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摘要 

這篇論文提出一套 MP3 編解碼的最佳化演算法及有效的 16 位元定點 DSP 實

現。在 MP3 編碼最佳化中，我們基於移除計算量龐大的聲響心裡模型，提出一套

新的速率控制迴圈演算法，並採用頻寬控制及動態位元分配等。在 MP3 解碼最佳

化中，我們提出一套新的解量化方程式實現法，並可適用在定點處理器中；在實

現 IMDCT 和子頻帶合成上，也採用了快速演算法。我們將 MP3 編解碼最佳化的

演算法實現在一顆 16 位元定點 DSP，ADSP-2181 上，並採用動態定點格式降低

定點運算時的失真。實現後的 MP3 編碼器僅需 21.05 MIPS 及 44 千位元組記憶

體，而解碼器僅需 18.67 MIPS 及 44.3 千位元組記憶體，相較於其他商業化產品

及學術研究，能提供最好的效能。最後，本篇論文還提出一個基於 32 位元 RISC

及 DSP 的雙核心嵌入式系統整合設計。 
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ABTRACT 

This thesis presents the algorithm optimization and efficient 16-bit fixed point 

DSP implementation of MP3 encoding and decoding algorithms. In the MP3 encoding 

algorithm, we propose several approaches including the removal of psychoacoustic 

model, simplified iteration loop, fast rate control loop and applying of bandwidth 

control and dynamic bit allocation proportional to the energy of granules. In the MP3 

decoding algorithm, we propose a fast dequantization method with high SNR in fixed 

point implementation and apply fast algorithms in IMDCT and subband synthesis. The 

algorithms are also completely realized on a 16-bit fixed point DSP, ADSP-2181, and 

the dynamic fixed point format is applied to improve audio quality. The MP3 encoder 

consumes 21.05 MIPS and 44k bytes memory, and the MP3 decoder consumes 18.67 

MIPS and 44.3k bytes memory. Both have superior performance than other 

commercial products and paper works. Finally, this thesis also presents an integrated 

design of a dual core embedded system with a 32-bit RISC, Intel® StrongARM 

SA-1110, and ADSP-2181 DSP. 
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  CHAPTER 1. INTRODUCTION 

CHAPTER 1. INTRODUCTION 

1.1 MPEG/Audio Compression 

Today the digital audio compression has been applied in various current 

multimedia applications, like network multimedia streaming, online music store, 

DAB (Digital Audio Broadcasting), digital television and portable devices (pen 

drive, walkman, voice recorder, cellular phone and etc.). The MPEG/audio 

compression is the most popular international standard for digital compression of 

high-fidelity audio. 

The state-of-the-art algorithms for audio compression, such as MPEG and 

WMA, transform the audio signal for de-correlation and quantize the transformed 

coefficient according to the perceptual property determined by the psychoacoustic 

model (PAM) [1]. In this approach, the limitation of human hearing are exploited to 

remove the inaudible components of audio signals to achieve a high compression 

ratio. 

MPEG/audio offers a choice of three distinct compression layers [2]. This 

provides a wide range of the trade-off between the codec complexity and the 

compressed audio quality. Layer I forms the basic algorithms and is suitable for the 
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bit rate above 128 Kbps per channel. Layer II targets the bit rates around 128 kbps 

per channel. Possible applications include the audio coding for DAB and the 

storage of synchronized video-and-audio sequences on CD-ROM. Layer III is the 

most complex but offers the best audio quality, particularly for the bit rate around 

64 kbps per channel. This layer suits the audio transmission over ISDN and the 

multimedia application on portable devices. Which layer will be employed for an 

application is determined by the computational complexity and the performance 

requirement [3]. 

1.2 Motivations 

MPEG/audio Layer III, also referred as MP3, is the most popular digital audio 

format on Internet now. And with the help of Internet, MP3 has also gained 

popularity as a portable solid-state audio format. Recently, various kinds of devices 

that support MP3 application have come out in the consumer market. However, 

most of all have “decoding-only” features. Few of them support MP3 encoding 

with high quality. This is solely because MP3 encoding algorithm often consumes 

too much computational resources to implement on the system powered by 

batteries. 

A high quality MPEG/audio Layer III encoding and decoding algorithms, 

which are optimized for 16-bit fixed point arithmetic, and a real-time 

implementation on a low-cost 16-bit fixed-point DSP are proposed in this thesis. 

ADI ADSP-2181 is chosen as the target DSP. 

The prototype design of a dual core embedded system is also presented in this 

thesis. The work is done by integrating the proposed MP3 codec implementation on 

ADSP-2181 DSP with a 32-bit RISC, Intel® StrongARM SA-1110 CPU, on an 

existing embedded system, AdvanTech PCM-7130 SBC. 
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1.3 The Overview of The Proposed Method and Contributions 

In this thesis, we propose several fast algorithms for MP3 encoding and 

decoding. In the MP3 encoding algorithm, the psychoacoustic model (PAM), the 

most computationally complex part of the entire MP3 encoding algorithm, is 

removed based on several experimental results, and the PAM-based distortion 

control loop is also simplified. Some techniques including bandwidth control and 

dynamic bit allocation proportional to the energy of granules are added to improve 

the audio quality. 

Furthermore, a fast rate control loop algorithm is proposed to reduce the 

complexity of non-uniform quantizer and the number of iterations. The complexity 

of non-uniform quantizer is reduced by moving the time-consuming operation 

outside the iteration and by applying piecewise linear approximation in the 

non-uniform quantization. Thus the quantizer is divided into two parts and 

consumes less than 10 and 4 DSP instructions outside and inside the iteration 

respectively. The number of iterations is reduced by the precise initialization and 

the fast iterative search of the non-uniform quantizer parameter. Thus the average 

number of iterations is only 1.8 while the original method takes more than 45 

iterations in average. 

In the MP3 decoding algorithm, the dequantization operation is implemented 

by applying piecewise linear approximation and Newton’s method for root-finding 

to achieve higher SNR. And we adopt Lee’s fast DCT/IDCT algorithm to realize 

the IMDCT and the matrixing operation in the synthesis filterbank. 

1.4 The Experimental Results and Potential Applications 

The results of the proposed MP3 codec optimization and implementation are 

also analyzed. The MP3 encoder consumes 21.05 MIPS and 44k bytes memory and 
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the MP3 decoder consumes 18.67 MIPS and 44.3k bytes memory. Both have 

superior performance than other commercial products and paper implementations. 

The superior performance in MP3 codec implementation mainly brings two 

areas of potential application. 

 The low requirements of MIPS and memory are suitable for the system 

powered by battery, like pen drive, walkman, voice recorder, cellular 

phone and etc. Thus these devices can support both MP3 encoding and 

decoding. 

 The system integration part gives the probability of taking the low cost 

ADSP-2181 as an audio coprocessor in a large system. By applying the 

firmware loading protocol proposed in this thesis, the system can 

support not only MP3 but also more audio application. The innovative 

feature is suitable for many products nowadays like PVR/ DVR, DVD 

player/ recorder, IP phone, digital broadcasting system and etc. 

1.5 Content and Organization 

This thesis contains seven chapters: 

 Chapter 1 introduces the digital audio compression algorithms and the 

motivation, overview and contribution of this thesis. 

 Chapter 2 introduces the MPEG/audio Layer III encoding algorithm and 

brings the proposed optimization. The proposed methods are mainly 

focused on minimizing the complexity of the PAM-based bit allocation 

process and improving the coding efficiency. Based on a series of 

experiments and analysis, the PAM is simplified, and a new fast bit 

allocation algorithm is developed. 

 Chapter 3 introduces the MPEG/audio Layer III decoding algorithm 

and brings the proposed optimization. The proposed methods are 
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focused on minimizing the complexity of the dequantization and the 

filterbank. 

 Chapter 4 introduces the 16-bit fixed-point DSP, ADSP-2181 and brings 

the MP3 codec DSP implementation of proposed methods. 

 Chapter 5 presents the experimental results and comparisons with other 

methods.  

 Chapter 6 introduces an application example, a dual core embedded 

system architecting by Intel® StrongARM MPU and ADI ADSP-2181 

DSP, and brings the firmware design. 

 Chapter 7 brings the conclusions and future works. 

 Appendix contains the pictures of the whole system and sub-systems. 
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CHAPTER 2. ENCODER OPTIMIZATION 

2.1 Encoding Overview and Complexity Analysis 

Figure 1 shows the block diagram of the MPEG/audio Layer III encoding 

process. The 1152 consecutive PCM samples are grouping together and called one 

audio frame. The time to frequency mapping transforms the audio input into the 

spectral lines frame by frame. 

Then these spectral components are divided into several scalefactor bands 

according to the critical-band rate. The audio input simultaneously passes through 

the PAM-II, psychoacoustic model II, that determines the ratio of the signal energy 

to the masking threshold for each scalefactor band. 

To achieve the bit rate constraint, the rate controller varies the quantizer in an 

orderly way, quantizes the spectral values and counts the number of Huffman code 

bits required to code the quantized values. The quantizer in MP3 is non-uniform so 

that the quantization noise depends on the quantized value instead of the 

quantization parameters like the general uniform quantizers. Huffman coding is 

chosen as the lossless coding tool while the Huffman tables are pre-defined and 

have been statistically analyzed [5]. The distortion controller adapts the 

scalefactors to control the quality when the quantization noise exceeds the masking 

threshold. 
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Psychoacoustic Model II  

Figure 1. MPEG/audio encoding process 

The functionality of each block will be described in the following subsections. 

2.1.1 Psychoacoustic model II 

The psychoacoustic model, a model of the human auditory perception, 

supplies the non-uniform quantization block with the information on how to 

quantized and scaled based on their perceptual relevance. The relevance is 

denoted as the ability to mask other signals (maskee) for a signal (masker). 

Usually in MPEG/audio coding, the maskee indicates the noise from the 

non-uniform quantization of transformed coefficients. 

This masking is a perceptual property of the human auditory system that 

occurs when the presence of strong audio signal make a temporal or spectral 

neighborhood of weaker audio signal imperceptible. Three types of auditory 

masking effects are described below: 

 The absolute threshold of hearing, ATH: It is characterized by the 

minimum intensity of a pure tone that the ear can hear in a noiseless 

environment. This threshold is frequency dependent and typically 

shows a minimum (indicating the maximum sensitivity of ear) at 

frequencies between 1kHz to 5kHz. A typical curve of ATH is shown in 

Figure 2. 
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Figure 2. The absolute threshold of hearing 
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Figure 3. Frequency masking effect combined with ATH 

 The frequency masking: it, also called simultaneous masking, is a 

frequency domain phenomenon where a weaker signal (maskee) can’t 

be perceptible by a simultaneously occurring stronger signal (masker) as 
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long as they are close enough to each other in frequency. The masking 

threshold is measured when any signal below is imperceptible and 

depends on the sound pressure level and the frequency of the masker. 

As shown in Figure 3, the complete masking threshold is combined with 

the masking threshold of the masker and the absolute threshold of 

hearing. 

 The temporal masking: It is a phenomenon that relatively loud sounds 

in an audio signal, such as a loud trumpet’s note, will tend to overpower 

other sounds that occur just before and just after it as shown in Figure 4. 
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Figure 4. Temporal masking effect 

2.1.2 Time to frequency mapping transform 

MP3 algorithm uses a hybrid transform to perform time to frequency 

mapping. As shown in Figure 5, the hybrid transform includes a 32-channel 

analysis polyphase filterbank, also called subband analysis, and an MDCT 

filterbank. 

Before passing the frequency lines (transformed coefficients) into next 

stage of the encoding process, a reduction of alias is introduced here in order to 

reduce amount of information for transmission. 
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Figure 5. Hybrid transform for time to frequency mapping 

Figure 6 is the function diagram of 32-channel analysis polyphase 

filterbank. It is composed of 32 band-pass filters. The band-pass filter, Hi(n) is 

generated by modulating the low-pass filter, h(n), to the ith subband as (1). The 

coefficient of h(n) is shown in Figure 7, 

( ) ( ) ( ) ( ) 511~0 where,
64

1612cos =⎟
⎠
⎞

⎜
⎝
⎛ −⋅+⋅⋅

⋅= nninhnHi
π

. (1) 

H0(n)

H1(n)

H31(n)

   32

   32
P1(n)

P0(n)

   32
P31(n)

x(n)
Input audio signals

S0(n)={..., P0(0), P0(32), P0(64), ...}

S1(n)={..., P1(0), P1(32), P1(64), ...}

S31(n)={..., P31(0), P31(32), P31(64), ...}

Output subband signals

…
…

 

Figure 6. The 32-channel analysis polyphase filterbank 

The 32 consecutive audio signals are simultaneously passed into the 32 

band-pass filters. The filtering (with 480 overlapped inputs) outputs are 
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down-sampled and the output subband signal are then produced. 
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Figure 7. The coefficient of low-pass filter, h[n] 

The MDCT (Modified Discrete Cosine Transform) performs finer 

resolution of the 32 subband outputs from the analysis polyphase filterbank as 

shown in Figure 5. First the subband output passes windowing operation. 

MDCT uses four types of window as shown in Figure 8 (a) to (d). MP3 

specifies two different MDCT block lengths: long block of 18 samples and 

short block of 6 samples. The normal, start and stop windows are employed in 

the granule denoted as long block. And the short window is employed in the 

granule denoted as short block. As shown in Figure 8 (e), each window is 50% 

overlapped with neighborhood window. So the window size is 36 and 18 

respectively. 

The start and stop windows are the so-called adaptive windows. The start 

window provides adaptation from normal window to short window and the stop 

window provides adaptation from short window to normal window. 

Which window is employed is determined by PAM-II. In general, the long 
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block length provides better frequency resolution (less block effect) with 

stationary characteristic, and the short block length provides better time 

resolution with transient. 
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Figure 8. The four types of MDCT window and the arrangement 

The formula of MDCT is shown in (2), 
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π
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The n is 36 for long block and 12 for short block. 

2.1.3 Iteration loop 

The iteration loop plays a important role of performing “quantization” and 

“Huffman coding” to achieve a high compression ratio. This block outputs the 

coded data satisfying human auditory system and the correlative side 
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information. 

The iteration loop allocates the bits and the allowable noise to each 

scalefactor band from two main modules: outer and inner iteration loop. The 

outer iteration loop, also called distortion control loop, controls the quantization 

noise produced by the non-uniform quantization within the inner iteration loop. 

The scalefactor of the scalefactor band is adjusted to reduce the quantization 

noise if the quantization noise is found to exceed the masking threshold 

obtained from PAM-II. The outer loop is executed until the actual noise is 

below masking threshold in each scalefactor band. 

The inner iteration loop, also called rate control loop, does the actual 

quantization. The quantized coefficients are then Huffman coded, and the 

number of coded bits is counted. If Huffman coder demands bits more than the 

frame can supply, the quantizer parameter needs to be adjusted. The inner 

iteration loop is repeated with different quantizer parameters until the 

demanding bits of Huffman coder is small enough. 

The Huffman coding algorithm is based on 32 static Huffman tables, 

provides lossless compression and thereby reduces the amount data to be 

transmitted without loss of the quality. 

2.1.4 Bitstream formatting 

This block produces the MPEG/audio Layer III compliant bitstream. The 

Huffman coded frequency lines, side information and frame header are 

assembled to form the bitstream. Ancillary data not necessarily related to the 

audio frame can be inserted into the coded bitstream. 

Table 1 summarizes the complexity of MP3 encoding algorithm in DSP MIPS. 

According to the analysis, PAM and iteration loops are two of the most 

time-critical processes. PAM-II normally requires transcendental computations 
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such as logarithm, exponential and power, which are often computationally 

demanding. 

Table 1. Predicted complexity to implement MPEG/audio encoder [4] 

MP3 Encoder MIPS

Hybrid transform 25

PAM-II 90

Iteration loop 70

Etc. 5

Total 190

 

Another computational demanding task is the iteration loop, also called bit or 

noise allocation process. The process finds the optimal quantization parameters and 

scalefactors to obtain the best audio quality in a limited bit resource. Because the 

quantizer is non-uniform, MP3 adapts an iterative approach to evaluate the 

parameters. Thus it is based on analysis-by-synthesis scheme. The experimental 

result shows that the number of iterations per audio granule reached up to 50. It 

should be also mentioned that the number of iterations depends on the 

characteristic of input signal and the execution cycles are also varied in each frame. 

2.2 Simplified PAM-II 

As shown in Table 1, the traditional MP3 encoding algorithm consumes too 

much MIPS and is hard to be implemented on power-limited devices. Since the 

complexity analysis shows that both of the most computationally demanding 

processes are related to ISO PAM-II, we first consider the possibility of encoding 

without ISO PAM-II [4]. 
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2.2.1 Distortion control loop analysis 

Figure 9 shows the traditional iterative approach to implement distortion 

control. After the rate control loop quantizes the spectral lines, the distortion 

control loop first reconstructs the spectral by inverse quantization of the 

quantized value, and then we can evaluate the distortion of the quantization 

works. Then if the distortion exceeds the masking threshold in the scalefactor 

band, we can amplify the original signal, and then the masking threshold is also 

amplified. The pre-emphasis process turns the pre-emphasis flag on and 

amplifies the whole spectral by pre-defined factor if all of the upper four 

scalefactor bands have unmasked distortion. 

Rate control loop

Distortion calculation

Preemphasis

Amplify scale-factor band

Loop break condition

 

Figure 9. Distortion control in the iteration loops 

The motivation of PAM-II simplification is that PAM-II is ineffective over 

a certain threshold of bit rate [4]. Figure 10 shows the masking threshold and 

the quantization noise before applying distortion control in each scalefactor 

band. The signal was encoded at 128kbps and 256kbps stereo with 44.1kHz 

sampling rate. 
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(a) Sample granule 
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(b) Average distortion 

Figure 10. Noise analysis before distortion control 

As observed in Figure 10 (a), the distortion is much lower than masking 

threshold at 256kbps mode, and then no distortion control is needed. However 

at 128kbps mode, the distortion exceeds the threshold at the 19th and higher 

scalefactor bands, and then the distortion control is needed to shape the noise. 
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Figure 10 (b) shows the average. Similarly, the distortion only exceeds the 

threshold at higher scalefactor bands. 

Related research has been made to investigate the contribution of PAM-II 

to the distortion control [4]. By analyzing the number of distortion control 

iteration and the result of subjective quality preference tests, Oh et al. [4] 

showed that PAM-II is unnecessary when the bit rate is over 256kbps. To 

recover the audio quality at lower bit rate, they proposed a bandwidth control 

scheme. Subjective test revealed people prefer the sound with a limited 

bandwidth to the sound with full bandwidth but with unmasked distortion. In 

this thesis, we also employ bandwidth control of input signal. Figure 11 shows 

the bandwidth coefficient versus demand bit rate. 
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Figure 11. Coefficients of bandwidth controller (sampling rate is 44100 Hz): the 

corresponding cut-off frequency of each bit rate is obtained from 

LAME [14] 

A low pass filter is applied in the bandwidth control. The ith frequency line 
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( )ix gf ,  in the gth granule of the f th frame is filtered by (3), 
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where the cut-off frequency, cΩ  is defined as the bandwidth coefficient. 

In other words, the bandwidth control can allocate more bits for low 

frequency band, and then the quality can be improved. Figure 10 (b) shows the 

decrease of average distortion when bandwidth control is employed. 

Experiments shows that the bandwidth control scheme is effective when the 

MP3 is encoded at lower bit rate. 

In this thesis, we propose removal of ISO PAM-II and related processes 

like distortion control and window switching and employ efficient allocation of 

limited bit resource to recover the audio quality. Later we will address the 

proposed method to allocate bit resource more efficiently. 

2.2.2 Removal of window switching 

Modern audio compression algorithm often use dynamic window 

switching to avoid preechoes. Preecho happens when we encode audio signals 

that the amplitude raises violently in an instant as observed in Figure 12 (a). If 

the algorithm can’t individually encode the signals of different characteristic, 

the signals grouped by algorithm will be encoded by using the same 

quantization parameter, i.e. the quantization noise are spreading to the whole 

block, and it is hard to get better coding gain. In transform coding based 

algorithm, signal of the same time-slice are always grouped first and then 

encoded at a time so the preechoes are unavoidable. But the psychoacoustics 

reveals that the preecho less than 18ms can be masked by a loud voice behind it. 
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Thus the algorithm can group less amount of signals and encode them together 

even if the preecho is produced. That is why we need dynamic window 

switching in MP3 algorithm. In general PAM-II detects the appearance of 

preecho by calculating the perceptual entropy (PE), i.e. the predicted amount of 

bits needed to encode the granule. But PAM-II is not implemented in proposed 

design for power-limited device. It is also not easy to have another metric to 

detect the appearance of preecho. 

Related research shows that encoding without window switching didn’t 

cause significant negative effect to the audio quality [4]. Figure 12 (b) and (c) 

show the time domain waveforms encoded with and without window switching 

in 128Kbps. Preecho appears as a notable difference around the 7000th sample 

(the 6000th sample of source signal) whether the window switching is used or 

not. 
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(b) Encoded with window switching 
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(c) Encoded without window switching 

Figure 12. Time domain waveforms from using window switching or not 
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2.3 Fast rate control loop 

As observed in Figure 13, the rate control loop also called inner iteration loops 

allocates the bit resources to each frequency line by quantization and Huffman 

coding. The difficulty is to find an optimal quantizer parameter also called global 

gain and select a suitable Huffman table. The ISO standard adopts a step-by-step 

approach to obtain the optimal parameter from an initial value determined by 

spectral flatness measure. Considering the input range of Huffman coding, more 

iteration taken in quantization process will be tested to guarantee the quantization 

output in the range. 

In this thesis, we propose a new rate control algorithm. Figure 14 illustrates 

the flowchart of the new algorithm. With the removal of PAM-II and related 

distortion control loop, the iteration loops is also simplified as Figure 14. 

Non-linear quantization

Huffman coding

Distortion control

Loop break condition

# coded_bits < max_bits

T
une the step-size

N

Y

Initialize the quantizer 
parameter (step-size)

 

Figure 13. Rate control in iteration loops 
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Figure 14. The new rate control algorithm 

2.3.1 Non-uniform quantization 

In ISO MP3 algorithm, the non-uniform quantizer was defined as (4), 
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where nint is a rounding function, q is the lower bound of quantization 

parameter, i.e. the initial value, δ is the increasing variable, and  is the 

i

( )ix gf
''
,

th frequency line pre-emphasized (5) and amplified (6) in the distortion control 

loop. 
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'
gf ixix

×+×
×= 12 1

2,, , and (5) 

 22 



  CHAPTER 2. ENCODER OPTIMIZATION 

( ) ( ) ( ) ( )ibCz'
gf

''
gf ixix

×+
×= 11

2,, , (6) 

where ( )ix gf,  represents the original frequency line, i is the index of spectral 

line, { }1 0,2 ∈z  switches on or off preemphasis, { 1 0,1 }∈z determines 

whether the scalefactors are logarithmically quantized with a step size of 2 or 

2 .  is the scalefactor band index of the iib th spectral line.  is the 

preemphasis table defined in [5]. 

( )⋅P

( )ibC  is the scalefactor of the scalefactor 

band, . ib

Since the distortion control is not used in this implementation, (5) and (6) 

no longer exist. Then (4) can be simplified to (7), 
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where the quantization parameter qgf +=∆ δ, . 

(7) is executed iteratively in the finding of an optimal gf,∆ . The rounding 

function nint is unnecessary in fixed point implementation. We can further 

rearrange (7) to (8), 

( ) ( ) 094602 16
3

750
.

,
.

,, −×=
∆×

− gf

ixiy gfgf
. (8) 

In the rate control iteration, gf,∆  is the only running variable. So we can 

take ( ) 750.

, ix gf  out from the iteration. Therefore the quantizer can be 

decomposed into two equation where one is calculated outside the iteration (9), 

( ) ( ) 750.

,,ˆ ixix gfgf = , (9) 
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and another is calculated in the iteration (10), 

( ) ( ) 094602 16
3

.ˆ
,

,, −×=
∆×

− gf

ixiy gfgf
. (10) 

The decomposition benefits the complexity reduction of the non-uniform 

quantizer. The most computationally demanding process, the ( ) 750.

, ix gf  

function, is only calculated once in each granule. And the iterative equation (10) 

in the fixed point implementation can be simplified to one multiplication, one 

shift operation and one subtraction. 

The implementation of (9) is optimized for the target DSP, ADSP-2181. 

The unsigned 16-bit fixed point inputs ( )ix gf,  ranged from 0 to 65535 are 

divided into two regions. The first region covering range from 0 to 31 is 

implemented using a 32-word lookup table. From the probability model of 

( ) 750.

, ix gf , the first region covered over 60 percentage of inputs. A small 

lookup table is applied here to speedup the calculation. The second region from 

32 to 65535 is implemented using piecewise linear interpolations. There are 11 

sub-regions between 32 to 65535. The segmentation is also optimized for the 

target DSP. Since ADSP-2181 supports hardware detector of leading ones/zeros, 

we can derive biased ( )x2log  in one instruction cycle. Thus the boundaries of 

sub-regions are proposed to be set to power of 2, i.e. 32, 64, 128, …, 65536. 

The approximation error has been analyzed in (11), 
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where pow075 is the implementation of proposed approximation method, also 

represented by . ( )⋅1Q

Figure 15 shows the error to real output ratio, ε . The ratio is around ±1%. 
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Table 2 summaries the number of DSP instruction cycles in calculation of two 

regions. 
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x 104
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-0.5%

0%   

0.5% 

xf,g(i)
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Figure 15. The error of ( ) 750.

, ix gf  approximation 

Table 2. The number of DSP instruction cycles in calculation of two regions 

Input range DSP instruction cycles Probability Table size 

0 ~ 31 4 > 60% 32 words 

32 ~ 65535 9 < 40% 22 words 

We can rewrite the (10) as (12), 

( ) ( ) 0946022 .ixiy NQ
gfgf −××= ∆∆

,, ˆ , (12) 

where  is the integer part, and N∆ Q∆  is the fractional part of 16
3 gf ,∆×− . In 

fixed point implementation, the multiplication of  can be easily 

implemented by the hardware barrel shifter. And the  is derived from a 

N∆2

Q∆2
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16-word lookup table that contains fixed point value 162
0

, 162
1

, …, 162
15

. The 

implementation is denoted as ( )⋅2Q . 

2.3.2 Dynamic bit allocation proportional to the energy of granules 

In the MP3 bitstream, each frame has fixed amount of bit resources on the 

constant bit rate. With a help of bit reservoir control, we can save the unused 

bits in the reservoir if the distortion of quantization is imperceptible, and it will 

benefit the encoding of succeeding frames. But in the proposed algorithm 

without PAM-II and distortion control, the quality constraint is no longer exist. 

Then the rate control loop will exploit all the bit resource as possible as it can to 

encode one audio granule. 

Normally an audio frame contains two (mono) or four (stereo) granules. 

The traditional MP3 algorithm portioned out the total bits equally for granules 

in each frame. An asymmetric allocation of the bit resources which is 

proportional to the energy of granules is proposed to equalize the quality, i.e. 

allowed distortion, between granules in the same frame. 

It is general that the transformed coefficient with higher amplitude will be 

quantized to higher integer values. And from the property of the Huffman code 

words, the integer input with higher value is usually coded with more bits. We 

can also extend the idea to the group of coefficients, i.e. granule. If the granule 

has more energy or more number of coefficients with higher amplitude, it need 

more bits to maintain the same quality as others. 

Considering the non-uniform property of quantizer, the power function is 

taken into account. From experimental results, the frequency lines below 

4,000Hz dominates the full bandwidth (22050Hz) energy. In the proposed 

approach, for sampling rate of 44.1kHz the score of the granule energy defined 

as (13) takes only  105576244100
4000 ≈×  spectral lines of ( ) 750.

, ix gf  for 
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calculation. 
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where ( )ix gf,ˆ  are determined from (9), and  is the energy score of the 

granule. 

gfE ,

The resource allocation is not exactly proportional to the granule score. 

The modification as shown in (14) takes the minimum resource into account. 

p
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where  is the minimum encoding bits given from (15), and  is the 

number of bits used to distribute to each granule given from (16).  is the 

total available number of bits in the frame. 
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In this thesis, we also propose the fast search approach which has two 

following parts. One is the precise initialization of the quantization parameter, i.e. 

. Another is the fast search of the optimal quantizer parameter. gf,∆

2.3.3 Precise initialization of the quantization parameter 

In the ISO MP3 algorithm, the initial value of quantization parameter is 
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derived as (17), 

( )gfq ,ln0.8 µ×= . (17) 

The spectral flatness measure, gf ,µ , is defined as (18). The derivation 

contains complex non-linear mathematic and is inefficient on fixed point 

implementation. 
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We propose that the initialization of gf,∆  is predicted by the one of 

previous granule and a lower bound. To derive the lower bound we consider (10) 

again. From the property of Huffman table, the quantized value, , has a 

upper bound, 8207. So the lower bound of 

( )iy gf ,

gf,∆  comes out from the direct 

derivation from (19), 
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The lower bound, , guarantees the quantized value in range of Huffman 

table. So the initialization with prediction is derived as (20), 

l∆

( ) ( ){ }σ+−∆∆=∆ 1,max ,, nn gflgf , (20) 
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where n is the iteration index of iterative search in Figure 14 and starts from 

zero. ( ) gfgf ,1, 1 −∆=−∆ , ( ) 1501,0 −=−∆ g , σ  is the addend of the step size 

and equal to zero during initialization. 

The great achievement of proposed method is proved by comparing the 

difference between initial value and final value. Figure 16 shows the difference 

histogram of ISO MP3 method and proposed method. From the statistic, over 

60 percent of predicted initial values are very close to the final values, i.e. the 

difference 1≤ε . The precise decision of initial value benefits to reduce the 

number of iteration of the following iterative search. 
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(a) ISO MP3 method in (17) and (18) 
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(b) Proposed method in (19) and (20) 

Figure 16. The histogram to difference between initial value and final value of 

. The accuracy is determined by the expected difference of initial 

value and final value. (a) ISO method initializes it by the measure of 

spectral flatness. (b) Proposed method initializes it by the one of 

previous granule and a lower bound. 

gf ,∆
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2.3.4 Fast search of the optimal quantizer parameter 

Nonuniform quantization 
quantize_tj (xq, ix, quantizerStepSize);

bits = countHuffBits (ix);

Update Addend of Step Size 
jump = updateJumpSize(bits-max_bits, step[ch]);

Nonuniform quantization 
quantizerStepSize += 1;

quantize_tj (xq, ix, quantizerStepSize);
bits = countHuffBits (ix);

Bits  max_bits

Jump = 0Jump != 0

Yes

No
Exit

Update Step Size of Qauntizer 
quantizerStepSize = 

max(quantizerStepSize+jump, low_bound)

Nonuniform quantization 
quantize_tj (xq, ix, quantizerStepSize);

bits_modify = countHuffBits (ix);

Update Step Unit
updateUnitStep(bits, bits_modify, jump, step+ch);

bits = bits_modify;

Update Addend of Step Size
jump = updateJumpSize(bits-max_bits, step[ch]);

Loop break condition

Yes

No

First trial

Iterative search

Final trial

≤

 

Figure 17. The adaptive approach to iterative search optimum parameter 

Figure 17 illustrates the our approach to iterative search. Table 3 describes 

the symbols used in Figure 17. 
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Table 3. Symbols descriptions of Figure 17 

Symbol name Description Abbreviation

xq The frequency lines powered by 0.75 in (9) gfx ,ˆ  

ix The quantized integer value in (10) gfy ,  

quantizerStepSize Quantizer parameter also called global gain gf ,∆  

low_bound The lower bound of gf ,∆  guaranteeing that the 

quantized value can be coded within Huffman table l∆  

jump Addend of  gf ,∆ σ  

step Predicted value of  the difference number of bits used 
in Huffman coding when gf ,∆  is increased by one. cρ  

max_bits The bits budget of this granule determined from (14) gfB ,  

bits, bits_modify Number of bits used in Huffman coding of the 
quantized values 

hb ,  hb̂

quantize_tj Implementation of (10) ( )⋅2Q  

countHuffBits Counting the number of bits used in Huffman coding of 
 gfy ,

( )⋅hC  

updateUnitStep Updating cρ  by results of the latest two iterations ( )⋅sU  

updateJumpSize Updating σ  by cρ  ( )⋅jU  

The proposed approach can be divided into three parts. The first part, the 

first trial, performs quantization with the initial value of gf ,∆  derived from 

(20). Then  are quantized to  by gfx ,ˆ gfy , ( )⋅2Q . The following  will 

choose appropriate Huffman tables for  and count the number of coded 

bits, . Based on 

( )⋅hC

gfy ,

( )0hb cρ  and the difference of ( )0hb  and , a new gfB , σ  is 

derived by . The ( )⋅jU σ  equal to zero implies that ( )0hb  is very close to 

 then we omit the iterative search part and apply final trial directly. gfB ,

The iterative search is applied when the σ  is not equal to zero. n is 
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representing the iteration index. In the nth iteration, (20) is used to derive the 

, and n starts from one where ( )ngf ,∆ ( )0,gf∆  is used in the first trial. After the 

update of ( )ngf ,∆ ,  and ( )⋅2Q ( )⋅hC  is used to obtain  and . The 

difference number of bits with previous iteration, , 

gfy ,
hb̂

( )1ˆ −− nbb hh σ  and 

( 1−nc )ρ  are sent to , and a new ( )⋅sU ( )ncρ  is updated. Similar with the first 

trial,  determines a new ( )⋅jU σ  used in the (n+1)th iteration. The iterative 

search block is terminated while one of the following loop break conditions 

exists. 

 n is greater than 5, 

  is less than 32, ( 1ˆ −− nbb hh )

 σ  is zero. 

The final trial is applied to guarantee that . Different from the 

iterative search, the fine tune of 

gf
h Bb ,≤

gf ,∆  is applied here to prevent the deadlock 

loop condition. 

For example, let 1000, =gfB , ( ) 800, −=∆ gf , 100−=∆l , and 

( ) 1000 =cρ  (obtained from previous granule),  are passed to  and 

 then we obtain . 

gfx ,ˆ ( )⋅2Q

( )⋅hC ( ) 5000 =hb ( )⋅jU  updates by 

( )
( ) 5
0

0
nint , −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

c

gf
h Bb
ρ

σ  

after the first trial. Since σ  is not equal to zero the iterative search is applied. 

(20) will update  as -85. ( )1,gf∆ ( )⋅2Q  and ( )⋅hC  are then executed again to 
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obtain .  updates by 900ˆ =hb ( )⋅sU

( ) ( ) ( ) 950ˆ

4
10

4
3nint1 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅+⋅=

σ
ρρ

hh

cc
bb

 

in 1st iteration. Then ( )2,gf∆  is updated again to -86. And we will repeat the 

process iteratively until any one of loop break condition exists. 

In this thesis, we propose a new iteration loops algorithm. Figure 18 

compares the pseudo code of ISO and the proposed method. With the removal 

of PAM-II, the distortion control is also removed, and the rate control is 

optimized for speedup. The solid lines in Figure 18 link the blocks with the 

same functionality but optimized in proposed method. The dotted lines link the 

blocks with different measurement in the proposed method. And the boldface 

represent the added blocks of the proposed method. 

For // Granule loop
    quantizerStepSize = nint(system_const * log(sfm(xr)));
    do{ // Outer loop
        quantizerStepSize -= 1;
        do{ // Inner loop
            do{
                quantizerStepSize += 1;
                pow075(xr, xq);
                quantize_tj(xq, ix, quantizerStepSize);
            }while(testOverflow(ix));
            bits = countHuffmanBits(ix);
        }while(bits > max_bits);
        
        loop_break = distortionControl(xr, ix, threshold, scf);
    }while(loop_break);
end

pow075(xr, xq);
bitAllocation(xq, frame_bits, max_bits);
For // Granule loop
    low_bound = (int)(16*log2(xq_max)/3 - 69.35);
    quantizerStepSize = max(low_bound, predict_quantizerStepSize);
    quantize_tj(xq, ix, quantizerStepSize);
    bits = countHuffmanBits(ix);
    jump = updateJumpSize(bits-max_bits, step);
    if(jump != 0){
        while(1){
            quantizerStepSize = max(low_bound, quantizerStepSize+jump);
            quantize_tj(xq, ix, quantizerStepSize);
            bits_modify = countHuffmanBits(ix);
            updateUnitStep(bits, bits_modify, jump, step);
            bits = bits_modify;
            jump = updateJumpSize(bits-max_bits, step);
            if(iter > 3 || abs(bits-max_bits) < 32 || jump == 0)
                break;
        }
    }    
    while(bits > max_bits){
        quantizerStepSize += 1;
        quantize_tj(xq, ix, quantizerStepSize);
        bits = countHuffmanBits(ix);
    }           
    predict_quantizerStepSize = quantizerStepSize;
    
    // No distortion control
end

(a) ISO iteration loop (b) Proposed iteration loop

 

Figure 18. Pseudo code of iteration loops (a) ISO method (b) Proposed method 
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To evaluate the performance of optimized rate control process, the number 

of iterations has been analyzed by calculating the execution times of ( )⋅1Q , 

, and  in each granule. The computational complexities are denoted 

as p, q, c individually. In encoding stereo MP3 with 128Kbps, the experiments 

show that the ISO method takes 45p+45q+47c in average while the proposed 

method takes 1p+2q+2c only. Table 4 lists the number of inner iteration in each 

method. The proposed method takes less iteration numbers than other methods. 

And due to decomposition of non-uniform quantizer, 

( )⋅2Q ( )⋅hC

( )⋅1Q  and , the 

computational complexity of inner iteration is also much less than other 

methods. 

( )⋅2Q

Table 4. The average number of inner iteration 

 ISO Oh et al. [4] Proposed 

Average 45 2.1 1.8 

Max >100 3 8 
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CHAPTER 3. DECODER OPTIMIZATION 

3.1 Decoding Overview and Complexity Analysis 

Bitstream 
Decoding

Encoded 
bitstream Dequantization Frequency to 

Time Mapping

PCM 
audio 

output  

Figure 19. MPEG/Audio Layer III decoding block diagram 

The MPEG/Audio layer III decoding process has three main parts [5]: 

bitstream decoding, inverse quantization and frequency-to-time mapping as shown 

in Figure 19. The first part synchronizes the encoded bitstream input and extracts 

the quantized frequency coefficients and other information of each frame. Figure 

20 illustrates the detail function blocks. 

The second part, inverse quantization also called dequantization, reconstructs 

a perceptually identical data of the frequency coefficients generated by the MDCT 

block during encoding. Based on the output of Huffman decoding and scalefactor 

information, the dequantization equation is represented in (21) [5]. 
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Figure 20. Bitstream decoding 

( ) ( ) ( ) ( )
( )( )

( ) ( ) ( )( )ii
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bPbCz
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gf iyix
+⋅+⋅

∆⋅−∆⋅

⋅⋅−=
14

1

,4
3
4

1

8

,,
2

21
1

, (21) 

where  is the output of Huffman decoding, and ( )iy gf , gf ,∆ , ,  

(subblock gain only used in short block), and 

1z ( )is w∆

( )ibC  are part of side information. 

Alias 
Reduction

PCM 
audio 

output

Inverse 
MDCT

Frequency 
Inversion

Synthesis 
Subband 

Filter bank  

Figure 21. Frequency to time mapping 

The last part, frequency to time mapping, produces the audio PCM output 

from the dequantized frequency lines. The part is a set of reversed operations of the 

MDCT and analysis polyphase filterbank in the encoder. The alias reduction block 

adds alias artifacts to dequantized outputs in order to obtain a correct reconstruction 

of subband signals. Then the inverse MDCT reconstructs time domain subband 

signals from frequency lines. The frequency inversion is then applied in order to 

compensate the decimation used in the analysis polyphase filterbank. After that, the 

synthesis polyphase filterbank, also called subband synthesis, is applied to the 

subband signals to yield the audio PCM output. 
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Among them, dequantization, IMDCT, and synthesis polyphase filterbank in 

particular require a large number of arithmetic operations and produce quantization 

noise in fixed point implementation. In this thesis, we propose a fast realization of 

dequantization and adopt fast algorithms on IMDCT and synthesis polyphase 

filterbank. 

3.2 Dequantization 

The dequantization equation is represented in (21). The complexity is the 

calculation of 3
4

,gfy  where ( )iy gf ,  is an integer ranging 0 to 8207. The direct 

derivation using mathematic libraries is too time-consuming and not suitable for 

real-time implementation. 

First the calculation of 3
4

,gfy  is decomposed into (22) in order to minimize the 

quantization noise of fixed point implementation. Comparing the dynamic range of 

3
4

,gfy  (0 to 165543.67) and 3
1

,gfy  (0 to 20.171), it is obvious that the 

implementation of 3
1

,gfy  produces lower quantization noise because of the smaller 

dynamic range. 

( ) ( ) ( )iyiyiy gfgfgf ,,,
3
1

3
4

⋅=  (22) 

Similarly with encoder case, the power function is implemented with hybrid 

scheme. First the input range is split into three section as shown in Figure 22. The 

first section, ( ) 320 , <≤ iy gf , utilizes a small lookup table to obtain the noiseless 

value directly. Another two sections adopt the piecewise linear approximation 

method. The segmentation is also optimized for the target DSP. In order to 

minimize the approximation error, the segmentation of the second section has been 
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made according to the leading-zeros of ( )iy gf
3

, . 
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Figure 22. The implementation of ( )iy gf
3
1

,  

Ignoring the frequency index i for general, (23) represents the approximation 

of 3
1

,gfyu = . 

( )
( )( ) ( )( )
( )( ) ( )( )⎪

⎩

⎪
⎨

⎧

≤≤+⋅
<≤+⋅
<≤

=
8207256,

25632,
320,LUT

,,33,,33

,,22,,22

,,
3
1

gfgfgfgf

gfgfgfgf

gfgf

yySyyS
yySyyS

yy
u

βα
βα , (23) 

where  represents the lookup table method applying in 1( )⋅LUT st section, 2α  and 

2β  are the linear approximation coefficients of the 2nd section, 3α  and 3β  are 

the linear approximation coefficients of the 3rd section, ( )⋅2S  is the segment index 

of the 2nd section derived from (24), and ( )⋅3S  is the segment index of the 3rd 

section derived from (25). 
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( ) ( )( )
( ) { }
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The approximation error has been analyzed that the error to real output ratio is 

around ±1%, and the SNR is around 46dB. The error is still too large and will 

probably lead the following processes like IMDCT and subband synthesis to 

produce more error, especially in fixed point implementation. Nevertheless in the 

encoding case, the following process, Huffman coding, is noiseless. 

In order to obtain the further approximation, we propose to apply the 

Newton’s method in the section of ( ) 820732 , ≤≤ iy gf . Let ( )iyu gf
3
1

,=  ,where (26) 

is another representation which is suitable for the Newton’s method of root-finding. 

The method will yield a value of u that approximates ( )iy gf
3
1

, . 

( ) 0,
3 =− iyu gf  (26) 

The function result is calculated through the repeated iterations that can 

successively reduce the residual error ( )iyu gf ,
3 − . The iteration formula is shown 

in (27), 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅=

⋅

+
=

⋅

−
−= 2
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,
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,
3
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01 ~
~2

3
1

~3

~2
~3

~
~~

u
iy

u
u

iyu
u

iyu
uu gfgfgf , (27) 

where the starting value 0
~u  is obtained from (23). 

The desired accuracy can be achieved in only one iteration. Figure 23 shows 
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the error to real output ratio. The ratio is around ±0.01% and the SNR is increased 

to 86dB. 
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Figure 23. The error to real output ratio of ( )iy gf
3
4

,  approximation. 

( )( ) ( ) ( )( ) ( )( ) ( )( )iyiyiyiyiy gfgfgfgfgf
3
4

3
4

,,,,, 3pow ⋅−=ε  where pow3 

is the proposed implementation of ( )iy gf
3
1

, . 

The effect of fixed point implementation have been analyzed. Figure 24 shows 

the error to real output ratio. The ratio is around ±0.08%, and the SNR is around 

82dB. 
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Figure 24. The error to real output ratio of ( )iy gf
3
4

,  fixed point approximation. 

( )( ) ( ) ( )( ) ( )( ) ( )( )iyiyiyiyiy gfgfgfgfgf
3
4

3
4

,,,,, fx3pow ⋅−=ε  where 

pow3fx is the proposed fixed point implementation of ( )iy gf
3
1

, . 

3.3 IMDCT and Subband Synthesis 

The frequency to time mapping tool is another computationally demanding 

process. Especially in IMDCT and subband synthesis blocks there are a lot of 

multiply-accumulation operations with cosine coefficients. It is necessary to 

perform optimization such as fast algorithm. But, in general, a fast algorithm brings 

more quantization errors due to fixed point operations. 

From the analysis result of Lee etc. [6], prevailing Lee’s Fast DCT algorithm 

[7] is adopted for the fast algorithms of IMDCT and subband synthesis block. For 

IMDCT block 9-point and 3-point Lee’s Fast IDCT is applied, and for matrixing 

routine in subband synthesis block 64-point Lee’s Fast DCT is used. 
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CHAPTER 4. DSP IMPLEMENTATION 

4.1 Target DSP Architecture 

Using the proposed architecture, we implement the MP3 encoder and decoder 

by a 16-bit fixed point DSP, ADSP-2181. Figure 25 shows the block diagram of 

ADSP-2181 [17]. 

 

Figure 25. The ADSP-2181 DSP core and peripheral integration 

The ADSP-2181 is a single-ship microcomputer optimized for digital signal 

processing (DSP) and other high speed numeric processing applications [17]. It 
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combines the ADSP-2100 family base architecture (three computational units, data 

address generators and a program sequencer) with two serial ports, a 16-bit internal 

DMA port, a byte DMA port, a programmable timer, Flag I/O, extensive interrupt 

capabilities and on-chip program and data memory. 

The features of the ADSP-2100 family DSP core are as following [17]: 

 Computational units: There are three independent, full-functional 

computational units including an 16-bit arithmetic/ logic unit (ALU), a 

40-bit multiplier/ accumulator unit (MAC) and a 32-bit barrel shifter. 

The ALU performs a standard set of arithmetic and logic operations; 

division primitives are also supported. The MAC performs single-cycle 

multiply, multiply/ add and multiply/ subtract operations with 40 bits 

for accumulation. The SHIFTER performs logic and arithmetic shifts, 

normalization, denormalization and derive exponent operations. The 

SHIFTER can be used to efficiently implement numeric format control 

including multiword and block floating point representations. 

 Data address generators (DAGs): Dual DAGs allow the processor to 

generate simultaneous address for dual operand fetches and support 

circular, post-modify and bit-reversed addressing modes. In 

sum-of-product calculation, DAGs allow the processor to fetch two 

operands and execute one ALU/ MAC/ SHIFTER instruction in single 

cycle. 

 Program sequencer: provides single-cycle conditional branching and 

executes program loop with zero loop overhead. 

ADSP-2181 also integrates on-chip RAM and peripherals. The DSP core can 

access the on-chip peripherals by memory-mapped control register. The integration 

are as following: 

 80K bytes on-chip RAM: They are configured as 16K words program 
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memory RAM (24 bits per word) and 16K words data memory RAM (16 

bits per word). ADSP-21xx uses a modified Harvard architecture in 

which data memory stores data, and program memory stores both 

program and data. This allows the processor core to fetch two operands 

(one from data memory and one from program memory) and an 

instruction (from program memory)) in a single instruction cycle. 

 Serial ports (SPORTs): There are two bi-directional, double-buffered 

serial ports for serial communication. Each SPORT can use an external 

serial clock or generates its own in a wide range of frequency down to 0 

Hz. The SPORTs also support framing, hardware companding (A-law 

and µ-law), autobuffering, interrupt generation and multichannel 

capability (time-division multiplexed into 24 or 32 channels). 

 Timer: The programmable interval timer provides periodic interrupt 

generation. 

 DMA ports: There are two DMA ports, Internal DMA (IDMA) port and 

Byte DMA (BDMA) port. The IDMA port is a parallel I/O port that lets 

the processor’s internal memory (except for the processor’s 

memory-mapped control registers) be read or written by a host system. 

The read/ write access is completely asynchronous, and a host can 

access the DSP’s internal memory with an overhead of one DSP 

processor cycle per word while the DSP is operating at full speed. The 

BDMA port allows processor load program and data from/ to external 

byte memory with very low processor overhead and supports interrupt 

generation while the DMA transfer is completed. 

4.2 Data precision optimization in the proposed MP3 encoder 

Basically ADSP-2181 performs 16-bit arithmetic. However, the double 

precision, i.e. 32-bit, arithmetic provides more accuracy of processing data but also 
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increases the computational complexity. As shown in Figure 26, five instructions 

are needed to perform the double precision multiplication, and the complexity is 

five times of the complexity of the single precision multiplication. 

Xh Xl
mx0mx1

Yl
my0

X

Xl  x  Yl

Xh  x  Yl

mr = mx0 * my0 (us);
mr = mr (rnd);
mr0 = mr1;
mr1 = mr2;
mr = mr + mx1 * my0 (ss)

Rh RlRs

32 bits

32 bits

mr0mr1mr2

Unsigned x Signed

Signed x Signed

{ADSP-21xx instructions}

 

Figure 26. Double precision multiplication, R(32-bit) = X(32-bit) x Y(16-bit). 

To determine the data precision, we first divide the encoding processes into 

six stages as shown in Figure 27. The PCM samples are always 16-bit, and the 

format is denoted as (1.15)16, i.e. the format (α.β)γ means that a fixed point number 

of γ bits is represented by lying the binary point just after the αth most significant 

bit. It is obvious that α + β = γ. The subband analysis has divided into two stages, 

the windowing with partial calculation [5] and the matrixing [5]. The windowing 

with partial calculation performs 16-bit multiply-then-accumulate operations and 

produces 32-bit results vector Y [5]. The matrixing performs double precision 

multiply-then-accumulate like Figure 26 and produces subband signals S, only the 

16-bit rounding result of Rh. According to the static analysis, the dynamic range of 

subband signals is , therefore the format is derived as (2.14)0.20.2 <<− S 16. 

Then the subband signals are passed the MDCT and antialias stage. A faster 
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MDCT algorithm is applied here to decrease computational complexity but also 

maintain the quantization error due to fixed point arithmetic. After performing 

16-bit multiply-then-accumulate operations on subband signals, the 32-bit 

transformed coefficients are produced and then pass antialias block. Again the 

double precision arithmetic as Figure 26 is performed, and a antialiased 32-bit 

transformed coefficients ( )ix gf ,  are produced from Rh and Rl. 

Windowing

MDCT and antialias

(1.15)16

(2.14)16

(2.30)32

(M.N)16

PCM sample

Subband signal, Si(t)

Transform coefficient,

16 bits 32 bits

Format converter

Pow075 in 
equation (9)

(M-4.N+4)16

Shifted transform coeff.,

Quantizer in 
equation (10)

Modified transform coeff.,

(16.0)16

Quantized transform coeff.,

Iteration 
loops

Matrixing

Subband 
analysis

(2.30)32

Partial results Y [5]

( )ix gf ,

( )⎣ ⎦ 16, bgf ix

( )⎣ ⎦ 16,ˆ
bgf ix

( )iy gf ,

 

Figure 27. Data precision between each stage in proposed MP3 encoder. (M.N)16, 

determined from the format converter, is the fixed point format of 

transformed coefficients. 

A special format converter added after antialias block is used to convert 32-bit 

data with format (2.30)32 to 16-bit data while the fixed point format is determined 

 47 



  CHAPTER 4. DSP IMPLEMENTATION 

by dynamic range of  at run-time. It first finds the maximum of the 

transformed coefficients in the granule, . As shown in (28), a right shift 

amount, k, is derived from a special function, exp

( )ix gf ,

gfX ,

32. 

( )gfXk ,32exp16 +=  (28) 

The SHIFTER unit of ADSP-21xx core supports hardware exponent detector 

which can count the number of leading zeros or ones of single precision data in one 

instruction cycle and double precision data in two instruction cycles. The exponent 

detector is functionality equal to (29), 

( ) ⎣ ⎦
( ) ⎣ ⎦ precision double is ,30logexp

precision single is ,14logexp

232

216

xxx

xxx

−≡

−≡
. (29) 

For an example, a double precision data, 

( ) ,pqrstuvw hijklmno 0abcdefg 11111111 2, =gfX  

the exponent detector produces result of -7. By adding of 16 as (28), k equals to 9 

then the format converter shifts the 32-bit transformed coefficients, , right 

by 9 and produces the 16-bit shifted transformed coefficients as (30), 

( )ix gf ,

( )⎣ ⎦ ( ) k
gfbgf ixix −×= 2,16, . (30) 

Meanwhile, the maximum, , is also converted into 16-bit data, gfX ,

⎣ ⎦ ( ) .ghijklmn 10abcdef 216, =
bgfX  

The format converter compacts the 32-bit data with (2.30)32 into 16-bit data 

with format (M.N)16 optimized for decreasing the quantization error due to fixed 

point arithmetic. The format (M.N)16, different between each encoding granule is 
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decided at run-time, and M is usually negative. And of course, the shifting 

operations as (30) will be inverted later. 

The shifted transformed coefficients, ( )⎣ ⎦ 16, bgf ix , are then passed into 

iteration loops. The proposed algorithm in Figure 14 performs ( ) 75.0

, ix gf operation 

before iterative quantization. (31) is rewritten from (9). The multiplying term, 24, 

converts the format to (M+4.N-4)16 because the dynamic range of ( ) 75.0

, ix gf  is 

one sixteenth of the one of ( )⎣ ⎦ 16, bgf ix . 

( )⎣ ⎦ ( )⎣ ⎦
( )

( ) 475.075.0

,

475.0

,

475.0

16,16,

2

22

2ˆ

+⋅−

−

×=

××=

×=

k
gf

k
gf

bgfbgf

ix

ix

ixix

 (31) 

The relationship between ( )ix gf ,ˆ  and ( )⎣ ⎦ 16,ˆ
bgf ix  can be rewritten as (32), 

( ) ( )⎣ ⎦ 475.0
16,, 2ˆˆ −⋅×= k

bgfgf ixix . (32) 

To obtain the correct quantized value, the quantizer is modified from (10). As 

shown in (33), the modification is done by adding additional offset to exponent 

term. 
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 (33) 
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4.3 Data precision optimization in the proposed MP3 decoder 

Jeong et al.[11] reveals that there is no audible noise due to fixed point 

implementation when the MAC based MPEG/audio decoder has at lease 21-bit 

multiplier and 25-bits adder. Lee et al. [6] implements MPEG audio decoding by 

performing double precision arithmetic during all decoding processes in a 16-bit 

fixed point DSP. 
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Figure 28. Data precision between each stage in proposed MP3 decoder. 

(Msb.Nsb)16, determined from the format converter, is the fixed point 

format of each subband. (Mglb.Nglb) 16, equal to one of (Msb.Nsb) 16 that 

the subband has the coefficient of highest amplitude in the granule, is 

the fixed point format of subband signal. 
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As shown in Figure 28, the quantized transformed coefficients are decoded 

from Huffman decoder and then dequantized. The optimized dequantizer produces 

32-bit data with format (2.30)32 and high accuracy as mentioned in Figure 24. Then 

the succeeding stage including stereo processing, reordering and antialiasing 

performs double precision arithmetic and produces 32-bit data with the same 

format (2.30)32. The format converter used in encoding is also applied here in 

decoding. 

Different from the encoding case, the format converter converts data format in 

each subband. By finding the maximum of transformed coefficients in each 

subband, the individual right shift amount, i.e. format converting parameter, is 

derived from (28), and the fixed point format of each subband, (Msb.Nsb) 16, is 

determined. As shown in Figure 29, 32 formats denoted as (M0.N0) 16, (M1.N1) 

16, … and (M31.N31) 16 are corresponding to 32 subbands. 
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Figure 29. Different format between subbands and the modified IMDCT 

A modified scheme of IMDCT is also shown in Figure 29. According to the 

right shift amount of the subband, the algorithm can divide 32 bands into two 

groups, nonzero band and zero band. The subband that one of its 18 coefficients is 

not zero is denoted as nonzero band otherwise zero band. The nonzero band 

IMDCT performs the 9-point and 3-point Lee’s Fast IDCT. But the zero band 
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performs the simplified IMDCT that the results are produced from overlapped 

block in the previous granule only. 

Each IMDCT performed in each subband will produce 16-bit subband signals 

with the same format (Mglb.Nglb)16, derived from (34). 

( )
( ) 31  to0,min

31  to0,max

glb

glb

=Ν=Ν

=Μ=Μ

sb

sb

sb

sb
 (34) 

After IMDCT, the subband signals are synthesized to time-domain PCM 

sample through two operations, matrixing and windowing. The matrixing operation 

is implemented as the 64-point Lee’s Fast DCT. The 16-bit arithmetic is performed, 

and a 16-bit result vector is produced with format (2.14)16. After the windowing 

operation, the PCM samples with format (1.15) 16 are produced. 
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CHAPTER 5. EXPERIMENTAL RESULTS 

Using the proposed architecture, the MP3 encoder and decoder are implemented 

by a 16-bit fixed point DSP, ADSP-2181. Table 5 figures out the superior performance 

of the proposed MP3 encoder over other commercial products. All MIPS are estimated 

for 44.1KHz sampled and stereophonic audio input and 128Kbps output MP3 bitstream. 

Totally we need only about 37.5k bytes program RAM to store both encoder and 

decoder program code and 27.2k bytes data RAM at most during encoding or decoding. 

The on-chip RAM of ADSP-2181, 48k and 32k bytes RAM for program and data, is 

sufficient for the proposed MP3 codec. 

The consuming MIPS of each part in proposed MP3 encoder is listed in Table 6 

and compared with other works by Oh et al. [4] and Wang et al. [8]. For 

signal-dependent blocks such as iteration loops and Huffman encoding, the worst-case 

results are listed. Because of the removal of PAM-II, the proposed new rate control 

algorithm and non-uniform quantizer, the computational loads of iteration loops in the 

proposed encoder is much less than that in other two encoders. However, due to the 

applying of dynamic bit allocation proportional to the energy of granules and the 

implementation of dynamic data precision, the proposed can also get the similar 

performance of other two encoders. 
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Table 5. The implementation result and comparisons with commercial products 

Implementation Processor MIPS PM (bytes) DM (bytes) 

Algorithm: MP3 Encoder 

Proposed ADSP-2181 21.05 16.8k 27.2k 

Tensilica [28] Xtensa HiFi Engine 65 90k 46.6k 

ADI, MelodyTM  
chipset [29] 

ADSP-218x 40 < 48k < 32k 

CuTe Solutions [31] ADSP-218x 40 32k 16k 

SpiritDSP [30] MIPS-based TX49xx 80 Not 
mentioned 

Not 
mentioned 

CuTe Solutions [31] TI C54x 36 22k 21.8k 

CuTe Solutions [31] TI C55x 72 62k 30.3k 

CuTe Solutions [31] TI C64x 33 121k 46.7k 

Algorithm: MP3 Decoder 

Proposed ADSP-2181 17.67 20.7k 23.6k 

CuTe Solutions [31] ADSP-218x 20 33k 17.5k 

Nuntius Systems [32] ADSP-2185 36 25k 23k 

Nuntius Systems [32] Proprietary SIMD 
DSP core 

22 24k 22k 

Tensilica [33] Xtensa HiFi Engine 18 37k 27.3k 

SpiritDSP [30] TI C55x 12.5 20k 12k 

CuTe Solutions [31] TI C54x 31 29.7k 14.2k 

CuTe Solutions [31] TI C64x 20 82k 33.2k 

SpiritDSP [30] ARM7 25 31k 24k 
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Table 6. The comparison of peak consumed MIPS in different MP3 encoder 

Peak MIPS 
Proposed 
encoder 

Oh et al. 
encoder [4] 

Wang et al. 
encoder [8] 

Subband analysis 7.09 5.64 

MDCT 3.99 
10.4 

3.74 

PAM-II Not presented Not presented 8.96 

Iteration loops 4.50 (peak) 18.43 (peak) 11.87 (peak) 

Huffman encoding 
and bitstream 
formatting 

5.47 (peak) 2.07 (peak) 5.86 (peak) 

Total 21.05 30.9 36.07 

 

Table 7 lists the consuming MIPS of each part in proposed MP3 decoder and 

comparison with other works by Lee et al. [6] and Bang et al. [10]. Lee et al. 

implemented the MP3 decoder on Motorola DSP56654, a dual-core processor with a 

32-bit RISC MCU and a 16-bit fixed point DSP. Bang et al. realized it on a self-design 

VLSI of 20-bit fixed point DSP core with hardware Huffman decoder. 

Table 7. The comparison of peak consumed MIPS in different MP3 decoder 

Peak MIPS 
Proposed 
decoder 

Lee et al. 
decoder [6] 

Bang et al. 
decoder [10] 

Synchronization and 
bitstream unpacking 

0.44 

Scalefactor and 
Huffman decoding 

5.95 (peak) 

6.2 (peak) NA 

Dequantization 2.38 (peak) 5.4 (peak) 4.51 (peak) 

IMDCT 4.45 (peak) 2.8 2.85 

Subband synthesis 4.45 6.3 5.97 

Total 17.67 20.7 13.33 
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To evaluate the audio quality of the proposed MP3 encoder and decoder, the 

subjective evaluation is applied via “Double blind triple stimulus with hidden 

reference” listening tests [12]. Three different audio samples as summarized in Table 8 

are used in this experiment. All samples are stereophonic and sampled with 44.1KHz. 

Eleven listeners are involved in the experiments. 

Table 8. Test audio samples 

Signal characteristic Time Abbreviation 

Violin solo in arpeggio [13] 0:37 VL 

Melodious quartet [13] 0:28 QT 

German female speech [13] 0:21 GF 

The reference codec is the traditional MP3 encoder and decoder with ISO method 

implemented in floating-point. The “Diffgrade” and “number of misidentification 

items” are presented in three tests. Diffgrade is the subjective rating given to coded test 

item minus the rating given to the hidden reference. 

Table 9. The subjective evaluation results (1), DG: Diffgrade. MI: Number of 
misidentification over 11 listeners. The diffgrade scale is partitioned 
into five ranges: “imperceptible (>0.00)”, “perceptible but not annoying 
(0.00 ~ -1.00)”, “slight annoying (-1.00 ~ -2.00)”, “annoying (-2.00 ~ 
-3.00)” and “very annoying (-3.00 ~ -4.00)”. The “number of 
misidentification” represents the number of subjects that incorrectly 
identified test item and hidden reference. 

Proposed encoder / ISO decoder 

Bit rate  VL QT GF 

DG -0.04 0.02 0.2 
192Kbps 

MI 7 7 10 

DG -0.2 -0.3 0.04 
128Kbps 

MI 6 6 9 

DG -0.7 -0.55 -0.46 
96Kbps 

MI 3 4 6 
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Table 9 shows the results of MP3 encoded in proposed encoder and decoded in 

ISO decoder. Table 10 shows the results of MP3 encoded in ISO encoder and decoded 

in proposed decoder. Table 11 shows the results of MP3 encoded in proposed encoder 

and decoded in proposed decoder. 

Table 10. The subjective evaluation results (2) 

ISO encoder / Proposed decoder 

Bit rate  VL QT GF 

DG -0.02 -0.02 0.01 
192Kbps 

MI 9 8 9 

DG -0.1 -0.04 -0.04 
128Kbps 

MI 8 8 9 

DG -0.1 -0.04 -0.06 
96Kbps 

MI 9 9 9 

Table 11. The subjective evaluation results (3) 

Proposed encoder / Proposed decoder 

Bit rate  VL QT GF 

DG -0.25 -0.4 0.0 
192Kbps 

MI 6 7 7 

DG -0.7 -0.5 -0.5 
128Kbps 

MI 3 3 6 

DG -1.02 -0.8 -0.6 
96Kbps 

MI 2 3 5 
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CHAPTER 6. DUAL CORE EMBEDDED SYSTEM 

6.1 System Overview 

In this thesis, the DSP implementation of MP3 codec is integrated into a host 

system. The host system, AdvanTech PCM-7130 SBC (Single board computer) 

[16], based on a 32-bit RISC, Intel® StrongARM SA-1110, supports various kind of 

peripherals such as USB, CF, Ethernet and etc. The DSP system is on the 

development board of ADSP-2181 DSP, ADI ADSP-2181 EZ-LAB. Figure 30 

shows the architecture of the dual core embedded system. Section 6.2 will 

introduce the two subsystems and the design of hardware adapter. 

The interprocessor communication is done through a set of memory-mapped 

mailbox register in the DSP’s internal memory. As shown in Figure 30, the 

ADSP-2181 IDMA port is adopted as the communication channel. There are 

several advantages of adopting IDMA port: 

 The read/ write access of IDMA is completely asynchronous. It 

simplifies the interprocessor design since we don’t need to build a 

synchronous channel between two different processors. 

 The host can access the DSP’s internal memory with an overhead of only 

one DSP processor cycle per word while the DSP is operating at full 
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speed. Thus DSP’s internal memory becomes the shared memory 

between two processors. 

Host system:
Advantech PCM-7130 SBC

GPIO, DI/DO

SA-
1110

IDMA

ADSP-
2181

USB

Ethernet

CF

APEX

DSP system:
ADI ADSP-2181 EZ-LAB

Hardware adapter:
Altera APEX 
EP20K1000EFC672-2

* Embedded Linux
* Control of various peripherals
* AP and driver to communicate 

with DSP system

* Receive GPIO control and 
8-bit data signals

* Generate IDMA control and 
16-bit data signals

* Implementation of MP3 codec 
and AD1847 control

* A small  BIOS program to 
communicate with host system

Audio I/O
 

Figure 30. The dual core embedded system 

With the help of firmware protocol, the host can download program at 

run-time, instruct DSP to execute program-dependent operations and fill (or take 

out) the input (or output) of the operations to (or from) the shared memory area 

based on pre-defined rules. 

The firmware protocol is designed to best suite for real-time processing of 

audio codec and will be described in section 6.3. 

6.2 Hardware Platform 

6.2.1 Host system – AdvanTech PCM-7130 SBC 

The PCM-7130 is an Intel® StrongARM low-power RISC processor single 
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board computer that is designed to serve power/ environment critical 

applications. The features are as following [16]: 

 Ultra-compact size SBC as small as a 3.5” hard disk drive (145 mm x 102 

mm) 

 On-board Intel StrongARM SA-1110 CPU operating at 206MHz 

 64MB system memory on board (SDRAM) 

 32MB flash memory on board 

 One 10Base-T Ethernet port 

 Two RS-232 ports and one RS-485 port 

 One USB host and one USB client ports 

 One mini-DIN PS/2 port for keyboard and mouse 

 AC’97 audio interface and a buzzer 

 One VGA output for CRT monitor 

 18-bit TFT active color LCD interface 

 One CompactFlash slot 

 One PCMCIA slot 

 One IrDA interface 

 8 GPIO, 8 digital input and 8 digital output interfaces (3.3V) 

 4-wire resistive touchscreen interface 

 Smart battery interface 

 One TV-out supporting both NTSC and PAL signals 

Figure 31 is the top view of PCM-7130 SBC, and the peripheral interfaces 

are also shown. The expansion bus is directly connected to the system bus of 

SA-1110 and is the best choice to connect memory mapped peripherals, like 

ADSP-2181 IDMA port. But the B2B connector is proprietary and not available. 

Another proper choice is the combination of GPIOs, DIs and DOs. The 8 of 26 

GPIOs are not used in the design of SBC and available for connection to other 

peripherals. We take the 8 GPIOs as duplex and bidirectional address/ data bus 
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and 1 DI and 5 DOs as the control bus as shown in Figure 33. Since the width 

of data bus are not compatible to IDMA port an additional hardware adapter is 

also needed. 

 

Figure 31. PCM-7130 SBC [15] 

6.2.2 DSP system – ADI ADSP-2181 EZ-LAB 

The ADSP-2181 EZ-LAB evaluation board is an example of minimum 

implementation of an ADSP-2181 processor [18]. The specifications are as 

following [18]: 

 ADSP-2181KS-133 DSP operating at an instruction rate of 33M Hz (16M 

Hz external clock) 

 AD1847 SoundPort® stereo codec including a stereo pair of ∑∆ ADCs 

and a stereo pair of ∑∆ DACs. 

 One stereo pair of 2V RMS AC coupled line level inputs and one stereo 

pair of 20mV RMS AC coupled microphone inputs 
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 One stereo pair of 1V RMS AC coupled line level outputs 

 A EPROM socket to accept EPROMs from 256K bits up to 8M bits used 

in booting DSP when reset is deasserted 

 One RS-232 port 

 

Figure 32. ADI ADSP-2181 EZ-LAB evaluation board 

6.2.3 Design of hardware adapter 
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Figure 33. Functional diagram of hardware adapter 
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The hardware adapter here is a bridge to connect host (GPIO and DI/DO ports) 

and DSP (IDMA port). Figure 33 shows the functional diagram. In this thesis, a 

programmable logic device is used to complete the design, and the Altera APEXTM 

II FPGA (EP20K1000EFC672-2) is adopted as the bus master of ADSP-2181 

IDMA port. 

Table 12 and 13 explains the pin functions of host and DSP port. 

Table 12. Host port pins 

Pin Name(s)
Input/ 
Output Function

SA_nRST I Reset signal of FPGA 

SA_nAW I Address write strobe 

SA_nDW I Data write strobe 

SA_nDR I Data read strobe 

SA_nWrite I Tri-state enable signal of SA_AD 

SA_nWait O Acknowledge signal 

SA_AD[0:7] I/O Bidirectional address/ data bus 

Table 13. ADSP-2181 IDMA port pins 

Pin Name(s)
Input/ 
Output Function

DSP_nIS O Port select signal 

DSP_IAL O Address latch enable 

DSP_IACK I Access ready acknowledge 

DSP_nIWR O Data write strobe 

DSP_nIRD O Data read strobe 

DSP_IAD[0:15] I/O Bidirectional address/ data bus 
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Host starts IDMA transfer.

Host checks IACK control line to 
see if the DSP is “Busy＂

Host uses IS and IAL control lines 
to latch the DMA starting address 
(IDMAA) and PM/DM selection into 
the DSP‘s IDMA Control Register.

Host uses IS and IRD (or IWR) to 
read (or write) DSP internal 
memory (PM or DM).

Host ends IDMA transfer

Done ?

Host checks IACK line to see if the 
DSP has completed the previous 
IDMA operation

More ?

Continue

 

Figure 34. General IDMA transfer protocol [17] 

Figure 34 shows the general IDMA transfer protocol. Bus master generates 

three types of signaling to complete the IDMA write (or read) operations. As shown 

as Figure 35, the signaling are as following: 

 Set Address: the FPGA receives two assertions of SA_nAW and latches 

low byte and high byte of starting address internally. In the second 

assertion, the FPGA will generate the access timing, putting the starting 

address on the DSP_IAD port and asserting DSP_nIS and DSP_IAL that 

the DSP will latch the data on the DSP_IAD port into the IDMA, DMA 

starting address register. 

 Write Memory: the FPGA receives two assertions of SA_nDW and 

latches low byte and high byte of writing data internally. In the second 

assertion, the FPGA will generate the access timing and handshake with 
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DSP, putting the data on the DSP_IAD port and asserting DSP_nIS and 

DSP_nIWR that the DSP will write the data on the DSP_IAD port into 

the internal memory located by the IDMAA. The DSP will automatically 

increment the value in IDMAA after each memory access,  writing or 

reading, that the host do not need to update the IDMAA again in 

memory access of consecutive location. 

 Read Memory: the FPGA receives two assertions of SA_nDR and will 

generate the access timing, asserting DSP_nIS and DSP_nIRD and then 

latching the data on the DSP_IAD port internally after the deassertion of 

DSP_IACK, in the first assertion of SA_nDR. Host then deasserts 

SA_nDR twice to latch low byte and high byte of data individually. 
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SA_nWrite
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DSP_nIS

DSP_IAL

DSP_IACK

DSP_nIWR
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SA_nDR
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0201
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0403 0605
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Figure 35. Port access timing 
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6.3 Firmware Design 

Figure 36 shows the hierarchical view of software, firmware and hardware 

layer in this system. The implementation of MP3 programs, software part in DSP 

system, has been described in Chapter 4. The hardware functionality, 

communication ports, and the self-design adapter are also introduced in section 6.2. 

In this thesis, the host system has an interactive GUI on the external display 

device and can be controlled through touchpanel by human user. So the computing 

power of the host system will be dominated in the handling of GUI. We design the 

GUI by writing QT application on Linux. QT [27], product of Trolltech, is a 

complete C++ application development framework and includes a class library and 

tools for cross-platform development and internalization. Beside the GUI handling, 

we also integrate the host programs used in communication with DSP system into 

QT application. The host programs talk to DSP in some firmware protocol 

described later in section 6.3.2. In the DSP side, a self-design firmware called DSP 

BIOS is the housekeeper of DSP used to implement the protocol and manage the 

resource. 

QT AP

Device driver

GPIO, DI/DO 
timing

IDMA transfer 
protocol

IDMA timing

BIOS

MP3 programs

Adapter

Software

Firmware

Hardware

Host system:
StrongARM MPU

DSP system:
ADSP-2181 DSP

 

Figure 36. The hierarchical view of software, firmware and hardware layer 

6.3.1 Linux Character Device Driver 

In the memory management of Linux, the kernel and the user process can 
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only access its own memory space. And for safety issue, the user process can’t 

directly access neither memory mapped nor I/O mapped hardware devices. 

The device driver provides a standard way for user process to access the 

hardware devices without knowing how they work. All version of UNIX have 

an abstract way to make devices logically work as well as regular files. 

Therefore, the same calls (read(), write() and etc.) can be used for devices and 

files [19].There are two main types of devices under all UNIX systems, 

character and block devices. Character devices are those for which no buffering 

is performed, and block devices are those which are accessed through a cache. 

In this thesis, a character device driver is designed to generate access 

timing of the host side as shown in Figure 35. Three basic operations (set 

address, write memory and read memory) are performed through calls of read() 

and write() from user process. The essential parts of writing driver are 

registering file operation structure (actually the entry points of routines) as 

below and implementing the routines that user process will invoke. The device 

driver is also part of Linux kernel so the kernel needs to be re-compiled after 

adding a new device driver. 

/* File operation structure used in Linux kernel */ 
struct file_operations mw_fops = { 
 owner:   THIS_MODULE, 
 read:  read_mw, 
 write:  write_mw, 
 open:  open_mw, 
 release: release_mw, 
}; 
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The C code below represents the device handling in user programs. 

 Open the device 

/* Open device */ 
int OpenDevice(){ 
 int fd; 
 fd = open(DEVICE_NAMES, O_RDWR); 
 return(fd); 
} 

 Operation of “Set Address” 

/* Set address */ 
void SetAddress(int fd, unsigned short address){ 
 unsigned short buf[2]; 
 buf[0] = address; 
 buf[1] = 1;  // OP code of write address 
 write(fd, buf, 4); 
} 

 Operation of “Write Memory” 

/* Write memory */ 
void WriteMemory(int fd, unsigned short data){ 
 unsigned short buf[2]; 
 buf[0] = data; 
 buf[1] = 0;  // OP code of write data 
 write(fd, buf, 4); 
} 

 Operation of “Read Memory” 

/* Read memory */ 
unsigned short ReadMemory(int fd){ 
 unsigned short buf; 
 read(fd, &buf, 2); 
 return(buf); 
} 

 Close the device 

/* Close device */ 
void CloseDevice(int fd){ 
 close(fd); 
} 
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6.3.2 DSP BIOS 

In this thesis, the DSP BIOS is burned into flash EPROM, and the DSP 

will automatically load it after hardware reset is deasserted. The BIOS program 

is divided into two part, booting and housekeeping. The booting code is a series 

of instructions to initial the DSP to ready-to-run state and will run only once 

after BIOS is re-loaded. 

/* Initialization */
ap_init(...)

/* Finalization */
ap_close(...)

/* Execution */
ap_go(...)

Application

BIOS

Application Interface

M
em

ory access
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em
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specific command

Processor IDLE
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register

I/O buffer

Application-
specific data

Shared Memory
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Figure 37. The firmware block diagram 

After booting, the housekeeping code starts to run. The housekeeper 

function is implemented as a never-ending, while(1), loop. The host sends 

command to mail-box, and the housekeeper receives it. After the commands is 

completed, the housekeeper will respond the status and then continue to receive 

next commands. 

There are two types of commands, IDLE and application-specific. The 

IDLE command instructs the DSP entering the power-saving mode. That keeps 

the processor fully functional, but operating at the slower clock rate. The host 

will send IDLE command for two purpose. One is when no task is needed to be 
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performed on DSP. Another is when the host want to load a new application 

program the IDLE command let the DSP lock in the housekeeping loop that it 

guarantees the safety program loading into application section. 

The application-specific command instructs the housekeeper to call one of 

the application-specific routines. The host needs to write ap_id (application 

identifier) in mail-box and register the entry point of the application-specific 

routines after the program is successfully loading into application section. At 

least three application-specific routines, ap_init(), ap_go(), and ap_close() are 

necessary to perform tasks. 

The application developer can use ap_init() routine to run the initialization, 

like clearing the application-specific data, initializing the stereo codec (AD1847) 

and etc. In contrast, ap_close() routine is used to finalize the task if necessary. 

The ap_go() routine suits for application of processing frame-by-frame, 

like audio encoding or decoding. If the host needs faster responding time the 

application developer may need to implement the algorithm in pipeline way. 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

In this thesis, we give: 

 A brief introduction to MPEG/Audio Layer III coding algorithm, 

 A proposed fast algorithm of MP3 encoding including the removal of 

PAM-II, the simplification of PAM-II related process, a fast quantization 

method by applying polynomial approximation and a new fast bit 

allocation algorithm, 

 A proposed fast algorithm of MP3 decoding including a fast 

dequantization method by applying polynomial approximation and the 

Newton’s method for root-finding and applying fast DCT/IDCT 

algorithm in IMDCT and subband synthesis process. 

and also present: 

 The performance analysis and subjective test of sound quality of the 

proposed algorithm, 

 A Real-time implementation of proposed MP3 encoding and decoding 

algorithm in a 16-bit fixed point DSP, ADSP-2181, 

 Applying dynamic fixed point format to optimize the data precision of 

each process in the target DSP of 16-bit word-length only, 
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 Comparison of DSP MIPS and memory usage with other 

implementation. 

The 16-bit fixed point implementation with the proposed optimization 

algorithm only needs 21.05 DSP MIPS for MP3 encoding and 17.67 for decoding. 

Compared to other pure software DSP implementation, both of the proposed 

encoding and decoding algorithm are the fastest. The memory usage (16.8KB PM/ 

27.2KB DM for encoder and 20.7KB PM/ 23.6KB DM for decoder) can also meet 

the requirement of the target DSP, 48KB PM/ 32KB DM. 

And in Chapter 7, the DSP implementation of an MP3 codec is also applied in 

an host system based on a 32-bit RISC processor, Intel® StrongARM SA-1110. We 

also present a complete design of the dual core embedded system including: 

 A hardware adapter realized by VHDL on an Altera APEXTM II FPGA 

for translating the bus timing of of two subsystems, host and DSP, 

 A Linux character device driver generating host bus timing, 

 A firmware protocol designed for interprocessor communication, the 

corresponding implementation on DSP, also called DSP BIOS, and host 

software which is integrated to a QT GUI application. 

7.2 Future Works 

The population of MP3 brings not only the low cost and convenience digital 

audio to the world but also the rapid growth of advanced audio compression 

knowledge in recent ten years. Many other audio compression formats are 

developed and realized like Dolby AC-3 [20], MPEG-2/4 AAC [21], Microsoft® 

WMA [22], Coding Technologies mp3PRO and aacPlus [23], and Ogg Vorbis [24]. 

Compared to MP3, they afford better audio quality and lower bit rate. But their 

computational complexities are also higher. We may apply the concepts of the 

proposed algorithm in this thesis on these modern audio compression algorithm and 
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decrease the computational complexity that the algorithm can be realized on low 

cost fixed point DSP. Applying to the dual core embedded system in this thesis, we 

can also develop multi-format codec by loading different implementation file at 

run-time. 

The industrial trend of SOC (System-On-a-Chip) recently brings the system 

with the smaller board size, the lower manufacturing cost, the lower power 

consumption and the best performance. The dual core design in this thesis can be 

realized in SOC way, too. We may integrate MPU IP and DSP IP with some 

peripheral controller, memory and associated hardware accelerators in a chip. Thus 

the DSP unit becomes a coprocessor of MPU used to execute numeric processing 

with high complexity. 

 

 73 



  REFERENCE 

REFERENCE 

[1]. E. Zwicker and H. Fastl, “Psychoacoustics: facts and models,” Springer-Verlag, 

Berlin, Heidelberg, Spring, 1999. 

[2]. D. Pan, “A tutorial on MPEG/audio compression,” IEEE Multimedia, vol.2, 

no.2, pp.60-74, 1995. 

[3]. Peter Noll, “MPEG digital audio processing,” IEEE Signal Processing 

Magazine, pp.59-81, September 1997. 

[4]. H. Oh, J. Kim, C. Song, Y. Park and D. Youn, “Low power MPEG/audio 

encoders using simplified psychoacoustics model and fast bit allocation,” IEEE 

Transaction on Consumer Electronics, vol.47, no.3, August 2001. 

[5]. ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-3, “Coding 

of moving pictures and associated audio for digital storage media at up to about 

1.5M bit/s, part 3: audio,” 1993. 

[6]. Keun-Sup Lee, Hyen-O Oh, Young-Cheol Park, and Dae Hee Youn, “High 

quality MPEG-audio Layer III algorithm for a 16-bit DSP,” in Proceeding of 

IEEE International Symposiumon Circuit and Systems, vol. II, pp.205-208, 

Sydney, Australia, May 6-9, 2001. 

[7]. Byeong Gi Lee, “A new algorithm to compute the discrete cosine transform,” 

IEEE Trans. On Acoustic, Speech and Signal Processing, vol. ASSP-32, no.6, 

pp.1243-1245, 1984. 

[8]. Xin Wang, Weibei Dou and Zhaorong Hou, “An improved audio encoding 

architecture based on 16-Bit fixed-point DSP,” IEEE International Conference 

 74 



  REFERENCE 

of Communications, Circuits and Systems 2002 (ICCCAS’02), vol.2, pp.918 - 

921, June 29 - July 1, 2002. 

[9]. Analog Devices: OEM Solutions: Market Solutions: MPEG-1 Layer III. 

[Online]. Available: http://www.analog.com/Analog_Root/static/ 

marketSolutions/oem/audio/mpeg1_3decoder.html 

[10]. Kyoung Ho Bang, Nam Hun Jeong, Joon Seok Lim, Young Cheol Park, and 

Dae He Youn, “Design and VLSI implementation of a digital audio-specific 

DSP core for MP3/ AAC,” in Proceeding of International Conference on 

Consumer Electronics, Los Angles, pp. 790-795, June 18-20, 2002. 

[11]. Min-seep Jeong, Seehyun Kim, Jongseo Sohn, and Ji-Yang Kang, “Finite 

Wordlength Effects Evaluation of the MPEG-2 Audio Decoder,” International 

Conference on Signal Processing Applications & Technology, pp.351-355, 

January. 1996. 

[12]. ITU-R Rec. BS.1116, “Methods for the subjective assessment of small 

impairment in audio systems including multichannel sound systems,” October, 

1997. 

[13]. SQAM - Sound Quality Assessment Material: EBU SQAM disc tracks. [Online]. 

Available: http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/ 

[14]. Sourceforge project: LAME Aint an MP3 Encoder (LAME). [Online]. Available: 

http://sourceforge.net/projects/lame/ 

[15]. AdvanTech, Inc., “AdvanTech PCM-7130 datasheet.” 

[16]. AdvanTech, Inc., “AdvanTech PCM-7130 user manual.” 

[17]. Analog Devices, Inc., “ADSP-2100 family user’s manual.” 

 75 

http://www.analog.com/Analog_Root/static/�marketSolutions/oem/audio/mpeg1_3decoder.html
http://www.analog.com/Analog_Root/static/�marketSolutions/oem/audio/mpeg1_3decoder.html
http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/
http://sourceforge.net/projects/lame/


  REFERENCE 

[18]. Analog Devices, Inc., “ADSP-2100 family EZ-KIT Lite reference manual.” 

[19]. Linux Kernel Hackers' Guide: Device Drivers. [Online]. Available:  

http://en.tldp.org/LDP/khg/HyperNews/get/devices/devices.html 

[20]. C. Todd, et. Al., “AC-3: Flexible Perceptual Coding for Audio Transmission and 

Storage,” AES 96th Convention, Preprint 3796, Audio Engineering Society, 

New York, N.Y., February 1994. 

[21]. ISO/IEC 13818-7, “Information technology – generic coding of moving 

pictures and associated audio Information, part 7: Advanced Audio Coding,” 

1997. 

[22]. Microsoft: Windows Media Player Multimedia File Format. [Online]. Available: 

http://support.microsoft.com/default.aspx?scid=kb;zh-tw;316992 

[23]. Coding Technologies: products and Technologies. [Online]. Available: 

http://www.codingtechnologies.com/products/index.htm 

[24]. Vorbis.com – Open, Free Audio. [Online] . Available: http://www.vorbis.com/ 

[25]. Fact Index: Introduction to psychoacoustics . [Online]. Available: 

http://www.fact-index.com/p/ps/psychoacoustics.html 

[26]. Hung-Chih Lai, “Real-time implementation of MPEG-1 Layer 3 audio decoder 

on a DSP chip,” Master thesis submitted to department of Electrical  and 

Control Engineering, National Chiao Tung University, June 2001. 

[27]. TrollTech Inc.: product: QT overview. [Online]. Available: 

http://www.trolltech.com/products/qt/index.html 

[28]. Tensilica’s MP3 Encoder Application Package. [Online]. Available: 

 76 

http://en.tldp.org/LDP/khg/HyperNews/get/devices/devices.html
http://support.microsoft.com/default.aspx?scid=kb;zh-tw;316992
http://www.codingtechnologies.com/products/index.htm
http://www.vorbis.com/
http://www.fact-index.com/p/ps/psychoacoustics.html
http://www.trolltech.com/products/qt/index.html


  REFERENCE 

http://www.tensilica.com/html/mp3_encoder.html 

[29]. Futurtec News: Analog Devices Releases New MP3 Chip. [Online]. Available: 

http://www.futurlec.com/News/Analog/MP3.html 

[30]. Spirit Corp.: Products: Audio/Video Processing Overview. [Online]. Available: 

http://www.spiritdsp.com/audio_processing.html 

[31]. CuTe Solutions Inc., Audio solutions on Analog Device Inc. ADSP-218x DSP 

Devices and Texas Instruments Inc. TI C54x, C55x and C64x Processors. 

[Online]. Available: http://www.cutesolinc.com 

[32]. Nuntius Systems Inc., Multimedia – Streaming audio CODECs. [Online]. 

Available: http://www.nuntius.com/solutions31.html#mp3 

[33]. Tensilica’s MP3 Decoder Application Package. [Online]. Available: 

http://www.tensilica.com/html/mp3_decoder.html 

 77 

http://www.tensilica.com/html/mp3_encoder.html
http://www.futurlec.com/News/Analog/MP3.html
http://www.spiritdsp.com/audio_processing.html
http://www.cutesolinc.com/
http://www.tensilica.com/html/mp3_decoder.html


  APPENDIX 

APPENDIX 

系統實照 

 

ADSP-2181 發展板，ADI ADSP-2181 EZ-LAB 
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匯流排轉換電路板，Altera APEXTM II FPGA (EP20K1000EFC672-2) 

 

Intel® StrongARM SA-1110 發展板，Advantech PCM-7130 SBC 
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