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空載光達生產數值高程模型及其精度評估 

 

研 究 生：彭淼祥    指導教授：史天元 博士

 國 立 交 通 大 學 土 木 工 程 學 系  

 

摘 要 

數值地形模型(Digital Terrain Model, DTM)在地理資訊系統應用與分析上是

重要的數據，應用空載雷射掃描技術(或稱為空載光達，Airborne Light Detection 

and Ranging, LIDAR)測量地形的數值高程數據，其相關技術發展迅速，已經達到

應用階段。空載雷射掃描儀量測地表的反射回訊，獲得三維座標的量測值，量測

點包括了地形面以及非地面的量測點 (如建物、樹木，車輛)，為了生產DTM，

地物的雷射量測點需進一步過濾或分類出來，留下地形面的雷射量測點，進而組

成DTM。關於過濾非地面點的處理，此課題吸引了多方研究的投入，是重要的

研究方向。本研究主要目的，發展出應用多重方式的過濾處理程序，並探討數據

的精度評估。 

關於濾除空載光達數據中非地面量測點之研究，目前成果指出，處理崎嶇

的山區地形或高密度植被覆蓋的地區，仍是挑戰性的課題，諸多演算法為了過濾

山區的植被量測點，將地形特徵如地形山脊亦同時被過度平滑濾除，此問題的主

要原因是地物點與地面構成的坡度幾何和背景的陡坡地形坡度幾何，二者的可區

分特性低，本研究提出自適性的過濾演算法，有效的移除背景陡坡地形所干擾的

效應，處理特色在於過濾處理並且能保留地形的特徵。測試區域分別試驗於都市

區域，複雜地類覆蓋與建物的濾除，以及山區植被的濾除，本研究比較不同的過

濾方法，成果顯示本文的方法與商業軟體所使用的自動製程比較，在山區測試數
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據組，本文過濾成果與檢核點比較，誤差絕對值的平均22.2 cm，優於自動化程

序25.4 cm，本研究獲得良好的過濾成果。 

本研究以山區測試區域(坡度平均26.6°)評估比較兩組光達數據組的特性，

應用地面檢核點(906個檢核數據)分析數據精度，本文分析地形特徵包括地形坡

度，坡向與土地覆蓋類型等因素對於光達高程精度的影響量。文中提出利用光達

數據量化描述土地覆蓋類型的方法，包括植被體積量的估計，局部性地表粗糙度

量測，到達地面的雷射測點平均相鄰點距離，以及植被覆蓋地平角度等評估指標

，用以量化區別出不同的土地覆蓋類型。應用這些指標推導不同植被型態與光達

高程數據的精度關係。分析成果顯示，光達數據高程精度與這幾個植被型態因子

當中的「植被覆蓋地平角度」，「植被量的估計值」，「局部性地表粗糙度量測

」，「到達地面的雷射測點平均相鄰點距離」等因子有相關聯性，高程精度隨者

這四個因子的變化有統計顯著差異性。「植被覆蓋地平角度因子的三角正切值」

與「到達地面的雷射測點平均相鄰點距離因子」兩個因子乘積，與高程精度具有

高度的線性相關性(迴歸判定係數r2 > 0.9)，高程精度隨不同植被覆蓋型態而變化

。關於地形因子與光達數據高程精度的關係，高程精度隨地形坡度角的變化有統

計顯著差異性。「坡度角的三角正切值」與「到達地面的雷射測點平均相鄰點距

離」兩個因子乘積，與高程精度亦具有高度的線性相關性(迴歸判定係數r2 = 0.9)

，乘積的數值越大(地形越陡)，高程誤差越大。另外，有一組數據具有附加的交

錯飛行掃描數據，以本文測試數據而言，交錯飛行，能降低坡向因子對於高程精

度的影響量。 
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ABSTRACT 

 

Airborne light detection and ranging (LIDAR) technology has become a leading 

method for producing digital terrain models (DTMs) that are important to many 

GIS-related analyses and applications.  In generating a digital terrain model, 

removing non-terrain measurements from LIDAR datasets has proven to be an 

important task.  In this dissertation, a series of filters are developed to remove 

non-terrain LIDAR measurements.     

It is difficult to accurately extract the terrain surface in areas of rugged relief or 

discontinuous topography.  This research applies adaptive techniques to remove the 

effects of background relief.  The terrain data are preserved, while non-terrain points 

are removed.  The proposed method can discriminate effectively between terrain and 

non-terrain measurements, and has been tested for urban and mountainous areas.  

The filtered results from the proposed method are compared to traditional automatic 

techniques.  The results indicate that the proposed method produces a better digital 

terrain model.    
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An accuracy assessment of two LIDAR-derived elevation datasets was 

conducted in areas of rugged terrain (average slope 26.6°).  Data from 906 ground 

checkpoints in various land-cover types were collected in situ as reference points.  

Analysis of the accuracy of LIDAR-derived elevation as a function of several factors 

including terrain slope, terrain aspect, and land-cover types were conducted.  This 

paper attempts to characterize vegetation information derived from LIDAR data based 

on variables such as canopy volume, local roughness of point clouds, point spacing of 

LIDAR ground returns, and vegetation angle.  This information was used to evaluate 

the accuracy of elevation as a function of vegetation type.  The experimental results 

revealed that the accuracy of elevation was considerably correlated with five factors: 

terrain slope, vegetation angle, canopy volume, local roughness of point clouds, and 

point spacing of LIDAR ground returns.  The results show a linear relationship 

between the elevation accuracy and the combination of vegetation angle and the point 

spacing of ground returns (r2 > 0.9).  The combination of vegetation angle and point 

spacing of ground returns explains a significant amount of the variability in elevation 

accuracy.  Elevation accuracy varied with different vegetation types.  The elevation 

accuracy was also linearly correlated with the product of the point spacing of ground 

returns and the tangent of the slope (r2 = 0.9).  A greater product value implies a 

greater elevation error.  In addition, with regard to terrain aspect, one dense dataset 

with extra cross-flight data revealed a lesser impact of aspect on elevation accuracy. 
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CHAPTER ONE: INTRODUCTION 

 

1.1  Background 

Airborne LIght Detection And Ranging (LIDAR) is an active sensor that 

captures topographic data rapidly, economically and accurately.  Consisting of a 

laser distance measurement, a scanning mirror, and an integrated GPS/INS system, 

airborne LIDAR has recently become a leading method for producing Digital Terrain 

Models (DTMs), (Ackermanm, 1999; Huising and Gomes Pereira, 1998; Kraus and 

Pfeifer, 1998; Baltsavias, 1999a; Wehr and Lohr, 1999; Maas, 2002).   

Commercial LIDAR system designs have been based on the work done by 

NASA.  Generally, there are two types of LIDAR systems: bathymetric systems 

work over water and topographic systems work over land.  The wavelength for 

topographic LIDAR sensor is between 1.053 and 1.064 μm (the infrared portion of 

the spectrum), while airborne bathymetric LIDAR sensors use the blue/green portion 

of the spectrum.  The pulse rates have increased with development of technology.  

The pulse rate, (measured in kilohertz, kHz) is the number of bursts of light per 

second; a 2 kHz system generates 2,000 pulses of laser energy in one second.  Early 

systems offered pulse rates on 2 kHz to 7 kHz, while modern systems come with 

pulse rates of 25 kHz to 83 kHz.  Higher pulse rates mean increased resolution.  

The spatial resolution varies depending on the pulse rate, flying altitude, and aircraft 

speed (Baltsavias, 1999b).  Two distinct techniques of LIDAR have been developed: 

small footprint, time-of-flight laser altimetry and large footprint, waveform-digitizing 

techniques that analyze the full return waveform to capture a complete elevation 

profile within the target footprint (Flood, 2001).  A typical laser beam used in a 
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small footprint LIDAR sensor has divergences of 0.2-to 0.33-mrad. 

Airborne LIDAR can operate at night and is less affected by weather conditions 

than aerial photography, making it suitable for emergent mapping.  The US Federal 

Emergency and Management Agency (FEMA) utilized airborne LIDAR to create 

digital terrain models for hydraulic modeling of floodplains, digital terrain maps, and 

other National Flood Insurance Program products for flood mitigation applications.   

Most LIDAR sensors collect both range and intensity of the returned signal and 

information of multiple returns for each pulse.  The multiple returns may be useful to 

categorize vegetation.  Pfeifer et al. (2001) observed that 85% of the first and last 

pulses showed no difference in a sample case of building areas, whereas for the 

wooded areas only 20% of the two returns were identical.  Some overviews of 

airborne LIDAR technology can be found (Maune, 2001; Baltsavias, 1999b; Hu, 2003; 

Wehr and Lohr, 1999). 

The Netherlands is the first country to utilize airborne LIDAR to establish a 

nationwide digital elevation model with a density of 1 point per 16 m2 (Huising and 

Gomes Pereira, 1998; Crombaghs et al., 2000).  In addition to terrain mapping, 

airborne LIDAR can also be applied in the reconstruction of 3-D building models 

(Haala et al., 1998, 1999; Maas and Vosselman, 1999; Brenner, 2000; Vosselman and 

Dijkman, 2001).  Hyyppä et al. (2001) reported on the use of small-footprint LIDAR 

in Finland to detect characteristics of individual trees such as their height, location, 

and crown dimensions.  In the sparse boreal forest, where more than 30% of pulses 

reach the ground, a segmentation-based method retrieved stem volume estimates of 

the mean height, basal area, and stem volume with standard errors of 9.9%, 10.2%, 

and 10.5%, respectively.  A few papers have used small-footprint LIDAR to infer 

vegetation characteristics and have achieved prediction of tree height and stem 

volume (Means et al., 2000; Næsset, 1997a; Næsset, 1997b). 
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Even though this technology is accepted as a tool for terrain mapping, the 

processing of LIDAR data is still in the situation of development.  The two major 

problems of data processing are the elimination of systematic errors and the 

processing to remove non-terrain points from LIDAR datasets (Huising and Gomes 

Pereira, 1998).  Determining whether a returned pulse is a terrain point or non-terrain 

cover is still an intense research topic.  Most algorithms have difficulty accurately 

extracting the terrain surface, especially in areas of dense wooded cover, rugged relief 

or discontinuous topography.   

 

1.2  Statement of the Problem 

The most common use of LIDAR data is to generate DTMs, which are 

important for many GIS-related analysis and applications.  To generate a DTM, the 

terrain points need to be identified, and the non-terrain points (trees, buildings, and 

vehicles, etc.) removed from the LIDAR measurements.  Many algorithms have been 

developed to remove non-terrain points and generate DTMs (Kraus and Pfeifer, 1998; 

Pfeifer et al., 1999; Vosselman, 2000; Axelsson, 2000; Elmqvist, 2001; Briese et al., 

2002; Brovelli et al., 2002; Wack and Wimmer, 2002; Hu, 2003; Zhang et al., 2003; 

Sithole and Vosselman, 2004).  However, the filtering processing of LIDAR data is 

still in a phase of development.   

There are two basic errors in filtering LIDAR measurements.  A Type I error is 

one that removes bare-Earth points mistakenly; Type II errors involve accepting 

non-terrain points as terrain measurements.  While filtering processing, a trade-off is 

involved between making Type I and Type II errors.  Variety of terrain type and 

land-cover type may influence the performance of filtering algorithms (Sithole, 2001; 

Sithole and Vosselman, 2003).  Determining filtering parameters in terms of terrain 
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information is somewhat subjective.  The choice of proper parameters may be 

problematic.  It is difficult to detect all non-terrain objects of various sizes using a 

fixed parameter.   

The focus of this research is on developing and implementing algorithms for 

automatic extraction of topographic surface.  The robustness of performance and 

feature preservation of filtering result are emphasized.    

Though a general understanding of the accuracy of LIDAR is known, too few 

empirical studies exist for assessing the accuracy of DTMs derived from LIDAR data.  

Gomes Pereira and Janssen (1999) used a low-flight-altitude (240 m) dataset to 

evaluate LIDAR-derived Digital Elevation Models (DEMs) and found that 

root-mean-square error (RMSE) varied from 8 to 15 cm in flat regions, and from 25 to 

35 cm in sloped terrain.  Typical elevation accuracies of LIDAR-derived DEMs have 

15 cm RMSE over non-forested flat surfaces (Hodgson and Bresnahan, 2004).  

Hodgson et al. (2003) showed that land-cover types and terrain slope substantially 

affected the elevation accuracy determined from leaf-on LIDAR data in North 

Carolina.  Accordingly, evaluating LIDAR accuracy based on both land-cover types 

and terrain characteristics is necessary.  

The vegetation types for collecting reference points are commonly divided into 

basic land-cover categories such as tall weeds, brush/low trees, and forests.  Raber et 

al. (2002) developed an adaptive LIDAR vegetation point removal process.  They 

used an algorithm adaptively adjusting the parameters based on a vegetation map.   

There is a need for research efforts in quantifying the accuracy of LIDAR data 

collected under various collection parameters, filtering processes, and geography 

conditions.  This study evaluated a method to identify vegetation characteristics 

based on LIDAR data.  The derived vegetation information was factored into the 

evaluation of the impact of vegetation types on the accuracy of LIDAR-derived 
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elevation.  This research considers some quantitative descriptors such as vegetation 

angle, canopy volumes and LIDAR-derived tree height, to characterize the 

relationship between elevation accuracy and the types of vegetation.  One distinctive 

aspect of this study is its use of LIDAR data points to derive information about 

vegetation types in terms of descriptors. 

 

1.3  Contributions 

 

The following novel contributions were developed to achieve the research 

objectives: 

*  This research developed a multiple-filtering framework to remove non-terrain 

LIDAR measurements to generate DTMs.  An adaptive directional 

steepest-descent filter is proposed.  The proposed algorithm is suited to 

efficiently separate terrain and non-terrain LIDAR data in both urban and 

mountain areas.  This work also proposed an adaptive directional 

elevation-difference filter to remove large objects such as very large buildings.  

The selections of the filtering parameters are very important.  The proposed 

multiple-filtering framework is highly automatic to adaptively adjust the 

parameters.   

*  The research proposed to characterize vegetation information derived from 

LIDAR data base on variables such as canopy volume, local roughness of point 

clouds, point spacing of LIDAR ground returns, and vegetation angle.  This 

information was used to evaluate the accuracy of elevation as a function of 

vegetation type.  Two sets of LIDAR-derived elevation were used to evaluate the 

impact of terrain slope, terrain aspect, and land-cover type on elevation accuracy.  
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The framework of accuracy assessment is also presented.     

 

 

1.4  Thesis Outline 

In Chapter 2, a literature review on related filtering processes and quality 

assessment is reported.  Chapter 3 describes the development of a multiple-filtering 

procedure for DTM generation.  In Chapter 4, the error factors of the DTM are 

discussed.  Conclusions are presented in Chapter 5, followed by suggestions for 

future research.   
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1  Algorithms for DTM Generation 

LIDAR acquires a three-dimensional cloud of points with irregular sampling.  

The measurements hit on objects such as buildings, vehicles, vegetation, and bald 

terrain.  To generate a DTM, the core task involves the separation of non-terrain 

points from LIDAR datasets.  This task is referred to as filtering, classification, 

non-ground measurements removal.  The filtering task dominates the topic of DTM 

generation.  A number of algorithms have been reported in the literature, but there 

are a number of conditions that make filtering a very difficult problem.  DTM 

generation from LIDAR data has proven to be a challenging task.    

Kraus and Pfeifer (1998, 2001) utilized linear least squares interpolation 

iteratively to remove tree measurements and generate DTMs in forest areas.  The 

least squares interpolation is based mainly on calculating the residuals, i.e., the 

distance from the surface to the measurement points.  It is assumed that terrain points 

are likely to have negative residuals, whereas non-terrain points are more likely to 

have positive residuals.  These residuals are used to compute weights.  Points with 

large negative residuals have maximal weights and they attract the surface.  Similar 

methods have been adopted by Lohmann et al. (2000).  Pfeifer et al. (2001) extended 

this method by a hierarchical strategy to assemble data from coarse to fine.  Lee and 

Younan (2003) used a modified linear prediction technique, followed by adaptive 

processing and refinement.  However, this method fails to model terrain with steep 

slopes and large variability.  In addition, extreme low points can be easily 

misclassified as terrain points as a result of the negative errors.   
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Kilian et al. (1996) used morphological filters to eliminate non-terrain points.  

Typically these filters need to predefine a search window size.  These filters may 

have problems with dense forest canopy or large buildings.  If a small window size is 

used, large-sized buildings cannot be removed.  On the other hand, larger window 

size causes the filter to over-remove terrain points or chop off hills.  Kilian et al. 

(1996) suggested using a series of windows to progressively filter the terrain.    

Petzold et al. (1999) proposed a filtering algorithm.  A rough terrain model is 

calculated by the lowest points found in a moving window of a rather large size.  All 

points with a height difference exceeding a given threshold are filtered out, and a 

more precise DTM is calculated.  This step is repeated several times by reducing the 

window size.  The final window size and the final threshold have great influence on 

the results: small window size leads to points on large buildings remaining, while a 

high threshold in the final step leads to non-terrain points being classified as terrain 

points.  Therefore, the parameters depend on the terrain variation and have to be 

adjusted for flat, hilly and mountainous regions.   

The concept of resizing window size was adopted by Zhang et al. (2003, 2005); 

they proposed a progressive morphological filter.  By gradually increasing the 

window size of the filter and using elevation difference thresholds, the non-terrain 

points are removed, while terrain points are preserved.   

Lohmann et al. (2000) compared two algorithms, namely the use of linear 

prediction and the use of dual rank filters.  The use of linear prediction showed 

satisfactory results in forest areas, whereas areas with steep terrain showed problems.  

The linear prediction filter needs to be improved by being locally adapted to the shape 

of the terrain (Lee and Younan, 2003).  The dual rank filter is a mathematical 

morphology filter which is applied to a grayscale image.  Dual rank filters need to be 

improved through interactive control and some pre-knowledge to properly set the 
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necessary parameters.   

Vosselman (2000) proposed a slope-based filter.  This method was commonly 

applied for DTM generation from LIDAR data.  A measurement is classified as a 

terrain point if the height differences of this measurement point and any other point 

within a given circle are smaller than a predefined threshold.  Choosing a threshold 

of too small height results in removing some detail of the terrain or cutting hill peaks; 

too large a threshold results in preservation of non-terrain points.  Furthermore, the 

fixed threshold procedure limits the use of slope-based filter to terrain with gentle 

slopes.  This technique will give satisfactory results only when non-ground objects 

(trees, buildings, etc.) and background terrain slopes are distinct and are uniform 

throughout the full coverage.    

The next parameter of the filter is the radius of search region.  The region size 

should be large enough to enclose the larger non-ground objects, such as buildings, 

but not so large as to cover different terrain aspects (i.e., ridges should not be crossed).  

Small search regions tend to cover uniform background slopes.  Large regions tend 

to have larger topographical undulations than smaller regions.  Adaptive techniques 

are required to overcome the effects of nonuniformities in background slopes.  

Slope-based filter has been shown to be equivalent to the erosion operator in 

morphology.  Sithole (2001) has attempted to improve this filter.   

Axelsson (1999, 2000) described an adaptive TIN (Triangulated Irregular 

Network) model to process ground points in dense urban areas where discontinuities 

may occur.  A course TIN is formed based on seed points selected from low points.  

The course TIN iteratively adds more points if their parameters are below threshold 

values.  The problem with adaptive TIN is that it is difficult to detect various sizes of 

non-ground objects by using a fixed parameter.  Raber et al. (2002) showed an 

adaptive vegetation removal process.  The different thresholds were adaptively given 
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based on a vegetation map for various land cover types.   

 

2.2  Error Assessment for LIDAR-derived DTM 

The elevation accuracy of LIDAR-derived DTM is routinely quoted as 15 cm.  

The quality of the final DTMs was influenced by the following components: 

*  elevation error from the system measurement, 

*  horizontal error from the system measurement, 

*  misclassification of terrain points as non-terrain points, 

*  misclassification of non-terrain points as terrain points, and 

*  interpolation error introduced into DTM derived from clouds of points. 

 

1. Sources of X-Y-Z error 

The sources of positional (X-Y-Z) error in the collection processing can be 

grouped according to (1) the laser instrument, INS and GPS, (2) the process of 

measuring from the air, and (3) the target surface causing measurement to be 

influenced by the type of ground coverage and the terrain slope.  A discussion of 

sources of systematic and random errors can be found in Huising and Gomes Pereira 

(1998).   

Factors that affect the accuracy of LIDAR measurements include the following: 

(1) instrument-related factors such as the measurement accuracy of the laser range 

finder, the GPS receiver, the INS and the scanner (Wehr and Lohr, 1999); (2) 

calibration errors caused by misalignment between instrument components; (3) data 

collection parameters, such as the flying height and the width of the field of view of 

the scanner, which can both be reduced to improve the accuracy of LIDAR 

measurements (Baltsavias, 1999b); (4) GPS data quality, such as GPS PDOP value, 
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satellite phase RMSE and the base station distance separation, and (5) atmospheric 

refraction error. 

 

2. Mapping sources error 

A characteristic of elevation error for terrain mapping is the relationship with 

terrain slope (Hodgson and Bresnahan, 2004).  Typically, planimetric accuracy is 

lower than height accuracy of LIDAR measurement.  A horizontal error on a flat 

surface will have no influence on vertical errors, while for inclined slopes the 

horizontal error in the observation may introduce extra error in the elevation value.  

The amount of elevation error introduced is a function of terrain slope (Hodgson and 

Bresnahan, 2004):  

Elevation Error = tan (slope) × Horizontal error (2.1) 

 

3. LIDAR point classification error 

Sithole and Vosselman (2003) evaluated the performance of eight filtering 

algorithms.  Twelve datasets were processed to test these filters, and it was found 

that all the filters performed well in smooth rural landscape.  However, complex 

urban areas and rough terrain with vegetation still pose challenges to automating the 

process of generating DTMs. 

Pfeifer et al. (2001) presented an iterative robust filtering approach (using linear 

prediction based on the software SCOP++).  With the OEEPE test data sets the 

suitability of the algorithm demonstrated the vertical accuracies of three areas in 

RMSE of 11 cm and one area in RMSE of 48 cm.   

Raber et al. (2002) conducted an adaptive technique to create DTMs through 

LIDAR-derived vegetation type information.  The adaptive technique creates a 

superior DTM compared to DTMs created by automatic processes.  They 
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demonstrated the vertical accuracies of using the adaptive optimized method in RMSE 

of 29 cm and using automatic with human edits in RMSE of 45 cm. 

 

4. Interpolation Error 

Interpolation error is semi-systematic.  It is related to the density of mass 

points, the use of extra data such as breaklines, the use of data structure, and 

interpolation techniques.  Point spacing between LIDAR returns is the result of 

collection parameters, including (1) flying altitude and speed of the aircraft, (2) the 

pulse rate, and (3) the scan angle.  Lloyd and Atkinson (2002) compared the Inverse 

Distance Weighting and kriging interpolation techniques.  They showed that the 

advantages of kriging with a trend model were more accurate when the number of 

data points decreases.  It should be noted that the significant differences between 

varies of the interpolation of gridded DTMs were suspected because standard 

deviation in elevation error ranged from only 10.9 cm to 12.8 cm (decrease less than 2 

cm) in their study.  The interpolation methods of Inverse Distance Weighting and 

kriging can be found in Peng and Shih (2002).  Smith et al., (2004) showed that the 

increase in errors at rough resolutions (4 m grid comparison on a 1 m grid) were of the 

order of 50–80 cm.  These two studies did not reveal the interaction impact of terrain 

slope and the density of mass points on the accuracy of LIDAR-derived elevation.  

Hu (2003) used a variety of data structures to compose DTMs resulting in 

non-significant differences in quality.  Hodgson and Bresnahan (2004) also found 

that additional error introduced by interpolation is low and does not have a major 

impact on the total error budget (adding up to 3.3 cm to any land-cover class).   

 

5. Quality Control Checkpoints 

FEMA provides guidelines for the selection, survey and documentation of 



 13 

checkpoints.  At lease 20 three-dimensional QC checkpoints are collected in each of 

five land-cover categories.  The examples of land-cover categories: (1) grass (sand, 

rock, lawns, golf courses), (2) weeds and crops, (3) scrub (brush land and low trees), 

(4) forest, (5) built-up areas with dense man-made structures.   

 

6. Empirical Study of LIDAR Error  

Kraus and Pfeifer (1998) assess a dataset collected at 1000 m flying altitude.  

In flat terrain, comparing 466 ground checkpoints with LIDAR data showed that the 

RMSE was 25 cm.  After further improvements in the data processing, an accuracy 

of 10 cm was achieved.   

Ahokas et al. (2003) evaluated height errors of LIDAR datasets collected at 

different flying altitudes, and found that the higher the flying altitude, the larger the 

height error.  For asphalt surfaces a standard deviation of 10 cm is obtainable from H 

= 550 m. 

Hodgson et al. (2003) reported accuracy from 3.4-m post spacing dataset 

collected in leaf-on conditions.  This study found an elevation error of 33 cm in low 

grass and 153 cm in scrub.  Errors in low grass and high grass were much smaller 

than those in heavily vegetated canopies.   

The comparisons between LIDAR and photogrammetry can be found in 

Baltsavias (1999c); Kraus and Pfeifer (1998); Adams and Chandler (2002). Other 

studies regarding estimating relative LIDAR accuracy by comparing overlapping 

datasets include Behan (2000), Burman (2000), Vosselman and Maas (2001), Latypov 

(2002), Maas (2002), and Crombaghs et al. (2000, 2002), Liu (2005).  
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CHAPTER THREE: DIGITAL TERRAIN MODEL 

GENERATION 

 

To generate a digital terrain model of the bare Earth, the non-terrain points must 

be filtered out from LIDAR datasets, a process sometimes referred as vegetation 

removal, classification, filtering, or DTM generation.  It is difficult to extract the 

terrain surface completely with complex land-cover solely using a single algorithm.   

The multiple-filtering approaches developed for DTM generation are described below.  

The quality assessment of the filtering results for several datasets was conducted.   

 

3.1  Terrain filtering concept 

In order to eliminate non-terrain points, every filter needs to make an 

assumption to mathematically define what a terrain point is.  I developed algorithms 

to analyze the geometric characteristics, such as slopes and differences, of a point 

relative to its neighboring points.  The concepts adopted in this research include the 

following:  

*  The lowest point is more likely to be a ground measurement.  The lower the 

point, the larger probability to be a terrain point (Petzold et al., 1999; Axelsson, 

2000).   

*  Variation of the slope at the edge of non-terrain objects is significant than terrain 

points of flat ground (Vosselman ,2000; Sithole, 2001).   

*  Since terrain points have lower elevations than non-terrain points, it is able to 

separate terrain points with other objects by using elevation differences. 
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Local lower points are usually the candidate terrain points, and local higher 

points are likely building roof or tree points.  This idea was commonly applied for 

filtering algorithm.  Petzold et al. (1999) proposed a filtering algorithm based on 

finding local low points in moving filtering windows of varying sizes.  Kraus and 

Pfeifer (1998) developed algorithm based on the linear prediction.  Low points have 

maximal weights and they attract the prediction surface.  High points with minimal 

weights are eliminated.  Another commonly used algorithm to find minimum values 

is a mathematical morphology filter which is applied to a raster image.   

Figure 3.1 and 3.2 show a cross section of LIDAR points.  The dashed line in 

Figure 3.2 indicates the elevation of the threshold.  High points should be filtered 

and low points should be kept.  Thresholding is a synonymous term for filtering.  

The most important task in performing filtering is the choice of an appropriate 

threshold level.  I distinguish two approaches of thresholding techniques.  Global 

thresholding use the fixed threshold value.  Local thresholding examine relationships 

between elevations of neighboring points to adapt the threshold according to the 

terrain variation for different terrain regions.  The approach of fixed global 

thresholding may be satisfactory when the elevation has relatively gentle variations 

throughout the full coverage.  Figure 3.3 (a) and (b) show examples of the results of 

poorly chosen thresholds.  In Figure 3.3 (a), the elevation threshold is chosen too 

high, resulting in some non-terrain points such as trees remaining.  In Figure 3.3 (b), 

the elevation threshold is chosen too low, resulting in some terrain details unwanted 

filtered.   
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Figure 3.1. An example of gentle terrain relief. 

 

 
Figure 3.2. The profile has gentle terrain relief. 
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(a) at too high a elevation threshold 
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(b) at too low a threshold 

Figure 3.3. Filtering examples of global thresholding.  

 

 

Profile 1 

The threshold is fixed for full coverage. 
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One approach to local thresholding is to subtract a local trend surface from the 

original elevation data.  We may implement this by using erosion operation of 

morphological processing to calculate a moving region minimum.  For a LIDAR 

measurement p(x,y,z), the erosion of elevation z at x and y is defined as 

 (3.1) 

The erosion output ep is the minimum elevation value in the neighborhood of 

point p.  By comparing each elevation value to its eroded trend surface, remove 

non-terrain objects if it is much above (or above a given threshold such as 0.3 m) the 

eroded surface.   

Figure 3.4 shows the eroded surface by applying an erosion operation with a 

window size of 10 m.  The windows size in erosion operation should be large 

enough to enclose an object such as a large building completely.  Note large building 

objects large than the window size are remained by erosion (Figure 3.5).  This choice 

of proper size for the window may be problematic when coverage contains large 

buildings of variable size.     

 

 

 
Figure 3.4. Filtering by local thresholding technique. 

The eroded trend surface was calculated from a moving window minimum. The 
window size is set to 10 meters.   

The threshold adapts to 
the local terrain relief 
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Figure 3.5. Filtering example of local thresholding. 

The window size must be set with respect to the objects size: otherwise, large 

building objects large than the window size are remained. 

 

 

The variety of landscapes to be performed filtering requires different approaches.  

There is not a single optimal method of filtering for all conditions till today.  I 

developed a series of filtering techniques: (1) Directional steepest-descent filter 

examine the steepest slope in the different directions to counter the directional effects 

and improve the slope-based filter; (2) Adaptive techniques examine relationships 

between slopes (or height differences) of neighboring points to adapt the threshold 

according to the examined slopes (or height differences) statistics; (3) Automatically 

determination of search size, it may match for different terrain.   

 

3.2  Slope-based filter 

Slope change and elevation difference are frequently used to characterize 
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non-ground objects.  Assuming that the slope in natural terrain should change 

gradually.  Whereas on the edge of non-ground objects, the slopes and elevation 

differences between the ground and non-ground points should be larger than those 

between ground points.   

A measurement is classified as a terrain point if the steepest slope of this 

measurement point and any other point within a given circle are smaller than a 

predefined threshold.  In words: a point p is classified as a terrain point if there is no 

other point i such that the slope between these points is larger than the allowed 

maximum slope (Figure 3.6).  To find the steepest slope by a search distance from 

the measurement point p is in the form 
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where points (xi,yi,zi) represent point p’s neighbors within a radial distance L of 

a given circle, and n is the total number of p’s neighbors.  

 

 

Figure 3.6. Steepest descent, defined as the minimum angle unobstructed. 

 

The selection of the searching window size L is important when using this filter.  

If a small window size is used, large-sized buildings cannot be removed.  On the 
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other hand, larger window size causes the filter to over-remove terrain points or chop 

off hills.  Figure 3.7 shows an example of large terrain relief.  Figure 3.8 shows the 

results of slope-based filtering for six cases, and their parameters including search 

window and slope threshold.  The larger search windows the terrain feature is more 

eroded.   

 

 

 

Figure 3.7. An example of large terrain relief 
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(a) Search radius: 3 m 

Threshold: 100% (45°)  

(b) Search radius: 3 m 

Threshold: 58%(30°) 

(c) Search radius 3 m 

Threshold: 27%(15°)  
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(d) Search radius 5 m 

Threshold: 100% (45°) 

(e) Search radius 5 m 

Threshold: 58%(30°) 

(f) Search radius 5 m 

Threshold: 27%(15°) 

Figure 3.8. Six results of slope-based filtering. 

 

3.3  Directional steepest-descent filter 

Based on the idea of slope-based filter, this paper develops an algorithm to 

improve the directional effect of slope-based filter.  The directional steepest descent 

filter relies on the steepest slope in the four directions (the same rule as in eight 

directions or sixteen directions) within a radial distance from a point (Figure 3.9).  

The steepest descent is similar to equation 3.2. 
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where points (xi,yi,zi) represent point p’s neighbors along an azimuth D within a 

radial distance L, and n is the total number of p’s neighbors in the direction D.  

Figure 3.9 shows the two-dimensional search-space spanned by two specific 

azimuthal angles and a distance.   

The algorithm is to take p as a center and calculate the steepest descent to any 

other points reached within the four areas.  The areas of directions 45 and 225 

degrees are taken as a group and 135 and 345 degrees another.  The features of 

central point p are as follows:  

(1) point p is located on a peak or point p is a non-terrain point when  

the values α45, α45+180, α135, α135+180  

in the four directions are positive at the same time, for example, being more than 

15°.   

(2) point p is located on a pit when 

the values α45, α45+180, α135, α135+180  

in four directions are negative and smaller than a given threshold such as -15°. 

(3) point p is located on a saddle when 

the two slopes α45, α45+180  

in a group are smaller than -15° simultaneously and also the other two slopes   

α135, α135+180 in another group are more than +15° at the same time (and vice 

versa). 

(4) p is on a slope in all other cases. 

According to the condition (1) mentioned above, taking the minimum of 

steepest descent: 
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{ }315,225,13545,min ααααα =  

If αis positive and larger than the threshold value, then point p is identified as 

a non-terrain point or a terrain point on a peak.  

 

 

Figure 3.9. Azimuth angle D is measured clockwise from north. 

 

 

Figure 3.10 and 3.11 show the difference between the slope-based filter and 

directional steepest-descent filter.  The filtering parameters were set at the same 

values: the search radius as 10 m and the threshold as gradient 0.58 (30° in degree).  

The slope-based filter removes terrain discontinuities.  On the other hand, directional 

steepest-descent filter preserves terrain features in sloped terrain.  However, using a 

small search radius leads to points on large buildings remaining in both filters. 

In Figure 3.11, the profile is delineated along the positions as indicated by a 

solid line on Figure 3.10 showing the elevations and the calculated steepest slopes 

(equation 3.2) are labeled on the top of the profile.  The steepest slopes of terrain 

points vary from 0.01 to 0.79 on the flat region and vary from 0.23 to 1.91 on relief 

region respectively.  The steepest slopes of non-terrain points vary from 0.73 to 9.05 

on the flat region and vary from 1.9 to 9.7 on relief region.  The fact that the steepest 
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slopes for terrain points and non-terrain points could not be accurately classified.  

On the other hand, the directional steepest descents tan(α) of terrain points 

vary from 0.01 to 0.5 on the flat region and vary from 0.01 to 0.5 on relief region.  

The directional steepest descents of non-terrain points vary from 0.25 to 5.92 on the 

flat region and vary from 0.82 to 9.73 on relief region in Figure 3.11(d). 

Directional steepest descent is appropriate for filtering ground objects of smaller 

sizes.  That is, the parameter for the size of a searching window should be small.  In 

order to preserve the terrain points in sloped terrain, the window sizes need to be 

restricted (Vosselman, 2000).  However, a small window size leads to points on 

large buildings remaining. 

When the radius of a searching window size is longer (such as 10 meters), then 

the terrain points on a peak are illustrated as condition (1).  There is no distinction 

between the steepest-descent values of a terrain point on the peak and a non-ground 

object.  How to determine the threshold value and window size will be solved later. 

 

 

(a) Result of slope-based filter 

search radius: 10 m 

threshold: 0.58 (58%) 

 

(b) Result of directional steepest-descent filter 

search radius: 10 m 

threshold: 0.58 (58%) 

Figure 3.10. Comparison between slope-based and directional steepest-descent filter. 

Profile Profile
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(a) Profile of filtering result using slope-based filter 

search radius: 10 m 

threshold: 0.58 (58%)  

(b) Calculated steepest slopes (gradient) of terrain points are labeled on the button of 

the profile and of non-terrain points are labeled on the top of the profile. 

Figure 3.11. Comparison of profile between slope-based and directional 

steepest-descent filter. 
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(c) Profile of filtering result using directional steepest descent filter 

search radius: 10 m 

threshold: 0.58 (58%)   

(d) Calculated directional steepest descents of terrain points are labeled on the button

of the profile and of non-terrain points are labeled on the top of the profile. 

Figure 3.11. Comparison of profile between slope-based and directional 

steepest-descent filter. 

 

 

3.4  Adaptive directional steepest-descent filter 

In order to filter a large ground object, a searching window must be large 

enough to completely cover the object.  When the searching window size is large, 
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the background terrain may include complex features.  One approach to adaptive 

thresholding is to subtract background slope from the calculated steepest slope and to 

perform thresholding as uniform slope result.  If the slope value of a given point is 

much larger than its local background slope, we may classify it as a non-terrain point. 

Taking p as a center, point i is found in the direction D and the steepest decent 

αis obtained.  Restarting the process by taking i as a center, and along the azimuth 

D within L radial distance, searching for the steepest descent again, the steepest 

descentβis obtained (Figure 3.12).  If β is positive gradient, then the original 

steepest descent γ  is revised by subtracting β  from α , γ  = α  – β .  

Thereby, the goal of removing the background slopes is achieved. 

 

 

Figure 3.12. The steepest-descent is revised by removing the background slopes.  

3.5  Adaptive directional elevation-difference filter 

The choice of proper window size may be problematic.  It is difficult to detect 

all non-ground objects of various sizes using a fixed window size.  For example, in 

order to remove the measurements of large non-ground objects such as buildings, a 

larger window size is needed.  However, a larger window size may cover complex 
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terrain or cross a mountain ridge.  In this research, for the adoption of a large 

window size, a different method — directional elevation-difference filter — was 

developed, as shown in Figure 3.13.  First, an initial search radius is used in direction 

D to search for a lowest point among the neighbors.  Then the search radius is 

reduced by one meter, so that the lowest point in each research radius is gradually 

calculated and selected.  The selected lowest points constitute Set G, as illustrated in 

Figure 3.13, G1 to G6.  The lowest point G1 is found with search radius of L1, and Gk 

is found with new search radius of Lk, and so forth.  Subsequently, elevation 

differences among the sequential lists of Set G are calculated in order, using the 

formula dhZD[k] = ZG[k] － ZG[k+1], where k stands for the kth time of reducing the 

research radius, and dh(k) constitutes the set dG of elevation differences.  In the set 

dG of elevation differences, the steepest descent δ (maximum value) of elevation 

difference is therefore selected.  Once the calculation in direction D is completed, we 

can start calculating theδvalue in the next direction.  Theδvalues in the four 

directions are calculated separately, and the minimum will be selected as 

{ }315,225,13545,min δδδδλ = .  Ifλ is lower than the predetermined threshold dhTh, 

then this point will be classified as an object point.    

 

 

Figure 3.13. Finding the lowest point progressively. 

  Taking p as a center, the lowest point G1 is found with search radius of L1, the 
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search radius is reduced, and G2 (G2=G1 in this case) is found with search radius of L2, 
and so forth.  

 

 

3.6  Determination of search radius  

The value of the search radius is a parameter.  In this paper, it was proposed 

that the best search radius for each object point of terrain surface could be calculated 

automatically.  The method of calculation is as follows.  First, a larger fixed value 

is selected as the initial search radius in direction D to search for the lowest spot 

height among neighboring points.  The search radius is then successively reduced, 

just as with the directional elevation-difference filter described above.  The lowest 

points within each radius are selected and constitute set G.  Then the elevation 

differences among each spot height in set G are calculated, which constitutes the 

elevation differences set dG.  An elevation difference threshold slopeTh is 

predetermined.  If the elevation differences (negative value) in the sequential list dG 

are smaller than slopeTh, these points are identified as relief spots (less smaller 

negative value indicates larger relief).  Accordingly, the points in set G are further 

selected and constitute set T.  In set T, the steepest descent between the relief points 

and the center p are calculated: Slopek  = 
2

][
2

][

][

)()( kTpkTp

kTp

yyxx

zz

−+−

−
 (the 

calculation of slopes between relief points and the center p).  The steepest descent is 

therefore found, as illustrated in Figure 3.14, point T1.  In Figure 3.14, the points in 

set T constitute the profile, where the line of sight from point p to T1 is the steepest 

descent.  The horizontal distance from p to T1 determines the best search radius for 

the search of object point p.   
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Figure 3.14. Taking p as a center, relief spots are further selected and constitute set T. 

 

 

3.7  Filtering by multiple filtering procedures 

There are two kinds of errors that can be made in quantitative assessment.  A 

Type I error misclassifies bare-Earth points as object points, meaning details of terrain 

features are lost.  Type II errors misclassify object points as bare-Earth points.    

Since Type II errors will lead to worse results than Type I error in the application of 

DTM recovering, most filtering tasks tend to produce many more Type I errors than 

Type II errors (Sithole and Vosselman, 2004).  This paper applies the opposite 

strategy, emphasizing the reduction of Type I errors because Type II errors are easier 

to fix by multiple filtering procedures.   

The procedures of multiple filtering include three stages.  In the large objects 

removal stage (1), an adaptive elevation-difference filter is used to remove large 

non-ground objects such as buildings.  In the medium object removal stage (2), an 

adaptive steepest-descent filter removes medium non-ground objects such as dense 

trees.  In the final filtering stage (3), a directional steepest-descent filter removes 

small non-ground objects such as cars and single trees (Figure 3.15). 
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Figure 3.15. Flowchart of the multiple filtering algorithm. 

Load raw LIDAR data
(Single return) 

Search radius determination 
z Calculate the elevation differences iteratively  
z Find the relief points according to the elevation differences 
z Calculate the slope from center point to the relief points 
z Determinate the search radius 

Large objects removal by 
adaptive elevation-difference filtering 

z Decrease the search radius gradually 
z Calculate the elevation difference between adjacent points 
z Obtain the minimum elevation-difference for four directions 
z Remove non-terrain points according to the threshold 

Medium objects removal by 
Adaptive directional steepest-descent filter 

z Calculate slopes and find the steepest descent at each point 
z Revise the steepest-descent by removing the background slopes 
z Obtain the minimum steepest-descent for four directions 
z Remove non-terrain points according to the threshold 

Small objects removal by 
Directional steepest-descent filter 

z Reduce the search radius to 3 meters 
z Obtain the minimum steepest slope for four directions 
z Remove non-terrain points according to the threshold 
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Figure 3.16 delineates a profile with gentle relief that crosses a building and 

trees.  The elevation-difference values are derived along this profile and shown in 

Figure 3.17.  Figure 3.18 shows the steepest-descent values along this profile.  

Figure 3.17 and 3.18 shows the same phenomenon: these two filters were effective in 

reducing background nonuniformity.   

The values are obtained by subtracting a locally nonuniform background value 

from the original data and then are suitable to perform a fixed threshold procedure.  

Before the filtering processes, the point clouds were preprocessed to remove outliers 

such as birds and low flying aircrafts first.  Because high outliers are so far elevated 

above neighboring points, the filtering process can remove such extreme data easily. 

In urban areas, some LIDAR data may contain a few extreme low outliers.  

These negative blunders are often happened as individual points.  When a 

shaded-relief map was derived, low outliers can be found easily as conical pits.  

Therefore, extreme low points can be filtered by interactive editing.   

 

 

Figure 3.16. Sample profile.  
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Figure 3.17. The elevation-differences values of the sample profile.  

 

 
Figure 3.18. The steepest-descent values of the sample profile. 

 

 

3.8  Algorithm implementation 

Some algorithms such as morphological operators require the data to be in a 

grid structure.  Interpolating the raw data to a grid causes the height differences in 

the interpolated data reduced.  This research worked with original, irregularly point 

data.    

 

Determination of search radius  

1. Take an initial size of search window L1. 

2. In azimuth D, within the L1, load raw data of LIDAR.   
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3. Decrease the size of window gradually, and calculate the lowest points as set G.  

4. Within set G, calculate elevation differences between two adjacent points iteratively, 

which constitutes set dG. 

5. Analyze set dG and set G.  If the elevation difference between two adjacent points 

is smaller than the relief threshold slopeTh (negative of the gradient), then it is 

categorized into set T. 

6. Within set T, calculate the slope from the center to each point as set SP, and find the 

steepest descent point U.  

7. The size of this object point RD is determined by the distance between point U and 

center point p.. 

8. Go back to step 2.  Recalculate the values in the next direction and analyze RD+180.  

9. The revised size of initial search radius R on center point p is determined by the 

maximum of RD in four directions.  

 

Adaptive directional steepest-descent filter 

1. Calculate the initial search radius R by the algorithm described above. 

2. In azimuth D, within the R, load raw data of airborne LIDAR. 

3. Calculate slope set SP. 

4.Within SP, find the steepest descent α at point s.  

5. Use site s as the center with a radius of R, obtaining the background steepest 

descent β.  

6. If α and β are negative values at the same time, then subtract the background 

slopeβ from α : γ = α – β. 

7. Go back to step 2.  Calculateγ in the next azimuth, γD+180. 

8. The minimum Min_γ is selected among γD  in the four directions.  

9. If Min_γ< threshold slopeTh, then this point is a ground point; if not it is a 
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non-ground object. 

 

Adaptive directional elevation-difference filter 

1. Calculate the size of window R.  

2. In azimuth D, within the R, load raw data of airborne LIDAR. 

3. Decrease the size of window gradually, and calculate the lowest points, which 

constitute set G.  

4. Within set G, calculate the elevation difference between each two adjacent points, 

which constitute set dG.  

5. Within set dG, find the steepest dh.  

6. Go back to step 2.  Calculate the values in the next direction, and analyze steepest 

dhD+180 

7. Obtain the minimum Min_dh among four steepest dhD 

8. If Min_dh < dhTh, then this point is identified as a ground point; if not, as a 

non-ground objects 

 

3.9  Test datasets 

In this study, the developed filters were tested on two LIDAR datasets: an urban 

area and an area of rugged terrain with dense vegetation.  The test dataset for urban 

area is downloaded from the website of ISPRS Commission III, WG III/3 

(http://www.commission3.isprs.org/wg3/).  The Csiter1_orig.txt and Csiter2_orig.txt 

are adopted for this study because of the complexity of feature contents.  The 

features of urban test site are steep slopes, mixture of vegetation and buildings on 

hillside.  The point spacing of laser data is around 1.0 – 1.5 meter.  The reference 

datasets include six samples, namely sample 11, sample 12, sample 21, sample 22, 
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sample 23, and sample 24.  The dataset is described in detail in Sithole and 

Vosselman (2004).   

 

High-relief test site 

The high-relief test site is located in central Taiwan.  The area is the 

Jeou-Fen-Er-Shan, a hilly area located in the damaged region of central Taiwan 

(Figure 3.19).  The Chi-Chi earthquake caused a large-scale landslide (1100 m by 

1910 m) in this area.  The test site is 3 km by 3 km and the elevation ranges from 

420 to 1100 m; the slope varies between 0 degree and 70.3 degrees.  The 75th 

percentile of the slope is 35.8 degrees, and the average is 26.6 degrees, as given in 

Table 3.1.  Figure 3.20 reveals that the study area is in steep terrain and 70% of the 

slope is greater than 20 degrees.  Land-cover types in the study area are dense woods, 

tea plants, orchard, low grass and sliding rock.   

Two datasets were collected in the high-relief test area.  The first dataset was 

collected using an Optech ALTM 2033 system between March 20 and April 3, 2002.  

The flying height was at a median altitude of 1100 m above ground level.  The 

second dataset was obtained using an LH ALS 40 between April 10 and April 16, 

2002, with flying height of 1800 m above ground level.  Both datasets were acquired 

during leaf-on conditions.  The H = 1100 m (ALTM 2033) was intended to collect 

spatially dense (1-m nominal post spacing) LIDAR data, while the mission of the H = 

1800 m (ALS 40) was to collect data over a wider area.  Table 3.2 compares the 

parameters of both sets.  It shows that the H = 1100 m data involved narrower FOV 

(30°) than the H = 1800 m data (40°), and that the H = 1100 m was obtained at a 

higher laser data rate (33 kHz) than the H = 1800 m (25 kHz).  Flight directions for 

both datasets were North-South, oriented parallel to the hills.  There are three strips 

in the H = 1800 m data set, and ten parallel strips for the H = 1100 m data set.  The 
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H = 1100 m data contains an extra East-West flight strip across the study area. 

 

 

Table 3.1  Statistics of terrain slopes of test site 
Statistics Slope (in degree) 

Average 26.64 
Median 26.59 
Std. Deviation 13.03 
Minimum 0.01 
Maximum 70.38 
25th percentile 17.55 
75th percentile 35.77 
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Figure 3.19. High-relief site is located in central Taiwan affected by the Chi-Chi 

Earthquake. 
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Figure 3.20. Slopes distribution over the test site. 
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Table 3.2  LIDAR collection parameters of high relief site 

Parameters Altitude H = 1100 m Altitude H = 1800 m 

Instrument Optech ALTM 2033 LH ALS 40 

Max. terrain height 1154 m 1154 m 

Min. terrain height 396 m 396 m 

Airplane speed 150 knots (77.17 m/s) 150 knots (77.17 m/s) 

Flying altitude (above ground) 900 – 1500 m 1200 – 2200 m 

Flight line spacing 400 m 500 m 

Pulse rate 33 kHz 25 kHz 

Scan rate 38 Hz 27 Hz 

Field of view 30° 40° 

Swath width 482 – 804 m 870 – 1600 m 

Point spacing 1 – 2 m 2 – 3 m 

 

 

Reference Data of High-relief Area 

Data from 906 ground checkpoints, obtained in seven areas with different 

land-cover, were collected to assess the accuracy of the LIDAR measurement.  The 

measurement incorporates Real-Time-Kinematics (RTK) GPS and the total station 

technique.  The horizontal accuracy of reference data was verified to be about 0.018 

m and vertical accuracy 0.020 m, in terms of RMSE.  Both the coordinate system of 

ground checkpoints and the control coordinate system with laser scanning coincided 

with the same World Geodetic System 1984 (WGS 84) coordinates.  Table 3.3 

presents the seven evaluation sites:  
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(1) Pavement area used to assess accuracy on open terrain. 

(2) Occlusion path used to assess the accuracy of the occlusion area. 

(3) Landslide rock area with homogeneous slopes, with emphasis on the accuracy 

of the steeper terrain. 

(4) Wet soil, covering soft piling and wet soil, with emphasis on the accuracy of 

wet environment. 

(5) Orchard, where only H = 1100 m dataset is available. 

(6) Tea farm A with 22 degrees average slope. 

(7) Tea farm B with 14 degrees average slop.  

This test site does not include built-up areas.  Figure 3.21 shows the 

distribution of the surveyed 906 ground checkpoints.  Figure 3.22 depicts field and 

aerial photographs of these evaluation sites. 
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Table 3.3  Land-cover classes and their descriptions 
Class Descriptions 

Pavement 9° slopes 

 Open and flat path 

Wet soil 8° slopes 

 Piling wet soil 

 Open fields  

Occlusion path 8° slopes 

 High trees on both sides of the 5-m-width path 

Landslide rock 25° slopes 

 Homogeneous steep slope 

 Open fields 

Orchard 9° slopes 

 Low trees (< 3 meters) 

Tea farm A  22° slopes 

Tea farm B 14° slopes 
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Figure 3.21. Distribution of ground checkpoints in study area. 
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(a) Pavement

 

(b) Occlusion path

 

(c) Landslide rock  

Figure 3.22. Field and aerial photos of the surveyed site. 
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(d) Wet soil

 

(e) Orchard

 

(f) Tea farm A

Figure 3.22. Field and aerial photos of the surveyed site. 
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(g) Tea farm B

Figure 3.22. Field and aerial photos of the surveyed site. 

 

 

 

3.10  Experiment and Evaluation 

Two datasets were processed to examine the algorithm’s performance.  For the 

urban area dataset, we first focus on the subsite sample 11.  The elevation difference 

threshold dhTh of filtering parameter was set as 1.5 m.  The initial search radius was 

set at 60 m so as to be large enough to remove buildings.   

 

1. Sensitivity of Varying Search Radius 

Figure 3.23 shows the difference of filtering results by adaptive directional 

elevation-difference filter with varying search radius.  With increasing search radius, 

Type I errors increased from 11.1% to 11.7%, and Type II error decreased from 

11.7% to 11.3%.  The filtering result with large search radius (120 m) did not tend to 

over-filter the ground points.  As search radius increased from 60 m to 120 m, the 

Total error increased from 11.3% to 11.5%, a difference of only 0.2%.   
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Figure 3.24 shows the difference of filtering results by adaptive directional 

steepest-descent filter with varying search radius.  The steepest-descent threshold   

γTh of filtering parameter was set as 12%.  Similar to the result of adaptive 

directional elevation-difference filter, the filtering result with large search radius (120 

m) did not over-filter the ground points.  As search radius increased from 60 m to 

120 m, the Total error increased from 11.3% to 11.4%, a difference of only 0.1%.   
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Figure 3.23. Effect of varying initial radius on errors,  

filtered by directional elevation-difference algorithm. 
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Figure 3.24. Effect of varying initial radius on errors,  

filtered by adaptive steepest-descent algorithm. 

 

 

2. DTM Generation Results on Urban Area 

Figure 3.25 shows the shaded relief maps of six subsites within the urban area 

for visual inspection.  The filtering result of Figure 3.25 was processed by multiple 

filtering procedures.  The parameters used are listed in Table 3.4.   

In the large objects removal stage (1), with the adaptive elevation-difference 

filter, the initial search radius was set at 100 m.  A 1.0 m to 2.4 m 

elevation-difference threshold was used.  The elevation-difference thresholds were 

determined by visual inspection.  In the medium object removal stage (2), using 

adaptive steepest-descent filter, a 15% steepest-descent threshold was used.  In the 

final filtering stage (3), using directional steepest-descent filter, the search radius was 

set at 3 m and a 3% steepest-descent threshold was used.  Comparing the filtered 

result with reference from Figure 3.25, most non-ground objects were filtered 

successfully.  Low buildings were left in mistakenly surrounding A [Figure 3.25(a)] 
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and B [Figure 3.25 (b)].  A few measurements below the bridge were mistakenly 

removed [C in Figure 3.25 (d)].  A few measurements surrounding a complex plaza 

were chopped off mistakenly [D in Figure 3.25 (e)].     

The quantitative error examinations of Type I, Type II and the Total errors for 

the six DTMs are displayed in Figure 3.26 and Table 3.4.  The computed errors over 

six subsites ranged from 0.1% to 10.1%, 4.7% to 9.4% and 3.5% to 9.2% for Type I, 

Type II and the Total errors respectively.  The filtering strategy of this research is 

trying to minimize Type I errors.  Except sample 23, Type I errors of most filtering 

results are smaller than Type II errors.  This is because some measurements in 

sample 23 (complex scene) were removed mistakenly.   
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Unfiltered  filtered reference filtered result 

 
 (a) Sample 11  

 
 (b) Sample 12  

 
 (c) Sample 21  

Figure 3.25. The DTM generation results for the urban area. 
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 (d) Sample 22  

 
 (e) Sample 23  

 
 (f) Sample 24  

Figure 3.25. The DTM generation results for the urban area. 
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Figure 3.26. The filtering errors for sample sites. 
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Table 3.4  The accuracy of multiple filtering results 
Sample 11   Filtered Error Parameters 

   Ground Non-ground Type I (%) 9.16 Initial radius (m) 100

Ground 21786 19791 1995 Type II (%) 9.28 Elevation difference (m) 2.4

Non-ground 16224 1505 14719 Total (%) 9.21 Steepest descent (%)  15

Reference 

Total 38010      

Sample 12   Filtered Error Parameters 

   Ground Non-ground Type I (%) 1.48 Initial radius (m) 100

Ground 26691 26295 396 Type II (%) 5.56 Elevation difference (m) 1.2

Non-ground 25428 1413 24015 Total (%) 3.47 Steepest descent (%)  15

Reference 

Total 52119      

Sample 21   Filtered Error Parameters 

   Ground Non-ground Type I (%) 0.08 Initial radius (m) 100

Ground 10085 10077 8 Type II (%) 6.92 Elevation difference (m) 1.0

Non-ground 2875 199 2676 Total (%) 1.60 Steepest descent (%)  15

Reference 

Total 12960      

Sample 22   Filtered Error Parameters 

   Ground Non-ground Type I (%) 3.85 Initial radius (m) 100

Ground 22504 21637 867 Type II (%) 6.90 Elevation difference (m) 1.0

Non-ground 10202 704 9498 Total (%) 4.80 Steepest descent (%)  15

Reference 

Total 32706      

Sample 23   Filtered Error Parameters 

   Ground Non-ground Type I (%) 10.13 Initial radius (m) 100

Ground 13223 11884 1339 Type II (%) 4.73 Elevation difference (m) 1.0

Non-ground 11872 562 11310 Total (%) 7.58 Steepest descent (%)  15

Reference 

Total 25095      

Sample 24   Filtered Error Parameters 

   Ground Non-ground Type I (%) 6.64 Initial radius (m) 100

Ground 5434 5073 361 Type II (%) 9.38 Elevation difference (m) 1.0

Non-ground 2058 193 1765 Total (%) 7.39 Steepest descent (%)  15

Reference 

Total 7492      
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3. DTM Generation Results on High-relief Area 

For the high-relief dataset, ground checkpoints in the area of pavement and of 

wet soil were used to assess the accuracy of LIDAR observations on open terrain.   

The ‘difference’ or elevation error for each checkpoint is computed by 

subtracting the surveyed elevation of the checkpoint from the LIDAR dataset 

elevation interpolated at the x/y coordinate of the checkpoint.  The interpolation 

method is the Delaunay triangulation with linear interpolation.  LIDAR-derived 

elevation was converted into triangulated irregular networks.  Differences were 

obtained by subtracting the reference elevation from the LIDAR elevation.   

Table 3.5 shows that RMSE error of pavement area is 9.2 cm and of wet soil is 

14.5 cm for H = 1100 m dataset.  Table 3.6 shows that RMSE error of pavement area 

is 14.0 cm and of wet soil is greater than 15 cm (RMSE 20.7 cm) for H = 1800 m 

dataset. 

This study adopted the Terrascan software for the automated filtering of LIDAR 

points.  The software’s algorithm uses the single-return range data, that is, the last 

return for the multi-echo.  There are four steps involved in the filtering procedure.  

In the inspecting stage (1), the analyst chooses a series of representative profiles, 

especially cross-sections of ridges and cross-sections of dense vegetation.  In the 

analyzing stage (2), each profile is measured for the terrain slope, vegetation density, 

and the largest size of buildings.  The coverage was manually divided into multiple 

overlapping subsets according to terrain slope and vegetation so that each subset has 

homogenous terrain and vegetation type.  After this, the parameter thresholds are 

determined for each subset.  A small height threshold or a large window size 

removes some detail of the terrain or cuts some hill peaks.  A large height threshold 

or a small window size tends to preserve non-terrain points.  After the dataset has 
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been filtered, a preliminary DTM is derived from the ground points.  In the checking 

stage (3), the chosen representative profiles are then viewed individually to check if 

the summit has been cut wrongly or the vegetation points were still retained in 

wooded area.  It is an iterative procedure in which the analyst revises the parameter 

thresholds until the ground points and non-ground points are separated.  Finally, in 

the manual editing stage (4), the shaded relief map is plotted from the DEM to check 

the filtering results and to manually edit the artifacts.    

Two different working schemes are adopted for automatic filtering process.  

The filtering for H = 1800 m used an automated procedure.  In the case of H = 1100 

m, the automated procedure was followed by a manual editing to refine the ground 

points.  While processing H = 1800 m data by the automated procedures, the strategy 

of choosing the parameter thresholds tended to remove as many vegetation points as 

possible (minimizing the error of classifying non-ground points as ground 

measurements).  On the other hand, processing the H = 1100 m data tends to 

incorrectly leave ground points (minimizing the error of filtering ground points 

mistakenly (Sithole and Vosselman, 2003).  The reason is that during the manual 

editing process it is thought to be easier to remove unwanted points than to detect the 

absence of ground points and add them back in, with the working environment of this 

study. 

Checkpoints in the area of occlusion path, landslide rock, orchard, sloped tea 

farm A and tea farm B were used for quantitative analysis of filtering accuracy.  A 

2.0 m elevation-difference threshold and a 15% steepest-descent threshold were used.   

*  For H = 1100 m dataset, the differences in MAE using multiple-filtering process 

and automatic removal technique with manual editing are displayed in Figure 3.27.  

The MAEs of multiple-filtering processing are smaller than those of automatic 

processing with manual edits for area of occlusion path and sloped tea farm A (H 
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= 1100 m dataset).  On the other hand, the MAEs of multiple-filtering processing 

are larger than those of automatic processing with manual edits for area of 

landslide rock, orchard and tea farm B.  The total differences in MAE of 

automatic processing with manual edits (15.4 cm) were smaller than those of 

multiple-filtering processing (16.6 cm). The t-test was significant at the 0.078 

level (>0.05 level).  

*  For H = 1800 m dataset, the MAE of multiple-filtering processing are smaller than 

those of automatic processing for all areas (Figure 3.28, Table 3.8, Table 3.10).  

The total differences in MAE of multiple-filtering processing (22.2 cm) were 

smaller than those of automatic processing (25.4 cm).  The t-test of total 

differences in MAE was significant at the 0.004 level (<0.05 level). 

*  Note that for H = 1100 m, in the area of sloped tea farm A (dense tea tree and 

sloped relief), the results of proposed algorithms obtain less mean errors (-12.6 

cm vs. -26.5 cm) and less MAE (24.6 cm vs. 27.2 cm) than automatic processing 

with manual edits scheme (Table 3.7, Table 3.9).   

*  For H = 1800 m, in the area of sloped tea farm A, the results of proposed 

algorithms also have better performance (19.2 cm vs. 26.3 cm mean error and 

26.1 cm vs. 29.0 cm MAE).   
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Figure 3.27. The comparisons of DTMs for H = 1100 m. 
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Figure 3.28. The comparisons of DTMs for H = 1800 m.  



 57 

 

 

Table 3.5  Accuracy of DTM in bald earth areas (H = 1100 m, error in cm) 

 Pavement Wet soil 

95% # of points 130 82 

95% RMSE 8.2 13.9 

95% MAE 6.4 11.8 

95% Mean error -1.4 -10.2 

95% Median -0.6 -11.6 

95% Skew -0.310 +0.272 

95% Std Dev 8.1 9.5 

95% Min -20.1 -26.2 

95% Max 14.1 9.9 

   

100% # of points 137 86 

100% RMSE 9.2 14.5 

100% MAE 7.1 12.2 

100% Mean error -1.7  -10.2  

100% Skew -0.428  +0.173  

100% Std Dev 9.1  10.4  

100% Min -28.4 -36.3 

100% Max 14.8 11.6 
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Table 3.6  Accuracy of DTM in bald earth areas (H = 1800 m, error in cm) 

 Pavement Wet soil 

95% # of points 130 82 

95% RMSE 11.7 20.3 

95% MAE 9.9 18.4 

95% Mean error -4.6 -18.4 

95% Median -5.7 -17.2 

95% Skew +0.119 -0.463 

95% Std Dev 10.8 8.6 

95% Min -36.3 -37.9 

95% Max 17.3 -4.9 

   

100% # of points 137 86 

100% RMSE 14.0 20.7 

100% MAE 11.2 18.5 

100% Mean error -5.3  -18.5  

100% Skew +0.553  -0.411  

100% Std Dev 13.0  9.4  

100% Min -50.4 -40.4 

100% Max 21.2 1.0 
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Table 3.7  Accuracy of DTM for automatic processing with manual edits (H = 1100 m, 
error in cm) 

 Occlusion 

path 

Landslide 

rock 

Orchard Sloped tea 

farm A 

Tea farm B Total 

95% # of points 78 330 119 44 78 649 

95% RMSE 19.4  15.5  15.2  31.3  15.9  16.7 

95% MAE 17.9  12.7  12.0  26.4  13.6  13.8 

95% Mean error -17.9  11.3  4.4  -26.3  -4.8  -9.4 

95% Median -17.4  10.8  1.1  -26.0  -7.7  -10.4  

95% Skew -0.299  0.069 0.477 -0.253 0.871  0.443 

95% Std Dev 7.5  10.7  14.6  17.2  15.2  13.7  

95% Min -34.6  -17.5  -19.3  -59.8  -32.3  -43.5  

95% Max -4.2  36.5  36.4  1.4  34.5  29.9  

       

100% # of points 82 348 125 46 82 683 

100% RMSE 20.2  17.7  16.4  32.7  19.9  19.4  

100% MAE 18.3  14.0  13.0  27.2  15.5  15.4  

100% Mean error -18.1  11.1  4.5  -26.5  -4.0  -9.3  

100% Median -17.4  10.8  1.1  -26.0  -7.7  -10.4  

100% Skew -0.330  -0.451 0.437 -0.303 1.516  0.541 

100% Std Dev 9.0  13.8  15.9  19.4  19.6  17.1  

100% Min -45.1  -66.5  -25.9  -75.9  -43.5  -75.9  

100% Max 8.7  54.8  40.7  15.2  85.1  85.1  
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Table 3.8  Accuracy of DTM for automatic processing (H = 1800 m, error in cm) 
 Occlusion path Landslide rock Sloped tea 

farm A 

Tea farm B Total  

95% # of points 78 330 44 78 530 

95% RMSE 18.3  25.8  37.6  40.0  26.6  

95% MAE 14.3  22.6  27.2  32.7  22.5  

95% Mean error -6.8  -15.7  25.8  29.3  -5.0  

95% Median -4.7  -19.4  18.5  29.2  -9.4  

95% Skew -0.140  0.650  1.072  0.555  0.541  

95% Std Dev 17.1  20.4  27.7  27.5  26.1  

95% Min -40.6  -54.6  -16.2  -43.4  -52.5  

95% Max 31.3  37.7  93.5  123.5  66.3  

      

100% # of points 82 348 46 82 558 

100% RMSE 21.0  28.4  40.2  47.0  32.1  

100% MAE 16.0  24.4  29.0  36.7  25.4  

100% Mean error -6.3  -15.1  26.3  29.2  -3.9  

100% Median -4.7  -19.4  18.5  29.2  -9.4  

100% Skew 0.339  0.804  0.974  0.179  0.986  

100% Std Dev 20.2  24.1  30.8  37.1  31.8  

100% Min -47.5  -76.1  -29.6  -88.5  -88.5  

100% Max 60.7  82.5  106.4  157.0  157.0  
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Table 3.9  Accuracy of DTM for multiple-filter processing (H=1100m, error in cm) 

 Occlusion 

path 

Landslide 

rock 

Orchard 
Sloped tea 

farm A Tea farm B Total 

95% # of points 78 330 119 44 78 649 

95% RMSE 16.5  18.4  17.8  27.9  17.9  17.8  

95% MAE 14.6  15.4  13.8  22.8  14.0  14.8  

95% Mean error -14.6  14.7  8.3  -13.6  -3.8  6.2  

95% Median -14.2  13.8  3.1  -10.8  -4.9  7.5  

95% Skew -0.329  0.158 0.415 0.260 -0.235  -0.170 

95% Std Dev 7.8  11.1  15.9  24.6  17.6  16.8  

95% Min -33.6  -11.4  -19.3  -52.9  -66.9  -39.6  

95% Max -1.2  42.8  39.9  45.1  34.1  40.0  

       

100% # of points 82 348 125 46 82 683 

100% RMSE 17.5  20.0  18.9  30.4  23.6  20.9  

100% MAE 15.1  16.5  14.7  24.6  16.7  16.6  

100% Mean error -14.8  14.5  8.4  -12.6  -3.8  5.8  

100% Median -14.2  13.8  3.1  -10.8  -4.9  7.5  

100% Skew -0.506 -0.468 0.359 0.680 0.067  -0.376 

100% Std Dev 9.3  13.9  17.0  28.0  23.4  20.1  

100% Min -43.7  -61.6  -23.8  -55.0  -74.7  -74.7  

100% Max 10.1  50.6  44.3  73.4  86.7  86.7  
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Table 3.10  Accuracy of DTM for multiple-filter processing (H=1800m, error in cm) 

 Occlusion path Landslide rock
Sloped tea 
 farm A Tea farm B Total 

95% # of points 78 330 44 78 530 

95% RMSE 14.8  22.5  31.6  38.3  24.4  

95% MAE 11.5  18.7  24.3  33.6  19.8  

95% Mean error -32.6  -11.0  19.0  33.4  -0.5  

95% Median -30.3  -12.0  14.6  33.8  -3.1  

95% Skew -0.160  0.221  0.349  0.155  0.370  

95% Std Dev 14.9  19.6  25.5  18.9  24.4  

95% Min -33.3  -49.9  -37.9  -8.2  -47.0  

95% Max 27.6  43.3  76.5  79.4  61.7  

      

100% # of points 82 348 46 82 558 

100% RMSE 18.1  25.4  34.0  42.4  28.5  

100% MAE 13.2  20.7  26.1  35.2  22.2  

100% Mean error -5.8  -10.5  19.2  34.4  0.1  

100% Median -30.3  -12.0  14.6  33.8  -3.1  

100% Skew 0.480  0.488  0.348  1.573  0.714  

100% Std Dev 18.2  23.2  28.4  25.0  28.5  

100% Min -46.7  -73.5  -40.0  -13.7  -73.5  

100% Max 74.0  70.9  88.5  161.5  161.5  
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CHAPTER FOUR: ERROR ASSESSMENT AND DTM 

VALIDATION 

 

Evaluating LIDAR accuracy based on both land-cover types and terrain 

characteristics is important.  The vegetation types for collecting reference points are 

commonly divided into basic land-cover categories such as tall weeds, brush/low trees, 

and forests.  This chapter considers some quantitative descriptors such as vegetation 

angle, canopy volumes and LIDAR-derived tree height, to characterize the 

relationship between elevation accuracy and the types of vegetation.  In this chapter, 

an approach was proposed to identify vegetation characteristics based on LIDAR data.  

The derived vegetation information was factored into the evaluation of the impact of 

vegetation types on the accuracy of LIDAR-derived elevation. 

This investigation compared two overlapping datasets in high-relief test site in 

central Taiwan.  The test sites are of different type topography, with slopes ranging 

from 0° to 70.3°.  These two datasets were obtained from different flying altitudes 

under leaf-on conditions.  LIDAR-derived elevation was compared with in situ 

measurements.  The procedure for evaluation of LIDAR data quality was also 

assessed. 

 

4.1  Characterization of vegetation information 

The method to determine tree heights was straightforward.  The maximum 

height surface was calculated from the point clouds of the all-point data set by 

selecting the maximum elevation values within a 2-m sided square.  The maximum 

height surface represents treetops or ground when there is no tree cover above the 
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ground.  After this process, a grid DSM  with 2-meter resolution is formed.  A grid 

DEM with the same resolution is also linearly interpolated with TIN structure from 

the point clouds of the ground points.  The difference between the grid DSM and 

grid DEM is used to obtain the vegetation height.  If the cell value of vegetation 

height model is less than a threshold (0.3 m), the cell is assumed to refer to a small 

object or to be on the ground and is eliminated from the vegetation height model.  

The threshold 0.3 m represents two times the standard deviation of the elevation error 

(nominal accuracies 0.15 m).   

The descriptors for characterization of vegetation information are based on the 

checkpoints.  These descriptors include: 

(1) Average tree height: calculated from the vegetation height model by find the mean 

of the vegetation cells reached by a search distance (15 m) from the checkpoint. 

(2) Canopy cover (%): counting the number of vegetation cells reached by a search 

distance (15 m) from the checkpoint, dividing by the number of total cells 

reached. 

(3) Average canopy volume (m3/sq m): the stem volume (m3/ sq m) in the area 

reached, in which volume is estimated from cell area and the height of the 

vegetation pixel.  The average canopy volume is close to the mean tree height 

multiplied by the canopy cover.  For similar canopy volumes, low mean tree 

heights indicate a dense canopy while tall mean tree heights indicate a sparse 

canopy.  To characterize the interaction effect of tree height and canopy cover 

(%), the view-shed concept of calculating the line-of-sight of vegetation (i.e. 

vegetation angle) is adopted.   

(4) Vegetation angle 

Yokoyama et al. (2002) proposed the application of digital elevation models based 

on terrain openness to visualize topographic character.  This index is computed 
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with the all-point data set.  Figure 4.1 defines the geometric relationship in the 

profile between the ground checkpoint A (nA, eA, hA) and the laser data point B 

(nB,eB,hB).  The horizontal distance P between A and B is  

( ) ( )22
BABA -- eennP +=   (4.1) 

 

and the vegetation angleθB of line AB is  
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The set of all vegetation angles θ  between checkpoint A and each laser 

measurement point (filled dots in Figure 4.1) are on a profile along an azimuth D 

within a radial distance L from the checkpoint.  The greatest vegetation angle 

along an azimuth D, shown in Figure 4.1, is defined as directional vegetation 

angle βD , for which the line-of-sight is unobstructed to a specified range L.   
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Where points (nB, eB, hB) represent B’s neighbors along an azimuth D within a 

radial distance L.  The range of βD is 0 to 90 degrees and βD is 0 degree when 

HB < HA. 

The vegetation angle of canopy is obtained as the mean of the greatest vegetation 

angles in all eight compass directions from the central checkpoint A (Figure 4.2). 

β = (β0 + β45+ ...+β315 )/8 （4.4） 

Shorter L-values emphasize fine canopy features and a longer L emphasizes 

coarse-scale terrain features.  The maximum L should be shorter than half of the 
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swath width.  This study uses L = 20 m.  Low vegetation angle of canopy 

indicates good openness to the sky.  For similar tree heights, higher vegetation 

angles indicate a dense canopy.  Similarly, for similar canopy densities, higher 

elevation angles indicate taller canopies. 

 

 
Figure 4.1. The greatest vegetation angle 
is defined as the maximum angle of the 
line-of-sight unobstructed to a specified 

distance L. 

 
Figure 4.2. Azimuth angle D is measured 
clockwise from north. 

 

 

(5) Local roughness of point clouds 

To distinguish different vegetation types, the roughness value is computed for 

each point in the all-point data set.  The roughness is defined as the difference 

between the actual LIDAR measured height and the one interpolated from the 

enclosing triangle of the point under investigation.  For the sake of simplicity, 

linear interpolation is used.  After the roughness model is constructed, the 

roughness value for each checkpoint is obtained by linear interpolation with TIN 

from the roughness model.    

(6) Determination of point spacing of LIDAR ground returns 

The basic concept in evaluating the point spacing of ground returns would be 

calculating the point spacing of ground points.  This study used the distance 
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between a ground checkpoint and the nearest LIDAR mass point to evaluate the 

distance between LIDAR ground returns (Hodgson et al., 2003).  The distance 

between LIDAR pulses and the canopy penetration may affect the mean distance 

to the nearest LIDAR point.  In non-vegetated areas, the mean distance to the 

nearest LIDAR point is proportional to the average distance between LIDAR 

pulses.  In vegetated areas, the mean distance to the nearest LIDAR point can be 

used as an indicator whether the laser points can reach the ground surface 

(Hodgson et al, 2003). 

 

4.2  Descriptions of land-cover types by vegetation information 

Table 4.1 lists the 29 tree heights measured from a field survey.  Analysis of H 

= 1100 m dataset (Table 4.2) revealed an average tree height of 1.48 meters in the 

orchard, 1.07 meters in tea farm A, and 1.65 meters in the tea farm B.  The 

differences between surveyed tree height and LIDAR-derived tree height for each area 

were as follows: orchard (–9 cm), tea farm A (4 cm) and tea farm B (90 cm).  The 

tree height derived from LIDAR is correlated with that measured in the field.  

 

Table 4.1  Summary of 29 tree height measurements from field survey  
Area # of 

points

Average 

(m) 

Median

(m) 

Std. Dev.

(m) 

Min 

(m) 

Max 

(m) 

25th 

Percentile (m) 

75th 

Percentile (m)

Orchard 5 1.57 2.15 0.98 0.50 2.40 0.50 2.30 

Tea farm A 12 1.03 1.10 0.29 0.20 1.20 1.05 1.20 

Tea farm B 12 0.75 0.60 0.28 0.50 1.10 0.50 1.05 

 

The vegetated areas in ascending order of the vegetation angle were as follows: 

orchard, tea farm A, tea farm B, and occlusion path.  The ranking order of vegetation 
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angle is identical to that of canopy volume and local roughness of point clouds for 

both datasets (Table 4.2, Table 4.3). 
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Table 4.2  Summary statistics of results for H = 1100 m dataset 
 Evaluation area 

 Pavement Landslide rock Wet soil Orchard Tea farm A Tea farm B Occlusion path
 

Number of checkpoints 137 348 86 125 46 82 82 p-value 

Tree height (m) 1.08 0.67 0.69 1.48 1.07 1.65 4.29 <0.001 

Canopy volume (m3/sq m) 0.20 0.07 0.04 0.30 0.40 0.50 2.44 <0.001 

Canopy cover (%) 15.2 9.0 2.1 13.1 33.1 24.0 51.5 <0.001 

Vegetation angle (degree) 15.3 21.2 5.8 20.2 23.9 26.0 43.0 <0.001 

Average local roughness (cm) 8.3 13.8 7.3 11.7 21.7 31.8 79.2 <0.001 

Mean distance to nearest LIDAR Point (m) 0.43 0.46 0.40 0.48 0.48 0.50 0.53 0.123 

Slope (degree) 8.87 25.04 8.34 8.74 21.89 13.62 7.64 <0.001 
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Table 4.3  Summary statistics of results for H = 1800 m dataset 
 Evaluation area 

 Pavement Landslide rock Wet soil Tea farm A Tea farm B Occlusion path
 

Number of checkpoints 137 348 86 46 82 82 p-value 

Tree height (m) 0.79 0.63 0.59 1.30 1.61 3.63 <0.001 

Canopy volume (m3/sq m) 0.25 0.25 0.03 0.38 0.54 2.35 <0.001 

Canopy cover (%) 37.1 37.5 2.5 24.0 25.8 58.5 <0.001 

Vegetation angle (degree) 14.0 19.7 3.4 20.8 24.5 48.2 <0.001 

Average local roughness (cm) 12.9 36.6 12.0 29.8 39.9 86.8 <0.001 

Mean distance to nearest LIDAR point (m) 0.53 0.63 0.57 0.79 0.77 0.62 0.008 

Slope (degree) 6.75 24.21 3.51 12.58 11.02 8.82 <0.001 
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Table 4.4 shows the relationship between tangent of the vegetation angle and 

other vegetation information for H = 1100 m dataset.  Vegetation angle appears to 

vary with canopy volume, local roughness of point clouds, and the mean distance to 

the nearest LIDAR point, i.e., they are measuring the same land-cover phenomenon 

for H = 1100 m dataset.  The tangent of the vegetation angle is exponentially related 

to the canopy volume [correlation coefficient r = 0.98, p-value 0.02 < 0.05 level of 

significance, p-value is the probability of obtaining an F statistic, (Berenson, et al., 

2004)].  The tangent of the vegetation angle is significantly linearly correlated with 

the local roughness of point clouds (r = 0.96, determination coefficient r2 = 0.92, 

p-value 0.04 < 0.05 level of significance).  The determination coefficient r2 measures 

the proportion of variation in Y that is explained by the independent variable X in the 

regression model (Berenson, et al., 2004). 

SST
SSR

squaresofsumtotal
squaresofsumregressionr ==2  （4.5） 
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2)ˆ( , SSR is equal to the sum of the squared differences between 

the predicted value of Y and Y , the average value of Y.   

∑
=

−=
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1

2)( , SST is equal to the sum of the squared difference between 

each observed Y value and Y , the average value of Y. 

 

The area with tall and dense vegetation corresponds to a large vegetation angle; 

therefore the canopy volume and the local roughness of point clouds are also larger.  

Besides, LIDAR pulses were intercepted by dense vegetation producing a less dense 

set of ground returns.  The larger the vegetation angle, the greater the mean distance 
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to the nearest LIDAR point is.   

Table 4.5 shows the relationship between tangent of the vegetation angle and 

other vegetation information for H = 1800 m dataset.  The tangent of the vegetation 

angle is exponentially related to the canopy volume (correlation coefficient of 

regression r = 0.99, p-value 0.01 < 0.05 significance level).  This angle is also 

significantly correlated with the local roughness of point clouds linearly (r = 0.99, r2 = 

0.98, p-value 0.01 < 0.05 significance level).  However, unlike the findings in H = 

1100 m dataset, the mean distance to the nearest LIDAR point does not follow the 

ranking order of vegetation angle.  After checking the multiple over-flights, it is 

found that the overlap of flight strips also affect the point spacing of the ground 

returns in H = 1800 m dataset.  The density of LIDAR ground returns is related to 

the distance between LIDAR pulses, and land-cover type.   

In Table 4.2 and 4.3, the average of the local roughness on all checkpoints 

located in the corresponding site is tabulated.  The lowest average local roughness 

between both datasets is in the wet soil area, followed by the pavement area 

(roughness < 15 cm).  In flat areas, the local roughness provides a measure to assess 

the internal accuracy of the LIDAR measurements.  However, this index does not 

include the components from systematic errors.  Smith et al. (2004) presented the 

quantification of DSM errors introduced during the interpolation process, and 

examined the spatial pattern of interpolation errors.  They demonstrated the increase 

of errors over break-lines.  In both datasets, the greatest values for local roughness of 

point clouds fall in the occlusion path area, which features a steep slope and high trees 

on both sides of the path.  The local roughness of point clouds in area of occlusion 

path demonstrates the need for extra measurements to be made to improve surface 

modeling. 

The local roughness of point clouds in each area of H = 1100 m dataset is lower 
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than that of H = 1800 m dataset, suggesting that more accurate or denser LIDAR 

measurements in H = 1100 m set yield lower local roughness of point clouds.  

Notably, the greatest difference of the local roughness of point clouds between two 

datasets, of up to 165%, is in the landslide rock area (with a slope of 25°).  The 

denser dataset (H = 1100 m) corresponds to a better approximation of the steep terrain 

surface (i.e., in landslide rock area the local roughness of point clouds was 13.8 cm 

for H = 1100 m set, compared to 36.6 cm for H = 1800 m set). 
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Table 4.4  Relationship between vegetation information for H = 1100 m dataset 
 Vegetation angle  

 tan (0°) – tan (10°) tan (10°) – tan (20°) tan (20°) – tan (30°) tan (30°) – tan (90°) Mixed p-value 

Number of points  191 353 158 79 781  

Mean tangent of the elevation angle 0.0994 0.2625 0.4445 0.9486 0.3288  

Canopy volume (m3/sq m) 0.08 0.18 0.47 2.09 0.41 <0.001 

Average local roughness (cm) 11.25 12.76 20.65 90.66 21.87 <0.001 

Mean distance to nearest LIDAR 

point (m) 

0.62 0.61 0.65 0.68 0.63 0.123 
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Table 4.5  Relationship between vegetation information for H = 1800 m dataset 
 Vegetation angle  

 tan (0°) – tan (10°) tan (10°) – tan (20°) tan (20°) – tan (30°) tan (30°) – tan (90°) Mixed p-value 
Number of points  60 304 285 132 781  

Mean tangent of the elevation angle 0.1246 0.2844 0.4338 1.2357 0.4875  

Canopy volume (m3/sq m) 0.02 0.13 0.20 1.64 0.41 <0.001 

Average local roughness (cm) 13.5 29.3 29.4 69.7 35.0 <0.001 

Mean distance to nearest LIDAR 

point (m) 
0.56 0.66 0.62 0.60 0.63 0.008 



 76 

 

4.3  Analysis of point spacing of LIDAR ground returns 

The distance between each ground checkpoint and its nearest LIDAR point is 

used in analyzing point spacing of LIDAR ground returns.  For purposes of 

discussion, land-cover type (Tables 4.2 and 4.3) is further classified into two broad 

groups: bald areas, including pavement, landslide rock and wet soil; and vegetated 

areas, including orchard, sloped tea farm A, tea farm B, and occlusion path.  For H = 

1100 m dataset, the average mean distance to the nearest LIDAR point from the group 

of bald areas (0.45 cm) is significantly shorter than that from the vegetated areas (0.50 

cm; p-value 0.001 < 0.05 significance level).  For H = 1800 m dataset, the average 

mean distance to the nearest LIDAR point from the bald areas (0.60 cm) is 

significantly less than that from the group of vegetated areas (0.72 cm; p-value 0.001 

< 0.05 significance level).   The point spacing of ground returns in all areas of H = 

1100 m dataset is shorter than those in H=1800m dataset. 

 

4.4  Analysis of terrain slope  

The steepest average slope was in the area of landslide rock, followed by the 

area of tea farm A, which has average slope of 22 degree.  Notably, the slope derived 

from H = 1100 m dataset is almost larger than that from H = 1800 m dataset, except 

occlusion path area.  The greatest difference (9.3°) of derived slope between two 

datasets, of up to 42%, is in the area of tea farm A.  Observing from Figure 4.3, the 

process of vegetation removal has an impact on the slope error.  As shown in the 

shaded relief map, Figure 4.3, H = 1100 m dataset includes the terrain details that 

allow the steps in the tea plantation to be clearly read.  In contrast, an over-filtering 
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approach adopted for H = 1800 m dataset produces the result of smoothing a slope, 

and clipping small peaks.  The coarse digital elevation model obtained by 

interpolating ground points from less dense H = 1800 m dataset will be 

underestimated.  The density of LIDAR ground returns is related to the distance 

between LIDAR pulses, land-cover type, and vegetation removal approach.  

 

 
(a) H = 1100 m dataset  

 
(b) H = 1800 m dataset 

Figure 4.3. Comparison of shaded relief maps for tea farm A. 

(average slope 22 degree) 

 

4.5  Verifying the distribution of checkpoints 

An experimental strategy for arranging checkpoints is required in order to 

consider any possible interaction between the error factors.  Table 4.6 presents the 

checkpoints distribution by slope class and vegetation angle.  The sampling is 

designed to have sufficient number of checkpoints for each category, in order to avoid 

the influence of land-cover factor on the elevation accuracy assessment. 
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Table 4.6  Number of checkpoints by slope class and vegetation angle 
 Slope  

Vegetation angle 0° – 6° 6° – 25° > 25° Total count

0° – 20° 144 337 153 634 

20° – 30° 41 101 50 192 

> 30° 28 41 11 80 

Total count 213 479 214 906 

 

 

4.6  Assessing errors using checkpoints   

The ‘difference’ or elevation error for each checkpoint is computed by 

subtracting the surveyed elevation of the checkpoint from the filtered LIDAR dataset 

elevation interpolated at the x/y coordinate of the checkpoint.  The interpolation 

method is the Delaunay triangulation with linear interpolation.  LIDAR-derived 

elevation was converted into triangulated irregular networks.  Differences were 

obtained by subtracting the reference elevation from the LIDAR elevation: 

Elevation Error (i) = LIDAR-derived Elevation (i) － Reference Elevation (i) (4.6) 

Positive values reveal overestimates of the actual surface height.  The error 

analysis uses all checkpoint errors to compute the accuracy statistics.  Because a 

large error (outlier) can skew RMSE calculations of checkpoints, the best 95 percent 

elevation errors were also used for the 95 percent statistics calculation.  The 

procedure for error assessment in three steps:  

(1) Checking whether the mean signed error from the expected central tendency is 
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zero.  When the mean error is large, a bias or systematic error may be present; 

(2) Checking whether the skewness exceeds ±0.5 to determine whether the errors 

follow a normal distribution.  Skewness can also be detected by comparing the 

mean and median.  When the mean is greater than median, the distribution is 

positively skewed;  

(3) Analyzing the histogram of errors, particularly positive errors (overestimates) and 

checking whether the distribution has a bimodal phenomenon, to judge whether 

the filtering process retains un-cleaned artifacts. 

This section evaluated the LIDAR-derived TINs using the Terrascan software 

for the automated filtering.  The accuracy of LIDAR-derived TINs is summarized in 

Table 4.7 and Table 4.8.  The best 95% of the checkpoint errors demonstrate that the 

overall mean signed error for H = 1100 m dataset is -0.3 cm, and that for H = 1800 m 

dataset is -5.9 cm.  As expected, H = 1100 m dataset involving a lower flight height 

was associated with a lower overall 16.3 cm RMSE, while H = 1800 m dataset 

involving higher flight height had a larger 25.8 cm RMSE.  Cross-reference of both 

datasets reveals a difference in RMSE of 27.6 cm and a mean signed error of +6.0 cm.  

The standard deviation of differences describes random error.  The standard 

deviation of differences in each land-cover type for H = 1100 m dataset is 

considerably smaller than 15 cm, except in the area of sloped tea farm A (17.2 cm).   
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Table 4.7  Accuracy of terrain model for H = 1100 m dataset (error in cm) 
 Pavement Occlusion path Landslide rock Wet soil Orchard Sloped tea farm A Tea farm B Total 

95% # of points 130 78 330 82 119 44 78 861 

95% RMSE 8.2 19.4 15.5 13.9 15.2 31.3 15.9 16.3 

95% MAE 6.4 17.9 12.7 11.8 12.0 26.4 13.6 13.0 

95% Mean error -1.4 -17.9 11.3 -10.2 4.4 -26.3 -4.8 -0.3 

95% Median -0.6 -17.4 10.8 -11.6 1.1 -26.0 -7.7 0.4 

95% Skew -0.310 -0.299 +0.069 +0.272 +0.477 -0.253 +0.871 -0.304 

95% Std Dev 8.1 7.5 10.7 9.5 14.6 17.2 15.2 16.3 

95% Min -20.1 -34.6 -17.5 -26.2 -19.3 -59.8 -32.3 -59.8 

95% Max 14.1 -4.2 36.5 9.9 36.4 1.4 34.5 36.5 

         

100% # of points 137 82 348 86 125 46 82 906 

100% RMSE 9.2 20.2 17.7 14.5 16.4 32.7 19.9 18.0 

100% MAE 7.1 18.3 14.0 12.2 13.0 27.2 15.5 14.0 

100% Mean error -1.7  -18.1  11.1  -10.2  4.5  -26.5  -4.0  +0.3 

100% Skew -0.428  -0.330  -0.451  +0.173  +0.437  -0.303  +1.516  -0.087 

100% Std Dev 9.1  9.0  13.8  10.4  15.9  19.4  19.6  17.8 

100% Min -28.4 -45.1 -66.5 -36.3 -25.9 -75.9 -43.5 -75.9 

100% Max 14.8 8.7 54.8 11.6 40.7 15.2 85.1 85.1 
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Table 4.8  Accuracy of terrain model for H = 1800 m dataset (error in cm) 
 Pavement Occlusion path Landslide rock Wet soil Sloped tea farm A Tea farm B Total H=1100m — H=1800m 

95% # of points 130 78 330 82 44 78 742 742 

95% RMSE 11.7 18.3 25.8 20.3 37.6 40.0 25.8 27.6 

95% MAE 9.9 14.3 22.6 18.4 27.2 32.7 20.5 22.6 

95% Mean error -4.6 -6.8 -15.7 -18.4 25.8 29.3 -5.9 6.0 

95% Median -5.7 -4.7 -19.4 -17.2 18.5 29.2 -9.7 9.4 

95% Skew +0.119 -0.140 +0.650 -0.463 +1.072 +0.555 +1.207 -0.457 

95% Std Dev 10.8 17.1 20.4 8.6 27.7 27.5 25.1 26.9 

95% Min -36.3 -40.6 -54.6 -37.9 -16.2 -43.4 -54.6 -63.3 

95% Max 17.3 31.3 37.7 -4.9 93.5 123.5 123.5 56.7 

         

100% # of points 137 82 348 86 46 82 781 781 

100% RMSE 14.0 21.0 28.4 20.7 40.2 47.0 28.6 32.3 

100% MAE 11.2 16.0 24.4 18.5 29.0 36.7 22.1 25.4 

100% Mean error -5.3  -6.3  -15.1  -18.5  26.3  29.2  -5.7 5.4  

100% Skew +0.553  +0.339  +0.804  -0.411  +0.974  +0.179 +1.183 -0.620  

100% Std Dev 13.0  20.2  24.1  9.4  30.8  37.1  28.0 31.9  

100% Min -50.4 -47.5 -76.1 -40.4 -29.6 -88.5 -88.5 -118.7 

100% Max 21.2 60.7 82.5 1.0 106.4 157.0 157.0 105.7 
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Table 4.9 presents mean signed errors of over ±15 cm in italics, including those 

of the occlusion path area and the tea farm A for H = 1100 m dataset.  The mean 

signed errors of over ±15 cm were in the areas of landslide rock, wet soil, tea farm A, 

and tea farm B for H = 1800 m dataset.   

 

Table 4.9  Mean signed error 
 Mean of signed error in cm 

Evaluation area Pavement Landslide 
rock 

Wet soil Orchard Tea farm A Tea farm B Occlusion 
path 

H = 1100 m -1.4 +11.3 -10.2 +4.4 -26.3 -4.8 -17.9 

H = 1800 m -4.6 -15.7 -18.4 No data +25.8 +29.3  -6.8 

 

The skewness exceeds ±0.5 in area of tea farm B for H = 1100 m dataset and 

areas of landslide rock, tea farm A and tea farm B for H = 1800 m dataset (Table 

4.10). 

 

Table 4.10  Checking the skewness 
 Skewness 

Evaluation area Pavement Landslide 
rock 

Wet soil Orchard Tea farm A Tea farm B Occlusion 
path 

H = 1100 m -0.310 +0.069 +0.272 +0.477 -0.253 +0.871 -0.299

H = 1800 m +0.119 +0.650 -0.463 No data +1.072 +0.555 -0.140

 

4.7  Elevation error and vegetation type 

 

1. Elevation error and land-cover class 

Table 4.11 summarizes the MAE for each land-cover class.  For both datasets, 



 83 

the mean absolute errors significantly differed (p-value 0.001 < 0.05 significance 

level) between land-cover types.  Figure 4.4 shows the MAE for various land-cover 

types.  The mean absolute errors of H = 1100 m dataset for each land-cover class, 

except area of occlusion path, are smaller than those of H = 1800 m.  The MAE of H 

= 1100 m dataset is considerably smaller than 15 cm, except in areas of occlusion path 

and tea farm A.  For H = 1100 m dataset, with the steep slope of 25 degree, the 

landslide rock site has elevation errors less than 15 cm.  The heavily vegetated sites 

such as orchard and tea farm B are also within 15 cm.   

 

Table 4.11  Elevation error by land-cover class (error in cm)  

 Evaluation area    

 Pavement Occlusion 
path 

Landslide 
rock 

Wet soil Orchard Tea farm A Tea farm B Total F-value p-value

Count of 
H=1100m 130 78 330 82 119 44 78 861   

MAE of 
H=1100m  6.4 17.9 12.7 11.8 12.0 26.4 13.6 12.8 33.593 <0.001

Count of 
H=1800m 130 78 330 82 na 44 78 742   

MAE of 
H=1800m  9.9 14.3 22.6 18.4 na 27.2 32.7 20.4 33.964 <0.001
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Figure 4.4. MAE error of both datasets, using various types of land-cover. 

 

 

2. Elevation error and canopy volume 

As previously discussed, the H = 1100 m dataset gives better results than H = 

1800 m.  The better dataset (H = 1100 m) was used to derive reference canopy 

volume and vegetation angle.  Classes of different canopy volume and vegetation 

angle were generated.  The canopy volume derived from H = 1100 m is used as a 

reference canopy volume to evaluate the effect of vegetation type on elevation error.  

For both datasets, the mean absolute errors significantly differed (both p-value 0.001 

< 0.05 level of significance) between classes.  The elevation errors vary with canopy 

volume.  Figure 4.5 reveals that elevation error is positively correlated with canopy 

volume.  A greater canopy volume implies a greater elevation error.  For H = 1100 

m, when the canopy volume was less than 0.2 (m3/sq m), the MAE did not exceed 15 

cm.  For H = 1800 m dataset, the worst case (MAE 27.4 cm) was for canopy volume 

between 0.3 and 0.5 (m3/sq m).  However, the MAE of H = 1800 m dropped sharply 
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to 15.3 cm when the canopy volume exceeded 1.0 (m3/sq m) because the filtering 

process in H = 1800 m dataset was cleaner when the trees were taller and the canopy 

volume exceeded 1.0 (m3/sq m) (Table 4.12).   

 

Table 4.12  Elevation error related to vegetation type by reference canopy volume 

 Canopy volume (m3/sq m)    

 0-0.1 0.1-0.2 0.2-0.3 0.3-0.5 0.5-1.0 >1.0 Total F p-value

Count of H=1100m 419 126 71 46 31 88 781   

Average (m3/sq m) 0.04 0.15 0.25 0.36 0.66 2.60 0.41   

MAE of H=1100m (cm) 12.0 14.0 17.9 15.7 17.5 18.1 14.0 7.686 <0.001

MAE of H=1800m (cm) 22.2 22.5 24.4 27.4 26.3 15.3 22.1 3.975 <0.001

 

 

 

Figure 4.5. Elevation error as a function of canopy volume. 
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3. Elevation error and local roughness of point clouds  

Table 4.13 presents the relationship between the elevation errors and the local 

roughness of point clouds.  For both datasets, the MAE was significantly different 

(p-value < 0.05 significance level) between local roughness classes.  This indicates 

that the elevation errors are associated with the local roughness of points.  Figure 4.6 

plots the relationship between elevation error and the local roughness.  A larger local 

roughness indicates greater elevation error.  For H = 1100 m dataset, when the local 

roughness was less than 25 cm, the MAE of the elevation did not exceed 15 cm.  
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Table 4.13  The elevation error and local roughness on checkpoints  

 Local roughness (cm)    

 0-10  10-15 15-20 20-25 25-35 >35 Total F p-value

Count of H = 1100 m  364 121 85 61 61 89 781   

MAE of H=1100m (cm) 13.0 13.1 13.2 14.4 17.0 17.7 14.0 3.703 0.003 

Count of H = 1800 m 172 90 80 75 115 249 781   

MAE of H=1800m (cm) 18.0 19.1 21.1 25.6 23.9 24.6 22.1 4.167 0.001 
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Figure 4.6. Elevation error as a function of local roughness on checkpoints. 

 

4. Elevation error and vegetation angle 

The vegetation angle obtained from H = 1100 m is used as a reference one to 

evaluate the impact of vegetation type on the elevation error.  For H = 1100 m, the 

MAE was significantly different (p-value < 0.05 significance level) between 

vegetation angle classes (Table 4.14).  For H = 1800 m dataset, the MAE was also 
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different significantly.  Figure 4.7 shows a linear relationship between the vegetation 

angle and the MAE.  The determination coefficient of regression r2 is 0.95 for H = 

1100 m (Table 4.15).  A greater vegetation angle implies greater elevation error. 

 
Table 4.14  Relationship between elevation error and vegetation angle 

 Vegetation angle (degree)    

 0~20 20~30 30~90 Total F p-value

Count of H = 1100 m 544 158 79 781   

Average (degree) 11.5 23.9 40.8 73.0   

MAE of H = 1100 m (cm) 11.7 18.0 21.9 14.0 45.107 <0.001

MAE of H = 1800 m (cm) 21.2 24.2 24.6 22.1 2.536 0.080

 

Table 4.15  Regression of elevation error and vegetation angle  
Dataset Intercept 

β0 

Regression 

coefficient 

β1 

Std. Err of

β0 

Std. Err of

β1 

p-value of

β0 

p-value of

β1 

Correlation 

Coefficient 

r 

Coefficient of 

Determination

r2 

H=1100m 8.532 0.341 2.179 0.078 0.159 0.142 0.975 0.951 

H=1800m 20.523 0.111 1.715 0.061 0.053 0.321 0.876 0.767 
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Figure 4.7. Elevation error as a function of vegetation angle. 

 

4.8  Elevation error and point spacing of LIDAR ground returns 

Table 4.16 shows the effect of point spacing of LIDAR ground returns on 

elevation error for the two datasets.  The MAE was significantly different for both 

datasets (p-value < 0.05 significance level) between the classes of the mean distance 

to the nearest LIDAR point.   

Figure 4.8 reveals that the elevation errors of H = 1100 m are lower than those 

of H = 1800 m in all classes.  The mean distance to the nearest LIDAR point is 

linearly correlated to the elevation error.  The determination coefficients of 

regression r2 exceed 0.9 for both plots (Table 4.17).  A larger mean distance to the 

nearest LIDAR point implies greater elevation error. 
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Table 4.16  Elevation error and mean distance to the nearest LIDAR point 

 Mean distance to nearest LIDAR point    

 0-0.4 m 0.4-0.8 m >0.8 m Total F p-value

Count of H = 1100 m 319 417 45 781   

Average (m) 0.27 0.56 0.90 0.46   

MAE of H = 1100 m (cm) 12.7 14.5 18.6 14.0 6.417 0.002

Count of H = 1800 m 160 412 209 781   

Average (m) 0.30 0.60 0.95 0.63   

MAE of H = 1800 m (cm) 16.3 22.7 25.5 22.1 12.468 <0.001

 

Table 4.17  Regression of elevation error and mean distance to the nearest LIDAR 
point  

 Intercept 

β0 

Regression 

coefficient 

 β1 

Std. Err of

β0 

Std. Err of 

β1 

p-value of

β0 

p -value of 

β1 

Correlation 

Coefficient 

r 

Coefficient of 

Determination

r2 

H=1100m 9.74 9.51 0.697 1.175 0.005 0.015 0.985 0.970 

H=1800m 12.97 14.00 1.822 2.755 0.019 0.037 0.963 0.928 
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Figure 4.8. Elevation error as a function of the mean distance 

to the nearest LIDAR point. 

 

4.9  The combination effect of vegetation angle and point spacing 

As noted previously, Figure 4.7 plots the relationship between the vegetation 

angle and elevation error.  Notably, the two lines of the two datasets are not parallel 

(Figure 4.7).  The different dataset and the magnitude of vegetation angle have a 

profound impact on the elevation error.  

This section considers the interaction effect between the elevation angle and the 

point spacing of the ground returns.  Table 4.18 shows that, according to the product 

of the mean distance to the nearest LIDAR point and the tangent of the vegetation 

angle, MAE significantly differed (both p-value < 0.05 significance level).  As 

shown in Figure 4.9, the two lines of the linear regression are approximately parallel, 

indicating an absence of interaction effect for the combined factors.  The 

determination coefficients of regression r2 exceed 0.9 for both datasets (Table 4.19).   

The elevation error is a function of the combination of vegetation angle and the 
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point spacing of the ground returns.  The point spacing of the ground returns 

compensates the effect of the vegetation type (vegetation angle) on the elevation error.   

 
 

Table 4.18  Relationship between elevation error and the product of distance to 
nearest LIDAR point and the tangent of the elevation angle 

 Nearest distance × tan (vegetation angle)    

 0-0.146 0.146-0.291 >0.291 Total F p-value

Count of H = 1100 m 506 193 82 781   

Average  0.0773 0.2035 0.5289 0.1559   

MAE of H=1100m (cm) 11.7 16.8 21.8 14.0 39.695 <0.001

Count of H = 1800 m 423 216 142 781   

Average 0.0725 0.2073 0.5827 0.2025   

MAE of H=1800m (cm) 19.2 21.9 30.5 22.1 21.089 <0.001

 

Table 4.19  Regression of elevation error and the product of distance to nearest 
LIDAR point and the tangent of the elevation angle 

Dataset Intercept 

β0 

Regression 

coefficient 

β1 

Std. Err of

β0

Std. Err of

β1 

p-value of

β0 

p-value of

β1 

Correlation 

Coefficient 

r 

Coefficient of 

Determination

r2 
H=1100m 11.11 20.97 1.81 5.47 0.103 0.162 0.968 0.936 
H=1800m 17.45 22.31 0.22 0.60 0.008 0.017 0.999 0.999 
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Figure 4.9. Elevation error as a function of the product of the mean distance to nearest 

LIDAR point and the tangent of the vegetation angle. 

 

4.10  Elevation error and terrain form 

 

1. Elevation error and slope 

The slope derived from H = 1100 m is used as the reference slope to evaluate 

the impact of terrain slope on elevation error.  The MAE was significantly different 

for both datasets (both p-value < 0.05 significance level) between slope classes (Table 

4.20).  Figure 4.10 demonstrates that the slope is linearly correlated to the elevation 

error.  The determination coefficients of regression r2 exceed 0.9 for both plots 

(Table 4.21).  The mean absolute error increases with the terrain slope.  For H = 

1100 m, when the slope was less than 25°, the MAE did not exceed 15 cm.   
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Table 4.20  Elevation error by reference slope  

 Slope (in degrees)    

 0-6 6-25 >25 Total F p -value

Count of H = 1100 m 159 411 211 781   

Average slope of H = 1100 m 3.78 14.79 31.84 17.15   

MAE of H = 1100 m (cm) 12.2 13.5 16.3 14.0 6.720 0.001 

MAE of H = 1800 m (cm) 16.6 22.1 26.4 22.1 14.046 <0.001

 

 

Table 4.21  Regression of elevation error and slope  

Dataset Intercept 

β0 

Regression 

coefficient 

β1 

Std. Err of

β0 

Std. Err of

β1 

p-value of

β0 

p-value of

β1 

Correlation 

Coefficient 

r 

Coefficient of 

Determination

r2 

H=1100m 11.519 0.148 0.255 0.013 0.014 0.053 0.996 0.993 

H=1800m 15.971 0.341 1.367 0.067 0.054 0.124 0.981 0.963 
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Figure 4.10. Elevation error as a function of slope. 

 

 

2. Elevation error and the combination of slope and point spacing 

This section considers the interaction effect between the slope and point spacing 

of ground returns.  Table 4.22 shows that, the product between the mean distance to 

the nearest LIDAR point and the tangent of slope demonstrates that MAE 

significantly differs for both datasets (both p-value < 0.05 significance level).  

 As shown in Figure 4.11, the two lines of the linear regression are 

approximately parallel, indicating an absence of interaction effect for the combined 

factors.  The determination coefficient of regression r2 is 0.98 for H = 1100 m (Table 

4.23).  The elevation error is a function of the combination of slope and the point 

spacing of the ground returns.  The point spacing of ground returns compensates the 

effect of the terrain slope on the elevation error.   
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Table 4.22  Relationship between elevation error and the product of the mean 
distance to the nearest LIDAR point and the tangent of the slope 

 Nearest distance × tan(slope)    

 0~ 

0.042 

0.042~

0.084 

0.084~

0.187 

0.187~

0.373 

>0.373 Total F p-value

Count of H = 1100 m 161 141 235 194 50 781   

Average  0.024 0.061 0.128 0.254 0.465 0.147   

MAE of H=1100m (cm) 11.2 12.2 13.6 15.7 23.3 14.0 13.674 <0.001

Count of H = 1800 m 165 124 159 246 87 781   

Average 0.022 0.059 0.134 0.272 0.498 0.183   

MAE of H=1800m (cm) 16.5 16.0 22.0 26.8 28.8 22.1 15.715 <0.001

 

 

Table 4.23  Regression of elevation error and the product of the mean distance to the 
nearest LIDAR point and the tangent of the slope  

Dataset Intercept 

β0 

Regression 

coefficient 

β1 

Std. Err of

β0 

Std. Err of

β1 

p-value of

β0 

p-value of

β1 

Correlation 

Coefficient 

r 

Coefficient of 

Determination

r2 

H=1100m 10.22 26.70 0.61 2.49 <0.001 0.002 0.987 0.975 

H=1800m 16.50 28.01 1.66 6.32 0.002 0.021 0.931 0.867 
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Figure 4.11. Elevation error as a function of product of the mean distance to the 

nearest LIDAR point and the tangent of the slope. 

 

 

3. Elevation error and aspect 

The terrain aspect obtained from the better dataset (H = 1100 m) is used as the 

reference terrain aspect in evaluating the elevation error.  For H = 1800 m dataset, 

the MAE was significantly different (p-value < 0.05 significance level) between 

aspect classes.  For H = 1100 m without cross-flight data, the MAE was significantly 

different (p-value < 0.05 significance level).  Notably, for H = 1100 m with 

cross-flight data, MAE was not significantly different (p-value of 0.607, Table 4.24, 

Figure 4.12).  As a consequence of the characteristics of sampling pattern and 

viewing direction, H = 1100 m dataset with extra cross-flight data may reduce the 

effect of terrain aspect on the elevation accuracy.   
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Table 4.24  Elevation error by aspect class  

 Aspect    

 N NE E SE S SW W NW Total F p-value

Count of H = 1100 m 33 90 190 280 90 46 25 27 781   

MAE of H = 1100 m (cm) 

with cross-flight data 

11.7 12.9 14.0 14.3 15.0 14.9 11.0 15.3 14.0 0.777 0.607

MAE of H = 1100 m (cm) 

without cross-flight data 

12.0 13.9 17.5 17.6 14.1 14.7 12.9 17.5 16.2 2.454 0.017

MAE of H = 1800 m (cm) 16.9 23.8 19.2 23.2 21.0 26.6 16.4 34.6 22.1 12.325 <0.001

 

 

 
(a) H = 1100 m with cross-flight data, H = 1800 m without cross-flight data 

Figure 4.12. Mean absolute error as a function of terrain aspect,  

comparing H = 1800 m with H = 1100 m 
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(b) Without cross-flight data 

Figure 4.12. Mean absolute error as a function of terrain aspect,  

comparing H = 1800 m with H = 1100 m 

 

 

4.11  Comparisons between photogrammetry and LIDAR 

In order to assure the quality of LIDAR-derived elevation data, a global 

comparison was conducted by evaluating the consistency of LIDAR- and 

photogrammetry-derived digital elevation data.  The differences in data acquisition 

by photogrammetry and by laser scanning are as follows: 

 

*  Stereo-image-based photogrammetric techniques require that points be visible in 

two overlapping aerial photos during data acquisition.  However, Airborne 

LIDAR technology merely requires one-directional laser signal with reflected 
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return to measure topographic elevation. 

*  In some forested areas, some laser pulses of LIDAR are able to penetrate forests 

to measure ground surface.  On the other hand, only a small number of the rays 

of aerial photography reach the terrain in a forest where the ground is covered 

with very dark shadows.  With aerial cameras, typically a wide-angle lens (75° 

FOV) is used, while the operation of laser scanning is more flexible, as the scan 

angle can be changed depending on the collection plan.  Typically a 20–40° scan 

angle is used.  In addition, the typical FOV of laser scanning is smaller than that 

of aerial cameras, with the result that laser scanning is less restricted by 

occlusions than photogrammetric techniques in forested areas. 

*  Aerial photography is influenced by weather conditions, sunlight, misty 

atmosphere, and so on.  However, laser scanning is less restricted by weather 

conditions and, in principle, allows data collection during daytime and nighttime. 

*  Aerial photography obtains images and 3D elevation data at the same time.  

However, laser scanning generally generates digital elevation data.  Laser signals 

do not reflect on water surface.  Therefore, it is more appropriate to apply 

photogrammetric techniques to determine the water boundaries.   

 

1. Aerial Photography  

The aerial photographs were taken on September 2002, using a Zeiss RMK 

aerial camera with a 153.594 mm lens.  The flying altitude for the photography was 

800 m above the ground, resulting in a photo scale of 1:5000.  The photographs were 

scanned at 12.5 μm resolution.  The photogrammetric processing was conducted 

using the SOCET SET package.  The bundle adjustment with standard deviation for 

the photo coordinates was ± 8.28μm. 
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2. Visual analysis 

Figure 4.13 displays the shaded relief map of three sets of DSM and DTM for 

visual comparisons in an area of occlusion path.  Figure 4.13 (a) depicts the 1-meter 

spacing DSM derived by the automatic matching method.  Figure 4.13 (c) and (e) 

depict the 1-meter spacing DSMs of H = 1100 m and H = 1800 respectively.  The 

LIDAR DSM demonstrates fine texture and clearer terrain features.  Roads and 

forest can be distinctly recognized in the shaded relief map of LIDAR data.  On the 

other hand, the shaded relief map of photogrammetry-derived data is more obscure.  

The visual comparison of DTM (Figure 4.13b, d, f) between the two methods also 

reveals that the shaded relief map of LIDAR-derived DTM demonstrates richer fine 

texture than that of photogrammetry-derived DTM.  Figure 4.13 (d) and (f) delineate 

details of terrain feature such as mountain ridges, drainages and small paths in forest, 

etc. 
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(a) Photogrammetry derived DSM (b) Photogrammetry derived DEM 

 

(c) DSM of H = 1100 m 

 

(d) DEM of H = 1100 m 

 

(e) DSM of H = 1800 m (f) DEM of H = 1800 m 

Figure 4.13. Visual comparisons of shaded relief maps. 

 

 

3. Contour analysis 

The contour maps were generated from DTM.  Figure 4.14 displays the 

contour lines derived from photogrammetry and LIDAR data.  Contour lines 

generated from photogrammetry DTM are smoother, while LIDAR-derived contour 

lines have sliver polygons and undesirable isolations.   
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(a) Photogrammetry derived contour 

234800 234900 235000 235100 235200 235300 235400

2650700

2650800

2650900

 

(b) H = 1100 m dataset 

234800 234900 235000 235100 235200 235300 235400

2650700

2650800

2650900

 

(c) H = 1800 m dataset 

Figure 4.14. The comparisons of contours.  

 

 

4. Quantitative comparison  

The ‘difference’ or elevation error for each checkpoint is computed by 

subtracting the surveyed elevation of the checkpoint from the photogrammetric DTM.   

Difference (i) = photogrammetry-derived Elevation (i) － Reference Elevation(i) (4.7) 
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Photogrammetric DTM was automated by manual editing after matching and 

reduction of the DSM.  The artifacts in photogrammetric DTM production method 

resulted from three sources: (1) manual editing, (2) automatic correlation, (3) 

interpolation induced elevation errors.   

The artifacts to digital Photogrammetric approaches are the poor results of 

stereo matching in the area of dense vegetation resulting in inaccurate elevation 

values.  We focus on the vegetation free area of landslide rock.  The area of 

landslide rock is one of 25° slopes, without coverage of vegetation.  It can be 

expected that due to little coverage of non-ground objects, DSM and DTM should be 

highly similar.  The comparison of three sets of DSM is shown in Table 4.25.  The 

difference between DSM of H = 1100 m and H = 1800 m results in MAE of 24.7 cm.  

The difference between DSM of photogrammetry and LIDAR data is greater in MAE 

of 30.8 cm.   

To assess the additional amount of interpolation error introduced into 

photogrammetry-derived DTM, the elevation value at each ground checkpoint was 

measured by manual in stereo model and compared with elevation of ground 

checkpoint, as illustrated in Table 4.26.  Not surprisingly, the highest MAE observed 

from the photogrammetry were over the area of sloped tea farm A (79.2 cm).  The 

error of photogrammetric manual measuring is expected to have a significant impact 

on the observed elevations in steeper terrain and dense vegetation.   

The accuracies for automated digital photogrammetry-derived DTMs are shown 

in Table 4.27.  The pavement area was suitable for assessing the observed accuracy 

after an interpolation process on open terrain.  The interpolation process resulted in 

increasing elevation error in the pavement area [increasing from 20.2 cm (in Table 

4.26) to 21.4 cm (in Table 4.27) MAE].   

The elevation error of DTM increasing from 25.7 cm (Table 4.26, manual 
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measurement) to 31.5 cm (Table 4.27, automated digital) in the landslide rock resulted 

from three sources: (1) manual editing, (2) automatic correlation, (3) interpolation 

induced elevation errors. 

Figure 4.15 displays the comparisons of DTMs from LIDAR-derived (Table 3.7 

to Table 3.10) vs. photogrammety-derived (Table 4.26).  Figure 4.15 compares five 

DTM results: (1) LIDAR data of the H = 1100 m filtered from multiple-filtering 

technique, (2) LIDAR data of the H = 1100 m filtered from automatic processing with 

manual edits, (3) LIDAR data of the H = 1800 m filtered from multiple-filtering 

technique, (4) LIDAR data of the H = 1800 m filtered from automatic processing, (5) 

aerial photography with manual measurements in photogrammetric workstation. 

 

 

Table 4.25  The differences of DSM in landslide rock (discrepancies between 
photogrammetry and LIDAR) 

DSM MAE 

(cm) 

Mean

(cm) 

Median

(cm) 

Std.Dev

(cm) 

Count Min 

(cm) 

Max 

(cm) 

H=1100m － H=1800m 24.7 13.6 15.1 27.2 8777100 -68.1 79.2 

H=1100m － Photo 30.8 -24.5 -21.5 31.9 8777100 -136.4 52.1 

H=1800m － Photo 44.1 -38.2 -37.9 37.1 8777100 -151.2 64.6 
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Table 4.26  The accuracy of DTM by manual measurement in stereo-mode environment  
 95% 

 # of  
Points 

95% 
RMSE 
(cm) 

95% 
MAE
(cm)

95% 
Average

(cm) 

95% 
Median

(cm) 

95% 
Skew

95%  
Std Dev 

(cm) 

95%
Min
(cm)

95%
Max
(cm)

100% 
# of 

Points 

100% 
RMSE
(cm) 

100%
MAE
(cm) 

100%
Min 
(cm) 

100% 
Max 
(cm) 

Pavement 130 24.3 20.2 16.8 17.6 -0.056 17.6 -17.9 56.3 137 25.7 21.2 -32.2 63.5 

Occlusion path 78 25.8 21.4 10.4 13.3 -0.383 23.8 -48.2 58.5 82 30.2 24.0 -80.4 89.1 

Landslide rock 330 30.0 25.7 24.7 24.5 0.010 17.0 -14.3 63.4 348 32.0 26.9 -41.9 91.0 

Wet soil 82 39.6 37.5 37.5 37.6 -0.191 12.8 9.0 61.5 86 40.4 37.7 -5.9 84.4 

Orchard 119 36.7 32.9 -32.8 -32.5 -0.233 16.4 -72.4 2.9 125 40.0 34.4 -126.8 22.3 

Sloped tea farm 44 99.1 79.2 6.3 -35.4 1.013 100.0 -122.9 240.9 46 107.9 85.0 -129.6 294.5 

Tea farm 78 24.3 19.2 -16.5 -15.8 0.033 17.9 -66.7 47.6 82 51.5 26.9 -71.5 304.3 

 

Table 4.27  The accuracy of DTM using automated digital photogrammetry 
 95% 

 # of  
Points 

95% 
RMSE 
(cm) 

95% 
MAE
(cm)

95% 
Average

(cm) 

95% 
Median

(cm) 

95% 
Skew

95%  
Std Dev

(cm) 

95% 
Min 
(cm) 

95%
Max
(cm)

100% 
# of  

Points 

100% 
RMSE 
(cm) 

100%
MAE
(cm) 

100%
Min 
(cm) 

100% 
Max 
(cm) 

Pavement 109 27.0 21.4 17.6 16.6 0.254 20.6 -26.6 69.4 104 28.6 22.6 -32.4 76.3 

Landslide rock 330 36.9 31.9 31.5 31.6 0.012 19.2 -9.2 73.0 348 38.5 33.1 -57.6 88.8 

difference = elevation from photogrammetry － elevation of checkpoint 
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Figure 4.15. The comparisons of DTMs from LIDAR-derived vs. photogrammetry-derived. 
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CHAPTER FIVE: CONCLUSIONS AND 

RECOMMENDATIONS 

 

 

In this research, a collection of algorithms for automatically extracting DTMs 

was developed.  Chapter 3 gives the framework of the proposed multiple-filtering 

processes.   

The proposed method involves the combination of multiple developed filters.  

In the first stage, an adaptive elevation-difference filter is used to remove larger 

objects such as buildings.  In the second stage, an adaptive steepest-descent filter 

removes medium objects such as dense trees. In the final stage, a directional 

steepest-descent filter removes small objects such as cars and single trees.  

Experimental results show that the proposed filtering procedures are capable of 

accurate and effective extraction of DTMs in the steep slopes, large variability areas, 

and urban areas.  It is difficult to process with fixed parameters in areas of different 

topography.  This study proposed that the best parameter of search radius for each 

object point could be determined automatically.  The research also proposed 

adaptive techniques to overcome the influence of terrain relief on filtering 

performance.  The proposed adaptive techniques achieved a better result (MAE of 

22.2 cm) compared to traditional automated processing (MAE of 25.4 cm) in a 

random sample of 558 measurements with steep slopes and large variability. 

This research developed a framework to evaluate the impact of terrain slope, 

terrain aspect, and land-cover type on elevation accuracy.  Methods to extract 

land-cover types from LIDAR measurements were presented in order to characterize 

the vegetation information.  They analyze LIDAR-derived tree height, canopy 
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volume, local roughness, and vegetation angle.  These methods measure the same 

land-cover phenomenon for both datasets.  In addition, the average distance from the 

ground checkpoints to the nearest LIDAR point may determine the point spacing of 

LIDAR ground returns.  The results show that the lower flying altitude (H = 1100 m) 

gives better results (RMSE of 16.3 cm) than the higher altitude H = 1800 m (RMSE 

of 25.8 cm).  The better dataset (H = 1100 m) was used to derive reference slope, 

aspect, and vegetation angle.  Classes of different slopes, aspects, and vegetation 

angles were generated.  For each class, the LIDAR-derived elevation was compared 

with in situ measurements to compute the elevation accuracy.   

The results show that the LIDAR-derived elevation is almost correlated with 

terrain slope, vegetation angle, canopy volume, local roughness of point clouds, and 

mean distance to the nearest LIDAR point.  There is an interaction effect between 

the point spacing of ground returns and vegetation angle.  The results show a 

significant linear relationship between the elevation accuracy and the combination 

with point spacing of ground returns and vegetation angle (determination coefficient 

of regression r2 > 0.9).  The product of point spacing of ground returns and the 

tangent of the vegetation angle can determine the effect of land-cover class on 

elevation accuracy.  Additionally, there is an interaction effect between the point 

spacing of ground returns and terrain slope.  The elevation accuracy is significantly 

linearly correlated with the combination of point spacing of ground returns and slope 

(r2 towards 0.9). 

Finally, a significant effect of the terrain aspect was also found with the 

elevation error for H = 1800 m and for H = 1100 m without the cross-flight data (at 

the 0.05 significance level).  On the other hand, there was no specific influence of 

terrain aspect on elevation error for dataset H = 1100 m with extra cross-flight data.  

As a consequence of the characteristics of sampling pattern and viewing direction, 
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dataset H = 1100 m with extra cross-flight data may reduce the effect of terrain aspect 

on the elevation accuracy. 

The multiple-filtering processes require the selections of threshold parameters, 

and these have a great impact on the filtering results.  The selection process is 

normally done by trial and error, but it can be improved and fully automated.   

To process large datasets, a solution can be improved to divide the whole scene 

into multiple overlapping sections automatically so that each section is a scene with 

homogenous terrain and is processed individually.  Then different parameters are 

used for different subsets and subsets can be improved to merge automatically.     
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