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Abstract

A s the the need of high frequency circuits, the speed of silicon-germanium (SiGe)

heterojunction bipolar transistors (HBTs) has been dramatically increased. It is

known that the speed of HBTs is dominated by the base transit time, which is influenced

by the doping profile in the base region and the Ge concentration. However, to design the

doping profile of HBTs requires lots of empirical experiences and time-consuming try-and-

error rounds.

Geometric programming (GP) is a type of mathematical optimization problem, recently

used in applied science and engineering widely. Based on the transformation of the geo-

metric programming into convex form and the duality theory, also benefited from the inte-

rior point method and nowadays computing power, we can solve geometric programming

problem with large scale optimal variables and constraints efficiently and globally.

In this study, the design of the doping profile and Ge-dose concentration for SiGe HBTs

are mathematically formulated and solved by the technique of geometric programming. At

iii



first, we derive the cut-off frequency model as an integral of Si doping profile and Ge-dose.

Then, then discretization of the integral function according to the base region, is applied to

obtain the discretized optimal variables of doping profile. Base upon the aforementioned

approximation, we could derive the cut-off frequency model as a posynomial function;

after that, the interior point method is employed to solve the well-formulated geometric

programming. This methodology provides an efficient mechanism to extract the Si doping

profile and Ge-dose.

The solution calculated by the GP method is guaranteed to be a global optimal. The

accuracy of the adopted numerical optimization technique is first confirmed by comparing

with a two-dimensional device simulation. The result of this study shows that a 23 % Ge

fraction have the maximum current gain, about 1100, which higher than the 0 % Ge fraction

(BJT), about 200. Furthermore, a 12.5% Ge may maximize the cut-off frequency for the

explored device, where a 254 GHz cut-off frequency is achieved, high than the 0 % Ge

fraction case, about 71 GHz.

In summary, we have successfully optimized the doping profile of SiGe HBTs using

GP method. The results of this study may benefit the technology computer-aided design

tool in semiconductor industry.
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Chapter 1

Introduction

This chapter first briefs the history of Silicon-germanium (SiGe) heterojunction bipolar

transistors (HBTs) and the background of SiGe HBTs doping profile design. In the section

2, the history of optimization and the classification of optimization problems are discussed.

Finally, we present the motivation and introduce the study of this thesis.

1.1 History and Background of SiGe HBTs

In this section, we brief the history of SiGe HBTs, and discuss the background of doping

profile design of SiGe HBTs.

1
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1.1.1 History of SiGe HBTs

SiGe technology is SiGe heterojunction bipolar transistors, has undergone substantial

development for nearly two decades. SiGe HBT structure was first proposed in 1987 [1].

In 1990, a SiGe HBTs with 75 GHz cut-off frequency is investigated; in the same year, the

circuit application using this SiGe HBT’s device were demonstrated [2-3].

The first SiGe BiCMOS circuit was demonstrated in 1992 [4] and the first large-scale

integrated circuit based on this topology was sequently reported in 1993 [5]; The 100 GHz

frequency response SiGe HBTs were demonstrated in 1993-1994 [6-8], and the first SiGe

HBT technology fabricated on 200-mm wafers were in 1994 [9]. During this ten years

development, various SiGe HBT technologies had been demonstrated based on different

SiGe epitaxial growth techniques [10-18], and in the 1994-1998, the practical digital and

microwave high frequency applications had been proposed based on the SiGe epitaxial

growth technologies [19-28], the detailed review paper about the aforementioned history

of HBTs could be found in [29].

Recently, the SiGe HBTs have demonstrated cut-off frequency higher than 200 GHz

[30-31], and the high frequency, great power performance and low noise amplifier applica-

tion of SiGe HBTs was also developed [32-34].
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1.1.2 Background of SiGe HBTs Doping Profile Design

The basis of SiGe technology is HBTs, which exhibits various merits over conventional

Si bipolar junction transistors (BJTs) and silicon metal-oxide-semiconductor field effect

transistors (MOSFETs) for implementation of high-frequency circuits [50-51]. Fig. 1.1(a)

shows the circuit diagram of HBTs (BJTs), which is a three-terminal electronic device with

doped semiconductor material and could be used in amplify or switching circuits. The

structure of HBT (BJT) devices are shown in Fig. 1.1(b), composed by the emitter, base,

and collector regions; The charge flow in a HBT (BJT) is due to bidirectional diffusion of

charge carriers across a junction between two regions of different charge concentrations

(emitter and base, or base and collector). The operation speed of HBTs are mainly domi-

nated by the transit time of base region, which is strongly influenced by the doping profile

and Ge concentration as shown in Fig. 1.1(c) in the base region (If the base is doped only

one semiconductor material, the device is the so-called BJT) [35-52].

The determination of the doping profile and Ge concentration of the base region and

thus is crucial for optimal design of SiGe HBTs in advanced high frequency communication

circuits. Diverse engineering and theoretical approaches have been proposed to optimize

the base transient time through optimization of the base doping profile [36-47]. An analyt-

ical optimum base doping profile by using variational calculus considering the dependence
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of diffusion coefficient on base doping concentration was derived [37]. The analytical ap-

proach has been extended to consider the dependence of intrinsic carrier concentration on

base doping concentration [38]. An iterative approach has also been proposed to obtain the

optimum base doping profile [39], where the dependence of mobility and bandgap narrow-

ing on the base doping concentration was considered [40].
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Figure 1.1: (a) The circuit diagram of HBTs (BJTs), which is a
three-terminal electronic devices. (b) The illusion of HBTs
(BJTs). The structure of HBT (BJT) devices are composed
by the emitter, base, and collector regions; The charge flow
in a BJT is due to bidirectional diffusion of charge carriers
across a junction between two regions of different charge
concentrations. (c) The designed Si and Ge doping profiles,
which significantly influence the base transit time and
sequentially raise the cut-off frequency and operate speed
of HBT (BJT). If the base is doped only one semiconductor
material, the device is the so-called BJT.
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1.2 History and Background of Optimization

In this section, we list several important issues in the history of optimization theory and

summary the classification of optimization problems.

1.2.1 History of Optimization

Optimization is the mathematical discipline to find the maxima and minima of functions,

possibly subject to constraints. The first optimization algorithms are presented in 19th

century. In 1826, J. B. J. Fourier formulated LP-problem for solving engineering problems,

twenty years later; A. L. Cauchy presents the gradient method to search the solution in the

minimum of functions. In 1947 G. Dantzig presented simplex method for solving LP-

problems and in the same years, Von Neumann established the theory of duality for LP-

problems. In 1951, Karush-Kuhn-Tucker theorem (KKT theorem) was proposed. The

algorithms for unbounded optimization problems, such as quasi-Newton and conjugate

gradient methods, were developed in 1954. In 1960s, the geometric programming had

been known (Detailed introduction about geometric programming could be found in the

chapter 2). In 1980s, the computers became more efficient, heuristic algorithms (such as

genetic algorithm) for global optimization and large scale problems had greatly developed.

In 1990s, the theory of interior point methods was established, and the algorithm to solve

various optimization problems, based on the interior point theory had been developed till
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nowadays [55, 57, 58].

1.2.2 Classification of Optimization Problems

A general classification of optimization problems for practical applications are shown

in Fig. 1.2. The formulated optimization problems are first divided into two parts: model

dependent and independent. The model independent problems could be solved using evolu-

tionary algorithm, such as genetic algorithm [84]. The model dependent problems are gen-

eral using search algorithm based on mathematical theory. According to the characteristic

of the established model, the mathematical programming is classified as linear program-

ming and nonlinear programming. If the nonlinear programming satisfied the convexity,

we have the global solution, such as general convex programming and quadratic program-

ming (least square problems) [58]. The geometric programming is one of the nonlinear

program, however, we could transformed it as an convex programming (Detailed mathe-

matical theory could be found in the section 2.3). Based on formulating (transforming)

the practical problems as the aforementioned optimization problems, the well-developed

software could solve them efficiently.
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Figure 1.2: A general classification of optimization problems.The
optimization problem could be mainly divided into two
parts: model dependent (mathematical
programming)/independent. The evolutionary algorithm
could be employed to solve model independent problems,
such as genetic algorithm. The model dependent problems
are general using search algorithm based on mathematical
theory. The mathematical programming is classified as
linear programming and nonlinear programming. If the
nonlinear programming satisfied the convexity, the global
solution could be obtained, such as general convex
programming and quadratic programming. The applied
geometric programming in this thesis is one of the
nonlinear programming which could be transformed into
convex programming and solved efficiently.
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1.3 Motivation of this Thesis

Due to the urgent demand of high-speed and large gain electron circuits, the GP approach is

advanced to pursue the optimal Ge-dose as well as the doping profile as shown in Fig. 1.1(c)

for the high cut-off frequency, or the high current gain in SiGe HBTs. In the previous work,

the doping profile design for bipolar-junction transistor to optimize cut-off frequency and

gain via GP had been proposed [36], however, the doping profile optimization for obtaining

the electrical specifications for SiGe HBTs is laked. As a result, we provide a method to

explore the SiGe HBTs doping profile optimization problem, and try to obtain higher cut-

off frequency and current gain than the traditional BJT.
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1.4 Objectives

In this thesis, the design of HBTs is first expressed as a special form of an optimization

problem, the so-called GP, which can be transformed to a convex optimization problem,

and then solved efficiently. The background doping profile is adjustable to improve the

cut-off frequency and current gain. The result shows that a 23% Ge fraction may maximize

the current gain, where a factor, current gain divided by the emitter Gummel number, of

1100 is attained. Furthermore, to maximize the cut-off frequency of HBTs, a Ge-dose con-

centration of 12.5% is used, where the cut-off frequency can achieve 254 GHz. Note that

the accuracy of the developed optimization technique has been confirmed by comparing

it with that of a two-dimensional (2D) device simulation [84-88]. This study successfully

considers the device characteristics and manufacturing limitation as a GP model and the

result may provide an insight into the design of SiGe HBTs.



1.5 : Outline 11

1.5 Outline

The thesis is organized as follows. In chapter 2, we brief the history and background

of GP. In chapter 3, GP formulation of the design of HBTs and manufacturing limitation

are described. In chapter 4, the optimized cut-off frequency and current gain are discussed

according to the calculated results. Finally, we draw conclusions and suggest future work.



Chapter 2

The Geometric Programming

T his chapter introduces the background of geometric programming. The content

starts form giving the definition of the specifically types of functions of monomial

and posynomial and geometric programming in standard form. Section 2 presents the con-

vex problems converted from the geometric programming with many desirable properties

and have a duality theory with them. The modern interior-point method is also briefed

and the proceeding of solving the geometric programming is also discussed in this section.

After that, some available tools to solve geometric programming as well as GP in convex

form, and the sensitive/trade-off analysis are investigated. Finally, we list some practical

applications of geometric programming.

12
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2.1 Background and History

This section firstly introduces the background of geometric programming, and then its his-

tory and development is briefed.

2.1.1 Background of Geometric Programming

Geometric programming is one of the optimization approaches which is characterized

by objective and constraint functions with special forms, i.e., they are posynomial functions

of the optimal variables. The name of geometric programming was from the original math-

ematical theory made extensive use of arithmetic-geometric mean inequality between sums

and products of positive numbers. During the mathematical transformation, the geometric

programming can be easily cast as convex programming (CP) problems. There are several

advantages for the fact that GP can be reformulated as CP. For example, any starting point

can find the global solution if the formulated optimization problem is feasible, on the other

hand, if the problem is infeasible, a certificate proves infeasibility is found. For the real

world problem, the most important characteristic of the GP may be the recently developed

interior-point methods that solve the GP in convex form globally and efficiently.
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2.1.2 History of Geometric Programming

The geometric programming has been known since 1961, when Clarence Zener found

that many cost minimization problems in engineering had a special form [53]. At this same

time, a duality theory for nonlinear programming, and a mathematical framework of ge-

ometric programming based upon its duality theory is proposed [54]. In 1967 to 1970,

three books: Geometric Program [55], Engineering Designed by Geometric Programming

[56] and Applied Geometric Programming [57] discussed the theoretical and practical as-

pects of geometric programming and established the fundamental groundwork of geomet-

ric programming. In recent years, GP has been applied to solve the electrical engineering

problems (see Sec.2.4).

2.2 The Terminology of Geometric Programming

This section starts from the definition of different functions related to geometric program-

ming and then introduces the geometric programming in standard form.



2.2 : The Terminology of Geometric Programming 15

2.2.1 Monomial Functions

Let f denote n real positive variables, and x = (x1, . . . , xn) a vector composed by xi.

A real valued function f of x, with the form:

f (x) = cxa1
1 xa2

2 ...xan
n , (2.1)

where c > 0 and ai are real numbers, is called a monomial function, or a monomial. Note

that exponents can be any real numbers, including fractional or negative which is different

with the standard definition from algebra in which the coefficients must be nonnegative

integers. We refer to the constant c as the coefficient of the monomial, and we refer to the

constants a1, . . . , an as the exponents of the monomial. For example:

5.33x1.3
1 x−1.2

2

is a monomial of the variables x1 and x2 with coefficient 5.33 and the exponents are 1.3

and -1.2 for x1 and x2. We list some composition rules for monomial:

1. any positive constant is a monomial, as is any variable;

2. monomials are closed under multiplication and division: if f and g are both monomials,

then so are fg and f/g; (This includes scaling by any positive constant.) and

3. a monomial raised to any power is also a monomial.
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2.2.2 Posynomial Functions

A sum of one or more monomials, i.e., a function of the form:

g (X) =
k∑

k=1

ckx
a1k
1 xa2k

2 ...xank
n , (2.2)

where ck > 0, is called a posynomial function or, more a posynomial with k terms of the

variables x1, ..., xn. The term ‘posynomial’ is meant to suggest a combination of ‘positive’

and ‘polynomial’. We list some composition rules for monomial:

1. any monomial is also a posynomial;

2. posynomials are closed under addition, multiplication, and positive scaling;

3. posynomials can be divided by monomials: If g is a posynomial and f is a monomial,

then f/g is a posynomial; and

4. if γ is a nonnegative integer and f is a posynomial, then fγ always makes sense and is a

posynomial.

For example:

2x1.3
1 x−1.2

2 + 1.5x3 + x1x
5.5
4

is a posynomial of the variables x1 to x4 with positive coefficient for every terms.
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2.2.3 The Standard Form of Geometric Programming

A geometric program in standard form is an optimization problem of the form:

Min f0(x)

s.t. fi(x) ≤ 1, i = 1, ..., m

gi(x) = 1, i = 1, ..., p

, (2.3)

where fi are posynomial functions, gi are monomials, and xi are the optimization variables.

(There is an implicit constraint that the variables must be positive, i.e., xi > 0.) We defined

the problem (2.3) as a geometric programming in standard form, to distinguish it from

extensions we will describe later. In a standard form of GP:

1. the objective must be posynomial (and it must be minimized); and

2. the equality constraints can only have the form of a monomial equal to one, and the

inequality constraints can only have the form of a posynomial less than or equal to one.

For example, consider the problem:

Min x23
1 x3

2 + x6
1x

5.2
3

s.t. x2
1 + x5

2x
1
3 ≤ 1

x2 + x3 ≤ 1

x2x
3
2 = 1

,

with variables x1, x2 and x3. This is a GP in standard form, with n = 3 variables, m = 2

posynomial inequality constraints and p = 1 monomial equality constraints.
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2.2.4 The Extension of Geometric programming

Several extensions are readily handled:

1. if f is a posynomial and g is a monomial, then the constraint f(x) ≤ g(x) can be handled

by expressing it as f(x)/g(x) ≤ 1 (since f/g is posynomial). This includes as a special

case a constraint of the form f (x) ≤ b, where f is posynomial and b > 0;

2. if g1 and g2 are both monomial functions, then we can handle the equality constraint

g1(x) = g2(x) by expressing it as g1(x)/g2(x) = 1 (since g1/g2 is monomial); and

3. we can maximize a nonzero monomial objective function, by minimizing its reciprocal

(which is also a monomial).

As an example, consider the problem:

Min xz/y

s.t. 2 ≤ z ≤ 5

x + y ≤ z

xz = y2

.

Using the simple transformations described above, we obtain the equivalent standard
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form of GP:

Min (xz)−1y

s.t. z/5 ≤ 1

2z−1 ≤ 1

xz−1 + yz−1 ≤ 1

xzy−2 = 1

.

2.3 Solving the Geometric Programming

This section shows how to solve the geometric programming. First we introduce the ge-

ometric programming in convex form, and the dual problem is discussed. Section 2.3.3

describes the interior-point methods to solve the prime and dual problem of geometric pro-

gramming in convex form. Section 2.3.5 shows the softwares or tools to solve the geometric

programming; finally, the trade-off and sensitivity analysis are introduced.

2.3.1 Geometric Programming in Convex Form

A geometric program can be reformulated as a convex optimization problem, i.e., the

problem of minimizing a convex function subject to convex inequality constraints and lin-

ear equality constraints. This is the key to our ability to globally and efficiently solve geo-

metric programs. Using the variable transformation: yi = log xi, and take the logarithm of
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a posynomial f , we can further obtain:

h(y) = log[f(ey1 , ..., eyn)] = log(
t∑

k=1

eaT
k y+bk), (2.4)

where aT
k = [ak

1, ..., a
k
n] and bk = log ck. It can be shown that h is a convex function of the

new variable y: for all y, z ∈ Rn and 1 ≤ λ ≤ 1, we have:

h(λy + (1 − λ)z) ≤ λh(y) + (1 − λ)h(z). (2.5)

Note that if the posynomial f is a monomial, then the transformed function is affine,

i.e., a linear function plus a constant. We can convert the standard geometric programming

(2.3) in 2.2.3 into a convex programming by expressing it as:

Min log f0(e
y1 , ..., eyn) = log(

k0∑
k=1

eaT
0ky+b0k)

s.t. log fi(e
y1 , ..., eyn) = log(

ki∑
k=1

eaT
iky+bik) ≤ 0, i = 1, ..., m

log gi(e
y1 , ..., eyn) = aT

i y + bi = 0, i = m + 1, ..., m + p

. (2.6)

This is the geometric programming in convex form. Convexity of the convex form geo-

metric programming (2.6) has several important implications: we can use efficient interior-

point methods to solve them, and there is a complete and useful duality, or sensitivity theory

for them [58].
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2.3.2 Dual Problem of Geometric Programming in Convex Form

The dual problem of GP in convex form (2.6) can be written as [54-55],

Max bT
0 v0 −

k0∑
j=1

v0,j log v0,j+
m∑

i=1

(bT
i vi −

ki∑
j=1

vi,j log(vi,j/λi)) +
p∑

i=1

bm+i,1ui

s.t. v0 ≥ 0, 1T v0 = 1

vi ≥ 0, 1T vi = λi, i = 1, ..., m

λi ≥ 0, i = 1, ..., m

m∑
i=0

AT
i vi+

p∑
i=1

AT
m+iui = 0

, (2.7)

where vi = (vi,1, ..., vi,ki
)T , ci,j is the coefficient of the jth monomial term of the ith con-

straint and AT
i = [ai,1, ..., ai,ki

] is a matrix ∈ Rki×n whose column vectors ai,j are the

exponents corresponding to the jth monomial term of the ithconstraint. In this optimization

problem, there are
m∑

i=0

ki + p optimal dual variables. The variables vi,j are associated with

the jth inequality constraint. The variables μk are associated with the kth constraint. The

dual problem of GP in convex form has some advantages from a computational point of

view:

1. the concave object function whereas the object is maximized and the constraints are

linear; and

2. the dual problem of this type has a significantly impact on the computational methods

and theoretical developments for GP.



22 Chapter 2 : The Geometric Programming

2.3.3 Interior-Point Methods

The foundation for modern interior-point methods, are based on the barrier methods.

For solving the constrained nonlinear optimization problems, the penalty and barrier meth-

ods, which have a common motivation: finding an unconstrained minimizer of a composite

function that reflects the original objective function as well as the presence of constraints.

The interior-point methods are based on transforming constrained optimization to uncon-

strained optimization problem via logarithmic barrier function, is defined as:

B(x, μ) ≡ f0(x) − μ

m+p∑
i=1

lnfi(x), (2.8)

where μ is a positive scalar, called the barrier parameter. An important feature of B(x, μ)

is that it retains the smoothness properties of f0(x) and fi(x) as long as fi(x) > 0. If

μ > 0 and μ → 0 , the characteristic of B(x, μ) is like f0(x). Intuition then suggests that

minimizing B(x, μ) for a sequence of positive μ values converging to zero will cause the

unconstrained minimizers of B(x, μ) to converge to a local constrained minimizer of the

original problem [59-60].

2.3.4 The Procedure for Solving the Geometric Programming

In the solution procedure, we first formulate our problem as a geometric programming.

Then we could transform the GP into convex form, and the corresponding dual problem

could be formulated. After obtaining the prime and dual problem of GP in convex form,
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we apply the logarithmic barrier function transformation to convert the constrained opti-

mization problems into unconstrained ones. Finally, we could employ the general search

algorithm such as gradient-method and Newton-method to solve this unconstrained opti-

mization and the original solution could be inversely obtained. We give an algorithm as an

example: given a strictly feasible point y, set μ(n=0) > 0, β > 1, and error tolerance ε > 0.

1. Centering step (gradient method for unconstrained optimization):

Set k = 0 and error tolerance θ > 0.

1(a) Based on logarithmic barrier function (2.8), (2.6) could be transformed as:

Min φ(y) = log(

k0∑
k=1

eaT
0ky+b0k) − μ

m+p∑
i=1

ln

[
log(

ki∑
k=1

eaT
iky+bik)

]
.

1(b) Compute ∇φ(y(k)), αk = arg min φ(y(k)-α∇φ(y(k))), α > 0.

1(c) Update: y(k+1) = y(k) + αk∇φ(y(k)).

1(d) Stopping criterion: Quit if
∣∣y(k+1) − y(k)

∣∣ ≤ θ.

else

1(e) Back to step 1(a).

2. Update: y = y(μ(n+1)).

3. Stopping criterion: Quit if
∣∣y(μ(n+1)) − y(μ(n))

∣∣ ≤ ε.

else

4. Decrease μ(n+1) = 1
β
μ(n).

5. Back to step 1.
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Figure 2.1: In the solution proceeding, we first formulate our problem

as geometric programming. Then we transform the GP in
convex form and also find its dual problems. After that, the
logarithmic barrier function transformation of the prime and
dual problem of GP in convex form is employed and this
unconstrained optimization problem could be solved
efficiently by general search algorithms.
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2.3.5 Tools and Softwares for Geometric Programming

The nonlinear optimization solver using efficient interior-point algorithms [59] was de-

veloped since 1994, including geometric programming. Recently, the primal-dual interior-

point methods are applied to solve the geometric programming [60]. The software: MINOS

[61], LOQO [62] or LANCELOT [63], is also possible to solve the convex form problem

with smooth objectives and constraints. These software could always obtain the global op-

timal solution based in the convex theory. In this work, we use the package ggplab [64] to

solve our doping profile optimization problem in GP’s form, and then we could obtain the

solution efficiently and robustly.

2.3.6 Trade-Off Analysis

Suppose the right-hand sides of constraints are modified in the geometric programming

(2.3) as follows:

Min f0(x)

s.t. fi(x) ≤ ui, i = 1, ..., m

gi(x) = vi, i = 1, ..., p

. (2.9)

If all of ui and vi are one, this modified geometric programming return to the original

one. If ui ≤ 1, then the constraint fi(x) ≤ ui with a tighter restriction than the original ith

constraint; conversely if ui ≥ 1, it represents a loosening restriction of the constraint. For
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example, the change in the specification ui = 0.9 means that the ith constraint is tightened

10%, whereas ui = 1.1 means that the ith constraint is loosened 10%. Supposed the f ∗
0 (u, v)

represent the optimal objective value of the modified geometric programming (2.9), as a

function of the parameters u = [u1, u2, ..., um] and v = [v1, v2, ..., vm], so the original

objective value is f∗
0 (1, 1). In trade-off analysis, we observe the variation of objective

function f ∗
0 as a function of small u and v. Then the change of objective function respect

to the variation of constraint can be expressed as:

Si =
∂f ∗

0 /f∗
0

∂ui/ui

, Ti =
∂f ∗

0 /f∗
0

∂vi/vi

.

These sensitivity numbers are dimensionless, since they express fractional changes per

fractional change.

2.3.7 Sensitivity Analysis

Sensitivity analysis considers how small changes in the optimal variables affect the

optimal objective value. Supposed the f0(x
∗) represent the optimal objective value, we

observe the variation of objective function f ∗
0 as a function of small perturbation of x∗,

then the change of objective function respect to the variation of optimal variable can be

expressed as:

Zi =
∂f ∗

0 /f∗
0

∂xi/xi

.

Optimal sensitivities can be very useful in practice. If a set of optimal variables are
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solved, and has a small sensitivity, then small changes in the optimal variables won’t affect

the optimal value of the problem much. On the other hand, a solution set has a large

sensitivity is one that (for small changes) will greatly change the optimal value, and the

solution may be instable. Roughly speaking, an optimal value with a small sensitivity can

be considered more strongly binding than one with a large sensitivity.
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2.4 Practical Applications of Geometric Programming

There are wide varieties of application of geometric programming ranging from civil engi-

neering to economics since 1960s:

1. civil engineering: optimal structural design [65], optimization of cofferdam problem

[66];

2. environmental engineering: optimal wastewater treatment plants design [67], water

quality management [68];

3. chemical engineering: Williamsotto process optimization [69], condenser designed

[70];

4. mechanical engineering: space trusses design [71], optimal helical springs design [72];

5. nuclear engineering: nuclear systems design [73];

6. economics: marketing-mix problem [74], EOQ inventory model [75]; and

7. electrical engineering: CMOS op-amp design [76-78], gate sizing in digital circuits

[79], LNA circuit parameters optimization [80-81] and temperature-aware floorplanning

[82].

From the listed applications, we can know that GP has many contributions on many

areas, although the GP is a very restrictive type of optimization problem. The detailed

references about the aforementioned background of GP in the section 2 could refer [58,

76].
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Problem Formulation and Solution

Method

I n this chapter, we first formulate the optimal doping profile problem for SiGe HBTs,

then the cut-off frequency model and GP formulation for the doping profile optimiza-

tion is discussed. In Section 3, we show how to solve the formulated GP problem and list

the corresponding implemented codes.

3.1 Problem Formulation

Figure 3.1 shows the studied SiGe HBTs device for the doping profile and Ge-dose con-

centration co-design, and also for a 2D device simulation. Mathematically, a doping profile

29
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tuning problem for the high frequency property optimization of SiGe HBTs can be formu-

lated as an optimization problem:

Max ft

s.t. Nmin ≤ NA(x) ≤ Nmax, 0 ≤ x ≤ WB

0 ≤ G(x) ≤ Gmax, 0 ≤ x ≤ WB

GeAV G = 1
WB

WB∫
0

G(x)dx

NA(x) = bxm, 0 ≤ x ≤ 0.05WB

, (3.1)

where ft is the cut-off frequency; NA(x) and G(x) are the base doping profiles for silicon

and germanium, which are spatial-dependent positive functions over the interval 0 ≤ x ≤

WB and x is depth from the interface of base and emitter into substrate. The base doping

profile of silicon is lower than the doping level of emitter-base junction, Nmax, and higher

than background doping, Nmin. The base doping profile of germanium is less than the

maximum value Gmax, and GeAV G is the average value of Ge fraction, which can be a

given parameter ranging from 0 to 0.23 [36]. Assuming the manufacturing limitation, the

maximum value of Ge fraction should be less or equal to the solubility of Ge atoms in

silicon, such as 0.23 [36, 50-51]. In the present work, a peak base doping Nmax of 1 ×

1019 cm−3 at emitter edge of base and a minimum base doping Nmin of 5 × 1016 cm−3

at collector edge of base have been chosen to include the heavy doping induced band gap
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narrowing effect in the entire base region [36, 50-51]. WB is the base width of the transistor,

in which a neutral base width of 100 nm is chosen. And without loss of generality, we may

assume the doping profile to be the form [36]:

NA(x) = bxm, 0 ≤ x ≤ 0.05WB.

Here we assume m = 0 for a liner doping within 5% of the base width near the emitter-

base junction.

3.1.1 Cut-off Frequency Model

For a SiGe HBT, the cut-off frequency ft of a HBT is given by [50-51]:

1

2πft

=
CJ,BE + CJ,BC

gm

+ RCCJ,BC + τF , (3.2)

where CJ,BE is the base–emitter junction or depletion layer capacitance, CJ,BC is the base–

collector junction or depletion layer capacitance, gm is the transconductance, RC is the

collector resistance and τF is the forward transit time. The gm and CJ,BE in Eq. (3.2) could

also be expressed as a function of doping profile:

gm =
q2ABEn2

i0

KTGB

exp(
qVBE

kT
), (3.3)

and

CJ,BE = ABE

(
qεSiNA(0)

2 (Vbi − VBE)

)0.5

, (3.4)
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where VBE is the applied voltage across the emitter-base junction, Vbi is the built-in poten-

tial voltage, ni0 is the intrinsic carrier concentration in a undoped Si, εSi is the permittivity

of Si, ABE is the area of the base-emitter junction, k is the Boltzmann constant, and T is

the temperature (Kelvin).
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Table 3.1: The adopted parameters for the cut-off frequency model.
The WB is the base width, Gmax is the maximin value of
Ge-content, CJ,BC is the base–collector junction capacitance,
RC is the collector resistance, q is the electrical charge, ABE

is the area of the base-emitter junction, k is the Boltzmann
constant, T is the temperature (Kelvin), ni0 is the intrinsic
carrier concentration in a undoped Si, Nmin is the
background doping concentration, Nmax is the maximum
doping concentration VBE is the applied voltage across the
emitter-base junction, Vbi is the built-in potential voltage, εSi

is the permittivity of Si, and b is the constant.

Symbol Value
WB 100 nM

Gmax 0.25
b 1
CJ,BC 0.8 × 10−12 F
RC 0.4 kΩ
q 1.6 × 10−19C
ABE 0.25 μm−2

k 8.617 × 10−5 eV / K
T 300o K
ni0 1.4 × 1010 cm−3

Nmin 5 × 1016 cm−3

Nmax 1 × 1019 cm−3

VBE 1 V
Vbi 1.1 V
εsi 1.04 × 10−12 F / cm2
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3.1.2 Forward Transit Time Model

The forward transit time in Eq. (3.2) are approximately composed by three components:

τF = τB + τE + τBC , (3.5)

where τE is the emitter delay time and τBC is the base–collector depletion region transit

time. The τBC could be expressed as:

τBC =
WBC

2vsat

, (3.6)

where the base–collector depletion width WBC is determined by the collector doping con-

centration near the base–collector junction which we assume to be lower than the base

doping concentration, and vsat is the saturation velocity of electrons. The τE could be

expressed as:

τE = (
WEPEq,E

2n2
i0

)(
γ−1

1 + kSiGeGeAV G

)GB, (3.7)

where WE is the width of the emitter region, PEq,E is the equilibrium concentration of holes

in the emitter, γ is the ratio of the effective density of states in SiGe to the effective density

of states in silicon and kSiGe are constants [36]. The GB is the base Gummel number, which

is also a function of NA(x) [50-51]:

GB =

∫ WB

0

NA(x)n2
i0

Dn(x)n2
i (x)

dx, (3.8)
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where ni(x) is the intrinsic carrier concentration in Si and Dn(y) is the carrier diffusion

coefficient of Si, and both could be express as the function of doping profile:

ni(x)2 = n2
i0(

NA(x)

Nref
)γ2 , (3.9)

and

Dn(x) = Dn0

(
NA(x)

Nref

)−γ1

, (3.10)

where Nref, Dn0 and γ2 are constants [36]. Substituting Eqs. (3.9) and (3.10) into Eq. (3.8),

we have:

GB =
1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx. (3.11)

3.1.3 Base Transit Time Model

The base transit time model in the optimization problem is given by [50-51], as shown

in below:

τB =

WB∫
0

n2
i,SiGe(x)

NA(x)
(

WB∫
x

NA(y)

n2
i,SiGe(y)Dn,SiGe(y)

dy)dx, (3.12)

where ni,SiGe(x) is the intrinsic carrier concentration in SiGe and Dn,SiGe(y) is the carrier

diffusion coefficient of SiGe. The x- and y- directions in Eq. (3.12) are indicated in Fig.

3.1. The ni,SiGe(x) and Dn,SiGe(y) depend on the profile of Si and Ge-dose [36, 50-51]:

n2
i,SiGe(x) = γn2

i,0 exp (μG(x)) , (3.13)
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and

Dn,SiGe(y) = (1 + kSiGeGeAV G)Dn0

(
NA(x)

Nref

)γ2

, (3.14)

substituting Eqs. (3.13) and (3.14) to Eq. (3.12), we have:

τB =
1

Nrefγ1Dn0(1 + kSiGeGeAV G)

WB∫
0

exp(μG(x))NA(x)γ2−1(

WB∫
x

NA(y)1+γ1−γ2

exp(μG(y))
dy)dx.

(3.15)

3.1.4 Cut-off Frequency Model as A Function of Doping Profile

Substitute GB of Eq. (3.11) into Eqs. (3.7) and (3.3), τBC of Eq. (3.6) and τE of Eq.

(3.7) into τF of Eq. (3.5), and τB of Eq. (3.15), as well as Eqs. (3.3) to (3.5) into cut-off

frequency model of Eq. (3.2), we have:

1
2πft

= 1
Nrefγ1Dn0(1+kSiGeGeAV G)

WB∫
0

exp(μG(x))NA(x)γ2−1(
WB∫
x

NA(y)1+γ1−γ2

exp(μG(y))
dy)dx

+(WEPEq ,E

2n2
i0

)( γ−1

1+kSiGeGeAV G
)( 1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx) +
(

kTεSiGe

n2
i02q3(Vbi−VBE)

)1/2

exp(− qVBE

kT
) × NA(0)1/2( 1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx)( γ−1

1+kSiGeGeAV G
)

+
CJ,BCkT

q0.5ABEn2
i0

exp(− qVBE

kT
)( γ−1

1+kSiGeGeAV G
)( 1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx) + WBC

2vsat
+ RCCJ,BC

,

(3.16)

which strongly depends on doping profile of Si and Ge-dose.
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3.1.5 SiGe HBTs Doping Profile Nonlinear Optimization

After substituting the cut-off frequency model of Eq. (3.16) into the original HBTs

doping profile designed problem of Eq. (3.1), we will have:

Max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2π
Nrefγ1Dn0(1+kSiGeGeAV G)

WB∫
0

exp(μG(x))NA(x)γ2−1(
WB∫
x

NA(y)1+γ1−γ2

exp(μG(y))
dy)dx

+2π(WEPEq,E

2n2
i0

)( γ−1

1+kSiGeGeAV G
)( 1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx)

+2π
(

kTεSiGe

n2
i02q3(Vbi−VBE)

)1/2

exp(− qVBE

kT
)NA(0)1/2( 1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx)

( γ−1

1+kSiGeGeAV G
) +

2πCJ,BCkT

q2ABEn2
i0

exp(− qVBE

kT
)( γ−1

1+kSiGeGeAV G
)

( 1
Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx) + πWBC

vsat
+ RCCJ,BC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

s.t. Nmin ≤ NA(x) ≤ Nmax, 0 ≤ x ≤ WB

0 ≤ G(x) ≤ Gmax, 0 ≤ x ≤ WB

GeAV G = 1
WB

WB∫
0

G(x)dx

NA(x) = bxm, 0 ≤ x ≤ 0.05WB

,

(3.17)

where the objective function is composed by a two-dimension integral, and the Ge-dose is

in the exponential term, which is a nonlinear continues function and is hard to solve us-

ing the general optimization solver. For example, if we apply an evolutionary algorithm,

the doping profile function is hard to encode to solve; if using the nonlinear optimization

solution method, the corresponding KKT condition probably is difficult to calculate. As a
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result, the technique of geometric programming transformation is employed in the follow-

ing sections.
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Figure 3.1: Illustration of the two-dimensional device structure of the

explored SiGe HBT. The doping profile and Ge-dose
concentration co-design, and also for a 2D device
simulation are implemented in this specific structure.
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3.2 GP Formulation for SiGe HBTs Doping Profile Opti-

mization

In this section, we show how to formulate the general nonlinear SiGe HBTs doping profile

optimization problem (3.17) into GP’s form.

3.2.1 Taking Reciprocal for the Objective Function

For GP transformation, the nonlinear optimization problem (3.17) is formulated as:

Min 1
Nrefγ1Dn0(1+kSiGeGeAV G)

WB∫
0

exp(μG(x))NA(x)γ2−1(
WB∫
x

NA(y)1+γ1−γ2

exp(μG(y))
dy)dx

+2π(WEPEq,E

2n2
i0

)( γ−1

1+kSiGeGeAV G
)( 1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx) +
(

kTεSiGe

n2
i02q3(Vbi−VBE)

)1/2

exp(− qVBE

kT
)NA(0)1/2( 1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx)( γ−1

1+kSiGeGeAV G
)

+
CJ,BCkT

q2ABEn2
i0

exp(− qVBE

kT
)( γ−1

1+kSiGeGeAV G
)( 1

Nrefγ1−γ2Dn0

WB∫
0

NA(x)1+γ1−γ2dx) + WBC

2vsat

+RCCJ,BC

s.t. Nmin ≤ NA(x) ≤ Nmax, 0 ≤ x ≤ WB

0 ≤ G(x) ≤ Gmax, 0 ≤ x ≤ WB

GeAV G = 1
WB

WB∫
0

G(x)dx

NA(x) = bxm, 0 ≤ x ≤ 0.05WB

.

(3.18)
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The effectiveness of maximizing the ft is equal to minimizing the reciprocal of ft.

3.2.2 Discretizing the Continuous Doping Profile Function

In the base transit time model (3.15) of SiGe HBT, the doping profile is continuous.

To represent the doping profile as the discretized variables to be solved, the base region in

Eq. (3.15) is first discretized to M regions, xi = iWB/M, i = 0, 1, ..., M − 1, and the

continuous doping profile functions NA(x) and G(x) can be transformed to NA(xi) and

G(xi), i = 0, 1, ..., M − 1, as shown in Fig. 3.2;

τB =
W 2

B

M2Nrefγ1Dn0(1 + kSiGeGeAV G)

M−1∑
i=0

exp(uG(xi))NA(xi)
γ2−1

M−1∑
j=i

NA(xj)
1+γ1−γ2

exp(uG(xj))
.

(3.19)

Problem (3.19) is not a valid posynomial since it contains the optimal variables G(xi)

in the exponential term. Fortunately, we can use the variable transformation as shown in

Fig. 3.2:

L(xi) = exp(G(xi)), i = 0, 1, ..., M − 1, (3.20)

then Eq. (3.19) could be reexpressed as:

τB =
W 2

B

M2Nrefγ1Dn0(1 + kSiGeGeAV G)

M−1∑
i=0

L(xi)
uNA(xi)

γ2−1

M−1∑
j=i

L(xj)
−uNA(xj)

1+γ1−γ2 ,

(3.21)

and the constraint of Ge-dose of Eq. (3.18) (0 ≤ G(xi) ≤ Gmax, i = 0, 1, ..., M − 1 ) and
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(GeAV G = 1
M

M−1∑
i=0

G(xi)) is discretized and reformulated as:

1 ≤ L(xi) ≤ exp(Gmax), i = 0, 1, ..., M − 1, (3.22)

and

exp(MGeAV G) = exp

[
M−1∑
i=0

G(xi)

]

=
M−1∏
i=0

exp G(xi) =
M−1∏
i=0

L(xi)

, (3.23)

respectively.

3.2.3 Derive the Summation Function of Doping Profile as Posynomial

For the summation of optimal variables of doping profiles Eq. (3.21) and GB of Eq.

(3.11), we define:

Si =
M−1∑
j=i

L(xj)
−uNA(xj)

1+γ1−γ2 , i = 0, 1, ..., M − 1

Wi =
M−1∑
j=i

L(xj)
uNA(xj)

γ2−1Sj, i = 0, 1, ...,M − 1

bi =
M−1∑
j=i

NA(xj)
1+γ1−γ2 , i = 0, 1, ..., M − 1

, (3.24)
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and the above equations can also be expressed as backward recursions:

Si+1 + L(xi)
−uNA(xi)

1+γ1−γ2 ≤ Si, i = 0, 1, ..., M − 2

Wi+1 + L(xi)
uNA(xi)

γ2−1Si ≤ Wi, i = 0, 1, ..., M − 2

bi+1 + NA(xi)
1+γ1−γ2 ≤ bi, i = 0, 1, ...,M − 2

W
−u

M−1NA(xM−1)
1+γ1−γ2 = SM−1

W
u

M−1NA(xM−1)
γ2−1SM−1 = WM−1

NA(xM−1)
1+γ1−γ2 = bM−1

. (3.25)

During the above representation for the summation functions, we have the recursive

posynomial inequality constraints (for every constraints, the left-hand sides of the inequal-

ities are posynomial, and right-hand sides are monomial).
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3.2.4 SiGe HBTs Doping Profile Optimization in GP’s Form

In problem (3.18), we express the summation of Eqs. (3.21) by (3.24) and (3.25),

replace the Ge-dose constraints by Eqs. (3.22) and (3.23) and then we have:

Min AW0 + B1NA(x0)
0.5b0(1 + KSiGeGeAV G)−1 + B2b0(1 + KSiGeGeAV G)−1 + C

s.t. Nmin ≤ NA(xi) ≤ Nmax, i = 0, 1, ..., M − 1

Si+1 + L(xi)
−uNA(xi)

1+γ1−γ2 ≤ Si, i = 0, 1, ..., M − 2

Wi+1 + L(xi)
uNA(xi)

γ2−1Si ≤ Wi, i = 0, 1, ..., M − 2

bi+1 + NA(xi)
1+γ1−γ2 ≤ bi, i = 0, 1, ..., M − 2

W
−u

M−1NA(xM−1)
1+γ1−γ2 = SM−1

W
u

M−1NA(xM−1)
γ2−1SM−1 = WM−1

NA(xM−1)
1+γ1−γ2 = bM−1

1 ≤ L(xi) ≤ exp(Gmax), i = 0, 1, ...,M − 1

NA(xi) = bxm
i , i = 0, 1, ..., 0.05M

exp(MGeAV G) =
M−1∏
i=0

L(xi)

,

(3.26)

where A, B and C are collected doping profile independent constants. Note that NA(xi) is

the discretized variables of doping profile in base region; i, ranging between zero and M -1,

is the uniformly spaced mesh points in the base region. Through these sets of variables,
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NA(xi), L(xi), Si, Wi and bi we can co-optimize the doping profile of Si and Ge in the

base region for different given GeAV G ranged from 0 to 0.23. Problem (3.26) is a GP since

the coefficients of objective function A, B and C are positive, and thus it is a posynomial

function; the left-hand sides of the inequalities are posynomials and the respect right-hand

sides are monomial functions; and the equality is a monomial equality. For justifying the

solution of the formulated GP of Eq. (3.26), we apply the variable transformation as section

2.3.1:

NA(xi) = exp(αi), i = 0, 1, ..., M − 1

L(xi) = exp(βi), i = 0, 1, ...,M − 1

Si = exp(ηi), i = 0, 1, ...,M − 1

Wi = exp(πi), i = 0, 1, ..., M − 1

bi = exp(λi), i = 0, 1, ...,M − 1

, (3.27)
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Figure 3.2: The discretization and variables transformation of integral

(3.15). The base region in (3.15) is first discretized to M
regions, xi = iWB/M, i = 0, 1, ..., M − 1, and the
continuous doping profile functions NA(x) and G(x) can be
transformed to NA(xi) and G(xi), i = 0, 1, ...,M − 1.
Second we assume
L(xi) = exp(G(xi)), i = 0, 1, ..., M − 1, and then the
discretized doing profile function could be obtained.
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and then problem (3.26) is reformulated as:

Min log

⎛
⎜⎜⎝ A exp(π0) + B1 exp(α0)

0.5 exp(λ0)(1 + KSiGeGeAV G)−1

+B2 exp(λ0)(1 + KSiGeGeAV G)−1 + C

⎞
⎟⎟⎠

s.t. Nmin ≤ log [exp(αi)] ≤ Nmax, i = 0, 1, ...,M − 1

log [exp(ηi+1) + exp(βi)
−u exp(αi)

1+γ1−γ2 ] ≤ log [exp(ηi)] , i = 0, 1, ..., M − 1

log [exp(πi+1) + exp(βi)
u exp(αi)

γ2−1 exp(ηi)] ≤ log [exp(πi)] , i = 0, 1, ..., M − 1

log [exp(λi+1) + exp(αi)
1+γ1−γ2 ] ≤ log [exp(λi)] , i = 0, 1, ..., M − 1

log [exp(πM−1)
−u exp(αM−1)

1+γ1−γ2 ] = log [exp(ηM−1)]

log [exp(πM−1)
u exp(αM−1)

γ2−1 exp(ηM−1)] = log [exp(πM−1)]

log [exp(αM−1)
1+γ1−γ2 ] = log [exp(λM−1)]

1 ≤ log [exp(βi)] ≤ exp(Gmax)

log [exp(αi)] = log [exp(bxm)] , i = 0, 1, ..., 0.05M

log [exp(MGeAV G)] = log

[
M−1∏
i=0

exp(βi)

]

.

(3.28)

Eq. (3.28) is a convex programming since the objective is a convex function, and all the

inequalities are convex inequality constraints since the left-hand sides of the inequalities

are exponential functions and the respect right-hand sides are affine functions; and the

equalities constraints are all affine functions. For the convex programming, based on the

theorem 21.9 in [90], we could estimate the solution property of the modelled problem. As
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shown below, we state the theorem:

Theorem: Consider the general constrained optimization problem

Min f(x)

s.t. h(x) = 0

g(x) ≤ 0

,

if f0 : �n → �, f ∈ C1, be a convex function on the set of feasible points

Ω = {x ∈ �n : h(x) = 0, g(x) ≤ 0}

where h : �n → �m, g : �n → �p, h, g ∈ C1, and Ω is a convex set, and if this problem is

feasible, then the solution x* is a global minimizer of f over Ω.

Now, according to the theorem, if the problem (3.28) has the solution, then we could

guarantee the solution of the problem (3.28) and the original GP problem of (3.26) is global

optimal.

3.3 Solving the SiGe HBTs Doping Profile Optimization

Problem

We discretize problem (3.26) of total variables equal to 100, and solve this problem using

the package ggplab [64]. The implemented codes are listed below:
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Table 3.2: The adopted parameters for the forward and base transit time
model. The WBC is the base–collector depletion width, vsat

is the saturation velocity of electrons, WE is the width of the
emitter region, PEq,E is the equilibrium concentration of
holes in the emitter, γ is the ratio of the effective density of
states in SiGe to the effective density of states in silicon. The
kSiGe, γ2 and Dn0 are constants.

Symbol Value
WBC 20 nM

Vsat 5 × 106cm / s
WE 300 nM

PEq,E 1.5 × 1010cm−3

KSiGe 3
γ 0.87
Dno 20.72 cm2/ S

γ2 0.69

%—————–Start program—————–

clear all;

%—————–Parameter setting—————–

M = 100;%discretized numbers

WB = 10ˆ(-5);%base region

Gmax = 0.25;%maximin value of Ge-content

CJBC = 0.8*10ˆ(-13);%base-collector junction capacitance

RC = 0.4; %collector resistance
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Q = 1.6*10ˆ(-19); %electrical charge

ABE = 0.25; %area of the base-emitter junction

T = 300; %temperature (Kelvin)

ni0 = 1.4*(10ˆ10); %intrinsic carrier concentration in a undoped Si

Nmax = 1*10ˆ19; %the maximum doping concentration Nmin = 5*10ˆ16;

VBE = 1; %the applied voltage across the emitter-base junction

Vbi = 1.1; %built-in potential voltage

WBC = 20*10ˆ(-7); %base-collector width

Vsat = 8*10ˆ(6); %saturation velocity of electrons

WE = 20*10ˆ(-5); %width of the emitter region

PEQE = 5*10ˆ(5); %equilibrium concentration of holes in the emitter

KsiGE = 3; %constants

Gama = 0.87; %constants

K = 8.617*10ˆ(-5); %Boltzmann constant

g1 = 0.42; %constants

g2 = 0.69; %constants

Nref = 10ˆ17; %constants

Dn0 = 20.72; %constants

KSiGe = 3; %constants
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eSiGe = 1.04*10ˆ(-12); %the permittivity of Si

u = 26.614; %constants

Gav = 0.09; a%verage ge fraction

b = 1; %constants

pwi = g2 -1; %constants

pwj = 1+g1-g2; %constants

%—————–End parameter setting—————–

% Define optimization

gpvar v(M) y(M) w(M) z(M) x(M) b(M)

% Background doping constraints

variables constr = [ Nmin*ones(M,1) <= v; v <= Nmax*ones(M,1);z<=exp(Gmax)*ones(M,1);];

% Recursive constraints for summation in objection function

for i=1:M-1

constr(end+1) = y(i+1) + (z(i)ˆ(-u))*v(i)ˆpwj <= y(i);

constr(end+1) = (1/z(i))<=1;

constr(end+1) = w(i+1) + (z(i)ˆu)*y(i)*v(i)ˆpwi <= w(i);

constr(end+1) =x(i)==z(i)*x(i+1);

constr(end+1) = b(i+1) + v(i)ˆpwj <= b(i);

end
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% The boundary of recursive constraints

constr(end+1) = y(M) == (z(M)ˆ(-u))*(v(M)ˆpwj);

constr(end+1) = w(M) == (z(M)ˆu)*(y(M)*v(M)ˆpwi);

constr(end+1) = x(M) ==z (M) ;

constr(end+1) = b(M) == v(M)ˆpwj;

Assume 5% same doping profile

for i= 1:0.01*M

constr(end+1)=v(i)==v(i+1);

end

% Current gain constraint

last constr index = length(constr) + 1;

add=length(last constr index) + 1;

constr(last constr index) =x(1)==exp(M*Gav);

% Cut-off frequency model optimization

GBco= WB/(M*Nrefˆ(g1-g2)*Dn0);

A = WB/(Mˆ2*Nrefˆg1*Dn0)*(1+KSiGe*Gav));

B1 = (WE*PEQE/(2*ni0ˆ2))*GBco*(gamaˆ(-1)/(1+KSiGe*Gav))+

CJBC*K*T/(qˆ0.5*ABE*ni0ˆ2)*exp(-q*VBE/(K*T))*

(gamaˆ(-1)/(1+KSiGe*Gav))*GBco;
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B2 = (K*T*(eSiGe*qˆ1.5/(ni0ˆ2*2*(vbi-VBE)))ˆ(0.5))*

exp(-q*VBE/(K*T))*(gamaˆ(-1)/(1+KSiGe*Gav))*GBco;

C = WBC/(2*Vsat)+RC*CJBC;

obj = A*w(1)+B1*b(1)+B2*b(1)*v(1)ˆ0.5+C;

% Solve the problem

optval sol status = gpsolve(obj, constr);

assign(sol)

% Ge-dose

% fprintf(1,’\n%2.22f\’, log(z));

% Plot the optimal doping profile

nbw = 0:1/M:1-1/M;

semilogy(nbw,v,’LineWidth’,2);

axis([0 1 1e16 1e18]);

xlabel(’base’);

ylabel(’doping’);

%—————–End program—————–

After implementing this code, the package ggplab will first transform the command

(constraints and objective) into the matrix form based on its defined parser. After that, the
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convex programming transformation for the GP problem will be activated and the interior-

point method based algorithm will solve the prime and dual problem of the GP in convex

form. Then the doping profile of Si and Ge will be globally extracted.



Chapter 4

Results and Discussion

I n the first section, the limitation of doping concentration and model calibration are first

discussed. Then the dependence of cut-off frequency and gain on Ge-dose and base

doping profile are investigated. Due to the strong influence of the shape and content of Ge

on the base transit time, the cut-off frequency and gain of SiGe HBTs are co-optimized

which are subject to the aforementioned constraints.

4.1 Mesh Discretization and Solution Time

In problem (3.26), We first discretize the base region with M = 100, which have 500 total

optimal variables, 400 linear constraints and 301 nonlinear constraints in our following

studies. The corresponding CPU time is within 30 seconds in a personal computer with 2.8

55
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GHz CPU and 2G RAM.

4.2 Limitation of Doping Concentration and Model Cali-

bration

For the original GP model in Eq. (3.26), there is no constraint to restrict the doping profile.

However, the stepwise doping profile is difficult to achieve in the realistic manufacturing

process. A constraint of doping profile is then considered [36].

∣∣∣N ′
A(x)

∣∣∣ ≤ αNA(x), (4.1)

where α specifies the maximum allowed gradient and is adjustable to approximate the re-

alistic doping profile. Figure 4.1 shows the doping profile of our device (0% GeAV G) with

and without gradient constraint. The cut-off frequency of device with doping profile con-

straint is significantly smaller than that without constraint. The incorporation of gradient

constraint of doping profile is crucial for realistic device doping profile optimization. To

ensure the accuracy of the optimized doping profile, the doping profile is implemented in

our in-house device simulator, as shown in Fig. 4.2 [84-88]. In device simulation, we first

solved the time-dependent drift-diffusion equations with calibrated mobility models and

generation-recombination models. After we obtained the DC operation point of device, the

AC simulation is the applied to obtain the AC characteristics of HBT. In Fig. 4.2, the solid
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line shows the optimized doping profile and the dashed line shows the doping profile real-

ized in the two-dimensional device simulation. The cut-off frequency is then extracted by

the 2D device simulation. The cut-off frequency in the two-dimensional device simulation

approaches 70 GHz, which is very similar to the cut-off frequency in the GP model, 71

GHz. The result confirms the accuracy of the established GP model.
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Figure 4.1: Optimized doping profile with and without gradient
constraint of doping profile, where the Ge-dose
concentration is set to be zero. The cut-off frequency of
device with doping profile constraint is significantly smaller
than that without constraint.
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Figure 4.2: The doping profile obtained from GP model and the 2D
device simulation. The doping profile of TCAD simulation
is obtained by three different ion implantation processes.
The cut-off frequency in the two-dimensional device
simulation approaches 70 GHz, which is very similar to the
cut-off frequency in the GP model, 71 GHz.
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4.3 Cut-off Frequency Optimization

Figure 4.3 shows the SiGe HBT with various Ge-dose concentrations, 2%, 8% and 12.5%,

respectively. The device with a higher Ge-dose concentration can exhibit a higher cut-off

frequency. The obtained optimized doping profiles are changed with respect to different

Ge-dose concentrations. The result shows a promising characteristic of SiGe HBT than a

pure silicon device. The Ge profiles for HBTs with various Ge-dose concentrations, 2%,

8% and 12.5% are plotted in Fig. 4.4. Figure 4.5 presents the dependence of cut-off fre-

quency as a function of Ge-dose concentration is then investigated. The addition of Ge-dose

in silicon can provide a high cut-off frequency; however, the cut-off frequency is decreased

as the Ge-dose is increased and higher than 12.5%. Besides, for the Ge-dose and base

doping profile optimization, the background doping is also an important factor in device

characteristic optimization. Figure 4.6 shows the impact of background doping profile on

the cut-off frequency. As the background doping, Nmin, is decreased from 5 × 1016 cm−3

to 3 × 1016 cm−3, the obtained optimal cut-off frequency could be increased from 71 GHz

to 85 GHz. Figure 4.7 plots Ge profile for devices with different background doping con-

centration. The Ge doping profiles are the same due to the same GeAvg. Figure 4.8 shows

the cut-off frequency as a function of background doping profile and Ge-dose concentra-

tion. Since the cut-off frequency is increased as the Ge-dose concentration is decreased and

the device with a maximum cut-off frequency is with 12.5% Ge-dose concentration.
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Figure 4.3: Doping profile and the corresponding cut-off frequency
with 2%, 8%, and 12.5% Ge-dose concentration. The
obtained optimized doping profiles and cut-off frequency
are changed with respect to different Ge-dose
concentrations.
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Figure 4.4: The Ge profiles for HBTs with 2%, 8%, and 12.5% Ge-dose
concentration. The cut-off frequency increases when the Ge
fraction raise.
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Figure 4.5: Cut-off frequency with various Ge-dose concentrations. The
addition of Ge-dose in silicon can provide a high cut-off
frequency; however, the cut-off frequency is decreased as
the Ge-dose is increased and higher than 12.5%
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Figure 4.6: Doping profile of decreasing background doping to 3 ×
1016 cm−3 for 3% Ge content. As the background doping,
Nmin, is decreased from 5 × 1016 cm−3 to 3 × 1016 cm−3,
the obtained optimal cut-off frequency could be increased
from 71 GHz to 85 GHz.
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Figure 4.7: Doping profile of Ge for different background doping
concentration of Si. The Ge doping profiles are the same
due to the same GeAvg and is independent to background
doping concentration.



66 Chapter 4 : Results and Discussion

��

���

���

���

���

���

�

�

�

)

�*�)
�*��

�*�)
�*��

0
��
�#
#�3

!�
$�
��

��
��&

'
(�

&��4&

��
�6
 !
��
��
�1
�,

� 
�

0�
��
��
�!�
�
�
��
��
��

��
� ��

�� �

�

Figure 4.8: The cut-off frequency as a function of Ge-dose and
background doping concentrations. The results exhibit the
cut-off frequency is increased as the Ge-dose concentration
reached 12.5 % while implanting lower background doping
concentration.
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4.4 Current Gain and Cut-off Frequency Co-Optimization

In addition, the optimization of cut-off frequency, the current gain, β of HBTs is crucial

for communication application, which can be significantly influenced by the base doping

profile. How to compromise the cut-off frequency and current gain of HBTs becomes a

critical issue in SiGe technology. The current gain is defined by the ratio of collector and

can be expressed as the ratio of Gummel numbers:

β =
GE,SiGe

GB,SiGe

, (4.2)

where GE,SiGe is the emitter Gummel number and GB,SiGe is the base Gummel number.

Since the emitter Gummel number depends mostly on the emitter doping profile, and thus

can be treated as a positive constant in the optimization flow. For the base Gummel number,

the dependence of Gummel number depends on the base doping profile has been studied

in Eq. (3.8). Therefore, the relationship and Eq. (4.2) are then transformed as the current

gain constraint and plugged to the GP model. Figure 4.9 shows the cut-off frequency as

a function of the current gain. Since the cut-off frequency is related to the current gain

and bandwidth, the obtained cut-off frequency will be smaller with a higher current gain

constraint. The relation between cut-off frequency and current gain varies with different

Ge-dose concentration. The device with 14% Ge-dose concentration exhibits the highest

cut-off frequency. However, to obtain the maximum current gain, the device with the high-

est Ge-dose concentration exhibits a favorable characteristic. Moreover, the results show
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that the device with a higher Ge-dose concentration could provide a higher gain and thus re-

leases the design constraint. For each of the Ge content, the cut-off frequency is decreased

with the increasing current gain constraint and then dropped significantly. The tuning point,

in which the current gain constraint starts to significantly reduce the cut-off frequency, is

decisive in obtaining the maximum current gain with sufficient cut-off frequency. There-

fore, by careful selection of the maximum current gain constraint, we could find the optimal

current gain constraint, β/GE,SiGe × 1011 , with sufficient cut-off frequency, as shown in

Fig. 4.10, where the lower background doping concentration and higher Ge-dose concen-

tration may provide the largest current gain.

As shown in Fig. 4.8, it is found that 12.5% Ge-dose concentration and 2 × 1016 cm−3

background doping concentration can maximize the cut-off frequency. The higheset cut-off

frequency can reach 254 GHz. On the other hand, for obtaining the maximum current gain,

as shown in Fig. 4.10, the Ge-dose concentration is about 23% and the background doping

is about 2 × 1016 cm−3, where the maximized current gain constraint β/GE,SiGe × 1011 =

1100, and the value of current gain β is about 1200. The obtained optimal doping profile

and Ge-dose concentration are plotted in Fig. 4.11. Result shows that for the SiGe HBTs,

the triangular Ge profiles are the best suited to achieve the minimum base transit time

and trapezoidal Ge profiles are the best suited to get high current gain in SiGe HBTs,
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which matches the practical design consideration of SiGe HBTs [35]. The design of Ge-

dose concentration for obtaining high cut-off frequency and high current gain is rather

different. Therefore, to compromise the purpose of high cut-off frequency, we use the cut-

off frequency multiplies the current gain constraint as a new object function. The optimized

result is shown in Fig. 4.12, similar to the result of current gain, shown in Fig. 4.10, the

device with a higher Ge-dose concentration and a lower background doping concentration

exhibits the best result. The optimal condition for maximum cut-off frequency-current gain

product is at the point of GeAV G = 23% and Nmin = 2 × 1016 cm−3. The correspondent

optimal doping profile and Ge profile are the dashed lines in Fig. 4.11. We notice that the

object function, which is composed by the cut-off frequency and the current gain, could be

adjusted according to designer’s interest.
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Figure 4.9: The maximized current gain constraint can add for 0% to

23% Ge content. The device with 14% Ge-dose
concentration exhibits the highest cut-off frequency.
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Figure 4.10: The maximum current gain constraint, which is added for
every Ge content and background doping to maintain
sufficient cut-off frequency. The lower background doping
concentration and higher Ge-dose concentration may
provide the largest current gain.
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Figure 4.11: Optimal Si and Ge doping profile for cut-off frequency
maximize and maximize current gain constraint. The
triangular Ge profiles are the best suited to achieve the
minimum base transit time and trapezoidal Ge profiles are
the best suited to get high current gain in SiGe HBTs
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Figure 4.12: Co-optimization of cut-off frequency and current gain for
the SiGe HBTs. The trade-off surface shows that the
device with a higher Ge-dose concentration and lower
background doping concentration exhibits the best results.



Chapter 5

Conclusions

I n this chapter, we will draw the conclusion. In the section 5.1, we summarize this

work. In the section 5.2, some future work are suggested.

5.1 Summary

In this study, the cut-off frequency and the current gain of SiGe HBT have been optimized

via a geometric programming approach. The design of doping profile and the Ge concen-

tration in the base region has been transformed into a convex optimization problem, and

solved in a cost-effective manner. Our preliminary result has shown that a 23% Ge fraction

may maximize the current gain; besides, a 12.5% Ge can maximize the cut-off frequency,

74
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where 254 GHz cut-off frequency has been achieved. For the SiGe HBTs, the triangu-

lar Ge profiles are best suited to achieve the minimum base transit time and trapezoidal

Ge profiles are best suited to get high current gain in SiGe HBTs. The accuracy of the

adopted optimization technique was first confirmed by comparing with two-dimensional

device simulation; consequently, the employed approach is computationally efficient and

guarantees to always find the globally optimal solution. For concurrently optimization of

multiple dopants in device channel, unlike other optimization approaches, which cycles

through optimizing each one dopant species with the others fixed, this approach may give

the optimal solution without the iteration. The GP formulation of device characteristics

provides an alternative way to design of SiGe HBTs. The major contributions of this work

are the transformation of cut-off frequency into a GP form for multiple doses doping profile

optimization, additional and background doping of silicon substrate current gain consider-

ation, and the validation of the analytic formula with by device simulation.

5.2 Future Work

1. The HBT devices could be fabricated based on the proposed optimal doping profile

methodology.

2. The doping profile optimization of multi-finger HBT could also be investigated.

3. The method also handles other devices, such as MOSFETs, Fin-FET devices and static
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random access memories.

4. For further precise calculation to sub-100 nm devices, the posynomial derivative of quan-

tum effect correction model is necessary.

5. The proposed device doping profile optimization method could co-optimize with inte-

grated circuits.

6. The commentary geometric programming [89] transformation for solving general non-

linear optimization could be further investigated.

7. Evolutionary algorithm combined geometric programming for solving general nonlinear

programming could be developed.

8. For large scale GP problems, relaxed primal and dual path-following algorithms could

be further implemented [91].
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