Bt @ X

EHEHR R & PR AR R R Y A B DA

A Bridge with Respect to the Compensated Compound Poisson Process
or the Fractional Brownian Motion

oy 2 E2%E

g LAY BRI

FEREBILT NLFEAKNA



EHEHR R & PR AR SRR E T A B A

A Bridge with Respect to the Compensated Compound Poisson Process
or the Fractional Brownian Motion

R N Student : Tzu-Hui Wu

hERE I IRE Advisor : Ching-Tang Wu

& 5k

L o

A Thesis
Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Applied Mathematics
June 2010

Hsinchu, Taiwan, Republic of China

PERARA L ES



EHEHAT R & B E AR BT 9 E B iy

g4 858 Ry LAY

B> i 4 F R B AL

=
s

d  Follmer, Wu, Yor, (1999) ¢ 2 i frsg 4F 2 csg A & 4250 chfz ¢
A-BHFFES - bhm~ P o APEHHEG LW AT PR g A
- BAT R G iAo R 0 AT Rl AT AR & A o P
PF o AV - RS  ARefR ) LR T PR AR WiER o



A Bridge with Respect to the
Compensated Compound Poisson Process
or the Fractional Brownian Motion

Student : Tzu-Hui Wu Advisors : Dr. Ching-Tang Wu

Department of Applied Mathematics
National Chiao Tung University

ABSTRACT

From Follmer, Wu, Yor(1999) we know when the Brownian motion with
nonzero linear drift is again a Brownian motion. In this thesis, instead of
Brownian motion we discuss the case of compensated Poisson processes with
nonzero. So we can construct new compensated compound Poisson processes. We
also discuss whether the solutions of some particular form of stochastic
differential equations are fractional Brownian motions.
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CHAPTER 1

Introduction

We consider some generalization of Brownian bridge. We want to change the Brownian
motion which is in a Brownian bridge to a compensated Poisson process or a compensated
compound Poisson process. We also try to change the Brownian motion which is in a
Brownian bridge to a fractional Brownian motion. Then we discuss about what are the

properties of these processes. We consider the process
Xt:Bt—tBl, fOI'OStS 1 (].].)

where B is a Brownian motion is a Brownian bridge from 0 to 0 on [0, 1] (see Shreve [14]
Definition 4.7.4). Denote by (F7P) the filtration generated by B. The Brownian bridge
(X;)o<t<1 is not adapted to the filtration (FP)<i<;. In the following we consider the
Brownian Bridge which is adapted to the filtration (F?)q<i<;. Consider the stochastic

differential equation
X,

dX, =dB
t t+1_t

dt (1.2)

with the initial value Xy = 0. The solution (X;)o<t<1 of (1.2) is given by

"1
Xy =(1-1) dBs, for 0 <t < 1.
1
o L—s

Then the process (X})o<i<1 is a Brownian bridge from 0 to 0 on [0, 1) and it has the same
law of the Brownian bridge which is in (1.1) (see Shreve [14] Section 4.7). The process
(X}) 0<t<1 is adapted to the filtration (F?)g<;<1. Now we consider two independent Brow-
nian motions (B;)>¢ and (Bt)tz(). The solution (X¢)<t<1 of the stochastic differential
equation

B, — X,

Xy =dB + ———
dX; =dB; + 1—¢ dt

1



2 1. INTRODUCTION

with the initial value Xy = 0 is given by

t
1 N
Xt:(l—t)/l Sst—i—Blt, for 0 <t<1. (1.3)
, 1—

The process (Xt)o<t<1 in (1.3) is a standard Brownian motion with respect to the filtra-
tion (FX)g<i<1 which is the filtration generated by (X;)o<;<1 and the process (X;)o<i<1
converges to the final value By (cf., for example, Jeulin-Yor [7]). The following solution

(X¢) 0<t<1 of the stochastic differential equation

B - X
dXt:dBH—;—ttdt

with the initial value Xy = 0 is given by

t Q) t B
X, =(1—t dB 1 [ —_d for 0 <t < 1. 1.4
¢ = )/01—3 s+ ( )/0(1—3)2 s, or 0 <t< (1.4)

The process (X;) g<i<1 in (1.4) converges to By P-as. ast — 1 and (X¢) o<t<1 is no longer
a Brownian motion (see Follmer, H. [5]).

In Shreve [14] we see the introduction about compensated Poisson process and com-
pensated compound Poisson process. We know their basic properties from Shreve [14].
In Chapter 2 we change the Brownian motion which is in a Brownian bridge to a compen-
sated Poisson process. We will see some bridges with respect to the compensated Poisson
process start from zero to fixed points and see a bridge between two independent com-
pensated Poisson processes. In Chapter 3 we will construct a new compensated Poisson
process and a new compensated compound Poisson process.

In the last chapter we introduce the fractional Brownian motion and its basic prop-
erties. The fractional Brownian motion was first introduced by Kolmogorov [10]. Man-
delbrot and Van Ness [11] established the integral representation for fractional Brownian
motion on the whole real line. By the approach of [12], we have the integral representa-
tion for fractional Brownian motion on a finite interval. These integral representations are

all integrals of deterministic integrands with respect to the Brownian motion. Then we
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know that the fractional Brownian motion is adapted to the filtration which is generated
by the Brownian motion. Gani, Heyde, Jagers, Kurtz [6] tell us a fractional Brownian
motion is not a semimartingale, so we can’t use It stochastic calculus which is defined for
semimartingales to define the stochastic integral with respect to the fractional Brownian
motion. In Section 4.2 we have the definition for the Wiener integral of a deterministic
integrand with respect to the fractional Brownian motion for the Hurst index H > 5
(see Gani, Heyde, Jagers, Kurtz [6]). From the definition we know that the Brownian
motion which is in the integral representation for the fractional Brownian motion can be
represented by an integral with respect to the fractional Brownian motion. Hence, we
know that the Brownian motion and the fractional Brownian motion generate the same
filtration. In Section 4.3 we will see a bridge with respect to the fractional Brownian

motion starts from zero to a fixed point and a bridge between the fractional Brownian

motion and a random variable.






CHAPTER 2

A Bridge with Respect to the Compensated Poisson Process

Let (2, F,P) be a probability space. In this chapter we consider the properties of
the stochastic process if the Brownian bridge is driven by a compensated Poisson process
instead of the Brownian motion. First we would introduce some basic properties of Poisson

process.

2.1. Poisson Process

Definition 1. A random variable 7 is said to have exponential distribution if 7 is a

random variable with the probability density function

Xe M ift >0,
f(t) =
0, if t <0,

where \ is a positive constant. We also say that 7 is an exponential random variable.

Let (7,)nen be a sequence of independent exponential random variables, all with the

same parameter \. Let

n
Sn - § Tk,
k=1

ie,S1=7,8 =7 +T, -
Definition 2. The Poisson Process (IV;) is defined by
Ny =inf{n —1:5, >t} =max{n: S5, <t}

Moreover, we say that (N;) is a Poisson process with intensity A.

5



6 2. A BRIDGE WITH RESPECT TO THE COMPENSATED POISSON PROCESS

The Poisson process (N;) is right-continuous in ¢ and it has stationary independent

increments, i.e., for 0 <ty < t; < --- < t,,, the random variables
Ny, Ny = Nyyyooo Ny — N,y
are stationary and independent. The mean and variance of N; are given by
E[N] =X and Var(NV;) =\t

respectively. The Poisson process is no more a martingale. We consider a martingale

which has similar properties of Poisson process.

Definition 3. Let (N;) be a Poisson process with intensity A. The stochastic process

defined by

Mt:Nt—)\t, tZO,

is called the compensated Poisson process.

Denote by (F) and (FM) the filtrations generated by (N;) and (M), respectively.
From the definition of the compensated Poisson process, we know that FM = FN| for
all ¢ > 0. The compensated Poisson process (M;) with intensity A is a martingale with
respect to the filtration (F7). In next two sections we will discuss about some models

with respect to the compensated Poisson process.

2.2. A Bridge Starts from Zero to a Fixed Point
Consider the process

Xt:Mt—tMl, for()ﬁtﬁl

which is a bridge with respect to the compensated Poisson process from 0 to 0 on [0, 1].

Because the term M is in the difinition of X, for 0 < ¢ < 1, the bridge X, is not adapted
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to the filtration (F}¥). We shall later obtain a different process which is also from 0 to 0
but is adapted to the filtration (F}¥).

We consider the stochastic differential equation

e
dX, = dM, + 5 ttdt (2.1)

with the initial value Xy = 0. The equation can be solved by applying the Itd’s formula

f(t,x):xexp{/o 1i8ds}:1it.

to the function

We have
T 1
ft(t7x> = (1 — t)Q» f:v(twr) - mv fzx(tvx) | ftm(tax) = fzt(t’x) = 0.
The It6’s formula implies
ft, X,) = Xe —/t Xs ds+/t L ax (2.2)
YTt ), —s)? B b '

From (2.1), we obtain

t t t
X, 1 1
—dX, = M. 2.
/0(1—3)2ds+/01—3d8 /Ol—sd ° (2:3)

By (2.2) and (2.3), we have that the explicit formula of solution X3, for 0 <t < 1 is given

by

— S

t
1
Xt:(l—t)/l M, for0<t<l. (2.4)
0

Due to (2.4) we see that (X;) is adapted to the filtration (F}), for 0 < ¢t < 1. From

Shreve [14] we have the following theorem.

Theorem 4 (Theorem 11.4.5, Shreve [14]). Consider the jump process (X;) given by
t t
X, :X0+/ FSdBSJr/ O, ds + Jj,
0 0

where I', © are adapted processes, B is an adapted Brownian motion, and .J is an adapted,

right-continuous pure jump process with Jy = 0 having finitely many jumps on finite
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interval. Assume the process (X;) is a martingale, the integrand & is left-continuous and

adapted, and satisfies

t
E{/ @?Fids}<oo, for all t > 0.
0

t
Then the stochastic integral / ®,dX, is a martingale.
0

1

— S

¢

Since the compensated Poisson process (M) is a martingale, the process / dM;
0

is also a martingale. Then X, has zero mean for all . Next, we compute the value of

the variance of X; and use the mean and variance of X; to see where the process (X;)

approaches when ¢t — 17

Theorem 5. Consider the process (X;)o<i<1 which is given by (2.4). For 0 <t < 1,

we have that the variance of X; is given by
Var(X;) = —At*> + At. (2.5)

ProOF. For 0 <t <1,

E[X?] = (1—t?E

</ot 1 i s dMsﬂ '

2
dM5> , so that we can get the value of

— S

t 1 2
</ dM$> . Weset for 0 <t <1,
0 1_8
1
i = U/“ dﬂ4;

| |
= [

Note that the continuous part of Yy, Y,°, is given by dY;" = 1

t
1
We will apply the It6’s formula to < / ]
0

E

ds.

ds. Take f(x) = 2 so

-5
that f'(z) = 2z, " (x) = 2. The Itd’s formula implies

f(¥) =f(Yo)+/O f’(YS)dY;‘#%/O [ aveaye+ N [f(Y.) — f(Yo)].

0<s<t
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Then we have

t 1 t
yg:Yg+/ 2st¥;+§/ 2dYdYS+ Y Y2 V2]
0

0 0<s<t

- [on () e+ ¥ mr-vz). (2.6

0<s<t

Next, we take the expectation of both sides of (2.6) and use Fubini’s theorem

t
1
E[W]:—QA/OI_SE[Y;MSHE :

S (vEov2)

0<s<t

Since E[Y;] = 0, we obtain

E[v/] =E

Y (vE-v2)

0<s<t

\ (2.7)

and

(Y- Yo )? =

Then we have that

0<s<t 0<s<t
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We change the form of the last integral so that we can get the mean of it easierly.

t 1 2 t 1 2
Y. ) dN, = Y- | dM,
/o<<1—s>2+1—55) /o<<1—s>2+1—s )
t 1 2
Y.- | Mds.
+/o<<1—s>2+1—s ) ’

Since Y,- is left continuous in s, for 0 < s < 1 and (M,) is a martingale, the process

! 1 2
/ (( + Y;,) dM, is also a martingale. So we see that
0 S

1—s)2  1-—
]EU;<<1_18)2+1:Y;)61M5}:0. (2.10)

Due to (2.8), (2.9), (2.10) and by Fubini’s theorem, we have

E

S (vE-v2)

0<s<t

_ /Ot ((1 _15)2 + 1 2 - IE[YS_]) Ads. (2.11)

Now we compute the value of the right side of (2.11). E[Y,-] = 0 since E[Y;] = 0, for

0 <s < 1. From (2.7) and (2.11), we obtain
E[X7] = 1-t’E[y/]

A (1—t)2/0 —(1—13)2)\d8

= A\ + )\t

Since E [X;] = 0, we know that Var(X;) = —\t? + \t. O

We have known the mean and variance of X;, then we can use these to see where
the process (X:)o<t<1 approaches as time approaches 1. Since E [X;] = 0 and Var(X;) =
—\t? + X\t which converges to 0 as t — 17, we obtain that X; — 0 P-a.s. ast — 1.
The process (X) o<, is a bridge from 0 to 0 on [0, 1] and it is adapted to the filtration

()

0<t<1"
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In the following we see a process with respect to the compensated Poisson process
starting from 0 to b, for some constant b. Consider the stochastic differential equation

b— X
dX, = dM, + = tt dt, (2.12)

where (M) is a compensated Poisson process with intensity A, b is a constant and Xy = 0.
We can solve the stochastic differential equation by the same method as before. Then we

obtain the solution X;, for 0 < ¢ < 1 which is given by

b
Xt:(l_t>/1
o L —s

Then we obtain E [X;] = bt. By Theorem 5, we have

dM; + bt, for 0 <t < 1. (2.13)

Var(X,) = Var <(1—t)/0t11 dMs>

— S

= -2+ )\t

Since we have known that the first term of (2.13) converges to 0 P-a.s ast — 17, we have
that X; — b P-a.s. ast — 17. Hence, we see that the process (X;) is a bridge from 0 to b
and is adapted to the filtration (]—"tN ) We have discussed about a bridge with respect to
the compensated Poisson process from 0 to a fixed point. In next section, we will discuss

about a bridge between two independent compensated Poisson process.

2.3. A Bridge between two Independent Compensated Poisson Processes

We consider the stochastic differential equation

M, — X
dXS:dMst%ds,
—-S

where M is a compensated Poisson process with intensity A, M is another compensated

Poisson process which has the same intensity A is independent of M and X starts from 0.
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We can also use the same method as before to solve the stochastic differential equation

and get the solution X;, for 0 <t < 1, is given by

! LM
Xt:(l—t)/ dMs+(1—t)/ "~ ds, for 0 <t < 1. (2.14)

The process (X;)o<t<1 has another form by applying It6 product rule to the second term

of (2.14)

X, = (1 t{/t ! dM, + (1 —1t) | M, ! (/t Lt
i o l—s °° "T—t Jol—s °

b1 - t
:(hwél_ﬁM+M—wwAl_ﬂM. (2.15)

We have known that the process which has the form as (2.4) converges to 0 P-a.s. as
t — 17, so the first term and the third term in (2.15) both converge to 0 P-a.s. ast — 1~.
Then X, — M; P-as. as t — 1~. The process (X¢)o<t<1 is a bridge from 0 to M, on

0, 1].

Remark 6. Suppose that the process (X;)o<t<1 is given by

m:m+;%§§@ (2.16)
The filtration (F;¥)o<;<1 which is generated by (X;)o<;<1 contains the information about
when (X;)o<i<1 jumps. Since the second term of (2.16) is continuous in ¢, (X;)o<i<1
jumps at the same time as (M;)o<i<; jumps. So the filtration (F;¥)o<;<1 contains the
information about when (M) g<¢<1 jumps, i.e., (M;)o<t<1 is adapted to (F;*)o<i<1. From
(2.16), we know that (M,) is also adapted to (FX)o<ic1. Hence, we obtain the Doob-

Meyer decomposition of (X;)o<<; in its own filtration (F;*) We may regard X as

0<t<1’

a semimartingale in its natural filtration (]—"tX ) 0<t<l’
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Consider two independent compensated Poisson processes (M;) >0 and (Mt)tzo- The

stochastic process X is given by
t
Xy =M, + / Zsds, (2.17)
0

where M is a Poisson process and the drift Z depends linearly on X and M. We want
to characterize those cases where X is again a compensated Poisson process. Since the
second term of (2.17) is continuous in ¢, we have that (X;) jumps at the same time as
(M,) jumps. So (M) is adapted to the filtration (7). Suppose (X;) is a compensated
Poisson process. Since X and M all start from 0, and they jump at the same time, X
is just equal to M. So the process / t Zsds is equal to zero. Recall that the process
(X+¢)o<t<1 which is given by (2.16) is a Semimartingale in its natural filtration (7;") 0<t<1’
but it is not a compensated Poisson process since the second term of (2.16) is not equal
to zero.

The integral with respect to time in (2.17) makes X and M jump simultaneously. In
next chapter, we will transform the second term of (2.17) to an integral with respect to

the compensated Poisson process which is independent of M. Then the process M and

the integral together decide when the process X jumps.






CHAPTER 3

Construction of a New Compensated Compound Poisson

Process

We have discussed about whether X is a compensated Poisson process in the model
t
Xt = Mt + / ZS dS.
0

We will transform the above integral to an integral with respect to the compensated
Poisson process which is independent of M and characterize those cases where X is again
a compensated Poisson process. Since the jump size of Poisson process is equal to 1,
we will extend the discussion to the compensated compound Poisson process which has

random jump sizes.

3.1. Construction of a New Compensated Poisson Process

We consider the process X which is given by

X, = Mt+/tf(s) dM,, (3.1)
0

where M is a compensated Poisson process with intensity A, M is another compensated
Poisson process with intensity \is independent of M and f is a deterministic differentiable
function. We want to know the form of the moment generating function of X;, for t > 0,
so that we can see in which cases the process X given by (3.1) is again a compensated

Poisson process. The moment generating function of X;, for ¢t > 0 is given by

ox,(u) = E[exp{uM}] - E {exp {u/ot f(s) dMs}] .

15
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In Shreve [14] we have known that the moment generating function for the compensated

Poisson process M; is given by
E [exp {uM;}] = exp{\t(e" —u—1)}.
So we only need to focus on the expectation
t ~
E {exp {u/ f(s) dMS}} :
0
Lemma 1. Consider the process

/0 ' f(s) i,

where M is a compensated Poisson process with intensity A and f is a nonrandom differ-

entiable function. Then it’s moment generating function is given by

E [exp {u/otf(s) dMSH :exp{x </Ot (exf® — 1) ds—u/otf(s) ds)}.

Proor. We will apply the It6’s formula to

exp{u/otf(s)dMs—S\(/Ot(@uf(s>_1)ds—u/0tf(s)ds>},

so that we can know it is a martingale. We set for ¢ > 0,

Yt:u/otf(s)dMs—X(/Ot(euﬂs)—1)ds—u/0tf(s)ds>

Zy = exp{Y;}.

and

Note that the continuous part of Y, Y, is given by
dYe =\ (—e“f(s) +1) ds.
Take f(x) = e” so that f'(z) =e”, f"(z) = e®. The Ito’s formula implies

t 1 t
Zt:ZO+/ ZSdY;Jr—/ Z,dYSdYS + Y (2o Zo]. (3.2)
0

2
0 0<s<t
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Since Y is the continuous part of Y, we can change the integrand Z, which is in the second
term of (3.2) to Z,~. When the Poisson process N jumps at time s, Z, = Z,- x e“/(s).

When (N;) does not jump at time s, Z, = Z,—. So we have
Zy — Zy- = Zy (") — 1) AN,
Then

t
Zy = 1+X/ Zo (e 1) ds+ Y [ZS_ (e —1) ANS}
0

0<s<t
t ~ ~ t ~
= 1 +/ 7 (euf(S) € 1) d (]\4S = NS> —|—/ - (eUf(s) _ 1) dN,
0 0
t ~
=1 +/ Zy- (") — 1) dM;.
0

Since M is a martingale and Z- (e“f (s) — 1) is left continuous in s, the above integral is

also a martingale. So the process (Z;) is a martingale and we have E [Z;] = 1, i.e.,

oo [ <3 ( [0 -0 o) ] -1

Hence, we obtain

E [exp {u/otf(s) dMSH :exp{x </Ot (e —1) ds—u/otf(s) ds)}.

Moreover, we have that the moment generating function of X, is given by

ox,(u) = exp{At(eu—u—n}-exp{x(/o () — s—u/f )}
= exp{)\t(e“—u—l)—i—;\/ot (e —1) dg—&u/Otf(s) ds}. (3.3)

Next, we use (3.3) to see in which cases the process X is a compensated Poisson process.

If f =0, then it is obvious that X, = M,. In the following proposition we set f # 0.
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Proposition 2. Let the stochastic process (X;) satisfy (3.1). Then (X}) is a compen-

sated Poisson process if and only if f = 1. Moreover, (X;) has the intensity A + \.

PROOF. “ =" : The moment generating function for compensated Poisson process
must be as the form <exp {S\t (e —u— 1)}), for some constant A. Suppose that (Xy) is

a compensated Poisson process with intensity A. We let the moment generating function

of X, equal to (exp {S\t (e —u— 1)}), ie
~ t t A
exp{)\t(e“—u— 1)+>\/ (e uf(s 1)ds—)\u/ f(s)ds} :exp{At(e“—u—l)}.
0 0
Then we get the equation
_ t
)\t(e“—u—l)—l—)\/(“f )ds—)\u/f Yds = Mt (e —u—1). (3.4)
0
We differentiate with respect to ¢ on both sides of (3.4)
Ae —u—1)+ X (O - 1) = duf(t) = Ae*—u—1).
We differentiate with respect to ¢ again
e D £ (t) — huf (t) =

Then we get
Auf (t) (e“f(t) —-1)=0.

This implies that f'(t) = 0 or e*/® — 1 = 0. So we have that f(t) is a constant. Set

f = C, where C' is a positive constant. From (3.1), we have
Xt = Mt + CMt .
The moment generating function of X, is given by

px(u) :eXp{)\t(e“—u—l)—l—S\t (e“C—uC’—C’)}.
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Suppose the following equation holds
exp{)\t(e“ —u—1)+ X (e“C —uC — C’)} = exp{j\t(e” —u— 1)}
Then we have
)\t(e“—u—l)—{—S\t(euo—uC—C) =M —u—1).
We differentiate with respect to u twice, then we get
Ae + AC2e"C = \e,
We multiply e on both sides of the above formula
A+ AC%e @D = )\

Then

Hence, we obtain C' =1 and then A=A+
“ =" Since f = 1, we have X; = M, + M,. We will show that the law of X agrees with
the law of a compensated Poisson process which has intensity A + . Denote by (.EMM>

the filtration generated by M and M. Let
Zy =exp{uMy — Mt (" —u—1)}.

By the proof of Lemma 1, we have that the process (Z;) is a martingale with respect to
<]-"tM M) Let

Z; = exp {u]\;[t — (e —u— 1)}
(Z,) is also a martingale with respect to <EM’M>. The two processes (Z;) and (Z,) are
independent and they are all martingales with respect to the filtration (EMM) From

(3.3), we know that the moment generating function of X, is

px, (u) :eXp{<)\+5\>t(e“—u—1)}.
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For fixed u € R, the process Vt(") is defined by
V;(“) = exp {uXt - ()\—|— 5\) t(e" —u— 1)}
- Zt Zt .

We will show that (Vt(")) is a martingale with respect to the filtration (ftM ’M>. For

0<s<t,
E [Vt(“) FM M] _®|72 FSM’M]
_®|z-2) (Zt—Zs) + Zy Do+ Zy Zy — 2y 2, fj”m]
_F -(Zt _ 7)) (Z = Z) ‘]—'MM} +E [Zs Z .7:MM:|

s

) {Zt Z,

vaM} _E [ZS 7,

J-"M’M} .

Since Z, — Zs, Z; — Z, are independent of fsM’M and Z,, Z, are adapted to ]-";VLM, we

have

E |:Vt(“)

f%ﬂzwka—amz_zﬂ+aﬁp

fMM] +Z.E [Zt

fMM] — 7.7,
~E(Z - 2)E|(Z~2)| + 2.2+ 2,2, - 2,7,

So the process (Vt(“)> is a martingale with respect to (]—}M’M). For fixed uy € R and

0<t1<t2,

Vi = E {V;i“”

ftﬁW] .
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(1)

t1

V(u2)

t1

is adapted to ]-"t];/[’M, we have

Now fixed u; € R. Since

2

‘4(“2)

1

V(UI) T V;(lm) Vt(u2)
t1 -

FM M]

=E [exp{u1 Xy, +us (Xy, — Xy,)} ‘]——g’M} -exp{— ()\—l-/\) t (e —uy — 1)}

- exp {— <)\ + 5\> (to —t1) (e"* —ugy — 1)}

Now we use the martingale property of V;(ul) and we take expectation of both sides of the

above formula

1=y
—E V"]
— E [exp {un Xy, +uz (Xi, = Xi)}]
cexp{— (A At (e —w =D} rexp {= (A+ 1) (b —t1) (= —w — 1)}

So we obtain

E [exp {U1Xt1 + u2 (th - Xt1)}]

:exp{<)\+5\>t1(e“1—ul—l)}-exp{<)\+5\> (tQ—t1)<6u2—UQ—1)}.

Since the above joint moment generating function factors into the product of moment
generating functions, X;, and X;, — X;, must be independent. We also know that the

moment generating function of X;, — Xj, is

©x,,-x,, (u) = exp { (/\ + 5\) (to —t1) (" —u — 1)} .

Next, we computer the joint moment generating function of the random variables Xj,,

Xiyy ooy Xp,, for 0 <ty <ty <--- <tp,,sothat we can know whether X is a compensated
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Poisson process. For 0 < t; <ty < --- < 1,, the joint moment generating function of the
random variables X , Xy,, - -+, X, is given by
PXty Xty Xty (uh U, - -+ >un)

=E [exp {unth + U1 Xy, + o Fur Xy H

=F [exp {un (th — th71) + (Up_1 + up) (Xt — thfg) + ot (ug Fug +u,) Xy }]

n—1

— E [exp {un (Xi, = Xin 1) Y] - E [exp { (w1 +u,) (Xo, — X5 )} -

< Elexp{(ug +ug + - -uy) Xy, }H -
We have known the form of the moment generating function of increments of X, then we

obtain

POXiy X Xy (U1, Ugy == 5 Up)
= exp { </\ + 5\> (tn — ta1) (" —u, — 1)}
oxp { (A 4) (tacs = ) (0 4 (g ) 1)

.- exp { ()\ + 5\> ty (ertuatotun) (g g 4 uy) — 1)} .
This is the moment generating function for a compensated Poisson process with intensity

A+ A. This completes the proof. O

3.2. Compensated Compound Poisson Process

Let (N;) be a Poisson process with intensity A and let Y;,Ys,... be a sequence of
independent, identically distributed random variables with mean [, where § = E[Y}].

The random variables Y7, Y5, ... are independent of the Poisson process (V).
Definition 3. The stochastic process (Q);) defined by

Ny
Qt:ZYia t>0
=1
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is called the compound Poisson process.

The compound Poisson process (@) jumps at the same time as the Poisson process
(N¢) jumps. The jump sizes of the compound Poisson process are random. The com-
pensated compound Poisson process (Q; — SAt) is a martingale. In this chapter, we only
regard the compound Poisson process which has finitely many possible jump sizes on finite
interval. The following theorem says that a compound Poisson process can be regarded

as a sum of independent Poisson processes each has fixed jump-size.

Theorem 4 (Shreve [14] Theorem 11.3.3.). Let y1, yo, ..., ya be a finite set of nonzero
numbers and let p(y1), p(y2),. .., p(yar) be positive numbers that sum to 1. Let Y, Y, ...
be a sequence of independent, identically distributed random variables with P (Y; = y,,,) =
P(Ym), m = 1,..., M. Let (N;) be a Poisson process with intensity A and define the

compound Poisson process
Ny
Qr = E Y:.
i=1

Form=1,..., M, let Nt(m) denote the number of jumps in @ of size y,, in [0,¢]. Then

M M
Ny = Z Nt(m) and @ = Z ymNt(m)a
m=1 m=1

where the process NV, ... N are independent Poisson processes and each N has

intensity Ap(ym ).

The theorem tells us the fact that a compound Poisson process can be represented by
some independent Poisson processes each has fixed jump-size. We will use this theorem

to construct a new compensated compound Poisson process.

3.3. Construction of a New Compensated Compound Poisson Process

We consider two independent compound Poisson process which have some conditions

as follows. Let y1, y2,...,yn be a finite set of nonzero numbers and let p(yy), p(ye),
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..., p(yn) be positive numbers whose summation is identical to 1. Let Yj, Ys,... be
a sequence of independent, identically distributed random variables with P (Y; = y,,,) =
P(Ym), m=1,...,M and E[Y;] = 5. Let (N;) be a Poisson process with intensity A and

define the compound Poisson process
Ny
Qr = Z Y;. (3.5)
i=1

Form =1,..., M, let Nt(m) denote the number of jumps in @ of size y,, in [0,¢]. Then

we have
M
Q=" ynN",
m=1
where the process NV, ...  NM) are independent Poisson process, and each N has

intensity Ap(yum)-

Let @1, §a,...,Jy; be another finite set of nonzero numbers and let p(7:1), p(92),
..., P(gy;) be positive numbers that sum to 1. Let Yy, Ys, ... be another sequence of
independent, identically distributed random variables with P (f/; = gjm> = p(Um), m =
1,..., M, E[ffl] = Band Y3, Ys, ... are independent of the sequence Y3, Y, . ... Let (Nt) be

a Poisson process with intensity X and it is independent of (N;). Define another compound

Poisson process
0= 7. (3.0

For m = 1,..., M, let Nt(m) denote the number of jumps in Q of size g, in [0,¢]. Then

we have
M
Qt = Z Um t(m):
m=1
where the process NV, ... N (1) are independent Poisson process, and each N(™ has

intensity Ap(Jm,).

Consider the stochastic process X which is given by

Xe=@- 0+ [ 16)d (0= Bhs). 37)
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where f is a nonrandom differentiable function and f # 0. We use the similar method in
Section 3.1 to see that in which cases X is again a compound Poisson process. First, we
want to know the form of the moment generating function of X;, for ¢ > 0. The moment

generating function of X;, for ¢ > 0 is given by

pxi) = Elexp (u(@— 30} E [ {u [ s9a (.- A) }] . 9

The following theorem tells us the form of the moment generating function for a compound

Poisson process, so that we can get the form of the moment generating function of Xj.

Theorem 5 (Shreve [14] Section 11.3.2). The moment generating function for the

compound Poisson process (@) defined as (3.5) is given by

Q. (u) = exp {AL (py; (u) — 1)}

By the above theorem, we know that the moment generating function of (Q; — SAt)

is given by

M

P(Qi—prr) (u) = exp {At > p(Ym) (€m —1) — uﬂAt} : (3.9)

m=1

t
We remain to obtain the form of the moment generating function of / f(s)d <QS — BAS) ,
0

so that we can get the form of the moment generating function of X;.

Theorem 6. Consider the process

[ i),
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where (Q,) is given by (3.6) with intensity \, § = E[Y;], and f is a nonrandom differen-

tiable function. Then its moment generating function is given by
t ~ ~ o~
E {exp {u/ f(s)d <QS — BAS) H
0
_ M t _ s t
=exp{ A [ﬁ(@m) / (em/@im _ 1) ds} -exp{—uﬁ)\ / £(s) ds}.
m=1 0 0

PROOF.
t ~ ~ o~
E {exp {u/ f(s)d (Qs — ﬁAs) H
0
(3.10)
t _ e t
=E {exp {u/ f(s) dQSH -exp{—uﬁ)\/ f(s) ds} :
0 0
We focus on the first term of (3.10). Using the fact taht N ... N@) are independent

Poisson processes, we know that

E[exp{u/otf(s)dQSH = E |exp u/otf(s)d igmzvgm

m=1

= ﬁ K {GXP {U/Otf(s)z?m st""’H : (3.11)

From Theorem 1, we have that for 1 < m < M -

E [exp {u /Ot £(5)Gim dN§m>H — exp {Xﬁ(gm) /Ot (e &om 1) ds} : (3.12)

Due to (3.10), (3.11) and (3.12), we have

This completes the proof. O
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From (3.8), (3.9) and Theorem 6, we obtain that the moment generating function of

X, is given by

/t e O)in 1) ds

Mi*

M

ox, (u) =exp ¢ At Zp(ym) (em —1) — ufBAt +
—uBA [ fs)ds) .
ufs /Of(s) s}

Next, we want to see in which cases the process X is a compensated compound Poisson

m=1

(3.13)

process.

Proposition 7. Let the stochastic process (X;) satisfy (3.7). Then (X;) is a com-

pensated compound Poisson process if and only if f = C. Moreover, (X;) has intensity
</\ + X).

PROOF. “ = 7 : Suppose that (X;) is a compensated compound Poisson process

with intensity A. We let the moment generating function of X; be equal to
M
exp Q At Zﬁ(gjm) (e"m —1) —uBAt p, (3.14)

for some M, f3, {m and P(Um), for 1 < m < M. Let Y; denote the size of the ith
jump for X, for ¢ > 1. Then }A/l, }72, ... are independent and from (3.14) we know that
the distribution of finitely many jump sizes of X is given by P (Y ym) = p(Ym), for

1 <m < M. The mean of Y; is equal to B . Suppose that the following equation holds

M M t t
exp { At Zp(ym) (e"m — 1) — ufAt + Z [ P(Um / e“f(s)gm —1) ds] - uﬁj\/ f(s)ds
0

m=1

M
= exp{ M Zf)(@m) (e“@’" — 1) — uB\t
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Then we have the equation

/t e/ (&)om _ 1 )ds}—uﬁ)\/f ds

M:x

MY p(ym) (€™ = 1) — uBAt +

We differentiate with respect to ¢ on both sides of the above equation

M M
A p(ym) (€™ = 1) = uBA+ X p(fim) (e DI — 1) — uBAf(2)
m=1 m=1
M A A
Zﬁgm (em — 1) —upX.

If we differentiate with respect to ¢ again, then we obtain

N
uA () > Blm)iim (€ PIm) —upAf (t) =
m=1
Then

M
uAf @) | D B(n) o (7O =5 | = 0.

m=1

This implies that f'(t) = 0 or

> 5@ (") — 5 =0, (3.15)

We differentiate with respect to ¢ on both sides of (3.15), then we have
M
Z P uf(t)ym) —0.
m=1
So we know that f must be a constant. Set f = C, where C is a constant. From (3.7),

we have

Xe = (Qi = 83) +C (Qu = ).



3.3. CONSTRUCTION OF A NEW COMPENSATED COMPOUND POISSON PROCESS 29

The moment generating function of X, is given by

©ox,(u) = exp /\thym e"m —1 )—uﬂ)\t—{—)\thym “Cﬂm—l)—uﬁS\Ct

m=1 m=1

—u<A+X>t< ’\ﬁ~+ XCB:)}.
A+XA A+ A

This implies that X is a compensated Poisson process with intensity <)\ + 5\) and the

distribution for finitely many jump sizes of X is given by

P<Y2~=ym>=Ap(y””‘), for 1 <m <M

and

P(}%:ngn>:)\p(y?>, for1<n<M.
A+ A

We also know that the mean of Y;, for i > 1 is given by
bYG; pYol:

ElY] = —— + —=.
XX A+

“¢:”:HfECJMﬂWﬂmme:@yﬁﬂﬂ+0(@—gh)\%WMSMWm%
the law of X agrees with the law of a compensated compound Poisson process which has

intensity A + . Set

Zy = exp {u (Q¢ — BAL) — ()\t Zp Ym) (™ — 1) — uﬁ)\t) } .

We will show that (Z;) is a martingale. Since § = 2%21 YmP(Ym), We obtain

— At = Z g (N = Xp(ym)t)

Then we have

7y = exp {u Z Y <Nt(m) — )\p(ym)t> - ()\t Zp(ym) (em —1) — uﬁAt) } .

m=1 m=1
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Set
M M
m=1 m=1
Note that

dYs = (—A > 0(ym) (e — 1)) ds.

Take f(z) = e” so that f'(z) = e®, f" (x) = e*. The Itd’s formula implies
t 1 t
7, = 7, +/ Z,dYE + 5/ Z,dYEdYS+ > (2~ Z-]. (3.16)
0 0 0<s<t

Since Y is the continuous part of Y, we can change the integrand Z, which is in the
second term of (3.16) to Z,—. When the compound Poisson process ) jumps at time s,
the jump size of () at time s must be equal to one of ¥y, 2, - -, yar. If the jump size of @)
at time s is equal to y,,, for some m, then we have Z, = Z,- x e"¥. If ) does not jump

at time s, then Z, = Z,—. So we have

M

Zy—Zy =Y Ze(em —1) AN,
m=1

Then

Zy =1+ /Ot Zs- (—)\ Zp(ym) (e"m — 1)) ds + Z Z Zy (e"m — 1) AN™.

m=1 0<s<tm=1

Set M™ = N™ _ ) )t for 1 < m < M. Then M is a compensated Poisson
t ¢ pP\y P

process with intensity Ap(y,,) and M is a martingale. We have

M t M
Zy = 1+ Z/ Zo— (e —1) d (Ms(m) — Ns(m)) + Z Z Zo— (e™m — 1) ANS(m)
m=1"0

m=10<s<t

M t M t
= 1+) / Zo (e"m —1) d (MM — NO) + ) / Zy (e"¥m — 1) dN™
m=1"0 m=1"0

M t
= 1+ Z/ Zo— ("™ — 1) dM™.
m=1 0
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t
Since M (™) is a martingale and Z,— (¢"¥= — 1) is left continuous in s, / Zy (em — 1) dM™
0
is also a martingale. The sum of finitely many martingales is a martingale, so the pro-

N o NOD ) . D) .
e T ) the filtration generated

cess (Z;) is a martingale. Denote by (ft

by NO ... NOD NO ... NGO The process (Z;) is a martingale with respect to

N . N Q) L D)
(N R O e

M

m=1

By the similar method, we have that Z; is also a martingale with respect to

<]—'tN(1)’""N(M)’N(l)""’N(M)>. The two processes (Z;) and (Z;) are independent and they

: : : W) oo NOD, FQO) . D)
are all martingales with respect to the filtration (FtN D, NUD, N oo, N ) From (3.13),

we know that the moment generating function of X; is given by

M M
ox,(u) =exp ¢ A\t Zp(ym) (e™™ — 1) —uBAt + M\t Zﬁ(gjm) (e“cgm - 1) - uC’BS\t

m=1 m=1

= exp (A+5\)t i (?%?) (€™ — 1) + i (Xff?) (evCim — 1)

m=1

—u</\+5\>t< w~+ Cxﬁ:)}.
A4 A+HA

For the sake of simplicity, we let

n¢(u) = exp ()\ + 5\) t i (%) (em — 1) + i (Xffwi)> (eucgm B 1)

m=1

—u</\+5\>t< w~+ Cxﬁ:)}.
AN A+EA

For fixed u € R, the process V;(u) is defined by

_exp {uX;}

=7, 7.
Ut(u) r

‘/t(U)
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Since Z; — Z, Zt — 7, are independent of FSN(I)""’N(M)’N(l)""’N(M) and Z, 7, are adapted

@) ... NOM) NQ) ... N@T) . ..
to FN o NEEL NS N e can use the same method as the proof in Proposition 2

to show that Vt(“) = 7, 7, is a martingale with respect to <.EN<1)""’N(M)’N(l)""’N(M)>. For

(u1)
t1
V(U2)

t1

1 2

fixed us € R and 0 < t; < to, Vt( ) _ R [%(“2)

f%’ M] . Now fixed u; € R. Since

N . NOD FO) L O

is adapted to Fy , we have

[y (w1 (u2) .
w) o |Va Vi N o NOD,F(O) . NOD)
Vi
[ W) .. NOD, ) NOT) _ _
= E eXp {ulth + U2 (Xt2 th } ' 'EN N AN N ' ntll (ul) : 77t217t1 (UQ)

Now we use the martingale property of V;(ul). We take expectation of both sides of the

above formula
—E [Vtﬁu“]
= E [exp {ur Xy, + ua (Xy, — X3))H -0 (wn) - mgy, (u2).

So we obtain

E [exp {ulth + U (Xt2 = th)}] =Mt (u1> *MNito—tq (u2)

Since the above joint moment generating function factors into the product of moment

generating functions, X;, and X;, — X;, must be independent. We also know that the

( p y’nz > UZCgm
m=1 >\

moment generating function of X;, — Xy, is

2

M M
S e L

m=

[y
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For 0 <t; <ty <--- <t,, the joint moment generating function of the random variables
Xy, Xy, o+, Xy, is given by
PXey Xy, Xty (uh Ug, « - aun)

=E [exp {u, (Xi, — X, 1) }] - E [exp { (wn—1 4+ un) (Xt s — Xen) } -

...E[exp{(ul—I—U2+"‘+un)Xt1}]

(Xﬁ(gjm)> <e(un71+un)0§m . 1)

g 3 CA\3
—(Un—l +Un) ()\—i‘ >\> (tn—l — tn_g) <)\+ 5\ + >\+ 5\)}

- exp <)\ + 5\) t i ()\p(ynz)> (e(u1+‘..+un)ym _ 1) n % (%ffj\)) (6(U1+.4.+un)cgm _ 1)

A+ A —

- A3 CA\B
(g 4+ ) <A+/\>t1 (A+X+A+X>}'

This is the moment generating function for a compensated compound Poisson process
O

with intensity A + A. This completes the proof.






CHAPTER 4

A Bridge with Respect to the Fractional Brownian Motion

In this chapter, we introduce the fractional Brownian motion and some properties
of this process. We change the Brownian motion which is in the Brownian bridge to a

fractional Brownian motion and check if the new process converges.

4.1. Fractional Brownian Motion

Let (2, F,P) be a probability space. The process (X;) is a Gaussian process if for

all 0 <t <ty <--- <t,, the random variables X; , X;,,---, X;, are jointly normally

distributed. The jointly normally distribution of the random variables X;,, X;,, -+, X,
is determined by the means and covariances of these random variables. So the law of a

Gaussian process is entirely determined by the mean function E[X;] and the covariance

function Cov (X3, Xy), for ¢, s > 0.

Definition 1. A fractional Brownian motion (Bt(H))tzo with Hurst index H € (0,1)

is a continuous and centered Gaussian process with the covariance function

(27 4 27 — |t — 5?1 . (4.1)

s

E [Bt(H)B(H)} = Ryl(t,s) =

DN | —

The fractional Brownian motion was first introduced by Kolmogorov in [10] and stud-
ied by Mandelbrot and Van Ness in [11], where a stochastic integral representation of this
process in terms of a standard Brownian motion was established. By the above definition

we know that a fractional Brownian motion has the following properties.

(H)
at

(1) Self-similarity: From (4.1) we know that the process {a=# B,;’, t > 0} and

{BY_ t >0} have the same law, for any a > 0.
35
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(2) Stationary increments: From (4.1) we have that the increments of the fractional

Brownian motion in [s, ¢] has a normal distribution with zero mean and variance

2
E [(Bt(H) . B§H>> } = |t — s|?H.

So Bt(fs) — B has the same law of Bt(H), for s, t > 0.
For H = %, the covariance function is Ry (t, s) = min(s, t), then the process B() is a
standard Brownian motion. However, for H # % , the increments of the process are not
independent. Now we discuss the integral representations for the fractional Brownian
motion. The integral representation for fractional Brownian motion on the whole real line

which is given by

B — CLH/R [((t—s)+)H‘% —((=s)y")" 2 st], (4.2)

where B is a Brownian motion, H € (0, 1) and

wid} </0°O (@ + 973 —s1) as %)

is obtained by Mandelbrot and Van Ness in [11]. For s € R, ¢ > 0 the function f;(s) =
((t — 3)+)H_% — ((—s)*)H_% satisfies /ff(s) ds < 00, so the stochastic integral on the
right side of (4.2) is well defined. Th]éR following integral representation for fractional
Brownian motion is over a finite interval. By [12], for H > %, the fractional Brownian

motion can be represented as
t
= / K\, s)dB,,  fort>0 (4.3)
0

where (B;) is a standard Brownian motion and

K}})(t, s) C'(l) / lu — “2H 7 du,
H2H-1) |°

1
and t > s. For H < 3 the integral representation

h (1 _
where C [6(2—2H,H—%)

on the finite interval is different from the integral representation for H > 7 By [12], for
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1
H < 2 the fractional Brownian motion can be represented as
t
B = / K2(t, s)dB,,  fort >0,
0
where (B;) is a standard Brownian motion and

G)H_; (t —s)—2 — (H — %) g2~ H /:(u — )y e du]

2H 2
(1—-2H)B(1 —2H, H + %)}

[NIES

Kt s)=Cf

where C’g) = [ and t > s. In Section 1.8 of [6], we know

that the fractional brownian motion is not a semimartingale, for H # % So we can not
use It stochastic calculus which is defined for semimartingales to define the stochastic
integral with respect to the fractional brownian motion. In next section the definition of
the integral of deterministic processes with respect to a fractional brownian motion will

be introduced.

1
4.2. Wiener Integrals for the Fractional Brownian Motion for H > 5

The stochastic integrals of deterministic processes with respect to a Gaussian process
are called Wiener integrals. Let (Bt(H))tzo be a fractional brownian motion with Hurst
index H > % on the probability space (€2, F, P). Fix a time interval [0, T|. For 0 = ¢, <
t; < --- <t, =T the stochastic integral of a step function of the form

Pt = Z ail,_y, 1) (t)
i=1
is naturally defined by
T n
/O B = a; (B - B,
i=1
The integral can be extended to general functions by using the convergence in L?((2).

Denote by H the closure of (L*([0, T]), <,>x) with respect to the scalar product defined
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(f,9)y =H2H — 1)/0 /0 f(r)g(w) |r — w2 dudr. (4.4)

Then H is a Hilbert space. Section 2.1 of [6] tells us the mapping ¢ — /T Oy dBt(H),
where ¢ is a step function on [0, 7| can be extended to a linear isometry betwee(l)q ‘H and the
Gaussian subspace of L2(£2) which is spanned by the random variables {B{"; t € [0, T]}.
Section 2.1 of [6] also tells us the definition of the Wiener integral of the deterministic

function with respect to the fractional Brownian motion.

1
Definition 2. For H > 5 and ¥ € H, the Wiener integral of the deterministic function

1 with respect to the fractional Brownian motion B*) is defined as

T T
/ iy dBUD) = / (KD (s) dB,, (4.5)
0 0

where (B;) is a standard Brownian motion and

. T 9Ky
0 = [0 G

which is a square-integrable function.

The integral on the right side of (4.5) is well defined for v € H and we get the
representation of the Wiener integral of the deterministic function with respect to the

fractional brownian motion in terms of an integral with respect to the Brownian motion.

If ¢ = (Kg)*)_ll[oyt], then we have

Bo= [ () 100) () a (1.6

From (4.3) and (4.6), we know that B#) and B generate the same filtration. Due to the

T
isometry property of the mapping 1 —> / Wy dBt(H), where ¢ € H , we have
0

T
H / O ] —

2
L2(Q)
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ie.,

T 2 T T
(H) _ _ L 2H-2
E (/0 Yy dBy ) ] = H(2H 1)/0 /0 Uy |1 — ul du dr. (4.7)

The left side of (4.7) is the variance of the Wiener integral of the deterministic function v

with respect to the fractional brownian motion B¥). In next section we use the variance

of the Wiener integral to know where the integral converges.

4.3. A Bridge with Respect to the Fractional Brownian Motion

1
Let (BfH)) be a fractional brownian motion with Hurst index H > 3 Consider the

stochastic differential equation

b—X

with the initial value Xy = 0 and some constant b. The solution (X;)o<t<1 is given by

t
1
Xt:(l—t)/ q dBM) + bt. (4.8)
o L—s

Since the fractional brownian motion BU?) is a centered Gaussian process, the process

t
1
(1—1) / ] dB™) is also a centered Gaussian process. Then we have
0

-5
s (H) | —
E|(1 B =0.

We will use the variance of the first term of (4.8) to see where the process (X;) approaches

ast — 1.

Theorem 3. Suppose that the process (X;)o<i<1 satisfies (4.8). Then we have that

X; — b P-as. ast — 1.

PROOF. From the formula (4.7), we get

t 1 2 t t 1 1
<(1 — t)/ ngfD) = (1—t)*H(2H — 1)/ / r — P2 —— du dr.
(4.9)

E
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By Fubini’s theorem, we obtain

t t 1 1
(1—t)’H(2H — 1)/ / |r — u\QH’QT du dr
0 Jo

—rl—u

11
=2H (2H — 1) (1 —t) // u)?H 2 du dr.

(4.10)

1—r1—u

1

1—7r

11
2H (2H — 1) (1 — 1) // w)? =2 —— du dr
u

Then we have

Since 0 <u<r<t<l1, Weknovvthat1 <

<2H(2H —1)(1 —1t) // 21” L duar

=2H(1—t)? /0 ik = r)2 dr.

Since r < 1, we get

2H(1—t)2/0 7“2H_1(1_T)2 dr < 2H(1—t)2/0 (—dr

Then we obtain

E

((1—t) /OtliSdB‘gH))j < 2Ht(1 —t)

¢
which converges to 0 as ¢ — 1. So we have that the process (1 — t)/ dBH)
0

s

-5
converges to 0 P-a.s. as t — 1. Finally, we know that the process (X})o<i<1 converges

to b P-a.s. ast — 1. O

The process (X;)o<t<1 which satisfies (4.8) is a bridge with respect to the fractional
Brownian motion from 0 to fixed point b. Next, we have a bridge with respect to the
fractional Brownian motion from 0 to a random variable. Let Y be a random variable.

Consider the stochastic differential equation

Y - X
dX, = dB"™ + Ttt dt
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with the initial value X, = 0. The solution (X;)o<<1 is given by

t
1
Xt:(l—t)/ - SdB§H>+tY. (4.11)
o 1-

By the proof of Theorem 3, we have that the process (X;)o<i<1 satisfying (4.11) con-
verges to Y P-a.s. ast — 1.

In the following we want to know whether the process (X;)o<:<1 is a fractional Brown-
ian motion if we let Y be a standard normally distributed random variable with E [Y] = 0
and Var(Y) = 1. From (4.11) we know (X})o<i<1 is a centered Gaussian process. Now
we see whether E [X?] is equal to t21. If E [X?] # t2H then (X;)o<i<1 is not a fractional

Brownian motion. The variance of X; is given by

t 1 2
/ dBH)
o 1—s ¢
t
+2t(1—t)E [Y (/ ngff))] :

B™) and Y are independent and Y ~ N(0,1), then we have

E[X]=(1-1)E

+ *E [V?]

t 1 2
E[X?] = (1-t)°E </ dB§H>> + 12
o L—s
b1
+2t(1 —t)E[Y]-E U dB§H>]
t 1 2
= (1-1t)°E (/ ngH)> + 12
0 1 — S

From (4.9) and (4.10), we have that

t r B 1 1

1 o
By Taylor’s formula, we have = Z u®. Then we obtain
1—u —

r 1 a r
/0 (r —u)*f=2 - du = Z /0 (r —u)* 24 du. (4.13)
k=0
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The first term of (4.13) is

The second term of (4.13) is

T T 1
/ (r—w)?*2udu = / ST 1 (r —u)* ' du
0 0 -

For all k£ € Z, for n = 1, we have that
/ (r —w)* Tyt dy = / (r — w)* ™y du
0 0

" 1 2H+k+1
- | = (- d
QA2H+k+1& v) "

1 2H+-k+2
2H+k+1)(2H +k+2) ‘

Suppose that for all k € Z, for n = m — 1, the following equation holds

(m — 1)!

" _ 2H+k m—ld A 2H+k+m. 4.14
A(T R T B W 167 STy sy -y e (4.14)

For n = m, we have

T ‘a 1
/0 (r —uw)* oy dy = /0 ST htl (r — u)* ™ dy

_ m " _ ) 2HARAL  m=1 g
2H+k+1A(r u) " v

Let k =k + 1. Due to (4.14), we obtain

/ (r — w2 ey gy = m_ / (r — u)2H+fc U™ du
0 2H + k Jo
_ _ _ m! _ p2H+k+m
2H+k)2H +k+1)---(2H+k+m)
— m! J2H+km+]

QH+k+1)2H+k+2) - 2H+k+m+1)
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By induction on n, the result
/T(r — w)2H Ry dy = n! p2H AR+t
0 QH+k+1)2H+k+2)---2H+k+n+1)
holds for all n € N. Then we get
Y 1 - k!
2H -2 2H+k—1
_ du = .
/O(T W T e ;(2H—1)(2H)---(2H+k—1)r
Then we obtain
1 1
)22
/ / T—1—a dudr
— / i k! 7,,QH-‘rk—l dr
~, (2H —1)(2H)---(2H+ k—1)
> k! T\
:ZQH 1)( 2H + k 1/1 & -
2 RH-DE@H) - CH+k—1) Jy 1-7
Since ! = i 7, we get
1—r 4 i
7=0
t T 1 1
/ / (r —u)*2 du dr
_ i k! / Z 2H ki1 g
kO(QH—l)(ZH) -2H+Ek-1)
= i 3 e /t P2k g
pur (2H —1)(2H)---(2H +k—1) J,
S g S R
purr (2H—-1)2H)---2H+k—1) 2H+k+j
From (4.12), we have that the variance of X; is given by
E [X7]
=1+ (2H)(2H — 1)(1 — t)* i i i : ! U
= 2H - 1)(2H)--- 2H +k—1) 2H +k+ '

(4.15)
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Suppose the following equation holds

[e o]

k! 1

. 2H+k+j _ y2H
—~ (2H - 1)(2H)---(2H +k—1) 2H+k+ '

2+ (2H)(2H — 1)(1 — t)?

Pﬂg

k=0 j
Then
(2H)(2H — 1) 1—t2§:§: ik ! thti =1 —¢>2H
o (2H - 1)( H)---CH+k—1) 2H+k+j ’

Let s =1 —t, then we have that

> - k! 1 ,
2H)(2H — 1)s : 1—s)Fti
( L3P CH-12H) - GHLh=1) 2H+k+j 1%

k=0 j=0
= 1—(1—s)*2H, (4.16)
Since
>~ (2-2H
L— (1= = 1) (—s)™
m=0 m

~ (2-2H
= (2-2H)s+ Y (—s)™.

But from (4.16), the exponent of s in every term on the left side of (4.16) is larger than
two. Then we know that E[X?] # t2/ for 0 <t < 1. Thus (X;) << is not a fractional

Brownian motion.
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