 21 is
a simple example of iLap-k. Even though the graph is partitioned into four parts in (a), only
one part with v is put into Layer 1 as Figure 21(b). Then G; becomes G, by compacting {7, 8,
9} into vs. Figure 21(d) shows the final result with the number of TSVs less than the best

permutation in Figure 8(c).

3.2.2 iLap-k

The following is the pseudo code.and the algorithm flow of iLap-k. The procedure is
similar to iLap-2. Instead of the'unbalanced min-cut 2-way partitioning algorithm, multi-way
min-cut partitioning engine is applied to reside those operation cells iteratively. From the
bottom layer, the n-th iteration performs with (k—n+1)-way min-cut partitioning until Ly, and

L are assigned.

n<1 Initialization

Compact /0 into V 1n<1; _ |
C<C U {Vy 2 compact all I/O pads into the supervertex v;

3 C<CU{v}L

Constructive Loop

4 while(n <k)

(k-n+1)-way min-cut partition(C);

foreach v, e C—-{v.,}do

If part(v)) == part(v,) do

layer(v;) <—n;
C<C-{v}L

10 compact v; into v;

11 n<n+1;

End| 15 foreach v, e C—{vy}do

13 layer(v) <= k;

(k-n+1)-way
partitioning

O©o0o~NO U

Figure 22. The flow and pseudo code of iLap-k.
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In summary, the proposed framework possesses following four unique features:

1) It invokes multi-way min-cut partitioning at every iteration. The major reason is to
find the set of operation cells closest to the previous junctions, which potentially
minimizes the TSVs of the current junction. However, since only one partition is
actually accepted at each iteration, then why balanced multi-way instead of
unbalanced two-way? The main reason is to better mimic the final solution, which
potentially produces a more stable outcome.

i) Once a junction (and thus a cut) is fixed in an iteration, it is never altered during
following iterations. This ensures that good decisions made previously are never
overthrown later.

iii) At each iteration, only one partition is‘accepted and decisions for other partitions are
actually discarded. Later the updated graph” topology is reexamined and better
decisions are dynamically-remade at the following iteration. For instance, L, = {1, 3,
10} in Figure 21(d) is not identical to any partition shown in Figure 21(a). Running
any of conventional multi-way min-cut partitioning algorithms just once simply
cannot get this kind of result.

iv) From the traditional partitioning perspective, the result in Figure 8(d) has a larger total
cut size than the result in Figure 8(a) (10 vs. 8). However, we already show that the
former one results in a better 3D partitioning solution. It is clear that the total cut size,
which is layer-unaware, is not an appropriate metric in 3D partitioning. Again, this is
the other evidence that conventional multi-way min-cut partitioning algorithms hardly
compete with the proposed iterative framework.

In this thesis, we adopt the well-known hMetis as the internal partitioning engine.

However, our proposed framework can obviously co-work with any multi-way min-cut
partitioning engines. It implies that a better engine (if any) may be adopted for better 3D

partitioning results in the future.
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Chapter 4 Experiments

After introducing the main idea of iLap in the previous chapter, the distribution of TSVs is
analyzed in this chapter. iLap always wins on the number of TSVs no matter the number of
layers increases. In this chapter, the result how much iLap outperforms the other algorithms is

presented.

4.1 Environment Setup

iLap has been implemented in C++/Linux environment. We demonstrate the effectiveness
of iLap through a series of comparisons with three hMetis-based methods and multilevel

multilayer partitioning algorithm as showing in Figure 23:

3D partitioning
|
' }

Layer-aware Layer-unaware

|
! }

lterative Non-iterative

Multilevel |

iLap-k iLap-2 K-layerpartiion paetis EX-hMetis EV-Matrix
(MKLP)

Figure 23. Classification of 3D partitioning.

i)  hMetis: It applies hMetis to produce the min-cut partitions, and then those parts
area layered according to their original sequential tags (i.e., in random order)
[27].

i) EX-hMetis: It applies hMetis to produce the min-cut partitions, and then those
parts are best layered through exhaustively examining all possible layer

permutations.
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i) EV-matrix: It applies hMetis to produce the min-cut partitions, and then those
parts are layered by the method described in [22].
iv) MKLP: Itis the multilevel multilayer partitioning algorithm proposed in [19].
Notice that the three hMetis-based methods all start with the same set of partitions and their
final result variances solely come from different layer assignments. We evaluate the
performance of iLap (iLap-2 and iLap-k) and other four methods over a set of 14 test cases
consisting of 10 cases from the MCNC benchmark set [30], three large cases (cfft, aqua, and
video) from Altera [31], and one 128-point FFT design (fft128) [32]. The area cost of every
operation cell can be any number, in order to be calculated easily, each area cost is uniformly
set to one in our experiments. In addition, the setting of the balanced ratio is 0.05 as like other
works. We perform ten experimental runs on every test case with different random seeds and
find the average as the result. All experiments are conducted on a workstation with an Intel
Xeon 2GHz CPU and 14GB RAM:.

Table1. 14 test cases.

Design  |# of Nodes |# of Nets |# of IOs
Tseng 1047 1098 174
Diffeq 1497 1560 103
Des 1591 1847 501
Bigkey 1707 1935 426
Frisc 3556 3575 136
elliptic 3604 3734 245
pdc 4575 4591 56
fft128 4736 5246 766
s38417 6406 6434 135
$38584.1 6447 6484 342
clma 8383 8444 144
cfft 15425 15476 644
aqua 29744 30208 3793
video 53491 55393 5431
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4.2 Results and Analyses

4.2.1 Analysis of TSV Count with Fixed Layer

Table 2 reports the TSV demands as the number of layers in a 3D IC is set to 4. It seems
EV-matrix just performs equally well as plain hMetis. Meanwhile, given a set of 4 partitions
generated by hMetis, EX-hMetis always picks the one with the lowest TSV count out of 4! =
24 different permutations (i.e., layer assignments) and consequently EX-hMetis on average
attains 16% TSV reduction as compared with hMetis. Furthermore, MKLP shows its
layer-aware advantage on the three largest cases about 70% reduction. Nevertheless, it’s not
reliable in others. For iLap-2, it performs as well as EX-hMetis on average. Besides, it is more
efficient than EX-hMetis in the larger cases.-Due to considering the overall situation and
predicting the distribution in the future during the framework, iLap-k improves iLap-2 about
19% on average and reduces TSV count by 36% and-24% as compared to hMetis and
EX-hMetis, respectively. Moreover, for the largest three test cases (cfft, aqua, and video),
iLap-k even outperforms hMetis by more than 75%. Though hMetis is an excellent multi-way
min-cut partitioning algorithm, it fails to be a good 3D partitioner due to its
layer-unawareness. Even EX-hMetis with exhaustive permutations still cannot defeat iLap-k.
Compared with MKLP, iLap framework dynamically and iteratively selects the partial best to
construct the better result. Therefore, it concludes that a dedicated layer-aware 3D partitioning
algorithm, like iLap, should be regarded as one of the essential components while

constructing a sophisticated 3D IC design environment.
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Table 2. Total number of TSVs when k = 4.

4 Layers TSV Count Normalize to hMetis

Design iLap-k  iLap-2 hMetis EX-hMetis EV-Matrix MKLP |[iLap-k iLap-2 EX-hMetis EV-Matrix MKLP
Tseng 304.70 308.60 356.30 346.10 36120 393.40| 086 087 0.97 1.01 1.10
Diffeq 24500 287.20 34450 270.30 35100 33230| 071 083 0.78 1.02 0.96
Des 44550 @ 517.70 857.50 834.50 87610 871.60| 052 060 0.97 1.02 1.02
Bigkey 63060 68520 666.20 650.60 66920 1019.20| 095 1.03 0.98 1.00 153
Frisc 65520 791.30 T714.10 688.70 719.00  1019.00| 092 1.11 0.96 1.01 143
elliptic 59030 561.10 709.90 643.10 69000 638.00| 083 0.79 091 097 0.90
pdc 973.40 1063.40 1049.50 98680 | 1059.00 120280| 093 1.01 0.94 101 1156
ffit128 1313.90 1456.30 1506.00 1489.20 | 152480 183850| 087 097 0.99 101 1.22
s38417 24940 600.70 364.70 32460 38960 560.00| 068 165 0.89 1.07 154
s38584.1] 39140 77250 673.80 536.70 76260 79080| 058 1.15 0.80 113 117
clma 49140 84240 721.20 496.50 65460 133420| 068 1.17 0.69 091 1.85
cfft 24440 27740 999.20 338.50 48030 31650| 024 028 0.34 048 0.32
aqua 90960 964.00 702650 493580 7167.40 2081.20| 013 0.4 0.70 1.02 0.30
video 763.80 1063.60 8370.70 7255.00 875710 190550| 0.09 0.3 0.87 1.05 0.23
Average 064 0.84 0.84 0.98 1.05

If we experience in 8 layers as Table 3 shows, EV-Matrix cannot always improve the result
of hMetis since it weakly solves the hyperedge problem. In hMetis-based algorithms,
EX-hMetis is also the best solution..For MKLP;-it can not find a good solution when the small
circuits are partitioned into high number of layers. However, it does well on the largest three

cases. Compared with other methods, iLap-2 and iLap-k-are still demanded the least number

of TSVs.
Table 3. Total-number.of TSVs when k = 8.

8 Layers TSV Count Normalize to hMetis

Design iLap-k  iLap-2 hMetis EX-hMetis EV-Matrix MKLP |iLap-k iLap-2 EX-hMetis EV-Matrix MKLP
Tseng 75880 744.40 833.00 77780 837.70 818.10| 091 089 093 1.01 098
Diffeq 599.00 657.10 801.50 637.30 804.40 101210| 075 0.82 0.80 1.00 126
Des 1087.00 1248.20 200230 191400 2047.30 2296.10| 054 062 0.96 1.02 1.15
Bigkey |1496.10 157690 1558.30 151290 1546.00 3213.20| 056 1.01 097 099 206
Frisc 141750 1766.70 1663.00 1560.30 172790 2386.80| 085 1.06 094 1.04 144
elliptic 1314.60 126210 164890 1431.70 164230 148480| 080 O0.77 087 1.00 090
pdc 212250 226940 2403.70 213940 250440 280950| 088 094 089 1.04 117
fit128 3080.10 341000 353250 3480.00 3632.00 422280| 087 097 0.99 1.03 1.20
s38417 583.80 1327.00 873.40 753.40 89210 170040| 067 152 0.86 1.02 195
s38584.1| 97750 171690 163640 1306.80 1818.80 3006.00| 0.60 1.05 0.80 111 184
clma 1386.50 164850 1863.10 1346.30 1768.80 3250.00| 0.74 088 072 095 174
cfft 54310 65390 2295.30 693.60 3333.30 780.00| 024 028 0.30 145 0.34
aqua 1976.00 224960 16183.60 1047100 15895.00 4816.40| 012 0.14 065 098 030
video 2028.40 2930.70 1942940 16127.80 18602.60 5414.20| 0.10 0.15 083 096 028
Average 065 079 0.82 1.04 1.19
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4.2.2 TSV Count

Figure 24 depicts the average TSV count over 14 test cases as a function of the number of
layers; and three points are worth pointing out. Firstly, the more layers a design gets
partitioned into, the more TSVs it generally requires. Secondly, iLap-k and iLap-2 are the
all-time winner from 2 layers to 10 layers among all methods. Thirdly, unlike the
layer-unaware methods, the number of TSVs required by layer-aware algorithms raises very
smoothly as the number of layers increases.

Taking hMetis as the baseline, Figure 25 reveals the average TSV ratios over the number of
layers; and three points are worth pointing out here. Firstly, iLap-k constantly and steadily
outperforms hMetis by about 33% in TSV size regardless of the number of layers. Secondly,
from the curve we can see that iLap-2 is nearly equal to EX-hMetis. Finally, EX-hMetis is

always outperforms hMetis, as expected.

TSV count
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7 5000 | —=—iLap-2
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© 4000 | —x-EX-hMetis
5 —— EV-Matrix
2 3000
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c 2000
©
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0

Figure 24. The number of required TSVs in 3D ICs.
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Normalized TSV count
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Figure 25. Normalized TSV count.

4.2.3 Distribution of TSV Count

Meanwhile, Figure 26 presents the average standard deviations of TSV count over a
different number of layers. It is evident that the standard deviation of TSV count associated
with iLap-k and iLap-2 are more stable than the others. As previously mentioned, a TSV
occupies significant silicon estate so that high standard deviation of TSV count potentially
worsens area size imbalance among individual layers and even lowers the yield of a design.

Figure 27 reports the average maximum TSV count at some junction of a design over a
different number of layers; and iLap-k and iLap-2 always possess the lowest values regardless
of the number of layers. For some 3D logic structures, like 3D FPGASs, the number of
pre-fabricated inter-layer TSVs is fixed. Hence the design mapping is considered a failure
even if the required TSVs exceeds the provided ones only at one junction, and a high

maximum TSV count potentially increases such chances.
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4.2.4 Runtimes

Regarding the runtime efficiency issue, Figure 28 gives the average runtime of 14 test cases
in second over a different number of layers. It is evident that both hMetis and EV-matrix are
very time-efficient. The runtime required by iLap-k and iLap-2 grow linearly as the number of
layers increases. This trend is natural since the number of invocations for multi-way
partitioning inside iLap-based algorithms also grow linearly as the number of layers increases.
Since the iterative engine in iLap-2 is a simple 2-way partitioning, it is faster than MKLP
when the number of layers increases. Even the engine in iLap-k is more complex, only a few
seconds needed to complete the algorithm. Hence, given the excellent performance in TSV
minimization, the time complexity of il.ap-k should be acceptable. As for EX-hMetis, since it
has to check all possible permutations _to find the best one, the required runtime is thus
exponential to the number of layers. It is no wonder why the runtime increases drastically as
the number of layers exceeds 8. Even though using some skills to improve the runtime of
EX-hMetis, it still cannot improve the quality.

Runtime (seconds)
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3000 12 +:t§§5 .)
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2000 | © J
4 /
1500 ~ 2 7
0 X
1000 2 3 4 5 6 7 8 9 10 ’
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0 = ¥ U s — _i){ 3 "
2 3 4 5 6 7 8 9 10

Layers

Figure 28. Runtimes of the experiments.
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Chapter 5 Conclusion

Using TSVs as the vertical links is a famous technology in 3D structure. However, the area
overhead and the reliability of TSVs become a big problem seriously. Therefore, in this thesis
we present two iterative layer-aware partitioning algorithms, iLap-2 and ilLap-k, for
minimizing the total number of TSVs in 3D ICs. They utilize the unbalanced two-way
min-cut partitioning and the multi-way min-cut partitioning engine inside the iterative
frameworks respectively to gradually construct the final results layer by layer in the
bottom-up fashion. Besides, the parasitical area problems in this kind of iterative methods are
solved by the additional area constraint we proposed. The experimental results clearly
demonstrate that iLap-2 reduces the TSV count as good as EX-hMetis in a few seconds. In
addition, iLap-k, which enhances the efficiency of ‘ikap-2, is capable of reducing the total
TSV count by about 33% compared to layer-unaware hMetis. Moreover, both of iLap-k and
iLap-2 experience a smooth TSV increase-as the number of layers raises, and distribute TSVs
more evenly among different vertical layers preventing any layer junction from having a burst
number of TSVs. Although they need more iterations to construct the result, they only
demand an acceptable runtime. Consequently, compared to the existing methods, we believe
iLap is a better alternative for design partitioning in state-of-the-art 3D IC design

environment.

33



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

International Technology Roadmap for Semiconductor. Semiconductor Industry
Association, 2005 — 2009.

G. Metze, M. Khbels, N. Goldsman, and B. Jacob, “Heterogeneous integration,” Tech
Trend Notes, vol. 12, no. 2, pp. 3, 2003.

R. R. Tummala and V. K. Madisetti, “System on chip or system on package?” IEEE
Design & Test of Computers, pp. 48 — 56, Apr. — Jun., 1999.

P. H. Shiu and K. S. Lim, “Multi-layer floorplanning for reliable system-on-package,”
Proc. of the 2004 International Symp. on Circuits and System, pp. 23 — 26, May 2004.

K. L. Tai, “System-in-package (SIP): challenges and opportunities,” Proc. of Asia and
South Pacific Design Automation Conference, pp. 191 — 196, 2000.

S. Spiesshoefer et al. “Process integration for through-silicon vias,” Journal of Vacuum
Science and Technology A, vol. 23;no. 4, pp. 824 — 829, Jul. 2005.

K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip design for
improving deep submicron interconnect-performance and systems-on-chip integration,”
Proc. IEEE, vol. 89, pp..602 - 633, 2001.

A. W. Topol et al. “Three-dimensional integrated circuits,” IBM Journal of Research
and Development, vol. 50, no. 4/5, pp. 491 — 506, July/September 2006.

G. Philip, B. Christopher, and P.-Ramm,“Handbook of 3D integration,” Wiley-VCH,
2008.

C. Ferri, S. Reda, and R. I. Bahar, “Parametric yield management for 3D ICs: models
and strategies for improvement,” Journal Emerging Technologies in Computing
Systems, vol. 4, no. 4, Article 1D 19, Oct. 2008.

I. Loi et al. “A low-overhead fault tolerance scheme for TSV-based 3D network on chip
links,” Proc. International Conference on Computer-Aided Design, pp. 598 — 602, 2008.

Sung Kyu Lim, “TSV-aware 3D physical design tool needs for faster mainstream
acceptance of 3D ICs,” ACM DAC Knowledge Center (dac.com), 2010.

D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-silicon-via impact on
the 3D stacked IC layout,” Proc. International Conference on Computer-Aided Design,
pp. 674 — 680, 20009.

E. Beyne et al. “Through-silicon via and die stacking technologies for
microsystems-integration,” Proc. IEEE International Electron Devices Meeting, 2008.

34



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]
[29]

J. Cong and G. Luo, “A multilevel analytical placement for 3D ICs,” Proc. of Asia and
South Pacific Design Automation Conference, pp. 361 — 366, 2009.

J. Cong, G. Luo, J. Wei, and Y. Zhang, “Thermal-aware 3D IC placement via

transformation,” Proc. of Asia and South Pacific Design Automation Conference, pp.
780 — 785, 2007.

B. Goplen and S. Spatnekar, “Placement of 3D ICs with thermal and interlayer via
considerations,” Proc. Design Automation Conference, pp. 626 — 631, 2007.

I. H.-R. Jiang, “Generic integer linear programming formulation for 3D IC partitioning,”
22nd IEEE International SOC Conference, 2009.

Y. L. Chung, Y. C. Hu, and M. C. Chi, “A multilevel multilayer partitioning algorithm
for three dimensional integrated circuits,” International Symposium on Quality
Electronic Design, pp. 483 — 487, 2010.

G.-Y. Pan and et al. “An iterative partition algorithm to minimize area and vertical

interconnections for three-dimensional integrated circuits,” Proc. 20th VLSI
Design/CAD Symposium, 20009.

C. M. Fiduccia and R. M. Mattheyses, “A_linear_time heuristic for improving network
partitions,” Proc. Design Automation Conference, pp.175 — 181, 1982.

C. Ababei and K. Bazargan, “Non-contiguous linear placement for reconfigurable
fabrics,” Proc. Reconfigurable Architectures. Workshop, pp. 141 — 148, 2004.

C. Ababei, H. Mogal, and. K. Bazargan, “Three-dimensional place and route for

FPGAs,” Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 6, pp. 1132 — 1140, Jun. 2006.

http://mountains.ece.umn.edu/~kia/Download/tpr.html

K. Siozios, A. Bartzas, and D. Soudirs, “Architecture-level exploration of alternative
interconnection schemes targeting to 3D FPGAs: a software-supported methodology,”
International Journal of Reconfigurable Computing, vol. 2008, Article 1D 764942, 2008.

K. Siozios, V. F. Pavlidis, and D. Soudirs, “A Software-Supported Methodology for
Exploring Interconnection Architectures Targeting 3-D FPGAs,” Design, Automation
and Test in Europe Conference & Exhibition, 2009.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph
partitioning: applications in VLSI domain,” Transactions on VLSI Systems, vol. 7, no. 1,
pp. 69 — 79, Mar. 1999.

http://glaros.dtc.umn.edu/
Sung Kyu Lim, GTCAD LAB, http://users.ece.gatech.edu/limsk/

35



[30] S. Yang, “Logic synthesis and optimization benchmarks user guide,” Technical Report
1991-IWLS-UG-Saeyang, Microelectronics Center of North Carolina, 1991.

[31] http://www.eecs.berkeley.edu/~alanmi/benchmarks/altera/old/alteral2_blif _baf.zip.

[32] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd ed. MIT Press and McGraw-Hill Higher Education, 2001.

36


http://www.eecs.berkeley.edu/~alanmi/benchmarks/altera/old/altera12_blif_baf.zip

