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ABSTRACT

In this paper, we perform the semiclassical limit of the Gross-Pitaevskii equation
with rotation by two different approaches. First, we use the modified Madelung
transformation to focus on the quasilinear symmetric hyperbolic system, which
IS equivalent to the quantum hydrodynamical equations. We establish that before
the formation of singularities in the limiting system, the quantum density and
guantum momentum converge to the unique solution of the compressible
rotational Euler equation as the Planck constant 7 tends to zero. In addition,
we prove the existence and uniqueness of local solutions of the compressible
rotational Euler equation in dimension 2. Second, we consider the case when the
qguantum density and quantum momentum are near the constant state (1,0). We
establish that the Gross-Pitaevskii equation with rotation converges weakly to
the wave map equation, equivalently the linear wave equation. The result of this
approach leads the discussion of the acoustic wave.

Keywords : rotation, Gross-Pitaevskii equation , semiclassical limit, Euler equation.



You are the stars, the moon, and the sunshine in my life.

r%&%iﬁﬁﬁﬁﬁﬁgﬁgﬁﬁﬁﬁ%?ﬁoJ%:4%;mﬁﬁ%&aﬁv
K RIRA B AN G F s R AR E S IR E R el Y o ATRIE S
I

B7 A R L A o

%I
4;3

= ’31 N wiomh §§
il

Tﬁ%mﬁﬁﬁ# HRH R PR AT T RN F o 2] T R PR
F]El\gﬂ )y 'ﬁ‘fﬂluﬂhﬂ‘;ﬂj'{ ) ’##J_rﬂ:uﬂh}g%i o IRIFHFE TSI
4o BRI ﬁrmwa’gnma@’ﬁ“mﬂ%°*—ﬁﬁ%
BILficep @ o ghe LADF Y 5% HEF SRS ERE K
,i;‘ P R A AN AR R B I RS R %\B* EEF AR
VR AR FA B e o XF K E AL AW EHKE S b
7}—L§ﬁm$)§ —~E"7FW?m *Kﬂgﬁm’;km'\’ﬁ*ﬁim:’u q“"&gﬁ;ﬁﬁ
?mwﬁ°¢¢#ﬁ%mﬁﬁﬁkiﬂiﬁw oo ved (i

P
ra
*:n—n
=

wh oo s Tk
‘g;

N‘T \:
i %

S LA
N
\&«—\‘f‘?_t’k‘ 4 g
’;Tf_fi%lﬂ‘(‘*“‘

%
4

K

)E\v

‘?\‘*,:.
b

TRl e N RS R el -t S S E RS ol Y L &
XpF I AL AL ZIRE %k%%ﬂ}alﬂﬁﬁmffp%-?{# j’fj‘\,fpg BIFmgar EFR
LN mprehi 2 ;‘%;‘%r’v’ﬂfaé Bfopses » B gt fem - 35 - SRR T

s XEFRIAEIE G Z A E o %¢¢@#iﬁm*w*ﬁ%o g
ﬁmwwmﬁw@%%wwwéwg—?P“4W%~wu@iﬂ§ ﬁﬁﬂﬁﬂ
SRS AL T B EEAF Y 2 N A% R R AFRa e B
b NI AE - R - B o U R > XEF R U R L R AT o NRIFR
WEFORESRE FIFEMNSEF PO RN LT Y DR E A EDERBRAR

IEIRBHRUE A BRI P o MHREA TS RN I XFE IS B
ﬁiﬁaﬁgﬂ§ﬂﬁ%ﬂoﬂﬁﬁﬁﬂﬁﬁﬁéwmmfﬂ%iﬁaﬁiﬂﬁégﬁ
Ao WS %k 7 GEEEANG LIF R -BRESFIHEF LI ANER LT AT
BAT R » o & X seminar Bk 0 F LR § 4 Tf\ 'F“zﬁﬁmi’p ok NHE
FEDOLL - ABLEFs T AFRHLIRAR 2L HE o Ff’* C B L F L felk
TREE ALY BERAAT ;; ;ug;%'; PR CETRE S R i S LT
Foor iR RAAe R KEN F 4B %IE'U\;’{#,J— ;}3@*%&&?% BE hr gy
TR TE > s a‘%'*’ R LI NEH O BAFFR DS R I TR

=

?:F

FIFAHE A LA RS Y TR 2 S o 0 SRR G A S R L
FMBL—LZE - FE2F I BAFomR e AR o JREHHY SR M IRE A
T A RAREY 2 A EY BE R R R - F R A AREE G

BEAATRAR AR o A g X G PR oy A F A o R SEARE R AL o AN
2%

FRLMT BRETEETF o RH A AR R R



B ik ,g_g_‘l}b%"‘:)l%%ﬁgv?gﬁg\}% Ao AEAT R - RELL

R
AT Wrd s g
20114 » 2




Contents

Abstract (in Chinese)

Abstract (in English)
Acknowledgements (in Chinese)
Contents

Chapter 1. Introduction

Chapter 2. Hydrodynamical Structure
2.1. Euler Equation (First Method)
2.2.  Euler Equation (Second Method)

2.3. Emergy Equation

Chapter 3. Semiclassical Limit of the Local Smooth Solutions
3.1.  Quasilinear Symmetric Hyperbolic System
3.2.  Classical Solutions

3.3. Semiclassical Limit
Chapter 4. WKB Expansion
Chapter 5. The Local Existence and Uniqueness

Chapter 6. Acoustic Wave

6.1. Dispersion Limit

Bibliography

i

iii

11

15
16
19
32

37

43

49
50

o7






CHAPTER 1

Introduction

Bose-Einstein condensation (BEC) is a phenomenon that a macroscopic fraction of
the atoms occupy the same quantum level and behave as a coherent matter wave at very
low temperature. An important issue is the relationship between BEC and superfluidity.
The properties of rotating condensates in traps have increasingly been the object of study
in recent years. The readers are referred to [1, 2, 3, 7, 9| for more experimental and
theoretical work, and these developments have been reviewed in [6, 17, 18].

The primary research questions to be addressed in this paper are as follows. In the
case of a dilute Bose gas at temperature much smaller than the critical condensation
temperature, the time-dependent Gross-Pitaevskii equation with rotation is the equation

of motion in the frame rotating with the trap. It takes the form

h2
ihO" = =AY + g Py" + V(@)g" + e x V"
(1.1)
h2
= —%Awh + gl "PY" + V (2)" + ihwat - VP,

where 2+ = (=25, 71). The macroscopic wave function ¢"(t, z) is inherently a complex
function. m is the atomic mass. In the non-linear potential term, g characterizes the
strength of the short-range interparticle potential. The external potential V' (x) does not
depend on the time. The rotating term is composed of the angular velocity w of the

rotating trap and the x3 component of the angular momentum operator
Ly, = —iho x V = —ih (210, — 220,,) = —iha™ -V, (1.2)

where x = (x1, 23) is the coordinate in the rotating frame. The operator L., is only a scalar
in two dimensional case and represents the rotation. The Gross-Pitaevskii equation with
rotation (1.1) is also called the rotating nonlinear Schrédinger equation. In this paper,

we focus on a simple case in which ¢ and w are constants.

1



2 1. INTRODUCTION

A singular limit is an interesting problem. It makes a connection between different
fields and contributes to the understanding of the nature of the problem. The study of
the semiclassical limit has a great importance for determining the limiting behaviour of
any function of the field ¥". It may also describe superfluids and provide rich dynamical
phenomena in rotating BEC gases. In this work, we discuss the semiclassical limit by two
different approaches : the modified Madelung transformation and the density fluctuation.

First of all, we use the Madelung transformation
Yi(t,x) = ANt z)en™ (00, (1.3)

where both A™t,z) and S"(t,z) are real-valued functions. As density p" and momentum

ul are given by

ph: |Ah|2 y |¢h

= <iVSh N wxl) , (1.4)
m

the quantum hydrodynamic equations of the rotating nonlinear Schrédinger equation (1.1)

then are

8tph+vﬂf;:07

B o
h e @ 9 w2
Oppy +V (—ph > +V (—Qm(p ) ) (1.5)
+p"V lV - 1cu2]3:|2 = h—QV- (p"V?log p") — 2w ()"
m 2 4m? Wi
with initial data
o(0,2) = (), uh(0,2) = o). (16)

To overcome the difficulty caused by the nonlinear term, we introduce the modified
Madelung transformation suggested by Grenier [8]. There has been a change of emphasis
from the real-valued function A"(¢,z) to the complex-valued one. The main method to
carry out this study is based on transforming the rotating nonlinear Schrodinger equation
(1.1) into a dispersive perturbation of a quasilinear symmetric hyperbolic system, to which
the Lax-Friedrich-Kato’s theory can be applied, by the modified Madelung transforma-

tion. The readers are referred to good tutorials in [5, 8, 11, 12, 13] for an introduction
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to the above approaches and its applications. When h tends to zero, we formally have

the compressible rotational Euler equation

atp+v'/'bw:07

(1.7)
w w 1 1
Oppiey + 'V - (w) +V (ip2> + pV (—V — —w2|x|2) = 2w,
p 2m m 2
with initial data
p(0,2) = po(z), pu(0,2) = puo(z). (1.8)

It follows that the system of quantum mechanics converges to the system obeying Newton
mechanics.

It is obviously required that the existence and uniqueness of solutions of the compress-
ible rotational Fuler equation are determined. Much research has been devoted on the
existence and uniqueness of solutions of the Fuler equation. For the incompressible Euler
equation, the existence of a global solution in the two dimensional case and a local solu-
tion in the three dimensional case has been established [20]. Roger Temam also has given
another new short proof for the three dimensional case by representing the unknown pres-
sure as Poisson’s equation and applying the Galerkin method with a special basis in his
paper [20]. For the compressible Euler equation, P. L. Lions has discussed global entropy
solutions in the one dimensional case [15]. However, little research has been done on the
existence of solutions of the Euler equation with rotation. We propose a clear proof of the
existence of a local solution of the compressible rotational Euler equation in dimension 2
by the equivalent relation, resulting from the conclusion of the above semiclassical limit.

Let us then discuss the semiclassical limit in the view of Wh‘% It means that we
consider the case when (p”, u") is near the constant state (1,0). The semiclassical (dis-
persion) limit concludes that the rotating nonlinear Schrédinger equation (1.1) converges
weakly to the wave map equation (6.38). Moreover, the wave map equation is equivalent
to the linear wave equation (6.39). This is just the beginning of studying the acoustic
wave.

The remainder of this paper is organized into five chapters. In Chapter 2, we start

by deriving the hydrodynamical structure of the rotating nonlinear Schrodinger equation



4 1. INTRODUCTION

(1.1). The readers are also referred to [10] for the deriving process. To obtain the lo-
cal existence of smooth solutions and perform the semiclassical limit, the procedure is
displayed in Chapter 3 and consists of three main parts. First, we transform the rotat-
ing nonlinear Schrodinger equation into a quasilinear hyperbolic system by the modified
Madelung transformation in Section 3.1. Second, a priori estimate, which allows to pass
to the limit A — 0 and justfy the WKB hierarchy, is employed in Subsection 3.2.1. For a
discussion of a priori estimate, also see [5, 8, 11, 12, 13, 16]. Third, some compactness
arguments are the tools of attaining our desired results. For a full account of this part,
also see [14]. Chapter 4 contains a description of the WKB expansion. The readers are
also referred to [5, 8, 11]. The local existence and uniqueness proof of solutions of the
compressible rotational Euler equation is outlined in Chapter 5. We see a connection
between the rotating nonlinear Schrodinger equation and the acoustic wave in Chapter
6. We perform the semiclassical (dispersion) limit in the view of the density fluctuation
in Section 6.1. The readers are also referred to [4, 14] for further details of the density

fluctuation.



CHAPTER 2

Hydrodynamical Structure

The physical content of the rotating nonlinear Schrodinger equation (1.1) may be
revealed by reformulating it as a pair of hydrodynamic equations (1.5), which we will use
two methods to derive. Initially, we use Noether’s theorem to determine the conservation

laws. The Lagrangian density for the rotating nonlinear Schréodinger equation (1.1) is

S_ih h*ah ha B * hQV h*vh h(2 r\* 1k
= L@ 0w —v'a, (@) = 5=V () - Ve — gt (") v

(2.1)
Vv mFon W B gl Tt — bt (")
(@) ()" g T [y o Ggh gt ()]
The action & = [[ £dxdt is invariant under the following transformations
YI(t, x) = e"“"(t,x) with generator " = i)™ (2.2)
Yt x) = P"(t. — e, 2) = Y"(t,x) with generator " = 9" (2.3)
However, the action & is not invariant under the transformation
Yt x) = P (t, 2. — €) = ¥"(t,z) with generator 5" = Vo, (2.4)
and about s axis under the transformation
Yt ) =" (¢, Rl z) = ¢™(t,x) with generator §¢" = L, ", (2.5)
where for all € € R,
cose —sine - cos€e sine
R. = , R, = ) (2.6)
sine  cose —sine cose

Therefore, by Noether’s theorem, the invariances generate the conservation laws, and the
generators 7" and 9, correspond to the conservation of charge and energy, respectively.
We have not the conservation of momentum due to the rotational term —wL,,9" appear-
ing in (1.1) and the conservation of angular momentum due to the linear potential term

V (x)y". We have the main result :
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Theorem 2.1. If " is a smooth function, then the hydrodynamical formulation of
the rotating nonlinear Schrédinger equation (1.1) is

(1) the conservation of charge :
0" +V - (p"(u" — wa)) =0,
(2) the equation of momentum :

h h
h . /’Lw®:u’w g h\2

1 1 2 2 h2 hvo2 h AL
17 (V= Gl ) = T (Vo) - 20

(3) the conservation of energy :

h h2 hA h V~,uthh
aeh . & 9h i h\2 _ . Hy22P . w
W0r+V {ph< +2m(p)) 4m2V pl ol ’

(4) the equation of angular momentum :

Op (- ) + V- [uh (wL : %) +zt (&(ph)2 —wrt uh)]

h 2 h
P _h Loa o VO L h
where
ul =l — wrt,
pl = pul, = p = plwzt,
and

6

|2 2 h|?
h_|MW| h |Vp‘ 9 w2, h iv_lz 2
20" +8m2 Pl +2m<p) Tp m 2% =)

2.1. Euler Equation (First Method)

We introduce the Madelung transformation (¢, z) = A"(t,z)ens" %) where both
the amplitude A"(¢,r) and the phase S™(t,z) are real-valued functions, and insert it into
the rotating nonlinear Schrodinger equation (1.1). Separating the real and imaginary

parts leads to

1 1
8tAh + EVSB . VAh * %AEASE - wxj_ : VAh = 07 (27>

1 n: AAR
05"+ 5 |VS" 4 g [A"* +V —wat - VS" = = (2:8)
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To understand the nature of the velocity of the fluid, we multiply (2.7) by 24" and define

the density, velocity, and momentum as

2
)

ph: ‘Ah|2 — |wh

u = %VSFL = (ul,ub), u = pu®, (2.9)
respectively. It follows that
op+V -yl —wat V' =0, (2.10)
where p" is a probability density. We also write (2.10) as the total differential form
Op" +V -y =V - (wztp") = 0. (2.11)
Hence, we have the conservation of charge

o+ V - (pMul) =0, u® = o —wat, (2.12)

w

where u” is the modified velocity. Taking the gradient of (2.8) and then multiplying it by

—, we obtain the equation of motion for the veloctiy
m

1
ol + (- V) u 4+ Lvph 4 =V
m m

(2.13)
= 27:;2V (A\/\/p_g_h> —wt +w(zt - V)u"
or
Ol + (ulh - V) ull + %Vph
(2.14)

2 /o
+V lV - luﬂx\z _h \Y AvVet) 2w(u)*,
m 2 2m? A /ph

where (u")t = (—ub, ul) and (u?)* = (u")* +wz. To obtain the momentum, we multiply

(2.13) by p™ and (2.10) by u" and then add up to have

ho b h
Ou+V - (,u @;M ) +V <i(ph)2 —wrt - uh> + vy
p 2m m

(2.15)
h2

=—V- (phV2 log ph) + wx <(uh>L . Vph)
4m?2 ’
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where (u™)t = p"(u™)t. Therefore, we can derive the equation of the modified momentum

h ) ®Nw 2
atuUJW( > )+V(2m<p>)

(2.16)

h2
( VvV — 2|x]2) =z V- (p"V?log p") — 2w

Equations (2.12) and (2.16) are analogous to the continuity equation and the momentum
equation in fluid mechanics, respectively. The above equations show that the rotation
affects both the continuity equation and the momentum equation. Provided that S” is
not singular, we can conclude that the velocity field is irrotational; that is, the potential
flow V x u" = 0. However, V x u/» = —2w. Moreover, by (2.13), we have

|u”]

2 2 /
O (J:L-uh)—i—v- xt (L + gph—l— V wrt :—h V- A , (2.17)
2 m 2m? NTL

and by (2.15), we also have the equation of angular momentum

O (zt - p) + V- [,uh (90L /;)+ L<2il(ph)2—wa-Mh>}

2

(2.18)

+at - p—hVV = —=
m 4m?

h
V. [xLAph _ Ve (xL : Vph)} .

oh
Since angular momentum about the axis of rotation is not conserved, the trap V(z) has

no axis of symmetry.

2.2. Euler Equation (Second Method)

We consider 1" and (wh)* to be solutions of the rotating nonlinear Schrédinger equa-

tion
ihop" = (—%A +g \wﬁ}Q +V + ihwzt - v) ", (2.19)
2
_ikd, (W) = (_%A F g 4V — it v) W, (220

respectively. Multiplying (2.19) by (wh)* and (2.20) by ", we can write

B B =~ (1) Bt g ] 4V [ ik (07, @221)

2
—ihy"0, (Y*)" = —;—mw’m (W) + g [0 + V|0 — ihwptat -V (M) (2:22)
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Subtracting (2.22) from (2.21) and using the equality

Ve [@) Iet] = (1) AtV () T, (2.23)
there results
o [")? = i%V : [(wﬁ)* Vil — v (wﬁ)*] +wzt -V W{? . (2.24)

Hence, we obtain equation (2.10) by setting

h * *
o= W= i () V- 0t (7). (2.25)

Next, we do the similar steps to seek for (2.15). We multiply (2.19) by V (¢h)* and (2.20)
by V4" and then add up to yield

ik [at (") Vol — 9"V (wh)*] o

2
_;_m [M’hv (¥")" +A ") Wﬂ gl V[ + VY o) (2.26)

it { (2 V") T (1) = kv (1)) vt}

On the other hand, we take the gradient of (2.19) and (2.20), multiply them by (")

and 9", respectively, and then add up to yield
=i {uV [ ()] = ()7 V (0) | =

h2

2m

(@) (26" + vV [a @]}
(2.27)

+3g [0V [0 + 2 [¢h P YV + VY [

+ihw { (") V (zt - Vh) — "V [z1 -V (¢7)] }.
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Now subtracting (2.27) from (2.26), we derive
—iho, [(¥")" Vet — 0"V (47)7] =

_% A0V (") + A (") V" - (81) 7 (Ag") - 4"V A ()]}

(2.28)
=29 [W"* [0" =20 VY — iV (ot [(07) Vet — otV (07) T}
L
F2ihwa { [v (wh)*] . vwh} ,
where [V (wh)*}L = (—8332 (¢h)* , Oy (¢h)*) After multiplying (2.28) by %, we have

2

8tﬂh:—h—{Awhv (wh)*+A(¢h)*vwh

4m?

— (M) V (Ay") — "V [A ()] } — %p”‘wh (2.29)

B By L
L yv +wv (xL-uh)wwa((uF? -Vph) .
m P

Since

VAph = [(y")" VAP + "V A (9")7]

(2.30)
2V [V (1) ] + APhY (1) + A (1) Wyt
we can rewrite (2.29) as
2 h 2
o+ L= [t vy gy I [Awhv (")
2m m m 2m
(2.31)
_’_A(wh)*vd)h :h_szpﬁ_'_wv(leuh)_i_wx (:uh)J_vph
A2 of :
Using the equality
PR 174 S Gl A4
w ‘th’ — 2ph 8m2 pﬁ y (232)
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we derive
o+ V M +V(i( h)2)+p—hvv
th 2" 2m m
n? A" VLA (7 T (2.33)
o [ BV ()" + A (1) Vo] -
K2 Vph 2 (,uh)J‘
= mv (Aph— %) +wV (Z‘J",uh) + wzx < 2 -V,oh) .
Since

h2 h B\ * R)* h| _ @ ut ‘th
o [0 (7 2.0y ] = (H507) o (1)

2m 2"

(2.34)
n2 |1 V" v |Vt
Tl P S e T
and )
A7 K h hx2 K
Vo' = 5V (V'@ Vp") =V - (p"V7log ") , :

VAp—i—(p)V pv(v ® Vp") =V - (p"V?1og p") (2.35)

we obtain equation (2.15). In addition, by observing the dimension of (2.32), we can

h2
conjecture that the kinetic energy is of the form Sz |th }2.
m

2.3. Energy Equation

We can derive the conservation of energy from (2.19) and (2.20) as follows. Multiplying
(2.19) by 0, (@Z)h)* and (2.20) by 910" and then adding up, we can write
h? h Ry * Ry * h h|? h|? h|?
—o 800 (0" A () 0| + g [0 0w + Vo v
(2.36)

+ilhw [zt - Vho, (Y1) — -V (Y1) O] = 0.
We use the equalities
A3, ()" + A (0) 9 = V- [3, ()" Vel 4 80V (89)] — 0 [Vl (237)

and
AL CU0 M A (T WX
(2.38)

— at [(wh)*xj_ . th} —.QZJ‘ V4 [ (wh)*atwh]
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. 1
and then multiply (2.36) by — to have
m

8{2 2} wh‘ + g Wh‘ X V’wh‘ 4w [(wh)* 1 th]}

-V { 2h22 [at (") VY + 0"V (w)*} } (2.39)

b 4 T m g ] L
x v{m [(w)atw]}
Similarly, we use the equality

zt - Vyha, (") ot v () "

(2.40)
= v whor (0] = 0 [tV ()]
to have
3t{27;j2’ ¢h| + g W}h| Lo V‘@/}h| _ [Wii V(;[))]}
v { g [0 () Wt oy et o {2 [ (07) ) | -
(2.41)

1
Now adding up (2.39) and (2.41) and multiplying it by o0 We obtain the energy equation

expressed in terms of 1" as

8{2 Q‘W/}’ + 4 |1/” + V|1/1] +Zhw [(¢ )*xL'th_iﬁth—’V(l/Jh)*}}
e { o) ver st (o) ]}

V. {:&% [(¢h)* " — "0, (W)*} } =0.

(2.42)
Therefore, we derive the conservation of energy
h 2 N hx7 h
B (on 9 [ w2 h poAp" V- uVp
90"+ v . [He (9 9 ) - . , 2.43
049 |5 (0 )| = e [ - T (2.43)
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where energy
0" =3 z}wﬁ\ +35,- W\ + VW\ +5- o [(wﬁ)*gf.wh—w%.v(zph)*}

_ ‘“hf n? ‘V,oh|2 9 m2, Lon 1 h

n|2 2 n|2
‘“w‘ h ‘Vp| g m2, h 2112
- 7 Bl 7
2p" +8m2 Pl +2m(p) Tr m 2% =]

(V3) + o (0 s g5 v eowe)]

1 1 ?
_m (—V — —w2|x|2) :
2g \m 2

1 1
If we confine V' (z) to satisfying —V'(z) — §w2|x|2 > 0, energy 6" is positive definite.
m

(2.44)






CHAPTER 3

Semiclassical Limit of the Local Smooth Solutions

Let us consider the family, parameterized by h, of solutions
Yt x) = A"(t,x) exp (%Sh(t,x)) ., teR", zeR? (3.1)

of the rotating nonlinear Schrodinger equation (1.1) with rapidly oscillating initial condi-

tion

$"(0.9) =¥h(x) = Al exp (550a)) 32)

where the complex-valued function A"(t,x) denotes the amplitude, and the real-valued
function S”(¢, z) denotes the phase. Unlike the usual WKB method to look for the solution

of the form
Y2, 7) = AP(t, ) exp (%sa, x>) | (33)
where S is independent of A, we allow S” to depend on h. The initial density and
momentum satisfying the Euler equation (2.12) and (2.16) are then
2
pr0,z) = [Af()]7,

0.0) = |40 (5 vShe) - v )

(3.4)

We will use the hydrodynamical structure derived in the preceding chapter to study the
asymptotic behaviour of solutions 1" (¢, x) of the rotating nonlinear Schrédinger equation
(1.1) with initial condition (3.2) as h tends to zero. If we argue formally, it is natural
to conjecture that the O(h?) dispersive term appearing in (2.16) is negligible as A tends
to zero, and the limiting density p and momentum g, satisfy the compressible rotational

Euler equation (1.7) with initial condition inferred from (3.4) given by

p(0,2) = |Ao(x)]?,
1o(0.2) = [Ao(@)]? (%vso(x)—m).

15

(3.5)
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Because the O(h?) dispersive term is nonlinear, we still have difficulty treating the
problem directly from the hydrodynamical structure. According to Grenier [8], the mod-
ified Madelung transformation can be employed in the study of the semiclassical limit.

The procedure for expounding and proving are divided into three sections.

3.1. Quasilinear Symmetric Hyperbolic System

The first step in studying the semiclassical limit is to show the existence of a smooth
solution 1" of the rotating nonlinear Schrédinger equation (1.1) on a finite time interval
[0, 7], independent of k, for initial data Af(z) and SP(z) with Sobolev regularity. We
will transform the rotating nonlinear Schrodinger equation into a dispersive perturbation
of a quasilinear symmetric hyperbolic system. We will look for solutions (3.1) where

Al = " + 40" After inserting (3.1) into (1.1), we obtain

. 2
iho A" — AMY, ST = —@VSH VA" — h—AAh 5 LAFL |V5h|2
m 2m 2m

(3.6)
B APAS g AT AN VAN i (- TA) - (ot VST) A"
m
We split (3.6) into
1
05"+ 5 198 gV m (ot V") =, (3.72)
AN + LV VAR 4 ATASE — (zt - VA" = ﬂAA"z (3.7b)
m 2m 2m

based on whether the term is of order O(1) or of order O(h) and O(h?). The expression
(3.7a)—(3.7b) differs from (2.7)—(2.8), which are split into the real and imaginary parts,
by the criteria of separating (3.6) into two parts. Notice that the second derivative term
in (2.8) is highly nonlinear, whereas that in (3.7b) is linear. Therefore, the classical quasi-

linear hyperbolic theory provides an approach to the semiclassical limit of the rotating

1
nonlinear Schrédinger equation (1.1). The change of variable v = (uf,ul) = —VS"
m
leads to
1 1
Ol + 500, [(uh)? + ()] + L0, |47 + —0,V —wd, (") =0, (380)
1 1
O + S0n, [(})? + (uh)?] + L0,y | A" + —0,,V w0, (") =0, (3.8D)
A"+ VAN 4 SAMT b — (z*-VA") = D (3.8¢)
2 2m



3.1. QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEM

Let A" = a" 4 ib"; we have

O (ul + wxs) + %qahﬁxlah + %th(?xlbh + (u? + wiy) Oy, (u’l‘Z + ws)
+ (uh — way) O,y (ul + way) — Wy + %8@\/ = 2w (ug —wz1),
Oy (uéi — w:cl) + %ah&mah + %’bhﬁmbh + (u? + w:cg) Or, (ug - wa:l)

+ (uh — wa1) Oy, (uh — way) — w?as + %%V = —2w (uff + was)
da” + (uf + was) Oy a" + (uh — way) Oy,a"

1 1
+§ah6z1 (u’f + wzs) + §ahax2 (uéi — Wiy ) = —%Abh,

0,b" + (uii + wq;g) (9zlbh + (ug — wxl) 312()5

1 1 h
+§bh8x1 (u? + wzs) + §bh6’x2 (ug —way) = %Aah,

with initial data

a(0,z) = ag(x), b"(0,2) = by(w),
ul(0,2) = (uf(0,2) + wr, uf(0, 2) — way)

= (uf () + wag, ul o () — wa1) = uf(z) — wz
satisfying

1
Lol () = Evsg(g;) — wzt.

[ah(2)]” + [bh(2)]” = | A=)

Let UM = (ah, b ul + W, ul — wxl)T; the system can be written in the form

Ul + My (UMD, UM + My(UMO,, UM + G = L(UD),

T
UB(0.2) = Ully(w) = (al(x). (), o) + wa, () — w) "

17

(3.9a)

(3.9b)

(3.9¢)

(3.9d)

(3.10)

(3.11)

(3.12)
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where
M (U}) =
My(UL) =
and
LU =

1
ul + wa, 0 §ah 0
h Lon
0 uy + wrg §b 0
2 2
i Y 0
m m
0 0 0 ult + wry
L s
Uy — Wy 0 0 5@
0 Uy — WT 0 e
0 0 Uy — WT1 0
2 2
I o Ty 0 ul) — wxy
m m
0
0
G - )

al
h
0 —— 0 0
5 2m bh
—A 0 0 0
2m
0 0 0 2w .
Uy + Wra
0 0 —2w 0

ub — wry

)

(3.13a)

(3.13b)

(3.13¢)

(3.13d)
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The matrix £ is antisymmetric and reflects the dispersive nature of (3.12). For all (¢,n)T €
R?,

£ n N
A 0o = —
2ma 2m
0 NS My
2m 2m
EM(U)) +nMa(Uy) = , (3.14)
26gal  2Egb" A 0
2nga™ 2ngb™ 0 A

where \ = £(ul! + wry) + n(ul — wa;). The matrix (3.14) can be symmetrized by

10 0 0
01 0 0
My (U3) = : (3.15)
0 0 1/4mg 0
0 0 0 1/4mg

which is symmetric and positive definite if g > 0 for all U”, and has only real eigenvalues \,

A A £ \/i (& +n?) [(a")?+ (b")?]. Thus, we write (1.1) as the dispersive perturbation
m

of the quasilinear symmetric hyperbolic system

Mo(UMO,UP + My(UR)8,, UP 4+ My(UM)8,, UP + G = L(UP),

(3.16)
U(ZL(O? 1’) = Uﬂ,o(x)v

where Ml = M()Ml, MQ = M()MQ, é = M()G, and E = MO,C Here Ml and Mz are

symmetric, and £ is antisymmetric.

3.2. Classical Solutions

In order to carry out the existence of classical solutions, we proceed along the lines
of the existence proof concerning the initial value problem for the quasilinear symmetric
hyperbolic system with modifications. We utilize the iteration scheme for establishing the
local existence in time. As a first approximation to the solution of (3.16), we consider

US(t,x, h) defined by US(t,z,h) = Ul,(x), where Ul (x) denotes the initial data. We
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define successively UP*1 (¢, z, h) as the solution of the linear equation
My(UR)Q,UE + M, (U2)D,, UB + Ma(UE)D,, UM + G = L(UEH),
(3.17)
U0, 2.5) = Uly(x).
for p = 1,2,3,---. We call UPY(¢t,2,h), p = 0,1,2,3,--- successive approximations
to a solution of (3.16). We might expect that U? tends to U™ as p tends to oco. For
further reference, we ignore the superscripts p and consider both U, € C* and W, € C*
satisfying
Mo(W.)0Uy, + My(W,)8,, Uy + My(W,)8,, U + G = L(U,),
(3.18)
U,(0,2,h) = Uf,o(x).
3.2.1. A Priori Estimate. The energy estimate is used to prove the existence of
approximate solutions UP. Assume that the matrices Ml and Mg together with their
derivatives of any desired order are continuous and bounded uniformly in [0, 7] x R?. We

perform the process of the energy estimate in three stages.

Stage 1. L*-norm. The canonical energy associated with (3.18) is defined by the scalar

product

E(t) = (MyU,,U,) = // MoU,, - Uydxdxs = // U MoU, dz dz,. (3.19)

For a certain T', let the function U, (¢, z, i) be a solution of (3.18) of class C?([0,T] x R?).
We use the symmetry of M, Ml, and Mg and integration by parts to have the basic

energy equality of Friedrich

%E(t) = (T0L, U) +2 (£(U.), L) = 2 (G, 0L) (3.20)

where I' = 0, M, + &Elﬂl + &mﬂg, so that the classical energy estimate can be obtained

immediately. Since £ is an antisymmetric matrix, and we derive

~ ~ ~ T
(C(Uw),Uw> - / / UT LU, dxydas = / / (Uchw> dzdzs
~ T ~, ~
— / / (L‘Uw> U, dzyday = / / UL LTU, darydars = — / / UL LU, dzydas,

(3.21)
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the term (Z(Uw), Uw) = 0 contributes nothing to the energy estimate. This means that
the singular perturbation does not create energy. If G € L?(R?), then we apply Cauchy-

Schwarz’s inequality and Young’s inequality to have
(é, Uw> < C+O|U| 2. (3.22)

Using the positive definite and symmetric matrix M;,, we obtain

d
ZE®) < (0l + O) V|22 + C < k(D] + C) E(t) + C, (3.23)

where an appropriate constant k£ > 1 is set to ensure that the last inequality holds.

Because of the initial data
E(0) = (MoUL 4, UL o) < (| Moo= || UL lI32 (3.24)

it follows from Gronwall’s inequality that for ¢ € [0, 7],

E(t) < exp [k (IIT]z= + C)t] (1Mol UL, ll72 + Ct) - (3.25)
Furthermore,
2 hop2 cr
max  |[Uy(t, B)||7o < 'exp [k ([[Dfzee +CYTT{ NUSolz2 + 77— ) - (3.26)
0<t<T (| Mo|| o=

Stage 2. H'-norm. If we multiply (3.18) by (My(W,,))~!, differentiate with respect

to 1, and multiply it by My(W,,), then we have

MO<Ww)atam1 Uw + MI(Ww)agmaam Uw + MQ(Ww)azgazl Uw - Z(azl Uw) + Flmly

0p, Uy (0,2, ) = (Uh)m’0 (x),

w

(3.27a)

where

Fipy, = =03, My 8y, Uy — 8y Moy, Uy, — 8y, G- (3.27b)
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Similarly, we differentiate with respect to x5 to have

MO(Ww)ataxg Uw + MI (Ww)axlangw + MZ(Ww)éanngw = E(axg Uw) + Fl:t:z;

O, U (0,2, 1) = (U1),, (@),

w

(3.28a)

where
Fioy = =00, M10,, U, — 8,,M»9,,U,, — 0,,G. (3.28b)

We expect to bound (Myd,,U,,, d,,U,,) and (My0,,U,, 0.,U,), where (-,-) is the usual L?
scalar product. Assume U, € C2([0,T]; C3(R?)). Since My, M, and M, are symmetric,

we have
8, (Mo, U, 8y, U.) = ([0, Us, 0, U) 42 (E(amUw), &ClUw) 42 (Fiay, 00,0, (3.29)
and
8, (Mo, U, 85,U.) = (T, Ui,y By U) + 2 (E(amUw), a,, Uw> 42 (Fiay, 00,UL), (3.30)
where I' = 9, My + 0y, Ml + 0., Mz. The antisymmetry of L yields the result
(E(amUw), amUw) = (E(amUw), amUw) ) (3.31)

From the structure of M, M, 1, and ZT/[/Q and the application of Cauchy-Schwarz’s inequality

and Young’s inequality, we find the following estimates
2 (_axiﬁlaxlUw - a;vi]%angwa anlUw> S C ||aac1UUJ||%2 + C ||ax2UOJ”i2 (332)

for i = 1,2. If 9,,G € L*R?) for i = 1,2, then we apply again Cauchy-Schwarz’s

inequality and Young’s inequality to obtain
2 (=00,GL00,Us) + 2 (=00,G0,,U) < C 4+ C 0, UulF2 + C IO UG (3:33)

Since M, is a positive definite and symmetric matrix, we have

at [(M()@xl Uun azl Uw) + (Moamg Uwa amQUw>]
(3.34)
<k (H I HL‘X’ “"O) [(MOamUwa amUw) + (MOaszw amUw)] +C
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for some k£ > 1. Because of the initial data

(M0 (V) 0+ (U2),.,0) + (M0 (U2, (U2).,.)

(3.35)
2
< Il (@), + | @200 )
we deduce from Gronwall’s inequality and the strict positivity of M, that
max (HﬁwlUw@?h)Hi? + ||8€B2UW<t7 h)”iﬂ)
0<t<T
(3.36)
2 cT
< D e +0) 7] | (|| @) L+ [ @)
<o b1 Pl 07| (|@gal + [02.ca]) + ]

Stage 3. HZ?-norm. From equations (3.27a) and (3.28a), we use the method similar

to that in Stage 2 to obtain
MO(Ww)at (azzaijw) + M1<Ww)azl (amlaz]Uw)
(3.37a)
+M2(Ww)8x2 (axzaxj Uw) — E(azzarj Uw) e FZ:vixﬁ
where
FQaciJ:j = _aarzam] Mlaxl Uw Y 8ac,aacj M28$2Uw Y 8xiM18w18xj Uw
(3.37b)
0y, Mo 0y, 0, Uy — 8y, M0y, 8, Uy — 0, Moy, 00, U,y — 03,0, G,

for i,j = 1,2. Assume U, € C%([0, T]; C*(R?)). Because of the symmetry of My, M;, and

Ms, we have

at (Moazlamj Uwa azlam] Uw) = (Famzaxj Uw; amzaxj Uw)
(3.38)
2 <E (azzaxj Uw) 7aziamj Uw) + 2 (FQ.'L‘Z'.'L‘]‘y 8:1:,8:1:J Uw) )

where I' = 9, M, + (‘3$1]\71 + 8$2M2. The first term on the right side of (3.38) can be
bounded by

T0,,05 Uy, 03,05 Us) < Tl ;w0 1|02, 00,Us || - (3.39)
(za 29) LHZ]HL



24 3. SEMICLASSICAL LIMIT OF THE LOCAL SMOOTH SOLUTIONS

The antisymmetry of £ leads to
(£ (02,0:,00) 00,02,V ) =0, (3.40)

and the usual estimates on commutators lead to

2( = Dy, 00, My 3y, Uy — 0y, 0y, My, Uy — By, M0y, 0y, U
_ax¢M2ax28xj Uw - a’rjﬂlaxlainw - aij2axzainW7 axlam] Uw) (341)

< C 105, Usllzz + C 102:Usllz2 +C D 105 Uullz2

|a|=2
where o is a multi-index of length |af; that is, a = (a1, @2), |a| = oy + as. 1f 0,,0,,G €

1
L?(R?), meaning 9,0, <—VV(:U)) € L*(R?), then we apply Cauchy-Schwarz’s inequal-
m

ity and Young’s inequality to obtain
2 (= 00,02, G 00,00, Us ) < €'+ C [102,00, Vs 2. (3.42)
Therefore,

0y (MU, 00U.,)

|a|=2

< (Pl +€) D 102Usllze + (C 100, Usllzz + C 1102, Usllz2 + €) (3.43)

|af=2

E (T o +C) Y (ModgUs, 93U + (C 110, U2 + C 10Ul 72 + C)

|af=2

for some k£ > 1. It follows from Gronwall’s inequality and the strict positivity of M, that

x ) 10U W72 < exp k([T +C) T
0<t<T |a|=2
(3.44)

C |0, Uiz + C 10, Usll2 + C) T
aaUh ( L L
Z || 0HL2 ||M0HL°°

|af=2
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Setting U, (t,z,h) = U(t, 2, h) — w(0,0, —z2, 1) and U} (z) = UJ(z) — w(0,0, —x2, 1),
we can rewrite (3.44) as

max Y [|07U ()| < explk (|0 +C) T

0<t<T |o|=2

(3.45)

C||81?1UW||22 +C||a:v2Uw||22 +C)T
. aaUh 22 ( L L
Z H x OHL + ||M0||Loo

=2

to present a clear perspective.
As described in stage 3, the results of the higher energy estimate are obtained. Sum-
marizing the above estimates, we conclude that

CcT
max || Uu(t,h) |[5:< explk (0] o + C) THIUS 0|7 + 0| - (3.46)
0<t<T HM0||L°°

and we find that for sufficiently small 7', we can estimate all 9¢U, for |a] < s, s > 3.
1

This shows that if —VV(z) — w?s € H*(R?) and U, € H*(R?), then the iteration
m I

scheme defined by (3.17) is well-defined, and we also obtain a priori estimate on the space

derivatives of the type

[R%HCION

< C, tel0,T], (3.47)
which denotes
UP € L=([0, T]; H5(R?)). (3.48)

In addition, it follows that every component of U belongs to L*([0,T]; H*(R?)) and
then from (3.16) or (3.17) that for ¢ € [0, 77,

||8t(lp(t, h>| Hs—2 S C, ||(9tbp(t, h)| Hs—2 S C,
(3.49)
0w (8, P) || grs—1 < O, [|Opub(t, B)|| gs—2 < C.
The inclusion relation H*~}(R?) C H*?(R?) leads to
|O,UE(t, h)||gs—2 < C, ¢ €10,T], (3.50)

which denotes

O,UP € L>([0,T); H*(R?)). (3.51)
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Remark 3.1. Assume U" = (ah, bl uS)T It is convenient to rewrite Ul = UM —
w(0,0, —x2,21)T and is helpful for the finer analysis. If %VV(%’) — Wi € H'(R?),
%VV(%‘) € H*(R?), UL, € H'(R?), and U € H*(R?), then we construct approximate
solutions UP(t, h) = UP(t, h) — w(0,0, —xe, 1)T, p=0,1,2,- -+ satisfying

Ub e L>([0,T); HY(R?)), UP? e L>*([0,T]; H*(R?)), 0,UP € L>([0,T]; H**(R?)).
3.2.2. The Existence and Uniqueness Results.
Proposition 3.2. Let s > 3 and the potential V(x) satisfy

%VV(%) —w’z € H5(R?).

Assume that the initial data Ul = (af, b, ut o + wag, ully — wxl)T € [H*(R?)]* satisfies
the uniform bound

[RZury

Hs< Cl
Then there is a time interval [0,T] with T > 0, so that the IVP for (3.12) has a unique

classical solution

Ul =(a" b", ul + wzs, ulf = wxl)T e C(0,T]; C*(R?)).

w

Furthermore,
Ul € C([0, T); H2(R?)) n CY([0, T); H**(R?)),
and T depends on the bound C., and in particular, not on h. In addition, the solution U"

satisfies the estimate

IU2(E s < Ce

for allt € [0,T]. The constant Cy is also independent of h.

Proor. Following the results obtained in Subsection 3.2.1, for any fixed A, we have

constructed a sequence {UZ}22, belonging to
C([0,T]; H*(R?)) N C'([0, T); H**(R?)), (3.52)
and satisfying (3.17) as well as the uniform estimate

max (|| UE(t, 7) |

0<tLT

s + || OUE(t, h) || gs—2) < C. (3.53)
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We use the mean value theorem to show that for every p, for 0 < t1,to < T and £ € (ty, t3),

|UE (2, B) = UL (b, D)l groa = [|OUE(E, R)(t2 = t1)]| o

(3.54)
= [tz = 1| |OUL(E P oz < max QUL R)|| oz 2 — ta.

0<t<T

Thus, if U? : [0,7] — H*(R?) is continuous and differentiable on [0,7], and O,U? is
bounded for every ¢, then UP is the Lipschitz continuous function on [0, 7] with values
in the norm topology of H* ?(R?). This also explains that {U2} ", is equicontinuous.
It follows from the Arzela-Ascoli theorem that there exists U" € L°°([0,T]; H*(R?)) N
Lip([0, T]; H*2(R?)) such that

max ||U5 — U} os — 0, (3.55)
0<t<T
as p tends to co. Hence,
Ur — U! in C([0,T]; H2(R?)). (3.56)

Furthermore, we use the interpolation inequality to show that for 0 < 0 < 1,

HUﬁ—Uﬂ Hs—a = HUP_ Uh‘ Hs—2
(3.57)
< (U2l - ) N0 = Ul e < OO — ULl 727 — 0
as p tends to oo so that we have
Ur — UM in C(0,T); H*(R?)) (3.58)

for an appropriate constant a with 0 < o = 2 — 20 < 2. When we choose s such that
2

s—a—2 > 3 = 1, the space H*(R?) becomes an algebra, in which we can perform

multiplication and keep the product stay, to overcome the difficulty of the nonlinearity.

Indeed, it can be shown that
Ut € C(0, T); H*(R2)) 1 C'([0, T]; H*2(B2)), (3.59)
and U" is a solution of (3.12). The Sobolev embedding theorem tells us that

H*?(R?*) — C*(R?) (3.60)
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if s > 5. Thus, we have
O((0,T); H*(R2) N (0, T); H2(R2)) — C1([0,T): C2(R?)  (361)
and
Ul e C'(0,T); C*(R?)) (3.62)
which indicates that the constructed solution is classical.
In order to show that no extraction of subsequence is needed, we still prove the unique-
ness of the classical solution of IVP for (3.12) by doing a straightforward energy esti-

mate for the difference of two solutions. Let (U"); and (U")y be two solutions satisfying

(UD1(0,2) = Ul o(z) and (U])2(0,2) = U o(z). Let H" = (U — (UL)2; we get
ModH" + M, [(UP),] 0, HY + M, [(UP),] 8,,H" = L(H™) + F, (3.63a)
where

F = { My [(UB)2] = M (U] } 0, (UB)2 + {0 (0] = Mz [(UR)1] } 0ra (U
(3.63b)
We do the same procedure as before and expect to bound the canonical energy E(t) =

(MoH", H"). We have the basic energy equality of Friedrich
O (MoH", H") = (TH", ") +2 (£(H"), H") + 2 (F, H") (3.64)

where I' = 8tM0+0x2]\Z +8x2]\//\[/2. On the right side of (3.64), the first term is bounded by
the assumption, and the second term vanishes due to the antisymmetry of L. Applying

Cauchy-Schwarz’s inequality leads to
2 (F,H") < C||H"|)32. (3.65)
Therefore,
O (MoH", H") < (Tl 4+ C) [[H"|[72 < k (||T]|z + C) (MoH", H") , (3.66)
for some k£ > 1. By Gronwall’s inequality, it follows that for ¢ € [0, 7],
(MoH", H") < exp [k (|||~ + C) t] (MoH{, H]) = 0. (3.67)

Since this holds for all ¢t € [0,7], H" = 0; that is, (U"); = (U"),. Thus, the classical

solution is unique.



3.2. CLASSICAL SOLUTIONS 29
O

Remark 3.3. Under the assumptions of Remark 3.1, in fact, there exists U belonging
to C([0,T); H*(R?)) n CL([0, T); H*~%(R?)) such that UP tends to U™ as p tends to .
However, U belongs to C([0,T]; H'(R?)).

We have proven the local existence and uniqueness of classical solutions of the disper-
sive perturbation of the quasilinear symmetric hyperbolic system. The result of Proposi-

tion 3.2 is pulled back to (1.1) which is equivalent to (3.12) for smooth solutions.

Theorem 3.4. Assume the hypotheses of Proposition 3.2. Then the initial value
problem of (1.1) and (3.2) has a unique classical solution in C*([0, T]; C*(R?)) of the form

Wt w) = ANt 7) exp (%Sh(t, x)>

on the time interval [0,T]. Moreover, A" and VS" are bounded in L>(]0,T]; H*(R?))
1

uniformly in h, and —VS" — wat is bounded in L>=([0,T]; H*(R?)) uniformly in h.
m

PRroOOF. The finer insight in Remark 3.1 and Remark 3.3 gives us more information
at a more detailed level. Since U} € H*(R?) and U, € H'(R?), we have (Af,S]) €
H*(R?*) x H**'(R?) and %VS(’)LZ —wzt € H(R?). Because of the expression (3.1) of ¥"
in the initial value problem for the rotating nonlinear Schrodinger equation, 1" has the
same regularity as A" Hence, we will observe the properties of A" = a” + ib" and S”. It

follows from (3.59) that
Al e C([0, T]; H5(R*) n C*([0, T]; H*2(R?)). (3.68)
Further, the Sobolev embedding theorem implies that
C([0,T); H*(R*)) N C([0, T); H**(R?)) — C*([0, T]; C*(R?)) (3.69)

if s > 5. Since iVSh =u" € O([0,T); H¥(R*)) N C*([0, T]; H*'(R?)), we have S"(t,-) €
m
H*T(R?) and 9,5"(t,-) € H*(R?); that is,

She ([0, T]; H*TH(R?)) n C ([0, T]; H*(R?)). (3.70)
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Once again, the Sobolev embedding theorem implies that H*(R?) — C?*(R?) if s > 3.

Hence, we obtain
C([0,T]; H*H(R?*) N C([0, T]; H*(R*)) — C*([0, T]; C*(R?)). (3.71)
Moreover,
%vsh —wrt =u € C([0,T); H(R?)). (3.72)
The initial value problem of (1.1) and (3.2) for the rotating nonlinear Schrodinger equation

is equivalent to the dispersive quasilinear hyperbolic system (3.12) due to the existence

of classical solutions. Applying this equivalent relation, we complete it. 0

3.2.3. The Properties of p". When we expect that the Euler equation (2.12) and
(2.16) tends to the limiting Euler equation (1.7) as & tends to zero, p™ must be restricted
to ensure that there is not a singularity in the O(h?) dispersive term appearing in (2.16).
Before exploring the properties of p, we obtain more information about the phase function

from the modified Madelung transformation. We employ the polar coordinates :
Al = a4 ib" = \/plexp (i0") = \/p" (cos 0" + isin ") . (3.73)

We use the equality
a"AY" = b"Aa" =V - (p"VE"), (3.74)

and then from (3.9a)—(3.9d), we derive the system

"+ V- [ph (u + V@h) (3.75a)

h
00" +ul - VO + |v9h|2 = — (3.75D)
&uZ—I—(uZ-V)uZ—FV(g +— V)—wx—Zw(h)L. (3.75¢)

Equation (3.75a) has an extra term of order O(h) in comparison with the usual continuity
equation. Moreover, this system (3.75a)—(3.75¢) is of order O(h), but not of order O(h?)
in comparison with both (2.12) and (2.14). Consider the limiting equation of (3.75b)

00+, - VO =0 (3.76)
with initial data 6(0,x) = 0. It follows immediately that

o(t,z) =0 (3.77)
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d
along the characteristic differential equation d—i = u,(t, z) subject to the initial condition
x(0) = xp. We conclude that the limiting system of (3.75a)—(3.75¢) are the same as the

limiting equations of (2.12) and (2.14) when A tends to zero.

Proposition 3.5. Assume the hypotheses of Proposition 3.2. If ph(x) = (al)*+(b)? >
0, then p™(t,x) > 0 for all t > 0; if pf' has a compact support, then p"(t,-) does too for
any t € [0,T], and

R{AE} < R{GAY+ (0 +CT
where R{u} = sup{|z| : u(x) # 0}.

PROOF. Let (7,€) be an arbitrary fixed time-space point in [0, 7] x R?. Since
h
ull(t,z) + Eveh(t, x) € CH[0.T); H**(R?)) N L*=2([0.T); H*(R?)), (3.78)

the Existence-Uniqueness theorem for ordinary differential equations guarantees that the

problem

Cé_f = ul(t,z) + %veh(t,x), x(T) = ¢, (3.79)

has a unique and continuous solution x = ¥(t) € C'([0,T];R?). Moreover, equation

(3.75a) is equivalent to an ODE

%ph (.0 (t) = 0" (8, (1)) + V" (£, U(1)) - (Uf)(t ) + %Wh(t»ff))

(3.80)

- _ph (t7 \Il(t)) V- (UZ(tv l’) + %V@h(t,$)> ’

Integrating the above equality over a time interval [0, 7], we obtain

P (7, &) = p™ (0, ¥(0)) exp {— /0 V- (ufz(t,x) + %V@h(zﬁ,x)) dt} . (3.81)
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Thus, p"(1,£) > 0 if p(0,¥(0)) = pf(¥(0)) > 0. Denote R{u} = sup{|z|: u(z) # 0} for
u € C(R?). When p"(r,£) # 0, p5(¥(0)) # 0, so [W(0)| < R{pg}, and

6 = w(r)| = 'wm [ (uz@,m) ; %veh(t,x)) dt'
< [w(0)| + /0 st + 90 )] (3.82)

< R{p}} + (1+n)CT.
Hence, we obtain

R{p"t,)} < R{p}} + (1 +h)CT. (3.83)

3.3. Semiclassical Limit

Let U, = (a,b,uy + wes,uy —wz1)". The limiting system of (3.12) is the quasilinear

hyperbolic system

atUw + Ml(Uw)aaqUw + MQ(Uw>ax2Uw +G = £2<Uw)a

(3.84)
Uw(Oaﬁ) = Uw,o(ff) N (a0($)7b0(17>7u1,0($) + w$2,u2,0($) - wﬂﬂl)T,
where
00 0 0 a
00 O 0 b
Ly(U,) = , (3.85)
0 0 0 2w U] + Wy
0 0 2w 0 Uy — WT

and (3.84) is equivalent to the compressible rotational Euler equation (1.7) as long as

solutions are smooth. We will show that it is possible to pass to the limit & — 0 in (3.12).

Proposition 3.6. Let U, U,o € H*(R?), s > 3. Suppose that Ul ((z) converges
to Uyo(z) in H*(R?) as h tends to zero. Let [0,T] be the fized interval determined in
Proposition 3.2. Then as h tends to zero, there exists U, (t,x) € L>([0,T); H*(R?)) such
that for 0 < 9§ < 2,

Ult,z) — Uy(t,x) in C([0,T]; H*°(R?)).
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The function U, (t,z) belongs to C([0,T]; H*(R?))NC* ([0, T]; H**(R?)) and is a classical
solution of (3.84) with initial data U, (0,x) = U, o(x).

PROOF. Since {U"}; is bounded in H*(R?) for all + € [0,7], a weak compactness
argument shows that for any fixed time ¢ € [0,7], there exist a subsequence of {U"},
(always denoted by {U"}; due to the uniqueness) and a function U, € H*(R?) such that
Ul —~ U, in H*(R?) as h — 0. Similarly, 0,U" — 9,U, in H*"2(R?) as h — 0. We use the

mean value theorem to show that for all i, for 0 <t < T and & € (¢t,t + h),

IUZ(t + R) — UL lzrs-2 = 10:UZ ()

Hs—2

(3.86)

<h max ||GU)||gs2—0 as h—0,
0<t<T

which denotes the sequence {U"}; is equicontinuous. The Arzela-Ascoli theorem implies

that there exists U, € L*([0,T]; H*(R?*)) N Lip([0, T; H* ?(R?)) such that

max || U™(t) — U, (t)||gs—2 — O (3.87)
0<t<T
as h tends to zero. Therefore,
O.U, € L>=([0,T); H2(R?)), (3.88)
and
U, € C([0, ] H*(R2) N C1([0, T); H**(R2)). (3.80)
The Sobolev embedding theorem shows that
C([0,T]; H2(R*)) N C([0, T]; H**(R?)) — C*([0, T]; C*(R?)) (3.90)

if s > 5. We deduce from the interpolation inequality that
Uh— U, in C([0,T); H7°(R?)), (3.91)
where 0 < § < 2. Therefore,
Ul converges strongly in  C([0, T]; H*~°(R?)) to a function UL, (3.92)
Furthermore, from the equation itself, we also have

Ul converges strongly in - C*([0,T]; H*"27°(R?)) to a function U,,. (3.93)

w
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Since Ul () converges strongly to U, (z) in H*(R?), this limiting system has the initial
data U,(0,z) = U,o(x). In particular, we note that £(U") is uniformly bounded in
H*72(R?), so the perturbation term L(U") tends to Ly(U,) as h tends to zero. The
uniqueness proof of this system is like that in Subsection 3.2.2. Hence, the whole sequence

converges to U,,. 0J

Remark 3.7. The strong convergence of Uf,o to U, implies that UY converges strongly
to Uy. For the same reason, the result of Proposition 3.6 reveals the fact that U converges

strongly to U.

The relation of equivalence between (3.84) and (1.7) leads us to have the following
convergent result, link 7" to the existence time of a smooth solution of (1.7), and ensure
the strong convergence of 1" to a classical solution of the compressible rotational Euler

equation (1.7).

Theorem 3.8. Assume that (p, i) is a solution of the compressible rotational Euler

equation (1.7) for 0 <t < T and belongs to C([0, T|; H*(R?)), s > 3, with initial condition

po(w) = p(0,) = |Ao ()|,
fwo(z) = 1,(0,2) = |Ag(x)[? (%ng(x) - wa> .

Then there exists a critical value of h, h. depending on T, such that under the hypotheses
(1) ivwx) WP € HY(RY),
(2) Al(z) converges strongly to Ag(x) in H*(R?) as h tends to zero,
(3) (oo o) € L((0,T); HO(R?)),
(4) 0 < h < A,
the initial value problem of (1.1) and (3.2) has a unique classical solution V" of the
form (3.1), where A" and VS"™ are bounded in L>([0,T]; H*(R?)) uniformly in h, and
%VSH — wat s bounded in L®([0,T); H'(R?)) uniformly in h, on [0,T]. Moreover,
(p", ul) converges strongly to the solution (p,u,) of (1.7) in C([0,T]; H*"%(R?)) as h

tends to zero.
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PROOF. Assume that there exists a solution (p, p1,,) in L=([0, T]; H*(R?)) of (1.7) on
a time interval [0, 7] with s > 3 for the initial data

2

Y

po(r) = [Ao(z)[* =

Y
%{% A(@)

1 2 1
_ 2 o LY 1 h : h o 1
Howo(z) = |Ao(2)| (—mVSO(x) wx ) }ilir(l] Ao(x)‘ (;lg% —mVSO(:E) wx ) :
(3.94)

us < Cq, and

satisfying || po(-)llzs < C, ||ptwo(-)||zs < C. It makes sense since [|UJ,(-)]
Ul () converges strongly to Uy, o(x) in H*(R?) as h tends to zero.

The existence time 7' of solutions of (1.7) coincides with that in Proposition 3.2.
There will be no confliction. Assume that the limiting system (3.84) admits a solution on
a maximal time interval [0,T%]. Let us prove that T* > T. If T* < T, then p and p,, are
in L°°([0, T*]; H*(R?)), so u,, € L>°([0,T*]; H*(R?)). By using (3.9¢) and (3.9d), we get
that a and b are in L°([0,T*]; H*~'(IR?)), which is impossible since T™* is set to be the
maximal time of existence. Hence, T > T.

Along the lines of the proof of Proposition 3.6, we consider the difference of (3.12) and
(3.84). Set H" = U" — U,,. Then

OH"+ M, (H" + U,) 0, H" + My (H" + U,,) 0,, H" = £ (H") + F", (3.95a)

where

Fl= (L —L5) (U,) — [M; (H"+U,) — My(U,)] 0, UL,
(3.95b)
— [My (H' + U,) — My(Uy,)] 05, U

Since M is positive definite for all (H" + U,,), (3.95a) becomes
Mo, H" + M, (H" + U,) 0, H" + My (H" + U,) 9, H" = L (H") + MF",  (3.96)

where ]\Afl = MyM;, ]\Afg = MyM,, and L= MyL. Here the matrices ]\Z (Hh+ Uw) and
M, (Hh + Uw) are symmetric. The energy associated with (3.96) is

E(t) = (MoH" H") = / / (H")" MyH"dx:dx,, (3.97)
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and the Friedrich energy equality is written as

%E(t) = (T"H" H") 4 2 (Z (H") + MyF", Hh) : (3.98)

where I'" = 9,M, + &clj\z + QEQJ\%. Since £ is antisymmetric, we have

(L(H™), H" = 0. (3.99)

Applying Cauchy-Schwarz’s inequality and Young’s inequality leads to

((£2-2) (W), H") < hC + hC | B (3.100)
and for i = 1,2,
(= [VaH™ + ) = V()| 00,00 HY) < |2, (3.101)
Hence,
St ([Elert A0 + O)|[ B2, 4 RO

(3.102)

< Ek(|T)|ze + RC + C) (MoH", H") + hC
for some k£ > 1. By applying Gronwall’s inequality and the strict positive of M,, we
deduce that for t € [0, T],

2 hC't
HHHHL2 < explk(||T|ze + AC + C)t] ||U£L7O(m) — Uw,o(x)HL2 + W
LOO
(3.103)
= C(h) — exp[k(||[I'||p= + C)t] - (04+0) =0
as h tends to zero. We complete the proof. 0

These results indicate that the regularity (3.59) of solutions of the quasilinear hyper-
bolic system (3.12) controls that of solutions of the quantum hydrodynamic equations of

the rotating nonlinear Schrodinger equation (1.1).



CHAPTER 4

WKB Expansion

We must be content with approximate solutions of the system (3.12) obtained by

perturbation expansion :

Ur=u® + ™ + R2U® ... 4 BNU™ 4. (4.1)

w

where U = U© — (0,0, =9, 21)". We write M;(U) as the Taylor series expansion

around Uf,o)
M, (U]) = M, (Uéo) + AU + R2UD .o BN )
= MU + DM (UL (hUD + R2U@ 4 ...

DM, (UD)
2l

D3 My (U

3 (hUD + RU® ..

(AUD 4+ 52U@ 4+ ... )% 4

DN M (U
N 1(Us”)

- (hUD + U@ +...)N+...

(4.2)
Similarly, we do the same to M,(U"). We present the hierarchy by the order of A as

follows :

OUY + My (UMD, UY + My(UD)0,,UD + G = Lo(UW), (4.3a)

U + My (U8, UM + My(U 0, UM
(4.3b)
+ DM (UYUD,, U + DMy, (UYU D, U = £, (U + Lo(UD),

37
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8,U® + M, (U0, U + My(UM0,, U@
_'_DM1<U£)O)> [U(D&EIU(I) + U(2)6x1 UU(JO)] + DMQ(UOSO)) |:U(1)amU(1) + U(2)am2Uu(JO)

D2M, (UM
ol

DM, (UD)

s [0 0,00 = £uU®) + Lo(UP),

(4.3c)

(UM% 0,, U0 +

We have the general formula

N

2 0)
DM (UL
N J\Vw
QUM+ > —
i=1 k=0

0<n; <k, n; €N, i=1,---,N
ny+nz+---+ny =~k
n1~1+n2'2+"'+nN'N+nacj:N

0<nz]~§N, nszN

. {U(l)}"l [(](2)}"2 ..... [U(N)]"N 3$J_U(nzj)
(4.4)

k=0
0<n; <k, meN, i=1,---,N
n+ns+---+ny==%k
ni-l+ng-24---+ny-N=N

) [U(n}m [U(z)}m ..... [U<N)]"N O, A

=L (UN"D) 4 Lo(UN)), N =23,

where £ = hL; + Lo, L, is as that in (3.85), and

1
0 —A 00
1 2m

—A 0 0 0
2m : (4.5)

0 0 0 0
0 0 0 0

Ly
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In the next discussion, we shall observe the nature of the solution represented by each

approximation.

Zeroth order approximation. (4.3a) is the limiting system of (3.12). We have that
UM is bounded in C([0,T]; H*(R?)) N C([0,T]; H*2(R?)), and U" converges uniformly
in L>([0.7); H*2(R?)) to UY). This implies that both A" and u” are bounded in
C([0,T); H*(R*))NC* ([0, T); H*~%(R?)). By the Arzela-Ascoli theorem, there exists a sub-
sequence of {(A" ult)}, such that (A" w]) converges uniformly in L>([0,T]; H**(R?))

to (A, u?) which is a solution of

1
040 + (ul W) A0 4 LA (V- o) =0, (4.6a)
1
Oul® + (u&o) V) ul® + 2cuug))l — Wiz + EV\A(O)P + —VV =0, (4.6Db)
m m
1
where u)) " = (—(ug]) —Wwy), uﬁ‘” + ws), with initial data
1
A0, z) = }iirr(l) Alz), u®(0,z) = —VSy(x) — wrt. (4.7)
— m

This system admits a unique solution. Therefore, all sequence (A" u) — (A©), u&o)) in

C([0,T); H*~%(R?)). Moreover, it follows from the interpolation theory that (A" u) —
(A© D) in C([0,T); H9(R?)) for 0 < 0 < 2.

First order approximation. Let
Uh= 2w -2 (4.8)
Then [71;1 satisfies

Q.U + My (UM8,, UF + My(UM,,UT
(4.9)
FM(UD)O,, UL + My(UMD,, UL = £,(U) + £(UP).

We want to get the convergence of the sequence {(/]\1%} to UM which satisfies (4.3b).
h

In particular, U" converges uniformly in C([0,T]; H*"2(R?)) to UL, which hints that

we will estimate the H* %norm of (A]z‘l Since UL is bounded in C([0,T]; H*(R2)) N
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CH([0,T]; H*=%(R?)), if (71;1(0, ) is bounded in H*2(R?), then the energy estimate implies
that

(Afﬁ is bounded in  C([0,T); H*"*(R?)) N C'([0, T); H*~*(R?)). (4.10)

The application of the Arzela-Ascoli theorem and the interpolation theory shows that for

0<a<?2,

Ur— U 0 O([0,T); H2%(R?)) (4.11)
by passing to a subsequence in h. Taking the limit of (4.9) and noting that for i = 1, 2,

N M;(UR) — M;(US)

. h

i M) h T = DM (UM, (4.12)
h—0 Ulh h—0 Uh _ Uw

w

h
we deduce that U™ is the unique solution of the linear equation (4.3b) with initial con-
dition

R _717(0)

The uniqueness makes us pass to the limit without the extraction of subsequence, so the

whole sequence converges to U1,

Higher order approximation. Assume that we have already obtained an asymptotic

expansion up to order N

Ul =09 +h0W + -+ BNUN + O(RM), (4.14)

w

where the function U belongs to C([0, T]; H*(R2)) N C*([0, T): H*~2(R?)), and the func-
tion U belongs to C([0,T]; H*=%(R?)) N CY([0, T]; H*~%~2(R?)), j =1,2,--- ,N. Let

LA —— [t Uk
UE:ZhJUO)—w(O,O,—xz,ﬂUI) and Ul == =

W. (4.15)
=0
We write the equation for [7}?:1
atUji\if-s-l + Ml(Uz})amUJ}\if-i-l + MQ(UE)@;E2U]’;L[+1
(4.16)

My (UL, )00 Ul + My(Uly 1), Ul = L4(UM) 4 LU, ) + Bl
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9 N
1 3 n
Bl = § : {hN-H [_Mj(UJ}\i/)aijﬁ/ + Mj<Uo(JO)>a:ijJm + RNA+1 Jj,k,N} )
k=1

k m (0)
D M<UW ) n1 n
JieN = Z *[U(l)] ---[U(’“)] k@ij]@_m
m=1

(4.17)

nie€N, i=1---k
nyt+ng+--+ng=m

ni-l4+ng-24---4+ng-k==k

and BY is a function which depends on UZ. Observing the solution U” of (3.12) and

assuming O(hY) = 0, we have

P

atU]iLH-l + Ml(Uf)amU]@H + M2(U£)ax2U]};L/+1
(4.18)
+M1(U1}37+1)ar1U]}?/ y MQ(U];\iH-l)asz]f\lf = ‘Cl(U(N)) + ‘C(Ulf\if—i-l)

Comparing (4.18) with (4.16), we conjecture that B% is small enough to ignore. It can
be shown that Bl is bounded in L ([0, 7]; H**®*+D(R?)) uniformly in % (see [8]). By

using again the energy estimate, we obtain

—~—

Uk., isbounded in C([0,T7; H*2NH)(R2) N OY([0, T]; H 2N HD-2(R?))  (4.19)

—_~—

as soon as UL ,(0,z) is bounded in H* *WFV(R?). Therefore, there exists a function

UWN+1D) such that for 0 < a < 2,

o~

Uk, — UMY in ([0, T); 2N TD7(R?)) (4.20)

without passing to a subsequence in i due to the uniqueness, and U™+ gsatisfies the

general formula (4.4) for N + 1 with initial data

U0, z) — (U§,°>(o, )+ -+ BT, :15))
U0, 2) = lim i

(4.21)

This result is connected with 1" so that we have approximate solutions of the rotating

nonlinear Schrodinger equation (1.1).
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Theorem 4.1 (WKB expansion). Suppose that the assumptions of Theorem 3.4

hold, and the initial amplitude Al(z) admits the following expansion :
Z AW (z) + BN R (z, h),

where

lm || i (. 1)

o =0

2
for N e N and o > 2N + 2 + 5 then the solution of the rotating nonlinear Schréodinger

equation can be represented as

Yt x) = AP(t, x) exp (%Sh(t, m))

N

Z R AW (t, ) exp (hS(t, x)) + N Ry (t, x, h),

where

}1121,(1) ||RN(t, :,E, h)”C([O,T];H"—QN—G(RQ)) — O, VE > O



CHAPTER 5

The Local Existence and Uniqueness

When we expound and prove the semiclassical limit, we must assure the existence of
the limiting system. In this chapter, we sketch the existence and uniqueness proof of solu-
tions of the compressible rotational Euler equation (1.7) by being based on the equivalent
quasilinear hyperbolic system (3.84). The proof follows the same method mentioned in
Proposition 3.2. We derive a short time existence theorem by constructing a sequence
of approximate solutions and using the compactness argument. The procedure is decom-

posed into seven steps.

Step 1. Conversion to the quasilinear symmetric hyperbolic system. Constructing a
symmetrizer My (3.15) which is symmetric and positive definite if g > 0 for all U, we

will transform (3.84) into the quasilinear symmetric hyperbolic system

MO<Uw)atUw N MI(Uw)aam Uw + M2(Uw)angw v, é ~ 22(Uw>7
(5.1)

Uw(O, x) = Uw,O(x)a

where Ml = ]\4{]]\417 MQ = M()MQ, é = MOG, and Eg = Moﬁg. Here Ml and MQ are

symmetric, and L, is antisymmetric.

Step 2. Construction of approrimate solutions UZ. Our strategy will be to obtain a

solution of (5.1) as a limit of solutions U™ (¢, z) of the linear equation

Mo(UDUIH + M, (U2)0,, U + My(U2)0,, UsH + G = Lo(UIH),

Urt(0,z) = U, (),

where ¢ = 0,1,2,3,--- and US(t,x) = U, o(x) denotes the initial data.

Step 3. A priori estimate. Our task will be to show that approximate solutions U2

43
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exist for ¢ in an interval independent of ¢ > 0 and have a limit solving (5.1) as ¢ tends to
0o. To do this, we estimate the H*-norm of solutions of (5.2). Let s > 2 4 ; Assume
Uett € C%([0,T]; C**1(R?)). Following the process in Subsection 3.2.1 and summarizing
the energy estimate associated with (5.2), we conculde that if %VV(x) —w?z € H%(R?)
and U, € H*(R?), then the iteration scheme defined by (5.2) is well-defined, and ap-

proximate solutions UZ satisfy a priori estimate on the space derivatives of the type
UL ||ers < C,  t€0,T], (5.3)

which denotes
Ut € L% ([0, T; H*(R2)). (5.4)

In addition, it follows that every component, namely, a?, b, (uf + wzs), and (ud — wxy),

belongs to L*>°([0, T]; H*(R?)) and then from (5.2) that for ¢ € [0, T7,

| QUL [ O, t€[0,T], (5.5)

which denotes
oUL € L>([0,T); H~1(R?)). (5.6)
Note that if we write U, = U — w(0,0, —x9,21)T, then the constructed approximate

solutions U4 = U4 — w(0,0, —x9, 1)" satisfy

Ug € L>([0,T]; H'(R?)), U7 e L>([0,T}; H*(R?)),
(5.7)
a,U € L]0, T]; H*(R?)),

1 1
as long as EVV((E) —w?z € H'(R?), EVV(&U) € H*(R?), U,p € H'(R?), and U, €
H*(R?).

Step 4. A compactness result. Show that the sequence {UZ2}2, is a relatively com-
pact set in C'([0,T7; H*~'(R?)). We deduce from Step 3 that
{U2}2, is bounded in  L*([0,T]; H*(R?)), (5.8)

{6,U8}e2, is bounded in  L>([0,T]; H*(R?)). (5.9)
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It follows from the classical compactness argument that there exist a subsequence of
{us a—o and a function U, € L>([0,T]; H*(R?)) such that

Ul —~U, weakly x in L*([0,7T]; H*(R?)), (5.10)

UL — 9,U, weakly = in L>¥([0,T]; H*1(R?)). (5.11)
As discussed in Subsection 3.2.2, the same technique is displayed. We appeal to Rel-
lich’s lemma which states that H*(R?) — H* '(R?) is a compact embedding and the
generalized Arzela-Ascoli theorem which states that {U2}22, is a relatively compact set
in C([0,T); H*1(R?)) if and only if
(1) {U(t)}2, is a relatively compact set in H*~'(R?) for all ¢ > 0,
(2) {UZ}2, is equicontinuous in C([0, T]; H*~1(R?)).
In addition, the foregoing result also implies that {U q}gozo is a relatively compact set in

C([0,T); H*~*(R?)). Moreover, by the interpolation theory, we have that for 0 < o < 1,
Ul — U, in C([0,T]; H°(R?)). (5.12)

The uniqueness of U,, shows that the whole sequence UZ converges to U,,.

Step 5. Passage to the limit for ¢ — oo. A priori estimate in Step 3 will allow to
pass to the limit in (5.2). If we choose s sufficiently large, then the strong convergence of

U in C([0,T]; H¥ 7 (R?)) gives the convergent results :

Mo(UDO,UTH — Mo(U)0U,,, My (U2)0,, U — M,y (U,,)0y,Us,,
(5.13)
My(U2)0,, UL — Mo(U)0r,Usy  La(ULT) — Lo(Uly).

Therefore, U, belonging to C([0, T); H*(R?*))NC' ([0, T]; H*~'(R?)) is a solution of (3.84).

Step 6. A classical solution. The Sobolev embedding theorem implies that
U, € C*([0,T] x R?) (5.14)

if s > 3.

Step 7. Uniqueness. We consider the difference of two solutions of (5.1) to perform the
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energy estimate. Let (U,); and (U, )2 be two solutions satisfying (U,)1(0,z) = U, o(z)
and (U,)2(0,z) = U, o(x). Let H = (Uy,)1 — (U,)2; we get the equation

Mo, H + My [(U)1)0, H + Ma[(U,)1)00, H = Lo(H) + F, (5.15a)
where

F= (J\Z[(Uw)ﬂ - J\Z[(me) Or, (Us)2 + (fw;[(mg] - M;[(Uw)l]) 0,,(U.)s. (5.15b)

The technique of the energy estimate associated with (5.15a) is the same as that in Propo-

sition 3.2. Thus, (U,); = (U,)2 for all t € [0,T]. The classical solution is unique.

We have established the following existence and uniqueness result.
Proposition 5.1. Let s > 3 and the potential V (x) satisfy

1 2 s 2

—VV(z) —wz € H*(R?).

m

Assume that the initial data U,y = (ao, by, U1, + wea, Us g — wxl)T € [HS(R2)]4 satisfies

the uniform bound

| Uso |

H5< Ol

Then there is a time interval [0,T] with T > 0, so that the IVP for (3.84) has a unique

classical solution
U, = (a,b,uy + wry, upy —wzy)’ € C1([0,T] x R?).
Furthermore,
U, € C([0,T]; H*(R*)) N C([0, T]; H*~1(R?)),
and T" depends on the bound C.
Relying on the equivalent relation between the compressible rotational Euler equation

(1.7) and the quasilinear hyperbolic system (3.84), we complete the local existence and

uniqueness proof of the compressible rotational Euler equation (1.7).
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Theorem 5.2. Assume that (p, p,,) is a solution of the compressible rotational Euler

equation (1.7) for 0 <t <T, s > 3, with initial condition

po(z) = p(0,2) = |Ao()[”,

paale) = 1a(0,) = [Aafo) (- 75u(o) - ).

Then under the hypotheses
1
(1) EVV([E) —w?r € H*(R?),
(2) (po, o) € L2([0, T]; H*(R?)),

the compressible rotational Euler equation (1.7) has a unique classical solution
(o, 1) € CH([0, T] x R?)
on [0,T]. Furthermore,

(p, ) € C([0,T]; H*(R%)) 0 CH([0, T1; H*7(R?)).






CHAPTER 6

Acoustic Wave

The expansion for p" and u/ takes the form
pﬁ =14+ hp(l) 4 h2p(2) 4 h3p(3) 4o
(6.1)
ul = hu™ + R2u® + B3 4.
Substituting (6.1) into equations (2.12) and (2.14) and considering the O(h) terms, we

have

Oy + V- uM =0, (6.2)
)

ol + 97 4 2500 — e Ly 69
m m

We may abbreviate this system by using the matrix

0 V-
A= g , (6.4)
=~V 2w/
m
where
0 —1
[ X (6.5)
1 0

Suppose that X = (pV, u(l))T and X solves the initial problem for the system . Then

the system may be written as
0 X(t,z)+ AX(t,z) = G(z), X(0,z)= Xo, (6.6)

where

0
wlr — —VV
m

Taking the Fourier transform of both the system and the initial condition with respect
to the space variables, we reduce the problem to an ordinary differential equation in the
time variable

0X(1,6) + AX(1,6) = G(€),  X(0,6) = X, (6.8)

49
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where

A= . (6.9)

and

~ 6.10
WR(E) — %igv (010

If € = (&,&), then Z(€) in @(f) can be expressed as

7€) = (27r¢5’(§1)27r5(§2),27r5(51)2m5’(§2)) — —idr25(6)0(E2) (é 5_12) . (6.11)

The matrix A has three distinct eigenvalues O,iz’\/ ilf > 4+ 16w?7?6(&). The space of
m

eigenfunctions associated to 0 coincides with the null-space of A

Ker(2) = { (2, o)

i€ -uD =0, %z{p(l) + 4w (§) Ju = 0} : (6.12)
For each fixed ¢ € R?, the solution of (6.8) is given by
X(t,8) = e M ()?0 + / e;‘Sds@(g)) : (6.13)
R+

Taking the inverse Fourier transform in the ¢ variables leads to

X(t, ) = (271r)2 /R 2 <e—ﬁt)’<\0+ /R ) e—ﬁ“—smsé(g)) e, (6.14)

which is an explicit solution of p™ and u(V.

6.1. Dispersion Limit

An alternative approach to the semiclassical limit is discussed here. Let us consider

a2 1
% which is served as the density fluctuation of the sound wave. In other words,

(p", ") is near the constant state (1,0). Multiplying (2.19) by (¥")" and (2.20) by "

leads to the conservation law

B, (W'#) —- V. {%Im [(w)*wﬁ]}+w (z*- V) (WT_l) . (6.15)
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To know the condition of V'(x), equation (1.1) can be recast as

ihop" = _h_2 (V — M)2¢h~l— hg (M) Pl

2m h h
(6.16)
gtm | V) - Lwety| Ly
m 2 ’
whose Hamiltonian reads
h? imwrt 2 og (2 —1\?
By _ n- _ e A grwyir —4
E(l/’)_/wzm (V h )w +2( i )
gt m | v - Lty Lo pde
m 2
( 1 L o ?
K2 imwzt 2 h2g |wh|2 Fil g+m EV(‘(E) - 5(") ’$|
=/ | (V- P+ == -
R2 2m h 2 h hg
w1l e [T - Laep] La
% g-—m = x 2w x — T.
(6.17)

1 1
As long as —V (z) — §w2|x|2 > 0, the energy E(i)") is positive definite, and the wave-
m

function 1" satisfies the energy inequality

E(t)=EBE@" < C. (6.18)
h

defining a new space and having its properties.

We substitute V,, for the operator V — and refer to Thierry Cazenave [19] for

Definition 6.1. The space H! is defined as

HMR%z{weL%W>

Vop € L2(R2)} ,
equipped with the norm

lellz = IVeellzz + llelize.

Lemma 6.2 (Lemma 9.1.2, Thierry Cazenave [19]). The following properties hold :
(i) H!— L2
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(i1) L* — (HL)*.

(@1) el < Nl -

The weak formulation of (6.16) is given by

(M) = 001,).0) = 5= [ (Vo Vo) d
() ere)as [ (el (G g o)

(6.19)
for all ¢ € C°(R?) N HL(R?).
Let us now search for the convergence of ¢". We use Lemma 6.2 to assist us in

proceeding with our work.

Lemma 6.3. Let T' > 0. For all 0 < h < 1, the sequence {wh}h 15 a relatively
compact set in C([0,T]; L*(R?)); that is, there exists ¢ € C([0,T); L*(R?)) such that

Y — 1 strongly in - C([0, T); L*(R?)).

PROOF. Assume that the initial data 1 satisfies |[¢)}| = 1 almost everywhere and
P& — by strongly in H!(R?) as i — 0; hence, [1y| = 1 almost everywhere. We deduce
from the energy inequality (6.18) that

{V.¢"},  is bounded in  L®(R*; L*(R?)), (6.20)
W2 -1 - : +. 722
Y is bounded in L*(R™; L*(R?)); (6.21)
h
therefore,
{¢"}, s bounded in L*(R*; HL(R?)). (6.22)

It can be observed from (1.1) or (6.16) that
{0}, is bounded in  L®(R*; H;'(R?)). (6.23)
The classical compactness argument shows that there exists a function v satisfying

Y € L¥(RY HL(R?), O € L*(RY; HL'(R?), (6.24)
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such that
Y = weakly x in L®(RT; H(R?)), (6.25)
o™ — 0 weakly x in  L®(RT; HJ'(R?)). (6.26)

The properties (i) and (i7) in Lemma 6.2 tell that we can apply the Lions-Aubin Lemma
to both (6.22) and (6.23) so that {¢"} is a relatively compact set in C([0,T]; L*(R?))

for T'> 0. It is worth pointing out, in passing, that

|¥"? — 1 a.e. and strongly in L?*(R?) (6.27)

according to (6.21). This also implies that [¢|* = 1. O
W -1 [Wh? -1

Next, we discuss the convergence of ———— According to (6.21), B con-

verges weakly * to some function belonging to L>°(R™; L*(R?)).

Lemma 6.4.
ni2 _ K 1
% — —/V- [E]m(@b*vtb)} dr

in the sense of distributions.

PROOF. Let 0, = 0, — w (31:l . V); the conservation law (6.15) can be recast as
[Wh* -1 1 BY* o,
o (L =) — _v.!{ g [ } . 6.28
( > Vg —Im | (") Ve (6.28)
Integrating (6.28) with respect to 7 and using the initial condition |1{| = 1, we have
h2_1 1 X
% - —/V. {Elm (") Vo] } dr (6.29)

dt dx
along the characteristic 7= —- The main step in proving Lemma 6.4 is in treating
—wx

the convergence of — / V. [(zbh) : th} dt in view of the weak topology. Using integration

by parts and Fubini theorem yields

_ /tt/R / V- (") V"] dro(a)dudt = /;/R / (") VATV (a)dadt

_ /t t//R (") VUVo(e)dudrdt

for all test functions ¢ € D(R?*) N HL(R?). Provided that the phase is not singular,
both the property (i7) in Lemma 6.2 and (6.20) imply that Vi € L>®(RT; L?(R?)).

(6.30)
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Moreover, V" converges weakly * to Vi in L®(R*; L?(R?)). The weak convergence of
Vo™ in L>=(R*; L*(R?)) and the strong convergence of " in C([0,T]; L*(R?)) show that
(") V" converges weakly * to ¢*Vip in L([0, T]; L*(R?)), and

/—v- [(wﬁ)*wﬂ dr — _/v (YY) dr (6.31)
in D'([0,T] x R?) for T > 0. This completes the proof of Lemma 6.4. O

Based on the above findings, we present the results of passage to the limit.

Theorem 6.5. Assume that Y} satisfies || = 1 almost everywhere and ¥ — g
strongly in H1(R?) as h — 0. Let ¥" be the weak solution of (6.16). Then 1" converges

to the weak limit 1 satisfying the wave map equation

Onth — —AQ/J =—1 (‘aﬂm - = ’VQM ) ]| =1 a.e..
Equivalently, 1 = € with the phase function 0 satisfies the wave equation

Oul — —AQ = 0.

PROOF. The strong convergence of ¢" in C([0,T]; L?(R?)) implies that

(Wi(tm ')7 d)) N\ ¢ W(tm ')7 ¢) ) (¢h(t17 ')7 ¢) ¥ 4 (¢(t17 ')7 ¢) . (632)
The uniform boundness of {V, 4"}, in L>*(R*; L*(R?)) implies that
Bl
o ), (V" Vo) dt — 0. (6.33)

We can recognize from both Lemma 6.3 and Lemma 6.4 that

(B[ o]

in D'([0,T] x R?) for T > 0. Therefore,

[ O (oo [mess] o))

(6.35)

1 1
Let V, = V —wQ\:L’|2 From the energy inequality (6.18), there is further information

1
to suggest that the quantity 7 (g +mV,,) is uniformly bounded. Hence,

[ (Glarmvvto)a— [*(Gasmivo) (6.36)



6.1. DISPERSION LIMIT 55

In conclusion, the wave function ¢ satisfies

o0 = —g {/ v. {%Im (w*w)} dT} v+ % {g +m (%v _ %wﬂxﬁﬂ b (6.37)

in the sense of distributions. A more clear expression of (6.37) could be showed. Differ-

entiating (6.37) with respect to ¢, we have the wave map equation

N (G 2 VL), Jwl=1 ae. (6.38)

m
Using the fact that 1| = 1, we write 1 = ¢ and insert it into (6.37) or (6.38) to show
the linear wave equation

90 — L A0 = 0. (6.39)
m

O

Remark 6.6. In (6.38), the terms inside the parentheses showing up in geometrical

optics is the eikonal equation.

The dispersion limit suggests that we treat the right side of (6.2)—(6.3) as a perturba-
tion, and we can study the linear wave equation instead of (6.2)-(6.3). Much remains to

be done, but we intend to continue pursuing this interesting line of inquiry.
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