

電機與控制工程學系

MPEG-1 LAYER III 音訊編解碼演算法最

佳化及 DSP 晶片實現

MPEG-1 LAYER III AUDIO CODEC

OPTIMIZATION AND IMPLEMENTATION ON A

DSP CHIP

研 究 生 : 林煜翔

指導教授 : 吳炳飛 教授

中華民國 九十三 年 七 月

MPEG-1 LAYER III 音訊編解碼演算法最

佳化及 DSP 晶片實現

研 究 生 : 林煜翔 Student : Yu-Shiang Lin

指導教授 : 吳炳飛 教授 Advisor : Prof. Bing-Fei Wu

國立交通大學

電機與控制工程學系

碩士論文

A Thesis
Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of Master

in
Electrical and Control Engineering

July 2004
Hsinchu, Taiwan, Republic of China

中華民國 九十三 年 七 月

MPEG-1 LAYER III 音訊編解碼演算法最

佳化及 DSP 晶片實現

學生 : 林煜翔 指導教授 : 吳炳飛 教授

國立交通大學 電機與控制工程學系 碩士班

摘要

這篇論文提出一套 MP3 編解碼的最佳化演算法及有效的 16 位元定點 DSP 實

現。在 MP3 編碼最佳化中，我們基於移除計算量龐大的聲響心裡模型，提出一套

新的速率控制迴圈演算法，並採用頻寬控制及動態位元分配等。在 MP3 解碼最佳

化中，我們提出一套新的解量化方程式實現法，並可適用在定點處理器中；在實

現 IMDCT 和子頻帶合成上，也採用了快速演算法。我們將 MP3 編解碼最佳化的

演算法實現在一顆 16 位元定點 DSP，ADSP-2181 上，並採用動態定點格式降低

定點運算時的失真。實現後的 MP3 編碼器僅需 21.05 MIPS 及 44 千位元組記憶

體，而解碼器僅需 18.67 MIPS 及 44.3 千位元組記憶體，相較於其他商業化產品

及學術研究，能提供最好的效能。最後，本篇論文還提出一個基於 32 位元 RISC

及 DSP 的雙核心嵌入式系統整合設計。

 i

MPEG-1 LAYER III AUDIO CODEC

OPTIMIZATION AND IMPLEMENTATION ON A

DSP CHIP

Student : Yu-Shiang Lin Advisor : Prof. Bing-Fei Wu

Department of Electrical and Control Engineering

National Chiao Tung University

ABTRACT

This thesis presents the algorithm optimization and efficient 16-bit fixed point

DSP implementation of MP3 encoding and decoding algorithms. In the MP3 encoding

algorithm, we propose several approaches including the removal of psychoacoustic

model, simplified iteration loop, fast rate control loop and applying of bandwidth

control and dynamic bit allocation proportional to the energy of granules. In the MP3

decoding algorithm, we propose a fast dequantization method with high SNR in fixed

point implementation and apply fast algorithms in IMDCT and subband synthesis. The

algorithms are also completely realized on a 16-bit fixed point DSP, ADSP-2181, and

the dynamic fixed point format is applied to improve audio quality. The MP3 encoder

consumes 21.05 MIPS and 44k bytes memory, and the MP3 decoder consumes 18.67

MIPS and 44.3k bytes memory. Both have superior performance than other

commercial products and paper works. Finally, this thesis also presents an integrated

design of a dual core embedded system with a 32-bit RISC, Intel® StrongARM

SA-1110, and ADSP-2181 DSP.

 ii

ACKNOWLEDGEMENTS

首先要感謝我的指導教授 吳炳飛教授四年來的指導，從大三的專題指導以

來， 吳教授給了我許多機會接觸各種研究領域及參加各種比賽，並提供豐沛的研

究資源，讓我的研究得以順利進行。

另外要特別感謝已畢業的 錢昱瑋、 許子偉及 魏宏宇學長和 張芷燕學姐在

我剛進入實驗室時，給予熱心的指導，奠定我在音效壓縮理論與實作的基礎。還

要感謝 呂紹麒與 鄭光輝學長帶領我認識嵌入式系統。

顏志旭學長給予許多寶貴的意見，並指導我研究及分析的方法。還有一起做

研究的 黃榮煌同學及進行音質測試的 CSSP 實驗室伙伴們，感謝你們的全力協

助，我才能完成這篇論文。還有一同參加比賽的學長姐、實驗室同學及政大伙伴

們，大家在比賽過程中的全力參與，讓我們得到的獎項更有意義。

另外要十分感謝我的家人，在升學的過程中提供我無憂無慮的環境，並且完

全支持我，有你們的支持我才能順利地從研究所畢業。

最後要感謝我的女朋友 郭小姐，在這六年的求學生涯中，與我分享許多苦與

樂，並容忍我長時間待在實驗室做研究。

謹以本論文

 獻給最親愛的家人及所有支持關愛我的人

 iii

AWARDS

本研究在民國九十一年參加旺宏金矽獎第二屆半導體設計與應用大賽，並獲

得應用組一獎，得獎作品為「MP3/CD-ROM Recorder System」，與賽成員尚包括

許子偉、張芷燕及魏宏宇同學。

本研究在民國九十二年參加旺宏金矽獎第三屆半導體設計與應用大賽，並獲

得應用組二獎，得獎作品為「Multimedia Box」，與賽成員尚包括顏志旭、王坤卿、

 iv

魏宏宇及鄭光輝同學。

本研究在民國九十二年參加由中華民國科管學會舉辦的第七屆學生創新獎競

賽，並獲得第一名，得獎作品為「向下相容的 MP3 音樂安全機制」，與賽成員尚

包括顏志旭、黃榮煌及林映伶同學。

 v

CONTENTS

ABTRACT (CHINESE)...i

ABTRACT (ENGLISH)... ii

ACKNOWLEDGEMENTS .. iii

AWARDS ...iv

CONTENTS ...vi

LIST OF FIGURES...ix

LIST OF TABLES...xi

CHAPTER 1. INTRODUCTION...1

1.1 MPEG/Audio Compression ..1

1.2 Motivations ...2

1.3 The Overview of The Proposed Method and Contributions..............3

1.4 The Experimental Results and Potential Applications.......................3

1.5 Content and Organization...4

CHAPTER 2. ENCODER OPTIMIZATION ..6

2.1 Encoding Overview and Complexity Analysis6

2.1.1 Psychoacoustic model II ..7
2.1.2 Time to frequency mapping transform ..9
2.1.3 Iteration loop..12
2.1.4 Bitstream formatting ..13

2.2 Simplified PAM-II..14

2.2.1 Distortion control loop analysis...15
2.2.2 Removal of window switching ..18

2.3 Fast rate control loop...21

 vi

2.3.1 Non-uniform quantization..22
2.3.2 Dynamic bit allocation proportional to the energy of granules26
2.3.3 Precise initialization of the quantization parameter.......................27
2.3.4 Fast search of the optimal quantizer parameter31

CHAPTER 3. DECODER OPTIMIZATION ..36

3.1 Decoding Overview and Complexity Analysis...................................36

3.2 Dequantization ...38

3.3 IMDCT and Subband Synthesis ...42

CHAPTER 4. DSP IMPLEMENTATION ..43

4.1 Target DSP Architecture..43

4.2 Data precision optimization in the proposed MP3 encoder45

4.3 Data precision optimization in the proposed MP3 decoder50

CHAPTER 5. EXPERIMENTAL RESULTS...53

CHAPTER 6. DUAL CORE EMBEDDED SYSTEM...................................58

6.1 System Overview..58

6.2 Hardware Platform..59

6.2.1 Host system – AdvanTech PCM-7130 SBC59
6.2.2 DSP system – ADI ADSP-2181 EZ-LAB......................................61
6.2.3 Design of hardware adapter ...62

6.3 Firmware Design..66

6.3.1 Linux Character Device Driver..66
6.3.2 DSP BIOS ..69

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS71

7.1 Conclusions...71

7.2 Future Works ...72

 vii

REFERENCE..74

APPENDIX ...78

 viii

LIST OF FIGURES

Figure 1. MPEG/audio encoding process..7

Figure 2. The absolute threshold of hearing..8

Figure 3. Frequency masking effect combined with ATH...8

Figure 4. Temporal masking effect..9

Figure 5. Hybrid transform for time to frequency mapping......................................10

Figure 6. The 32-channel analysis polyphase filterbank...10

Figure 7. The coefficient of low-pass filter, h[n] ..11

Figure 8. The four types of MDCT window and the arrangement............................12

Figure 9. Distortion control in the iteration loops...15

Figure 10. Noise analysis before distortion control ..16

Figure 11. Coefficients of bandwidth controller (sampling rate is 44100 Hz)............17

Figure 12. Time domain waveforms from using window switching or not20

Figure 13. Rate control in iteration loops..21

Figure 14. The new rate control algorithm..22

Figure 15. The error of () 750.

, ix gf approximation ...25

Figure 16. The histogram to difference between initial and final value of gf ,∆30

Figure 17. The adaptive approach to iterative search optimum parameter31

Figure 18. Pseudo code of iteration loops (a) ISO method (b) Proposed method.......34

Figure 19. MPEG/Audio Layer III decoding block diagram36

Figure 20. Bitstream decoding ..37

Figure 21. Frequency to time mapping ...37

Figure 22. The implementation of ()iy gf
3
1

, ...39

 ix

Figure 23. The error to real output ratio of ()iy gf
3
4

, approximation.............................41

Figure 24. The error to real output ratio of ()iy gf
3
4

, fixed point approximation42

Figure 25. The ADSP-2181 DSP core and peripheral integration43

Figure 26. Double precision multiplication, R(32-bit) = X(32-bit) x Y(16-bit).46

Figure 27. Data precision between each stage in proposed MP3 encoder47

Figure 28. Data precision between each stage in proposed MP3 decoder50

Figure 29. Different format between subbands and the modified IMDCT.................51

Figure 30. The dual core embedded system..59

Figure 31. PCM-7130 SBC [15] ...61

Figure 32. ADI ADSP-2181 EZ-LAB evaluation board ...62

Figure 33. Functional diagram of hardware adapter ...62

Figure 34. General IDMA transfer protocol [17] ..64

Figure 35. Port access timing ..65

Figure 36. The hierarchical view of software, firmware and hardware layer66

Figure 37. The firmware block diagram..69

 x

LIST OF TABLES

Table 1. Predicted complexity to implement MPEG/audio encoder [4]..................14

Table 2. The number of DSP instruction cycles in calculation of two regions........25

Table 3. Symbols descriptions of Figure 17 ..32

Table 4. The average number of inner iteration...35

Table 5. The implementation result and comparisons with commercial products ..54

Table 6. The comparison of peak consumed MIPS in different MP3 encoder........55

Table 7. The comparison of peak consumed MIPS in different MP3 decoder........55

Table 8. Test audio samples ...56

Table 9. The subjective evaluation results (1) ...56

Table 10. The subjective evaluation results (2) ...57

Table 11. The subjective evaluation results (3) ...57

Table 12. Host port pins...63

Table 13. ADSP-2181 IDMA port pins ...63

 xi

 CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

1.1 MPEG/Audio Compression

Today the digital audio compression has been applied in various current

multimedia applications, like network multimedia streaming, online music store,

DAB (Digital Audio Broadcasting), digital television and portable devices (pen

drive, walkman, voice recorder, cellular phone and etc.). The MPEG/audio

compression is the most popular international standard for digital compression of

high-fidelity audio.

The state-of-the-art algorithms for audio compression, such as MPEG and

WMA, transform the audio signal for de-correlation and quantize the transformed

coefficient according to the perceptual property determined by the psychoacoustic

model (PAM) [1]. In this approach, the limitation of human hearing are exploited to

remove the inaudible components of audio signals to achieve a high compression

ratio.

MPEG/audio offers a choice of three distinct compression layers [2]. This

provides a wide range of the trade-off between the codec complexity and the

compressed audio quality. Layer I forms the basic algorithms and is suitable for the

 1

 CHAPTER 1. INTRODUCTION

bit rate above 128 Kbps per channel. Layer II targets the bit rates around 128 kbps

per channel. Possible applications include the audio coding for DAB and the

storage of synchronized video-and-audio sequences on CD-ROM. Layer III is the

most complex but offers the best audio quality, particularly for the bit rate around

64 kbps per channel. This layer suits the audio transmission over ISDN and the

multimedia application on portable devices. Which layer will be employed for an

application is determined by the computational complexity and the performance

requirement [3].

1.2 Motivations

MPEG/audio Layer III, also referred as MP3, is the most popular digital audio

format on Internet now. And with the help of Internet, MP3 has also gained

popularity as a portable solid-state audio format. Recently, various kinds of devices

that support MP3 application have come out in the consumer market. However,

most of all have “decoding-only” features. Few of them support MP3 encoding

with high quality. This is solely because MP3 encoding algorithm often consumes

too much computational resources to implement on the system powered by

batteries.

A high quality MPEG/audio Layer III encoding and decoding algorithms,

which are optimized for 16-bit fixed point arithmetic, and a real-time

implementation on a low-cost 16-bit fixed-point DSP are proposed in this thesis.

ADI ADSP-2181 is chosen as the target DSP.

The prototype design of a dual core embedded system is also presented in this

thesis. The work is done by integrating the proposed MP3 codec implementation on

ADSP-2181 DSP with a 32-bit RISC, Intel® StrongARM SA-1110 CPU, on an

existing embedded system, AdvanTech PCM-7130 SBC.

 2

 CHAPTER 1. INTRODUCTION

1.3 The Overview of The Proposed Method and Contributions

In this thesis, we propose several fast algorithms for MP3 encoding and

decoding. In the MP3 encoding algorithm, the psychoacoustic model (PAM), the

most computationally complex part of the entire MP3 encoding algorithm, is

removed based on several experimental results, and the PAM-based distortion

control loop is also simplified. Some techniques including bandwidth control and

dynamic bit allocation proportional to the energy of granules are added to improve

the audio quality.

Furthermore, a fast rate control loop algorithm is proposed to reduce the

complexity of non-uniform quantizer and the number of iterations. The complexity

of non-uniform quantizer is reduced by moving the time-consuming operation

outside the iteration and by applying piecewise linear approximation in the

non-uniform quantization. Thus the quantizer is divided into two parts and

consumes less than 10 and 4 DSP instructions outside and inside the iteration

respectively. The number of iterations is reduced by the precise initialization and

the fast iterative search of the non-uniform quantizer parameter. Thus the average

number of iterations is only 1.8 while the original method takes more than 45

iterations in average.

In the MP3 decoding algorithm, the dequantization operation is implemented

by applying piecewise linear approximation and Newton’s method for root-finding

to achieve higher SNR. And we adopt Lee’s fast DCT/IDCT algorithm to realize

the IMDCT and the matrixing operation in the synthesis filterbank.

1.4 The Experimental Results and Potential Applications

The results of the proposed MP3 codec optimization and implementation are

also analyzed. The MP3 encoder consumes 21.05 MIPS and 44k bytes memory and

 3

 CHAPTER 1. INTRODUCTION

the MP3 decoder consumes 18.67 MIPS and 44.3k bytes memory. Both have

superior performance than other commercial products and paper implementations.

The superior performance in MP3 codec implementation mainly brings two

areas of potential application.

 The low requirements of MIPS and memory are suitable for the system

powered by battery, like pen drive, walkman, voice recorder, cellular

phone and etc. Thus these devices can support both MP3 encoding and

decoding.

 The system integration part gives the probability of taking the low cost

ADSP-2181 as an audio coprocessor in a large system. By applying the

firmware loading protocol proposed in this thesis, the system can

support not only MP3 but also more audio application. The innovative

feature is suitable for many products nowadays like PVR/ DVR, DVD

player/ recorder, IP phone, digital broadcasting system and etc.

1.5 Content and Organization

This thesis contains seven chapters:

 Chapter 1 introduces the digital audio compression algorithms and the

motivation, overview and contribution of this thesis.

 Chapter 2 introduces the MPEG/audio Layer III encoding algorithm and

brings the proposed optimization. The proposed methods are mainly

focused on minimizing the complexity of the PAM-based bit allocation

process and improving the coding efficiency. Based on a series of

experiments and analysis, the PAM is simplified, and a new fast bit

allocation algorithm is developed.

 Chapter 3 introduces the MPEG/audio Layer III decoding algorithm

and brings the proposed optimization. The proposed methods are

 4

 CHAPTER 1. INTRODUCTION

focused on minimizing the complexity of the dequantization and the

filterbank.

 Chapter 4 introduces the 16-bit fixed-point DSP, ADSP-2181 and brings

the MP3 codec DSP implementation of proposed methods.

 Chapter 5 presents the experimental results and comparisons with other

methods.

 Chapter 6 introduces an application example, a dual core embedded

system architecting by Intel® StrongARM MPU and ADI ADSP-2181

DSP, and brings the firmware design.

 Chapter 7 brings the conclusions and future works.

 Appendix contains the pictures of the whole system and sub-systems.

 5

 CHAPTER 2. ENCODER OPTIMIZATION

CHAPTER 2. ENCODER OPTIMIZATION

2.1 Encoding Overview and Complexity Analysis

Figure 1 shows the block diagram of the MPEG/audio Layer III encoding

process. The 1152 consecutive PCM samples are grouping together and called one

audio frame. The time to frequency mapping transforms the audio input into the

spectral lines frame by frame.

Then these spectral components are divided into several scalefactor bands

according to the critical-band rate. The audio input simultaneously passes through

the PAM-II, psychoacoustic model II, that determines the ratio of the signal energy

to the masking threshold for each scalefactor band.

To achieve the bit rate constraint, the rate controller varies the quantizer in an

orderly way, quantizes the spectral values and counts the number of Huffman code

bits required to code the quantized values. The quantizer in MP3 is non-uniform so

that the quantization noise depends on the quantized value instead of the

quantization parameters like the general uniform quantizers. Huffman coding is

chosen as the lossless coding tool while the Huffman tables are pre-defined and

have been statistically analyzed [5]. The distortion controller adapts the

scalefactors to control the quality when the quantization noise exceeds the masking

threshold.

 6

 CHAPTER 2. ENCODER OPTIMIZATION

Iteration loop

Hybrid transform
for time to

frequency mapping

Rate control for
bit allocation Bitstream

formatting

FFT

PCM
audio
input

Ancillary data
(optional)

Encoded
bitstream

Masking
Threshold

Distortion
control for

noise allocation

Psychoacoustic Model II

Figure 1. MPEG/audio encoding process

The functionality of each block will be described in the following subsections.

2.1.1 Psychoacoustic model II

The psychoacoustic model, a model of the human auditory perception,

supplies the non-uniform quantization block with the information on how to

quantized and scaled based on their perceptual relevance. The relevance is

denoted as the ability to mask other signals (maskee) for a signal (masker).

Usually in MPEG/audio coding, the maskee indicates the noise from the

non-uniform quantization of transformed coefficients.

This masking is a perceptual property of the human auditory system that

occurs when the presence of strong audio signal make a temporal or spectral

neighborhood of weaker audio signal imperceptible. Three types of auditory

masking effects are described below:

 The absolute threshold of hearing, ATH: It is characterized by the

minimum intensity of a pure tone that the ear can hear in a noiseless

environment. This threshold is frequency dependent and typically

shows a minimum (indicating the maximum sensitivity of ear) at

frequencies between 1kHz to 5kHz. A typical curve of ATH is shown in

Figure 2.

 7

 CHAPTER 2. ENCODER OPTIMIZATION

102 103 104

0

20

40

60

80

100

Frequency(Hz)

S
ou

nd
 P

re
ss

ur
e

La
ve

l,
S

P
L(

dB
)

The absolute threshold of hearing

Figure 2. The absolute threshold of hearing

0.02 0.1 0.5 1 2 5 20

0

10

20

30

40

50

60

70 Masker

Maskee

Masking Threshold

Threshold in Quiet

Frequency (kHz)

S
ou

nd
 P

re
ss

ur
e

Le
ve

l,
S

PL
 (d

B
)

Figure 3. Frequency masking effect combined with ATH

 The frequency masking: it, also called simultaneous masking, is a

frequency domain phenomenon where a weaker signal (maskee) can’t

be perceptible by a simultaneously occurring stronger signal (masker) as

 8

 CHAPTER 2. ENCODER OPTIMIZATION

long as they are close enough to each other in frequency. The masking

threshold is measured when any signal below is imperceptible and

depends on the sound pressure level and the frequency of the masker.

As shown in Figure 3, the complete masking threshold is combined with

the masking threshold of the masker and the absolute threshold of

hearing.

 The temporal masking: It is a phenomenon that relatively loud sounds

in an audio signal, such as a loud trumpet’s note, will tend to overpower

other sounds that occur just before and just after it as shown in Figure 4.

Simultaneous Masking

Time (ms)
160120804000-40 20 180

Post-MaskingPre-Masking

90

50

So
un

d
Pr

es
su

re
 L

ev
el

, S
PL

 (d
B)

Figure 4. Temporal masking effect

2.1.2 Time to frequency mapping transform

MP3 algorithm uses a hybrid transform to perform time to frequency

mapping. As shown in Figure 5, the hybrid transform includes a 32-channel

analysis polyphase filterbank, also called subband analysis, and an MDCT

filterbank.

Before passing the frequency lines (transformed coefficients) into next

stage of the encoding process, a reduction of alias is introduced here in order to

reduce amount of information for transmission.

 9

 CHAPTER 2. ENCODER OPTIMIZATION

MDCT
Window

MDCT

MDCT

MDCT

A
lia

s R
ed

uc
tio

n
(o

nl
y

fo
r

lo
ng

 b
lo

ck
s)

...
..

...
..

...
..

window select－
 normal, start, short, or stop

long or short block
control

...
..

...
..

...
..

...

Subband 0

Subband 1

Subband 31

A
na

ly
si

s P
ol

yp
ha

se
 F

ilt
er

ba
nk

Input audio
frame MDCT

Window

MDCT
Window

From psychoacoustic
model II

Output
transform
coefficient

Figure 5. Hybrid transform for time to frequency mapping

Figure 6 is the function diagram of 32-channel analysis polyphase

filterbank. It is composed of 32 band-pass filters. The band-pass filter, Hi(n) is

generated by modulating the low-pass filter, h(n), to the ith subband as (1). The

coefficient of h(n) is shown in Figure 7,

() () () () 511~0 where,
64

1612cos =⎟
⎠
⎞

⎜
⎝
⎛ −⋅+⋅⋅

⋅= nninhnHi
π

. (1)

H0(n)

H1(n)

H31(n)

 32

 32
P1(n)

P0(n)

 32
P31(n)

x(n)
Input audio signals

S0(n)={..., P0(0), P0(32), P0(64), ...}

S1(n)={..., P1(0), P1(32), P1(64), ...}

S31(n)={..., P31(0), P31(32), P31(64), ...}

Output subband signals

…
…

Figure 6. The 32-channel analysis polyphase filterbank

The 32 consecutive audio signals are simultaneously passed into the 32

band-pass filters. The filtering (with 480 overlapped inputs) outputs are

 10

 CHAPTER 2. ENCODER OPTIMIZATION

down-sampled and the output subband signal are then produced.

0 50 100 150 200 250 300 350 400 450 500
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

n

h(
n)

Figure 7. The coefficient of low-pass filter, h[n]

The MDCT (Modified Discrete Cosine Transform) performs finer

resolution of the 32 subband outputs from the analysis polyphase filterbank as

shown in Figure 5. First the subband output passes windowing operation.

MDCT uses four types of window as shown in Figure 8 (a) to (d). MP3

specifies two different MDCT block lengths: long block of 18 samples and

short block of 6 samples. The normal, start and stop windows are employed in

the granule denoted as long block. And the short window is employed in the

granule denoted as short block. As shown in Figure 8 (e), each window is 50%

overlapped with neighborhood window. So the window size is 36 and 18

respectively.

The start and stop windows are the so-called adaptive windows. The start

window provides adaptation from normal window to short window and the stop

window provides adaptation from short window to normal window.

Which window is employed is determined by PAM-II. In general, the long

 11

 CHAPTER 2. ENCODER OPTIMIZATION

block length provides better frequency resolution (less block effect) with

stationary characteristic, and the short block length provides better time

resolution with transient.

10 20 30
0

0.2

0.4

0.6

0.8

1

10 20 30
0

0.2

0.4

0.6

0.8

1

10 20 30
0

0.2

0.4

0.6

0.8

1

10 20 30
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

(a) Normal (b) Start (c) Stop (d) Short

(e) The arrangement of overlapping MDCT windows

Figure 8. The four types of MDCT window and the arrangement

The formula of MDCT is shown in (2),

() () () 1
2

~0 where,12
2

12
2

cos
1

0
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅⎟

⎠
⎞

⎜
⎝
⎛ ++⋅⋅

⋅
⋅= ∑

−

=

niink
n

kzix
n

k

π
. (2)

The n is 36 for long block and 12 for short block.

2.1.3 Iteration loop

The iteration loop plays a important role of performing “quantization” and

“Huffman coding” to achieve a high compression ratio. This block outputs the

coded data satisfying human auditory system and the correlative side

 12

 CHAPTER 2. ENCODER OPTIMIZATION

information.

The iteration loop allocates the bits and the allowable noise to each

scalefactor band from two main modules: outer and inner iteration loop. The

outer iteration loop, also called distortion control loop, controls the quantization

noise produced by the non-uniform quantization within the inner iteration loop.

The scalefactor of the scalefactor band is adjusted to reduce the quantization

noise if the quantization noise is found to exceed the masking threshold

obtained from PAM-II. The outer loop is executed until the actual noise is

below masking threshold in each scalefactor band.

The inner iteration loop, also called rate control loop, does the actual

quantization. The quantized coefficients are then Huffman coded, and the

number of coded bits is counted. If Huffman coder demands bits more than the

frame can supply, the quantizer parameter needs to be adjusted. The inner

iteration loop is repeated with different quantizer parameters until the

demanding bits of Huffman coder is small enough.

The Huffman coding algorithm is based on 32 static Huffman tables,

provides lossless compression and thereby reduces the amount data to be

transmitted without loss of the quality.

2.1.4 Bitstream formatting

This block produces the MPEG/audio Layer III compliant bitstream. The

Huffman coded frequency lines, side information and frame header are

assembled to form the bitstream. Ancillary data not necessarily related to the

audio frame can be inserted into the coded bitstream.

Table 1 summarizes the complexity of MP3 encoding algorithm in DSP MIPS.

According to the analysis, PAM and iteration loops are two of the most

time-critical processes. PAM-II normally requires transcendental computations

 13

 CHAPTER 2. ENCODER OPTIMIZATION

such as logarithm, exponential and power, which are often computationally

demanding.

Table 1. Predicted complexity to implement MPEG/audio encoder [4]

MP3 Encoder MIPS

Hybrid transform 25

PAM-II 90

Iteration loop 70

Etc. 5

Total 190

Another computational demanding task is the iteration loop, also called bit or

noise allocation process. The process finds the optimal quantization parameters and

scalefactors to obtain the best audio quality in a limited bit resource. Because the

quantizer is non-uniform, MP3 adapts an iterative approach to evaluate the

parameters. Thus it is based on analysis-by-synthesis scheme. The experimental

result shows that the number of iterations per audio granule reached up to 50. It

should be also mentioned that the number of iterations depends on the

characteristic of input signal and the execution cycles are also varied in each frame.

2.2 Simplified PAM-II

As shown in Table 1, the traditional MP3 encoding algorithm consumes too

much MIPS and is hard to be implemented on power-limited devices. Since the

complexity analysis shows that both of the most computationally demanding

processes are related to ISO PAM-II, we first consider the possibility of encoding

without ISO PAM-II [4].

 14

 CHAPTER 2. ENCODER OPTIMIZATION

2.2.1 Distortion control loop analysis

Figure 9 shows the traditional iterative approach to implement distortion

control. After the rate control loop quantizes the spectral lines, the distortion

control loop first reconstructs the spectral by inverse quantization of the

quantized value, and then we can evaluate the distortion of the quantization

works. Then if the distortion exceeds the masking threshold in the scalefactor

band, we can amplify the original signal, and then the masking threshold is also

amplified. The pre-emphasis process turns the pre-emphasis flag on and

amplifies the whole spectral by pre-defined factor if all of the upper four

scalefactor bands have unmasked distortion.

Rate control loop

Distortion calculation

Preemphasis

Amplify scale-factor band

Loop break condition

Figure 9. Distortion control in the iteration loops

The motivation of PAM-II simplification is that PAM-II is ineffective over

a certain threshold of bit rate [4]. Figure 10 shows the masking threshold and

the quantization noise before applying distortion control in each scalefactor

band. The signal was encoded at 128kbps and 256kbps stereo with 44.1kHz

sampling rate.

 15

 CHAPTER 2. ENCODER OPTIMIZATION

2 4 6 8 10 12 14 16 18 20
-100

-90

-80

-70

-60

-50

-40
Distortion v.s. Masking Threshold

Scalefactor band

D
is

to
rti

on
 (d

B
)

128kbps
256kbps
Masking threshold

(a) Sample granule

2 4 6 8 10 12 14 16 18 20
-70

-65

-60

-55

-50

-45

-40

-35
Average distortion

Scalefactor band

D
is

to
rti

on
 (d

B
)

128kbps
128kbps with bandwidth control
256kbps
Masking threshold

(b) Average distortion

Figure 10. Noise analysis before distortion control

As observed in Figure 10 (a), the distortion is much lower than masking

threshold at 256kbps mode, and then no distortion control is needed. However

at 128kbps mode, the distortion exceeds the threshold at the 19th and higher

scalefactor bands, and then the distortion control is needed to shape the noise.

 16

 CHAPTER 2. ENCODER OPTIMIZATION

Figure 10 (b) shows the average. Similarly, the distortion only exceeds the

threshold at higher scalefactor bands.

Related research has been made to investigate the contribution of PAM-II

to the distortion control [4]. By analyzing the number of distortion control

iteration and the result of subjective quality preference tests, Oh et al. [4]

showed that PAM-II is unnecessary when the bit rate is over 256kbps. To

recover the audio quality at lower bit rate, they proposed a bandwidth control

scheme. Subjective test revealed people prefer the sound with a limited

bandwidth to the sound with full bandwidth but with unmasked distortion. In

this thesis, we also employ bandwidth control of input signal. Figure 11 shows

the bandwidth coefficient versus demand bit rate.

32 40 48 56 64 80 96 112 128 160 192 224 256 320

5091
5895
6852
7886
8843

10298

11905

13705

15389

16805

19677
20787
22050

Bit rate (kbps)

C
ut

-o
ff

fre
qu

en
cy

 (H
z)

Cut-off frequency v.s Bit rate

Figure 11. Coefficients of bandwidth controller (sampling rate is 44100 Hz): the

corresponding cut-off frequency of each bit rate is obtained from

LAME [14]

A low pass filter is applied in the bandwidth control. The ith frequency line

 17

 CHAPTER 2. ENCODER OPTIMIZATION

()ix gf , in the gth granule of the f th frame is filtered by (3),

()()
()

⎪
⎩

⎪
⎨

⎧

⎟
⎠
⎞⎜

⎝
⎛ ×>

⎟
⎠
⎞⎜

⎝
⎛ ×≤

=
Ω

Ω

576nint if ,0

576nint if ,

2

2
,

,

sf
c

sf
c

i

iix
ixL

gf

gf , (3)

where the cut-off frequency, cΩ is defined as the bandwidth coefficient.

In other words, the bandwidth control can allocate more bits for low

frequency band, and then the quality can be improved. Figure 10 (b) shows the

decrease of average distortion when bandwidth control is employed.

Experiments shows that the bandwidth control scheme is effective when the

MP3 is encoded at lower bit rate.

In this thesis, we propose removal of ISO PAM-II and related processes

like distortion control and window switching and employ efficient allocation of

limited bit resource to recover the audio quality. Later we will address the

proposed method to allocate bit resource more efficiently.

2.2.2 Removal of window switching

Modern audio compression algorithm often use dynamic window

switching to avoid preechoes. Preecho happens when we encode audio signals

that the amplitude raises violently in an instant as observed in Figure 12 (a). If

the algorithm can’t individually encode the signals of different characteristic,

the signals grouped by algorithm will be encoded by using the same

quantization parameter, i.e. the quantization noise are spreading to the whole

block, and it is hard to get better coding gain. In transform coding based

algorithm, signal of the same time-slice are always grouped first and then

encoded at a time so the preechoes are unavoidable. But the psychoacoustics

reveals that the preecho less than 18ms can be masked by a loud voice behind it.

 18

 CHAPTER 2. ENCODER OPTIMIZATION

Thus the algorithm can group less amount of signals and encode them together

even if the preecho is produced. That is why we need dynamic window

switching in MP3 algorithm. In general PAM-II detects the appearance of

preecho by calculating the perceptual entropy (PE), i.e. the predicted amount of

bits needed to encode the granule. But PAM-II is not implemented in proposed

design for power-limited device. It is also not easy to have another metric to

detect the appearance of preecho.

Related research shows that encoding without window switching didn’t

cause significant negative effect to the audio quality [4]. Figure 12 (b) and (c)

show the time domain waveforms encoded with and without window switching

in 128Kbps. Preecho appears as a notable difference around the 7000th sample

(the 6000th sample of source signal) whether the window switching is used or

not.

 19

 CHAPTER 2. ENCODER OPTIMIZATION

0 2000 4000 6000 8000 10000 12000
-1

-0.5

0

0.5

1
x 104

(a) Source signal

0 2000 4000 6000 8000 10000 12000
-1

-0.5

0

0.5

1
x 104

(b) Encoded with window switching

0 2000 4000 6000 8000 10000 12000
-1

-0.5

0

0.5

1
x 104

(c) Encoded without window switching

Figure 12. Time domain waveforms from using window switching or not

 20

 CHAPTER 2. ENCODER OPTIMIZATION

2.3 Fast rate control loop

As observed in Figure 13, the rate control loop also called inner iteration loops

allocates the bit resources to each frequency line by quantization and Huffman

coding. The difficulty is to find an optimal quantizer parameter also called global

gain and select a suitable Huffman table. The ISO standard adopts a step-by-step

approach to obtain the optimal parameter from an initial value determined by

spectral flatness measure. Considering the input range of Huffman coding, more

iteration taken in quantization process will be tested to guarantee the quantization

output in the range.

In this thesis, we propose a new rate control algorithm. Figure 14 illustrates

the flowchart of the new algorithm. With the removal of PAM-II and related

distortion control loop, the iteration loops is also simplified as Figure 14.

Non-linear quantization

Huffman coding

Distortion control

Loop break condition

coded_bits < max_bits

T
une the step-size

N

Y

Initialize the quantizer
parameter (step-size)

Figure 13. Rate control in iteration loops

 21

 CHAPTER 2. ENCODER OPTIMIZATION

Dynamic bit allocation
Energy distribution between granules

Variable initialization
Derive the initial value of quantizerStepSize

First trial
Apply quantization and count the bits needed

Iterative search
Apply quantization and count the bits needed

Finalizing process
Update predict value

() ()
() (){ }ixiX gfigf

gfgf

,,

,,

ˆmaxˆ =

ixix
75.0

ˆ =

Figure 14. The new rate control algorithm

2.3.1 Non-uniform quantization

In ISO MP3 algorithm, the non-uniform quantizer was defined as (4),

()
()

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= + 09460

2

750

4
.nint

.

,
, q

ix
iy

''
gf

gf δ , (4)

where nint is a rounding function, q is the lower bound of quantization

parameter, i.e. the initial value, δ is the increasing variable, and is the

i

()ix gf
''
,

th frequency line pre-emphasized (5) and amplified (6) in the distortion control

loop.

() () () ()ibPzz
gf

'
gf ixix

×+×
×= 12 1

2,, , and (5)

 22

 CHAPTER 2. ENCODER OPTIMIZATION

() () () ()ibCz'
gf

''
gf ixix

×+
×= 11

2,, , (6)

where ()ix gf, represents the original frequency line, i is the index of spectral

line, { }1 0,2 ∈z switches on or off preemphasis, { 1 0,1 }∈z determines

whether the scalefactors are logarithmically quantized with a step size of 2 or

2 . is the scalefactor band index of the iib th spectral line. is the

preemphasis table defined in [5].

()⋅P

()ibC is the scalefactor of the scalefactor

band, . ib

Since the distortion control is not used in this implementation, (5) and (6)

no longer exist. Then (4) can be simplified to (7),

()
()

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∆ 09460

2

750

4

.nint

.

,
, ,gf

ix
iy gf

gf , (7)

where the quantization parameter qgf +=∆ δ, .

(7) is executed iteratively in the finding of an optimal gf,∆ . The rounding

function nint is unnecessary in fixed point implementation. We can further

rearrange (7) to (8),

() () 094602 16
3

750
.

,
.

,, −×=
∆×

− gf

ixiy gfgf
. (8)

In the rate control iteration, gf,∆ is the only running variable. So we can

take () 750.

, ix gf out from the iteration. Therefore the quantizer can be

decomposed into two equation where one is calculated outside the iteration (9),

() () 750.

,,ˆ ixix gfgf = , (9)

 23

 CHAPTER 2. ENCODER OPTIMIZATION

and another is calculated in the iteration (10),

() () 094602 16
3

.ˆ
,

,, −×=
∆×

− gf

ixiy gfgf
. (10)

The decomposition benefits the complexity reduction of the non-uniform

quantizer. The most computationally demanding process, the () 750.

, ix gf

function, is only calculated once in each granule. And the iterative equation (10)

in the fixed point implementation can be simplified to one multiplication, one

shift operation and one subtraction.

The implementation of (9) is optimized for the target DSP, ADSP-2181.

The unsigned 16-bit fixed point inputs ()ix gf, ranged from 0 to 65535 are

divided into two regions. The first region covering range from 0 to 31 is

implemented using a 32-word lookup table. From the probability model of

() 750.

, ix gf , the first region covered over 60 percentage of inputs. A small

lookup table is applied here to speedup the calculation. The second region from

32 to 65535 is implemented using piecewise linear interpolations. There are 11

sub-regions between 32 to 65535. The segmentation is also optimized for the

target DSP. Since ADSP-2181 supports hardware detector of leading ones/zeros,

we can derive biased ()x2log in one instruction cycle. Thus the boundaries of

sub-regions are proposed to be set to power of 2, i.e. 32, 64, 128, …, 65536.

The approximation error has been analyzed in (11),

()() () ()()
() 750

750

.

,

,

.

,
,

075pow

ix

ixix
ix

gf

gfgf
gf

−
=ε , (11)

where pow075 is the implementation of proposed approximation method, also

represented by . ()⋅1Q

Figure 15 shows the error to real output ratio, ε . The ratio is around ±1%.

 24

 CHAPTER 2. ENCODER OPTIMIZATION

Table 2 summaries the number of DSP instruction cycles in calculation of two

regions.

0 1 2 3 4 5 6

x 104

-1%

-0.5%

0%

0.5%

xf,g(i)

ε (xf,g(i))

Figure 15. The error of () 750.

, ix gf approximation

Table 2. The number of DSP instruction cycles in calculation of two regions

Input range DSP instruction cycles Probability Table size

0 ~ 31 4 > 60% 32 words

32 ~ 65535 9 < 40% 22 words

We can rewrite the (10) as (12),

() () 0946022 .ixiy NQ
gfgf −××= ∆∆

,, ˆ , (12)

where is the integer part, and N∆ Q∆ is the fractional part of 16
3 gf ,∆×− . In

fixed point implementation, the multiplication of can be easily

implemented by the hardware barrel shifter. And the is derived from a

N∆2

Q∆2

 25

 CHAPTER 2. ENCODER OPTIMIZATION

16-word lookup table that contains fixed point value 162
0

, 162
1

, …, 162
15

. The

implementation is denoted as ()⋅2Q .

2.3.2 Dynamic bit allocation proportional to the energy of granules

In the MP3 bitstream, each frame has fixed amount of bit resources on the

constant bit rate. With a help of bit reservoir control, we can save the unused

bits in the reservoir if the distortion of quantization is imperceptible, and it will

benefit the encoding of succeeding frames. But in the proposed algorithm

without PAM-II and distortion control, the quality constraint is no longer exist.

Then the rate control loop will exploit all the bit resource as possible as it can to

encode one audio granule.

Normally an audio frame contains two (mono) or four (stereo) granules.

The traditional MP3 algorithm portioned out the total bits equally for granules

in each frame. An asymmetric allocation of the bit resources which is

proportional to the energy of granules is proposed to equalize the quality, i.e.

allowed distortion, between granules in the same frame.

It is general that the transformed coefficient with higher amplitude will be

quantized to higher integer values. And from the property of the Huffman code

words, the integer input with higher value is usually coded with more bits. We

can also extend the idea to the group of coefficients, i.e. granule. If the granule

has more energy or more number of coefficients with higher amplitude, it need

more bits to maintain the same quality as others.

Considering the non-uniform property of quantizer, the power function is

taken into account. From experimental results, the frequency lines below

4,000Hz dominates the full bandwidth (22050Hz) energy. In the proposed

approach, for sampling rate of 44.1kHz the score of the granule energy defined

as (13) takes only 105576244100
4000 ≈× spectral lines of () 750.

, ix gf for

 26

 CHAPTER 2. ENCODER OPTIMIZATION

calculation.

()∑
=

=
105

1i
gfgf ixE ,, ˆ , (13)

where ()ix gf,ˆ are determined from (9), and is the energy score of the

granule.

gfE ,

The resource allocation is not exactly proportional to the granule score.

The modification as shown in (14) takes the minimum resource into account.

p
g gf

gf
gfgf B

E
E

bB ×+=
∑ ,

,
,, , (14)

where is the minimum encoding bits given from (15), and is the

number of bits used to distribute to each granule given from (16). is the

total available number of bits in the frame.

gfb , pB

fB

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

channel Side,
channel Mid,

Channel Left/Right,
Mono,

18

9

12

6

f

f

f

f

B

B

B

B

gfb , (15)

∑−=
g gffp bBB , (16)

In this thesis, we also propose the fast search approach which has two

following parts. One is the precise initialization of the quantization parameter, i.e.

. Another is the fast search of the optimal quantizer parameter. gf,∆

2.3.3 Precise initialization of the quantization parameter

In the ISO MP3 algorithm, the initial value of quantization parameter is

 27

 CHAPTER 2. ENCODER OPTIMIZATION

derived as (17),

()gfq ,ln0.8 µ×= . (17)

The spectral flatness measure, gf ,µ , is defined as (18). The derivation

contains complex non-linear mathematic and is inefficient on fixed point

implementation.

()()

() ⎟
⎠
⎞⎜

⎝
⎛ ∑⋅

∑
=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

=

575

0

2
,576

1

ln

,

575

0

2
,576

1

i
gf

ix

gf

ix

e i
gf

µ (18)

We propose that the initialization of gf,∆ is predicted by the one of

previous granule and a lower bound. To derive the lower bound we consider (10)

again. From the property of Huffman table, the quantized value, , has a

upper bound, 8207. So the lower bound of

()iy gf ,

gf,∆ comes out from the direct

derivation from (19),

()

(){ }

(){ }

(){ }() ⎥⎥
⎤

⎢⎢
⎡ −=∆⇒

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
−>∆⇒

−×>⇒

−×>
∆×

∆×

−

−

35.69ˆmaxlog
3

16

ˆmax
0946.08207log

3
16

0946.02ˆmax8207

0946.02ˆ8207

,2

,
2,

,

,

16
,3

16
,3

ix

ix

ix

ix

gfil

gfi

gf

gfi

gf

gf

gf

. (19)

The lower bound, , guarantees the quantized value in range of Huffman

table. So the initialization with prediction is derived as (20),

l∆

() (){ }σ+−∆∆=∆ 1,max ,, nn gflgf , (20)

 28

 CHAPTER 2. ENCODER OPTIMIZATION

where n is the iteration index of iterative search in Figure 14 and starts from

zero. () gfgf ,1, 1 −∆=−∆ , () 1501,0 −=−∆ g , σ is the addend of the step size

and equal to zero during initialization.

The great achievement of proposed method is proved by comparing the

difference between initial value and final value. Figure 16 shows the difference

histogram of ISO MP3 method and proposed method. From the statistic, over

60 percent of predicted initial values are very close to the final values, i.e. the

difference 1≤ε . The precise decision of initial value benefits to reduce the

number of iteration of the following iterative search.

 29

 CHAPTER 2. ENCODER OPTIMIZATION

-80 -60 -40 -20 0 20 40 60 80
0

200

400

600

800

1000

1200

1400

1600
Histogram: Difference between initial value and final value

Differnce

C
ou

nt
s

ISO MP3 method
Expected difference = 39.31

(a) ISO MP3 method in (17) and (18)

-30 -20 -10 0 10 20 30
0

500

1000

1500

2000

2500

3000

3500
Histogram: Difference between initial value and final value

Differnce

C
ou

nt
s

Proposed method
Expected difference = -0.037

(b) Proposed method in (19) and (20)

Figure 16. The histogram to difference between initial value and final value of

. The accuracy is determined by the expected difference of initial

value and final value. (a) ISO method initializes it by the measure of

spectral flatness. (b) Proposed method initializes it by the one of

previous granule and a lower bound.

gf ,∆

 30

 CHAPTER 2. ENCODER OPTIMIZATION

2.3.4 Fast search of the optimal quantizer parameter

Nonuniform quantization
quantize_tj (xq, ix, quantizerStepSize);

bits = countHuffBits (ix);

Update Addend of Step Size
jump = updateJumpSize(bits-max_bits, step[ch]);

Nonuniform quantization
quantizerStepSize += 1;

quantize_tj (xq, ix, quantizerStepSize);
bits = countHuffBits (ix);

Bits max_bits

Jump = 0Jump != 0

Yes

No
Exit

Update Step Size of Qauntizer
quantizerStepSize =

max(quantizerStepSize+jump, low_bound)

Nonuniform quantization
quantize_tj (xq, ix, quantizerStepSize);

bits_modify = countHuffBits (ix);

Update Step Unit
updateUnitStep(bits, bits_modify, jump, step+ch);

bits = bits_modify;

Update Addend of Step Size
jump = updateJumpSize(bits-max_bits, step[ch]);

Loop break condition

Yes

No

First trial

Iterative search

Final trial

≤

Figure 17. The adaptive approach to iterative search optimum parameter

Figure 17 illustrates the our approach to iterative search. Table 3 describes

the symbols used in Figure 17.

 31

 CHAPTER 2. ENCODER OPTIMIZATION

Table 3. Symbols descriptions of Figure 17

Symbol name Description Abbreviation

xq The frequency lines powered by 0.75 in (9) gfx ,ˆ

ix The quantized integer value in (10) gfy ,

quantizerStepSize Quantizer parameter also called global gain gf ,∆

low_bound The lower bound of gf ,∆ guaranteeing that the

quantized value can be coded within Huffman table l∆

jump Addend of gf ,∆ σ

step Predicted value of the difference number of bits used
in Huffman coding when gf ,∆ is increased by one. cρ

max_bits The bits budget of this granule determined from (14) gfB ,

bits, bits_modify Number of bits used in Huffman coding of the
quantized values

hb , hb̂

quantize_tj Implementation of (10) ()⋅2Q

countHuffBits Counting the number of bits used in Huffman coding of
 gfy ,

()⋅hC

updateUnitStep Updating cρ by results of the latest two iterations ()⋅sU

updateJumpSize Updating σ by cρ ()⋅jU

The proposed approach can be divided into three parts. The first part, the

first trial, performs quantization with the initial value of gf ,∆ derived from

(20). Then are quantized to by gfx ,ˆ gfy , ()⋅2Q . The following will

choose appropriate Huffman tables for and count the number of coded

bits, . Based on

()⋅hC

gfy ,

()0hb cρ and the difference of ()0hb and , a new gfB , σ is

derived by . The ()⋅jU σ equal to zero implies that ()0hb is very close to

 then we omit the iterative search part and apply final trial directly. gfB ,

The iterative search is applied when the σ is not equal to zero. n is

 32

 CHAPTER 2. ENCODER OPTIMIZATION

representing the iteration index. In the nth iteration, (20) is used to derive the

, and n starts from one where ()ngf ,∆ ()0,gf∆ is used in the first trial. After the

update of ()ngf ,∆ , and ()⋅2Q ()⋅hC is used to obtain and . The

difference number of bits with previous iteration, ,

gfy ,
hb̂

()1ˆ −− nbb hh σ and

(1−nc)ρ are sent to , and a new ()⋅sU ()ncρ is updated. Similar with the first

trial, determines a new ()⋅jU σ used in the (n+1)th iteration. The iterative

search block is terminated while one of the following loop break conditions

exists.

 n is greater than 5,

 is less than 32, (1ˆ −− nbb hh)

 σ is zero.

The final trial is applied to guarantee that . Different from the

iterative search, the fine tune of

gf
h Bb ,≤

gf ,∆ is applied here to prevent the deadlock

loop condition.

For example, let 1000, =gfB , () 800, −=∆ gf , 100−=∆l , and

() 1000 =cρ (obtained from previous granule), are passed to and

 then we obtain .

gfx ,ˆ ()⋅2Q

()⋅hC () 5000 =hb ()⋅jU updates by

()
() 5
0

0
nint , −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

c

gf
h Bb
ρ

σ

after the first trial. Since σ is not equal to zero the iterative search is applied.

(20) will update as -85. ()1,gf∆ ()⋅2Q and ()⋅hC are then executed again to

 33

 CHAPTER 2. ENCODER OPTIMIZATION

obtain . updates by 900ˆ =hb ()⋅sU

() () () 950ˆ

4
10

4
3nint1 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅+⋅=

σ
ρρ

hh

cc
bb

in 1st iteration. Then ()2,gf∆ is updated again to -86. And we will repeat the

process iteratively until any one of loop break condition exists.

In this thesis, we propose a new iteration loops algorithm. Figure 18

compares the pseudo code of ISO and the proposed method. With the removal

of PAM-II, the distortion control is also removed, and the rate control is

optimized for speedup. The solid lines in Figure 18 link the blocks with the

same functionality but optimized in proposed method. The dotted lines link the

blocks with different measurement in the proposed method. And the boldface

represent the added blocks of the proposed method.

For // Granule loop
 quantizerStepSize = nint(system_const * log(sfm(xr)));
 do{ // Outer loop
 quantizerStepSize -= 1;
 do{ // Inner loop
 do{
 quantizerStepSize += 1;
 pow075(xr, xq);
 quantize_tj(xq, ix, quantizerStepSize);
 }while(testOverflow(ix));
 bits = countHuffmanBits(ix);
 }while(bits > max_bits);

 loop_break = distortionControl(xr, ix, threshold, scf);
 }while(loop_break);
end

pow075(xr, xq);
bitAllocation(xq, frame_bits, max_bits);
For // Granule loop
 low_bound = (int)(16*log2(xq_max)/3 - 69.35);
 quantizerStepSize = max(low_bound, predict_quantizerStepSize);
 quantize_tj(xq, ix, quantizerStepSize);
 bits = countHuffmanBits(ix);
 jump = updateJumpSize(bits-max_bits, step);
 if(jump != 0){
 while(1){
 quantizerStepSize = max(low_bound, quantizerStepSize+jump);
 quantize_tj(xq, ix, quantizerStepSize);
 bits_modify = countHuffmanBits(ix);
 updateUnitStep(bits, bits_modify, jump, step);
 bits = bits_modify;
 jump = updateJumpSize(bits-max_bits, step);
 if(iter > 3 || abs(bits-max_bits) < 32 || jump == 0)
 break;
 }
 }
 while(bits > max_bits){
 quantizerStepSize += 1;
 quantize_tj(xq, ix, quantizerStepSize);
 bits = countHuffmanBits(ix);
 }
 predict_quantizerStepSize = quantizerStepSize;

 // No distortion control
end

(a) ISO iteration loop (b) Proposed iteration loop

Figure 18. Pseudo code of iteration loops (a) ISO method (b) Proposed method

 34

 CHAPTER 2. ENCODER OPTIMIZATION

To evaluate the performance of optimized rate control process, the number

of iterations has been analyzed by calculating the execution times of ()⋅1Q ,

, and in each granule. The computational complexities are denoted

as p, q, c individually. In encoding stereo MP3 with 128Kbps, the experiments

show that the ISO method takes 45p+45q+47c in average while the proposed

method takes 1p+2q+2c only. Table 4 lists the number of inner iteration in each

method. The proposed method takes less iteration numbers than other methods.

And due to decomposition of non-uniform quantizer,

()⋅2Q ()⋅hC

()⋅1Q and , the

computational complexity of inner iteration is also much less than other

methods.

()⋅2Q

Table 4. The average number of inner iteration

 ISO Oh et al. [4] Proposed

Average 45 2.1 1.8

Max >100 3 8

 35

 CHAPTER 3. DECODER OPTIMIZATION

CHAPTER 3. DECODER OPTIMIZATION

3.1 Decoding Overview and Complexity Analysis

Bitstream
Decoding

Encoded
bitstream Dequantization Frequency to

Time Mapping

PCM
audio

output

Figure 19. MPEG/Audio Layer III decoding block diagram

The MPEG/Audio layer III decoding process has three main parts [5]:

bitstream decoding, inverse quantization and frequency-to-time mapping as shown

in Figure 19. The first part synchronizes the encoded bitstream input and extracts

the quantized frequency coefficients and other information of each frame. Figure

20 illustrates the detail function blocks.

The second part, inverse quantization also called dequantization, reconstructs

a perceptually identical data of the frequency coefficients generated by the MDCT

block during encoding. Based on the output of Huffman decoding and scalefactor

information, the dequantization equation is represented in (21) [5].

 36

 CHAPTER 3. DECODER OPTIMIZATION

Sy
nc

hr
on

iz
at

io
n

Encoded
bitstream

Huffman Info
Decoding

Huffman
Information

Huffman
Decoding

Huffman
code bits

Scalefactor
Decoding

Scalefactor
Information

Sc
al

ef
ac

to
rs

Magnitude & Sign

Ancillary
Data

Figure 20. Bitstream decoding

() () () ()
()()

() () ()()ii

isgf

bPbCz

w

gf
is

gf iyix
+⋅+⋅

∆⋅−∆⋅

⋅⋅−=
14

1

,4
3
4

1

8

,,
2

21
1

, (21)

where is the output of Huffman decoding, and ()iy gf , gf ,∆ , ,

(subblock gain only used in short block), and

1z ()is w∆

()ibC are part of side information.

Alias
Reduction

PCM
audio

output

Inverse
MDCT

Frequency
Inversion

Synthesis
Subband

Filter bank

Figure 21. Frequency to time mapping

The last part, frequency to time mapping, produces the audio PCM output

from the dequantized frequency lines. The part is a set of reversed operations of the

MDCT and analysis polyphase filterbank in the encoder. The alias reduction block

adds alias artifacts to dequantized outputs in order to obtain a correct reconstruction

of subband signals. Then the inverse MDCT reconstructs time domain subband

signals from frequency lines. The frequency inversion is then applied in order to

compensate the decimation used in the analysis polyphase filterbank. After that, the

synthesis polyphase filterbank, also called subband synthesis, is applied to the

subband signals to yield the audio PCM output.

 37

 CHAPTER 3. DECODER OPTIMIZATION

Among them, dequantization, IMDCT, and synthesis polyphase filterbank in

particular require a large number of arithmetic operations and produce quantization

noise in fixed point implementation. In this thesis, we propose a fast realization of

dequantization and adopt fast algorithms on IMDCT and synthesis polyphase

filterbank.

3.2 Dequantization

The dequantization equation is represented in (21). The complexity is the

calculation of 3
4

,gfy where ()iy gf , is an integer ranging 0 to 8207. The direct

derivation using mathematic libraries is too time-consuming and not suitable for

real-time implementation.

First the calculation of 3
4

,gfy is decomposed into (22) in order to minimize the

quantization noise of fixed point implementation. Comparing the dynamic range of

3
4

,gfy (0 to 165543.67) and 3
1

,gfy (0 to 20.171), it is obvious that the

implementation of 3
1

,gfy produces lower quantization noise because of the smaller

dynamic range.

() () ()iyiyiy gfgfgf ,,,
3
1

3
4

⋅= (22)

Similarly with encoder case, the power function is implemented with hybrid

scheme. First the input range is split into three section as shown in Figure 22. The

first section, () 320 , <≤ iy gf , utilizes a small lookup table to obtain the noiseless

value directly. Another two sections adopt the piecewise linear approximation

method. The segmentation is also optimized for the target DSP. In order to

minimize the approximation error, the segmentation of the second section has been

 38

 CHAPTER 3. DECODER OPTIMIZATION

made according to the leading-zeros of ()iy gf
3

, .

1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

50 100 150 200 250

3.5

4

4.5

5

5.5

6

10 20 30
1

2

3

Lookup table
Piecewise linear approximation

with partitioning by leading-zeros of x3.

Piecewise linear approximation
with partitioning by leading-zeros of x.

() 320 , <≤ iy gf

() 25632 , <≤ iy gf

() 8207256 , ≤≤ iy gf

()iy gf ,

()iy gf
3
1

,

Figure 22. The implementation of ()iy gf
3
1

,

Ignoring the frequency index i for general, (23) represents the approximation

of 3
1

,gfyu = .

()
()() ()()
()() ()()⎪

⎩

⎪
⎨

⎧

≤≤+⋅
<≤+⋅
<≤

=
8207256,

25632,
320,LUT

,,33,,33

,,22,,22

,,
3
1

gfgfgfgf

gfgfgfgf

gfgf

yySyyS
yySyyS

yy
u

βα
βα , (23)

where represents the lookup table method applying in 1()⋅LUT st section, 2α and

2β are the linear approximation coefficients of the 2nd section, 3α and 3β are

the linear approximation coefficients of the 3rd section, ()⋅2S is the segment index

of the 2nd section derived from (24), and ()⋅3S is the segment index of the 3rd

section derived from (25).

 39

 CHAPTER 3. DECODER OPTIMIZATION

() ()()
() { }

() () (){ }1
256 204, 162, 128, 102, 81, 64, 51, 41, 32,

9~0,232nint

2,2,2

2

3
2

3
1

+<≤=

∈⇒

=⎟
⎠
⎞⎜

⎝
⎛ ⋅=

jByjBjyS
jB

jjB

gfgf

j

 (24)

() ()

{
()()

}
() (){ }1

8208 8192, 4096, 2048, 1024, 512, 256,
6,8208

5~0,2256nint

3,3,3

3

3

+<≤=

∈⇒
⎩
⎨
⎧

=
=⋅

=

jByjBjiyS
B

j
j

jB

gfgf

j

 (25)

The approximation error has been analyzed that the error to real output ratio is

around ±1%, and the SNR is around 46dB. The error is still too large and will

probably lead the following processes like IMDCT and subband synthesis to

produce more error, especially in fixed point implementation. Nevertheless in the

encoding case, the following process, Huffman coding, is noiseless.

In order to obtain the further approximation, we propose to apply the

Newton’s method in the section of () 820732 , ≤≤ iy gf . Let ()iyu gf
3
1

,= ,where (26)

is another representation which is suitable for the Newton’s method of root-finding.

The method will yield a value of u that approximates ()iy gf
3
1

, .

() 0,
3 =− iyu gf (26)

The function result is calculated through the repeated iterations that can

successively reduce the residual error ()iyu gf ,
3 − . The iteration formula is shown

in (27),

() () ()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅=

⋅

+
=

⋅

−
−= 2

0

,
02

0

,
3
0

2
0

,
3
0

01 ~
~2

3
1

~3

~2
~3

~
~~

u
iy

u
u

iyu
u

iyu
uu gfgfgf , (27)

where the starting value 0
~u is obtained from (23).

The desired accuracy can be achieved in only one iteration. Figure 23 shows

 40

 CHAPTER 3. DECODER OPTIMIZATION

the error to real output ratio. The ratio is around ±0.01% and the SNR is increased

to 86dB.

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.014%

-0.01%

-0.006%

-0.002%

0%

yf,g (i)

ε
(y

f,g
 (i

))

The error to real output ratio

Figure 23. The error to real output ratio of ()iy gf
3
4

, approximation.

()() () ()() ()() ()()iyiyiyiyiy gfgfgfgfgf
3
4

3
4

,,,,, 3pow ⋅−=ε where pow3

is the proposed implementation of ()iy gf
3
1

, .

The effect of fixed point implementation have been analyzed. Figure 24 shows

the error to real output ratio. The ratio is around ±0.08%, and the SNR is around

82dB.

 41

 CHAPTER 3. DECODER OPTIMIZATION

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.08%

 -0.04%

0%

0.04%

yf,g (i)

ε
(y

f,g
 (i

))

The error to real output ratio

Figure 24. The error to real output ratio of ()iy gf
3
4

, fixed point approximation.

()() () ()() ()() ()()iyiyiyiyiy gfgfgfgfgf
3
4

3
4

,,,,, fx3pow ⋅−=ε where

pow3fx is the proposed fixed point implementation of ()iy gf
3
1

, .

3.3 IMDCT and Subband Synthesis

The frequency to time mapping tool is another computationally demanding

process. Especially in IMDCT and subband synthesis blocks there are a lot of

multiply-accumulation operations with cosine coefficients. It is necessary to

perform optimization such as fast algorithm. But, in general, a fast algorithm brings

more quantization errors due to fixed point operations.

From the analysis result of Lee etc. [6], prevailing Lee’s Fast DCT algorithm

[7] is adopted for the fast algorithms of IMDCT and subband synthesis block. For

IMDCT block 9-point and 3-point Lee’s Fast IDCT is applied, and for matrixing

routine in subband synthesis block 64-point Lee’s Fast DCT is used.

 42

 CHAPTER 4. DSP IMPLEMENTATION

CHAPTER 4. DSP IMPLEMENTATION

4.1 Target DSP Architecture

Using the proposed architecture, we implement the MP3 encoder and decoder

by a 16-bit fixed point DSP, ADSP-2181. Figure 25 shows the block diagram of

ADSP-2181 [17].

Figure 25. The ADSP-2181 DSP core and peripheral integration

The ADSP-2181 is a single-ship microcomputer optimized for digital signal

processing (DSP) and other high speed numeric processing applications [17]. It

 43

 CHAPTER 4. DSP IMPLEMENTATION

combines the ADSP-2100 family base architecture (three computational units, data

address generators and a program sequencer) with two serial ports, a 16-bit internal

DMA port, a byte DMA port, a programmable timer, Flag I/O, extensive interrupt

capabilities and on-chip program and data memory.

The features of the ADSP-2100 family DSP core are as following [17]:

 Computational units: There are three independent, full-functional

computational units including an 16-bit arithmetic/ logic unit (ALU), a

40-bit multiplier/ accumulator unit (MAC) and a 32-bit barrel shifter.

The ALU performs a standard set of arithmetic and logic operations;

division primitives are also supported. The MAC performs single-cycle

multiply, multiply/ add and multiply/ subtract operations with 40 bits

for accumulation. The SHIFTER performs logic and arithmetic shifts,

normalization, denormalization and derive exponent operations. The

SHIFTER can be used to efficiently implement numeric format control

including multiword and block floating point representations.

 Data address generators (DAGs): Dual DAGs allow the processor to

generate simultaneous address for dual operand fetches and support

circular, post-modify and bit-reversed addressing modes. In

sum-of-product calculation, DAGs allow the processor to fetch two

operands and execute one ALU/ MAC/ SHIFTER instruction in single

cycle.

 Program sequencer: provides single-cycle conditional branching and

executes program loop with zero loop overhead.

ADSP-2181 also integrates on-chip RAM and peripherals. The DSP core can

access the on-chip peripherals by memory-mapped control register. The integration

are as following:

 80K bytes on-chip RAM: They are configured as 16K words program

 44

 CHAPTER 4. DSP IMPLEMENTATION

memory RAM (24 bits per word) and 16K words data memory RAM (16

bits per word). ADSP-21xx uses a modified Harvard architecture in

which data memory stores data, and program memory stores both

program and data. This allows the processor core to fetch two operands

(one from data memory and one from program memory) and an

instruction (from program memory)) in a single instruction cycle.

 Serial ports (SPORTs): There are two bi-directional, double-buffered

serial ports for serial communication. Each SPORT can use an external

serial clock or generates its own in a wide range of frequency down to 0

Hz. The SPORTs also support framing, hardware companding (A-law

and µ-law), autobuffering, interrupt generation and multichannel

capability (time-division multiplexed into 24 or 32 channels).

 Timer: The programmable interval timer provides periodic interrupt

generation.

 DMA ports: There are two DMA ports, Internal DMA (IDMA) port and

Byte DMA (BDMA) port. The IDMA port is a parallel I/O port that lets

the processor’s internal memory (except for the processor’s

memory-mapped control registers) be read or written by a host system.

The read/ write access is completely asynchronous, and a host can

access the DSP’s internal memory with an overhead of one DSP

processor cycle per word while the DSP is operating at full speed. The

BDMA port allows processor load program and data from/ to external

byte memory with very low processor overhead and supports interrupt

generation while the DMA transfer is completed.

4.2 Data precision optimization in the proposed MP3 encoder

Basically ADSP-2181 performs 16-bit arithmetic. However, the double

precision, i.e. 32-bit, arithmetic provides more accuracy of processing data but also

 45

 CHAPTER 4. DSP IMPLEMENTATION

increases the computational complexity. As shown in Figure 26, five instructions

are needed to perform the double precision multiplication, and the complexity is

five times of the complexity of the single precision multiplication.

Xh Xl
mx0mx1

Yl
my0

X

Xl x Yl

Xh x Yl

mr = mx0 * my0 (us);
mr = mr (rnd);
mr0 = mr1;
mr1 = mr2;
mr = mr + mx1 * my0 (ss)

Rh RlRs

32 bits

32 bits

mr0mr1mr2

Unsigned x Signed

Signed x Signed

{ADSP-21xx instructions}

Figure 26. Double precision multiplication, R(32-bit) = X(32-bit) x Y(16-bit).

To determine the data precision, we first divide the encoding processes into

six stages as shown in Figure 27. The PCM samples are always 16-bit, and the

format is denoted as (1.15)16, i.e. the format (α.β)γ means that a fixed point number

of γ bits is represented by lying the binary point just after the αth most significant

bit. It is obvious that α + β = γ. The subband analysis has divided into two stages,

the windowing with partial calculation [5] and the matrixing [5]. The windowing

with partial calculation performs 16-bit multiply-then-accumulate operations and

produces 32-bit results vector Y [5]. The matrixing performs double precision

multiply-then-accumulate like Figure 26 and produces subband signals S, only the

16-bit rounding result of Rh. According to the static analysis, the dynamic range of

subband signals is , therefore the format is derived as (2.14)0.20.2 <<− S 16.

Then the subband signals are passed the MDCT and antialias stage. A faster

 46

 CHAPTER 4. DSP IMPLEMENTATION

MDCT algorithm is applied here to decrease computational complexity but also

maintain the quantization error due to fixed point arithmetic. After performing

16-bit multiply-then-accumulate operations on subband signals, the 32-bit

transformed coefficients are produced and then pass antialias block. Again the

double precision arithmetic as Figure 26 is performed, and a antialiased 32-bit

transformed coefficients ()ix gf , are produced from Rh and Rl.

Windowing

MDCT and antialias

(1.15)16

(2.14)16

(2.30)32

(M.N)16

PCM sample

Subband signal, Si(t)

Transform coefficient,

16 bits 32 bits

Format converter

Pow075 in
equation (9)

(M-4.N+4)16

Shifted transform coeff.,

Quantizer in
equation (10)

Modified transform coeff.,

(16.0)16

Quantized transform coeff.,

Iteration
loops

Matrixing

Subband
analysis

(2.30)32

Partial results Y [5]

()ix gf ,

()⎣ ⎦ 16, bgf ix

()⎣ ⎦ 16,ˆ
bgf ix

()iy gf ,

Figure 27. Data precision between each stage in proposed MP3 encoder. (M.N)16,

determined from the format converter, is the fixed point format of

transformed coefficients.

A special format converter added after antialias block is used to convert 32-bit

data with format (2.30)32 to 16-bit data while the fixed point format is determined

 47

 CHAPTER 4. DSP IMPLEMENTATION

by dynamic range of at run-time. It first finds the maximum of the

transformed coefficients in the granule, . As shown in (28), a right shift

amount, k, is derived from a special function, exp

()ix gf ,

gfX ,

32.

()gfXk ,32exp16 += (28)

The SHIFTER unit of ADSP-21xx core supports hardware exponent detector

which can count the number of leading zeros or ones of single precision data in one

instruction cycle and double precision data in two instruction cycles. The exponent

detector is functionality equal to (29),

() ⎣ ⎦
() ⎣ ⎦ precision double is ,30logexp

precision single is ,14logexp

232

216

xxx

xxx

−≡

−≡
. (29)

For an example, a double precision data,

() ,pqrstuvw hijklmno 0abcdefg 11111111 2, =gfX

the exponent detector produces result of -7. By adding of 16 as (28), k equals to 9

then the format converter shifts the 32-bit transformed coefficients, , right

by 9 and produces the 16-bit shifted transformed coefficients as (30),

()ix gf ,

()⎣ ⎦ () k
gfbgf ixix −×= 2,16, . (30)

Meanwhile, the maximum, , is also converted into 16-bit data, gfX ,

⎣ ⎦ () .ghijklmn 10abcdef 216, =
bgfX

The format converter compacts the 32-bit data with (2.30)32 into 16-bit data

with format (M.N)16 optimized for decreasing the quantization error due to fixed

point arithmetic. The format (M.N)16, different between each encoding granule is

 48

 CHAPTER 4. DSP IMPLEMENTATION

decided at run-time, and M is usually negative. And of course, the shifting

operations as (30) will be inverted later.

The shifted transformed coefficients, ()⎣ ⎦ 16, bgf ix , are then passed into

iteration loops. The proposed algorithm in Figure 14 performs () 75.0

, ix gf operation

before iterative quantization. (31) is rewritten from (9). The multiplying term, 24,

converts the format to (M+4.N-4)16 because the dynamic range of () 75.0

, ix gf is

one sixteenth of the one of ()⎣ ⎦ 16, bgf ix .

()⎣ ⎦ ()⎣ ⎦
()

() 475.075.0

,

475.0

,

475.0

16,16,

2

22

2ˆ

+⋅−

−

×=

××=

×=

k
gf

k
gf

bgfbgf

ix

ix

ixix

 (31)

The relationship between ()ix gf ,ˆ and ()⎣ ⎦ 16,ˆ
bgf ix can be rewritten as (32),

() ()⎣ ⎦ 475.0
16,, 2ˆˆ −⋅×= k

bgfgf ixix . (32)

To obtain the correct quantized value, the quantizer is modified from (10). As

shown in (33), the modification is done by adding additional offset to exponent

term.

()⎣ ⎦ ()

()⎣ ⎦
()⎣ ⎦

()
0946.02ˆ

0946.022ˆ

0946.02ˆ

16
6412,3

16
,3

16
,3

16,

475.0
16,

,16,

−×=

−××=

−×=

+⋅−∆×−

∆×−

∆×−

+⋅−

kgf

gf

gf

bgf

k
bgf

gfbgf

ix

ix

ixiy

 (33)

 49

 CHAPTER 4. DSP IMPLEMENTATION

4.3 Data precision optimization in the proposed MP3 decoder

Jeong et al.[11] reveals that there is no audible noise due to fixed point

implementation when the MAC based MPEG/audio decoder has at lease 21-bit

multiplier and 25-bits adder. Lee et al. [6] implements MPEG audio decoding by

performing double precision arithmetic during all decoding processes in a 16-bit

fixed point DSP.

Dequantization

Stereo processing,
reordering, and antialiasing

(16.0)16

(2.30)32

(Msb.Nsb)16

Shifted subband signal, Si(t)

Transform coefficient,

16 bits 32 bits

Format converter

IMDCT

Shifted transform coeff.,

Matrixing

Quantized transform coeff.,

Windowing

(1.15)16

(2.30)32

Transform coefficient,

(Mglb.Nglb)16

(2.14)16

Frame sample, Y

PCM sample output

Subband
synthesis

()iy gf ,

()ix gf ,

()ix gf ,

()⎣ ⎦ 16, bgf ix

Figure 28. Data precision between each stage in proposed MP3 decoder.

(Msb.Nsb)16, determined from the format converter, is the fixed point

format of each subband. (Mglb.Nglb) 16, equal to one of (Msb.Nsb) 16 that

the subband has the coefficient of highest amplitude in the granule, is

the fixed point format of subband signal.

 50

 CHAPTER 4. DSP IMPLEMENTATION

As shown in Figure 28, the quantized transformed coefficients are decoded

from Huffman decoder and then dequantized. The optimized dequantizer produces

32-bit data with format (2.30)32 and high accuracy as mentioned in Figure 24. Then

the succeeding stage including stereo processing, reordering and antialiasing

performs double precision arithmetic and produces 32-bit data with the same

format (2.30)32. The format converter used in encoding is also applied here in

decoding.

Different from the encoding case, the format converter converts data format in

each subband. By finding the maximum of transformed coefficients in each

subband, the individual right shift amount, i.e. format converting parameter, is

derived from (28), and the fixed point format of each subband, (Msb.Nsb) 16, is

determined. As shown in Figure 29, 32 formats denoted as (M0.N0) 16, (M1.N1)

16, … and (M31.N31) 16 are corresponding to 32 subbands.

Format
converter

576

(M0.N0)16

(2.30)32

18 (M1.N1)16

18 (M2.N2)16

18

(M31.N31)16

18

Zero band
IMDCT

Nonzero band
IMDCT

(Mglb.Nglb)16

18

18

18

18

(Mglb.Nglb)16

(Mglb.Nglb)16

(Mglb.Nglb)16

Shifted subband signalShifted transform coeff.Transform coefficient

IMDCT

Figure 29. Different format between subbands and the modified IMDCT

A modified scheme of IMDCT is also shown in Figure 29. According to the

right shift amount of the subband, the algorithm can divide 32 bands into two

groups, nonzero band and zero band. The subband that one of its 18 coefficients is

not zero is denoted as nonzero band otherwise zero band. The nonzero band

IMDCT performs the 9-point and 3-point Lee’s Fast IDCT. But the zero band

 51

 CHAPTER 4. DSP IMPLEMENTATION

performs the simplified IMDCT that the results are produced from overlapped

block in the previous granule only.

Each IMDCT performed in each subband will produce 16-bit subband signals

with the same format (Mglb.Nglb)16, derived from (34).

()
() 31 to0,min

31 to0,max

glb

glb

=Ν=Ν

=Μ=Μ

sb

sb

sb

sb
 (34)

After IMDCT, the subband signals are synthesized to time-domain PCM

sample through two operations, matrixing and windowing. The matrixing operation

is implemented as the 64-point Lee’s Fast DCT. The 16-bit arithmetic is performed,

and a 16-bit result vector is produced with format (2.14)16. After the windowing

operation, the PCM samples with format (1.15) 16 are produced.

 52

 CHAPTER 5. EXPERIMENTAL RESULTS

CHAPTER 5. EXPERIMENTAL RESULTS

Using the proposed architecture, the MP3 encoder and decoder are implemented

by a 16-bit fixed point DSP, ADSP-2181. Table 5 figures out the superior performance

of the proposed MP3 encoder over other commercial products. All MIPS are estimated

for 44.1KHz sampled and stereophonic audio input and 128Kbps output MP3 bitstream.

Totally we need only about 37.5k bytes program RAM to store both encoder and

decoder program code and 27.2k bytes data RAM at most during encoding or decoding.

The on-chip RAM of ADSP-2181, 48k and 32k bytes RAM for program and data, is

sufficient for the proposed MP3 codec.

The consuming MIPS of each part in proposed MP3 encoder is listed in Table 6

and compared with other works by Oh et al. [4] and Wang et al. [8]. For

signal-dependent blocks such as iteration loops and Huffman encoding, the worst-case

results are listed. Because of the removal of PAM-II, the proposed new rate control

algorithm and non-uniform quantizer, the computational loads of iteration loops in the

proposed encoder is much less than that in other two encoders. However, due to the

applying of dynamic bit allocation proportional to the energy of granules and the

implementation of dynamic data precision, the proposed can also get the similar

performance of other two encoders.

 53

 CHAPTER 5. EXPERIMENTAL RESULTS

Table 5. The implementation result and comparisons with commercial products

Implementation Processor MIPS PM (bytes) DM (bytes)

Algorithm: MP3 Encoder

Proposed ADSP-2181 21.05 16.8k 27.2k

Tensilica [28] Xtensa HiFi Engine 65 90k 46.6k

ADI, MelodyTM
chipset [29]

ADSP-218x 40 < 48k < 32k

CuTe Solutions [31] ADSP-218x 40 32k 16k

SpiritDSP [30] MIPS-based TX49xx 80 Not
mentioned

Not
mentioned

CuTe Solutions [31] TI C54x 36 22k 21.8k

CuTe Solutions [31] TI C55x 72 62k 30.3k

CuTe Solutions [31] TI C64x 33 121k 46.7k

Algorithm: MP3 Decoder

Proposed ADSP-2181 17.67 20.7k 23.6k

CuTe Solutions [31] ADSP-218x 20 33k 17.5k

Nuntius Systems [32] ADSP-2185 36 25k 23k

Nuntius Systems [32] Proprietary SIMD
DSP core

22 24k 22k

Tensilica [33] Xtensa HiFi Engine 18 37k 27.3k

SpiritDSP [30] TI C55x 12.5 20k 12k

CuTe Solutions [31] TI C54x 31 29.7k 14.2k

CuTe Solutions [31] TI C64x 20 82k 33.2k

SpiritDSP [30] ARM7 25 31k 24k

 54

 CHAPTER 5. EXPERIMENTAL RESULTS

Table 6. The comparison of peak consumed MIPS in different MP3 encoder

Peak MIPS
Proposed
encoder

Oh et al.
encoder [4]

Wang et al.
encoder [8]

Subband analysis 7.09 5.64

MDCT 3.99
10.4

3.74

PAM-II Not presented Not presented 8.96

Iteration loops 4.50 (peak) 18.43 (peak) 11.87 (peak)

Huffman encoding
and bitstream
formatting

5.47 (peak) 2.07 (peak) 5.86 (peak)

Total 21.05 30.9 36.07

Table 7 lists the consuming MIPS of each part in proposed MP3 decoder and

comparison with other works by Lee et al. [6] and Bang et al. [10]. Lee et al.

implemented the MP3 decoder on Motorola DSP56654, a dual-core processor with a

32-bit RISC MCU and a 16-bit fixed point DSP. Bang et al. realized it on a self-design

VLSI of 20-bit fixed point DSP core with hardware Huffman decoder.

Table 7. The comparison of peak consumed MIPS in different MP3 decoder

Peak MIPS
Proposed
decoder

Lee et al.
decoder [6]

Bang et al.
decoder [10]

Synchronization and
bitstream unpacking

0.44

Scalefactor and
Huffman decoding

5.95 (peak)

6.2 (peak) NA

Dequantization 2.38 (peak) 5.4 (peak) 4.51 (peak)

IMDCT 4.45 (peak) 2.8 2.85

Subband synthesis 4.45 6.3 5.97

Total 17.67 20.7 13.33

 55

 CHAPTER 5. EXPERIMENTAL RESULTS

To evaluate the audio quality of the proposed MP3 encoder and decoder, the

subjective evaluation is applied via “Double blind triple stimulus with hidden

reference” listening tests [12]. Three different audio samples as summarized in Table 8

are used in this experiment. All samples are stereophonic and sampled with 44.1KHz.

Eleven listeners are involved in the experiments.

Table 8. Test audio samples

Signal characteristic Time Abbreviation

Violin solo in arpeggio [13] 0:37 VL

Melodious quartet [13] 0:28 QT

German female speech [13] 0:21 GF

The reference codec is the traditional MP3 encoder and decoder with ISO method

implemented in floating-point. The “Diffgrade” and “number of misidentification

items” are presented in three tests. Diffgrade is the subjective rating given to coded test

item minus the rating given to the hidden reference.

Table 9. The subjective evaluation results (1), DG: Diffgrade. MI: Number of
misidentification over 11 listeners. The diffgrade scale is partitioned
into five ranges: “imperceptible (>0.00)”, “perceptible but not annoying
(0.00 ~ -1.00)”, “slight annoying (-1.00 ~ -2.00)”, “annoying (-2.00 ~
-3.00)” and “very annoying (-3.00 ~ -4.00)”. The “number of
misidentification” represents the number of subjects that incorrectly
identified test item and hidden reference.

Proposed encoder / ISO decoder

Bit rate VL QT GF

DG -0.04 0.02 0.2
192Kbps

MI 7 7 10

DG -0.2 -0.3 0.04
128Kbps

MI 6 6 9

DG -0.7 -0.55 -0.46
96Kbps

MI 3 4 6

 56

 CHAPTER 5. EXPERIMENTAL RESULTS

Table 9 shows the results of MP3 encoded in proposed encoder and decoded in

ISO decoder. Table 10 shows the results of MP3 encoded in ISO encoder and decoded

in proposed decoder. Table 11 shows the results of MP3 encoded in proposed encoder

and decoded in proposed decoder.

Table 10. The subjective evaluation results (2)

ISO encoder / Proposed decoder

Bit rate VL QT GF

DG -0.02 -0.02 0.01
192Kbps

MI 9 8 9

DG -0.1 -0.04 -0.04
128Kbps

MI 8 8 9

DG -0.1 -0.04 -0.06
96Kbps

MI 9 9 9

Table 11. The subjective evaluation results (3)

Proposed encoder / Proposed decoder

Bit rate VL QT GF

DG -0.25 -0.4 0.0
192Kbps

MI 6 7 7

DG -0.7 -0.5 -0.5
128Kbps

MI 3 3 6

DG -1.02 -0.8 -0.6
96Kbps

MI 2 3 5

 57

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

6.1 System Overview

In this thesis, the DSP implementation of MP3 codec is integrated into a host

system. The host system, AdvanTech PCM-7130 SBC (Single board computer)

[16], based on a 32-bit RISC, Intel® StrongARM SA-1110, supports various kind of

peripherals such as USB, CF, Ethernet and etc. The DSP system is on the

development board of ADSP-2181 DSP, ADI ADSP-2181 EZ-LAB. Figure 30

shows the architecture of the dual core embedded system. Section 6.2 will

introduce the two subsystems and the design of hardware adapter.

The interprocessor communication is done through a set of memory-mapped

mailbox register in the DSP’s internal memory. As shown in Figure 30, the

ADSP-2181 IDMA port is adopted as the communication channel. There are

several advantages of adopting IDMA port:

 The read/ write access of IDMA is completely asynchronous. It

simplifies the interprocessor design since we don’t need to build a

synchronous channel between two different processors.

 The host can access the DSP’s internal memory with an overhead of only

one DSP processor cycle per word while the DSP is operating at full

 58

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

speed. Thus DSP’s internal memory becomes the shared memory

between two processors.

Host system:
Advantech PCM-7130 SBC

GPIO, DI/DO

SA-
1110

IDMA

ADSP-
2181

USB

Ethernet

CF

APEX

DSP system:
ADI ADSP-2181 EZ-LAB

Hardware adapter:
Altera APEX
EP20K1000EFC672-2

* Embedded Linux
* Control of various peripherals
* AP and driver to communicate

with DSP system

* Receive GPIO control and
8-bit data signals

* Generate IDMA control and
16-bit data signals

* Implementation of MP3 codec
and AD1847 control

* A small BIOS program to
communicate with host system

Audio I/O

Figure 30. The dual core embedded system

With the help of firmware protocol, the host can download program at

run-time, instruct DSP to execute program-dependent operations and fill (or take

out) the input (or output) of the operations to (or from) the shared memory area

based on pre-defined rules.

The firmware protocol is designed to best suite for real-time processing of

audio codec and will be described in section 6.3.

6.2 Hardware Platform

6.2.1 Host system – AdvanTech PCM-7130 SBC

The PCM-7130 is an Intel® StrongARM low-power RISC processor single

 59

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

board computer that is designed to serve power/ environment critical

applications. The features are as following [16]:

 Ultra-compact size SBC as small as a 3.5” hard disk drive (145 mm x 102

mm)

 On-board Intel StrongARM SA-1110 CPU operating at 206MHz

 64MB system memory on board (SDRAM)

 32MB flash memory on board

 One 10Base-T Ethernet port

 Two RS-232 ports and one RS-485 port

 One USB host and one USB client ports

 One mini-DIN PS/2 port for keyboard and mouse

 AC’97 audio interface and a buzzer

 One VGA output for CRT monitor

 18-bit TFT active color LCD interface

 One CompactFlash slot

 One PCMCIA slot

 One IrDA interface

 8 GPIO, 8 digital input and 8 digital output interfaces (3.3V)

 4-wire resistive touchscreen interface

 Smart battery interface

 One TV-out supporting both NTSC and PAL signals

Figure 31 is the top view of PCM-7130 SBC, and the peripheral interfaces

are also shown. The expansion bus is directly connected to the system bus of

SA-1110 and is the best choice to connect memory mapped peripherals, like

ADSP-2181 IDMA port. But the B2B connector is proprietary and not available.

Another proper choice is the combination of GPIOs, DIs and DOs. The 8 of 26

GPIOs are not used in the design of SBC and available for connection to other

peripherals. We take the 8 GPIOs as duplex and bidirectional address/ data bus

 60

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

and 1 DI and 5 DOs as the control bus as shown in Figure 33. Since the width

of data bus are not compatible to IDMA port an additional hardware adapter is

also needed.

Figure 31. PCM-7130 SBC [15]

6.2.2 DSP system – ADI ADSP-2181 EZ-LAB

The ADSP-2181 EZ-LAB evaluation board is an example of minimum

implementation of an ADSP-2181 processor [18]. The specifications are as

following [18]:

 ADSP-2181KS-133 DSP operating at an instruction rate of 33M Hz (16M

Hz external clock)

 AD1847 SoundPort® stereo codec including a stereo pair of ∑∆ ADCs

and a stereo pair of ∑∆ DACs.

 One stereo pair of 2V RMS AC coupled line level inputs and one stereo

pair of 20mV RMS AC coupled microphone inputs

 61

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

 One stereo pair of 1V RMS AC coupled line level outputs

 A EPROM socket to accept EPROMs from 256K bits up to 8M bits used

in booting DSP when reset is deasserted

 One RS-232 port

Figure 32. ADI ADSP-2181 EZ-LAB evaluation board

6.2.3 Design of hardware adapter

DSP Port

Altera APEXTM II
EP20K1000EFC672-2

FPGA

SA_nAW

SA_nWrite

SA_nDW

SA_AD[0:7]

DSP_nIS

DSP_IAL

DSP_IACK

DSP_nIWR

DSP_nIRD

DSP_IAD[0:15]
SA_nWait

SA_nDR

SA_nRSTDO[0]

DO[1]

DO[2]

DO[3]

DO[4]

DI[0]
GPIO[6:9, 17,

19:20, 24]

IS

IAL

IACK

IWR

IRD

IAD[0:15]

Host Port

Figure 33. Functional diagram of hardware adapter

 62

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

The hardware adapter here is a bridge to connect host (GPIO and DI/DO ports)

and DSP (IDMA port). Figure 33 shows the functional diagram. In this thesis, a

programmable logic device is used to complete the design, and the Altera APEXTM

II FPGA (EP20K1000EFC672-2) is adopted as the bus master of ADSP-2181

IDMA port.

Table 12 and 13 explains the pin functions of host and DSP port.

Table 12. Host port pins

Pin Name(s)
Input/
Output Function

SA_nRST I Reset signal of FPGA

SA_nAW I Address write strobe

SA_nDW I Data write strobe

SA_nDR I Data read strobe

SA_nWrite I Tri-state enable signal of SA_AD

SA_nWait O Acknowledge signal

SA_AD[0:7] I/O Bidirectional address/ data bus

Table 13. ADSP-2181 IDMA port pins

Pin Name(s)
Input/
Output Function

DSP_nIS O Port select signal

DSP_IAL O Address latch enable

DSP_IACK I Access ready acknowledge

DSP_nIWR O Data write strobe

DSP_nIRD O Data read strobe

DSP_IAD[0:15] I/O Bidirectional address/ data bus

 63

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

Host starts IDMA transfer.

Host checks IACK control line to
see if the DSP is “Busy＂

Host uses IS and IAL control lines
to latch the DMA starting address
(IDMAA) and PM/DM selection into
the DSP‘s IDMA Control Register.

Host uses IS and IRD (or IWR) to
read (or write) DSP internal
memory (PM or DM).

Host ends IDMA transfer

Done ?

Host checks IACK line to see if the
DSP has completed the previous
IDMA operation

More ?

Continue

Figure 34. General IDMA transfer protocol [17]

Figure 34 shows the general IDMA transfer protocol. Bus master generates

three types of signaling to complete the IDMA write (or read) operations. As shown

as Figure 35, the signaling are as following:

 Set Address: the FPGA receives two assertions of SA_nAW and latches

low byte and high byte of starting address internally. In the second

assertion, the FPGA will generate the access timing, putting the starting

address on the DSP_IAD port and asserting DSP_nIS and DSP_IAL that

the DSP will latch the data on the DSP_IAD port into the IDMA, DMA

starting address register.

 Write Memory: the FPGA receives two assertions of SA_nDW and

latches low byte and high byte of writing data internally. In the second

assertion, the FPGA will generate the access timing and handshake with

 64

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

DSP, putting the data on the DSP_IAD port and asserting DSP_nIS and

DSP_nIWR that the DSP will write the data on the DSP_IAD port into

the internal memory located by the IDMAA. The DSP will automatically

increment the value in IDMAA after each memory access, writing or

reading, that the host do not need to update the IDMAA again in

memory access of consecutive location.

 Read Memory: the FPGA receives two assertions of SA_nDR and will

generate the access timing, asserting DSP_nIS and DSP_nIRD and then

latching the data on the DSP_IAD port internally after the deassertion of

DSP_IACK, in the first assertion of SA_nDR. Host then deasserts

SA_nDR twice to latch low byte and high byte of data individually.

SA_nAW

SA_nWrite

SA_nDW

SA_AD[0:7]

DSP_nIS

DSP_IAL

DSP_IACK

DSP_nIWR

DSP_nIRD

DSP_IAD[0:15]

SA_nWait

SET ADDRESS WRITE MEMORY READ MEMORY

SA_nDR

01 02

0201

03 04

0403 0605

05 06

Figure 35. Port access timing

 65

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

6.3 Firmware Design

Figure 36 shows the hierarchical view of software, firmware and hardware

layer in this system. The implementation of MP3 programs, software part in DSP

system, has been described in Chapter 4. The hardware functionality,

communication ports, and the self-design adapter are also introduced in section 6.2.

In this thesis, the host system has an interactive GUI on the external display

device and can be controlled through touchpanel by human user. So the computing

power of the host system will be dominated in the handling of GUI. We design the

GUI by writing QT application on Linux. QT [27], product of Trolltech, is a

complete C++ application development framework and includes a class library and

tools for cross-platform development and internalization. Beside the GUI handling,

we also integrate the host programs used in communication with DSP system into

QT application. The host programs talk to DSP in some firmware protocol

described later in section 6.3.2. In the DSP side, a self-design firmware called DSP

BIOS is the housekeeper of DSP used to implement the protocol and manage the

resource.

QT AP

Device driver

GPIO, DI/DO
timing

IDMA transfer
protocol

IDMA timing

BIOS

MP3 programs

Adapter

Software

Firmware

Hardware

Host system:
StrongARM MPU

DSP system:
ADSP-2181 DSP

Figure 36. The hierarchical view of software, firmware and hardware layer

6.3.1 Linux Character Device Driver

In the memory management of Linux, the kernel and the user process can

 66

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

only access its own memory space. And for safety issue, the user process can’t

directly access neither memory mapped nor I/O mapped hardware devices.

The device driver provides a standard way for user process to access the

hardware devices without knowing how they work. All version of UNIX have

an abstract way to make devices logically work as well as regular files.

Therefore, the same calls (read(), write() and etc.) can be used for devices and

files [19].There are two main types of devices under all UNIX systems,

character and block devices. Character devices are those for which no buffering

is performed, and block devices are those which are accessed through a cache.

In this thesis, a character device driver is designed to generate access

timing of the host side as shown in Figure 35. Three basic operations (set

address, write memory and read memory) are performed through calls of read()

and write() from user process. The essential parts of writing driver are

registering file operation structure (actually the entry points of routines) as

below and implementing the routines that user process will invoke. The device

driver is also part of Linux kernel so the kernel needs to be re-compiled after

adding a new device driver.

/* File operation structure used in Linux kernel */
struct file_operations mw_fops = {
 owner: THIS_MODULE,
 read: read_mw,
 write: write_mw,
 open: open_mw,
 release: release_mw,
};

 67

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

The C code below represents the device handling in user programs.

 Open the device

/* Open device */
int OpenDevice(){
 int fd;
 fd = open(DEVICE_NAMES, O_RDWR);
 return(fd);
}

 Operation of “Set Address”

/* Set address */
void SetAddress(int fd, unsigned short address){
 unsigned short buf[2];
 buf[0] = address;
 buf[1] = 1; // OP code of write address
 write(fd, buf, 4);
}

 Operation of “Write Memory”

/* Write memory */
void WriteMemory(int fd, unsigned short data){
 unsigned short buf[2];
 buf[0] = data;
 buf[1] = 0; // OP code of write data
 write(fd, buf, 4);
}

 Operation of “Read Memory”

/* Read memory */
unsigned short ReadMemory(int fd){
 unsigned short buf;
 read(fd, &buf, 2);
 return(buf);
}

 Close the device

/* Close device */
void CloseDevice(int fd){
 close(fd);
}

 68

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

6.3.2 DSP BIOS

In this thesis, the DSP BIOS is burned into flash EPROM, and the DSP

will automatically load it after hardware reset is deasserted. The BIOS program

is divided into two part, booting and housekeeping. The booting code is a series

of instructions to initial the DSP to ready-to-run state and will run only once

after BIOS is re-loaded.

/* Initialization */
ap_init(...)

/* Finalization */
ap_close(...)

/* Execution */
ap_go(...)

Application

BIOS

Application Interface

M
em

ory access
M

em
ory access

Application-
specific command

Processor IDLE
Mail-box
register

I/O buffer

Application-
specific data

Shared Memory

Application-specific code

Booting
code

Linux

M
em

ory access

DSP SYSTEMHOST SYSTEM

Figure 37. The firmware block diagram

After booting, the housekeeping code starts to run. The housekeeper

function is implemented as a never-ending, while(1), loop. The host sends

command to mail-box, and the housekeeper receives it. After the commands is

completed, the housekeeper will respond the status and then continue to receive

next commands.

There are two types of commands, IDLE and application-specific. The

IDLE command instructs the DSP entering the power-saving mode. That keeps

the processor fully functional, but operating at the slower clock rate. The host

will send IDLE command for two purpose. One is when no task is needed to be

 69

 CHAPTER 6. DUAL CORE EMBEDDED SYSTEM

performed on DSP. Another is when the host want to load a new application

program the IDLE command let the DSP lock in the housekeeping loop that it

guarantees the safety program loading into application section.

The application-specific command instructs the housekeeper to call one of

the application-specific routines. The host needs to write ap_id (application

identifier) in mail-box and register the entry point of the application-specific

routines after the program is successfully loading into application section. At

least three application-specific routines, ap_init(), ap_go(), and ap_close() are

necessary to perform tasks.

The application developer can use ap_init() routine to run the initialization,

like clearing the application-specific data, initializing the stereo codec (AD1847)

and etc. In contrast, ap_close() routine is used to finalize the task if necessary.

The ap_go() routine suits for application of processing frame-by-frame,

like audio encoding or decoding. If the host needs faster responding time the

application developer may need to implement the algorithm in pipeline way.

 70

 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In this thesis, we give:

 A brief introduction to MPEG/Audio Layer III coding algorithm,

 A proposed fast algorithm of MP3 encoding including the removal of

PAM-II, the simplification of PAM-II related process, a fast quantization

method by applying polynomial approximation and a new fast bit

allocation algorithm,

 A proposed fast algorithm of MP3 decoding including a fast

dequantization method by applying polynomial approximation and the

Newton’s method for root-finding and applying fast DCT/IDCT

algorithm in IMDCT and subband synthesis process.

and also present:

 The performance analysis and subjective test of sound quality of the

proposed algorithm,

 A Real-time implementation of proposed MP3 encoding and decoding

algorithm in a 16-bit fixed point DSP, ADSP-2181,

 Applying dynamic fixed point format to optimize the data precision of

each process in the target DSP of 16-bit word-length only,

 71

 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

 Comparison of DSP MIPS and memory usage with other

implementation.

The 16-bit fixed point implementation with the proposed optimization

algorithm only needs 21.05 DSP MIPS for MP3 encoding and 17.67 for decoding.

Compared to other pure software DSP implementation, both of the proposed

encoding and decoding algorithm are the fastest. The memory usage (16.8KB PM/

27.2KB DM for encoder and 20.7KB PM/ 23.6KB DM for decoder) can also meet

the requirement of the target DSP, 48KB PM/ 32KB DM.

And in Chapter 7, the DSP implementation of an MP3 codec is also applied in

an host system based on a 32-bit RISC processor, Intel® StrongARM SA-1110. We

also present a complete design of the dual core embedded system including:

 A hardware adapter realized by VHDL on an Altera APEXTM II FPGA

for translating the bus timing of of two subsystems, host and DSP,

 A Linux character device driver generating host bus timing,

 A firmware protocol designed for interprocessor communication, the

corresponding implementation on DSP, also called DSP BIOS, and host

software which is integrated to a QT GUI application.

7.2 Future Works

The population of MP3 brings not only the low cost and convenience digital

audio to the world but also the rapid growth of advanced audio compression

knowledge in recent ten years. Many other audio compression formats are

developed and realized like Dolby AC-3 [20], MPEG-2/4 AAC [21], Microsoft®

WMA [22], Coding Technologies mp3PRO and aacPlus [23], and Ogg Vorbis [24].

Compared to MP3, they afford better audio quality and lower bit rate. But their

computational complexities are also higher. We may apply the concepts of the

proposed algorithm in this thesis on these modern audio compression algorithm and

 72

 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

decrease the computational complexity that the algorithm can be realized on low

cost fixed point DSP. Applying to the dual core embedded system in this thesis, we

can also develop multi-format codec by loading different implementation file at

run-time.

The industrial trend of SOC (System-On-a-Chip) recently brings the system

with the smaller board size, the lower manufacturing cost, the lower power

consumption and the best performance. The dual core design in this thesis can be

realized in SOC way, too. We may integrate MPU IP and DSP IP with some

peripheral controller, memory and associated hardware accelerators in a chip. Thus

the DSP unit becomes a coprocessor of MPU used to execute numeric processing

with high complexity.

 73

 REFERENCE

REFERENCE

[1]. E. Zwicker and H. Fastl, “Psychoacoustics: facts and models,” Springer-Verlag,

Berlin, Heidelberg, Spring, 1999.

[2]. D. Pan, “A tutorial on MPEG/audio compression,” IEEE Multimedia, vol.2,

no.2, pp.60-74, 1995.

[3]. Peter Noll, “MPEG digital audio processing,” IEEE Signal Processing

Magazine, pp.59-81, September 1997.

[4]. H. Oh, J. Kim, C. Song, Y. Park and D. Youn, “Low power MPEG/audio

encoders using simplified psychoacoustics model and fast bit allocation,” IEEE

Transaction on Consumer Electronics, vol.47, no.3, August 2001.

[5]. ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-3, “Coding

of moving pictures and associated audio for digital storage media at up to about

1.5M bit/s, part 3: audio,” 1993.

[6]. Keun-Sup Lee, Hyen-O Oh, Young-Cheol Park, and Dae Hee Youn, “High

quality MPEG-audio Layer III algorithm for a 16-bit DSP,” in Proceeding of

IEEE International Symposiumon Circuit and Systems, vol. II, pp.205-208,

Sydney, Australia, May 6-9, 2001.

[7]. Byeong Gi Lee, “A new algorithm to compute the discrete cosine transform,”

IEEE Trans. On Acoustic, Speech and Signal Processing, vol. ASSP-32, no.6,

pp.1243-1245, 1984.

[8]. Xin Wang, Weibei Dou and Zhaorong Hou, “An improved audio encoding

architecture based on 16-Bit fixed-point DSP,” IEEE International Conference

 74

 REFERENCE

of Communications, Circuits and Systems 2002 (ICCCAS’02), vol.2, pp.918 -

921, June 29 - July 1, 2002.

[9]. Analog Devices: OEM Solutions: Market Solutions: MPEG-1 Layer III.

[Online]. Available: http://www.analog.com/Analog_Root/static/

marketSolutions/oem/audio/mpeg1_3decoder.html

[10]. Kyoung Ho Bang, Nam Hun Jeong, Joon Seok Lim, Young Cheol Park, and

Dae He Youn, “Design and VLSI implementation of a digital audio-specific

DSP core for MP3/ AAC,” in Proceeding of International Conference on

Consumer Electronics, Los Angles, pp. 790-795, June 18-20, 2002.

[11]. Min-seep Jeong, Seehyun Kim, Jongseo Sohn, and Ji-Yang Kang, “Finite

Wordlength Effects Evaluation of the MPEG-2 Audio Decoder,” International

Conference on Signal Processing Applications & Technology, pp.351-355,

January. 1996.

[12]. ITU-R Rec. BS.1116, “Methods for the subjective assessment of small

impairment in audio systems including multichannel sound systems,” October,

1997.

[13]. SQAM - Sound Quality Assessment Material: EBU SQAM disc tracks. [Online].

Available: http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/

[14]. Sourceforge project: LAME Aint an MP3 Encoder (LAME). [Online]. Available:

http://sourceforge.net/projects/lame/

[15]. AdvanTech, Inc., “AdvanTech PCM-7130 datasheet.”

[16]. AdvanTech, Inc., “AdvanTech PCM-7130 user manual.”

[17]. Analog Devices, Inc., “ADSP-2100 family user’s manual.”

 75

http://www.analog.com/Analog_Root/static/�marketSolutions/oem/audio/mpeg1_3decoder.html
http://www.analog.com/Analog_Root/static/�marketSolutions/oem/audio/mpeg1_3decoder.html
http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/
http://sourceforge.net/projects/lame/

 REFERENCE

[18]. Analog Devices, Inc., “ADSP-2100 family EZ-KIT Lite reference manual.”

[19]. Linux Kernel Hackers' Guide: Device Drivers. [Online]. Available:

http://en.tldp.org/LDP/khg/HyperNews/get/devices/devices.html

[20]. C. Todd, et. Al., “AC-3: Flexible Perceptual Coding for Audio Transmission and

Storage,” AES 96th Convention, Preprint 3796, Audio Engineering Society,

New York, N.Y., February 1994.

[21]. ISO/IEC 13818-7, “Information technology – generic coding of moving

pictures and associated audio Information, part 7: Advanced Audio Coding,”

1997.

[22]. Microsoft: Windows Media Player Multimedia File Format. [Online]. Available:

http://support.microsoft.com/default.aspx?scid=kb;zh-tw;316992

[23]. Coding Technologies: products and Technologies. [Online]. Available:

http://www.codingtechnologies.com/products/index.htm

[24]. Vorbis.com – Open, Free Audio. [Online] . Available: http://www.vorbis.com/

[25]. Fact Index: Introduction to psychoacoustics . [Online]. Available:

http://www.fact-index.com/p/ps/psychoacoustics.html

[26]. Hung-Chih Lai, “Real-time implementation of MPEG-1 Layer 3 audio decoder

on a DSP chip,” Master thesis submitted to department of Electrical and

Control Engineering, National Chiao Tung University, June 2001.

[27]. TrollTech Inc.: product: QT overview. [Online]. Available:

http://www.trolltech.com/products/qt/index.html

[28]. Tensilica’s MP3 Encoder Application Package. [Online]. Available:

 76

http://en.tldp.org/LDP/khg/HyperNews/get/devices/devices.html
http://support.microsoft.com/default.aspx?scid=kb;zh-tw;316992
http://www.codingtechnologies.com/products/index.htm
http://www.vorbis.com/
http://www.fact-index.com/p/ps/psychoacoustics.html
http://www.trolltech.com/products/qt/index.html

 REFERENCE

http://www.tensilica.com/html/mp3_encoder.html

[29]. Futurtec News: Analog Devices Releases New MP3 Chip. [Online]. Available:

http://www.futurlec.com/News/Analog/MP3.html

[30]. Spirit Corp.: Products: Audio/Video Processing Overview. [Online]. Available:

http://www.spiritdsp.com/audio_processing.html

[31]. CuTe Solutions Inc., Audio solutions on Analog Device Inc. ADSP-218x DSP

Devices and Texas Instruments Inc. TI C54x, C55x and C64x Processors.

[Online]. Available: http://www.cutesolinc.com

[32]. Nuntius Systems Inc., Multimedia – Streaming audio CODECs. [Online].

Available: http://www.nuntius.com/solutions31.html#mp3

[33]. Tensilica’s MP3 Decoder Application Package. [Online]. Available:

http://www.tensilica.com/html/mp3_decoder.html

 77

http://www.tensilica.com/html/mp3_encoder.html
http://www.futurlec.com/News/Analog/MP3.html
http://www.spiritdsp.com/audio_processing.html
http://www.cutesolinc.com/
http://www.tensilica.com/html/mp3_decoder.html

 APPENDIX

APPENDIX

系統實照

ADSP-2181 發展板，ADI ADSP-2181 EZ-LAB

 78

 APPENDIX

匯流排轉換電路板，Altera APEXTM II FPGA (EP20K1000EFC672-2)

Intel® StrongARM SA-1110 發展板，Advantech PCM-7130 SBC

 79

	摘要
	Abtract
	Acknowledgements
	Awards
	Contents
	List of Figures
	List of Tables
	Introduction
	MPEG/Audio Compression
	Motivations
	The Overview of The Proposed Method and Contributions
	The Experimental Results and Potential Applications
	Content and Organization

	Encoder Optimization
	Encoding Overview and Complexity Analysis
	Psychoacoustic model II
	Time to frequency mapping transform
	Iteration loop
	Bitstream formatting

	Simplified PAM-II
	Distortion control loop analysis
	Removal of window switching

	Fast rate control loop
	Non-uniform quantization
	Dynamic bit allocation proportional to the energy of granule
	Precise initialization of the quantization parameter
	Fast search of the optimal quantizer parameter

	Decoder Optimization
	Decoding Overview and Complexity Analysis
	Dequantization
	IMDCT and Subband Synthesis

	DSP Implementation
	Target DSP Architecture
	Data precision optimization in the proposed MP3 encoder
	Data precision optimization in the proposed MP3 decoder

	Experimental Results
	Dual Core Embedded System
	System Overview
	Hardware Platform
	Host system – AdvanTech PCM-7130 SBC
	DSP system – ADI ADSP-2181 EZ-LAB
	Design of hardware adapter

	Firmware Design
	Linux Character Device Driver
	DSP BIOS

	Conclusions and Future Works
	Conclusions
	Future Works

	Reference
	Appendix

