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A new Approach to Quantum Deformation

Student : Shan-chi Huang Advisors : Prof. Chou-hsin Chin
Prof. Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University

ABSTRACT

The g-deformation had been wide discussed in many-different fields

of mathematics and. physics. However, all the discussions.that we know of
are simply based on the conformal mapping x> gx: Throughout the thesis,
we consider deformation of another kind, says g-deformation, which is
based on the mapping x+> x®. In otherwords; these kinds of deformations
appear in the power of variable “x. We expect - deformation to be a new

approach to the studying of Quantum Groups eventually.
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Chapter 1
Introduction

Almost all functions can be represented explicitly or.approximately by a
finite sum or an.infinite sum-of the simplest algebraic functions £ with some
coefficients. Meore precisely, > a,z". For the nature exponential function,
the simplest transcendental function toour philosophy, onehas the expression
from Elementary Calculus:

(0.9} xn
T —
&= Z nl
n=0
When the simplest algebraic function comes to the simplest transcentdental

function and take integral from 0 to oo, a fantastic formula comes into being;:

o0
n!:/ z"e *dzx.
0



For complex z except the non-positive integers, the complex generalization

of the factorial is the well-known gamma function

['(z) :/ t*te~tdt
0

nln?

o T +2) (2 - 1)
=(z—1)!

Retrospect to the history, it is the intelligence of Euler [1] to wrote down the

two expressions of the factorial function:

1.- Q0 21771 .3n 31771 . 4n 41~n_5n
l+n 24n 3+n 4% n

and

1
/ (—logt)"dt:
0

Later, Gauss and Legendre rewrote the product and integral expression in
the modern form, respectively. Although Euler discusgsed some cases for n
is rational in his formulas and refound the work of Wallis (1616-1703) for

_ 1.
TL—2.

s 202, 440 66 8-8

5 = (13 GG ) (mg)

he does not appear to be considered in the factorial of a complex number, as
Gauss did first. Nowadays, the gamma function play an important role for
applications in engineering and many applied sciences for special functions,
such as beta function, hypergeometric function, Bessel function, Legendre

function..., are original from the simplest gamma function. In reality, each



time when a topic concerning the special functions was discussed, the gamma
function was mentioned. As a result, the gamma function is essential to the

theoretical research of mathematics and physics, and worth studying.

In the world of ¢ (or more formal terminology “g-analogue”), roughly
speaking, a g-analogue of a classical mathematical object (a constant, a vari-
able, a function, an equation, an identity, an algebra, a theorem...) means a
new mathematical object which was deformed from the classical with scales
of functions of variable ¢ invits substructures,; and the g-deformation recover
the classical form when ¢ tends to 1. To our knowledge, the earliest g-

deformation studied in detail-is.the basic hypergeometric series [2]

(g —1)(g”= o
(g—1)(¢" - 1)
(¢° = D¢ = D" 1) (" -1) ,

: (@=1D(@* —1)(¢" — 1)(g?*t = 1) U

which was first considered by E. Heine in 1846 and is the ¢-analogue of the

oo, B,7,¢,2) = 14

classical hypergeometric series

F(a, B,7,2) = 1+ aﬁx+a(a+1)ﬂ(ﬁ+1)x2+

1.7 1 20y(v+1) oY
From the inspiration of the fact that F(1,k,1, ,’;) for k = oo is ef, Heine

constructed two analogues

and




by ¢(1,k,1,q, qik), o(1,k,1,q,—t) for k = co. In fact, the two series were
discovered by Euler earlier and introduced by F. H. Jackson [3] after Heine

as two g-analogue of e” in 1903: (The notations used differ from Jackson

slightly)
T = n(n—1)/2 z"
Eq B Z ! ]!
n=0
and
€T - :Bn
6 = )
! nZ:O [n],!
where
1—q"
[n]q - 1 _ q
is the g-analogue of n, and
[n]g! := [1]4[2]4[3lg---[n]g-

The ¢-gamma function I',(z) was.introduced.by J./ Thomae [4], a student
of Heine, in 1869and later by F. H. Jackson [5] in 1904 as the infinite products

(We use the notations nowadays instead of what the original authors used )

G, 1wy (6Q)e
Falw) = (0% @) 1 — q) (=g

where 0 < ¢ < 1 and

(a; @)oo == [ (1 = ag™) = (1 = a)(1 = qa)(1 — ¢*a) - - - ,
, (a;9)oo
(%4 (04" q)oo



However, the g-integral representation of I'j(x) was not quite right until it

was recosidered by T. H. Koornwinder [6] in 1990:

-
179 a1 gt
:/0 L,

where the g-integral is defined by

[ it = ff (P0)(r — ')

Jj=

The g-beta function, first introduce by J. Thomae [4], has a quite similar

result to classical beta function Bz, y)= 220 _ fo (ltz .

L(z+y) t)y— rd
o AT — (@) " o (at;q)y—1

where 2,y > 0mOfther g-extensions of betafunction B(z9) = [;° %dt

are original from the famous formula-of Ramanujan [7]

/OOO( (1 +agt)(1 + ag?t). Lot lo—o[ L=q¢"*)(1—aq")

1+ t)(d=+ qt) (1, + ¢%t)... -~ sinwx AL (Ti=gm) 1—aq” zy)

Some more details was discussed by R. Askey and G. E. Andrews in [8, 9]:

o0 — g%tV o 00 =1
/ tx_ludt & / —dt
0 <_t§ Q)oo 0 (_t§ Q):Hy

Ly(y)L'(2)l(1 — z)
Lyz+y)l,(1—2x)
(@)l - =)

ry(1) )(Fq(f)Fq(’y))

T nena o ey
_ B(z,1—-1)
o Bq(:c,l . x>BQ(x7y)

PR tx—l

B = ——dt
_ (xa y) /(; (1 + t)m+y )

5



> r—1 _—t o > rz—1 1
el A = e
_ [(x)I'(1 —2z)

and

[e%e] x+t o) txfl
/ ot 6 U)o / S
0 (—t; @)oo 0 (—t§Q)x+y

_ L@ @) (0% @)oo (0" )0
Ly(z+y) ( L @)oo ( 1 Q) oo

L Bl(x (—q%; @)(= qH,q}oo

EiSAD\ .

q—1—

) B($7y)>

where

/f _ =S Ad - o),

1
q]+ j_—OO

Everytime when a subject of g-series was concerned, the famous Jacobi

Tripe Product Indentity should not be missed:

o

(1= 2)(47; ¢)00(4 0) o (0/ 75 @)oo = Z (_Unqn(n;l)xn.

n=—oo

A simple proof, which conncets two identities of Euler

o0 gt A(m—1) ym

,H()qu Z l—q )1 =¢?)..(1=q™)

=0

6



o0 o0 m

1 T
= =2 e gamam

n=0 m=0

with the Jacobi Triple Product, is due to G. E. Andrews [10]. An application

that we know of was given by R. Askey [11], who generalized the well-known

formula
(F(3)?
F(% + :L‘)F(% —x)

to g-analogue by considering the relations between g-gamma function, Jacobi

COSTTX =

Triple Product, properities of Theta functions and then obtained the nice

formula :

(3))? 2 ol +2r2 cos2ma + i

1
& — ¢ 2 costi
)Lo(3 — =) 4 n:l( 1 220 4 pin

(I
+x )

Ty(3

where r = elsii— Qt-as ¢ — 1. A more general version of Jacobi Triple

Product is the the famous Ramanujan W, summation [8]:

o0

30 (@ 9)n o, Ma27G)oc(a/aT: 9)oc (4: 0) £ (0165 )
(b;q)n (@3 @)oo (b /0y q)oc (b 1) (@)@ @)oo

n=—0oQ

which is the generalization of the g-binomial theorem

>

n=0

(e gl S
(¢:0)n (2; @)oo

If we replace a by 1/a, x by at and set & = b = 0 in the Ramanujan ;¥

summation, the Jacobi Triple Product Indentity appeared.

So far, we have reviewed the history of the development of g-analogues
briefly. A notice, in brief, is that the deformations of the substructures of

the g-formulas above are based on the conformal mapping = — qz. It is a

7



g times deformation in scale with variable z. An interesting subject appear
to be open: what are the analogues when the deformations occur in the
“power “of variable 7 That is, what are the analogues when qx becomes x9?
This is what we want to discuss throughout this article. For simplicity, we
use the terminology " g-analogue”or " g-deformation“to describe deformations

of this kind from now on.




Chapter 2

g-Calculus for differentiation

No one would doubt about the formula “ -4 (z™). = na"~' ”, the simplest
differential rule.in any Elementary-Calculus books. The-main objective in
this chapter is;to construct a g-analgoue of this formula with self-consistence.
Some preknowledge are given in 2:1. The g-analogues of m and x" are con-
structed in 2.2:7 Two ¢-analogues-of n-factorial n! and the corresponding

Taylor’s expansions of e* are considered in 2.3.

2.1 ¢-differential operator

First of all, we define the g-differential operator [12, 13](or the g-derivative)

with respect to coordinate = as follow:

f(x) — f(a7)

xr — xd

Awg () =



or more generally

a B
A(fb‘;q“,qﬁ)f@) = fle”) — fa? )7

za® — gd°

where the lower index ¢ or (¢%,¢”) denotes a parameter and z is a variable

or a function.

It is clear that the ¢-differential operator is a generalization of the classical

derivative and the g-derivative

fl) = flgx)

Ay f(z) = ——
w2 (48
A gergi (@) = f(qqfx) - (J;ﬂ(i 2

A simple exereise is_to act A(x;qang) on the function 2", and one may easily

obtain
a 8 o B_
_ 21Nl (07 gl —Dn _ p(g"=1)n
A(a 6)37“:( ) ( ) :( )xnfl
which is a analogue of classical (z") = nz"~! and g-analogue
qna - qn,@ .
Agrghyzt =1 g~ = q° LA
For arbitrary w, we also have the analogue
a 63 o _ B_
_ 7AW — (27w 2@ =D _ (@7 ~Dw
A(.a 6)1,0.):( ) ( ) :( )I,wfl

corresponding to classical and ¢. It is not surprising that the factor

x(qo‘—l)n — x(qﬁ—l)n

xq"‘—l — mqﬁ—l

10



or the factor
a’;(qafl)w J— x(qﬁfl)w

xqafl — xqﬁ*1
give us some idea to define the g-analogue of integer n(or any w). However,
they are not what we quite expected n or w of g-analogue. In next section,

we find a better expression than this one!

One shall not be curious to know the two differential rules in any Ele-

mentary Calculus books:

and
flg(x)) = f'(g(x))d (),

the Product Rule and the Chain Rule. In ¢-Calculus, our analogues to the
Product Rule has the following two kinds:
The first kind is

B g (F(a)ol) LN — DG

= PR Gg) — Fa)g@)) +

24" — g’

ﬁ{f (27)9(2") — f(a”)g(x"")}
29%) — f(29”) . , .
= (f( ) — J( )g(29°) + f(29 )(g( ) — g(z7")

za® — pd? 24 _ 3 )

- o 5 -
= A(x;q“,qﬂ)f(x) : g(xq ) + f(xq ) : A(x;qa,qﬁ)g<x)‘

If we replace the term f(29)g(29") by f(27")g(2?") in the second line of the

11



above formula, we obtain the second kind:

A(x;qa,qﬁ)(f(x)g(x)) = f($qa) ’ A(ac;q‘)‘,qﬁ)g(x) + A(ac;q"‘,qﬁ)f(aj) ’ g(xqﬁ)‘

A similar argument is to the ¢-quotient rule:

X f(x) _ A(z:;tz‘%qB)JC@) : g(xqﬁ) - f(xqﬁ) ) A(as;qo‘,q")g(x)

Ao
) g ) g(1)g(x7)
and
A .5 f .T) _ A(z q> qﬁ)f(‘r) g(xqa) - f(xqa) A(m q“ qﬁ)g<x>
(a0 g () (@) g(x2”)

For the ¢-chain rule, by computing directly, we have

Flg(29™)) =f(g(21))

A(x;qa,qﬁ)f(g(m)) — Rty
) o LU (G R Gl
@) ga)  pe=ar
L g w)) = g™ @) g — g(a)
G ) g (5 ) v

= A(g(w);q’%q’“)ﬂg(x» ’ A(x;qo‘,qﬁ)g(x)

if there are ¢/, w, p such‘that

and

7/

8
9" (z) = g(a®).
This formula, of course, is not regorous! However, it is enough for our argu-

ment in later chapters.

12



2.2 2": A new approach

As we state in the beginning of Chapter 1, most functions are original
from the simple function z”. When we act the ¢-differential operator on z",
however, there is no more surprising than we expected. Of course, it is also
indifferent to any other functions we were familiar with. This inspired us to
try an absurd way: Why don’t we change these functions? More specifically,

why don’t we change x"?

. . . . . 2 n—1
A simple and conceivable generalization for 4" is of the form x!+ata +--+a

or more general

xq(n—l)a+q(n—2)a+6+”.+qa+(n—2)ﬂ+q(n—1)ﬁ

: g : R i — q"=q"?
For simplicity, we use the notaions [n|, ‘= =, [M(gesgs) = e tO

rewrite them by zl"e | x[n](qa,(ﬁ), respectively. Then we have the following

results when we-act ¢-differential operator:

nl, o < =ty (niyalp I od(d=2)8] (n—1)5
A(w;qo‘yq")x[ hawat) & A(w;q“,qﬂ)xq o g i

mqna+q(n71)a+/3+”.+qa+(n71)ﬂ gy xq(n—l)a+ﬁ+.”+qa+(n71)ﬁ+qnﬂ

24"~ g’
(ana i anﬁ) . x(qa-Hi‘)(q(n72)o¢+q(n73)o¢+ﬂ+.'.+qa+(n73)ﬁ+q(n72)6)

x4® — g’
ana . anﬂ otp
—) . x(q )[n—l](qang)

xd®* — g’

= (
_ [[n]](z;qa,qﬁ) ,x(q”ﬁ)[n—ﬂ(qa,qﬁ)’

where

no

xq — anﬁ x(qna_l) — gj(qnﬁ_l)

[P @saea?) = 2 _ 2 pl@—1) _ pdP-1)

13



Take o = 0 and # = 1, it reduces to

A(x.q)x[n]q = A(x,q)x”q*'qz“'“""qn_l

1 — a1
— (—

2 n—2
)xq(1+q+q g )
1 — -t
= [n]@gz™ M,

where

1 — 7"~ 11— (xq—l)[n]q

—_ wq_l ]_ — xq—l

[[n]]($§¢I) = 1

For any w, it is intuitive to ge

Oor more generauy

(w+Da_ atwp watB _ (w+1)B

_wa _wpB
e i AT e T S

x4 — g4

watfB_atwf wB wa+p _ jotwf
w0 ) )
- B
xrd® — ra

(w—1a_ (w=1)3

B
_ (xq _ xq‘” ) . mqa+ﬁ(g qa,qg )
o

_ ¢ Plw=1] o 5
= [[w]](w;q“,qﬁ) " @t

14



where
xqua _ xquﬁ x(quail) _ x(qwﬁil)

[[w]](z;qo‘zqﬁ) = 24° — 3d° = 2(@=1) — 5(@P-1) -

Similarly,

A w X 1—g% 1 — -1
A(ac;q)x[ lo = A(JE;q)x( ) = <m

_ L w—1
)xQ(l 1q—q ) _ [[W]](@q)xq[w*l]q7

1—g@" 11— (z0 )kl
[wlizg) == 1 a1 1 _ gt

Our objective in this section is nearly achieved:
Az = [w] - 7eeSY (2.2.1)

The ¢-differential operator Aq is-consistent with [w] and 21!, the g-analogue
of w and z*, respectively.-Here we omit all theindices for clearity and use
(2.2.1) to denote the two cases for single'q and double ¢, ¢°. Note also that

the factor [w] is a function of x.and g, not a “constant “anymore.

Another interesting attempt is to construct the g-analogue of ™ %(L) =

mn

— L . We consider the relation between A, and (1)1 and use the §-chain
T x

rule and (2.2.1) to justify our following argument:

~ 1 n ~ 1 a+B1y o ~ 1
(x;qa,q/’)<5)[ hama = (%;qa,qﬁ)(g)q M .A(I;qa’qﬁ)(g)
1 8 = — Lﬁ
— (2N a8y (2T
= [[n]](%;qa,qﬁ) (.T) (a%,a") (xqa _xqa)
(Ly™ — (l)q"ﬁ
= Ce =y
1 (n—1)a+p3 a+(n—1)3 1 a6
)4 +.tq S(=1)(=)9" e
) (-1)(-)

15



B
— (M) . (l)q"‘“rq”ﬂ—qa—qﬁ )
(8%

x? — x4 X

1 (n—1)a+p3 a+(n—1)38
(=) e (=1)(

X X
qna qnﬁ 1
_ _(./L' — T ) . (_)qna+q(n—1)a+ﬂ+‘._+qa+(n—1)ﬁ+qnﬂ
x4 — x4° x
1
= —[nl@geg - (E

1

)e +q°

)[n+1](q°‘,qﬁ) ,

or another equivalent representation

if we take o =0 any w, we have
~ 1 [
A(ﬂv;q"‘,qﬁ)(g) :
1 o B
Z\a“+aq
)

) 2y

zd® — pa® T
1 wa+fB_ atwf 1
R G Lt
T T
mqwa - mqwﬁ 1 qwa++qw5+(qwa+,@_qa+wﬂ)
J— (o
= ) () o
2% — 1 (g<w+1>a,g<w+1>ﬂ)
= _(ﬁ = 9% =P
x? — x4 x
1 [w+1](q°‘,q5)
)

- _[[w]](w;q",qﬁ) ) (E)

16



or another equivalent representaion

A(x;qa’qﬁ)x_[w}@ayqﬁ) — _[[w]](x;qa,qﬁ) . x_[“""l}

(g%,qP) ,

and the single ¢ case is

A = —[w] g,

Now, we obtain another self-consistent relation between Aq, —[w], and 2~
Ag(z ) = S[w]f ez Wt (2.2.2)

Notice also that the algebraic strueture of (2.2.2) is quite different from (2.2.1)
in nature since an additional factor-"q “appeared in the power of z in right-
hand side of (2:2.1);but it-does’t in (2.2.2)/instead.

Actually, (2.2.2) inspired us to construct another version of G-analogue

of "L (2¥) = bz

@1 “with no-additional "¢ “in the power of x:

A (P = o] e Fer (2.2.3)

This formula seems to be more artifical than (2.2.1) for the first look. How-
ever, they are two reciprocal representaions of classical %(x“’) = wz* ! in-
herently. We will give some reasons in 2.3 to convince the readers of our

opinions.

17



2.3 ]:]g, g, Incomplete discussions for Tay-

lor’s expansion approach

As a result of 2™ = nl and AZz™ = [n]y[n — 1],[n — 2],...[2]4[1] = [n],!,
we have some idea to extend the n-factorial to g-analogue. One way, but not

quite right, is that

[[n]]?;«";q)! = [[n]](w;q) [[n - 1]](xq;q) [[n — 2]](95112;(1)"'[[2]] (an72;q)[[1]](an—1;q), (2.3.1)

where
' 1 — 7@ =1
I~ 1] oo i i 8,

The idea is direct from the consequences:

1 — z" L

I4+q+g% 4. +q" ! (
1 — et

)xq(1+q+q2+...+q"‘2)

Y

A(w;q)x

1 — galg" =1

A(mq;q)xq(1+q+q2+...+q”_2) = ( . " :
_— x w

)xq2(1+q+q2+...+q”_3)

1 — (@1

1 — p4*(a=1)

2 2 n—3
A o g4 Atq+git...+¢"°) _ (

)
)xq3(1+q+q2+...+q”*4)
(x973q)

Y

1 — 2@ =1

1 — pa‘(a—1)

. i 2 n—i—1
A ol (1+g+¢°+...+q ) — (

)xq"*l(1+q+q2+m+q”‘i‘2)
(27"59)

Y

It is intuitive to define an e® of g-analogue as the Taylor’s expansion

- = 1 -
B =14 ) e (2.3.2)
n=1 [ ]](Jv;q)'



Then we have the following consequences by the above differential laws and

g-product rule of first kind from section 2.1:

A E? A 1 2 n—1
ApgE; = Az (1 + Z N ‘:E1+q+q Fotd" Ty
[ ]](z;q)‘

0o ~ 1 .
- ZA(x;q)( plrata . ta 1)

S 1 A 2 n—1
= Y (A

)xq(1+q+q2+...+qn—1)
|

(39)
n=1 "] (z:q)”
- 1
= qu + Z(A(w;q) — ')xq(1+q+q2+...+q"—1)_
n=1 [l
Similarly,
~ ~ - 2 o8} B 1 .
A(zq;q)EfICq — E;cq 4 Z(A(mq;q)T')xq2(1+q+q2+'"+q 1),
n=1 [[n]](wq;q)



)xq3(1+q+q2+---+q"‘1)
)

~ q* . qu—l e - ]_ qi+1(1+q+q2+...+qn_1)

A(mq’ q)Eﬁ - Eq + Z(A(qu q)[[ ]]+ A l)x ’
n=1 (29%;9)

Another n! of G-analog e_consequences of (2.2.3)

(w5q) [[_2]] (w39) [[_ 1]] (w359)-
(2.3.3)

Then the corresponding Taylor’s expansion for e* of g-analogue is

y > 1 B pat g
Ez =1 + T —[ n](w ) = 1 + 2 qn, (234)
! Z [[ ]](x,q) Z [[ ]](.'z:,q)

where

] (l—q_” 1 1-¢. 1 1 1
/ 1—g¢ " l-q’ q ¢ q"




The relation between the ¢-differential operator and (2.3.4) is

X ~ St
A(“”;Q)Eq - A(%‘I) 1+ Z [[ ]]( ) ! )
5q
_ ZA @ %+;12'+...+an)
[[n]](w a)°
- 1 X Lyl 4k
= Z( | AYEE L )

n=1 [[TL]] (_xﬂl) ’

Now, we obtain two different relations between E;” , €4, and A(x,q):

AgEl ~ EY (2.3.5)

21



and
A& ~ &2 (2.3.6)

if we ignore the mixed terms. Indeed, the analogues of “%(ex) = e""in ¢-

A 1

(@7,q) [n] T, !

- N @7 ,q)

for E7, and the terms A(x,q)ﬁ for &7 are still preserved. However, the
(z,9)"

Calculus is not completely made attempt on since the terms A

corresponding terms in classical and ¢g-Calculus would be cancelled for that

n, [n]q are constant and ()" =0, Aq@ = 0. As a result, these expressions

are not nice enough to ou ill discuss two nicer forms in

3.2.
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Chapter 3

g-infinite products and

g-infinite.sums

e”, the simplest and well-known transcendental function, is given by the
following two products (1 + *)" and ﬁ when n tends to infinity. When

we consider thesg-analogue,the corresponding infinite products of £ and

ep are [~ (14 q[%f) and [ T2, (1_}%), respectively. Animmediate attempt

made is to find the corresponding ¢-infinite products for e* of g-analogue .

A short review, related g-infinite produets to g-infinite sums for £ and ef,
is given in 3.1. E;, €, infinite product representations for e® of g-analogue,
and the coresponding nice properties are discussed in 3.2. Two recurrences
for “sum part “of E; and ¢y with some incomplete discussions are considered

in 3.3. Unsolved problems are listed in 3.4.
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3.1 Ej, e;: A rough review

First of all, we introduce two identities from [14], the Gauss’s binomial

formula

n—1 n
. n .
1+¢z) = ' 1+2+...+(n—1)$]’
[Ja+d2) =) { ; }q

J=0 Jj=0

and the Heine’s binomial formula

where

H i f: n—l—l] n—l—j—l] .
— 7 —

:O

which is the g-amalogue of-Faylor’s expansion of )n incelementary Calcu-

lus.

It is not difficult to verify that the Gauss’s and Heine's'binomial formulas

become two different g-analogue of e* when replacing @ by z/[n| and letting

n—1 ST “In L2+ +(n—1) (L]
jl;[o(1+q[n]) jzo{j]q ([n])

R ICES SACEY R PR

7 Ul [n)?

3 IIMS

_ g_[n—u n=2 =i e
which implies that
ﬁ(1+ (1-q)q") Ziﬁq”“ H Dy = B (3.1.1)

24



S R S R R s (PR
la=z-1r2 i ol
B OOL n+1],, [n+ 2] [n+7—1] o
which implies that
ﬁ ! —iixﬂ' = el (3.1.2)
sy = =qga) [ o

On the other hand, E7, e also appear when we replace = by (1—-¢q)zin
the two identities of Euler
m

[o¢] o0 x
H 1+q ZC Zq1+2+ +(m=1) 5 —
vt — = @) (lmg?)-(1 — g™)

[e/9} 1 (o¢] m

H(l - q"a:) / n;] (I=¢)(1=¢)..(1=q™)

n=0

Interestingly, the two identities, relate infinite products to infinite sums, were
discovered by Euler-who lived before Gauss and Heine: However, they would
be derivated from Gauss’s and Heine’s binomial formulas when n tends to

infinity.

A simple extension of Euler’s identities is to find the infinite sums corre-
sponding to [T>7 (1 + 29") and []7” (-—). Computing the first product

finite times, one shall obtain a formula of the form:

n—1 n

j n 2 j—1
| | 1 + xqa -1 + z : : xl—i—q—&-q +...4q¢ 7
- ( ) — H J ﬂ
Jj=0 =1 (z,q)

25



where the "coefficients ” |1 " ﬂ are functions of variable x with parameter

(z,9)
q and satisfy the ¢-Pascal rule, manely,

"] e ni] +1M
J 1w J (2.4) b L

and |[ g H := 1. However, it seems hard to express II " ﬂ by an
(z.q) (z.9)

explicit formula like the classical ( ;L ) = J,#L]), For this reason, our
destination, finding a G-analogue of Gauss’s (or Heine’s) binomial formula
and then letting n tends to infinite to obtain a g-analogue of Euler identity, is

failed due to our poor knowledge. In other words, to find the e® of g-analogues

seems to be impossible if we just rely on the wisdom of the predecessors.

3.2 Eg, é,: Infinite product approach

The product representations for e” of g-analogue that we found are of the

following two forms:

[e.9]

Bpa= ]+ (1 — 2Dyt (3.2.1)
n=0
and
. 1
er=1] -0 o@Dy (3.2.2)
n=0

It is clear that (3.2.1) and (3.2.2) are g-generalizations of “product part”
corresponding to (3.1.1) and (3.1.2), respectively. For convenience, we use

the following equivalent representaions from now on:

BT = (14 (x —29))(1+ (27 — 27))(1 + (a7

2

— ™)., (3.2.3)
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~r 1
o (1—(z—29))(1 — (27 — 29°))(1 — (27 — 29°))... (3.2.4)

It is easy to check that Ej and €7 inherit the nice differential property of

classical, that is, (e*) = e™:

Awg B3
(14 (. —2)(1 + (29 — 27))... — (1 + (27 — 27)) (1 + (27 — z7°))...

S0 D @ - )+ @ — a1+ @ — ).

xr — x4

For the g-analogue of e, we define by the following:

1 " n "
— .= H(l — (1 — 2t (q—l))xq )
0

— (1= @@= a1 - ("~ 2" )(1 - (&

q
2

— ).
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and

[e.9]

1 1
1

(L+ (= 29)(1+ (29— 2®))(1 + (@® — 2®))..

Then the similar arguments are that:

- 1 1 ~
Awom =~ D
( 7q) é‘g éz‘q ( 1q)

1 1
Eg o Eg

It is intuitive to define the G-analogue of sinh x and cosh x by the following:

o . 1 ) . 1
Sinhgri= (k] — g_x)’ Coshgr= (£ + é—m)7
g q
= 1 = 1 1
sinhg = 5(&2 — E_§)7 cosh = 5(6’; - E_§>

Then we have similar arguments as classical by applying the ¢-differential

rules above:

A (o NG, O ehg2% | =A.) Cosh 2 Binh 2,
A(m;q)squ N C/(;S—ilqic, A(m;q)(;(—)\gqu = sﬁqu.

A nice formula also be found by direct computation,

(@s/lqu)(coshqx) - (qu)(s%qx) =1

For sinx and cosx, unfortunately, we have no nice formulas like sinh x
and cosh x. More precisely, the representaions

-~ 1 . 1 — L~ 1
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—~ 1 1 1, . 1
singr == —(€F — =—), cos,x 5(5? + =)

24 sz Eliz
q
seem to have no nice properties that we have is last paragraph. We use

another way to define g-analogue of sin x and cosz as follow:

- 1 e n n > n n
Singx = Z{g(l +i(1 — 27" @) ") — L[Ou — (1 — 27" @ D)"Y

- 1 e n n s n n
Cosg = 5{]‘[(1 +i(1— 2@y 4 TT(1 —i(1 = 2@ D)2},
n=0 n=0

Sm‘l {H (1 =%(1 an(q 1) xq l_J(:) L+d(1 — 27 (a=1))pa" )}
n

I ! ] !
COSqx = E{JL;[O (1 _ 2(1 — an(q_l))$qn) -+ g (1 e 2(1 _ l-qn(qfl))an) }

It is easy to verify that

A(ac;q) H(l NN ANV S ZH(l (V=g D)),
n=0
A(:r;q) H(l —i(1 42T ety H (T —i( a"(a=1)y g,
n=0 n=1
A(:C' )ﬁ( ! ﬁ ),
yqnzol_iu_xqql 1—Zl—x<I(q D)ga"

- 1 - 1
Az =—1
(3q) g(l +i(1 — xq"(q—l))xq”) ng(l +i(1 — zr"a=1) g

)?

and then the properties satisfy:

A(x;q)Sinqx = 5’0?9(11"7, A(I;q)C/'\olsqx = —%qzq,
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~ —~ ~ —~

A(2:g)81NgT = COST,  D(3:9)COS,T = —SiN,T.

A nice formula also be found by direct computation,

(Cos,x)(c0s4x) + (Singr)(singr) = 1.

3.3 E; , €,¢ Incomplete discussions for infinite

sum approach

An interesting problem which proceeds with 3:2 is to find the infinite sums

of Eg, é;. It appears that there are some relationsbetween (3.2.1), (3.2.2)

and (2.3.2), (2.3.4) since they are inherent in some algebric structures for

similarity. More precisely,

[T rxd A T ~ px?
A(ﬂﬂ;fl)Eq = Eq J A(x;fJ)Eq ~E,;

q

and

A(m;q)ég = ég, A(z;q)ég ~ EZ‘
For this reason, an irregular attempt is to-set

E* = (1+(z—a29)(1+ 27— 27))(1+ (27 —a7))...

= 1+ ) ap(z;q)at et (3.3.1)

m=1
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and ao(z;q) := 1, and then to find the recurrence between the coefficients

@ (x;q). Our argument is the following:

r rxd
By = (1+(x—2)E;

= (14 (z—a2)){1+ Z (2% q)xq+q2+_“+qm}

m=1
oo
2 m
= 14+ E am(xQ; q)xq-i-q +...4q
m=1
o]

(2% q)x1+q+q2+...+q"‘}

= L a0 - et

Comparing with (3.3.1

A (2% q)2?" 4+ (1 — 27 YHay,_1 (29 q), m>1
am(z;q) = { ) (2% q) ( ) 1(z% q) i (3.3.2)
A similar attempt is to set
& = !
(1= (z—29)(1 — (29 — 29°))(1 — (27 — 29°))...
— 1+ enlmqaeET (3.3.3)

m=1
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and co(z;¢) :==1. Then

e = (1—(z—a9)er

1

[ee] ) N
= (Lmz a1+ ) enlrgar™e T

m=1
N ittt 4+
= 1+ Z Cm (w5 Q) A
m=1
> 1 1 1
— (]_ — xq_l){x + Z Cm(l‘, q)x1+a+;g+...+q—m}

m=1

Also,

from (3.3.3), we obtain a recurrence

(w5 @)zt " = (1= 29 ey (239), m > 1
cm(xq;q) :{ i (LL' Q)w ( € )C 1(l‘ (]) Z;O (334)

Though we have obtained two recurrences of the coefficients a,,(z; q) and

cm(; q), unfortunately, we still have no idea to express a,,(z, q) and ¢, (z, q)
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by explicit formulas. An illogic and ambiguous view is to omit some ¢ from
am (2% q) in (3.3.2) and ¢, (29 ¢) in (3.3.4), then we rewrite the two recur-

rences by the following:

/ a, (r;¢q)x?" 1+ (1 — 29 Na,, (2%q), m>1
' c (z;q)z? " — (1 =27 Y, (x39), m>1
Cm(x;q) { | ( Q) ( ) 1( Q) T

Apparently, the two recurrences are solvable though they arise form two
unreasonalbe process. To Solve these recurrences, we obtain the following

consequences directly:

, 1 —pal F=lgpale=1) 1 — 7" e 1 — 22" a1
am(xv Q) = (1 a1 ) a0\ T 2@ D) ) 1 — zqm—l(q,l))
1 1 1 1
[l [m= Hesg  Rlgmdy e iy
o
[[m]]z;;q)!
and
) 16 DN 1 — gt 1 — gt 1 — gt

l30) = (1) (el
1 1 11
[-ml@e [=(m=Dlwe [2@e [-Ueo

q—(m—1)_1)"'(1 — $q72_1> : 1— xqfl_l)

— (-1

1

N [[m]](_ﬂﬁ;q)!'

Interestingly, Eg and £} in (2.3.2) and (2.3.4) are refound by two artificial
recurrences since the coefficients a,, and c,, are the reciprocal of (2.3.1) and

(2.3.3) unexpectedly. Is it just a coincidence? No, it is just lack of a logical
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explanation for these “coincidence”to our philosophy. It seems to be some

xT

deep relations between E;” , €4 and Eq,

g, and there must be a simple and
concise rule behind the algebraic structures which dictate E’g, e, and Eg, &;

in our belief.

3.4 Problems, still problems

A numerous mathematical structures of self-consistence were established
in the world of g-analgoue. For-instances, the Jacobi Triple Prodcut was
constructed simply by two identities of Euler which are the original versions
for £ and €. The g-gamma function has a elegant self-consistent structure
with ¢-integral and g-infinite-product. ‘The similar nice structure is inherited
by the g-beta function and the ¢-hypergeometric function as well. Much more
than these, the Jacobi Triple Product, the g-gamma function, together with
theta functions [15, 16] were unified successfully into/a nice formula [11]

(Tg(5))* 2 " 1 F2r2cos2ma + rin

1
2 = ¢ cosmz
Ty(3 #2)F(G ) ! n:l( 14 2720 4 pdn

)
(3.4.1)

(cosmx), =

2
with r = eloss — 0% as g — 17, which is the g-analogue of the classical

formula

An immediate attempt made is to find the g-analogue of another formula

sin x 1

r  TI'@@r1-)
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As aresult of 7 = I'(1)?, it is intuitive to set 7, = I'y(3)? and then the result

is quite similar to Askey’s: (Here we leave all the details in the Appendix.)

(Tq(3))? Lp1y2 = 1 — 2r?cos2mx + rin
( oo 1_[1( 1+ 2p2n 4 pdn )
(3.4.2)

7{_2
with 7 = eloss — 0% as q — 17. Interestingly, (3.4.2) also appeares when we

replace x by x — % or % —x in (3.4.1). More precisely,
. 1 1
(sinmz), = (cos m(xw = 5))(1 = (cos 7T(§ —Z))gs

which preserves the properities of the classical'trigonometric functions:

sin T = cos(g = mr) = cos(—(g — )
Unfortunately, to find the g-analogue of (3.4.1) and (3.4.2) is still a chal-

lenge to our poor knowledge. A suitable defination of ¢-integral for the fq(x)

is still unknown to us even though a candidate of the integrand

e ) . % (3.4.3)

q
was given before. The two identities of Euler could not be extended to
g-analogues to this day and a complete Jacobi Triple Product Identity of
g-analogue is still an imagination. In addition, to construct a self-consistent

theory for the Theta functions of g-analogue would be another important

problem.
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A weak version for Jacobi Triple Product of G-analogue is to replace = by

297! in the origial formula

3 (1T = (1 - 2)(425 9)oo (45 @)oo (/5 0)oe-

n=—oo

Then we obtain

> (e S (=) e a0
i (3.4.4)
where "(”Q_I)Q - ”("2_2) ~ n for ¢~ 1. In reality, it is not appropriate to

involve the terminology “g-analogue“with (3.4:4):since it is not beyond the
structures of g-series eventually, of course, helpless to.our destination. An

constructive formula to our-expectation.is at least of the form

o0

Z (_1)nxl+q+q2+...+q"‘1

n=—0oo

which would be equal to some products involving
(1 =) (1= 9 (1 21— ") L,
or whatever.

In conclusion, we have discussed “sum part “and “product part “of ¢-
infinite sums and ¢-infinite products independently throughout this chapter.
However, we still have no idea to find a transformation formula which con-
nected g-sums with g-products simultaneously. More precisely, a explicit
formula (or a weak version) for g-binomial theorem. This problem is des-
perate for settling and seems to be more fundamental than all of the above.

Eventually, problems are still problems.
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Chapter 4

['(z), Euler Constant v, and
((2): A new approach

Many different; expressions can be given for the Euler constant

1.1 1
v = lim(l—l—é—l——%—---—i—ﬁ—logn).

n—00 3
One way to obtain the magic constant-is-to evaluate the value of the loga-

rithmic derivative for the reciprocal of Gamma function at = = 1 [17]. More

precisely,
d 1 (1)
—1 — =1 T =
7z 8 T =1 T T
Differentiating log ﬁ twice, the result is also worth studying:
() (7)., < 1 (%) 2
= + = +((2,
o)~ T ; nror - T T@w)
and then



In this Chapter, we desired to generalize the Euler Constant v and Rie-

mann zeta 2 function ((2) of classical to ¢- and ¢- analogue.

4.1 ~, and (,(2)

For g-gamma function, one has the infinite product

and
where
1 1.1 1
=" log (=) T —.
(n) q [
Note that the factor
1,1
— ) 1—q
( q)
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is a g-analogue of nature exponential e since it tends to e as ¢ tends to 1~

and hence

is a g-analogue of

To verify the proposition is not difficult, the only pre-knowledge is just

the Elementary Calculus.

—
e%)
= log T log[z] + ez + n:1(log[x +n] — log[n] — (%)
rog(hyrs L = L
75 losl] = ¢ log(a) ERlEt
d_ log[x + n] = qn+m 10g($) T-q [x i n] _ <x i n)




and

Since

4.2 ’N)/(t,q) and Qt(t,q)(Q)

A simple g-extension of Gamma function is of the form:

2 ST 0113 % )
P (e) = lim [=][z + 1]...[« —i—n]][[ I
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where

1—¢ L
[w] = [w]wo = T

And it is easy to check ', (x) satisfies the functional equation:
- : (10121 - [~] 1
r 1)=1 ot
o+ 1) = I e T e rnr gLy

BSR4 28 3 R O 1 B

n—oo [x] [z + 1]...[x + n] [z 4+n+1]

[ . [7]
= [l eal@) lim m=0

= [210 (),

which is an analogue‘of I'(#+ 1) = z!.

Our propositon are the following two identities:

r, (1) 1 1 1 1
_ lim ( + + .t T =logn]) == g (4.2.1)

Pug(l) meee (1) ((2))  ((3)) {{n))

and

1~1,(/75761)(1> r = 1
o) 0™ ; ey oA (4.2.2)

where

1 B lﬁ =11, ey L
o] = LB ) ) (1 a1

and the error term £(¢, ) is @ funetion of variables t, ¢ with contribution 0

when ¢ tends to 1. Note that the factor
1 1

)144*1

is a g-analogue of nature exponential e since it tends to e as ¢ tends to 1 and

hence

=1
2 ((n))?

n=1
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is a g-analogue of
o
=2
: n .

The argument is quite similar to section 4.1 (but more complicated):

NONE 1 1
7 .:—+—+,,,+__10g[[n]]
o0 (1) T {(2) ()
— [n] " = e~=lesll = o~ (xiiy @t o ) = T T T o)

G S I
T @ Te@ T @ T S G Ty

n=1



Cg (M R SV L

= Fm et T T Ty

n=1

1
prm— ~ 1. = ~ .
Vit T 0 g1y oo

and

with contribution 0 as ¢ tends to 1 since the factor

1 i t(qz+n_1)
tends to 0 and the factor
41 Lo (1)1 ) (105 D) o L\ =T T
(" log )T (4 og( ) ) o) )
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tends to (loge)(loge)(loge) =1 as ¢ tends to 1. Using the fact that

d_2 log 1 _ _(f(t,q) (w)f,(/t,q) (x) — f"(t’q) (:U)2)
dmz F(t,q) (:B) F%t,q) (ZE) )
we have
and then
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Chapter 5

Applications to Quantum

Groups SU4(2)

In mathematics and theoretical physics; the term “quantum groups”denotes
various kinds of noncommutative algebra with additional structure and the
corresponding representaion theory satisfies the Yang-Baxter equation. Math-
ematically, quantum groups.is some special kind of Hopf algebra. However,
the same term is sometimes considered as the “quantization”or “quantum
deformation”of classical Lie groups-or Lie algebras as well. In reality, there
is no single, all-encompassing definition, but instead a family of broadly sim-
ilar objects for Quantum Groups. Retrospect to the history, these objects
first appeared in the theory of quantum integrable systems [18], and was then
formalized by V. Drinfel’d [24] and M. Jimbo [25] as a "quantized “universal
enveloping algebra of a semisimple Lie algebra or, more generally, a Kac-

Moody algebra, in the category of Hopf algebras.
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Nevertheless, our present knowlege to Quantum Groups is much less than
that we just mentioned all above. We desire to skip all the terminologies and
backgrounds of mathematics here and just consider Quantum Groups con-
cretely as g-deformation of classical Lie Algebras and Lie Groups like the
preceding chapters. Incomplete discussions and generalizations are consid-
ered in 5.1. Here we discuss different types of g-deformation of classical Lie
Group SU(2) with the corresponding Casimir operators and generalize the

deformation of ¢, ¢~! to any ¢%, ¢°.

Additional works‘that we hope to achieveuin later sections is to find the
corresponding R-matrix together with Yang-Baxter equation and then to

realize the strueture of Quantum Groups.

5.1 Reviews and some extensions

The Lie Algebra of Lie Group SU(2) is

avdyl = Jody — Jyde=dJs

Uy 3 =10y = 00y = s

Uz da] = Jedo = Jude = iy,
_ Jeti- Ur—j-)

or equivalently, for j, =

V2 ajy:_i V2 7jZ:j0a

[Jo.J+] = Joj+ — J+jo = J+
s d=] = J4d— —J-J+ = Jo
J=.do] = J—Jo—Joj-=17-,
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where [, | denotes the Lie commutator. The corresponding Casimir operator,

which commutes with all generators, is
C=Js+i,+i:

=jijo i jr+id =2jid- +hoo— 1) = 2j_j+ + jo(jo + 1).

The first quantum deformation of SU(2), given by P. P. Kulish and N.
Yu. Reshetikhin [18], is

[Jo, J1] = Jodi = Jpdo= Ty

B sinh2h o0 1
[J+, J_] = J+J_ — J_J+ == m = 5 [2J0]q (511)

[T, Jo] = J Jy === Je,

where
X X
qa —dqg
[ X]a=

q—q ! - X

as ¢ — 1, or following the historical developient ¢ ='e = 1 as h — 0. Other
g-deformations of SU(2) are constructed by S. Le'Woronowicz, E. Witten, and
D. B. Fairlie: (We use the notations.of T+ L. Curtright and C. K. Zachos [19])

(i) Witten’s 1st deformation [20]:
1
[EO, E+]p - pEOE+ - 5E+E0 - E+
1
By E-] = ELE.—E E, =F;—(p— 5)E(2)

1
[E_, EO]p = pE_E(] - —EQE_ =F_
p
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with Casimir operator

1
C,= 1—?E+E_ +pE_E, + E2.

(ii) Witten’s 2nd deformation [20]:

1
Wo, W], = rWoW, — ;W+W0 =Wy

1
[W+, VV_]?IZ = ﬁW+W_ — T2W_W+ = W()

(iii) Woronowicz’

(iv) Fairlie’s generalizatio

1
Lo, 1], = rloly — ;ero =1
1
[I+,I_]1 = g.[_|_.[_ — SI_I+ = IO

1
[I_,I()]r = ’I"I_I() - —I()I_ =1_.
T
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(v) The cyclically symmetric deformation [22]: (Fairlie)

1
[X,Y], = ¢XY— EYX -7

1
Y,Z, = ¢¥Z—-2Y =X
q

1
2, X], = qZX—=-XZ=Y
q

with Casimir operator

with Casimir operata
Clyogn =0"E+E_+¢"E_E, + ¢“"E}.
For Fairlie’s form, we have
(X, Y]gouy = ¢°XY —¢°YX = Z
Y, Z) o gy =a"YZ —°ZY = X

(Z, X](go gy = 4" ZX — ’XZ=Y
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with Casimir operator

1
Cigngry = (677 + qa—_ﬁ)(XQ +Y? 4 2%

HX(PYZ - 2Y)+Y (P ZX — ¢°XZ) + Z(°XY — ¢°Y X)}
= (P PNXYZ+YZX +ZXY)

—(“+ ¢ NXZY + ZYX + Y X 2).

Note that the geometric interpretation of C'4a 46) is interesting. The tangent
plane of the first equality is of three sphefes: Two concentric inversion S?
with factor ¢®=# of degree 1 and —1, respectively.<One distorted sphere Sq2
with degree 0. In fact; the distorted one would return to normal sphere when
g tends to 1 since Y Z — 2Y = X, ZX — XZ =Y, and XY —YX =7 in

classical SU(2)s The specific expression withdrregular notations is that
Oy = (a¥72)8° (¢*7)°S; + (¢ F) ™8>

The factors (¢® )L, (¢277)%,) (¢ #)~1 are meaningful in some sense. For
Woronowicz’s and Witten's:2nd form, we desire to find the Casimir operator

C ¢%) of the algebra

q,4°%,q7,

(Wo, Wil gy = a*“WoWy — "W, Wy =W,
Wi Wogpary = W Wo ='W W, =W,
(W_, Wolgegry = ¢“W-_Wo—¢"WoW_ =W_.
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Chapter 6
Conclusion and future works

Nearly three.decades, characterized by thousands of investigators from
different approachs of physies-and mathematics during their careers, the fea-
ture of Quantum Groups was visualized gradually nowadays. Two different
approachs to our superficial study are the followings. One;which relates the
representations of Quantum Groups with g-special functions, is in [23]. This
approach is the primary motivation for our studying in Chapter 1 to Chap-
ter 4. However, the aims were not completely achieved eventually. Another
approach, which starts with' the construction of quantum linear problem,
is considered by Kulish in [18]. As Algebra (5.1.1) corresponding to Sine-
Gordon equation in Kulish’s works. A direct question is that what happens
when we consider a quantum linear problem for differential equations other

than Sine-Gordon equation?

For this reason, we desire to construct a quantum linear problem for the

o1



" Liouville equations ”

Ugp & Ugy = T

and hope to find the representation together with the Casimir operator of
the corresponding “expected”quantum algebra SU,(2) or whatever. Further
works are to find the corresponding R-matrix together with Yang-Baxter
equation and finally to visualize the structures of Quantum Groups under
quantum linear problem of this kind. We hope to generalize the Liouville

ize the evolutions between differ-
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Appendix A

(A.0.1)

(A.0.2)

(A.0.3)

(A.0.4)

fort =¢" and t = q%, that is,

and

v -z e - n 1 ’rL2 TL(L‘—l
(0" Qoo Do (0" oo = > (—=1)"q2 20 2))
1 ) 0o s



(A.0.2) is from the Poisson’s Theta Transformation Formula [15]

o0 ) 1 o0 2
—7t(n+2)* _ — T 4 2minz
e =— et
2. i
with the substitutions ¢ = e 2™, r = e, z = (z — 3) + 2. The remainder

details are the following:

Z 6—71'7§(n+z)2
and hence
S (1t et L §N e riene-)
——0 t n=-—00
_ q_i(‘”_%)Qi Z (_l)nr(n+%)2 . ( Z-6771'(2n+1)oc)
t =—00
1 o0



o0

2 (Ve = % (2 (=)

n=—00 n=0
for the substitution 2 = 3 in last identity. Then (A.0.3) satisfies. Finally,

(A.0.4) is from the fact [16] that

O1(z;7) =2 Z:(—l)"r(”*%)2 sin(2n + 1)z
n=0

- 27"%(7“2; %) s 8in 2 H(l — 2r®" cos 2z + ")

n=1

with z = 7z and

Oy (z; 1) =2 Z p(t3)? cos(2n + 1)z

n=0
— opi (r%72)00 COS 2 H(l + 2% cos 22 + ri")
n=1

with z = 0. Then the proof is accomplished.

The slight differences from Askey’s proof {11] are the substitutions ¢ =
g2, t = g% in<he Jacobi Triple Product, the'stibstitutions ¢ = e=2™,

i

r=et,z=x+ % in the Poisson’s ThetaTransformation Formula and the

use of

O2(z;7) = 2 Z rt2) cos(2n + 1)z

n=0
= 21 (1% 7?) 50 COS 2 H(l + 2r?" cos 2z + ™)
n=1

with z = 7z and z = 0 respectively.
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