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Almtract--A similarity boundary value problem which describes the steady-state buoyancy induced plane 
flow next to an impermeable, horizontal surface in porous media saturated with cold water is studied. 
Numerical solutions are found in two disjoint regions of temperature-ratio parameter R by using a 
multiple shooting code BVPSOL. In each region, solutions are obtained by applying the continuity process 
which gives, respectively, a smooth bifurcation curve in term of a appropriate parameter. Multiple 
solutions are found at some R in this two regions. Some of them are similar and others indicate physically 
the potential existence of a large amount of energy for any trend arising that drives one steady state to 
another. 

NOMENCLATURE 

f--similarity stream function 
g--acceleration of gravity 

/ r - t o t a l  buoyancy force 
K--permeability of porous medium 

Nux--local Nusselt number 
p--pressure of global enviroment 

p~---motion pressure 
P--similarity function of motion pressure 
q--exponent in density equation 
R--temperature ratio 

R*--the lower bound of the gap in terms of R 
R,-- the upper bound of the gap in terms of R 

Rax--local Rayleigh number 
t--temperature 

tin--temperature at which maximum density occurs for a given salinity and pressure 
t0--surface temperature 

t®--ambient temperature 
u---Darcy velocity in x-direction 
v--Darcy velocity in y-direction 

W--local buoyancy force defined in equation (12) 
x---coordinate parallel to the surface 
y---coordinate vertical to the surface 

ut--thermal diffusivity ratio of matrix conductivity to fluid heat capacity 
~---non-dimensional distance in boundary region 

~/o~--value of q at the edge of boundary region 
g---effective thermal conductivity of saturated porous medium 
g---dynamic viscosity 
p--density 

pro--maximum density 
p~---density of ambient fluid 
pr--reference quantity of density 
~--normalized temperature 
~--stream function 

1. INTRODUCTION 

In the natural world, transport processes in fluids where the motion is driven by the interaction 
of a difference in density in a gravitational field are common. Usually, the density variation is 
caused by temperature differences and the density variation of pure and even of saline water at 
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low temperatures often results in very complicated buoyancy induced flows. If an internal 
temperature variation arises which spans the temperature t m at which a density extremum p,, (tin) 
arises, a buoyancy force reversal follows. This may lead to flow reversal and other complicated 
convective effect. 

Early investigations of buoyancy induced flows were mainly concentrated on vertical laminar 
convective flows in water which were summarized in [1]. For example, consider a vertical surface 
at uniform temperature to = 8°C, in a quiescent pure water ambient at too = 2°C. Near the surface, 
the fluid is less dense than the ambient and the buoyancy force is upward. However, the extremum 
of pure water at 1 atm occurs at about 4°C, the fluid in the outermost portion of thermal transport 
regions is more dense than the ambient consequently, the buoyancy force is downward. Combining 
these two results, the buoyancy force reversal across the thermal diffusion region occurs. As the 
situation intensifies, there is possibility of occurring "local flow reversal", i.e. the direction of the 
tangential velocity changes across the boundary layer region and even further to "convective 
inversion", i.e. the reversal of direction of net mass flow. 

From above example, it is observed that if tm lies between to and too, then a reversal in buoyancy 
force g [ p  (too) - p (t)] arises across the thermal region, where g is the magnitude of the gravity force. 
The parameter that characterizes this temperature interrelation is 

t m - -  too 
R = - -  (1) 

to - too ' 

When 0 < R < 0.5, a buoyancy force reversal arises. 
Many recent evaluations use the density relation for pure and saline water given in [2]. This is 

a simple and accurate expression for the buoyancy force causing motion in low temperature pure 
and saline water. A number of recent theoretical and experiment studies have added considerable 
understanding of these complex flows for pure and saline water and for porous media saturated 
with pure and saline water. The boundary-layer calculation in [3] resulted in solutions in a gap from 
about R = 0.15 to R = 0.30. A similar gap was found for numerical solutions of time dependent 
Navier-Stokes equations in [4]. Then, in [5], solutions in [3] were extended to reduce the remaining 
gap to R = 0.15180-0.29181. Gebhart et aL [6] presented a more delicate numerical study to obtain 
new solution and improved the accuracy gap in R by appropriate parameters and multiple solutions 
with great different characteristics at the some R are found. Wang [7] considered a vertical ice wall 
melting in saturated porous media and similar results were obtained. These results were verified 
rigorously by Hastings and Kazarinoff [8] and Wang [9] respectively. 

For the convective phenomenon of transport adjacent to a heated or cooled horizontal surface 
embedded in a porous medium saturated with water, early investigations are summarized in [10]. 
Lin and Gebhart [11] then used the density variation in [2] to present similarity analysis of transport 
in porous media saturated with cold water. In [11], existence of similarity solutions for the case 
of isothermal horizontal surface were reported under atomospheric pressure 1 bar absolute and 
numerical data seemed to indicate the uniqueness of solution at a given R. An interval 
0.08 < R < 0.288 was obtained on which no numerical similarity solution exists. In this paper, 
similar to [7], we present new solutions which exhibit existence of multiple solutions at some R in 
(0, 0.5) and obtain a more delicate gap, 0.082864 < R < 0.283270, on which no steady state solution 
exists. Some of these solutions are similar and others give drastically different behaviors. Moreover, 
similar results are also obtained for the physically maximal allowable case at p = 1000 bar. 

2. DERIVATION OF SIMILARITY BOUNDARY VALUE PROBLEM 

The derivation of the steady, planar, boundary layer equations for porous media saturated with 
cold water is given in [11]. These equations for flow adjacent to a horizontal, impermeable, 
isothermal surface at temperature to and lying at x >I 0 and y = 0, as shown in Fig. l, in a 
homogenous and isotropic medium at temperature too are as follows: 

f,(~/) _ 3~/p,(t/) + 2p(~/) = 0, (2) 

¢"(~/) + ~f(~/)¢'(~/) = 0, (3) 
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with boundary conditions 

P ' ( , 7 )  - -  R )  = - R I "  - I R I  ' ,  

P ' ( , 7 )  = - R )  = - Rlq, 
(4a)  

(4b) 

f (0 )  = ~(0) -- 1 = ~ ( ~ )  = P(oo) = O, (5) 

where equations (4a) and (4b) are corresponding to flows on the upper side and the bot tom side 
of  the horizontal surface, respectively. Furthermore, the total buoyancy force Iw out across the 
boundary region is defined by 

Iw = f :  W(~ ('1), R) d,~. 

This quantity is effective in indicating the net effect of  buoyancy in the flow. 
In [11], the following similarity transformation was given by defining the independent similarity 

variable t /as  

y(Rax) 2/3 
~/(x, y )  = - -  (6a)  

x 

and similarity functions f(~/), ~(t/), P(~/) by the correlations 

~(x, y)  -- ~q f(r/)(Rax) ~/3, (6b) 

t -- too 
- -  ( 6 c )  

~ , ( , I )  = to - t ~ '  

al/~(Rax) 2/3 
Pm (x, y) = Kx P (7), (6d) 

where the local Rayleigh number Rax is defined by 

Rax = °tKPmg ] t° - tmlqx, (Oe) 

and ~, denotes the stream function satisfying Oy = u(x, y) and - O x  = v(x, y). The constant quantity 
a, K, #, q and ~ are the thermal diffusivity, permeablility, viscosity, and exponent and constant 
in the density relation, respectively. Moreover, u and v are the tangential and normal component 
of  Darcy velocity and Pm represents the motion pressure of  the fluid. 

From the transformation, f'(~/) is proportional to the tangential velocity while f ( t / ) -  2 t / f  '(t/) 
is proportional to the normal velocity satisfying 

~t I (Rax)2/3f" ~t I (Ra~) I/3 
~Y = x , v = - ~b~ = 3x ( f -  2t/f'). 

Furthermore, P(~/) is proportional to the motion pressure and ~6(r/) is proportional to the 
temperature profiles with -~6'(0) relating to the rate of  heat transfer at the surface, i.e. - ~ ' ( 0 )  
is proportional to Nu~ = q"x/((t - t~ ) r . )  where q" is the surface heat flux and Nu~ is the local 
Nussclt number. 

For convenience, BVP + denotes the problem which consists of  equations (2), (3), (4a) and 
conditions (5), and BVP- denotes the problem of equations (2), (3), (4b) and conditions (5). 
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3. NUMERICAL STUDY AND RESULTS 

For the numerical computation, the code BVPSOL [12-14], which solves general two-point 
boundary value problems by multiple-shooting method, is chosen. In fact, th e shooting method 
consists of an initial value problem with some free parameters and a corresponding root finding 
problem for the conditions to be shot. Therefore, the shooting process mainly depends on the 
sensitivity of the integrator imposed for solving the initial value problem. For dealing with the stiff 
problem BVP, an efficient code METAN1 [15, 16], which is a semi-implicit midpoint integrator, 
is chosen. However, the length of problem domain may further affect the shooting scheme with 
a simple shooting. Thus, with imposed multiple shooting, such sensitivity effects will be reduced. 

Moreover, equation (3) is equivalent to 

, 1 ) 
It can be shown that ~p'(r/) tends to zero and f(~/) cannot be negative as r/approaches infinity. 
Otherwise, either ~(0) = 1 or q~(oo) = 0 will be violated. Also, the associated conditions for problem 
BVP are designated at the horizontal surface ~/= 0 and the far ambient region as F/ tending to 
infinity. Due to the finite nature for numerical computation, the far ambient boundary conditions 
can only be set at r /=  r/o~ where ~/~ is finite. Then the reduced problem with finite domain [0, r/®] 
is computed by BVPSOL with an accuracy controlling parameter EPS = 1.E - 8. Therefore, it is 
natural to say that numerical data is acceptable iff(r/o~) does not change for first six digits and 
-~'(r/oo) is positive and less than 1 .E - 6 when r/oo is increase twice consecutively. Meanwhile, the 
buoyancy force term W(~p(~/), R), ~//> 0, can only change sign once for each R in (0, 0.5). Due to 
the interest of buoyancy force and flow reversal, numerical study of problem BVP are given on 
the region R in [0, 0.5]. All numerical computations are performed on Cyber 730 at NCTU. 

To solve problem BVP + with q = 1.894816 under p = 1 bar, we apply the continuation scheme 
by starting R equals to 0 and increase R by a step size AR. Linear extrapolation of the solution 
obtained for R~ and R2(R~ < R2) is applied to provide the initial guess in BVPSOL for computing 
the solution at R = R3 with R3 > R2 and AR halving scheme is also implemented if the initial guess 
gives failure of convergence in BVPSOL. Therefore, the largest R, say R* ~ 0.082864, is reached 
at which numerical solution is obtained successfully. Note that our data R* is beyond the upper 
bound R = 0.08 obtained by Lin and Gebhart [11]. On the botton side of the surface, problem 
BVP-, we start at R = 0.5 and decrease R. By similar technique, the smallest R, say R .  ~ 0.283270 
is obtained. 

Moreover, as in [7], the continuation scheme should be able to continued if an additional 
equation 

R '  = 0 (8)  

and a proper boundary condition for a new free parameter are imposed. From the solution data 
obtained from problem BVP +, it is observed thatf(oo) decreases as R increases. Also, as mentioned 
earlier, f(oo) cannot be negative. Hence, it is proper to choose f~o as a free parameter and set the 
new boundary condition as f(r/~o) = f ~ .  Correspondingly, the acceptance criterion in our program 
is adjusted to require the convergence of R instead off(oo).  The continuation method is then 
applied by reducingfoo from 1.4. The smallest successful level off~o in our computation is l0 -3 which 
gives q~ to be 1410. Compare with the case off~ = 10 -2 with final q~o equals 430, it is reasonable 
to stop our continuity process for the case of f~  less than 10 -3 since q~o will be too large to give 
acceptable data. On the bottom side of surface, problem BVP-, similar observations from 
numerical data and from equation (7) give that tp'(0) increases as R decreases and ~p'(0) must be 
negative. Therefore, an additional boundary condition tp'(0) = tp~ for problem P- is imposed and 
tp~ is increased from -0.20. The largest successful level of tp~ is - 5  x l0 -7 in our computation 
with final q~o equal to 120. 

For the case of maximum of physically allowable q = 1.582950 at p = 1000 bar, similar scheme 
is also applied. For problem BVP +, the largest R, R* ~ 0.067730, is obtained when f~o ,,~ 0.67039 
and a continuous family of solutions is successfully obtained for f~o reaching 0.006. For problem 
BVP-, we obtain a lowest R, R .  ~ 0.272195 and a continuous family of solution is obtained for 
tp~ tending to -0.00001. 
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Selected solutions data are shown in Tables 1-4. The bifurcation diagram off(oo) vs R and 
-~p'(0) vs R are plotted in Figs 2 and 3 respectively. Moreover, the profiles of temperature 
distribution ~0, tangential velocity f',  normal velocity f - 2 f i r ' ,  motion pressure P and local 

Table 1. Selected solution data for problem BVP + with q = 1,894816 which are 
corresponding to flows near the upper side of horizontal surface 

R f(0¢) - ~0 '(0) P(0) lw 

0 1.730841 0.341806 -I.210213 1.210213 
0.02 1.595539 0.331237 -1.160720 1.160720 
0.04 1.433235 0.319587 -1.109832 1.109832 
0.061532 1.2 0.305397 -1.053757 1.053757 
0.073670 1.0 0.296095 --1.021641 1.021641 
0.080540 0.8 0.289736 -1.003261 1.003261 
0.082849 0.6 0.286404 -0.996773 0.996773 
0.082864f 0.58 0.286232 -0.996678 0.996678 
0.082593 0.5 0.285820 -0.997129 0.997129 
0.081636 0.4 0.285864 -0.999219 0.999219 
0.080256 0.3 0.286389 - 1.002318 1.002318 
0.079533 0.25 0.286757 -1.003938 1.003938 
0.078878 0.2 0.287136 - 1.005395 1.005395 
0.078371 0.15 0.287466 - 1.006507 1.006507 
0.078128t 0.012 0.287703 -1.006982 1.006982 
0.078133 0.01 0.287701 -1.006971 1.006971 
0.078145 0.005 0.287693 -1.006942 1.006942 
0.078150t 0.003 0.287690 - 1.006931 1.006931 
0.078118 0.001 0.287700 -1.007012 1.007012 

tTurning point. 

Table 2. Selected solution data for problem BVP- with q = 1.894816 which 
corresponding to flows near the bottom side of horizontal surface 

R f(oo) - ¢p'(0) P(0) I w 

0.5 2.633815 0.349146 -0.838122 -0.838122 
0.441174 2.507626 0.320569 -0.656654 -0.656654 
0.391176 2.387405 0.290569 -0.479821 -0.479821 
0.351893 2.282377 0.260569 -0,316282 -0.316282 
0.322215 2.195896 0.230569 -0.165267 -0.165267 
0.301266 2.131867 0.200569 -0.026000 -0.026000 
0.288404 2.095223 0.170569 0.102233 0.102233 
0.283270f 2.098054 0.130569 0.256985 0.256985 
0.288599 2.148667 0.100569 0.361029 0.361029 
0.318854 2.371413 0.050569 0.507286 0.507286 
0.342646 2.550374 0.030569 0.550020 0.550020 
0.383290 2.891454 0.010569 0.564387 0.564387 
0.401147 3.067369 0.005569 0,551862 0.551862 
0.429584 3.417850 0.001194 0.507121 0.507121 
0.438473 3.559856 0.000569 0.485999 0.485999 
0.452033 3.834767 0.000109 0.446050 0.446050 
0.459138 4.024362 0.000029 0.420951 0.420951 
0.465044 4.220410 6.5E - 6 0.397608 0.397608 
0.471861 4.512999 5E - 7 0.367368 0.367368 

tTurning point. 

are 

Table 3. Selected solution data for problem BVP ÷ with q = 1.5822950 which are 
corresponding to flows near the upper side of horizontal surface 

R f ( ~ )  - ~ ' ( 0 )  P(O) I w 

0. 1.983775 0.366479 -- 1.304618 1.304618 
0.01 1.874413 0.360467 -- 1.276721 1.266721 
0.02 1.761326 0.353982 -- 1.247719 1.247719 
0.03 1.639863 0.347083 -- 1.218047 1.218047 
0.033073 1.6 0.344873 -- 1.208813 1.208813 
0.039751 1.507578 0.339910 -- I. 188573 1.188573 
0.051851 1.307578 0.330198 -- 1,151266 1.151266 
0.060758 1.10 0.322095 -- I. 123129 1.123129 
0.065834 0.90 0.316336 -- 1.105866 1,105866 
0.067141 0.80 0.314682 - 1,101770 1.101770 
0.067698 0.70 0.313419 - 1.099331 1.099331 
0.067730t 0.67 0,313156 - 1.099000 1.099000 
0.067586 0.60 0.312742 - 1.098871 1.098871 
0.066963 0.505 0.312598 - 1.099957 1.099957 
0.063090 0.12 0.314586 -- 1.109021 1.109021 
0.063033t 0.07 0.314660 - 1.109153 1.109153 
0.063033t 0.02 0.31 4630 - 1.108980 I. 108980 
0.063120 0,011 0.314619 - 1.108932 1.108932 
0.063122t 0.010 0.314618 - 1.108923 1.108923 
0.063091 0.00575 0.3 i 4628 - I. 109005 1.109005 

tTurning point. 
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Table 4. Selected solution data for problem BVP- with q = 1.582950 which are 
corresponding to flows near the bottom side of horizontal surface 

R f(oo) -- ~ '(0) p(0) ~1 

0.5 2.712113 0.365802 -0 .918362 -0 .918362 
0.48 2.681665 0.357744 -0 .860890 -0 .860890 
0.46 2.649700 0.349062 - 0.800590 - 0.800590 
0.44 2.616065 0.339653 - 0.737099 -0 .737099 
0.403226 2.549261 0.32 -0 .610342 -0 .610342 
0.371872 2.486395 0.30 -0 .488942 -0 .488942 
0.334536 2.403090 0.27 -0.319911 -0.319911 
0.307064 2.335426 0.24 -0 .165057 -0 .165057 
0.288066 2.286803 0.21 -0 .022980 -0 .022980 
0.287076 2.284332 0.208 -0 .013933 -0 .013933 
0.273650 2.258403 0.1655 -0 .166556 -0 .166556 
0.272196t 2.266230 0.1455 -0 .244066 -0 .244066 
0.273846 2.289299 0.1255 -0 .316972 -0 .316972 
0.287222 2.392117 0.0855 -0 .448474 -0 .448474 
0.310562 2.556384 0.053 -0 .538196 -0 .538196 
0.371772 3.024104 0.013 -0 .598783 -0 .598783 
0.417993 3.496970 0.002 -0 .552538 -0 .552538 
0.442967 3.890071 0.00025 -0 .493177 -0 .493177 
0.458349 4.268071 0.00002 -0 .441336 -0 .441336 
0.461187 4.359901 0.00001 -0 .430257 -0 .530257 

$Turning point. 

buoyancy force W for various solutions of  problem BVP with q = 1.894816 are also plotted in 
Figs 4-8 with data obtained by integrating equations (2)-(4) with METANI.  

By observing the bifurcation diagrams (Figs 2 and 3), it can be conjectured as follows: 

Conjecture CI. There exist two numbers R*(q) and R,(q), 0 < R*(q) < R,(q) < 0.5, such that 
problem BVP + has no solution for R > R*(q) and problem BVP- has no solution for R < R,(q). 
In particular, neither problem has a solution for R*(q) < R < R,(q). 

Conjecture C2. Problem BVP + has unique solution for each R I> 0 and sufficiently small. 
Conjecture C3. Let F be the solution set of  BVP + for R in R in [0, R*]. Then F is a smooth 

curve in the quadrant R >I 0, • >i 0 that is of  the form R(~),  0 ~< ~ ~< ~0, where ~t0 is the value of  
f ( o o )  corresponding to unique solutions at R = 0. 

Conjecture C4. Corresponding to the curve F, there exists an infinite spiral curve in 
the quadrant R >i 0 and - tp ' (0 ) />  0 which is toward a point ( - ~ ' ( 0 ) ,  R(q)) where ( - ~ ' ( 0 ) ,  ~(q)) ,  
0 < ~(q) < R*(q), is corresponding to a solution of  problem BVP + w h e n f ( o v )  = 0. This indicates 
the existence of  infinitely many solutions for problem BVP + at R = ~(q).  

Conjecture C5. Problem BVP-  has a pair of  solutions for each R, R,(q) < R < 0.5 and has 
unique solution for each R/>  0.5. 

Conjectures C3 and C4 are made due to the fact of  Crandall and Rabinowitz [17] that a 
bifurcation curve can only be terminated at a bifurcation point or reaching the boundary of  
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problem domain. Although our computations do not present such terminology clearly, the 
left-hand branch in Fig. 2 should terminate at a point whenf (oo )=  0 while the right-hand lower 
branch for the problem BVP- should be sufficiently close to the point (-~p'(0), R) = (0, .5) which 
is not corresponding to any solution of problem BVP-. It should be noted here that verification 
of conjecture is not available. However, similar conjectures had been made for studies of vertical 
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transport as in [6] and [7], and corresponding mathematical verifications were also provided by 
Hastings and Kazarinoff [8] and Wang [9]. 

4. FURTHER OBSERVATIONS AND CONCLUSION 

The numerical results presented in this paper may clarify several aspects of transports in the 
temperature-ratio parameter range 0 < R < 0.5. In such range, buoyancy force and flow reversal 
arise along with convection inversion. As shown in Fig. 7a, the local buoyancy force W changes 
sign from negative across thermal region at large value of ~/for 0 < R < R*(q). This exhibits an 
outside buoyancy force reversal. For the other range R,(q) < R < 0.5, as in Fig. 7b, W changes 
sign at inner part of convective region, it is an inside buoyancy force reversal. 

In the gap obtained, about 0.082849<R <0.283270 for q ffi 1.894816 and 0.0677304< 
R < 0.272195 when q = 1.582950, no solution is obtained. Figure 2a shows that the lower and 
upper bounds vary weakly with q. Although no mathematical verification is given, it is conjectured 
from [8] and [9] that similar gap may exist for q > 1. However, the boundary layer approximation 
for equations (2)-(4) gives no indication in predicting the transport for R lies in the gap. A new 
formulation guided from new experimental study is necessary to describe such flows. 

On the upper side of the surface, as shown in Figs 4-6, multiple solutions which coincide at the 
same R are very similar. The value of - ~0'(0) in Tables 1 and 2 further corroborates their similarity. 
On the other side of the surface, one of the pair of solutions is drastically different from the other. 
The lower solution clearly exhibits a thick layer of nearly stational flow adjacent to the surface. 
Physically, the existing boundary layer may insulate the horizontal surface and, consequently, 
reduce the rate of heat transfer. For example, at R = 0.471861, -¢p[(0) for the lower solution, 
which is related to the rate of heat transfer gives about 5 x 10 -7. However, the upper solution at 
the same R gives -¢p~(0) about 0.336176 and the quotient -g0~(0)/-cp[(0) is about 6.6 x 105. 

Consequently, multiple solutions for R lies in two regions 0 < R < R*(q) and R,(q) < R < 0.5 
thus have considerably different characteristics. This raises additional questions in interpreting such 
results, in relation to any actual circulation in porous medium. Which flow might actually arise 
matters little in the left region, although the existence of multiple solutions probably means 
enhanced instability. However the differences in the effects of transport of solutions in the other 
region would be great. For example the large differences in temperature distributions mean large 
differences in the buoyancy force associated with the different flow at the same R. This indicates 
that a large amount of energy is potentially available for amplification of disturbances and vigorous 
effect may arise for driving a steady state to another. 

Unfortunately, the data base from experimental measurement is meager concerning transport in 
porous media generally. Therefore, further surmises concerning flow instability and more inclusive 
modeling may require an experimental data base. 
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